
An Engineering Method for Adaptive, Context-aware Web Applications

Von der Fakultät für Ingenieurwissenschaften der

Universität Duisburg–Essen

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigte Dissertation

von

Joachim Wolfgang Kaltz

aus Mainz

Referent: Prof. Dr.-Ing. Jürgen Ziegler

Korreferent: Prof. Dr. Heinz Ulrich Hoppe

Tag der mündlichen Prüfung: 18. Juli 2006





Acknowledgments

I thank the University of Duisburg-Essen and all its employees for providing the framework enabling
me to complete this dissertation. Foremost, I wish to thank Professor Jürgen Ziegler for his supervision
and regular suggestions for improving the quality of this work.

I am also grateful to my colleagues at the Institute for Interactive Systems and Interaction Design
for the pleasant work atmosphere. Particularly valuable were the efforts by Steffen Lohmann and Eike
Lang for constructive discussions about the subject matter and for reading corresponding texts with
great attention. Last but not least, I thank my parents, Barbara and Norbert Kaltz, for their continuing
support over the years.

Finally, I would like to indulge myself by recalling an (obscure) citation of film actor Jean-Claude
Van Damme:

”L’être humain a tellement l’habitude de parler et de regarder, temps en temps les gens
qui sont awares que les gens qui voient, parce qu’ils sont obligés de sentir les sentations,
les gens qu’ils aiment pas, qu’ils aiment bien, et les objets qui sont, et on est awares.”

This gem in terms of semantic ambiguity serves to remind me that the human being is presumably
the most elaborate existing context-aware piece of machinery, and will perhaps never be surpassed by
software in that regard. This author would like to thank all humans assisting in raising our level of
context-awareness, be it by works of art or science.



4



Abstract

Users of Web-based software encounter growing complexity of the software resulting from the in-
creasing amount of information and service offering. As a consequence, the likelihood that users
employ the software in a manner compatible with the provider’s interest decreases. Depending on
the purpose of the Web application, a provider’s goal can be to guide and influence user choices in
information and service selection, or to assure user productivity. An approach at addressing these
goals is to adapt the software’s behavior during operation to the context in which it is being used. The
term context-awareness originates in mobile computing, where research projects have studied context
recognition and adaptation in specific scenarios. Context-awareness is now being studied in a variety
of systems, including Web applications. However, how to account for context in a Web Engineering
process is not yet established, nor is a generic means of using context in a Web software architecture.

This dissertation addresses the question of how context-awareness can be applied in a general-
purpose, systematic process for Web application development: that is, in a Web Engineering pro-
cess. A model for representing an application’s context factors in ontologies is presented. A general-
purpose methodology for Web Engineering is extended to account for context, by putting in relation
context ontologies with elements of the application domain. The application model is extended with
adaptation specifications, defining at which places in the application adaptation to context is to occur,
and according to what strategy.

Application and context models are system interpretable, in order to support automatic adaptation
of a system’s behavior during its operation, that is, consequently to user requests. Requirements for
a corresponding Web software architecture for context are established first at the conceptual level,
then specifically in a content-based architecture based on an XML stack. The CATWALK software
framework, an implementation of an architecture enabling adaptation to context is described. The
framework provides mechanisms for interpreting application and context models to generate an adap-
tive application, meaning to generate responses to user requests, where the generation process makes
decisions based on context information. For this purpose, the framework contains default implemen-
tations for context recognition and adaptation mechanisms.

The approach presented supports a model-based development of Web applications which adapt
to context. The CATWALK framework is an implementation for model interpretation in a run-time
system and thus simplifies the development of Web applications which adapt to context. As the frame-
work is component-based and follows a strict separation of concerns, the default mechanisms can be
extended or replaced, allowing to reduce the amount of custom code required to implement specific
context-aware Web applications or to study alternative context inference or adaptation strategies. The
use of the framework is illustrated in a case study, in which models are defined for a prototypical
application, and this application is generated by the framework. The purpose of the case study is to
illustrate effects of adaptation to context, based on context description and adaptation specifications
in the application model.



6



Contents

1 Introduction 13
1.1 Theme Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Adaptivity and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2 Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.3 Web Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Problems and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Goals of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 State of the Art 23
2.1 Context-awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Accounting for Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 Context Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.3 Architectures for Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Common Approaches to Web Application Development . . . . . . . . . . . . . . . . 30
2.2.1 Portal Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Web Content Management Systems . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4 Application Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Methodologies for Web Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Engineering for Context-awareness and Usability . . . . . . . . . . . . . . . . . . . 42

3 Context in Web Applications 45
3.1 Adaptation to Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Context Usages and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Example Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Categorization of Context Elements . . . . . . . . . . . . . . . . . . . . . . 49
3.2.3 Aspects of Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 A Unifying Context Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 A Formal Definition of Context . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Concrete Context Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Context Knowledge and Relations . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.4 Example Context Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Context Modeling in the Web Engineering Process . . . . . . . . . . . . . . . . . . 59
3.5 Application Models and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Domain Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.2 Context Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



8 CONTENTS

3.5.3 Ontology Lookups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.4 Adaptation Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.5 Navigation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.6 Modeling for Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Model Visualization and Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 A Web Software Architecture for Context 71
4.1 Requirements for an Adaptive Run-time System . . . . . . . . . . . . . . . . . . . . 71

4.1.1 System Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.2 Reference Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.3 Web Application Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Processing and Architectural Approaches . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.1 Information Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Architectures for Adaptive Systems . . . . . . . . . . . . . . . . . . . . . . 76
4.2.3 Component-based Software Engineering and Adaptation . . . . . . . . . . . 77
4.2.4 Processing in the Cocoon Framework . . . . . . . . . . . . . . . . . . . . . 78
4.2.5 Using Cocoon for Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.6 Components in Cocoon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Principles of the Web Software Architecture for Context . . . . . . . . . . . . . . . 83
4.3.1 Processing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Architectural Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.3 Domain-specific Components . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.4 Navigation and Patterns for Presentation . . . . . . . . . . . . . . . . . . . . 90

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 The CATWALK Context Framework 95
5.1 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Components for Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Context Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Context Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.3 Model Representation and Access . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.4 Ontology Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.5 Adaptation to Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Components for Application Generation . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.1 Navigation Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.2 Content Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.3 Service Incorporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.4 View Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.5 Presentation Information Generation . . . . . . . . . . . . . . . . . . . . . . 113
5.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Context Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 Case Study: Example Web Application . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5.1 Application Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.2 Adaptation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.3 Context Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



CONTENTS 9

6 Summary and Future Directions 125
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A Standards and Standard Authorities 129

B Model Elements Type Definition in OWL 131

C Models for a Prototypical Web Application 137

D CATWALK Framework UML Diagrams 145

List of Figures 149

List of Tables 151

List of Listings 153

Bibliography 155



10 CONTENTS



List of Abbreviations

API Application Programming Interface
CASE Computer-assisted System Engineering
CBSE Component-based Software Engineering
CMS Content Management System
CSS Cascading Style Sheets
CORBA Common Object Request Broker Architecture
DOM Document Object Model
DTD Document Type Definition
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JSR Java Specification Request
J2EE Java 2 Platform, Enterprise Edition
OWL Web Ontology Language
PDA Personal Digital Assistant
RDF Resource Definition Framework
RSS RDF Site Summary
SoC Separation of Concerns
SOAP Simple Object Access Protocol
UDDI Universal Description Discovery and Integration
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
WAP Wireless Application Protocol
WML Wireless Markup Language
WSDL Web Services Description Language
WSRP Web Services for Remote Portlets Specification
W3C World Wide Web Consortium
XHTML Extensible HyperText Markup Language
XML eXtensible Markup Language
XPath XML Path Language
XSL Extensible Stylesheet Language
XSLT XSL Transformation
XSP eXtended Server Page



12



Chapter 1

Introduction

1.1 Theme Explanation

In software, networking can be used to provide the user with up-to-date information and access to ser-
vices offered by a remote provider. In novel applications, networking is increasingly handled via Web
mechanisms (Rheingold, 2002); corresponding Web-based systems support in particular applications
accessed in a Web browser on a personal computer, and software for mobile systems that operates
over the Web.

Web-based systems are increasingly complex and used for a wide range of purposes, possibly in
changing circumstances, for example in various locations and with different devices. This has raised
new issues related to applying the technology, in particular regarding usability of such systems. The
amount of information provided to users of Web-based systems is increasing rapidly; this “content
explosion” (Monaco et al., 2001) can result in confusion as to which information is relevant. Within
many current Web applications, too much cognitive effort is required by the user to “recognize impor-
tant relationships and recall key information” (Griswold et al., 2003). Furthermore, though Web-based
systems have traditionally focused on information delivery, they are now also used as a platform for
providing additional types of services, which may require complex interactions with the user (that
is, interactions beyond mere activation of a link in a Web page). This raises the question of which
services to provide in which situation, and how to integrate as seamlessly as possible services within
the offering of a Web-based system, to reduce the amount of effort a user must expend to find and use
a service.

Web resources are increasingly plentiful, but a user’s cognitive resources are not unlimited. This is
likewise true of the physical resources a user has access to in a specific situation. No matter how much
bandwidth and computing power increase, there will always be scenarios in which these resources are
insufficient, in particular in mobile computing scenarios (Forman and Zahorjan, 1994). Web engineers
must address these problems of cognitive overload and physical constraints, as they restrain usability
of Web-based systems and may even cause users to entirely reject a system.

Adaptation has been proposed as an approach to address these problems. In such an approach,
a system is conceived in a manner such that it is capable of adapting its operation according to the
present situation of usage. Corresponding Web applications can assist the user in navigation, con-
tent and service selection according to known preferences and current circumstances: an application
should present the user “the right thing at the right time in the right way” (Kappel et al., 2003). In
addition, for wider acceptance in everyday usage, an application should “require human attention for
only critical aspects of task execution that require their input” (Thayer and Steenkiste, 2003). Thus,



14 1. Introduction

a requirement for software can be that software should adapt its offering according to the situation;
meaning that what is being offered, and how, should depend on the user and the context in which the
user is using the system (Morse et al., 2000).

1.1.1 Adaptivity and Context

Varying terminology is used in computer science to describe the goals of adapting software to user
needs, and of providing the conditions necessary for this adaptation. One needs to distinguish, on
the one hand, the activity where a system engineer, or an individual user, explicitly and manually
adapts an application to needs and preferences, and, on the other hand, automatic adaptation of an
application’s behavior, performed by a system.

Software supporting user-initiated individualization can be called adaptable, whereas software
supporting system-initiated individualization can be called adaptive (Oppermann, 1994). A distinction
in adaptability can be made according to the person performing the individualization. When the end-
user tailors an application according to preferences, this activity can be called personalization. When
a manufacturer configures or modifies software according to customer requirements, this can be called
customization. When a customization is aimed at a large number and variety of customers, the term
mass customization (Gilmore and Pine, 2000) can be used.

In this dissertation, we call a system adaptive when it is capable of automatically adapting an
application’s behavior, during application usage, according to the context in which the application is
being used, that is, the “context of the interaction” (Dix et al., 2003). Additional terminology is some-
times used in research. The field of adaptive hypermedia uses the term personalization to describe
the activity of systems which analyze the user’s past behavior in order to decide what information to
provide next, for example in tutoring systems (Brusilovsky et al., 1998). In mobile computing, the
term customization is used to describe the goal of software adaptation to a user’s location of use and
device constraints (Badrinath et al., 2000); ubiquitous computing likewise uses this term in this sense
(Kappel et al., 2003). Using the term customization for automatic adaptation can be misleading, as
customization can also be used to describe an engineering activity, as discussed above.

To possess the ability to fulfill an individual user’s needs, software must take into account several
factors, such as the user’s profile, current task or goal, and possibly additional factors such as location,
time, or device used. The combination of all relevant factors in software usage can be termed the
context, and thus a Web software that takes them into account is a context-aware application. The
term context-sensitive is sometimes used interchangeably, see, for example, (Clerckx et al., 2005). In
turn, the term context-adaptation is sometimes used to refer to the activity of systems basing their
adaptation on context (Mani et al., 2004); this term can however be misleading, as it might also refer
to the activity where a system adapts its knowledge about context itself, as opposed to adapting the
application according to this context. To use information about context, a system must determine this
information during its operation: this activity is called context sensing, context reasoning, or context
inference.

In summary, using the notion of context in software (that is, “context-aware computing”) is a
paradigm in which information about the situation of system usage is gathered and structured in such a
way that this information can be used for (automatic) adaptation of software according to the situation.
The motivation for context-awareness (and with it, adaptation) is, ultimately, to increase usability of
systems. In an adaptive Web application, knowledge about context might be used at various levels,
from the structuring and appearance of the user interface to the information and services provided.



1.1 Theme Explanation 15

1.1.2 Web Applications

A Web application is software which enables a person, via a user interface, to make use of information
and service offerings provided on the World Wide Web (in short, Web). To describe such applications,
a definition of the Web is then required; according to the Merriam-Webster Dictionary, the World Wide
Web is:

a part of the Internet designed to allow easier navigation of the network through the use
of graphical user interfaces and hypertext links between different addresses – called also
Web.

The purpose of a Web application is traditionally to provide users with an access point to an
information system, respectively to several information systems integrated for external (Web) access
at this point (Rheingold, 2002). Increasingly, these applications go beyond mere presentation of
information, and provide many types of services, sometimes requiring complex interaction: in other
words, these applications provide operational features in addition to information delivery.

This dissertation focuses on software designed for the Web in a professional environment. In this
regard, a Web application belongs to a specific sort of network-centric software systems used between
an enterprise and its customers, or within an enterprise. Using Web mechanisms for networking can
be compared to other fundamental approaches as outlined in Table 1.1.

Client type Service offering
host terminal A user is directly connected to a host, via a terminal. The user

chooses a specific transaction, and then interacts with this trans-
action.

client-server custom The user interacts with a client software that is located in the
same network as a server. The client software has some knowl-
edge of the application domain and relies on the server to pro-
vide functionality such as data persistence: for example, a client
might be connected to a relational database management system
(the server), and interact with several tables in the database.

Web standard (Web
browser, WML
browser)

A Web server offers information and services at a specific loca-
tion, identified via a URL, and Web clients communicate via the
HTTP protocol with the Web server. The client has no knowl-
edge of how the server implements its functionality.

Table 1.1: Network-centric applications in a professional environment

A significant particularity of Web mechanisms is that they are standardized: notably, the manner in
which resources are addressed (URL1), and the way in which client and server communicate (HTTP2).
Unlike a typical client-server application that requires a custom client and operates in a controlled
environment, Web applications can be used by a general purpose Web client, such as a Web browser,
by people not necessarily known to the service provider. The fashion in which a Web application
is used is thus less predictable than in classic software scenarios (Dumke et al., 2003): though a
Web application is often targeted at certain groups of users, the actual type of user and the usage
scenarios can not be known precisely. This requirement, along with requirements following from

1Uniform Resource Locators, see Appendix A
2Hypertext Transfer Protocol, see Appendix A



16 1. Introduction

the specification of the Web standards, results in specific constraints for Web applications, notably
regarding user interaction with these systems.

The goal of a Web application as understood in our work is not to recreate or replace existing
information systems. The information systems themselves (referred to as “backend” in this regard)
need not be engineered using Web technology, but the user’s access to these systems is increasingly
occurring via Web technology. To illustrate the difference, consider the following scenario: the Web
offering of a health insurance company provides Web access to medical knowledge that can be queried
and answered by a medical expert system (the backend). This Web application integrates a possibility
for users to obtain knowledge from this medical expert system, but does not replace the expert system.

1.1.3 Web Engineering

Web Engineering is an emerging discipline that advocates (Deshpande and Murugesan, 2001):

(...) establishment and use of sound scientific, engineering and management principles
and disciplined and systematic approaches to the successful development, deployment
and maintenance of high quality Web-based systems and applications.

While related to Software Engineering, Web Engineering must take into account, in addition to the
technical particularities of Web applications (see Section 1.1.2) specific characteristics of Web-based
systems, notably:

• Web-based systems are primarily content-driven (although they may in addition provide opera-
tional features). Navigation through this content must be achievable in a user-friendly manner.

• “Multiplicity of user profiles” (Murugesan et al., 2001): Web-based systems are potentially
used by people with differing skills, capabilities, and interests.

• Web-based systems can be used in varied operational environments. For example, a user might
use the same system while in the office and while performing external work, potentially with
different devices.

• As a Web application can be a complex, multi-layered system, people involved in development
can be of varied backgrounds and areas of expertise (Ginige and Murugesan, 2001), for ex-
ample, domain experts, graphical designers, marketing professionals, software developers, or
database administrators.

To gain an understanding of the increasingly complex requirements within Web Engineering, it is
helpful to consider the evolution of Web applications. This evolution is typically considered in terms
of generations, of which one possible categorization, as given in (Dumke et al., 2003), is:

• First generation: information is published on the Internet, and can be viewed by any user with
a Web browser.

• Second generation: the user can interact with server components that provide complex infor-
mation services, for example by integration with a database. Such a database may have existed
prior to Web application development, and its contents are then made accessible through the
Web.

• Third generation: plug-ins for the display of special media types in the browser become avail-
able.



1.1 Theme Explanation 17

• Fourth generation: pages are dynamically generated by the Web server, and the information
provided by the system is managed consistently on the server using tools such as Content Man-
agement Systems (CMS).

• Fifth generation: this generation holds the goal of a “Semantic Web” (Berners-Lee et al., 2001),
where association of meaning to information on the Web allows for smarter machine processing
of this information.

The definition of generations of Web applications is arbitrary and varies in literature; (van Ossenbruggen et al.,
2001) for instance use the term third generation to refer to the Semantic Web. Likewise, the distinction
between second generation and third generation Web software - see, for example, (Copeland and Hwang,
1997) - is not always clearcut. In addition, individual applications, for example an Internet Banking
software, can not be clearly assigned to one of the above generations. It can further be argued that de-
velopment of software components to be used over the Internet (such as in automated B2B-scenarios),
even if not used in a Web application per se, should also be considered Web Engineering; however,
such scenarios are not within the scope of this dissertation.

An additional complication in categorizing applications is that, increasingly, applications tend to
blur the boundaries between host, client-server and Web mechanisms. For instance, a client-server
application can communicate via the same mechanisms as a Web application, or a Web browser can
contain extensions that act as a client in the sense of a classical client-server application.

Nonetheless, specific requirements for state-of-the-art Web applications emerge:

• the information provided can be dynamically created and should be managed consistently;

• it should be possible to provide operational features within the Web application; meaning, func-
tionality in addition to the classic Website operations browsing and navigation (Baresi et al.,
2000);

• adaptation to context can be required (see Section 1.1.1);

• in accordance with the vision of a Semantic Web, applications should be based on semantic
definitions of the resources provided by the applications.

Models and Methodologies

An approach to Web Engineering, as any approach to engineering, requires a description of the object
to be engineered (in this case, a software application), that is, requires a model. In general terms, a
model, according to the American Heritage Dictionary, is

a schematic description of a system, theory, or phenomenon that accounts for its known
or inferred properties and may be used for further study of its characteristics.

In informatics, the activity of modeling serves, according to the Merriam-Webster Dictionary, “to
produce a representation or simulation of using a computer to model a problem.” Within Web Engi-
neering, modeling aims at producing a representation of the Web application; this application fulfills
specific needs (that is, solves specific problems). Different existing modeling approaches greatly vary
regarding scope of the problem that they address (examples for modeling approaches are provided in
Chapter 2). Some approaches aim at supporting the design phase of application development; that is,
at providing a common representation of the application to be agreed upon by all parties (for example,
customer, designers and developers). In such approaches, the intention is that application developers



18 1. Introduction

use the models as basis for their software programming task, whereas model usage by a run-time sys-
tem for application generation is not aimed for. Other approaches propose to use a software system
to interpret the application model in order to generate the application to some degree. The model can
be considered a basis for simulation when directly usable for application prototyping. In the vision of
generative programming (Czarnecki and Eisenecker, 2000), an application can be entirely described
by successive models, thus foregoing the need for any custom software programming. Intermediate
approaches can aim to reduce the need for programming or to allow for rapid prototyping, whereas a
commercial-grade application would still require some form of additional, specific programming.

Application models thus have various scopes and purposes. For an individual engineering activity,
it must be decided which sorts of models are to be used, what each model should address, and how and
in which order they should be established. These questions are addressed in a methodology. Generally
speaking, the purpose of a methodology in Web Engineering, as in software engineering, is then to
support the software development process. The process is divided into phases aiming to better manage
complexity and to ensure a higher quality of software. A methodology defines models to assist the
Web engineer in development; such models also aim to facilitate communication between the various
people involved in a development process. The degree of formalization of the models and how exactly
the models are then used in development varies significantly between methodologies.

A model for a Web application must address precisely that which is relevant for the Web applica-
tion at hand. We view a Web application as a user’s unifying access point to one or more information
systems (see Section 1.1.2). The Web application potentially uses and integrates systems which in
turn are responsible for specific knowledge processing (for example accounting systems or expert
systems). Consequently, modeling addresses precisely that which needs to be considered at the level
of the Web application, and not at the level of a complete information system. Regarding the health
insurance provider example given in Section 1.1.2, the following might then be modeled regarding the
Web application: the existence of a medical expert system as a type of service, and the way in which
the service can be used. Medical knowledge itself (such as, which symptoms are indicative of which
sicknesses), which is contained in the expert system, is not modeled within the Web application envi-
ronment. It may however be useful and necessary to share some sort of medical taxonomy between
the systems in order to cooperate more meaningfully.

Information Representation

We now discuss a general way of representing information and relationships between information,
applicable in particular in Web Engineering. This means of representation provides a basis for Web
Engineering models and methodologies addressing the requirements discussed above.

The current W3C3 standard to serve as basis for describing information is XML4. XML provides
a common syntax for various purposes and is extensible, meaning new vocabularies can be created for
new purposes while still conforming to XML. For an introduction to XML use and related technology
within Web Engineering, see (Doernhoefer, 2004).

When a new vocabulary is to be used, it needs to be precisely described if it is to be widely
adopted and if information described with this vocabulary is to be consistent (van der Vlist, 2002). A
schema language can describe vocabulary and structuring of documents which should conform to a
schema. Such schemas can then be used for documentation, validation and automation purposes. A
classic language from the SGML5 domain is DTD (Document Type Definition); other languages, such

3World Wide Web Consortium, see Appendix A
4The eXtensible Markup Language, see Appendix A
5Standard Generalized Markup Language, see Appendix A



1.2 Problems and Challenges 19

as RELAX NG (van der Vlist, 2003) or Schematron (Lee and Chu, 2000), have also been proposed
for formally describing XML documents. A DTD is adequate for describing the structuring of a
document. Data type definition capabilities of DTDs are, however, limited. When richer data types
are required, for instance, to specify that a document element refers to a URI6 , XML Schema can be
used. XML Schema is the W3C recommended language to define schemas for XML vocabularies;
see the above mentioned (van der Vlist, 2002) for an introductory text. By its rich data type definition
capabilities, XML Schema allows more possibilities in automation, for example, by using information
about the types of parameters for a service in order to provide a more appropriate user interface.

XML thus defines a syntax for a vocabulary, and a schema language is used to define the vocab-
ulary and the types of information represented. To be compatible with Semantic Web requirements,
Web applications must include descriptions of the resources they provide and the relation between
these resources. In related research, efforts for systematization are typically based on describing a
conceptual model in terms of an ontology (Gómez-Pérez et al., 2004). This ontology represents terms
and relations for a domain of applications, and can be called a domain ontology (Wissen and Ziegler,
2003). Such an ontology should describe the domain in a reusable manner, unlike a data model, which
typically “represents the structure and integrity of the data elements of [a] single, specific enterprise
application” (Spyns et al., 2002).

For formalizing ontologies describing Web resources, OWL7 is the W3C’s current recommen-
dation. OWL builds upon RDF, the resource description framework (McBride, 2004), that allows to
describe the resources involved and relationships between them. OWL adds possibilities in expression
for ontologies as explained in (Antoniou and van Harmelen, 2004), notably cardinality restrictions and
the assigning of special characteristics to properties. OWL, as is RDF, is an XML vocabulary, defined
by an XML Schema.

1.2 Problems and Challenges

The general challenge existing in Web Engineering - see the above-cited (Deshpande and Murugesan,
2001) - is supplemented by the goal of accounting for context of usage on the one hand and, on the
other hand, defining which adaptation is to occur (and how) according to this context.

Supporting adaptation to context in a systematic approach is a worthwhile effort, as the goal
is to positively affect quality of Web-based systems, specifically usability and efficiency aspects as
outlined in ISO 9126 (see Appendix A). Regarding usability, the goal of adapting and optimizing
the application to context is to make the application more operable for the user. This is of particular
interest in scenarios where the user has less time for an interaction or less powerful devices, such
as in mobile scenarios: the goal is that the application becomes easier to understand and to learn.
Optimizing the application in this regard can also positively influence Web efficiency, a further quality
aspect. The tailored offering, made possible by context-awareness, decreases Web traffic, as less
irrelevant information is exchanged. The user achieves goals more quickly, so less interaction with
the system is required.

Attempting to integrate context-awareness and adaptation capabilities in a comprehensive ap-
proach poses several challenges. To effectively use context in Web applications, a formal, com-
prehensive model is required, as is a corresponding representation language. Context has a dynamic
dimension and is therefore difficult to model. It must then be determined which elements of context
are to be considered in the Web Engineering process, and which dynamic factors are added by a con-

6Uniform Resource Identifiers, see Appendix A
7Web Ontology Language, see Appendix A



20 1. Introduction

text system. A conceptual model integrating a multitude of factors is needed, thus raising the question
of how to structure and systemize the analysis and design processes.

In turn, aiming at a systematic approach to support context-awareness and apply adaptation within
Web applications at run-time raises additional questions and challenges. How should information
about context be specified in such a way that a run-time system supporting Web applications can
use this information for adaptation, and what is an appropriate architecture for such a system? Since
engineering approaches should support a multitude of scenarios, how can the effort required to develop
a specific context-aware application be reduced? Furthermore, how can operational features of a Web
application be specified, and user interaction with such services be supported in a systematic way,
while taking into account requirements for adaptation to context?

A multitude of research projects and prototypes explore the context paradigm (this is illustrated
in Section 2.1.1). Such research projects help to explore the sorts of context and possible adaptation
effects; however, existing projects often explore a specific scenario and implement adaptation in this
scenario only (Kappel et al., 2003). In addition, a (usually implicit) assumption exists in this field of
research, namely that using context improves a system in some manner. Qualitative questions however
are difficult to address at this time, as they require to systematically compare an “adaptive” application
with a “non-adaptive” counterpart with similar goals and functionality. Current research prototypes
are isolated applications that are not used over extended periods of time. These applications provide a
specific functionality whose usage can not easily be compared with classic applications. What would
be required to be able to address qualitative issues is that Web engineers have a systematic means to
specify context information in Web applications, and to be able to activate and deactivate usage of
context as desired.

1.3 Goals of this Dissertation

The main goal of this dissertation is to show how information about context can be taken into account
in a Web Engineering process, that is, in a systematic approach to development of Web applications,
and to show how adaptation effects according to this context can be achieved.

To enable the usage of context in Web Engineering at large, a multitude of application scenarios
and context inference techniques need to be supported. A conceptual framework for context, using
ontological descriptions, allows a uniform view on factors of context and their influence on application
elements. The resulting context model is a basis for specifying knowledge about the context of an
application and a basis for context inference algorithms. The engineering process must allow, in
addition to context modeling, the specification of adaptation effects at each level of a Web application:
navigation, resource selection and presentation.

To support adaptivity, a system architecture for Web applications faces particular requirements:
support for context sensing and inference, and generation of a Web application where each phase in
generation can depend on context. In the method presented in this dissertation, application and context
models are designed to be interpretable by a run-time system, which should then be capable of using
the models to guide application behavior. In particular, such applications must support operational
features, potentially selected and operated according to context.

A software framework can facilitate the consistent usage of application models and generation
techniques corresponding to an engineering method for adaptive applications. As various context
inference mechanisms and adaptation algorithms may exist, the framework must be customizable and
extensible for application developers. Furthermore, to enable testers to verify the effects of context on
an application, the run-time environment should support testing individual factors of context.



1.3 Goals of this Dissertation 21

Scope

This work makes a contribution to the discipline of Web Engineering, specifically to the issue of
engineering and development methodology and techniques, by showing how context can be accounted
for in the engineering process and what techniques can be used to achieve a context-aware, adaptive
Web application. Other issues in Web Engineering, such as measurement, evaluation techniques or
scalability are also essential this discipline, but not subject of this work.

The work presented here is rooted within the WISE research project (WISE, n.d.). The goal of that
project is to provide a methodology and supporting tools for systematic development of complex and
dynamic Web-based applications. The scope of this dissertation is to augment the WISE methodology
to account for context and support adaptivity. Other project elements, not addressed in this disserta-
tion, include the definition of a general-purpose methodology (see Section 2.3 for an introduction)
and the development of an integrated, graphical modeling environment, including mechanisms for
distributed development and version handling.

Summary

The main focus of this work is to show where and how context can apply in Web Engineering. By
definition, the discipline of Web Engineering requires a systematic approach to Web application de-
velopment, and accordingly usage of context within this discipline must be of a methodical nature.
However, defining context in a general-purpose, yet precise manner is challenging, as is enabling
consistent usage of context in an engineering process and a corresponding run-time system.

Figure 1.1: Chapter overview

This work makes a contribution to these goals by describing a conceptual framework for context



22 1. Introduction

(Chapter 3). It is further discussed which adaptation effects can occur in an application and how
these effects can be specified in relation to the definition of the core application. It is then shown
how these specifications can be utilized by a content- and service-oriented system architecture to
achieve adaptation to context in Web applications (Chapter 4). A software framework, facilitating the
implementation of corresponding applications, is detailed in Chapter 5. The results and contributions
of the dissertation are summarized in Chapter 6. Figure 1.1 recapitulates the chapters and their primary
focus.



Chapter 2

State of the Art

In this chapter, we address the state of the art regarding the goal of engineering Web applications that
can adapt to the context in which they are used. We begin by discussing context-aware computing
in Section 2.1. General approaches to development of Web software are discussed in Section 2.2.
In this area, a systematic engineering approach is often lacking (Barry and Lang, 2001), leading to
problems such as difficult maintainability and limited re-use. A focus of research in the area of Web
application development is thus to provide methodologies and tools for systematic engineering. We
discuss general-purpose methodologies for modeling Web software (Section 2.3), and consider to
what degree they support the goal of developing adaptive applications.

2.1 Context-awareness

Context-awareness, as understood in this work, aims to provide a system with knowledge of the con-
text in which it is being used, such that system operation can adapt according to this context (see
Section 1.1.1). In this section, we discuss current usage of context in software development and give
an overview of applications in this area. Subsequently, we discuss aspects of particular interest to our
work, namely architectural approaches to adaptivity, and the issue of what influences using context in
a system can have on users.

Mobile and pervasive computing environments are examples of operational variations that Web
Engineering needs to take into account. Because the constraints described in Section 1.1 are particu-
larly visible in such environments, research in mobile computing introduced the notion of “context-
aware computing” (Schilit and Theimer, 1994) to describe software capable of adapting to location of
use.

A comprehensive context definition should be of a domain independent, non-excluding nature, and
indeed several such definitions for what context means with regard to software have been proposed.
(McCarthy, 1993) defines context as ”a generalization of a collection of assumptions” and considers
context as being of infinite dimension; see also (Brézillon, 2003). On an abstract level, context can be
defined as “a focus of attention” (Brézillon, 1999). Even though a comprehensive abstract definition
of context is necessary to pave a common base for all context-related research, the computer science
field - as one of many - requires a more adjusted definition. An often-cited general definition is given
by (Dey, 2001):

Context is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves.



24 2. State of the Art

2.1.1 Accounting for Context

Varied research and application domains are using a notion of context to assist or guide the user; some
domains employ the term context-awareness for this purpose, while others aim at achieving similar
effects but use a differing terminology. A consensus on terminology does in fact not exist; see also
Section 1.1.1.

Context-aware mobile computing research focuses on providing context-relevant information to
mobile users, usually based on their location as context information. This notion has evolved to
include other aspects, such as adapting the application to device characteristics (Schmidt, 2000).
Nonetheless, a survey analyzing usage of context-awareness (Chen and Kotz, 2000) has shown that
most research in this area has aimed in essence at sensing the location of a user in a mobile scenario,
and using this information to adapt an application according to this location. A typical scenario is
a touristic visit in which the user is guided by a mobile device such as a PDA; see, for example,
(Cheverst et al., 2000). Research such as (Dix et al., 2000) does suggest that other types of context,
such as a domain context, are also relevant to mobile applications, but does not explore this issue
in detail. Generally speaking, this field of research emphasizes “context sensing”. The remaining
aspects are sometimes unclear: “the design criteria of some of the approaches as well as the detailed
specifications are unfortunately not available to the public” (Strang and Linnhoff-Popien, 2004).

Adaptive hypermedia applications have typically focused on the areas of learning and information
retrieval, with the goal of guiding user navigation and presenting relevant information. An overview
of this field of research is given in (Brusilovsky et al., 1998). This field aims to adapt information
offering according to a user model, where this model is generally constructed from user behavior.
(Liu and Maes, 2004) for instance describes how an individual’s attitudes can be computed and thus
represented within a user model. The tracking of user behavior over a period of time can be used
to automatically determine a user profile: in (Carreira et al., 2004), a set of user profiles is defined,
and the system delivering the application monitors which Web pages are selected by the user and
what content is in these pages. The user profile is determined based on the selected content, and
this profile is then used to propose further pages of interest. Adaptive hypermedia usually takes into
account user categories, sometimes also types of tasks (Koch, 2001; Staff, 1997). This field of research
typically does not explore further types of context, nor further issues regarding interactivity (beyond
link activation) and service incorporation into applications.

A further field of applications is Web-based e-commerce systems, specifically B2C (business-to-
consumer) and intra-B (e-commerce offering within a company) systems. In such systems, a consis-
tent use of the Web by users allows for tracking user actions, for example, recently visited items and
past purchases. This tracking thus establishes a user profile that can be implicit or explicit in such
a system. Commerce evolves from a mass-product and anonymous approach towards a personalized
offering, commercials and customer contact. Such system behavior can also be termed adaptive.

Table 2.1 recapitulates the domains using context-awareness and provides additional examples.

Table 2.1: Applications using context-awareness

Application domain Examples

electronic tourist guides (Cheverst et al., 2000) describe tourist visits guided by a mo-
bile device. The device uses location information to present
the visitor with relevant information.



2.1 Context-awareness 25

Table 2.1: (continued)

personal secretary application A “memory aid” (Lamming and Flynn, 1994) can store infor-
mation along with contextual knowledge, meaning the context
in which an event occurred, such as location, or task being
carried out at the time. The goal is to support information re-
trieval at a later time, thus explicitly addressing the problem
of information overload.

meeting scenarios (Dey et al., 2004) implement the aCAPpella system that uses
various clues to (automatically) determine when a meeting is
occurring; when this context is determined, the system au-
tomatically launches a notes-taking application and loads the
most recently used presentation file.

groupware Context, as support for a concept of “awareness”, is consid-
ered a key element to effective groupware (Brézillon et al.,
2004).

office scenario The Smart Doorplate application gathers location and activ-
ity information (as context information) about co-workers,
and makes predictions about what an individual is doing,
for example “on the telephone” and “free in 5 minutes”
(Trumler et al., 2003).

education Adaptive hypermedia for tutoring consider user behavior in
order to decide what to do next. Typically, a user model
is constructed based on user interaction with the system
(Boyle and Teh, 1993); depending on context (the current in-
formation being visited plus the user model), the next pieces of
information are chosen. In Semaphore (Burrell et al., 2000),
the Web links relevant to a lecture are associated to a location;
mobile users, when using the Semaphore client at this location
near lecture time, are presented with these links.

operational documentation In (Ramu et al., 2004), context consists of conditions, goals
and resources and is used to link documentation with opera-
tions in the aviation field.

computer-assisted design (CAD) (Hernadvölgyi et al., 2004) show how a 3-D shape can have
a semantic context in the CAD system. This information can
then be used to assist the user in designing the end product,
for example to assist in placement of objects.



26 2. State of the Art

Table 2.1: (continued)

performance optimization Context information (such as user type or current task) can
be used in order to predict what the user is likely to do next
and prepare resources that will be needed: this can for ex-
ample be used for smart caching in information retrieval, or
hardware activation in anticipation for faster response time
(Beigl et al., 2003). Network routing can be improved as de-
scribed in (Gold and Mascolo, 2001).

Augmented-Reality Augmented-Reality applications, notably task-oriented appli-
cations such as machine repair, use location and user profile
context for repair support: repair instructions provided depend
on sensing the operator’s location, and can also be adapted to
level of expertise (Feiner et al., 1993).

health-care systems In (Jahnke et al., 2004), the system senses a patient’s condition
and monitors history of condition according to context such as
patient activity, to enhance medical support.

retail outlets The Metro Future Store in Rheinberg, Germany, can track
product location and some measure of people’s behavior, for
example how long a potential customer assesses a product by
holding it up. In accordance to this context, additional prod-
uct information can be displayed, or, more generally speaking,
advertisements in the store are adapted to context.

games Game software or software-supported game devices such as
Pokemon uses task-oriented context (Pagulayan et al., 2003).

community support Applications such as a “friend finder” as described in
(Schilit et al., 2003) take into account location and user type
as context information.

desktop software User interaction with desktop software can be influenced by
context-awareness: (Louis and Shankar, 2004) describes how
interaction with a calendar and appointment application is
enhanced by including various context sources. The Aura
project (Thayer and Steenkiste, 2003) supports document cre-
ation scenarios within an Office software suite, and considers
context to be the set of documents needed as a group to meet
a certain goal.

To use context for adaptation as illustrated above, it must be decided how context is represented,
and what architecture to use for context processing and adaptivity. The following section (2.1.2)
discusses approaches addressing the former; the latter is discussed in the subsequent section (2.1.3).



2.1 Context-awareness 27

2.1.2 Context Representation

To use context, it must first be decided whether context is information that requires an explicit repre-
sentation independent of programming code. In a methodology accounting for context (see Section
1.1.3), a means of representation for this context is required to provide parties involved in engineering
with a common basis for description. Whether this specification translates to an explicit system repre-
sentation at run-time, or is used by application developers for individual programming code decisions,
is a separate issue.

Context may be represented with regard to objects of the physical world, or as an abstraction.
Ubiquitous computing sometimes uses physical artifacts to define context, such as a smart phone or
a smart table (Schmidt and Laerhoven, 2001). For instance, when sensing that “chair1” is occupied,
“chair2” is occupied, the door in the room is closed, the system can infer that the room is in the context
“meeting”. In (Beigl et al., 2003), context is represented as the values of battery level, processor
load, link quality and number of active devices, and this information is added to communication
packets within a custom protocol for networking for ubiquitous computing. For (Burrell et al., 2000),
context is the connection between Web links and a physical location, and the date and time range this
connection is valid. In (Trumler et al., 2003), context is represented as the location of persons, stored
in a distributed manner (in each “Smart Doorplate” device). (Louis and Shankar, 2004) represent
context as system activity: “binary activity data from the keyboard, mouse, a motion detector, and
a speech sensor”. When the described calendar application generates a reminder, the user indicates
whether the type of reminder (visual, auditive) was appropriate; the system stores whether the behavior
was desired along with the context (the “activity data”).

Alternatively to representing context as physical world attributes, abstractions may be used, or, as
typically done in mobile computing, context can be a combination of abstract information (such as
“user profile”) and physical attributes. Abstract representations may take the form of project-specific,
custom representations, or may use general-purpose representation mechanisms, such as ontologies.

Examples of custom representations include (Cannataro et al., 2002), where context is represented
as a three-tuple called “adaptation space”, the first element representing user behavior, the second
environment, and the third technology. Adaptation is then specified as constraints applied to Web
pages, where the constraints refer to the user’s position in the adaptation space. (Cheverst et al., 2000)
utilize “contextual information, such as location, display medium and user profile” and represent
“location objects” in a hierarchical information model and associate a set of HTML pages to each
location. In (Dey et al., 2004), the user demonstrates a certain desired adaptation behavior to the
system, which at the same time “collects sensor data and detects events”. The described system,
aCAPpella, uses machine learning to learn what adaptation to perform in which situation (i.e., in which
context), for this user. The example described is “when a meeting occurs, load the most recently used
presentation file and launch a notes-taking application”. Context here is then represented as (system-
learned) patterns of behavior for some sensed situation. (Jahnke et al., 2004) uses GRAS (Kiesel et al.,
1995), a graph-oriented system, as a platform for the context fact base: in this case, the graph itself is
the representation of context, not merely a visualization. (Brézillon et al., 2004) discusses computer-
supported cooperative work, and proposes to distinguish between an individual user’s context and the
group context. A user’s context is represented as the virtual workspace of this user in the groupware,
whereas the group context is represented as the virtual workspace for a project. Adaptive hypermedia
projects represent context as a user model; for example, in (Boyle and Teh, 1993), the user model
“represents the knowledge of a reader”. This information is used to determine the level of detail to be
presented to the user.

Context representation is increasingly handled via ontologies. In (Chen et al., 2004), context is



28 2. State of the Art

modeled as a “collection of ontologies for describing places, agents, events and their associated prop-
erties in an intelligent meeting room domain”. (Ramu et al., 2004) represents context as a categoriza-
tion of descriptors for document parts (pertaining to operational documentation); this categorization
in turn is represented in an ontology, and the “documentary units [are] tagged with meta-data describ-
ing the context”. (Hernadvölgyi et al., 2004) propose to represent “geometric context”, to assist in
CAD, as the definition of product parts and their spatial arrangements in an ontology: for example,
in a car, geometric context of a fender is that it is “adjacent to hood”. (Strang et al., 2003a) propose
a “Context Ontology Language (...) to describe contextual facts and contextual interrelationships”.
These are described in ontologies, following a specific schema, and defined according to “common
subconcepts of aspect, scale and context information”. For example, “spatial distance” is an aspect,
and “kilometer” or “meter” are scales. Context bindings link service parameters to aspects, the goal
being that parameter values might be automatically determined from context.

An alternative to representing context specifically for service usage is to use built-in mechanisms
of a specific service paradigm, such as in (Keidl and Kemper, 2004), who focus on W3C Web Services
(Web Services are discussed in more detail in Section 2.2.3). Context is considered “information about
clients and their environment that may be used by Web services to provide clients with a customized
and personalized behavior” and is explicitly represented using the Web Service standards. Each type
of context used is published in a UDDI repository, and may have an associated XML Schema. When
a service is called, the SOAP header block is augmented with context information, allowing a frame-
work (on the receiving side of the call) to extract this information and make it available to the service’s
environment.

Ontology representation is used, notably, to provide “explicit semantic representation” and facil-
itate knowledge sharing (Chen et al., 2004). However, this approach may also have drawbacks when
compared to specific models, e.g., location models for mobile computing. (Becker and Nicklas, 2004)
offer that spatial models for context representation are adequate when very fine granularity is desired,
such as location management of mobile devices in cellular networks. The key requirement is that
these models are scalable, and therefore their representation is “typically rather straight-forward”.
Again according to (Becker and Nicklas, 2004), contextual ontologies allow semantic description and
reasoning, but tend to be used for smaller scales, in a specific environment. It is further proposed that
a combined approach, with transitions between both types of context representations, is possible, and
desirable. (Schilit et al., 2003) describe an additional problem when abstracting location information
as made available by a positioning system in the form of user coordinates: locations can be organized
in a hierarchy and thus a specific set of coordinates can be mapped to an element in such a hierarchy;
however, a different hierarchy may be relevant depending on further factors regarding the user, such
as the role of the user.

2.1.3 Architectures for Adaptivity

An architecture enabling adaptivity according to context must, on the one hand, define how knowl-
edge about context is handled in the system, and, on the other hand, define how this knowledge is
processed. For software systems at large, a possible distinction in architectural characteristics can
be made between centralized and distributed handling, whereas some architectures are mixed. Table
2.2 provides examples of approaches used for context knowledge handling and usage of this context;
these approaches are discussed in the following.

In a centralized approach to holding knowledge about context, context data is modeled in the
application environment, and some of the decisions within the application are based on this infor-
mation. (Chen et al., 2004) suggest an architecture with a central component called “context broker”



2.1 Context-awareness 29

centralized distributed
Context knowledge (Cannataro et al., 2002) (Samulowitz et al., 2001)

(Chen et al., 2004) (Strang et al., 2003a)
(Becker and Nicklas, 2004) (Keidl and Kemper, 2004)

Context processing (Cannataro et al., 2002) (Samulowitz et al., 2001)
(Chen et al., 2004) (Winograd, 2001)

(Chen et al., 2004)
(Strang et al., 2003a)
(Keidl and Kemper, 2004)

Table 2.2: Architectural approaches in research regarding adaptivity

that “maintains a coherent model” of context. (Cannataro et al., 2002) present an integrated model for
adaptive hypermedia, where adaptivity is specified in the application environment, integrating knowl-
edge about user behavior and environment. (Becker and Nicklas, 2004) describe an architecture with
a centralized context model, influenced by sensors of the physical world and by applications using
this model. In this proposal, the same context model is usable by several applications running at the
same time.

Distributing knowledge about context across a network means in essence to augment a network
with intelligence: the network in itself holds knowledge about which information and which services
are relevant in which context. This network approach is explored by (Samulowitz et al., 2001), who
focus on providing context-relevant information and services through a smart network. The client,
a mobile device, sends “context-aware-packets” to the network, to request a service conforming to
some (pre-established) constraints. Intermediary network nodes route this data to services via “service
access nodes” that are service proxies controlling the services available in the client’s environment.
Services register themselves with a service access node and state in what context they are appropriate.
Within the network, nodes listen for such packets and respond to them, for example by presenting
a relevant service to the client, which may then choose to use the service. The scenario presented
is a mobile user attempting to discover a printer which may be used, and to which the user can have
physical access from the present location. The area of application is then the field of pervasive services
in environments with intermittent connectivity.

Having distributed context knowledge typically implies that processing of context is at least
partially distributed as well. A distributed processing model is described as a collection of dis-
tributed software components and the means of orchestration of these components. Approaches to
distributed processing include service-oriented architectures and agent-based systems. An example
for a service-oriented architecture is the above mentioned (Samulowitz et al., 2001); further exam-
ples are (Strang et al., 2003a; Keidl and Kemper, 2004), who focus on W3C Web Services as service
mechanism. An agent-based architecture is being followed, for example, in (Winograd, 2001). In
this blackboard architecture, communications go through a centralized server that routes messages to
those agents subscribed to this kind of message. Communication occurs using the “announce-listen
style”. For example, components that provide environment data, such as location sensing, periodically
post events to the blackboard. Other components requiring this data can listen for these events.

Architectures based on centralized context knowledge such as the above-cited (Chen et al., 2004)
require a central component for context processing. However, such an architecture may also include a
form of distributed processing. (Chen et al., 2004) aim to support a pervasive computing environment
with agents, as illustrated in the “intelligent meeting room system” scenario. The system senses a user



30 2. State of the Art

(physically) entering a room; the context broker updates the context model and informs subscribed
agents, in this case the “projector agent”. This agent then acquires appropriate slide show information,
via the context broker, and sets up a presentation with this information.

Regarding architecture, “there is no panacea: each solution will be suited to some environments
but not to others” (Winograd, 2001). This dissertation is rooted within Web Engineering, and thus
considers applications operating in the Web’s request-response mechanism as defined by the HTTP
protocol. Communication between a user and the system is synchronous, therefore adaptivity is only
required when a user request is made; a decentralized (distributed) architecture for the core system is
thus not necessary. This however does not preclude the core architecture from delegating partial func-
tionality to distributed components, for example for sensing the physical environment. Information
from such a component can then be looked up pro-actively when a user request is being processed
by the core architecture. This look-up can occur either by direct communication between the core
and such a component or by indirect communication such as a blackboard. In both cases, the core
architectural design is not affected.

2.2 Common Approaches to Web Application Development

A systematic approach to Web application design must be able to specify the parts that the application
is to consist of, and the way in which the parts are to be assembled (Schneider and Han, 2004). How-
ever, the understanding of what a part is varies significantly between approaches. Moreover, some
of these approaches focus on a specific system aspect, on a part of the development process, or on
specific types of Web applications.

A general-purpose conceptual approach to software development is object-orientation, which aims
to encapsulate software functionality into objects. Regarding Web software, object-orientation usu-
ally means that the functionality provided by a Web application is developed in an object-oriented
programming language (for example, Java1), whereas content delivered to the user of an application
is specified using some other means. Though Web system logic may rely on object-oriented languages
and patterns, the use of such a general purpose language does not immediately offer help with regard
to the Web Engineering process. Work such as (Neumann and Zdun, 2001) or (Zope Community,
n.d.) follows the object-orientation idea to define a notion of “Web objects”. These approaches cor-
respond in essence to an object-oriented wrapping of HTTP’s request-response mechanism, similarly,
for example, to the Java Servlet API2, while providing for richer typing of request and response ob-
jects.

CBSE, component-based software engineering - see, for example, (Heineman and Councill, 2001)
- is an approach where encapsulation of objects is described in a coarser granularity than when individ-
ual objects are described. For instance, the goal of a CBSE process can be to provide “commercial-
off-the-shelf” software components (Heineman and Ohlenbusch, 1999). Components in this sense
might be incorporated in some manner within a Web application; however a component approach in
the CBSE sense does not replace the need for designing the Web application per se.

In the following, we discuss common approaches used specifically to support systematic develop-
ment of Web applications.

1Specified in JSR-901, see Appendix A
2Specified in JSR-53, see Appendix A



2.2 Common Approaches to Web Application Development 31

2.2.1 Portal Technology

In the portal approach, a Web application is composed by describing the user interface components
that the portal consists of, using a window abstraction. A portal aims to integrate content from various,
possibly remote, sources, into a single view consisting of individual windows. Selection of windows
is handled by the end-user, who explicitly chooses to activate windows of interest (a default portal
view is presented if the user has not made any choices). In other words, a portal is based on user
interface components for a Web application.

JSR-1683 is a standardization effort for portals implemented using Java technology. This speci-
fication provides a definition for components within portals; these components are called portlets. A
portlet is designed to be a pluggable user interface component inside a Web application (Vieregger,
2003). The specification defines a way to aggregate user interfaces of several components (portlets)
into a single (HTML) Web-page. WSRP4 in turn defines a mechanism by which a distant portlet can
be integrated into a portal, by calling the (remote) portlet as a Web Service; thus offering a standard-
ization for integrating distributed systems into a common portal, provided that these systems define
their user interface in terms of a portlet component. The specifications do not define a structuring of
the content, nor how sharing, reuse, management and editing are to be handled. For illustration, JSR-
168 defines an (optional) “edit” mode for a portlet, providing a view to editing the content shown in
the portlet - this is however only a definition for the mechanism by which a user interface for editing
would be triggered, and not a definition regarding how this editing could actually occur, nor of how
the contents to be edited are structured. As a portlet is in essence a user interface component, there
are no semantics associated with the different portlets. The goal of context-aware computing how-
ever, is to adapt behavior and appearance of a system component, in this case a portlet. The portlet
specifications provide no means to influence the inner operation of a portlet, and thus provide no di-
rect added-value to the goal of a Web Engineering approach in which context-awareness is taken into
account. Nonetheless, portals can be used for integration with external, unrelated system parts. For
example, an individual portlet can be the user interface to an external Web application or to a Content
Management System (see below); this is an approach followed in commercial portal systems such as
Oracle (Vandivier and Cox, 2001) or BEA portal server (Block et al., 2003).

In summary, portals define a user interface aggregation strategy in which personalization by the
user is possible (and in fact intended), but where adaptivity (which does not require explicit configu-
ration by the user) is not supported.

2.2.2 Web Content Management Systems

A Web Content Management System (CMS) is an application used for managing Websites and their
content; the goal of such an application is to assist in systemizing the Web publishing process. A CMS
is user- and content-focused, therefore terminology and composition strategies often refer to pieces
of content as specified and aggregated by a CMS content author. Sometimes the term component is
used to refer to a functional building block that can be integrated into the Website, for example, a
component realizing electronic forum functionality. The term component may also refer to software
building blocks of the CMS functionality in itself (for example, an component to support content
editing).

In the view of a content author, the Web application is a collection of documents, each consisting
of pieces of content or descriptions for content to be produced. Typical pieces of content are Web

3Portlet specification, see Appendix A
4Web Services for Remote Portlets Specification, see Appendix A



32 2. State of the Art

pages and file assets, such as office documents or images, that can then be referenced by the Web pages
and used for display in different parts of the end-user view of the application (Robertson, 2004). An
essential requirement of a CMS is that Web resources can be created, managed and edited in a user-
friendly fashion. Depending on CMS functionality, the author view may also allow for enriching
the Web application with components in the sense of software functionality, that is, to specify more
complex functionality to be offered to Website visitors (for example, the above-mentioned forum
component).

The content authoring activity in the CMS may itself be supported by a Web application, therefore
the authoring application must be distinguished from the live application. The former is the mech-
anism with which users, in the role of editors, can manage content; the latter is the resulting Web
application (or Website) that is provided to (potentially world-wide) users. The authoring application
allows editors to specify which elements the resulting Website should contain, and how elements are
organized within the site, for example, through a hierarchical menu. The content elements that are
published then constitute the live Web application, or, more precisely, the content the Web application
delivers to users.

The structuring of documents and document contents in the CMS are fixed. Although some CMS
document types allow a dynamic content description such as RSS5 for news feeds, application defi-
nitions such as where this content is to appear in the live application, or how retrieval of information
is to occur, are fixed. Requirements of adaptation, however, mean that which piece of information is
presented in which situation must be determined at run-time (according to context), and can not be
fully known in advance. Existing CMS do not provide for such adaptation features, although partial
adaptation to user characteristics may be available, for example automatic selection of the appropriate
language version of a document in a multi-language site according to user device settings. Meta-data
can be attached to resources, thus potentially allowing for adaptation features such as context-relevant
selection according to semantic descriptions of the resource. However, how the information necessary
for adaptation would be specified, and how context could be used throughout the Web application is
not addressed by current CMS. In addition, a CMS would need to provide an editor-friendly means
for describing context factors and desired adaptation effects; and furthermore would require an archi-
tecture for the live application using this knowledge for adaptation.

2.2.3 Web Services

A Web Service, as understood by the W3C (Booth et al., 2004), can realize arbitrary domain-specific
functionality. A Web Service can be developed to implement new functionality or to provide access
to an existing software, database management system, packaged component, or backend system. Web
Services are the W3C candidate for realizing a service-oriented architecture (Erl, 2005), meaning an
architecture defining a set of components that can be invoked (possibly from a remote location), and
whose interface descriptions can be published. Web Services represent loosely coupled interactions
and can thus integrate disparate software domains and bridge incompatible technology: in this sense,
Web Services can be considered “enterprise application integration adapters” (Newcomer, 2002). The
way the Web Service is to be implemented is not specified, and can therefore be accomplished by
various existing server-side technology, such as J2EE or .NET (Eberhart and Fischer, 2003).

5RDF Site Summary, see Appendix A



2.2 Common Approaches to Web Application Development 33

Interacting with Web Services

Interaction with a Web Service occurs over a network interface (Bussler et al., 2002), whereas the
software components realizing this interaction may be on separate machines or not. Interaction in this
sense may or may not be directly related to an interaction with a (human) user. The requirements
of Web Services have lead to the specification of several XML-based standards, notably SOAP6 and
WSDL7. These specifications aim at defining how interaction with a Web Service is to occur, with
regard to structuring information and on specifying how the service can be used.

Research concerning interaction with Web Services mostly focuses on involving Web Services in
a choreography to support business processes, or on supporting automated sequences, where several
Web Services interact in a sequence in order to provide a new service. (Zimmermann et al., 2005) is
an example of the former; the latter is used for example to chain e-commerce transactions in B2B8

scenarios (Terai et al., 2003; Maamar et al., 2004). While SOAP and WSDL define base mechanisms
for interactions, the specifications lack elements necessary for defining interactions in a sequence. Ad-
ditional mechanisms are therefore required; (Frolund and Govindarajan, 2003) for example proposes
a ”conversation definition language” where a chain of Web Service interactions can be specified.

While Web Services indeed need to support automated interaction when used in a chain, the issue
of supporting user interaction with, and possibly automating user consumption of Web Services is as
yet rarely addressed in research. Web Services, as a component model capable of representing any
sort of dynamic functionality, can be used to define operational features of a Web application. The
question is then how services in this sense can be incorporated within a Web application, and what
effect context-awareness may have on this integration. A Web Service as a component is relevant for
the Web Engineering process as described in this dissertation if usable by a Web application in order
to provide a direct use for the end user; in other words, if it is useful for the Web application to act as
consumer of this service. This usage may involve (explicit) user interaction, while the Web Service
may or may not be explicitly presentation-oriented in its definition. To support this interaction, a
user interface must be provided: for example, an XHTML form in a Web browser which allows the
user to enter necessary parameters for the Web service and to call it. In (Pierce et al., 2002), XML
Schema types used in the WSDL definition of a Web Service are mapped into “visual widgets” (such
as XHTML forms), which are implemented as Java Server Page templates, thus allowing for automatic
user interface generation.

Another perspective on integrating existing dynamic functionality into a common Web application
is to define mechanisms for aggregating existing Web applications (notably, applications offering no
means to be used without user interaction in a Web browser) and supporting their automated usage.
(Chiu et al., 2003) propose a script language called WebXcript to automate filling and submission of
HTML forms to known Web sites. Here, a “web service” is an existing Web application available
as a HTML interface, and not a Web Service in the W3C sense. The goal is to support dialog au-
tomation by augmenting HTML form technology with knowledge of the service to be interacted with.
This approach has the advantage of allowing integration of offerings currently existing on the Web,
however results in a tight binding between HTML and the services, and thus carries the problem of
mixing of content and style: in other words, this violates the “separation of concerns” design princi-
ple (Fielding and Taylor, 2002). A service in this sense is not reusable for other GUIs (for example,
WML9 user interfaces). An alternative would be to develop a Web Service as a proxy to such an

6Simple Object Access Protocol, see Appendix A
7Web Services Description Language, see Appendix A
8Business-to-Business
9Wireless Markup Language, a document format for mobile phones



34 2. State of the Art

offering, to be removed later if the offering becomes available directly as a Web Service.
Research projects aiming at integration of context-awareness with Web Services include CoOL

(Strang et al., 2003a) and (Keidl and Kemper, 2004). CoOL proposes a model describing “context
bindings” and “context obligations” for services. In a WSDL description, these descriptions translate
into context attributes belonging to a certain “aspect”, which are elements of a catalog proposed in
this model: for example, “Geographic Place Aspect” or “Weather Aspect”.

A context processing architecture explicitly focusing on Web Services is introduced by (Keidl and Kemper,
2004). This architecture explores several possibilities for service integration: context pre- and post-
processing around Web Services for automatic context processing, a notion of “context services” that
implement a special WSDL interface, and a SOAP extension to specify context information within
the SOAP header. The SOAP extension augments standard Web Service calls with context data and is
thus usable by those Web Services that are context-aware while being transparent to Web Services that
are not context-aware. That work provides insight for combing context and Web Services, however
the question of integration within a general Web Engineering process is not addressed.

Further Service Approaches

The definition of a Web Service in the W3C sense being recent, one needs to be careful to avoid
confusion with earlier or parallel work using this term in a different meaning, see, for example,
(Brabrand et al., 1999). Other research projects refer to “Web services” to mean a service on the Web
in their particular platform (Böttger et al., 2006), or as a general notion. For example, (Sun and Sauvola,
2003) describe an abstract vision of “context-aware adaptive services”, however do not pursue a spe-
cific service mechanism. In this dissertation, the term “Web Service” refers to the W3C definition.

For providing services on the Internet, W3C’s Web Services is the most recent attempt at stan-
dardization. Another standardization effort for providing services on a network is CORBA10, defined
by the Object Management Group (OMG). Web Services in fact share many common concepts with
CORBA, such as an interface definition language, a service repository and dynamic service discovery.
As stated by the OMG,

Using the standard protocol IIOP, a CORBA-based program from any vendor, on almost
any computer, operating system, programming language, and network, can interoperate
with a CORBA-based program from the same or another vendor, on almost any other
computer, operating system, programming language, and network.

Thus, CORBA proposes a protocol which can be used on various types of networks, including the
Internet. Web Services instead focus specifically on the Internet and existing Internet protocols (such
as HTTP), and use XML vocabularies for all definitions. For detailed comparisons between CORBA
and Web Services, see (Gokhale et al., 2002) or (Baker, 2002).

ebXML11 is a specification for business processes for Internet Commerce based on XML, defining
a business process as a series of interactions among interested trading partners (Newcomer, 2002).
It is intended for B2B (business-to-business) scenarios, as a replacement for classic EDI12-based
applications. Some aspects of ebXML converge with Web Service specifications, notably regarding
the transport layer, as the current specification of ebXML now uses Web Services’ SOAP. As this

10Common Object Request Broker Architecture, see Appendix A. For an overview, see (Mowbray and Ruh, 1997)
11Electronic Business using eXtensible Markup Language
12Electronic Data Interchange



2.2 Common Approaches to Web Application Development 35

dissertation focuses on general-purpose user interactions with services, Web Services’ WSDL and
UDDI13 standards have more immediate relevance.

Within mobile computing, concerns have been expressed regarding performance of existing ser-
vice environments. The Vinci project (Agrawal et al., 2001), for example, aiming to support PDA
scenarios, implements a custom protocol to achieve faster communication than SOAP-based mes-
sages.

Web Standards

As illustrated by the standardization efforts (such as XML and Web Services) discussed above, work
in Web Engineering can involve the use of a multitude of standards. Existing standards are at varied
maturity levels, and are maintained by various standard bodies. Appendix A provides an overview of
standards relevant to this work, as well as their defining organizations.

An advantage of relying on standards is that, in many cases, software components supporting
these standards are already available and can be used as building blocks. An additional aim of basing
work on existing or emerging standards is to increase continuity of work despite the rapidly changing
nature of Web Engineering.

2.2.4 Application Frameworks

The purpose of an application framework is to support application development by providing com-
monly needed features, and thus reducing the need for programming. A Web application framework,
in particular, possesses built-in features to support requirements frequently encountered for Web appli-
cations, for example multilingual capabilities or integration of databases (Moczar and Aston, 2002).

A multitude of frameworks for Web applications exists, for example Jakarta Struts (The Apache Software Foundation,
n.d.c) or Apache Cocoon (The Apache Software Foundation, n.d.a). In this section, we focus on Co-
coon, as a framework explicitly supporting Web applications based on XML representations. It is
shown how Cocoon is used as a framework for existing research in context-aware Web applications.
Chapter 4 explains in addition how Cocoon can be extended in our approach to realize, in effect, a
framework for adaptive Web applications.

Cocoon Principles

Apache Cocoon is an XML-based Web-publishing system. By conception, Cocoon also provides an
XML framework for other systems; as stated in (Mazzocchi, 2002), the system was conceived to be
like a cocoon that allows new Web technology (such as XML and Java Servlets) to “incubate and grow
stronger”. Figure 2.1 shows how Cocoon functions as central element of an architecture that provides
for multiple channels, meaning a variety of user devices or usage scenarios, while incorporating data
from a variety of systems (Ziegeler and Langham, 2002).

Cocoon’s architecture is built upon mechanisms for distinguishing between content, style and
logic, and thus explicitly addresses the fact that, in Web Engineering, people with varied areas of
expertise can be involved in the development process (see Section 1.1.3). Content is specified in
XML, where this XML can consist of an arbitrary, custom structuring, or conform to a standardized
XML dialect. Presentation of content is dynamic and may serve various kinds of clients (such as Web

13Universal Description Discovery and Integration, see Appendix A



36 2. State of the Art

Figure 2.1: A three-tier architecture based on Cocoon

browsers or WAP phones) while being based on the same XML data: this can be implemented, for
example, with XSLT14 stylesheets.

XSLT is a subset of XSL15, a language designed to assist in processing XML documents. For
instance, XSLT can be used to generate a user-readable layout for an XML document, by transform-
ing content into a presentable format, such as an XML dialect designed for display within a user
client. XSL, specifically the subparts XSLT and XPath16 are applicable not just at the immediate user
interface level, but can be used for any XML processing step in an application: an input XML repre-
sentation is transformed into another (XML or non-XML) representation, by rearranging input XML
according to stylesheet transformation instructions that refer to incoming XML content.

The Cocoon sitemap allows to configure the sequencing of processing steps and the handling
of state changes in the application (as resulting, for example, from user actions). Additional logic
can be implemented as XSP (eXtended Server Pages), which are XML documents embedding logic-
elements (fragments of Java code), or as custom components extending Cocoon. Such a component
can be realized as one or more Java classes implementing certain Cocoon interfaces, and registered
within the framework.

Research Projects Using Cocoon

Cocoon has been used in various research projects. Typical usages include the development of docu-
ment management programs (Niinimaki et al., 2003) or multimedia applications (Bocconi and Nack,
2004; King et al., 2004). In a general software engineering perspective, (Bravenboer and Visser,
2004) cite Cocoon as an API17 to generate XML that is guaranteed to be valid, within the context of
syntactic descriptions for domain abstractions. In the component-based approach to software develop-
ment, (Bandini et al., 2002) cite Cocoon as a “middleware service component” to be used, depending
on identified “business components”.

14XSL Transformations, see Appendix A
15Extensible Stylesheet Language, see Appendix A
16XML Path Language, see Appendix A
17Application Programming Interface



2.2 Common Approaches to Web Application Development 37

Cocoon is furthermore used to implement adaptive systems, notably for technology-based learn-
ing and mobile scenarios. Within the field of technology-based learning, the WHURLE prototype
(Moore et al., 2001; Zakaria et al., 2003) models a learning process as a dialogue between student and
system, in which (XML-encoded) information chunks are presented adaptively to student needs. The
adaptation is implemented with the help of Cocoon’s XML pipelines: such a pipeline is considered
“the ideal place to implement a pluggable user model”. Cocoon is considered an appropriate approach
and technology to “leverage the techniques and technologies of adaptive hypermedia to deliver educa-
tional content that is appropriate to the needs of individual students”. Quiver (Ellsworth et al., 2004)
is another teaching aid system implemented with Cocoon, as is SSM (Darbhamulla and Lawhead,
2004), which aims at an “adaptive student interface”.

In mobile computing, (Wegscheider et al., 2004) hold the premise that a frequent change of con-
text means that a multi-modal user interface would be beneficial, and thus implement an interaction
manager that relieves the application from having to adapt the user interface to specific devices and
modalities. This manager builds upon the Cocoon framework. (Semrau and Kraiss, 2001) discuss mo-
bile commerce scenarios based on the Wireless Application Protocol (WAP); these scenarios require
to personalize the information with respect to user device limitations, notably display size and band-
width limitations. To address these limitations, the system must decide “which information which user
in which step of the process needs”. Adaptation to various WAP devices is handled by an application-
independent framework that uses Cocoon. Adaptation regarding user interface affects features such as
image size, image inversion, alternative implementations of non-implemented commands, realization
of homogeneous layout, and compensation of bugs. Cocoon’s major contribution in this adaptation is
the selection of the appropriate stylesheet, based on user agent properties. (Wilcock, 2003) integrates
Natural Language Generation (NLG) with XML technology, using Cocoon: the system answers in
natural language to enquiries such as “when does the next bus leave from stop X”. Responses depend
on “dialogue context”, which influences, for example, the length of the response. Cocoon’s support for
reconfigurable pipelines of XSLT transformations is used to implement different pipelines supporting
different NLG requirements.

Research projects furthermore recognize Cocoon explicitly as a valuable basis for construct-
ing adaptive Web applications or for building frameworks to support adaptive applications. XVM
(Li et al., 2004) is an application framework built upon Cocoon with the goal that XVM-based applica-
tions can adapt to the computing environment, for example, for handheld devices. This work also sug-
gests that Web Services can be used to generate parts of (dynamic) XML documents. (de Andrade et al.,
2004) describe an approach where XSLT and Cocoon are used to generate Web documents, focusing
on the application as a collection of document parts. XAHM (Cannataro and Pugliese, 2001) aims to
implement adaptive hypermedia based essentially on extrapolating a profile from user behavior (for
example, links followed), and generates Cocoon XSP to implement the application server; the added
value of this usage of Cocoon is however not elaborated upon. The AMACONT project (Fiala et al.,
2004) is built upon the premise that for quick generation and delivery of information automatically
adapted to user device and preferences, conventional document formats are not suitable as they lack
support for the separation of content, structure and layout: this makes Cocoon an appropriate choice
for a system that “enables to compose adaptive Web applications by the aggregation and linkage of
reusable document components”. AMACONT defines a custom XML document format for this pur-
pose.

Work such as (de Andrade et al., 2004; Fiala et al., 2004) typically focuses on Web applications as
document-delivery systems, and thus adaptation concerns document and document part selection and
does not address operational features. The incorporation of operational features raises questions that
are in some aspects similar to questions raised by the adaptive integration of document parts (such as



38 2. State of the Art

which part to present in which context), but are in other aspects different, consequently to the dynamic
nature of operational features. Such features may require one, or several, steps of interaction with the
user, for example, to supply missing information for the usage, and then, depending on the result,
choosing the next step. Furthermore, the actual service realizing the feature might be dynamically
discovered, thus requiring a more advanced integration mechanism.

Integrated Notions of Context in Cocoon

In Cocoon, and in the underlying software component framework with which Cocoon is developed,
Apache Excalibur (The Apache Software Foundation, n.d.b), several notions of context already exist,
that we now discuss to see if and how they are related to the understanding of context followed in this
dissertation.

First, Cocoon, being a servlet-based application, runs within a servlet engine. This engine can
run several different servlets at the same time, so the engine must differentiate between them: this is
called servlet context. In essence, each servlet context represents a separate Web application.

The initial Cocoon context is the physical starting point, in the application server’s application
hierarchy, of the individual Cocoon-based Web application, represented by the main sitemap. As
sub-sitemaps are mounted, Cocoon context shifts to these sitemaps. In this sense, the Cocoon con-
text is merely a directory path. However, more interestingly, Cocoon provides the pseudo-protocols
cocoon:/ and cocoon://; these protocols can be used within a Cocoon-based application to access
any resource belonging to the application. The former looks for resources in the current Cocoon con-
text only, whereas the latter looks for resources beginning at the Cocoon root context. Resources are
read according to the sitemap matching rules, meaning resources addressed in this way are served
by the usual pipeline mechanism: as such, resources can either be files within the Web application
archive (as specified in JSR-53), or can be dynamically generated.

Servlet and Cocoon contexts refer to mechanisms for handling the Web application within a server
environment on the one hand, and on the other hand for providing the Web application with a way to
access resources (whereas this resource can be dynamically generated). In this sense, these notions of
context are more of a technical nature and do not directly relate to a general understanding of context
in a Web application. The component framework (Excalibur) does, however, have an application-
focused notion of context. A component may declare that it implements the Contextualizable

interface; if it does, the component manager calls this component’s contextualizable() method
before the component is used. This provides a Context object to the component, that is a data store
that can hold any information that the application wants to provide the component, using key-value
pairs. While this provides a generic mechanism to pass context information to a component prior to
usage, this does not define the organization nor meaning of this context information. The Excalibur
project does state to be currently discussing specification of meta-information related to context and
context entries.

In summary, the Excalibur and Cocoon application environment has several built-in notions of
context that are of a rather technical nature and not to be confused with the user-centered notion of
context our work focuses on; the environment furthermore provides a generic mechanism for passing
context information to components. How such context information is structured and interpreted, and
what is done with it, is not defined by this general purpose component framework. It should be noted
in addition that Cocoon provides access to information that is considered context in this work, though
Cocoon does not use this term for this information: notably user device parameters, user language
settings, and session information.



2.3 Methodologies for Web Engineering 39

2.3 Methodologies for Web Engineering

Succeeding generations of Web applications, with their increasing requirements regarding functional-
ity (see Section 1.1.3), have lead to a multitude of proposals regarding systematic, structured develop-
ment. In the following, we discuss selected models and methodologies that are representative for the
goals outlined in our work; (Costagliola et al., 2002) provides a comprehensive survey.

Initial approaches, that can also be partly applicable to Web application development, originate
in the field of hypertext application design. Typically, it is proposed to “specify the hypertext struc-
ture and behavior in terms of a well-defined conceptual schema” (Carr et al., 2001). In HDM, the
Hypertext Design Model (Garzotto et al., 1993), a schema is used to represent the items and relations
underlying the hypertext application, and a “set of access structures” on this schema define an appli-
cation. The conceptual schema represents hierarchies of concepts and pieces of text, and relations
between these hierarchies. Access structures can be defined to exploit the organization of the concep-
tual schema to specify links. Individual links in the hypertext can therefore be derived from the access
structures, thus reducing the number of links that must be explicitly specified. Examples of access
structures are “structural links” that can be used to define a navigation in a hierarchy, and “applica-
tion links” which define navigation between hierarchies, based upon modeled relations between the
hierarchies.

The Relationship Management Methodology (Isakowitz et al., 1995), RMM, proposes several ac-
cess formalisms to define the navigation model of a Web site. RMM addresses “highly structured”
sites, such as the Web site of a university department which lists faculty, courses and publications.
To represent the information, an E-R18 model is used, and entities can furthermore be subdivided in
“slices”, which are equivalent to the amount of information about the entity which is representable in
a Web page. Navigation is then modeled based on this extended E-R model, and may contain links
between slices, grouping constructs, and constructs representing an access on the information model:
notably, an “index” representing a list of entity instances, and a “guided tour” representing a linear
path through a collection of items.

WSDM, the Web Site Design Method (De Troyer and Leune, 1998), is specifically of interest for
work considering context-awareness. In WSDM, user types and characteristics are defined, and a
perspective on the site is defined for each user type. Such a perspective consists of a selection of
elements from the navigation layer considered appropriate for this type of user, and is modeled in the
“context layer”. The issues of user type recognition and site generation are not addressed.

The models and methodologies described above specify composition of document resources, and
are therefore appropriate for building systems which are “document-based” (Dumke et al., 2003). For
systems requiring operational features, additional constructs and tools are necessary. Likewise, a
system which initially does not require operational features may grow beyond initial intentions, so
that the system needs to fulfill such additional requirements. The question is then to what degree a
methodology supports this evolution, or if a patchwork approach, disconnected from the initial arti-
facts of the methodology, becomes necessary. Initial CASE19 tools, as do the methodologies, focus on
document-oriented Web systems. A commercial tool such as Dreamweaver (Watrall, 2002), offering
partial CASE functionality specifically for Web sites, does allow to integrate dynamic components
such as Java Applets (Schildt, 2004) or Active-X connections (Mueller, 1997). However, such items
are technology-specific additions to the Web client; the tool has no knowledge of the actual purpose
of this component within the Web system, nor about the component’s relationship with the application

18Entity-Relationship, see (Chen, 1976)
19CASE: Computer-Aided System Engineering



40 2. State of the Art

domain or with other components. To support operational features, a methodology must address the
specification of dynamic components of an application, their relation to other application parts, and
the means and consequences of user interaction with these components at run-time. In eW3DT, the
extended World Wide Web Design Technique (Scharl, 2000), components such as database connec-
tions can be represented in the design stage. Such a representation can then be a basis to implement an
operational feature, for example the storing of information provided by a user via an HTML form into
a database table. eW3DT addresses the design stage of a development activity: the models are not
used by the run-time system, instead, it is intended that the system be implemented by programmers
according to this design. This is also the case for UML-based methodologies such as WAE (Conallen,
2002) and UWE (Koch, 2001).

Model-driven Development

The goal of guiding an application’s behavior directly by models is not accounted for by the above-
mentioned methodologies, which address the requirements analysis and design phases of application
development. Two general directions exist for using models to drive an application: code generation
and model interpretation by a run-time system. In a code-generation approach, models are read by a
code generator and transformed into a target language such as Java; this code can then be extended
by programmers and compiled into the actual application (Rutherford and Wolf, 2003). Similarly,
(Kraus and Koch, 2002) builds upon UWE to provide a “semi-automatic transition from [UWE] de-
sign models of a Web application to a running implementation”. Apache Cocoon is extended and
used to read the models resulting from an UWE engineering process; these models are provided in
XMI, the standardized XML format to interchange UML models. Cocoon is then used to generate
templates for logic (as Java class skeletons) and for presentation (as XSLT stylesheets). Subsequently,
these templates can be used by programmers and Web designers to complete the application. In this
process, “the use of UWE [is limited] to non-adaptive applications”.

In approaches to model interpretation, a system must be developed that is capable of accepting
user requests and generating responses (for example, in form of HTML pages) based upon knowledge
described in the models. The system itself is not generated, but can instead interpret models for
various applications; in other words, applications are generated at run-time by a supporting system.

The support for model interpretation at run-time is further complicated by requirements of context-
awareness and adaptation within Web applications (see Section 2.1). In WebML, the Web Modeling
Language (Ceri et al., 2000), an application’s pages and navigation are described in XML. A corre-
sponding system is described, that uses this XML to generate application code as Active Server Page
(Mitchell, 2000) templates, which in turn produce HTML in the run-time application. The use of XML
as a basis does however not yet answer the question of how context knowledge would be represented
and how it influences an application, nor how operational features should be specified and integrated.
(Manolescu et al., 2005) proposes to extend WebML to allow for Web Service specification, thus al-
lowing to represent operational features via these Web Services. Further, WebML has some support
for accounting for context as described in (Ceri et al., 2003), where individual pages can be marked as
being relevant for a certain location (context); the example discussed is a museum application to assist
guided tours with information delivered to mobile devices, according to the physical location of the
user. Further aspects of context and context-aware integration of operational features within the Web
application are not addressed. WebML uses an E-R model for conceptual modeling, and specializes
on the use of relational databases.



2.3 Methodologies for Web Engineering 41

Ontology-based Modeling

An alternative approach at modeling in a manner such that the model can support run-time applica-
tions is to base application modeling on an ontology. A domain ontology represents the terms and
relations of the domain relevant to an application (see Section 1.1.3). The goal of ontology-based
application modeling is to use knowledge thus represented to specify and/or generate elements of the
Web application, notably the navigational structures; that is, the application is built upon ontology-
based navigation (Crampes and Ranwez, 2000).

In the OntoWebber proposal (Jin et al., 2001), a navigation model describes how pages and “cards”
(containers which can be aggregated in a page) are connected through links. Notably, a “list card” can
represent a list of instances of a class in the ontology, and a “query card” represents a search for
ontology entries satisfying a criteria. The focus of OntoWebber is on the integration of data from
various ontologies, by proposing to define a reference ontology (which is then the domain ontology
of the Web site) and to define mappings between the external ontologies and the reference ontology.
Direct usage of the models for Web site generation is intended, but not provided.

The SHDM method (Lima and Schwabe, 2003) transposes an existing object-oriented approach,
OOHDM (Schwabe and Rossi, 1998), to ontology concepts. The navigation model is created by spec-
ifying RQL queries (Karvounarakis et al., 2002), determining which elements of the conceptual model
are retrieved, with which conditions. The conceptual model is an ontology, which may contain hier-
archies of classes and relations between classes; that is, the level of expressiveness is the same as for
the object-oriented model. Adaptivity is not addressed in SHDM.

Hera (Vdovjak et al., 2003) is a methodology that supports the engineering of “Web Information
Systems” based on ontological descriptions of data in RDF. A Web Information System is distin-
guished from a Web application, and defined as a system which “generates a hypermedia presentation
for data that in response to a user query is retrieved from the data storage”: for example, a query
regarding a painting results in an image and description of this painting to be retrieved. A particular
focus of Hera is on data retrieval and integration from multiple sources, as in OntoWebber. The ap-
proach in Hera is to require the external sources to be accessible via RQL queries; the modeler links
the external ontology concepts in a “meta-ontology”. In (Frasincar et al., 2005), initial work for a pre-
sentation generator for Hera is described. The generator “supports the automatic building of (static)
Web Information Systems from a given set of specifications (models)”, and is triggered by the system
designer. The generation process uses a pipeline of XSLT stylesheets to transform the RDF data into a
presentation in HTML, WML, or SMIL, depending on the browser type. An adaptation model defines
appearance conditions for pieces of information, based on preferences defined in a user profile. The
user profile must be known prior to generation of the site, to steer the generation process.

OntoWeaver (Lei et al., 2003) is an example for a methodology proposing to represent all applica-
tion models as ontologies, such that adaptation (called customization in that work) can be specified by
rules based on entries of these ontologies. The models are intended to be automatically interpretable
by a run-time system, however a corresponding system is not provided.

WISE, discussed in the following, is a project for a new methodology founded on ontology-based
modeling.

WISE

The WISE project, within which this dissertation is rooted (see Section 1.3), aims to establish and
support a general-purpose methodology for Web applications, in which a prototype application can
be generated from models. The methodology recommends the following modeling phases (Wissen,



42 2. State of the Art

2004a):

• The domain ontology is modeled, resulting in a conceptual model.

• Navigational structures and definitions for composition of individual Website elements are es-
tablished, resulting in a navigation model. Entries in this model are based on the previously
established conceptual model, and can be references to individual ontology entries or represent
dynamic accesses, for example, the list of instances of a class in the ontology.

• The view model is defined as an extension of the navigational model, to determine which Web-
site elements are to be visible depending on the type of user. This represents one aspect of
context modeling as understood in this dissertation.

• The last modeling phase details the graphical presentation of the Website. This presentation
model provides style definitions for structures and elements established in the other models.

In WISE, the information base is thus described in an ontology. Navigational classes enable “clas-
sification of information objects in individual subjects of the navigation structure” (Wissen and Ziegler,
2003). Ontology exploration can be used to generate navigation possibilities, for example by specify-
ing that the target of a link is a container for instances of a class defined in the ontology. Upon link
activation, all currently existing instances are then displayed in an overview. The possibility to use
any ontological knowledge to define a navigation extends classical hypermedia approaches such as
CREF as described in (Conklin, 1987), where pages can be dynamically generated via the definition
of a predicate over keywords associated with chunks of text. In addition to the resulting power of ex-
pression, the usage of ontologies can be motivated by the goal of interoperability between information
systems providing an ontological description of the contained information, as recommended by the
W3C in its Semantic Web efforts (Meersman, 2002).

2.4 Engineering for Context-awareness and Usability

Context-awareness, initially used to support scenarios for mobile software adapting to location of us-
age, is now used in a variety of scenarios (Section 2.1). To support adaptivity in applications, various
architectures for context exist, depending on the exact system environment or purpose. Current ap-
proaches to development of Web applications can facilitate the development process, however in these
approaches there is little to no built-in support for adaptation to context (Section 2.2). Methodologies
for Web Engineering aim to systemize the development process, however existing methodologies
(Section 2.3) insufficiently address all potential requirements of a Web application: notably, the need
for adaptation to context and for operational features. The limited support for the requirement of
adaptation to context raises two questions: how can a methodology be developed (or extended) to
account for context and to support adaptation in Web applications, and in which situations is adapta-
tion to context in fact a sensible requirement? The first question is addressed in the remainder of this
dissertation.

Regarding the second question, it should first be noted that the goal of introducing context-
awareness within software systems must be to improve this system in some manner, although in what
respect the system is expected to be improved by using context-awareness is usually not explicitly
addressed in current research. It can be surmised that most work regarding context-awareness aims
either at influencing user choices regarding how the software is used and what actions the user takes
as a consequence, or at improving system quality. A marketing-steered recommendation system is an



2.4 Engineering for Context-awareness and Usability 43

example of a system aiming at user influencing (Riedl and Konstan, 2002). Improving system quality,
in turn, can mean to improve either system usability, which measures the quality of the interaction
between a user and the system (Seffah and Metzker, 2004); or system performance, such as reducing
bandwidth needs. These goals can complement one another; if usability is improved, the user can be
more efficient and thus consume less system resources; reciprocally if the system is more efficient,
it is more responsive and thus has a positive influence on usability. This dissertation focuses on the
effect context-awareness can have on user interaction at the immediate level.

Work aimed at improving usability should ultimately also aim at providing means of measur-
ing whether context-awareness has actually improved the usability of a system, and to what degree.
Research in context-awareness, being at an early stage of development, often does not consider this
question at all. Individual projects such as Sycophant (Louis and Shankar, 2004) are beginning to
address the issue of measuring usability. Sycophant is a calendar application which generates ap-
pointment reminders differently according to user context, for example as a visual note or as speech;
the user is then asked to indicate whether system behavior was appropriate. (Schmidt-Belz et al.,
2003) in turn describe the CRUMPET system, a personalized, location-aware mobile tourism service,
and ask whether users “feel the service has added benefits, compared to traditional media and Web-
based services”. The system recommends tourist attractions based on personal interests and vicinity
to the current location, on a handheld computer. In evaluation, over 75% of users considered the sys-
tem to possess added value compared to “existing media”, meaning printed materials. The intrinsic
added-value of adaptivity within the system itself is not addressed. In addition, a usage scenario for
tourists can be considered particular in the sense that (tourist) users are people for whom it can be
assumed they are interested in novel features, such as pro-active tips regarding what do visit next.

A general problem in measuring how context-awareness affects usability is the lack of an appro-
priate comparable basis: a context-aware research prototype fulfilling a certain function can usually
not be compared with a context-unaware counterpart fulfilling a similar function. In the estimation
of (Schmidt-Belz et al., 2003), “there is certainly a trade-off between avoiding cognitive overload,
giving task-specific information, and adapting to personal preferences, which needs further and more
detailed investigation.”



44 2. State of the Art



Chapter 3

Context in Web Applications

This chapter discusses how context-aware computing can be used in Web-based systems and intro-
duces a modeling approach to Web Engineering taking context into account. We start by discussing
possible effects of adaptation to context that can occur in a Web application. Subsequently, we infor-
mally describe context with scenarios for context usage, before proceeding to a formal definition of
context and showing, at the conceptual level, how it can be used in Web Engineering.

3.1 Adaptation to Context

Context-awareness can be a basis for adaptation in a Web application. If a system is aware of infor-
mation about context of usage (see Section 2.1), the system can adapt to the user’s presumed require-
ments, specifically in situations where informational constraints or physical constraints are high.

Adaptation can occur in various aspects of an application. To better analyze and support adap-
tation effects, we distinguish three levels in a Web application: navigation, content and presentation.
Potential adaptation effects for each level are summarized in Table 3.1.

Level Adaptation
navigation (i) show or hide parts of the navigation structure,

(ii) dynamically (re-)construct the navigation structure,
(iii) offer additional links.

content (i) select relevant resources (documents and services), rank them,
(ii) adapt the documents themselves, by selecting parts and integrating
them into a final document,
(iii) compute parameters of integrated services according to context.

presentation (i) adapt layout and other user interface characteristics,
(ii) adapt to (potentially changing) constraints of the user’s physical de-
vice.

Table 3.1: Adaptation effects in a Web application

The navigation level describes navigation possibilities and how these are structured. Adaptation
can affect which possibilities exist and alter their structuring. An element of navigation in a clas-
sic Web application is presented as a link that can be followed upon a mouse click; however, how
navigation possibilities are in fact graphically presented to the user is not a concern addressed at the
navigation level.



46 3. Context in Web Applications

The content level describes the actual Web application offering. This can consist of information
presented to the user, and of operational features that are available to the user. We call “service” the
mechanism through which the application provides the user with an operational feature: for example,
a reservation service through which the user can book a flight. Typically, the Web application presents
such a service to the user, and to implement the service relies on an actual, back-end service, that
is either locally available or is a third-party offering. The Web application thus acts as consumer of
this service. Generally speaking, adaptation can influence which elements are offered, and the way in
which an element is determined.

The presentation level is responsible for the appearance of the user interface to the application (the
GUI). Adaptation of appearance has been particularly stressed in ubiquitous computing: for example,
in (Schmidt, 2000) the user’s current physical situation such as “the user is moving” is used to increase
font-size to ease reading.

Enhancing system usability is a major goal of adaptation. In this work, using context in a Web-
based system means to use context to enhance the user interface in the largest sense. Interface look
and feel, but also content and services provided in a certain situation are selected according to context,
and may themselves be adapted to context.

Some approaches considering context in applications are of a general nature, for example concep-
tual considerations for arbitrary software systems (Brézillon, 1999). We argue that, for engineering
purposes, Web-based systems require a specific focus regarding context, to address the particular
characteristics of these systems (see Section 1.1). For the engineering process, a comprehensive, yet
comprehensible context model is needed: the model must be powerful enough to enable meaningful
adaptation, yet sufficiently straightforward to be used by the people involved in the process. These
goals are difficult to amalgamate, and thus any approach attempting to address both goals involves a
compromise between power of expression and simplicity of understanding.

3.2 Context Usages and Characteristics

The notion of context-aware computing was initially used to adapt applications in mobile usages
according to location of usage. As illustrated by the examples in Section 2.1.1, current research
increasingly demonstrates the potential of context-awareness in a wider variety of scenarios. Our work
contends that context-awareness can be useful for Web-based system usage in the large, if extended
to further context aspects. Context-awareness can then be used for adaptation in systems in mobile
and non-mobile usages; whereas mobile usages in particular can benefit when additional aspects to
location are considered.

Use of context-aware computing in applications can be categorized in several ways:

• according to what types of context are being considered, such as location or time;

• according to application domain, such as electronic tourist guides or health services;

• according to type of technology employed: Web technology, embedded devices, augmented
reality devices.

Such categorizations can be considered complementary views, the view in question being useful to a
certain type of viewer: the type of context used might be most important to an application modeler
and designer, the application domain to a financial sponsor, and the type of technology to engineers
and developers. Of special interest in our work are the types of context that can be of influence, their
characteristics, and how this information can be taken into account in a systematic way.



3.2 Context Usages and Characteristics 47

3.2.1 Example Scenarios

We now introduce two scenarios for Web software in which context-awareness can be used, and which
motivate the types of context used in this work.

Context in e-Commerce

Figure 3.1: A context-aware e-commerce Web application

Consider a Web application for a construction market servicing various geographical areas. This
application offers a Web presence to the company’s actual outlets, and possibly an online store. Figure
3.1 shows a scenario in which the user is known to the system and the user’s profile is used in order to
predict which types of products might be of interest to this user. Furthermore, the date is used in order
to provide season-relevant information. The application shows the user a product which is potentially
of interest, and gives the user the ability to gain further information on this product, via a product
description document attached to this page. In addition, the application offers to arrange for a product
demonstration in one of the store locations that the system assumes are near the user, however does
not preclude other possible locations. Location can thus also be useful in this scenario. This type of
scenario, selection of products according to context, is analogous to features offered by recommender
systems (Schafer et al., 2001; Burke, 2002).

Generally speaking, what is presented to the user are context-relevant pieces of information, but
also further possibilities for interaction with the software: we term these services. Such a service
is thus also offered in a context-aware manner, and service incorporation into the application is also
context-aware in that context information can be used to parameterize a service. To summarize: in a
context-aware Web application, navigation, content selection, service offering, and display type may
be adapted according to context.



48 3. Context in Web Applications

Industry Maintenance Scenario

Consider a technician responsible for maintaining industrial installations. The technician uses the
company’s Web-based system in various situations. When in the office, an Intranet portal is accessed
via a desktop browser to gather knowledge regarding company products or to update work accoun-
tancy. When away from the office, the technician uses a PDA1 to check and update the appointment
list. When an installation is visited, the installed product is scanned with an RFID2-reader integrated
in the PDA to read the product identification. The device then retrieves details about this product
from the company’s database, via a Web Service, assuming the technician has network access at this
site, for example, via a wireless Internet connection. If furthermore the system knows (or assumes)
the user’s current task is to perform a maintenance inspection, the application can provide in addition
a graphical user interface for regulating the inspected product via a network interface. This user in-
terface is generated taking into account information about the current situation of usage, such as the
technician’s profile. Once the technician has returned to the office, if the PDA is used, the system
might propose a synchronization service of any work steps performed offline on the PDA.

In this scenario, the system uses various sorts of context information to adapt the offering, such
as user role (technician) or the hardware device used (desktop, mobile device). Location information
can also be used, although coarse-grained in this scenario: in the office, or away from the office. The
current task (such as make a maintenance inspection or check for appointments) can likewise be used
as input to adapt the system, and may thus also be considered context. This is a different perspective
on context than in (Dourish, 2004), where “context arises from the activity”, and the activity or task
is in itself not classified as context. Time information can be used to further fine-tune the offering:
if current time is within usual maintenance hours, it is more likely the user is making an inspection
call, and so this option might be proposed first. If not, a different option such as “update appointment
schedule” might be presented first.

If the system is aware of these aspects of context, it can adapt to provide the user with the most
likely features in a given situation; furthermore how a feature is presented can also be steered by
context of usage. The system should not disable other possible features, as the precise context of
usage can not be known for certain.

An additional point of interest is that context information can be used to extrapolate supplementary
information about context itself, thus potentially permitting a higher degree of context-awareness in
the system. In the example scenario, if the device used is a mobile device, the user is outside of the
office and time is within routine maintenance hours, the system might deduce that the user’s current
task is “make an inspection call”. As stated above, we consider that this information about the task
is context, as in (Dey et al., 2001): “several pieces of context information that describe a situation
[are used] to infer a new piece of context information”. The system however can not be certain of
this deduction, and thus various strategies are conceivable for deciding when to take steps based on
context information. In some situations, an explicit user confirmation may be required.

Further scenarios for context-awareness

As discussed in Section 2.1.1, other research projects have described scenarios of a different nature
for which the notion of context-awareness is applicable, typically tourist guide scenarios or ubiquitous
computing situations aiming at supporting an office environment. It can be assumed that additional
types of scenarios will be described in the future. For instance, portals and news sites might use con-

1Personal Digital Assistant
2Radio Frequency Identification



3.2 Context Usages and Characteristics 49

text information to provide customized, tailored views (in addition to existing, explicit personalization
features). The context paradigm might, in the long term, permeate the underlying software systems
themselves: the K Desktop Environment (KDE) for example is projecting to integrate a “Contextual
Linkage Engine” in the desktop (KDE Community, n.d.), whose goal is store context information
about documents and their usage on the personal computer.

3.2.2 Categorization of Context Elements

We now address the question of how context information can be organized. It must be determined
which factors of context are relevant in an application domain, and how these factors are then related
to application models. To address these questions, we begin by discussing a categorization of factors
of context in this section. The following section (3.3) describes how this information can be used to
define a context model.

In an engineering process, specifically one aiming to take context into account throughout the
process, methods and models that explicitly address context are required. The question is then which
sort of context information can be explicitly represented, and to what degree. This context base
is established during the Web Engineering process, and a run-time system then determines context
knowledge for a specific situation of usage, according to this context base.

The manner in which context is determined during system operation varies significantly between
approaches, and can be achieved directly by the system providing the Web application or indirectly
by delegating to extraction techniques. In any case, some form of explicit representation of context is
necessary, upon which these techniques can then be applied.

Factors of context relevant to an application domain must thus be identified and explicitly ac-
counted for. Individual factors can have commonalities or relations between them. For example,
“summer” is an instance of a “season”, which in turn is a sub-category of “time”. To represent this
sort of knowledge, we propose to use ontologies (see Section 1.1.3). This structuring allows to use
relations between context factors themselves to gain further knowledge about context, without requir-
ing that all context ontology items be explicitly put in relation to application elements. Furthermore,
the use of ontology mechanisms to represent context factors enables sharing context catalogs. Such
catalogs can be defined independently of a specific application, for example by a standardization body
(assuming this body uses ontologies to represent such factors).

We furthermore propose to use one ontology for each type of context, that is, to assign each
factor relevant for context to a specific category. The actual categorization that is chosen places no
restrictions on the context model described in this work, nor on implementation, and can readily be
replaced by alternative categorizations. The general purpose of subdividing the set of context factors
into categories is to facilitate the modeling process, and the implementation of corresponding tools
as well as a run-time system for adaptive Web applications. Regarding modeling, it is assumed that
some form of human interaction is required to complete and adjust the model, although automatization
techniques for context models can be developed to assist in this task.

The grouping of factors is then indispensable for the user to maintain an overview of the model.
In particular, domain experts, assisting in the Web Engineering process, need a manageable view of
the context model. In our approach, modeling context with regard to the application consists of as-
sociating factors of context with application domain elements (details are given in Section 3.3); for
this activity as well, categorizations makes the model more manageable. Furthermore, the categoriza-
tions can be used to refine the way in which context information is to be used in a specific situation;
for example, the designer can then specify that, for a certain adaptation feature, only a subset of the
categories of context should be considered.



50 3. Context in Web Applications

Thus, context categories that, on the one hand, make the modeling process manageable and on
the other hand, cover as many scenarios for context as possible are helpful. Given that we wish to
classify context elements, we now should ask which, and how many, classes are useful. Existing
approaches in mobile scenarios, as described above, usually focus on one or two classes, that are key
to the scenarios they cover: these are typically Location or Device, sometimes Time. The limitation
to one or two classes has the advantage that, in theory, the model is easier to understand; however, to
support a wide variety of scenarios, additional sorts of context factors must be taken into account.

The question is then what categories are most effective at representing a broad variety of Web
applications, while remaining easy to understand by modeling users. Ideally, categorizations will be
established over time as “best practice”. This dissertation uses a concrete set of categories, in order to
provide tangible application models and examples. However, which categories are ultimately used is
not a critical issue for the approach discussed in this work.

Figure 3.2: Context factor categories

We propose the following categories of context factors (see also Figure 3.2), as motivated by the
example scenarios of Section 3.2.1: User&Role, Process&Task, Location, Time, Hardware Device.

• User&Role provides a categorization of users according to their role, such as various types
of customers, or different types of employees. This can include context information gathered
through observing behavior, for example, to determine a personality type. An individual user
may have several roles.

• Process&Task represents a functional context, such as work items for employees or an online-
shopping process. A process may be modeled, for example, as a collection of tasks belonging
to this process.

• Location is a categorization of locations relevant to the application, in the desired granularity:
for some applications, country might be sufficient location information, for others, city, and so
forth; in other cases the distinction between intranet and external access might suffice. These
locations are not to be confused with physical locations sensed by the system, such as by GPS
positioning, user input, or network address (Internet address or the like). Furthermore, this
location categorization does not refer to locations in the information space (meaning, where
is a resource located) nor their proximity location-wise to other elements in this space: in the
terminology of this work, this type of relationship is part of the domain ontology, not of the
context categories.

• Time refers to various types of time information that can be relevant, such as a client’s time-
zone, actual time, or a virtual time.

• The Hardware Device category contains that device and device-related information which can
be relevant context factors. This can include device type (desktop, mobile) as illustrated in Sec-
tion 3.2.1; display properties affecting look and feel, but also physical properties of the system



3.2 Context Usages and Characteristics 51

environment: for example, a property such as bandwidth can be used for (automatic) applica-
tion adaptation. If bandwidth (as a context factor) is sensed to be below a given threshold, or
changes to fall below that threshold, streaming of audio or video can be reduced in quality, in
order to maintain the same refresh rate nonetheless (Nepal and Srinivasan, 2003).

Other approaches at Categorization

Related work aiming at integrated modeling of context factors sometimes makes more abstract cate-
gorizations, such as ”physical environment, social environment” (Schmidt et al., 1999), or “material
context, social context” (Petrelli et al., 2001). Such categorizations can be useful for high-level rea-
soning about context and possibly for experts in knowledge representation. It is our belief that the
categorization proposed above follows a more user-centered terminology. The goal of pursuing a
user-centered terminology is to facilitate the modeling process for modelers of Web applications, and,
consequently, to enable emergence of meaningful models. Which categorization is most effective for
this purpose can only be ascertained by experience in engineering projects, and furthermore likely de-
pends on the application domain. For example, in an architecture such as CAMUS (Ngo et al., 2004)
focusing primarily on ubiquitous computing (as a “web of devices”), it can be argued that a further
category environment is useful, representing factors such as air humidity or light intensity.

Another frequent approach at categorizing context factors is system-based, meaning that the model
is structured according to those categories of context that are useful to the context system; see, for
example, the AmbieSense project in (Kofod-Petersen and Aamodt, 2003). For the reasons described
above, this dissertation describes a more user-oriented model; this does not preclude transformation
into a system-oriented model for the runtime context system.

Context information can also consist of user behavior as gathered over time: which links did the
user follow previously, what search terms were used, and so forth. (Lieberman, 1995) describes the
Letizia system that tracks user behavior in order to anticipate items of interest; upon request, a page
containing current recommendations is presented: a feature understood as adaptation in our work. In
our terminology, navigation within the application results in activation of resources in the application
domain, that is, in determination of a domain context. Inferences regarding current type of user instead
result in activation of context factors in the category User&Role.

3.2.3 Aspects of Context

Context has various characteristics. Some characteristics are related to the nature of context in it-
self, whereas others only appear in combination with a system. We thus distinguish inherent context
characteristics and system augmented context characteristics, see Table 3.2.

inherent system augmented
context characteristics context characteristics

regular ⇔ irregular synchronic ⇔ diachronic

low-frequent ⇔ high-frequent explicit ⇔ implicit

Table 3.2: Context characteristics



52 3. Context in Web Applications

Inherent Context Characteristics

Two dimensions of context characteristics are inherent, in the sense that they are located directly in
the context factors: regularity and frequency. These dimensions are best illustrated by analyzing how
context information, as categorized in Section 3.2.2, relates to these characteristics.

First, context factors can be distinguished with regard to regularity with which they change. Time
itself changes regularly, independently of how it is used in the context model. Location information
on the other hand does not change regularly: the user moves and stops in an unpredictable fashion.
Likewise, Process&Task is an irregular context category: in the example scenario of Section 3.2.1, it is
the user who chooses to engage in a process (even though the user can be assisted by the context-aware
system in process selection). Change in process is thus unpredictable and irregular, although in some
scenarios, a process, or subdivisions of a process, for example specific tasks, might be activated by
a system at pre-defined intervals. Hardware Device and User&Role context information are likewise
irregular.

The other dimension describes the frequency with which the context changes. This frequency
depends on a specific view on context information. Time information has a high change frequency if,
for example, seconds are considered; however if season changes are considered, frequency is much
lower. Location is similar, as the user’s position can be viewed in different levels of accuracy, such as
country or city. Change in Process&Task depends on whether a global process, such as maintenance
of a machine in the example scenario, is considered, or whether smaller dependent subtasks are con-
sidered. Hardware Device and User&Role information change slowly or quickly depending on the
scenario.

Both regularity and change frequency of context are not independent of specific views, yet are
inherent characteristics of context. The Web engineer must thus decide in what intervals the system
has to update its knowledge about context, notably when external sensors are involved.

System-augmented Context Characteristics

Two further dimensions of context characteristics are not context-inherent, but only appear when
context is used within a system. These dimensions describe the level in which the system augments
context information. For that reason, we call them system-augmented context characteristics.

One aspect is the level to which historical context information is taken into consideration. Previous
context information can augment the currently given context. If the system knows the technician’s
previous actions in the example scenario of Section 3.2.1, the system can use this information to
support the user adequately in new situations, for example, by remembering a difficult maintenance
step. In such a case, the system uses what we call the diachronic character of context. On the opposite,
a system taking only current context into consideration, without referring to previous context, uses
context synchronically.

A second aspect is the degree of interpretation of context information. Some context information
requires little or no interpretation to be gathered from input data, for example, a location. Other
context information can require inference mechanisms in order to be sufficiently determined: in the
industry maintenance scenario of Section 3.2.1, the process (as a context factor) can be inferred from
other context factors. We thus distinguish between implicit and explicit information, as in (Siljee et al.,
2004).

Application of these aspects depends on available system mechanisms. If the system does not store
previous context information in any way, the diachronic character of context can not be accounted for.
Likewise, if the system does not have inference mechanisms, implicit context data can not be used.



3.3 A Unifying Context Model 53

Further system aspects also influence the level of context-awareness, such as quality of the context
retrieval process, and whether the used context model is static or changeable. We call these the
context-related system characteristics. Within the Web Engineering process, decisions must be made
regarding which of these characteristics are significant for a specific application, and thus justify
potentially higher development and production costs.

An alternative classification of these aspects of context is mentioned in (Dourish, 2004), who
distinguishes between “the positivist and the phenomenological positions” with regard to context.
Context factors such as device information are stable, in the sense that they are features of the world,
independent of actions of individuals. A phenomenological perspective takes into account activities,
or, in the terminology of this work, Process&Task.

3.3 A Unifying Context Model

In order to support adaptation according to context, knowledge about this context must be defined
and represented in a suitable manner. A conceptual model, based on a precise definition of context,
enables to define known context information. Modeled knowledge forms a basis for adaptation in
the Web-based system; such knowledge is however not exhaustive, as information gathered about the
user, including patterns of use can ultimately also constitute context information.

As stated in Section 3.2, this work aims to provide for context-awareness for a wide variety of
scenarios. Consequently, an approach to modeling context on a broad base is presented, where context
is integrated with application elements. In this modeling approach, the domain ontology plays a
central role and might already have been developed in the overall engineering process. The goal is
then to connect the domain ontology with context information. Context factors are classified and put
in relation with domain ontology elements. This approach is detailed in this section; the subsequent
section (3.4) focuses on how this model can be used in Web Engineering.

3.3.1 A Formal Definition of Context

The general notion of context in this work is that elements of the conceptual design space of an
application, such as concepts defined in the domain ontology, can be contextualized through relations
to elements of the context space. An information object can be, for example, relevant for a geographic
region or location. This relation might be reciprocal: in the example, the location might be relevant if
current context includes the focus on that information object.

We therefore say that context is determined by:

• a structuring of factors pertaining to context into ontologies;

• an ontology describing the information of the application domain;

• relations between the ontologies, indicating which elements are context-relevant with respect to
which other elements;

• a current perspective on the ontologies. This perspective consists of a subset of each ontol-
ogy involved and a degree of activation of each involved ontology entry. This can be termed
contextual knowledge, as in (Brézillon, 2004).

These notions of context and context relations are formalized in the following definitions.
As our context-related definitions are based on the use of ontologies, a definition of ontology is

first required; we follow the definition as given in (Wissen, 2004b):



54 3. Context in Web Applications

Definition 1. An ontology is an 8-tuple O = (C,R,L, F,G,HC , rel, AO) where

• C is a set of concepts and R a set of relations;

• L is a lexicon consisting of a set LC of symbols for concepts and a set LR of symbols for
relations, such that L = LC ∪ LR;

• F ⊆ LC × C and G ⊆ LR × R are two relations representing references on concepts and
relations. For l ∈ LC let F (l) = {c ∈ C|(l, c) ∈ F} and F−1(c) = {l ∈ LC |(l, c) ∈ F}; for
l ∈ LR let G(l) = {r ∈ R|(l, r) ∈ G} and G−1(r) = {l ∈ LR|(l, r) ∈ G};

• HC is a concept hierarchy, i.e., a directed relation HC ⊆ C × C . HC(c1, c2) means that c1 is
a subconcept of c2;

• rel is a function rel : R → C × C that describes non-taxonomic relations between concepts.
The function dom : R→ C where dom(R) = Π(rel(R)) defines the domain of R, the function
range(R) = Π(rel(R)) defines the range of R;

• AO is a set of axioms, i.e., expressions in a logic description language.

We now describe how elements pertaining to context can be defined, and put in relation to other
elements to define context relations.

Definition 2. A context domain Cd is defined as a union of ontologies:

Cd = O1 ∪O2 ∪ · · · ∪On, Oi is an ontology

Definition 3. The degree of activation a of an element e of a context domain Cd expresses the certainty
with which the element is known to be active:

a : Cd → [−1, 1], Cd is a context domain

If an ontology element is chosen by the user in the run-time Web application (for example, when
the user chooses a navigation option generated from this ontology element), the degree of activation
of the element is 1, whereas if an element is inferred to be active by some system mechanism, the
degree of activation is set by the inference mechanism.

A context relation describes that two or more elements of Cd influence each other’s degree of
activation, meaning that when one or more of these elements is/are active, the other element(s) con-
sequently has/have a certain degree of relevance. A context relation is represented as a set of pairs
of elements from a context domain Cd. This set contains only one pair if the relation involves pre-
cisely two elements from Cd. The set contains several pairs in case of an n-ary relation. The set of
knowledge about context relations that can be expressed is thus the set of all such sets of pairs (i.e.,
the power set P). We call this the context space:

Definition 4. The context space Cs on a context domain Cd is defined as:

Cs(Cd) = P(Cd × Cd)

Definition 5. A context relation cr is a point in a context space Cs; that is, cr ∈ Cs.



3.3 A Unifying Context Model 55

To illustrate the representation of an n-ary relation where n > 2, we consider a ternary context
relation. Such a relation can be represented as a set of two pairs of binary relations. For example, let
c1 be a context relation between factors d1, p1 and p2; this can be written as c1 = {(d1, p1), (d1, p2)}.

Using sets of pairs to represent context furthermore allows for ordering. Each pair in a context
relation space is implicitly ordered; however whether this ordering is significant is left open for a
specific context model interpretation to specify. A model in which ordering is in principle relevant,
and which needs to express that in an individual relationship both directions are equally relevant,
writes, for example, c2 = {(d1, p1), (p1, d1)}.

A context relation possesses a value which is computed by an influence function: function:

Definition 6. An influence function i computes the influence of a context relation cr, as a real number
between −1 and 1:

i : Cs → [−1, 1], Cs is a context space

Intuitively, a context relation between two items indicates to what degree the items are relevant
together: when one item is active, the other is relevant to a degree determined by this relationship. For
example, if {(d1, p1)} is a context relation and d1 is active, the relevance of p1 is determined by i and
the degree of activation of d1.

Definition 7. The contextual knowledge Ck is the knowledge a system has at a specific point in time
during its operation about which ontological elements are active, and to what degree:

Ck = {(e, a(e))|e ∈ Cd}, a : Cd → [−1, 1]

The contextual knowledge is knowledge which results from the context model and a system’s
context inference mechanisms. It is as such not part of the context model, but instead expresses the
knowledge resulting from the context model at a specific point in time within a system. Its computa-
tion is not predetermined by the context model, but is dependent on specific strategies, which may use
the influence function, the ontological relations, and any combination of these.

3.3.2 Concrete Context Model

We now introduce a concrete interpretation of the context model of Section 3.3.1; this interpretation
is designed for supporting context modeling for Web applications in a flexible manner, while nonethe-
less being of manageable complexity in view of modeling processes. This context model is used
throughout this work for the illustrations of context-awareness and adaptation in example scenarios
and system architecture.

While automation techniques for context model generation can be developed to assist in creation
of such a model (or parts of it), it is indispensable for an expert user to be able to validate and extend
the model. Therefore the model needs to be at the same time flexible with regard to representing
context information, and comprehensible by an expert user. The goal of attaining this compromise
motivates the design decisions presented here.

Definition 8. Given the categorization of context factors introduced in Section 3.2.2, we define the
context domain for Web Engineering Cdw as using the following ontologies:

Cdw = U ∪ P ∪ L ∪ T ∪H ∪D

where U is the ontology of user and role factors, P the processes and tasks, L the locations, T the
time factors, H the hardware device factors and D the domain ontology.



56 3. Context in Web Applications

In our concrete context model, the influence function is a weighted association between ontology
entries, and involves two or more entries, of arbitrary types. Stated more precisely, influence is defined
as follows: an influence value function iw associates a fixed value to a context relation cr . We call
this value the influence value. In a binary relation, when one element is active, the other is considered
relevant according to the influence value and the degree of activation of the first element. In an n-ary
relation, the relevance of an element is determined by the influence value and the degree of activation
of the other elements in the relation.

How the information in the context model is used for computation at run-time is not restricted by
this model; the model may therefore be used by varying strategies and algorithms for context infer-
ence. Usable information consists, on the one hand, of the context relations defined as above, and, on
the other hand, of any ontological relations involving elements of the context relations. A concrete
strategy must define, notably, whether influences are cumulative, and whether context-relevances de-
termined via influence values should propagate to further ontology elements. Possible effects of on-
tological relations are discussed in the following.

3.3.3 Context Knowledge and Relations

Given that context factors are associated with elements of domain knowledge, this raises the question
of what contextual knowledge can be gathered on items which are not in this association but are in an
(ontological) relationship with items which are explicitly linked in a context relation.

Figure 3.3: Context knowledge and relations

We therefore consider the effects of ontological relations on contextual knowledge. An illustration
of possible effects is shown in Figure 3.3. In a specific context, certain context factors are active, with
different degrees of activity: here, presume context factor F3, belonging to category C1, is sensed as
being active with a value of 1. The context model states that domain ontology element D1 is context-
relevant as D1 is related to context factor F3; the relevance value is determined by the influence value
i1 and the degree of activation of this context factor.

In addition to explicitly linked elements, contextual relevance can be asserted for further elements
according to the type of relations within the domain ontology. Elements D2 and D3, being in rela-
tionship with D1 might also be relevant; however whether this relationship is significant and to what
degree it transposes relevance from D1 to D2 and D3 can not be said in a general manner. Concrete



3.3 A Unifying Context Model 57

adaptation specifications need to define which sorts of relationship are to be followed in which situ-
ation, and how these relationships affect relevance; for example, there might be a relevance loss on
following a relation in this manner.

Default strategies and interpretations can be postulated. In the example of Figure 3.3, relations
represented by an arrow signify a hierarchy. In such a hierarchy, when a higher-level element such as
D1 has relevance, a default interpretation can be that D2 and D3 being sub-items of D1 are also rele-
vant, with no loss of relevance with respect to relevance of D1. Additionally, a default interpretation
can consider that context relations on domain elements that are classes also transfer to elements that
are instances of that class. The converse however need not apply; relationships from a child to a parent
or from an item to a sibling can not be used as a general statement to infer relevance, although such
relationships might be relevant in individual situations. Now suppose context factor F5 from category
C2 is also active. This factor is also connected to D1, which is already relevant by its connection with
F3. In this case, a default interpretation for the relevance of D1 can be that the maximum influence
value between i1 and i2 prevails. Alternatively, a strategy can postulate that influence values augment
each other in some way, in this case increasing the overall relevance of D1.

Knowledge about the domain can also be used to infer knowledge about context. For example,
suppose a user action, via application navigation, results in activation of domain element D4. The
model states that context factor F6 can be considered relevant with a value factored by i3. Thus, given
a resource, the model can provide context factors for which this resource is considered relevant. This
knowledge might then be used for further context deduction; or for directly assisting the user, for
example for semantic retrieval (Varelas et al., 2005), to search for further resources relevant in that
context.

In summary, contextual knowledge in our approach is based on two sources of knowledge repre-
sentation. Ontologies represent a semantic network, that is, a network between elements where the
edges are labeled. These ontologies represent knowledge about the application domain and about ap-
propriate context factors. The context relations in turn form an associative network, that is, a network
where the edges have a numeric weight. The combination of these two sources of knowledge can be
used to compute contextual knowledge in a situation of usage.

3.3.4 Example Context Models

Figure 3.4: Context model for an e-commerce scenario

Figure 3.4 shows a context model reflecting the example scenario discussed in Section 3.2.1. In



58 3. Context in Web Applications

the diagram, a class is represented by a rectangle, an instance of a class by an oval. Arrows between
classes represent a specialization relationship (subclass). Services are additionally emphasized via
a grey background. A context relation is represented as a connection between two or more items;
when this relation is ordered, an arrow represents the ordering. Context relations are furthermore is
labeled with a weight; these weights are expressed as a discrete set of symbols, such as + and ++.
Although the definition of context allows for arbitrary influence values, it is presumed that a usage of
discrete values yields more meaningful results, given that influence values need to be entered (or at
least verified) by a business expert in an intuitive manner.

In this model, a type of product from the domain ontology (“Irrigation System”) is said to be
relevant (marked as +) for a certain user profile (“Head Gardener”). Furthermore, in a certain season
(“Summer”), and for the same user profile, the product is modeled to be even more relevant (marked
as ++), making the element more susceptible in appearing, for example, in a customized offer. All
product instances (such as “Irrigsys2004”) attached to this product type can then be used in that
context. Attached to “Product” are two services, “ArrangeDemo” and “ProductInfoSearch”, that may
be offered to the user for any product. The modeler has further indicated that in the season “winter”,
the entry “Snowplough”, a specialization of product, is relevant, and has explicitly stated that this
context relation is ordered from the former to the latter.

As shown in this example, the business user models context relations where deemed most appro-
priate; not all elements need be explicitly linked in such a relation. As discussed in Section 3.3.3,
influence values may be determined for items not explicitly in a context relation: in this example, the
product “Irrigsys2004”, as in instance of an “Irrigation System”, might be considered context-relevant
when the class “Irrigation System” is determined to be context-relevant. Whether this is the case, and
to what degree, depends on a specific strategy.

Figure 3.5: Context model for an industry maintenance scenario

Figure 3.5 shows a further example context diagram; this diagram is a possible representation for
a context model supporting the industry maintenance scenario which was described in Section 3.2.1.
Types of product (e.g., “elevator”) are domain knowledge, as are instances of products (“Elevonic”).
Services such as “get technical manual” are associated. The model states that, if the task “inspection”



3.4 Context Modeling in the Web Engineering Process 59

is active, then the concept “Product” is deemed highly relevant (value ++); the opposite is also true.
Furthermore, if the context hardware device parameter is identified as “mobile”, the task “inspection”
is somewhat relevant (value +). If time is recognized as being within working hours, the same task is
relevant. If both factors are given, the relevance of the task “inspection” is more likely.

The diagrams in Figure 3.4 and Figure 3.5 show one possible view of context information to be
represented in a system. Not all modeled knowledge can be shown in this fashion; a model may
need to support more complex rules as well. The current view on context information should ideally
depend on the level of expertise of the user involved in the modeling process. How knowledge is then
represented within a system is independent of graphical representations intended for users.

Influence Values

The issue of precision of an influence setting was introduced by the example in Figure 3.4. In prin-
ciple, it is necessary to maintain the possibility of arbitrary precision: an influence value need not be
explicitly set by the user, but could either be the result of automated extraction, or be a result of an
item’s relation to other items that are involved in explicit context relations. For the latter, an algorithm
computes the actual relevance value at run-time. For such items for which the modeling user wants to
set an influence value, the possibility of entering a high precision value (such as a probability value)
is presumed to be counter-productive, in the sense that it may result in confusion and errors. Instead,
the business expert might specify an influence value as an element from a small set of discrete val-
ues, for example: “++” meaning highly relevant, “+” meaning rather relevant, no marking meaning
somewhat relevant, “−” meaning rather irrelevant, “−−” meaning quite irrelevant.

A “−” or “−−” setting indicates items that are irrelevant or inappropriate in a given context, and
thus can bother an end-user, or even be considered offensive if presented in a certain context. Consider
the following example to illustrate the need for such a relation: a retail store services many types of
consumers, and products based on a certain type of meat should not be recommended to customers
of whom the system knows they are of a religion that forbids consumption of such a product. Thus,
this knowledge could be modeled by a “−−” relation. Note however that one should not rule out
entirely offering this product for this type of customer: the system will make an assumption that this
product is likely irrelevant for this user, however there are situations where it is not, for instance if this
particular user is not concerned with such constraints, or is shopping for somebody else who is not
concerned. Alternatively, the latter scenario could also be modeled as a task ”buy for a friend” within
the Process&Task context category, in which case the user role factor would not be used in the same
manner. To summarize, the system should avoid recommending a product if it is probably irrelevant,
however the system should not forbid showing the product altogether, for instance consequently to the
user explicitly choosing it, by navigation or searching.

3.4 Context Modeling in the Web Engineering Process

This dissertation proposes an approach to taking context into account that augments the WISE method-
ology (see Sections 1.3 and 2.3).

An overview of the modeling process used in our approach is given in Figure 3.6. As recom-
mended by WISE, four separate sub-models describe the application model as a whole, where each
sub-model can refer to information defined by a proceeding model (order of precedence is indicated
by grey arrows). Once established, all model information is stored in a model repository (as indicated
by the white arrow).



60 3. Context in Web Applications

Figure 3.6: Context modeling augmenting the WISE methodology

We now provide an introduction to the models and the relations between them; the individual
models are then detailed in Section 3.5. The conceptual model describes the application domain,
including content building blocks (or references to location of such items) that are to be presented to
a user. The conceptual model is extended by ontologies of context factors, one for each category of
context to be used (see Section 3.3.2). The navigation model defines navigation possibilities for a user
by referring to elements in the domain ontology. Furthermore, the navigation model defines how to
compose a Web page when the user has selected a navigation item. The model is extended to allow
for adaptation, for navigation as well as for composition. Placeholders for adaptation can be used
to refer to an adaptation specification whose properties define the strategy for that placeholder. The
view model defines which elements of the navigation model are to be viewable by the user in which
situation. The presentation model defines GUI characteristics.

Context relations can now be defined on the models, as weighted associations between items in
these models. A relation between the domain ontology and a context ontology indicates that a domain
element is specifically relevant when a certain context factor is active. Such an association with the
domain ontology can be with any sort of domain element, such as a concept in the ontology, an
information item attached to a concept, or to a service available to the Web application (or, more
precisely, a service description). Context relations can likewise be defined on elements of the other
application models. For example, a class of GUI characteristics (in the presentation model) can be
associated to a user role, indicating that this sort of presentation is more relevant for a certain type of
user.

Throughout the context modeling process, it should be kept in mind that the scope of context
modeling is that scope which is relevant to the immediate requirements of the Web application being
modeled, and does not include knowledge of the internal operation of external, integrated systems
(see also Section 1.1.3).

Modeling Scenario

A typical modeling scenario in the methodology (as augmented for context) might be as follows:

1. the application models are established independently of context-awareness considerations,

2. a business expert extends the conceptual model with categories of context and subsets of these
categories appropriate for the application,



3.4 Context Modeling in the Web Engineering Process 61

3. items from the domain ontology are put in relation with context factors,

4. items from the remaining models are likewise put in relation with context factors,

5. the Web engineer extends navigation, view, and presentation model with adaptation specifi-
cations and placeholders referring to these specifications, to define adaptation features where
desired.

Modeling context in this manner is potentially a lengthy task that can be supported in several
ways: reuse, data-mining, and editing tools.

The domain ontology can be read from an existing source, or converted from a prior enterprise
information model. Context factors to be used in the model can originate from predefined context
catalogs for well-known factors; custom additions of context factors relevant to an application are then
made by business experts. Predefined factors can be, for example, categories of time like seasons;
for the location category, well-known geographic regions (for example, as defined in ISO3166) or
semantic locations (Pradhan, 2000) can be used. The User Agent Profile (Open Mobile Alliance,
2003) is a standardization proposal for defining hardware device capabilities, to be used for content
formatting purposes.

Context relations can be automatically suggested by a system performing data-mining of the infor-
mation stock available in a customer’s infrastructure. One approach is to look for co-occurrences and
set influence values according to statistical values. For an applied example of generation of a concept
network through data mining, see (Staudt et al., 1998). Subsequently to the data mining process, the
business expert imports into the model those context relations offered by the mining process that the
expert considers to be appropriate, and fine-tunes the model.

If user adjustments to the model are to be possible, a useful display of the context model is needed.
Regarding model visualization and editing, the availability of several, potentially connected, ontolo-
gies in the context model raises issues of practicability. Potentially, a context relation can consist of
as many dimensions as there are categories of context. A corresponding display would presumably be
difficult to interpret. However, we expect that individual context relations will typically be connec-
tions between two or at most three categories. Furthermore, ongoing research offers new tools that
assist in visualizing a multi-dimensional information space; model visualization software is discussed
in Section 3.6. In any case, not all ontology elements need be explicitly linked in a context relation in
order to be context-relevant (as discussed above), and thus not all elements require a graphic display
of potential relations to other dimensions.

Domain knowledge and context factors can potentially overlap. In the scenario presented in Sec-
tion 3.2.1, it is conceivable that the ontology for the construction market already contains elements
that can also be considered context factors: for instance, locations of markets might already be mod-
eled in the domain ontology. In this work’s perspective on the engineering process, these should
then be considered elements of the context categories as well. To assist the modeling user in such a
case, these elements could then be imported into the context categories within the modeling environ-
ment. In principle however, context modeling does not require such a strict separation, as the model
indiscriminately allows the association of domain or context category elements.

Model Use in the Remaining Engineering Process

Once defined, the context model is available to the remaining steps in the Web Engineering process.
One can distinguish between two types of approaches: complete integration or part-wise integration.
By complete integration, we understand that all Web application parts are context-sensitive, meaning



62 3. Context in Web Applications

all navigation structures and information presented are generated according to context. In a part-wise
integration, the application is in some parts context-independent, and in other, selected parts, presents
context-sensitive navigation structures and associated information.

It may be assumed that, as a general statement, not all parts of a Web application require a context-
sensitive model. In fact, for some aspects adaptation can be counterproductive, resulting in the user
becoming disoriented (Nielsen, 1990). Therefore it is an issue of the Web Engineering process to
determine in which parts which types of context-sensitive adaptation is useful: the Web engineers
specify to use context within the Web software at those places where they deem it useful.

Independently of the degree with which an application is adaptive, context factors must be put in
relation with the application domain for these factors to be meaningful in an application: in this light,
the decision whether a Web application should be fully or partly context sensitive is secondary with
regard to context modeling requirements.

3.5 Application Models and Context

In the following, we detail the models for application development that have been developed in our
work. We describe how models for Web applications can be integrated with information about context
and how adaptation features can be specified.

All models are described in ontologies, using OWL (see Section 1.1.3). This consistent use of
ontologies is advantageous for representation and for implementation. On the one hand, this approach
allows for homogeneous usage of context relations on model elements as described in this section;
and, on the other hand, a common mechanism for inference and adaptation in a run-time system as
described in Chapter 5.

OWL, as is RDF, is an XML vocabulary. Models using OWL can thus be represented in XML;
while this information is human-readable, the primary purpose of such information representation is
to be machine-processable. For a more user-friendly presentation, the individual models developed in
this work are illustrated as RDF-like graphs as shown in (McBride, 2004). In such graphs, an elliptical
node represents a resource; rectangular nodes represent literal values. An arc in the graph represents a
property of a resource at the blunt end of the arc. The label on the arc identifies the property. The node
at the sharp end of the arc represents the value of the property. For simplicity, local names are used in
the diagrams (a full name would require a namespace in addition). When a resource or property from
an existing schema is used, it is prefixed with the commonly used term:

• rdf: identifies names from the RDF vocabulary

• xsd: refers to names from the XML Schema data types

• owl: refers to a language element of OWL

All types and relations shown without a prefix are defined within the application model as defined in
this work. Appendix B gives the precise type definition in OWL syntax.

3.5.1 Domain Ontology

The domain ontology represents domain knowledge; meaning, arbitrary conceptual knowledge rele-
vant to an application, and pieces of content (or, according to type of content, references to pieces
of content). The definition of content types is shown in Figure 3.7. Each piece of content can have
a source attribute containing a URI identifying the content location (for example, the name of an



3.5 Application Models and Context 63

Figure 3.7: Content block types

image file). Content pieces are specified as RDF entries, therefore RDF labels can be associated to
them. There can be one such label for each language to be supported. For pieces of text, this label
can be used to directly store the content. Any entry of an ontology (that is, any OWL “thing”) can
be put in relation with a content piece via the related-content property. For example, a concept
defined in the domain ontology can be put in explicit relation with pieces of content, indicating that
these elements are always relevant for that concept.

A service type can specify, in addition, n parameters, each with a sequence number and a hint.
This hint refers to an entry in one of the model’s ontologies, or is an arbitrary name. The intent of
the hint is to provide assistance in determining context-relevant information regarding the parameters;
however precise interpretation is an issue for the implementation of service incorporation in the run-
time system.

Appendix C provides an example domain ontology with content blocks for a prototypical Web
application (the prototype itself is described in Section 5.5).

3.5.2 Context Representation

Context factors are organized into ontologies, one for each category of context. The structuring of
factors within an ontology can use any available ontology mechanisms and is not subject to restric-
tions. The context relations are also represented in ontological form, in OWL: this allows for a more
straightforward integration with the conceptual model than if the two sorts of knowledge are specified
using separate means.

A context relation is represented by a connection between two OWL “things”; this connection car-
ries a value (see Figure 3.8). For model brevity, an unordered n-ary context relation can be represented
with the same construct. The definition in OWL syntax of a context relation is given in Appendix B.

An example of a context relation based on the examples outlined in previous sections (see Section
3.2.1 and Figure 3.4) is shown in Figure 3.9. Element IrrigationSystem from the domain ontology
is associated with element HeadGardener from the context ontology User&Role, the association
carries a value.



64 3. Context in Web Applications

Figure 3.8: Representation of a context relation

Figure 3.9: Context relation example

3.5.3 Ontology Lookups

The application model allows to define ontology lookups that can then be used for adaptation and for
navigation modeling, as shown in the following sections (3.5.4 and 3.5.5).

Figure 3.10: Ontology lookup specification

Lookup specifications are used to define a strategy for retrieving elements of an ontology; the
properties of such a specification are shown in Figure 3.10. A lookup can be specified either as
the following of a specific ontological relation (RelationLookupSpec), or as a free-hand query
(QuerySpec) expressed in an ontology query language such as SPARQL (W3C, 2005).



3.5 Application Models and Context 65

A RelationLookupSpec defines:

• the type of relation in the ontology that should be followed. The type name can be arbitrary,
in which case the name can be used for direct relation lookup in the ontology; or a name with
well-known meaning can be given, allowing a more intelligent lookup mechanism; for example,
“superclass”;

• depth of exploration, meaning to what depth this relation type should be followed;

• the percentage that a found element remains relevant upon each level of relation following. This
allows, for example, for ordering of found elements according to relation depth at which they
are found.

All lookups can be restricted by defining a maximum number of items and a list of resource types
to be retrieved.

3.5.4 Adaptation Specifications

An adaptation specification determines, on the one hand, which sort of information is to be retrieved
or generated according to context for a particular usage in the application, and, on the other hand, how
the modeled context relations are to be used in combination with ontological knowledge to determine
contextual relations in a certain situation. An individual specification can then be used in one or
several places in the application models, as shown in the following sections.

Figure 3.11: Adaptation specification

The properties of an adaptation specification are listed in the following (see also Figure 3.11; for
clarity, cardinality properties are not represented in the figure):

• types of items to be computed, or “any” for any type;

• the maximum number of items to be computed;

• context relevance threshold, indicating what minimal relevance an item must have in order to
be considered;



66 3. Context in Web Applications

• a list of ontologies. If specified, only these ontologies are to be used for looking up context-
relevant items. This property can be used to constrain which sorts of application elements are
wanted (for example, to differentiate between domain items and presentation items). Ontologies
are identified by namespace;

• a list of context categories. If specified, only these categories are to be considered for determin-
ing context-relevant information. Categories are identified by namespace;

• a list of pre-adaptation items; these items are fixed items from the domain ontology, and are
retrieved prior to any context-relevant items, but only if any context-relevant items are found.
Analogously, post-adaptation items can be specified;

• a list of domain exploration properties, each defining a domain exploration strategy to determine
additional context-relevant resources, detailed in the following.

The domainExploration property allows to define how items in an ontological relationship with
an item found to be context-relevant should also be considered context-relevant, and to what degree
(see also Section 3.3.2). An adaptation specification can include an arbitrary number of ontology
relationship lookup specifications, as defined in Section 3.5.3.

The definitions for adaptation as shown in Figure 3.11 furthermore allow to specify context rules.
A ContextRule can refer to an arbitrary number of context factors and associate a formula. The
context rule expresses a condition involving these context factors, and can be used in application
models which need to express that an action should be taken only when a certain context is satisfied
at run-time.

3.5.5 Navigation Model

The purpose of a navigation model for a Web application is to define navigation possibilities between
the various elements of a Web application. A navigation model thus has knowledge about relationships
between the elements, and can assist in deciding which elements can be visited from the current
position of a user in the application.

In a traditional sense, a Web application is a set of pages linked together by hyperlinks, and thus
the “navigation model stores the relationship among different web pages” (Zhang et al., 2004). Re-
quirements in this dissertation regarding adaptivity mean that this definition of a navigation model
is no longer adequate. Content presented to the user may be selected according to context: a user
request may necessitate composition of several resources, where some of these are known in advance
and some determined according to context. In addition, which further navigation options are to be pre-
sented to a user in a specific situation is not fixed either: some navigation options are pre-determined
links (that is, are static), whereas others may need to be dynamically generated, again according to
context.

This dissertation therefore defines a specific navigation model, designed to enable a compositional
approach to Web application modeling allowing for adaptivity. This navigation model consists of
navigation nodes that refer to an entry in the domain ontology via the property navRelationSrc (see
Figure 3.12). To each node, an arbitrary number of relations can be associated. A relation has a type,
to distinguish between further navigation nodes that can be reached from this node, and content blocks
that are to be assembled when the user navigates to this node.

The target of a navigation relation can be specified in three different ways. If the target is a single,
fixed ontological element, the property navRelationTarget is used to refer to this element. If the



3.5 Application Models and Context 67

Figure 3.12: Navigation model entry definition

target should consist of a predefined lookup in the ontology (for example, the list of subclasses of
the current node), then a lookup is used to refer to a DomainLookupSpec such as defined in Section
3.5.3. Finally, if the navigation target is not predefined, but should be computed according to context,
an adaptationProperty is used to refer to an adaptation specification such as defined in Section
3.5.4. This enables adaptation regarding which navigation nodes are available at a certain location in
the application, and regarding the content pieces assembled at this node. This adaptation is determined
by context, and used at those places deemed appropriate by the application designer.

3.5.6 Modeling for Presentation

The modeling of an application’s presentation layer defines which elements are viewable in which
situation, and furthermore how elements are presented (that is, which GUI attributes are associated to
the elements). The former is defined in the view model; the latter in the presentation model. As these
models operate on a similar principle, we summarize them in a common diagram; see Figure 3.13.

Figure 3.13: View and presentation model definition

In the WISE methodology (see Section 2.3), the view model extends the navigational model to
define which elements are to be visible depending on the type of user. We generalize this notion to
make a view dependent on context. This means that any condition regarding context state (including
user type) can be specified in a view. A view then consists of a context rule (see Section 3.5.4)
associated to a navigation relation as defined in the navigation model (see Section 3.5.5).



68 3. Context in Web Applications

The presentation model associates style information, that is, information defining GUI charac-
teristics, with elements composing the Web page as defined by the navigation model, and thus each
Presentation entry refers to a navigation relation. Association of style can be fixed (via the style
property), or can be determined by adaptation. An entry can have an adaptation property: if so, the
style for this entry should be computed according to context. An adaptation specification in this case
will most likely constrain the search for context-relevant items to the presentation ontology, in order
to compute the presentation model element considered most context-relevant (see Section 3.5.2). If an
adaptation was not specified for the presentation entry, or if adaptation at run-time did not yield any
relevant style information, then any style information explicitly associated to the entry is to be used.

Instances of Style refer to the name of a CSS3 class; this allows to delegate definition of actual
physical GUI properties to a well-known and standardized mechanism.

Use of a concrete presentation model and the effect of presentation adaptation is illustrated, as for
the other models, in the prototypical Web application described in Section 5.5.

3.6 Model Visualization and Editing

For user-centered visualization and manipulation of context relationships as outlined in this work,
general-purpose ontology editors such as Protégé (Stanford Medical Informatics, n.d.) or SHAKEN
(Thomere et al., 2002) are not suited. A particular challenge consists in assisting the user for the task
of relating factors from several context categories with the domain ontology. The relation can involve
elements from several ontologies and thus be multi-dimensional.

Figure 3.14: Editing context relations using the MatrixBrowser

To support the user in visualizing an existing context model and to allow for editing it, the Ma-
trixBrowser (Ziegler et al., 2002) is one possible solution. The MatrixBrowser is designed to assist
in visualizing and editing an information space in two dimensions. Figure 3.14 shows an example of
a context model (as understood in this work) being displayed in the MatrixBrowser. The advantage

3Cascading Style Sheets, see Appendix A



3.7 Summary 69

of the MatrixBrowser’s approach is to provide an intuitive visualization of the connection between
two hierarchies of information, and is therefore most suitable when the information space is two-
dimensional. The MatrixBrowser provides a good overview in situations where a large number of
domain elements and relationships exist, but lacks functionality regarding detailed viewing and han-
dling of a single relationship, in particular when the relation involves more than two dimensions.

Figure 3.15: ContextBrowser: multi-dimensional context relations

To provide an n-dimensional context editor, a prototypical “ContextBrowser” is developed. Fig-
ure 3.15 shows the same context information as that shown in Figure 3.14 displayed in this system.
The goal of this prototype is to investigate how n-dimensional context connections can be handled in a
user-intuitive fashion. In this visualization, a hierarchy in the domain ontology (“Product”) is shown;
each element possessing a context relationship displays an arrow and up to two numbers indicating the
number of relationships: the first number indicates implicit relationships resulting from a relationship
of an element higher up in the hierarchy; the second number indicates the number of explicitly mod-
eled relationships. Clicking on the arrow unrolls connected context categories, showing specifically
the related element from this category. The user can switch perspectives to connected ontologies, or
have an extract shown in a separate window (in this case, “Time”).

3.7 Summary

This chapter has presented a modeling approach to Web Engineering taking context into account. A
context model is described, which represents information about the context of usage of an application.
Further application models allow to specify a Web application which integrates the context model and
contains specifications for adaptation to context within the application.

To support adaptation according to these specifications, a software system is required that makes
use of knowledge described in these models. The following chapter discusses architectural issues for
such a software system, and proposes an approach for realization.



70 3. Context in Web Applications



Chapter 4

A Web Software Architecture for Context

This chapter discusses concepts and techniques for an architecture enabling adaptation to context in
Web software.

Section 1.2 introduced the general challenges and aims of the field of research this dissertation is
situated in; Chapter 3 described a general purpose context model for Web Engineering and showed
how it can be integrated with Web application models. We now discuss the challenges regarding
the goal of taking context into account in a run-time system supporting adaptive Web applications.
To support this goal, we propose a specific Web software architecture for context. The subsequent
chapter (5) in turn details a framework for context implementing the concepts and demonstrating the
techniques described in this chapter.

4.1 Requirements for an Adaptive Run-time System

Web applications that go beyond presentation of a collection of static Web pages require dynamic
generation. For adaptive applications, each step of such a dynamic generation may require adaptation,
meaning that output of each step varies according to context. Dynamic generation of Web applica-
tions is supported by several existing software architectures and frameworks. Regarding adaptation to
context, some provide a built-in mechanism for dynamically choosing a presentation style depending
on the client device; in the terminology used in this dissertation, we say that there is support for adap-
tation at the presentation level according to the context category “hardware device”. In such architec-
tures, adapting generation to further aspects of context is not possible without custom programming.
A Web software architecture for context, that would have integrated knowledge about context at all
levels of application generation, could allow for using context systematically and for achieving adap-
tation effects without requiring custom programming (or, at least, limit required programming to the
essential).

4.1.1 System Environment

Web software operates according to the request-response mechanism, meaning a client (for example,
consequently to a user action) sends a request to a server, which must determine the response. More
precisely, pages displayed in a Web client (for example, in a Web browser) are requested over the
Internet using the request-response mechanism defined by HTTP (see Section 1.1.2). A request is
identified by a URL that describes the client’s desired resource. This resource need not be an actual
file, but can be dynamically generated by the Web application.



72 4. A Web Software Architecture for Context

In the case of an adaptive application, the response depends on context, and therefore the server
must have knowledge of context and process context information. Whereas some processing may
be distributed (for example, sensing of the physical environment), the core application generation
process must be deterministic as an explicit server reaction to a client request. This means that a
Web server must possess, for its processing, some form of integrated knowledge regarding available
context processing features. Context processing as such can be integrated in the same environment,
or be distributed.

In addition to core application generation and context considerations, an application environment
may need to integrate packaged application features, which may or may not be independent of context
considerations. While the use of such functionality needs to be integrated in the core, the functionality
itself is potentially realized in distributed components.

In summary, the architecture needs to fulfill the following requirements:

• the application is generated dynamically;

• the system is context-aware and each generation step must (potentially) be adapted according
to context;

• the system contains an interface to context and adaptivity functionality, whereas context pro-
cessing as such can be integrated, or delegated to distributed components;

• the system allows for integrating arbitrary application functionality; such functionality may
exist independently of context considerations.

Figure 4.1: Operational environment of the context-aware architecture

The operational environment of a system producing adaptive Web applications is summarized in
the UML1 diagram of Figure 4.1.

An actor (the end-user) operates a Web client (such as a desktop browser or WAP-enabled mobile
phone) via a graphical user interface (GUI). The Web client communicates with the Web server to
transmit a user request and receive the server’s response, in an XML dialect appropriate to this client.

The server response is handled by two subsystems. The Application Generator is responsible for
core application generation; that is, that part of processing which must exist independently of context
considerations.

1Unified Modeling Language, see (Object Management Group, n.d.)



4.1 Requirements for an Adaptive Run-time System 73

The second subsystem in the diagram is the Context System. The Application Generator functions
in a sensor role for the Context System, as the former provides the latter with user request informa-
tion. When asked to provide adaptation features, the Context System is an actor for the Application
Generator, as the former generates information influencing output of the latter.

In addition, one or more External Sensor systems might exist, providing additional context in-
formation to the system; for instance, current temperature in the user’s environment. Such systems
may or may not be actively triggered by a user action, and thus the connection between the user and
this system is optional and can not be further specified at this stage. When activated, this system acts
in the role sensor with respect to the Web server system; or, more precisely, to the Context System
subsystem.

4.1.2 Reference Architecture

Figure 4.2: Composite structure diagram of the context-aware architecture

The Context System, introduced as a subsystem in Figure 4.1, is described in a higher level of
detail in Figure 4.2. A run-time context system uses information about context factors and relations
established in the modeling process as described in Chapter 3. In addition, the system establishes
current context during system operation; we call this information context state. The system can then
use all context information to provide for adaptation.

The Context Manager component allows to read and update the context state; the Context Model
provides access to the modeled information regarding context. The Application Generator and any
External Sensor systems, in their role as sensor, provide input to the Context Sensing component.
This component is responsible for determining context, and may access the Context Model. Subse-
quently to context determination, the Context Sensing notifies the Context Manager to update context
state. The Adaptation Engine component realizes the actor role of the Context System, by providing
adaptation features for the Application Generator: the former generates output for the latter or guides
its output selection. For its operation, the Adaptation Engine accesses the Context Model to retrieve
context elements which may be relevant, and queries the Context Manager to retrieve the state of these
elements.



74 4. A Web Software Architecture for Context

The information provided by the Web application’s parameters and external sensors is not directly
usable as context knowledge. Useful interpretation onto context factors is a task of the context system;
specifically, of the Context Sensing component. Parameters provided by the Web application can
be of two types. The first type is domain ontology elements: the Web application ”knows” which
ontology elements are currently relevant. The basis for this knowledge is the application’s ontology-
based navigation, where navigation structure elements are constructed from the ontology, and the user
hence navigates through such a structure. The second type of parameters is classical Web application
parameters, such as client device parameters, and environment information, such as current time. Such
parameters are transformed by the Context Sensing component into context factors as defined in the
model. For instance, sensing might provide a time context in date, hours and minutes; however in
the model only higher-level distinctions of time, such as spring or fall are used, so this parameter is
interpreted accordingly. Similar mappings may be needed for the other categories of context as well.

Context knowledge can later be used by the Adaptation Engine, that determines which resources
are relevant in the current context state. The selected resources are then returned to the Web appli-
cation, that in turn presents them to the user. Adaptation determination can be guided by various
strategies. Notably, given that there is a categorization and structuring of context factors in the model
and thus potentially various kinds of relations between context factors and domain elements, a request
for context-relevant resources can yield varying results according to the strategy used. The request
is more or less granular; typically not only exact matches are wanted, but also resources in relation
to these. Relations in the model are weighted, therefore any element of the context space can have
a different relevance value in a given context. As a consequence, which adaptation process is to be
accomplished by a system and what sort of results are desired must be specifiable. In our work, the
system is required to take into account adaptation specifications as defined in Section 3.5.4.

4.1.3 Web Application Elements

As introduced in Section 3.5, a Web application in our approach is built upon resources and their def-
initions; a run-time system must consequently support the integration and delivery of these resources.
These resources can be:

• concepts defined in the domain ontology;

• structured documents or document parts, attached to concepts in the domain ontology;

• arbitrary resources (such as binary documents or pictures), also attached to concepts in the
domain ontology, but unstructured (in the view of the Web application);

• service resources. Such services can search for further resources, or represent operational fea-
tures such as e-commerce transactions. These resources have descriptions defined (or refer-
enced) in the domain ontology.

The specific requirement in this dissertation is that the application offering be adapted through
context-awareness: context can influence which resources are offered in which situation, how they
are integrated and how they are presented. In a given context (such as described in Section 3.3), the
Adaptation Engine must thus provide resources deemed to be relevant in this context - we call these
context-relevant resources. We distinguish the following types of context-relevant resources (see also
Figure 4.3):

• Navigation refers to navigation possibilities relevant to this context. For instance, the system
can provide links that are potentially of interest.



4.2 Processing and Architectural Approaches 75

Figure 4.3: Types of context-relevant resources

• Content refers to documents or other types of structured information relevant in a given context
and that can be retrieved for presentation to the user. The structuring could consist of an XML
mark-up such as DocBook (see Appendix A), thus enabling a straightforward adapted presenta-
tion through the use of stylesheets. Another type of content element is an arbitrary information
resource, such as an office document, that the user can then choose to retrieve and open as a
whole.

• Service refers to a service relevant to this context. Such a service can be presented to the
user, leaving it up to the user whether to execute this service; but such a service could also be
transparently executed, for example to dynamically retrieve information without requiring user
interaction. Furthermore, a service description for relevant services can be used to dynamically
search for available services.

• Presentation refers to information assisting the Web application in presenting a resource (or a
set of resources) in a manner appropriate to context, for example in a certain graphical style.

In principle, a request for context-relevant resources can result in any number of elements being
determined, where each element is of one of the above types. The Adaptation Engine must support
parameters to constrain this determination; for example, to specify that in a certain situation, only
resources of a certain type are to be determined.

4.2 Processing and Architectural Approaches

As introduced in Section 4.1, to dynamically determine a response to a user request, the applica-
tion generation system must perform several processing steps. The complexity of each step and of the
manner in which the steps are orchestrated increases with the goal of adaptation. To manage this com-
plexity, information must be represented in a well-specified manner, and a processing specification is
required to define how this information is used to generate a response.

We begin this section by discussing the information representation principle. We proceed by
comparing general architectural approaches which can be used to support adaptation.

4.2.1 Information Processing

Two approaches to generation of Web applications can be opposed, content-driven and technology
driven. A content-driven approach is based on a description language for describing content. A



76 4. A Web Software Architecture for Context

technology-based focus can imply technology-biased design decisions, in addition to risks of tech-
nology lock-in and deprecation. A focus on content is in principle technology-neutral, yet implies on
the other hand that the way content is to be processed must be clearly specified; and that a software
architecture be established that supports this focus.

Content-driven Technology-driven
XML and XML-based vocabularies PHP
OWL Active Server Pages (ASP)
XSL Java Server Pages (JSP) and JSP templating such as Struts

Table 4.1: Content-driven vs. technology-driven representation

Table 4.1 gives an overview of possible elements in these approaches. XML is a technology-
neutral basis for representing information, as introduced in Section 1.1.3. OWL (an XML dialect)
allows to define ontological knowledge, such as relations between terms used in an application. De-
velopment of corresponding Web applications based on this information, in particular adaptive appli-
cations, can be supported by XSL, a further set of XML-based languages (see Section 2.2.4). XSL
allows to specify processing steps of XML data and is thus one possible means to manipulate XML-
based representations of knowledge.

This content-centered view, while placing the primary focus on content descriptions and trans-
formations of this content instead of focusing primarily on a technology, does nonetheless require
solutions to the following issues:

• specification of XML content;

• specification of dynamic content;

• definition of the logic determining what content is to be retrieved, and how content is to be
retrieved and assembled;

• handling of logic for user flow and navigation in the Web application;

• presentation of content;

• management, configuration and editing of the Web application and its contents.

Solutions to these issues require architectural design decisions and, in part, do become related to tech-
nology. Chapter 3 explained how domain and context information can be specified, and furthermore
how Web application models can be used to define application composition and behavior. The fol-
lowing in turn discusses concepts and techniques for integrating and making use of such models in a
run-time system.

4.2.2 Architectures for Adaptive Systems

As introduced above, to achieve adaptive systems, there is a general need for an information process-
ing architecture in which context can influence processing, and various system parts exist to accom-
plish this processing. The question then is what core architecture(s) to use to support such systems,
how to coordinate system parts and how information is exchanged between those parts.

Table 4.2 provides an overview of possible general architectural approaches addressing these is-
sues.



4.2 Processing and Architectural Approaches 77

processing information exchange
XML-publishing framework integrated integrated (SaX-based)
Web Services distributed network (XML text)
CORBA distributed network (serialized objects)
JavaSpaces distributed shared
adaptive agents distributed network

Table 4.2: General architectural approaches for adaptive systems

An XML-publishing framework is a framework that includes software components and processing
configuration features to specify, and implement, XML-based publishing. This means that, in a system
based on such a framework, information is represented in XML, and information exchange between
components realizing the core processing is XML-based. As the system is integrated, information
transfer between processing steps can occur using an integrated technique, such as SaX events2. With
this technique, intermediate XML representations within a processing sequence need not be fully
built. Processing is instead based on the occurrence of specific XML elements or attributes; such an
occurrence is called a SaX event. An example of an XML-publishing framework, Apache Cocoon, is
introduced in Section 2.2.4.

Web Services and CORBA, introduced in Section 2.2.3, are examples of distributed processing
architectures. Information exchange occurs over the network, therefore all information necessary for
processing must be exchanged either by explicit parameters to the components, or by the components
themselves calling a further component to access information such as the system’s context state.

The particularity of an approach such as JavaSpaces (Flenner, 2001) is to provide a central read-
able and writable space in which information is represented, while still supporting distributed compo-
nents. The information in this case is represented as Java objects, so any information represented in
XML first needs to be fully parsed into corresponding Java objects.

Adaptive agents are used for computation in situations where uncertainty is present; typically an
agent forms an entity that can simulate a natural phenomenon (Resconi and Jain, 2004). Adaptation
in this area means that the agents themselves adapt (evolve) over time.

Design decisions on which type(s) of architecture to use to build a system and its subsystems
depend on the exact purpose of the systems, and thus architectures can not be assessed independently
of such a purpose. Distributed systems are potentially more powerful, as they can harness the power of
multiple machines to solve a given problem; whereas building a system on distributed subsystems can
result in slower system response: “all distributed systems incur a significant overhead when compared
to their serial equivalent: communication” (Sheil, 2003).

4.2.3 Component-based Software Engineering and Adaptation

Basing development of applications on a component approach has the following goals: a unified
management of the parts of an application, the possibility to exchange a component with another,
and the possibility to define what an application is through a strategy of selection and aggregation of
components.

The precise understanding of what a component is varies significantly in literature. In an archi-
tecture for Web applications, general-purpose components may exist to implement the architecture;
and furthermore individual applications may use components to realize domain-specific functionality.

2Simple API for XML, see (Skonnard and Gudgin, 2001)



78 4. A Web Software Architecture for Context

Using components in this manner can be considered a form of component-based software engineering
(CBSE, see Section 2.2).

The notion of adaptation can be used in various perspectives for CBSE. Adaptation in our sense
is defined by the variability a run-time system can provide because it is context-aware, in order to
modify system behavior according to a situation of usage. Adaptation in this sense can come into play
within component-based systems at various levels:

• component selection: context can influence which components are presented to the user;

• component parameterization at run-time: once the decision has been made to use a compo-
nent (either by the system or by explicit user selection), context information can be used for
automated parameterization;

• the rendering of a user interface for the component can be adapted according to context.

Related to the notion of component offering is component deployment, specifically “context-aware
deployment” (Ayed et al., 2004): there, selection and configuration of components is handled dynam-
ically by a context pre-processor that generates the deployment plan according to context.

Adaptation in the sense of this dissertation has a different meaning than sometimes used within
CBSE as “component adaptation” (Heineman and Ohlenbusch, 1999). In that sense, component adap-
tation is the manual process when a software engineer uses an existing component and adapts it to new
requirements.

Fundamental questions to be addressed in a CBSE approach, according to (Schneider and Han,
2004), are (i) what is a software component; and (ii) how are the software components composed.
Section 4.3 offers definitions of components as used in the Web software architecture for context.

4.2.4 Processing in the Cocoon Framework

As discussed in Section 4.2.1, a general-purpose architecture for Web software must address funda-
mental questions such as how content is integrated and processed, and how additional program logic
is specified and in turn integrated. Architectural design patterns can be used (and developed), while
best-practice knowledge is gathered over time. Ideally this knowledge is taken into account by a
general-purpose, widely-used framework, that enables to develop applications of higher “quality”.
What precisely is to be understood as quality depends on the framework and the application domain
it is typically used for.

In this section, we discuss processing principles in Apache Cocoon (see Section 2.2.4), and in-
troduce how Cocoon can be used as a basis for adaptive Web applications. For detailed explanations
regarding Cocoon techniques, see (Moczar and Aston, 2002).

As introduced in Section 4.1.1, Web clients make requests to the Web server, in form of URLs.
Cocoon, as a basis for implementing server functionality, must process such requests and generate
a response. Which request is handled in which manner, resulting in which sequence of processing
steps, is defined in a Cocoon sitemap. A Cocoon sitemap consists of pipelines, where a pipeline is the
sequence of processing steps to take to respond to a request. Typical steps are:

• matching the request: the pipeline decides whether it should handle the request. This decision
can be based on various factors such as URL pattern, presence of certain parameters, or client
device type.



4.2 Processing and Architectural Approaches 79

• generating XML data: one or more XML data sources are read, either from files or from remote
XML-based services. XML structures can also be dynamically generated by a custom software
component.

• transforming XML data: there may be several transformation steps, between various XML
formats. The final transformation step is typically the transformation of XML data into a format
which a user device, for example a Web browser, can use to provide a user-readable view. This
format can be an XML dialect such as XHTML, or can be an arbitrary, non-XML format.

• serialize XML data into a HTTP response that is sent back to the Web client.

Each step can be handled by a built-in Cocoon component or by a custom component extending the
Cocoon framework if additional features are required. Custom logic can further be added between
any two steps in form of an action, which is Java program code that can be used to further influence
pipeline handling, and to trigger back-end processing, such as to prepare data that pipeline steps can
then access. Components and their integration in a pipeline can thus be thought of as “active Lego
bricks for XML manipulation” (Mazzocchi, 2002).

Figure 4.4: Cocoon pipeline example

For illustration, consider the pipeline example presented in Figure 4.4, which is inspired by (Punte,
2002). In this pipeline, content is generated dynamically (by querying a database) and rendered
dynamically (by performing an XSL transformation). The pipeline first generates XML data; in this
example the data consists of an XML structure defined in a file userquery.xml containing, for the
dynamic parts, SQL statements indicating how to read this information from a database. The SQL
Transformer is then responsible for reading these statements, calling the database to retrieve the data,
and consequently replacing the SQL statements with the actual data. The next step in the pipeline is to
transform the XML data into XHTML; this transformation is achieved by applying an XSL stylesheet
(presentation.xsl). Finally, the pipeline serializes the data into an HTTP response.

Listing 4.1 shows how such a pipeline might be specified in a sitemap.

<map:match =” ∗ . h tml ”>
<m a p : g e n e r a t e s r c =” u s e r q u e r y . xml ”/>
<m a p : t r a n s f o r m e r t y p e =” s q l ”>

<m a p : p a r a m e t e r name=” use−c o n n e c t i o n ” v a l u e =” myda tabase ” />
</ m a p : t r a n s f o r m e r >
<m a p : t r a n s f o r m e r t y p e =” x s l ” s r c =” p r e s e n t a t i o n . x s l ” />
<m a p : s e r i a l i z e r t y p e =” h tml ” />

</map:match>

Listing 4.1: Cocoon pipeline configuration example



80 4. A Web Software Architecture for Context

4.2.5 Using Cocoon for Adaptivity

Cocoon, by conception, supports design patterns and contains mechanisms appropriate to serve as
foundation for adaptive Web application generation.

Cocoon follows an explicit level of separation of concerns typically understood as the Model-
View-Controller (MVC) design pattern, meaning the separation between content, logic and style. In
Cocoon, the XML data is the model, views are achieved through XSLT, and the sitemap (including
components used by the sitemap) is the controller. This separation allows to address adaptation at
the various levels of a Web application (see Section 3.1) in a manner consistent with the architectural
principles of Cocoon. The MVC pattern is increasingly accepted and thus supported by various Web
application frameworks. The particular added-value of Cocoon for the goal of an adaptive architecture
is to be built upon a well-defined component-based processing model. Each pipeline processing step
is handled by a component with a clearly defined processing role in the pipeline (such as, an XML
transformation step). Each step is thus realized by a specific component, that is either built-in to
Cocoon or a custom component, realizing, on the one hand, a generic processing concern of a pipeline
and, on the other hand, a functional concern of the application (for example, binding of a database in
the pipeline).

The generation of an application as a composition of resources is supported by Cocoon sitemap
mechanisms, notably aggregation and recursivity. Aggregation means that individual parts of the
generation process can be described in their own pipeline specifications, and results aggregated in an
enclosing pipeline. Pipelines can be recursive; since a pipeline step can call any other pipeline step
via URI (and provide parameters for this call), the pipeline can also call itself: for example, if an
adaptation process has resulted in too few elements being retrieved, the same pipeline segment can be
called again with different parameters.

Regarding adaptation to user device characteristics in particular, Cocoon’s browser selector, a
sitemap component, can be used to match user device information in order to select an appropriate
XSL stylesheet. For example, a pipeline can be set up to deliver an XHTML version of a document if
the user is using a desktop browser, whereas a user viewing the document with a WAP phone would
receive a WML version of the document. The way in which the document data is generated is identical
in both cases, and Cocoon then selects the appropriate XSL stylesheet for the user device to transform
the document into a viewable representation. In other words, Cocoon provides built-in mechanisms to
support some level of adaptation to device characteristics; contrasting with Web applications based,
for example, on ASP or JSP scripts, where the developer needs to explicitly program such adaptation
within the script itself. Using user language preference setting within delivery mechanisms and han-
dling user session parameters are further “out-of-the-box” adaptation tools; such features are common
to this type of framework - see, for example, Struts as used in (Bellas et al., 2004).

The above-mentioned features are helpful to enable adaptation, but as such not sufficient to imple-
ment the goals outlined in this dissertation. However, Cocoon, as a software framework, is a suitable
base for further adaptivity services: on the one hand, all information and logic is XML-based, and this
XML can be dynamically generated. This concerns the XML structures describing the content being
processed, and furthermore the transformation stylesheets (XSL) and logic sheets (XSP) that can also
be dynamically generated and dynamically chosen for execution and parameterized. On the other
hand, the Cocoon components themselves are extensible and replaceable: an adaptation service not
readily provided by XSL and XSP mechanisms can be implemented as a Cocoon component and thus
made part of the framework in a manner transparent to an individual application using the framework.
The following section discusses how components can be developed to augment Cocoon functionality,
and how they can be integrated into the Cocoon environment.



4.2 Processing and Architectural Approaches 81

4.2.6 Components in Cocoon

Figure 4.5: Cocoon component architecture

The Cocoon framework uses, as underlying framework for its implementation, Apache Excalibur
(see Section 2.2.4). Excalibur is a general-purpose component framework; Cocoon hence follows
a component-based architecture (see Figure 4.5), allowing additional components to be integrated.
The Cocoon environment defines roles for components usable in a pipeline, such as “Generator” and
“Transformer”. Cocoon contains a set of built-in components implementing these roles; for example,
the FileGenerator, which reads an existing file in order to generate an XML stream for further pro-
cessing in a pipeline. Furthermore, standard components, such as an XSLT processor, can be used.
In addition, the Cocoon environment can be augmented by custom components. Such a component
is either a custom implementation of a pipeline role, or a component realizing software functionality
which can then be called from within a pipeline step.

We now describe how a component is specified and assembled in Cocoon and Excalibur. In
Excalibur’s terminology, a component is called a service, and plays a specific role. This term refers
to an interface describing the functionality provided by this service and one or more implementations
for this functionality. The term “service” in Excalibur’s environment is not to be confused with a
“Web Service”. A component in Excalibur’s sense is an interface definition (in Java), one or more
Java classes implementing this interface, and corresponding configuration. A Cocoon component is
an Excalibur component that additionally conforms to one or more Cocoon contracts (specified as
Java interfaces) and that can be configured via Cocoon mechanisms.

Component Setup and Lookup

The control of Excalibur components happens according to the inversion of control (IoC) design
pattern. This means that configuration and setup information is provided to the component by the
container, instead of the component asking for this information. Furthermore, this means that the
component container is responsible for managing the component’s life-cycle. For this to work, the
component implements the life-cycle interfaces it shall conform to, for example Configurable or
Poolable. The container is responsible for determining which interfaces the component implements,
and for calling the corresponding methods at the appropriate time of the component’s life-cycle. For



82 4. A Web Software Architecture for Context

example, when the software requests to use a component, the container is responsible for creating an
instance if necessary and for initializing it before returning the instance to the caller.

When an implementation for a specific role is required, it is looked up via the service manager
(provided by the component framework), by providing the role name. If a role can have several imple-
mentations, these are accessed via a service selector. The role configuration (given in a corresponding
file) in this case must indicate that this role is implemented by a list of components, and not by a single
component. Individual components are configured in the component configuration file, by listing their
names and the classes implementing them; this list is configured within an entry for the role name. In
this case, the caller looks up a service selector for that role, and then proceeds to request a particular
component.

Implementing New Components

A new component must define, as a Java interface, the role that this component implements. The role
name must then be specified in the role configuration file, and any additional configuration required
for the component(s) implementing the role is specified in the component configuration.

Components can be defined to fulfill general-purpose functionality, meaning functionality inde-
pendent of a particular Cocoon processing step. Such a component is then looked up by any other
component in the application scope, via Excalibur’s ServiceManager.

Components can also be defined to be directly usable in Cocoon pipelines. For this, a component
must implement specific Cocoon interfaces (in addition to the relevant Excalibur contracts), according
to the desired role in pipeline processing. Such roles are notably:

• a Transformer is an XML-processing step within a pipeline. The Transformer is, at the same
time, XMLConsumer and XMLProducer, meaning it reads an XML source (via SaX events)
and transforms this input into another XML format. When a pre-determined structure is to
be transformed to another well-determined structure, the transformation can be specified using
XSLT stylesheets, which can be processed by the built-in XSLT transformer. When a more
specific or less predictable transformation is to occur, a custom transformer can be implemented.
Within a custom transformer, any sort of Java processing can be defined before XML output is
generated. In the pipeline example from Section 4.2.4, the SQL Transformer waits for a specific
XML element that contains an SQL statement. The statement is then executed (via JDBC3)
and the result transformed to XML. The next pipeline processing step needs to know how this
transformer structures this XML, in other words, in what form the database result is represented
in XML.

• a Generator reads a source and produces XML based on the data in this source, thus allowing
for later pipeline processing of this data. A custom generator typically accesses a custom source
of information that is not represented as XML and produces an XML representation of it.

• an Action encapsulates arbitrary logic processing that is to be triggered by a pipeline event,
but which is not intrinsically related to XML processing.

• a SourceFactory can implement a custom protocol. This is of use when the same data needs
to be accessed in various components, and where this access needs to be kept flexible, for
example to allow for remote access or to support a proprietary mechanism necessary for access.

3Java Database Connectivity, see Appendix A



4.3 Principles of the Web Software Architecture for Context 83

Implementing a custom protocol within Cocoon eliminates duplication of code in information
access and allows for specifying sources with that protocol directly within the Cocoon pipeline.

To be used by regular Cocoon pipeline processing, custom components must further be configured
within Cocoon configuration files. For details regarding Cocoon processing of components, as well
as Excalibur configuration and life-cycles, refer to (Ziegeler and Langham, 2002). For an experience
report on how custom components can be developed and how these components and proprietary XML-
based protocols can be integrated with Cocoon, see (Culshaw, 2003), who developed a travel-agency
Web application integrating several (existing) enterprise applications.

4.3 Principles of the Web Software Architecture for Context

We now discuss how content-driven processing and component approaches can be combined to form
a Web software architecture for context.

The system’s general requirement is that it can dynamically generate an application based on a
set of models. Specific requirements are that the system must allow for awareness of context and
allow for adaptation at various application levels: navigation, content and presentation. The system
must thus take into account various concerns. Ideally, the way each concern is taken into account
is extensible, to simplify customization and reuse. Handling the challenges each as its own concern
follows the design principle of separation of concerns (SoC, as introduced in Section 3.1).

The first stage of separation of concerns was motivated in Section 4.1.1 and shown in Figure
4.1: a Context System handles context sensing and processing, and is separated from an Application
Generator, that functions, at its core, independently of context considerations (though its output can
be influenced by calls to the Context System).

The second stage of separation of concerns requires a different focus for each of these two sub-
systems.

Regarding core application generation, requirements are to read application models and generate
an output appropriate to the current request. In the approach to Web development followed in this
dissertation, application and context models are represented in XML (see Section 3.5), respectively in
OWL, an XML-dialect. In addition, the output of the dynamically generated application can also be
represented in an XML-dialect, such as XHTML for Web browsers or WML for WAP-enabled mo-
bile phones. Further final output formats such as HTML for backwards compatibility in Web-browser
technology or PDF for document viewing can be readily produced by stylesheet transformation from
an XML structure. The generation process as such is divided in the above-mentioned levels, naviga-
tion, content and presentation. Application generation at each level is provided by individual system
parts (i.e., components), thus achieving a second stage of SoC. These generation steps produce inter-
mediate XML representations that need to be sequenced by the surrounding system. In conclusion,
as the core generation must provide a well-determined and timely response to the user, an integrated
system is required to implement the Application Generator subsystem. In an XML-based environ-
ment such as outlined in our work, an XML-publishing system provides built-in features to assist in
this task, and is thus used to implement this subsystem.

The Application Generator is thus located within an XML-publishing system, which must then
be interfaced with the Context System to realize the sensor and actor roles described in Figure 4.1.
Consequently, components must be designed within the XML-publishing system to realize these in-
terfaces; whether the processing required by these components is fully integrated, or whether the
components act as proxies, delegating actual processing to distributed components, is a separate de-
sign issue. Which design is appropriate depends on the exact requirements of a specific environment.



84 4. A Web Software Architecture for Context

The primary concerns of the Context System are to ensure context-awareness and to provide adapta-
tion features. Context-awareness depends on parameter sensing and, potentially, on additional sources
of information given to the system. A general-purpose architecture for context can support context-
awareness, but specific context sensing varies according to the application. If external sensors exist
(see Figure 4.2), the Context Sensing component must provide an external interface from the Web
server environment. This interface can then either be URL-based and use the same entry point as
user requests, or exist as an independent network service (implemented, for example, as a CORBA
service). Adaptation features in turn are offered by the Adaptation Engine, that may be used by each
component within the Application Generator requiring such features. Implementation of the Adapta-
tion Engine may rely on external, distributed systems, or may be fully integrated. One possibility for
integrated operation is to implement adaptation rules defined in an application model such as shown
in Section 3.5.4. If distributed components are used for implementation of the Context System, and
need to have common access to the Context Manager, the latter can be implemented with a system
such as JavaSpaces.

4.3.1 Processing Model

This work views a Web application as a collection of resources. This covers any “thing” that is relevant
to the system, be it a resource such as a document or a document part, or be it a resource representing
an operational feature; the types of resources are discussed in Section 4.1.3. All resources are related
to concepts in the domain ontology and potentially also to one or more context factors. A service
resource can return n resources for display. An adaptive “resource” in turn is a placeholder, and
can also represent n resources once processed by the Adaptation Engine. Resources returned by an
adaptation process can be of any type.

This notion of what an application is requires a processing model to determine how the application
is generated, and furthermore an architecture supporting this processing model.

Context-Leveraging Stack

This dissertation proposes a system architecture supporting dynamic generation of Web applications,
where XML is the foundation and XML-based processing is used for page generation and context
adaptation. Information about the domain and context is modeled and represented as in Section 3.5.2;
further models determine how an application is composed, where adaptation takes place and which
strategies to use. These determinations are thus guided by descriptive modeling and do not require
explicit software programming.

Figure 4.6: Context-leveraging stack

Conceptually, the combination of XML, XML-based standards and an XML publishing system
such as Cocoon augmented by components for context can be termed a context-leveraging stack (see



4.3 Principles of the Web Software Architecture for Context 85

Figure 4.6). In the context-leveraging stack, XML is the foundation allowing for data representa-
tion. Domain and context models are represented in ontologies, using OWL. Web Services are used
for dynamic, domain-specific functionality; their interface is represented in WSDL. Web Services
known to the system are furthermore labeled in the ontology, to provide a hook with domain and
context elements. XSL, respectively its subparts XPath and XSLT, is used for immediate information
manipulation: XPath for accessing information, and XSLT for transforming it. Sequencing and pa-
rameterization of XSLT stylesheets is handled by an XML publishing system (Cocoon, see Section
4.2.4).

By accessing the appropriate entries in the models (that are all specified in OWL), XSL can be
used for the core of the dynamic generation of the Web application, without requiring additional
programming. By core, we understand the selection and composition of Web resources, not including
features of context adaptation and service incorporation. To support these features, placeholders are
generated in XML syntax that can then be processed by custom components extending the Cocoon
framework. Taking context into account is thus handled as a separate concern; generation of the
Web application works independently of context, yet can potentially be affected by context in each
generation step.

Processing by XML Transformations

We term pipelined transformational approach to adaptation the approach in this work for achieving
adaptation by using the flexibility provided by sequencing XML transformations through controller
logic. Conceptually, the approach is similar to (Fiala et al., 2004):

According to the user/platform profile ...[document generation] is subdued to a series
of XSLT transformations, each considering a certain adaptation aspect (...). Instead of
evaluating all adaptation rules “at once”, the generation process can be divided into more
steps in order to reuse partially adapted documents for similar requests.

In this dissertation’s approach, each step of the generation process is an XML transformation, whereas
this transformation can be specified by XSLT instructions or by a custom component performing the
transformation (called, in the following, a “transformer component”). If the functionality a transfor-
mation step must provide is well-determined, the transformation step can be specified as an XSLT
stylesheet, as XSLT is a general purpose language for transforming some (possibly dynamic) XML
source into another XML structure. If instead functionality required in a transformation step is more
complex (such as, to integrate arbitrary adaptation results), a custom transformer component is used.

This approach is a foundation for composition and generation in the sense of component-based
software engineering (CBSE). The CBSE rule-base here is then a set of transformations augmented
with surrounding logic (the pipelines) to sequence several transformation steps, affect their selection
and parameterization according to pre-determined rules as well as contextual knowledge. A trans-
formation converts one form of XML into another, where output can be augmented with information
retrieved from additional sources (such as resources resulting from adaptation). The rule set (again,
in the CBSE sense) thus consists of components for context, XSLT statements (grouped in XSLT
stylesheets) and pipeline definitions:

1. pipeline statements make resource selection and appropriate XSLT stylesheet selections, and
parameterize resources and XSLT stylesheets;

2. XSLT stylesheets provide rules for template matching and conditional processing. For example,
the xsl:choose statement can be used to determine which parts of an XML resource are to be



86 4. A Web Software Architecture for Context

selected, depending upon context;

3. after resource selection, those resources which are dynamic (the services) may require exe-
cution: this can be achieved either by a custom transformer component, or by further XSLT
stylesheets containing rules specifying how to transform the dynamic component description
into the concrete service call. The call itself is triggered by the pipeline entry, and the result
made available to the next steps in the pipeline;

4. at the end of the pipeline, contents to be rendered in the GUI are aggregated. The GUI is
rendered by one or several XSLT stylesheets. The selection of stylesheets can again depend
on context. XSLT statements transform XML content into a format appropriate to the end-user
device.

The pipeline approach can be supported by a framework such as Cocoon. As discussed in Sec-
tion 4.2.5, Cocoon contains built-in mechanisms for handling of XML- and XSL-based pipelining,
and furthermore can be extended with components to augment pipeline processing capabilities, as
discussed in the following section.

4.3.2 Architectural Components

The Web software architecture for context proposed in this dissertation extends the Cocoon framework
with a set of components, on the one hand to support context-awareness and adaptation functionality,
and, on the other hand, to allow a generation process in a pipeline which allows to integrate adaptation
features for each phase of application generation, and furthermore to incorporate operational features
specified in the application model.

We call these components architectural components, and distinguish between components for
application generation and components for context. Some of this functionality is generic, meaning
independent of a specific application; in addition a particular application or application domain may
require custom context components to extend generic context functionality.

In the sense of CBSE, service resources (see Section 4.1.3), providing an operational feature for
an application, should also be called components; we term these domain-specific components.

Component type Main purpose Basis for design
Component for context context interpretation and adaptation

functionality
Cocoon (Excalibur)

Component for generation adaptive application generation and
incorporation of operational features

Cocoon pipeline roles

Domain-specific component application- or domain-specific func-
tionality

Web Services

Table 4.3: Component type overview

Table 4.3 summarizes the types of components. Domain-specific components are discussed in
detail in Section 4.3.3; here, we provide a conceptual definition of the architectural components.
Concrete components are proposed in Chapter 5.

We define components for context as follows:

1. a component for context fulfills a specific concern of context-awareness or of adaptation to
context;



4.3 Principles of the Web Software Architecture for Context 87

2. composition and usage of such a component is guided by the principles of Cocoon’s underlying
component framework, which is detailed in Section 4.2.6.

Basing the implementation of such components on an existing component framework (Excal-
ibur) provides a conceptual setting for the components and furthermore facilitates development and
run-time usage. In addition, as Excalibur is the underlying component framework of the Cocoon ar-
chitecture, these components can be used transparently in this architecture to augment it for desired
functionality, namely context-awareness and adaptation.

We define components for generation as follows:

1. a component for generation implements a step in the application generation process, that is,
in the generation of a response to a user request, and is in addition defined by the pipeline
processing role it plays according to the Cocoon processing model;

2. composition and usage of such a component is guided by the principles of Cocoon sitemap and
pipeline configurations, see Section 4.2.6.

4.3.3 Domain-specific Components

We define domain-specific components as follows:

1. a domain-specific component is a service resource, providing an operational, potentially in-
teractive, feature. The component is described by a service description, that is defined (or
referenced) in the domain ontology;

2. services are composed as any other Web application resource, by reference in the Web appli-
cation model. This reference is either explicit, or results from the service being considered
context-relevant in the scope of an adaptation specification.

The usage of services as (domain-specific) components follows the service-oriented philosophy as
outlined, for example, by (Cervantes and Hall, 2004): as in any type of component-orientation, “appli-
cations are assembled from reusable building blocks”; in the service-oriented approach “the building
blocks are services”. Cervantes and Hall describe in addition how a system can adapt to availability of
a service at run-time, and autonomously look for alternatives. In this dissertation, the focus is instead
on context-sensitive selection and incorporation.

As the related field of hypertext application development sometimes uses the term “component”
to refer to a navigation node (Halasz and Schwartz, 1994), some approaches in Web Engineering also
use the term in this manner. For example, in (Wissen, 2004a) a component is any type of resource
available to a Web application (see Section 4.1.3): a “concept” in the domain ontology can be used
as navigation node, and as such is considered an application component. This is however not the
granularity expected from a component in the CBSE sense (see Section 2.2), and therefore care must
be taken when using the term component. While our work does not use this term for application
resources other than the services, there exists nonetheless a common perspective on all resources
that allows for a generic, homogeneous way of associating context with the resources used in an
application, independently of the type of resource. In this perspective, a Web resource represents one
part of the information or service offering provided to the user. Context can then influence which
resources are selected and presented to the user; and ideally context can also provide a configuration
for those resources that are (domain-specific) components.



88 4. A Web Software Architecture for Context

Web Services as Domain-specific Components

Web Services (as defined by the W3C, see Section 2.2.3) can be used to define and implement the
service offering. The Web Services standard defines a component approach which has similarities
to previously existing approaches; see (Schneider and Han, 2004). This particular approach is well-
suited for the goal of context-aware application generation based on the composition of resources.
This has conceptual as well as technical reasons. Conceptually speaking, we consider a Web appli-
cation to be an integrated point of access for a user to a diverse set of resources (see Section 1.1.2).
These resources are either fragments of information, or services. The resources need not be intrinsic
to the Web application, but may be available somewhere, for example in a company IT system, or
in the Internet as a third-party offering. The notion of Web portals as it is sometimes used - see, for
instance, (Wege, 2002) - shares to some extent this vision of what a Web application is. However, the
term “portal” can evoke a specific portal server technology as described in Section 2.2.1, which is not
the focus here. This vision of a Web application is best supported by a distributed component model
such as Web Services to provide for usage of external functionality within the Web application.

In addition, the consistent specification of interfaces and repository entries in XML vocabularies,
as in Web Services’ WSDL and UDDI, facilitates integration in an application generation process.
The interface definitions can use a common vocabulary and schemes with the domain and context
ontologies (that are also based on XML); when this is the case, service parameter and results can be
immediately interpreted in the application. From a technical perspective, the XML-based publishing
system has built-in mechanisms for processing XML definitions, such as a Web Service interface, and
furthermore for manipulating service call results, which are also structured as XML.

Service Incorporation

Service incorporation in an application at the top-level, meaning, where and when is which service
resource presented, is specified in the same manner as for the other types of resources (see Section
3.4). Therefore, the selection of services can be context-dependent: in the context model, a service
can be modeled to be relevant in a certain context, just as any other resource. As for the other resource
types, the choice of which services are to be incorporated at what point in the Web application, and
where the presence of a service offering is not predetermined but should instead be selected according
to context, is a design decision for the Web engineer when designing an application.

Integration of services raises additional challenges to those of static types of Web application
resources. Considering existing services that are known at design-time, the question is how context
information can be used to enhance the integration; regarding cases where the designer wishes to
integrate a service of a certain category, but where a concrete service is not known, the question is
how a service can be dynamically found at run-time.

A fully specified service can be referenced by name in the conceptual model, and henceforth stored
in OWL with a reference to the complete service specification in WSDL. The following approaches
can then be used to achieve incorporation of services in an application:

• As OWL and WSDL are XML formats, appropriate XSLT stylesheet transformations process
service definitions and generate an appropriate XSP, filling in Cocoon’s built-in SOAP call
template. A Web Service is called by integrated Cocoon functionality, allowing to forgo the
need for a custom implementation in program code.

• A custom architectural component is defined that can process service resources in a generic way.
Such a component accesses application models and the service’s WSDL description, and can



4.3 Principles of the Web Software Architecture for Context 89

use the components for context to assist in adaptation. The component calls the Web Service
when required and makes results available to further pipeline processing. Defining a component
in this manner is conceptually similar to the SQL Transformer example from Section 4.2.4.

Another type of service integration concerns services that are not fully known in advance: in this
case, only a name for this service is modeled and consequently stored in OWL. This name can be
a category to be looked up in UDDI directories for a corresponding available Web Service. UDDI
Green Pages are a registry for Web Services’ technical information, and how to interact with them,
typically by providing a pointer to a WSDL definition. This service’s WSDL can then be retrieved by
the system, and processing continues as above.

User Interfaces and Web Services

An integrated Web Service may or may not require interaction (meaning, require user action to be
taken before being executed). If use of a service requires interaction, a suitable user interface must be
provided. In both cases, the service might return information that needs to be displayed in the user
interface.

Given the goal of presenting the end-user with a means of interacting with a Web Service, the most
straightforward approach is to develop a custom user interface for the Web Service: if the developer
knows which information about the Web Service is to be presented to the user, and what information
the user must provide in order to consume the service, then the developer can develop a custom
software client component, for instance a Java-Swing GUI or an XHTML form-based application.
This type of approach, however, raises typical issues of reuse, cost-effectiveness and quality assurance.

The alternative is to (automatically) generate a user interface for the Web Service. In such gen-
eration, a particular challenge is to support the dialog in a user-friendly manner, meaning achieving
a suitable interface for each service, while having a generation process of general validity. One ap-
proach at such a generation is to provide appropriate XSL templates which can transform an XML
representation of the service interface into, for example, an XHTML form or an SVG4 animation, and
to use context information (added by a custom architectural component) to enhance interaction. For
example, consider a Web Service that requires n parameters of which only the name and a general
type definition (such as the “any” type) is known, but nothing further. An applicable GUI design
pattern can be to apply an XHTML form prompting the user for required values. The more elaborate
information regarding required parameters is, the more sophisticated the user interface can be, for
example, to automatically validate input according to an underlying XML Schema. If parameter types
have meaning to the Web application (for example, when the types are defined in the ontology), the
context engine can be queried to see if this information is already known from context. If known, the
information can be provided as default value in the user interface. Optionally, a service call for which
all required parameters can be provided from context can be automatically triggered, requiring no user
interaction at all - this is of particular interest in pervasive computing situations. Context information
can thus be used to automate dialogs between the end-user and a Web Service, or to achieve some
degree of automation. Which service is to be automatically called, and which should always require
user confirmation, is a design decision for the Web engineer.

The result of a Web Service call is returned as XML, thus XML-based pattern mechanisms can
also be applied to render the result of the call to a service. For example, if an array type is returned
within the result, this can be matched to an appropriate XSLT template transforming an array into, for
example, an XHTML table.

4Scalable Vector Graphics



90 4. A Web Software Architecture for Context

Furthermore, the result returned by a Web Service can, in some situations, be used as input for
another Web Service. For example, one Web Service might provide a list of products in answer
to some criteria selection by the user; and another Web Service might provide full details for one
specific product (such as description or availability), product identification being shared between both
services. To combine such Web Services as user interface elements, finite state machines such as
described, for example, in (Kawash, 2004), can define transitions between Web Services, as well as
parameters needed for a transition.

Binding Web Services and Context

As illustrated, when integrating an existing Web Service into an application, values for input param-
eters to the Web Service should be derived from context where possible. In other words, an optimal
integration of Web Services and context requires that the interface the Web Service provides can be
augmented by context information. After service call completion, context can be used further, for
example to guide presentation of the service call’s results. If, in addition, the semantics of the infor-
mation returned by the service are known, the results can constitute a cue for context extrapolation.

However, the goal of optimal binding raises a problem: how does the system know that a parameter
X of a service can be determined by a (currently known) context factor? A partial solution is to use
shared, predefined context factor catalogs. (Strang et al., 2003a) propose a model of how to catalog
“context attributes” for Web Services. Such a cataloging can not be exhaustive, but can provide
assistance in some scenarios: external Web Services can use the catalogs for specifying the parameter
types, and an application calling the service can provide parameter values according to the sensed
context. If this knowledge is specified in ontologies (OWL) just as the domain knowledge is, this
allows for direct, run-time mappings in the system.

Ideally, common classifications will emerge. The above-mentioned UDDI stores classification and
identification information, for which standardization efforts exist: for example, UNSPC for Product
and Service Classification. For the context factors, examples of standardization efforts are provided
in Section 3.4. If a Web Service supports the use of these classifications for its parameters, mapping
of context factors onto parameter values can be immediate.

To further augment quality of service incorporation, introspection can be used. Consider for
example a service “productSearch” of an online store for clothes, requiring a “clothesType” and a
“size” parameter. Presume the user has explicitly selected the type “shoe”, by navigation or selection
in a list. Introspection within the user information could mean to look if an attribute “shoeSize” exists,
and use it if available. If not, the system can look for “size” as attribute, and make a plausibility check
that the value is actually the shoe size, and not something else. If ambiguous, this parameter is marked
as uncertain, and before the service is called, the user would be asked to confirm this parameter. This
example illustrates how, by using context, demands on the user can be reduced for the use of services,
but, as a general matter, not avoided entirely.

4.3.4 Navigation and Patterns for Presentation

Ontology-based navigation is an approach to supporting navigation that is well-suited for integration
with context handling. Navigation corresponds to concepts in the domain ontology, or instances of
these concepts. When a user has navigated somewhere in the application, the system thus knows the
currently active concept. The system can then determine from the model which other factors (further
concepts, resources, context factors) are associated.



4.3 Principles of the Web Software Architecture for Context 91

For rendering of user interfaces, we propose to apply patterns to the ontology-based navigation
and to the dynamically generated application parts. This notion of patterns for user interfaces is to be
understood as executable patterns, meaning patterns that are specified in such a way that a system can
interpret and apply them. This is similar to the notion of design patterns in (Bosch, 1998), where such
patterns are specified in a formal language and then translated to C++ code, such that the code can be
used within a C++ program. Here, we propose to specify patterns in XML in such a way that they can
be used for Web user interface generation.

Navigating to a node results in generation of one or several pages in the application. For example,
a document might be rendered in one page if the device used is a desktop browser, and in several
pages (“cards”) if the device is a mobile (WAP) browser. This is generally true, independently of a
specific technical constraint. Logical navigation to a node in the ontology can result in several steps of
concrete navigation, for which a pattern is applied: for example, a tabbed interface for a larger piece
of information, or a wizard for a service requiring at least one additional step of interaction to confirm
parameter values. To describe this requirement, one solution is to model placeholders for navigation
nodes, along with a list of applicable user interface patterns: content of Web pages is thus specified
on a more abstract level than the immediate association of documents to navigation nodes, as would
typically be the case in a CMS approach (see Section 2.2.2). In this work’s notion of Web applications,
content can furthermore be provided by service calls (for retrieving dynamic information) or represent
interfaces allowing the user to call a service. Interaction with services raises particular issues that are
addressed in Section 4.3.3.

Generally speaking, to create a graphical user interface (GUI) for a Web application, it must be
specified which GUI patterns are appropriate for which resource types, in which context. On the
one hand, information or data structures provided by a resource must be rendered, and on the other
hand, user interaction with the resource must be enabled, when applicable. Beyond the rendering of
individual resources, rendering and positioning of the resources in relation to the other resources must
be supported by the system. Portal approaches (see Section 2.2.1) provide ideas in this direction;
for instance the Cocoon portal module allows to specify the layout of portal elements in patterns
(represented in XML), for example, in rows and columns. For general-purpose Web applications,
such an approach is adequate for rapid prototyping, but will presumably need to be refined in order to
empower the designer to define more precisely desired look and feel. For example, (Grundy and Yang,
2003) proposes to allow designers to define the layout according to the principles defined by Java’s
GridBagLayout, and then translate this specification via XSLT into a form appropriate to the current
device. For Web browsers, the design is translated into embedded HTML tables; for mobile browsers,
into a set of WML cards. An alternative approach is to define layout constraints between the user
interface parts, meaning that parts are to be positioned relative to the position of the other parts; see,
for example, (Vandervelpen and Coninx, 2004).

To ultimately render a GUI in the XML- and Cocoon-based approach, pipeline fragments first
generate an XML representation of contents of each Web application part appropriate for the current
user request. The contents are then aggregated in a Cocoon pipeline. Transformer components suc-
cessively transform the format as discussed in Section 4.3.1, to account for context adaptation and
service calls. Once all required information was successfully generated, the GUI rendering phase is
started, and also uses XML transformations. The GUI can be structured into several pieces, for exam-
ple to explicitly separate between a navigation and a content area. Whatever the actual structuring is,
each structure is rendered with a pattern responsible for generating a user interface fragment (such as
an XHTML fragment) for this structure only. User interface fragments are then collated to produce a
Web page.



92 4. A Web Software Architecture for Context

GUI Rendering with XSL

The notion of executable GUI patterns for Web applications as described above can be realized with
XSL technology.

Figure 4.7: Example of top-level user interface structures and stylesheets

Figure 4.7 illustrates a classic structuring into navigation, content, and header, each rendered
by individual stylesheets which are then aggregated in a general purpose stylesheet. The way the
individual structures are positioned is in fact not fixed, but can be determined, for example, by CSS
entries, which can define absolute or relative positioning.

Application of XSL stylesheets for each structure can be recursive. For example, if a pattern
“tree” is to be applied to the navigation structure, each node in the tree can be rendered by an XSLT
template that in turn applies templates to the node’s sub-nodes. Likewise, the content structure is a
container for potentially several pieces of content; for each piece an appropriate XSLT template can
be applied, either related to the type of content, or according to pattern information. Which pattern is
to be used can be specified in the model, or be dynamically determined by an architectural component,
potentially with assistance from the context system.

<!−−
A t e m p l a t e f o r r e n d e r i n g a r e s p o n s e from a s e r v i c e c a l l ,
a c c o r d i n g t o ’ t a b l e ’ p a t t e r n
−−>

<x s l : t e m p l a t e match =” c o n t e n t : s e r v i c e R e s p o n s e [ @ c o n t e n t : p a t t e r n = ’ t a b l e ’ ] ”>
<div>

<t a b l e>
<x s l : f o r−each s e l e c t =” c o n t e n t : e n t r y ”>

<t r>
<x s l : f o r−each s e l e c t =” c o n t e n t : v a l u e ”>

<td>
<x s l : v a l u e−of s e l e c t =” . ” />

</ td>
</ x s l : f o r−each>

</ t r>
</ x s l : f o r−each>

</ t a b l e>
</ d iv>

</ x s l : t e m p l a t e >

Listing 4.2: GUI pattern and XSLT templating example

Template matching mechanisms can use XPath statements to determine which template is appli-
cable in a given situation. In the example of Listing 4.2, presume a piece of content generated by the
pipeline (consequently to a service call), and furthermore a transformer component which determines



4.4 Summary 93

that the pattern table is appropriate in this situation to render this piece of content. The transformer
dynamically augments the content description with a pattern attribute, thus allowing for straightfor-
ward usage of XSLT template matching mechanisms to choose the appropriate GUI transformation
instructions.

4.4 Summary

Figure 4.8: Principles for a SoC-based Web software architecture for context (WSAC)

This chapter has described a Web software architecture for context that supports both the dynamic
generation of Web applications and adaptation functionality. Two orthogonal approaches assist in re-
alizing the Web software architecture for context (see Figure 4.8). On the one hand, an information
representation and XML processing concept, called pipelining, defines how user requests are handled
and how the application is dynamically generated. On the other hand, individual components, de-
signed according to the separation of concerns principle, implement sets of functionality supporting
a Web application, where each component provides a clearly determined feature, either supporting
context-awareness, adaptation, or achieving a step of the generation process.

In the following chapter, it is shown how the architectural approach and corresponding techniques
described in this chapter can be implemented in order to support adaptive Web software, by means of
a framework for context including components for context. The usage of the Web application models
of Chapter 3 in the architecture is described in that framework and demonstrated in a corresponding
case study.

For completeness, it should be pointed out that basing a software architecture on XML also carries
risks, notably regarding software development and quality, as discussed in (Dumke et al., 2003):

• the existence of several layers of interpretation (such as XML and XSL) can result in error
inheritance, thus making debugging more difficult. On the other hand, the layers permit a
separation of concerns, facilitating debugging if the layer is correctly identified.

• as several layers are involved, there is a coupling of layers that must be understood by the
developers, and also by system maintainers.

• several standardization attempts currently exist to define common usages of XML, that might
simplify and clarify system architectures in the future, but these standardization efforts are not
yet mature. For the time being, compatibility and portability between software solutions are not
guaranteed - an agreement on XML as a common syntax is not sufficient for those purposes.



94 4. A Web Software Architecture for Context

• the system is based on interpreting XML contents and content descriptions, and thus has the
advantage of high variability in generation. The risk is that the generation cycle cascades out of
control in the run-time system.



Chapter 5

The CATWALK Context Framework

This chapter describes CATWALK1, our software framework for context. This framework supports
systematic usage of adaptation to context in Web applications, by providing run-time components that
are steered by the artifacts resulting from modeling as explained in Chapter 3, and by implementing
the architecture described in Chapter 4.

Section 5.1 gives an architectural overview of the framework; Sections 5.2 and 5.3 detail the cus-
tom components for context and adaptation processing, and how they are integrated in the architecture.
Section 5.4 explains how context can be simulated for prototyping or evaluation purposes. Section
5.5 provides the proof of concept by means of a case study, in which a prototypical application is
described in terms of application models only, and which shows examples of adaptation effects in
the application generated by the framework. Finally, Section 5.6 contains a discussion of functional,
design, and technical aspects of the framework.

5.1 Architectural Overview

The framework consists of components for context-awareness, adaptation, and application generation;
and furthermore of XSLT stylesheets and pipeline fragments that define processing steps integrating
these components. An architectural overview and its relation to the application models is given in
Figure 5.1.

The modeling methodology as described in Section 3.5 produces artifacts that are made available
via a model repository. This is represented by the upper half of Figure 5.1. The model artifacts are
defined in XML (respectively, XML-based dialects such as OWL). Access to these artifacts is encap-
sulated by the definition of a Cocoon pseudo-protocol: this means that each artifact can be accessed
via a special URI prefix (in this case, the prefix wise://) within a Cocoon pipeline or processing
component. This abstraction allows to delegate physical access to the models to a specific implemen-
tation: the default implementation reads from the filesystem, whereas an alternative implementation
might read the models from a network service, for example a KAON RDF server (Oberle et al., 2005),
to better support decentralized development.

The lower half of Figure 5.1 presents the main components in the CATWALK architecture, and
their sequencing within the Cocoon pipeline. Arrows with a white background indicate this flow:
the client request is matched in a Cocoon pipeline, and processing continues through components
responsible for application generation, ultimately resulting in the response to the client, for example,

1Context-aware Adaptation through Transformations for Web Applications Leveraging Knowledge



96 5. The CATWALK Context Framework

Figure 5.1: Context framework component architecture

as a page of a Website. Arrows with a dotted line originating from a component indicate that this
component calls another component or uses other system elements for its processing.

Each component in CATWALK implements a specific concern, in the sense of the separation of
concerns architectural design principle (see Section 4.3). A component in this sense is implemented
by one or more Java classes and may use additional artifacts (such as XSLT stylesheets for XML
transformation). The Java classes realizing the component interface are furthermore extensions of
existing Cocoon component types; this means that the new components in effect augment the Cocoon
framework, and may thus be used within regular Cocoon processing. Pipeline processing fragments
describe how the components are integrated via Cocoon pipelining mechanisms, and delegate to XSLT
stylesheets for intermediate XML transformations.

The framework’s components can be assigned to one of two categories. The first category consists
of components for context that implement the Context System subsystem as described in Figure 4.2,
and thus provide core functionality for context-awareness and reasoning; these are described in detail
in Section 5.2. The second category consists of components responsible for adaptive Web application
generation; these implement the Application Generator subsystem shown in the same Figure. These
components are detailed in Section 5.3.



5.2 Components for Context 97

5.2 Components for Context

This section discusses how CATWALK provides mechanisms for context-awareness and adaptation.
We discuss components for handling context representation and sensing, followed by a component
supporting adaptation functionality.

5.2.1 Context Manager

The ContextManager component is responsible for handling access to context state; that is, this com-
ponent allows other components to obtain information about context (present and past), and to store
information about context. The term “context” is used as defined in Section 3.3.1. The “context state”
is a projection of this definition of context onto n activated context factors.

Figure 5.2: ContextManager class diagram

Figure 5.2 provides a class diagram for this component. The component is registered as an Ex-
calibur service; it can thus be looked up using the interface’s role (whose name is defined by the
constant ContextManager.ROLE). Components requiring knowledge about context state can retrieve
a ContextState instance via a ContextManager, as expressed by the association in the class dia-
gram. Likewise, a ContextHistory object is accessible via a ContextManager. The ContextState
in turn is structured into n categories of context. The interfaces assume a categorization of context
factors, however which actual categories of context exist is unimportant for this component; the def-
inition of categories of context can be altered in a straightforward manner. For each category, a set
of ContextFactor instances is associated. Such a ContextFactor has a degree of activation, and
may contain a reference to an entry of an ontology. Furthermore, a ContextFactor stores a list of



98 5. The CATWALK Context Framework

“reasons”, indicating why this factor was activated; the degree of activation can be altered in relation
to the current degree by using the weighValue method.

A component wishing to add or update a context factor in context state should first notify a Con-
textManager, access its ContextState instance and call the ContextState’s setContextFactor
method. The following section (5.2.2) describes mechanisms for determining context factors. In addi-
tion to regular context state handling, the ContextManager can apply so-called simulation commands
to override the state. Context simulation is described in Section 5.4.

A default implementation for the ContextManager, called DefaultContextManager, is pro-
vided. In this implementation, context storage is handled via the current user session of the servlet
engine. Another implementation might, for example, handle persistent storage of past context in a
database. To specify which implementation is to be used for this component, the class name is given
in the role configuration file (catwalk-roles.xml).

5.2.2 Context Sensing

The Context Sensing architectural component, as introduced in the composite structure diagram of
Figure 4.2, is realized in CATWALK via two actual software components: the ContextExtractor and
the ContextReasoner. The ContextExtractor is responsible for determining information about context
present in the user’s current request; that is, for translating any parameters of the request (present in
the URL and in the protocol) into the terminology and granularity used in the application models.
The ContextExtractor then transmits its current information about context to a ContextReasoner. This
component in turn is responsible for determining degree of activation of the domain and context
ontology elements, and for updating context state, via a ContextManager.

Context Extractor

The ContextExtractor component is responsible for extracting context information from the user’s
current request. The component must therefore be used upon each user request, and called before any
further pipeline processing (see also Figure 5.1). The component delegates to specific implementa-
tions for each category of context, allowing to use different mechanisms for each category.

<!−− E x t r a c t from c a t w a l k . r o l e s , component d e c l a r a t i o n f i l e −−>
<r o l e name=” i n f o . i n t e r a c t i v e s y s t e m s . c a t w a l k . components . r o l e s . C o n t e x t E x t r a c t o r S e l e c t o r ”

s h o r t h a n d =” r e q u e s t−c o n t e x t−e x t r a c t o r s ”
d e f a u l t−c l a s s =” org . apache . cocoon . components . Ex tendedCo mpo ne n t Se l ec t o r ” />

<!−− E x t r a c t from cocoon−x c o n f . xml , component c o n f i g u r a t i o n f i l e −−>
<r e q u e s t−c o n t e x t−e x t r a c t o r s>

<component−i n s t a n c e name=” l o c a t i o n ” l o g g e r =” c a t w a l k . e x t r a c t o r ”
c l a s s =” i n f o . i n t e r a c t i v e s y s t e m s . c a t w a l k . components . D e f a u l t L o c a t i o n C o n t e x t E x t r a c t o r ” />

<component−i n s t a n c e name=” d e v i c e ” l o g g e r =” c a t w a l k . e x t r a c t o r ”
c l a s s =” i n f o . i n t e r a c t i v e s y s t e m s . c a t w a l k . components . D e f a u l t D e v i c e C o n t e x t E x t r a c t o r ”>
<p a t t e r n s>

<i tem>
<va lue>d e s k t o p</ va lue>
<p a t t e r n>M o z i l l a</ p a t t e r n>
<p a t t e r n>MSIE</ p a t t e r n>

<!−− e t c . −−>

Listing 5.1: Context extractor configuration



5.2 Components for Context 99

The ContextExtractor component is specified as an Excalibur service realized as a collection of
implementations, each realizing a common interface, but distinguishable by a “name” (the name of the
context category is used). This setup allows for using Cocoon configuration mechanisms to specify
which categories of context are to be processed, and which implementation accomplishes this, as
illustrated in Listing 5.1. Default implementations are provided for each category of context; the
class diagram is shown in Appendix D, Figure D.1. The component configuration file can contain
additional configuration information for individual implementations. In the example of the extractor
for the “device” category, sets of patterns are provided; when a request parameter is matched by a
pattern, the corresponding value is automatically used as context factor. Such a configuration can thus
reduce the need for custom programming (this mechanism is similar to Cocoon’s built-in “browser
selector” component).

Figure 5.3: Request context extraction and notification sequence diagram

The order of request processing and context notification is illustrated in the sequence diagram of
Figure 5.3. The component is hooked into pipeline processing by the ContextExtractorAction

class, which is an Action (in the Cocoon sense) configured to be executed upon entry of the main



100 5. The CATWALK Context Framework

pipeline used for processing in CATWALK; this Action is thus used for each new user request. The
Action first queries the framework for an implementation of the ContextReasoner component, and then
for an implementation of ContextExtractor for each known category of context. Each implementation
is provided with the current request and a reference to the ContextReasoner, which it notifies regarding
the recognized factors.

The base class AbstractContextExtractor is used to simplify implementation of individual
context extractors (see Appendix D, Figure D.1). This class handles notification of results and pat-
tern matching according to component configuration. Applications requiring other context extraction
techniques than those provided by default may subclass AbstractContextExtractor, and register
their class name as implementation within cocoon-xconf.xml, the component configuration file.

Context Reasoner

As discussed in Chapter 4, context information is gathered from information directly available in a
user request or provided by external sensors, but knowledge about context can also be obtained by
using additional sources, such as the relation of recognized factors to other elements in an ontology
(see Chapter 3), or past context information.

The ContextReasoner component is notified of context factors present in a user’s request, and is
responsible for determining current degree of activation of all domain and context ontology elements.
A ContextReasoner is thus responsible for computing knowledge about context in the largest sense.

Figure 5.4: ContextReasoner component class diagram

Figure 5.4 describes the interface for this component. The ContextReasoner can use the Con-
textManager for reading previous context, meaning the context state prior to this request, and any past
states. Once it has determined the new context state, the ContextReasoner notifies the ContextMan-
ager to store this state.

To compute current context, implementations can use different techniques, such as spreading ac-
tivation as used in (Rocha et al., 2004), Bayesian networks (Tipping, 2001), or heuristics based on an-
alyzing past context activation degrees in addition to currently recognized factors, such as case-based
reasoning as used in (Mikalsen and Kofod-Petersen, 2004). CATWALK provides a default implemen-
tation, the DefaultContextReasoner, that uses present and past user navigation to compute domain



5.2 Components for Context 101

context, and sets factors in the other categories of context according to the values computed by the
ContextExtractor for each category.

Figure 5.5: Context sensing activity regarding context state

Context sensing activity (as realized by ContextExtractor and ContextReasoner) with regard to
context state is summarized in Figure 5.5. The user request is processed, as described above, by n
implementations for extraction; these implementations notify the ContextReasoner of new context
factors. The ContextReasoner in turn triggers changes in context state, consequently to context inter-
pretation. Depending on implementation of the reasoning, different points in time are conceivable for
state updating. If reasoning is fully contained within each category of context (i.e., only current and
past factors recognized within this category are used for reasoning), results for each category can be
immediately transmitted to the ContextManager. If, however, results from reasoning on one category
may influence results for another category, the ContextReasoner may only define the new context state
once all categories have been processed. To support such a process, the ContextReasoner interface
defines the endNewFactors method, which is called by the ContextExtractorAction as indicated
in Figure 5.3.

The state of context must be checked upon each request, but state itself need not change. State
is considered changed when at least one of the context factors (as computed by context sensing),
in at least one of the categories, is changed. For instance, if an intranet user has a new network
address consequently to a temporary network outage, but context sensing still recognizes location as
“intranet”, a context factor “network location” would not change.

History of context, however, changes with each request. Even when context state is unchanged
between two requests, this fact is significant for the history, as it provides a measure of time the user
has stayed in that context. This information can be used by a reasoner implementation using context
history.

Once all processing of the components responsible for context sensing is complete, subsequent
pipeline steps have access to the updated context state via the ContextManager.



102 5. The CATWALK Context Framework

5.2.3 Model Representation and Access

Before proceeding to explain adaptation and application generation components, we need to describe
how application models, as described in Section 3.4, are represented and accessed in the framework.

The ContextModel in CATWALK is an object-oriented, runtime representation of those model
artifacts pertaining to context that have been produced by the modeling activity. This representation
is not to be confused with the context state (see Section 5.2.1), that in turns represents the current
context of a user session. As described in Section 3.5.2, the context model is defined in ontologies,
using OWL. The JENA toolkit (Carroll et al., 2004) provides a Java API and implementation for
working with such ontologies. CATWALK uses JENA for reading the ontologies from a given source
and for using Java facilities to traverse the ontologies and search for specific statements.

Figure 5.6: Model representation class diagram

Figure 5.6 provides a class diagram for model representation. The ContextModelFactory pro-
vides a single (static) access to a ContextModel: for efficiency, the servlet container reads the ontolo-
gies into memory only once, and this instance is shared by all requests. Other components thus access
an instance of ContextModel by navigating via the ContextModelFactory. The ContextModel,
in turn, encapsulates the individual context ontologies and the modeled context relations.

The application sub-models (domain, navigation, view and presentation, as presented in Section
3.4) are accessed similarly to the context model. The sub-models are encapsulated in an instance of
AppModel that is accessible via the AppModelFactory.

The factories are responsible for creating an instance of the model representations upon first
access. The factories must therefore have information about how to read the ontology sources.
As introduced in Section 5.1, access to ontology artifacts is encapsulated by a wise:// pseudo-
protocol within the Cocoon pipeline; consequently a Cocoon sitemap component must initialize



5.2 Components for Context 103

the factories with a mechanism to access these sources. This mechanism is handled via Cocoon’s
SourceResolver interface, a sub-interface of Excalibur’s corresponding interface used by sitemap
components. In CATWALK, the ContextExtractorAction (see Section 5.2.2) is used for this ini-
tialization. The sequence of processing concerning the ContextModelFactory is shown in Appendix
D, Figure D.2; the AppModelFactory is initialized in the same manner.

The ContextExtractorAction is configured, in the Cocoon sitemap, with URI information
defining how the ontology artifacts are found (see Listing 5.2); these parameters are passed to the
factory setup methods and henceforth to model constructors (these parameters are not shown in the
class diagram of Figure 5.6 in order to reduce the diagram to essentials).

<m a p : a c t t y p e =” c o n t e x t s e n s o r ”>
<m a p : p a r a m e t e r name=” base−u r i ” v a l u e =” w i s e : / / model−r e p o s i t o r y / ” />
<m a p : p a r a m e t e r name=” c r e l a t i o n s−u r i ” v a l u e =” c o n t e x t r e l a t i o n s ” />
<m a p : p a r a m e t e r name=” u r i−s u f f i x ” v a l u e =” . owl ” />
<!−− . . . −−>

Listing 5.2: Sitemap configuration for model access

5.2.4 Ontology Exploration

The OntologyExplorer component allows to retrieve items from an ontology according to a lookup
specification such as defined in Section 3.5.3.

Figure 5.7: Ontology lookup class diagram

The framework provides an object-oriented representation of lookup specifications, see Figure
5.7. A lookup specification can be of two types, RelationLookupSpec or QuerySpec. The abstract
type OntologyLookupSpec encapsulates usage of all lookup specifications. To create an instance of



104 5. The CATWALK Context Framework

the appropriate type, the OntologyLookupSpecFactory should be used, and provided with the URI
to the specification’s entry in the application model.

Figure 5.8: Ontology exploration class diagram

The OntologyExplorer component role (see Figure 5.8) defines an explore method, whose func-
tionality is to search an ontology for items according to a strategy. The search starts with one or
more instances of OntologyItem, is guided by a lookup specification, and results in computation of
further OntologyItems. An OntologyItem is an object-oriented representation of an element of an
ontology, and stores a relevance value for this item as determined by the search algorithm. This al-
lows, for example, to differentiate in relevance according to the depth of relation following in a search
operation, and therefore to sort items according to relevance.

As introduced in Figure 5.8, CATWALK provides two implementations for the OntologyExplorer
component, explained in the following.

The RelationOntologyExplorer uses a RelationLookupSpec. This ontology explorer de-
pends on the type of relation specified. If the relation type is one of the predefined types (sub-class
or super-class), specific ontological knowledge can be used for lookup. For example, if the relation
type is “superclass”, the initial items’ classes are used (taking into account whether an item is al-
ready a class or is an instance), and all super-classes retrieved, up to the hierarchy level defined in
the exploration properties. Each new level carries a potential relevance loss as specified, again, in
the exploration properties. If the relation type is instead arbitrary, the initial items are checked for
relations named precisely as defined in the RelationLookupSpec.

The QueryOntologyExplorer is the second existing implementation of the OntologyExplorer
component. This implementation interprets the query string defined in the QuerySpec as a SPARQL



5.2 Components for Context 105

(W3C, 2005) query, submits the query for execution via the JENA toolkit, and looks up returned URIs
in the model in order to convert the response to instances of OntologyItem.

To use an OntologyExplorer, a lookup specification object must first be created. Subsequently, the
framework can be queried for a corresponding implementation of an OntologyExplorer. The method
getSpecType of the OntologyLookupSpec is used to provide a hint for the component selector
(the component selection mechanism is similar to the one used for the ContextExtractor, see Section
5.2.2).

5.2.5 Adaptation to Context

The AdaptationEngine component provides adaptation services according to the context. The com-
ponent role defines three sorts of adaptation services; see Figure 5.9. One such service is the com-
putation of context-relevant items. Furthermore, the component supports context-sensitive service
incorporation, by computing default values for service parameters according to context. Finally, the
AdaptationEngine can determine whether a certain context is currently given.

Figure 5.9: AdaptationEngine interface

The first functionality of an AdaptationEngine is expressed by the getRelevantItems method.
This method is parameterized with an URI referring to an adaptation specification defined in the
model as outlined in Section 3.5.4. This URI can be looked up in the application models via an
AppModel instance as described above, and used to construct an instance of AdaptationProps. This



106 5. The CATWALK Context Framework

class in turn provides an object-oriented representation of an adaptation specification in a model. In
particular, an instance of AdaptationProps can contain any number of OntologyLookupSpec in-
stances (see Section 5.2.4). The AdaptationEngine responds to a call to getRelevantItems with an
instance of Adaptation, which is in essence a set of AdaptationItems. The set is sorted accord-
ing to context relevance (the sorting is implemented by the AdaptationItemComparator). Each
AdaptationItem may contain a Resource, which refers to an entry in an ontology.

The second functionality of an AdaptationEngine is defined by the getParameterFromContext
method. This computation may use service parameter hints from the model, as introduced in Section
3.5.1.

Finally, the AdaptationEngine provides the isSatisfied method, that determines whether a cer-
tain condition involving context factors is currently satisfied. This method is parameterized with a
URI referring to a context rule such as defined in Section 3.5.4.

Implementing an AdaptationEngine

The AdaptationEngine component is defined as an Excalibur service, therefore an implementation
can be configured and retrieved using the previously described Excalibur lookup mechanisms. CAT-
WALK provides the DefaultAdaptor as a default implementation of this component, discussed in
the following.

Computation of Context-relevant Items: The DefaultAdaptor determines context-relevant re-
sources in two passes.

First, items that are immediately context-relevant are determined by analyzing the modeled con-
text relations. Each context relation from the model is inspected, and for each relation the number of
currently relevant nodes is computed. A node is relevant if the set of active context factors contains an
element with a reference to this node. If this context relation has at least one active item, the relevance
of the other items is computed according to the relation’s influence value factored by the number of
items active in this relation. If the relevance exceeds the threshold defined in the adaptation proper-
ties, this context relation provides candidates for inclusion in the context-sensitive resource set. Each
candidate is then verified according to the remaining adaptation properties: the candidate must belong
to one of the desired ontologies (if specified), and be usable as one of the desired resource types. If so,
the candidate is added to the result set. If the candidate was already present in the set, the candidate’s
relevance is set to the maximum of the two values.

In the second pass, the ontology lookup strategies defined in the adaptation specification are pur-
sued, for each lookup specification strategy and each relevant item found thus far. To perform the
ontology lookup, an instance of OntologyLookupSpec is created, and the framework is queried for
an implementation of the OntologyExplorer component registered for the corresponding lookup type
(see Section 5.2.4). The explore method of this implementation is then called to retrieve further
ontology items.

A search for context-relevant items must return the n most relevant resources; however, we can
not know which resources are most relevant before having examined all candidates, therefore search
passes and ontology explorations must be completed regardless of the number of items found thus far.
Once all candidates have been evaluated, the n with highest relevance are returned.

Parameter Determination: For parameter determination, the “hint” provided in the model (see
Section 3.5.1) is used. The DefaultAdaptor first checks if the hint is a URI referring to an entry in
one of the ontologies. If so, the list of currently active context factors corresponding to the category



5.3 Components for Application Generation 107

of that ontology is accessed. This is the domain context if the domain ontology is being referred to, or
the corresponding context sub-ontology if another category of context is being referenced. The hinted
entry is then compared with the list of active factors; a value is matched when either:

• the entry is a class and the set of active context factors contains an element that is an equivalent
class or a subclass of the entry;

• the entry is a class and the set of active context factors contains an element that is an instance
of that class;

• the entry is an instance and corresponds precisely to an active context factor.

The context factor matching algorithm is of a general nature, whereas the most common case is
expected to be that the hint is the name of a class in a context ontology, of which an instance can
be found in active context factors, thus matching that instance as return value.

If the hint does not refer to an entry of an ontology, the hint is interpreted to mean the name of
an attribute known to the system at run-time. The DefaultAdaptor checks attributes of an active
instance of “User” within the User&Role context ontology - such an instance, when present, cor-
responds to a logged-in user (as recognized by the DefaultUserContextExtractor, see Section
5.2.2). Other implementations of the AdaptationEngine might extend this notion to look for values in
further categories.

Context Condition Verification: The DefaultAdaptor looks up, for each factor referenced in
a context rule (see Section 3.5.4), whether the current ContextState contains a corresponding
ContextFactor. If each specified factor is active, the condition is verified. Alternative implemen-
tations of an AdaptationEngine may offer more elaborate functionality regarding factor combination
(for example, as first-order logic statements) and can use the rule property for this purpose.

5.3 Components for Application Generation

We now discuss the components responsible for (adaptive) Web application generation, how they are
coordinated in pipeline processing, and how they use the components for context discussed in Section
5.2 to integrate context-awareness and adaptation within an application.

The application generation process as introduced in Section 5.1 consists, at its core, of several
custom transformer components, each requiring adaptation services. Figure 5.10 shows the custom
transformer components as subclasses of the BaseAdaptiveTransformer. This class is sub-classed
by any transformer requiring adaptation. Within the setup method, which is called by Cocoon, this
class retrieves an instance of the AdaptationEngine component. This class also provides access to
the current navigation representation, which contains all paths explored by the user thus far. Finally,
the BaseAdaptiveTransformer encapsulates releasing of the AdaptationEngine via the recycle

method.

5.3.1 Navigation Generation

The first level of application generation consists of determining navigation information appropriate to
context. Navigation information in this sense means a representation of nodes that the user can reach
from the current position (see Section 3.5.5). This is a structured representation that can then be used
for further processing in the application, and not a graphical representation for the end-user.



108 5. The CATWALK Context Framework

Figure 5.10: Adaptive transformers: class diagram

In classical approaches, navigation generation is determined by the application part that the user
is currently visiting; i.e., which node is the user requesting and what information is associated to
this node. Some approaches might also take into account nodes previously visited (the navigation
history), as context information, to determine which elements to generate next. In our work, the
additional requirement is that context is further determined by the other context factors as discussed
in Section 3.3.2, and, consequently, navigation generation depends on these factors as well.

Figure 5.11: Navigation tree example

The process of building a navigation representation from visited nodes is illustrated by the exam-
ple of Figure 5.11. The left side of the figure illustrates a navigation model, where, for each navigation
node, navigation nodes reachable from this node are shown. The same node is reachable via different
paths. The path taken is significant, it is part of the navigational context. The navigation model is
thus not an acyclic graph and can not be represented as a tree, rather as a collection of uni-directional
binary associations. The paths taken, on the other hand, can be represented as a tree, as seen on the
right-hand side of Figure 5.11. The paths within the navigation model the user has taken thus far are



5.3 Components for Application Generation 109

stored, and the current path is marked. In the example, presume the user has first chosen node n1,
then from that node, n2. Then, from the home node, the user has chosen n3 and n4. The current path
is home - n3 - n4 (marked as italics in the figure), and the currently selected node is n4 (marked as a
bold circle). The navigation tree also shows the reachable nodes from the current node, n2 and n6.

Figure 5.12: Pipeline processing for navigation structure generation

Navigation generation is handled by the NavigationTransformer component. This component is
implemented with Java classes and XSLT stylesheets and is made available as a pipeline segment
identified via the URI cocoon:/navigation. The pipeline processing is illustrated in Figure 5.12.

As no standard notation for documenting pipeline processing exists, this dissertation introduces
a notation for this purpose. The notation is partially introduced in Section 4.2.4, Figure 4.4, and de-
scribed in more detail here. A pipeline consists of several processing steps, represented as rectangles.
The output of each step is passed on as input to the next. Each processing step is labeled with the type
of step on the first line. If the step uses one of the Cocoon standard features (such as an XSL transfor-
mation), the second line refers to an URI or to an artifact available to the pipeline. If instead the step
requires the use of a custom component, the second line gives the name under which the component
is registered in the pipeline (for example, “navigation”). Finally, parameters that are considered es-
sential for understanding the processing step are also listed (for example, “node”). A processing step
consisting of aggregation of two or more (XML) sources is represented by a composite rectangle and
a +. Usage of an URI inside an aggregation can result in a sub-pipeline to be called (for example,
cocoon:/navIDs). This is represented via arrows from the originating processing step towards this
sub-pipeline; the results of the sub-pipeline are then the results of that processing step.

Pipeline processing for navigation structure generation is divided in two phases: the role of the first
phase is to extract appropriate navigation nodes for the context, whereas the second phase augments
this information with information from the domain ontology (such as node labels). These two phases
are detailed in the following.

The first phase of processing is illustrated in the lower half of Figure 5.12 and is marked by
the pipeline internal URI cocoon:/navIDs. The navigation model, defined as explained in Section
3.5.5, is read and filtered by an XSLT stylesheet for nodes that can be reached from the currently
selected node (the targets). These navigation targets are then processed by the Java class named
NavigationTransformer, registered in the Cocoon sitemap under the name navigation. This
class implements that functionality of the NavigationTransformer which requires specific Java pro-
cessing. The class acts as a Cocoon transformer; meaning it is both a consumer and producer of XML.



110 5. The CATWALK Context Framework

Access to an instance of NavigationState is provided via the superclass BaseAdaptiveTransformer;
this in turn holds the navigation paths the user has taken thus far in an internal DOM2.

<!ELEMENT n a v i g a t i o n ( ( node | lookup−i t em | a d a p t i v e −i t em ) ∗ ) >
<!ATTLIST n a v i g a t i o n

s e l e c t e d N o d e CDATA #REQUIRED
domainURI CDATA #REQUIRED>

<!ELEMENT node EMPTY>
<!ATTLIST node

i d CDATA #REQUIRED
domainURI CDATA #REQUIRED>

<!ELEMENT lookup−i t em EMPTY>
<!ATTLIST lookup−i t em

l o o k u p I d CDATA #REQUIRED>
<!ELEMENT a d a p t i v e −i t em EMPTY>
<!ATTLIST a d a p t i v e −i t em

a d a p t a t i o n I d CDATA #REQUIRED>

Listing 5.3: Navigation generation input structure definition

The transformer uses as input the output of the model filtering described above, which is struc-
tured according to the Document Type Definition (DTD) given in Listing 5.3. During transformer
processing, the internal DOM is augmented with the nodes provided as input. Any elements named
lookup-item or adaptive-item require special handling. In case of a lookup-item, an instance
of OntologyLookupSpec (see Section 5.2.4) is created for this lookupId, which is interpreted as
the URI of a lookup specification defined in the application model. An implementation for an On-
tologyExplorer component is then retrieved via the framework and its explore method called to
find ontology items, that are finally added to the navigation tree. In a similar manner, any element
adaptive-item is replaced by a list of navigation nodes deemed relevant in this context. For this
determination, an AdaptationEngine is looked up and its getRelevantItems method called with
this element’s adaptationId, which is interpreted as the URI of an adaptation specification in the
application model. When all new nodes have been processed, the currently selected path is marked,
and the current navigation tree is output as an XML stream to allow for further pipeline processing.
The nodes in the tree are identified by ids, which are the URIs of the ontology entries they originated
from.

The second phase of navigation processing is shown in the upper half of Figure 5.12 and builds
upon the result of the first set of processing steps. The generated navigation tree is read and aggregated
with elements from the domain ontology, while filtering for the URIs of the navigation nodes, to read
any further information regarding these elements from the ontology, such as labels.

<!ELEMENT n a v i g a t i o n ( node ∗ ) >
<!ELEMENT node ( i n f o , node ∗ ) >
<!ATTLIST node

i d CDATA #REQUIRED
p a t h CDATA #REQUIRED
s e l e c t e d ( t r u e | f a l s e ) # IMPLIED>

Listing 5.4: Navigation generation output structure definition

The output of this processing is a generic navigation structure in XML form, following the DTD
given in Listing 5.4. The child element info of a node is not further specified in this DTD extract;

2Document Object Model



5.3 Components for Application Generation 111

this element contains a copy of the ontology entry of this node in the model and thus contains sub-
elements such as the labels, and any further sub-elements used by the modeler. Later processing stages
may then, on the one hand, generate content elements appropriate to the current navigation path, and,
on the other hand, produce a graphical representation of this navigational structure.

5.3.2 Content Generation

The role of the ContentTransformer component is to generate content appropriate to context. The
processing steps follow a principle similar to navigation generation (see Section 5.3.1); pipeline pro-
cessing is detailed in Figure 5.13.

Figure 5.13: Pipeline processing for content generation

An XSLT stylesheet extracts, from the navigation model, content parts that are associated with the
node the user has selected in the current request. Some of these parts refer to entries in the domain
ontology, via URI. Other parts can be marked as adaptive, meaning they do not explicitly refer to
an entry in the domain ontology but should instead be computed according to context; in addition
the reference to an adaptation specification is provided. Dynamic content generation is handled by
the Java class ContentTransformer, registered as transformer class in the Cocoon sitemap under
the name content. For those content entries that are fixed (i.e., have a reference towards the do-
main ontology), this transformer passes them through without further processing; whereas for those
parts marked as adaptive, the transformer queries the AdaptationEngine component for resources ac-
cording to the adaptation specification and the current context. The AdaptationEngine returns several
entries identified by URI, referring to an ontology element. As for navigation generation, content
generation may also use ontology lookup specifications, to be resolved by an OntologyExplorer. The
ContentTransformer outputs all dynamically gathered parts to the XML stream in the same format
as the parts that were not gathered via adaptation.

The second processing stage extracts the domain ontology entries for the computed URIs. The
output of the content processing stage follows the DTD given in Listing 5.5. The ontologyChild

element is used as a placeholder in this definition and is not used as such in the structuring. In place
of this element, any child elements modeled in the ontology for this content item are passed through.

The content structures are passed on for processing related to service incorporation, discussed
below.



112 5. The CATWALK Context Framework

<!ELEMENT c o n t e n t ( i t em ∗ ) >
<!ATTLIST c o n t e n t node CDATA #REQUIRED >
<!ELEMENT i t em ( o n t o l o g y C h i l d ∗ ) >
<!ATTLIST i t em

i d CDATA #REQUIRED
n a v C o n t a i n e r CDATA #REQUIRED
t y p e CDATA #REQUIRED
s o u r c e CDATA # IMPLIED >

Listing 5.5: Content generation structure definition

5.3.3 Service Incorporation

In the content generation process, any elements referring to services are ultimately processed by a
custom transformer registered under the name service in the Cocoon sitemap, as indicated by Figure
5.13. This processing is accomplished by the Java class ServiceTransformer, which addresses the
following aspects of service incorporation:

• if service consumption requires user interaction, the transformer must determine required pa-
rameters for this service and generate an XML description for the service such that GUI gener-
ation processing has sufficient information;

• if the service must be called in current pipeline processing (for example, consequently to an
explicit user request for this service), the transformer calls the Web Service and converts its
response into a content description that, again, can be used by GUI generation.

The ServiceTransformer listens for any entries representing services; these are entries with the
attribute type set to wise:service (see Section 3.5.1). Via the AppModel (see 5.2.3), the service
description in the model is read to create an instance of the ServiceEntry class. The transformer
now reads the parameters of this service and attempts to determine values for these parameters. The
HTTP request is evaluated first; this contains a value if the service was called in the previous user in-
teraction. If the request does not already contain a value, a context-relevant value is looked for. As the
ServiceTransformer subclasses the BaseAdaptiveTransformer (see Figure 5.10), it has access
to an AdaptationEngine component, that is queried in order to determine a value for the parameter.
The transformer consumes the incoming content item description (see Section 5.3.2) and replaces it
with a serviceItem as specified by the DTD given in Listing 5.6.

<!ELEMENT s e r v i c e I t e m ( p a r a m e t e r ∗ ) >
<!ATTLIST s e r v i c e I t e m

i d CDATA #REQUIRED
n a v C o n t a i n e r CDATA #REQUIRED
t y p e ( w i s e : s e r v i c e ) #REQUIRED
s o u r c e CDATA #REQUIRED>

<!ELEMENT p a r a m e t e r ( #PCDATA) >
<!ATTLIST p a r a m e t e r

name CDATA #REQUIRED
l a b e l CDATA #REQUIRED>

Listing 5.6: Service generation structure definition



5.3 Components for Application Generation 113

The ServiceTransformer then verifies if the service entry currently being processed corre-
sponds to a service that the user has just called in the current interaction step. If so, the Web Service is
called using the Apache Axis toolkit (The Apache Software Foundation, n.d.d). The service response
is then analyzed regarding its structure and converted into an XML representation encapsulated in a
serviceResponse element with an attribute named pattern. How precisely this output is structured
depends on the pattern classification and interpretation used.

To summarize, the ServiceTransformer transforms the XML description of a service entry into
a representation that includes service parameters and default values; and furthermore, if needed, calls
the service and augments the output structure with the results from the service call.

5.3.4 View Filtering

The ViewTransformer is responsible for accounting for the requirements expressed in the view
model (see Section 3.5.6). The component acts, in essence, as a filter according to context. The
application elements input (as an XML representation) to this transformer can have view information
associated to them in the view model. When this is the case, the transformer reads the context rule
for the view, and asks an AdaptationEngine whether this context condition is currently met. If the
condition is not met, the transformer discards this application element, as well as any subelements (in
the XML sense). Other elements are not affected by this transformer.

5.3.5 Presentation Information Generation

The PresentationTransformer is a Java class implementing the final custom transformation com-
ponent in the CATWALK processing sequence (see Figure 5.1), and is responsible for determining
how the application’s response to a user request should be presented. This determination, as the other
stages of application generation, can make use of context information.

The PresentationTransformer assesses for each item to be rendered the navigation container
it originated from, and looks up the presentation model (as defined in Section 3.5.6) for any presenta-
tion information on this container.

If the presentation style is to be determined by adaptation, the PresentationTransformer looks
up an AdaptationEngine component and asks it to provide adaptive items corresponding to the adap-
tation specification; whereas the usual case in such an adaptation scenario is expected to be that only
one item is returned and that it refers to a style entry in the presentation model. If no adaptation is
specified, or adaptation did not find an appropriate style entry, any fixed style association present in
the model is used instead. As a result, the transformer augments the XML representation of the con-
tent elements (see Section 5.3.2) by adding an attribute presentationId that refers to a style entry
of the presentation model.

The XML representation of the content as output by this component is usable for GUI generation.
If the style entry refers to a template, a corresponding XSLT stylesheet is applied. If the entry refers
to a CSS class, a reference to this class can be generated in the final XSL transformation.

5.3.6 Summary

Figure 5.14 summarizes processing for generation of a response to a typical user request. The diagram
illustrates flow in the main processing steps; for clarity, additional required mechanisms such as model
and context state accesses are not shown.



114 5. The CATWALK Context Framework

Figure 5.14: Processing flow for response generation to a typical user request



5.4 Context Simulation 115

5.4 Context Simulation

CATWALK allows for simulation of context; meaning a user (for example, in the role of an application
tester) can explicitly say what the context should be, thus overriding sensed context factors. This
feature allows for testing of the adaptation effects of the Web application; and, in a larger sense, can
be used as a tool to attempt to evaluate effects of context-awareness in Web applications.

The set of context simulation commands issued by the user is stored in the current session. After
regular context sensing mechanisms (see Section 5.2.2) are applied, the context state is overwritten
with the simulation commands. An example for such a set of commands is:

• deactivate context factor “intranet” in category location;

• activate context factor “internet” in category location.

The user navigating in a CATWALK-based adaptive application can choose to activate a context simu-
lation GUI. This window shows context state and context history. Furthermore, context factors present
in the context model are shown, and the user can select individual factors to decide whether to activate
or deactivate them, thus allowing for simulation of context.

An example GUI for context simulation based on a case study is shown in Section 5.5.3. Imple-
mentation details are provided in Appendix D in the form of a class diagram (Figure D.3) and pipeline
processing (Figure D.4).

5.5 Case Study: Example Web Application

The case study describes a prototypical Web application whose purpose is to illustrate what adaptation
effects context-awareness can trigger in a Web application, and how these can be modeled as defined
in Chapter 3. The CATWALK framework interprets the models and generates the Web application,
using the mechanisms previously described in this chapter. The models used in this case study are
provided in OWL form in Appendix C.

We begin by illustrating how the core features of navigation and content generation are achieved,
independently of context considerations, before proceeding to discuss adaptation effects.

5.5.1 Application Generation

Figure 5.15 illustrates the core features of navigation and content generation. In the screenshot, the
user has followed a certain path through the navigation model; the resulting tree is shown on the left
side, the chosen nodes are highlighted. Each node corresponds to an entry in the domain ontology.
Content associated to the currently selected node (“Sports shoes”) is presented on the right side.

This screenshot illustrates several possibilities for application modeling, the model itself is given
in Appendix C. For the “Home” node, the nodes “Wear”, “Stores”, etc. are modeled as fixed naviga-
tion targets. For the “Shoes” node, an ontology lookup is specified to provide sub-nodes for naviga-
tion; this lookup specifies to lookup subclasses of “Shoe” up to a depth of 1, therefore resulting in the
three sub-nodes shown. When navigating to the “Sports shoes” node, the navigation model states that
one fixed piece of content is associated (a document, presented as a link to access the document), and
one ontology lookup is used to retrieve further content: in this case, the lookup is specified to retrieve
any domain ontology items in the relation related-contentwith the ontology item the current node
is based upon, resulting in the selection of a piece of text. A further possibility for page composition,
not shown in this screenshot, is to provide a free-hand query: in the model, this is illustrated for
“Special offers”, to which a query is defined to find items related to this concept.



116 5. The CATWALK Context Framework

Figure 5.15: Case study: application screenshot

5.5.2 Adaptation Effects

A graphical representation of context factors used in the prototype and their relation to application
model elements is given in Figure 5.16; the graphical representation is to be interpreted as discussed
in Section 3.3.4. This figure is an extract of the essential items involved in the demonstration of
adaptation.

Navigation Adaptation

An example for navigation adaptation is given in Figure 5.17. Presume the context “summer”; i.e., in
the Time context ontology the instance “summer” of the class “Season” was activated.

The navigation model contains, for the navigation node labeled as “Clothing tips”, an adaptation
specification defined to retrieve domain elements that can be offered as links. As a consequence,
CATWALK adds within this navigation node any navigation possibilities that are considered context-
relevant, in the order of relevance. The node labeled as “Outdoor running shoes” is considered most
relevant, as it is in an immediate context relation with “summer” in the model. The adaptation block
properties in this scenario instruct the system to explore super-class relations up to a depth of two,
therefore two levels of super-classes of “Outdoor running shoes” are also retrieved: in this case, these
are the nodes labeled as “Sports shoes” and “Shoes”. Each level induces a loss of relevance (whose
percentage is also given in the adaptation specification), and thus the further away in the hierarchy,
the less relevant elements become.



5.5 Case Study: Example Web Application 117

Figure 5.16: Case study: model extract

Figure 5.17: Navigation adaptation demonstration

Content Adaptation

Composition of content for the node “Wear” is defined in the navigation model, and associates a fixed
text from the domain ontology, and a document, which is made available via a link. Furthermore, an
adaptation placeholder is associated to this node. The resulting page is shown in Figure 5.18. The
adaptation specification of this placeholder defines to retrieve context-relevant domain elements, and
any elements associated to these via the related-content property. Furthermore, if any elements
are found, a fixed content piece from the domain ontology is specified to be added prior to the ele-
ments. In the example, the concept “Outdoor running shoes” is context-relevant; this is presented as
a link in the content area, allowing the user to directly navigate to this navigation node (thus avoiding
multiple steps of navigation in a menu). Furthermore, an associated image is context-relevant and
presented.



118 5. The CATWALK Context Framework

Figure 5.18: Content adaptation demonstration

Service Adaptation

For the illustration of service adaptation, a Web Service representing the functionality of looking for
auctions across several auction houses is used. This Web Service provides a “search” operation that
can be parameterized with 3 values: category, season and size. The Web Service is implemented with
Apache Axis and made available on the network. In the domain model, the service’s existence is spec-
ified, as are contextual hints for the service’s parameters. For this service, the parameter “category” is
associated with an entry in the domain ontology (the concept “Wear”); the “season” with the “Season”
class of the Time ontology (as a category of context); “size” is associated with an attribute that is not
defined more specifically.

Figure 5.19: Service adaptation demonstration 1

The Web Service’s functionality is presented when the user navigates to “Stores”, as shown in
Figure 5.19, because the service is associated to this node in the navigation model. The Adaptatio-
nEngine tries to determine appropriate default values for the service parameters. For the parameter
with label “Season”, “summer”, as a currently active instance of the appropriate class from the Time
ontology, is used as value. Regarding the other parameters, the AdaptationEngine did not find appro-
priate values. The interface for calling the service is rendered with an XHTML form consisting of text



5.5 Case Study: Example Web Application 119

areas, in which the context-relevant parameter value is entered as default. A more elaborate user in-
terface can propose, for example, drop-down lists to choose from possible values, wherein the default
value is activated according to context. The user interface should also display (language-sensitive)
labels for the default parameter values, for those cases where the values refer to an ontology entry; for
simplification the ontology ids are used here instead.

Figure 5.20: Service adaptation demonstration 2

Consider now a further-going scenario, in which the user has recently viewed product information
on “Outdoor running shoes”, either by menu navigation or by following a recommended link as seen
in Section 5.5.2. Furthermore, the user has logged in to the system. The AdaptationEngine can now
provide more default parameters, as shown in Figure 5.20. The “Category” field contains as default
value the most recently visited category of wear; in this case the “Outdoor running shoes”, being
a sub-category of wear. To determine a value for the “Size” field, the AdaptationEngine searches
for an active value for a “size” attribute in any of the context categories; in this scenario a value is
found within the attributes of the currently logged-in user. The user may override any of the default
parameters. In Figure 5.20, the user has furthermore called the service (without changing the default
values); the result is rendered according to the “table” user interface template.

These examples illustrate further issues regarding user-friendly binding of services and domain
knowledge (see also Section 4.3.3). Generally speaking, service parameter values can be automati-
cally extracted from context, as demonstrated above. For an optimal binding however, more intelli-
gence is required. For instance, the “Size” parameter is known from the attributes of the logged-in
user; however if several attributes representing size (for example shoe size and shirt size) are present,
more knowledge is needed: does this service expect size values regarding shoes specifically, or, more
likely in this case, should the value used depend on the product category which size should be re-
trieved? If so, these types of sizes would require an ontological connection to the product category
hierarchy so that such a determination can be made. In fact, this sort of “richly-typed” connection
between domain knowledge and Web Services is not intrinsically related to the issue of context-
awareness, but is, like context-awareness, a prerequisite for an optimal service binding in the sense of
user-friendliness.



120 5. The CATWALK Context Framework

Presentation Adaptation

Adaptation regarding presentation, in the largest sense, can determine which elements should be view-
able in the current context, and furthermore how the elements are presented (that is, the selection of
GUI attributes).

Figure 5.21: Presentation adaptation demonstration - View

Which elements are viewable in which context can be guided by the view model (see Section
3.5.6). In the example illustrated in Figure 5.21, a view is defined on a content piece associated to
“Wear”. This content element refers to a file containing a (potentially large) catalog of products in
PDF format. The view defines that this content element should only be offered when the user is using
a desktop browser, as the element is not deemed useful for viewing on a device with more limited
memory and display resources, such as a PDA. On the left-side of the figure, the application is shown
when the hardware device context factor “desktop browser” is active; the content element mentioned
above is accessible via a link. On the right side, the context factor “pda” is set instead (via context
simulation); accordingly, the content element is not accessible.

Figure 5.22: Presentation adaptation demonstration - GUI attributes

The presentation model, in turn, can associate GUI attributes with application elements. In the
example illustrated in Figure 5.22, the underlying presentation model associates a presentation def-
inition with the navigation container reached via the navigation node labeled as “Duisburg”. This
presentation definition has an adaptation specification that states that a presentation model element
should be determined according to context.



5.5 Case Study: Example Web Application 121

The application model expresses that a sportive appearance is appropriate when a user known
as a sportsman navigates to the Duisburg store. Otherwise, a more neutral style is to be used. The
scenario shown in Figure 5.22 presumes a context setting where the user is identified as a sportsman;
i.e., context factor “Sportsman” of the user context ontology is active. For a “Sportsman”, the context
model specifies the “sportyStore” style element from the presentation model as being relevant. The
adaptation mechanism thus retrieves this style element, that in turn refers to a CSS class. The content
element is therefore rendered with attributes defined in that CSS class.

5.5.3 Context Simulation

A user, for example acting in the role of an application tester, can choose to activate the context
simulation GUI when navigating in the generated application. Context simulation appears as an inde-
pendent pop-up as shown in Figure 5.23. The GUI shows context state and context history. Context
factors available from the context model are presented in drop-down lists, allowing the user to select
individual context factors to explicitly activate or deactivate them.

Figure 5.23: Context simulation screenshot



122 5. The CATWALK Context Framework

5.6 Discussion

The main purpose of the CATWALK framework is to facilitate and systemize use of adaptation within
Web applications. Corresponding applications can offer functionality in an adaptive manner, the goal
of which is to enhance interaction of users with the software’s offerings.

Functional Aspects

Development of context-aware Web software is supported by application models integrating knowl-
edge about context, and facilitated by a system architecture augmented by a context framework that
generates a dynamic, adaptive Web application based on the models. The Web application develop-
ment process can thus extend conventional features with adaptation functionality by using the methods
described in Chapter 3, and by basing the run-time application on the software framework described
in this chapter. This development process can involve several roles:

1. context-modelers define context factors within context ontologies and their relations with the
application model;

2. adaptation modelers specify where adaptation is to occur in the application, what sort of adap-
tation is desired and what strategies are to be used;

3. context-sensing implementors configure, complete or extend the components responsible for
sensing;

4. adaptation implementors customize the adaptation component and its usage of ontology infer-
ence mechanisms;

5. application testers and quality experts use the generated application as a prototype along with
the context simulation functionality to verify the effects of context on the application.

Roles 3 and 4 are optional: the framework contains a default implementation and interpretation for
sensing and adaptation. This means that adaptive Web applications can be achieved by means of
context and navigation description only, without requiring additional programming. This in turn al-
lows for rapid prototyping of adaptive Web applications; the prototyping is further supported by the
possibility of context simulation. Web engineers are provided with a platform supporting observa-
tion of the effects of context modeling and adaptation strategies on the actual Web applications; in
other words, the recommendation that a design environment should support an “experimental feed-
back loop, which facilitates the evaluation activity and process recursion” (Nanard and Nanard, 1995)
is followed. Rapid prototyping allows iterative user-oriented evaluation, while model-based design
facilitates “design-oriented evaluation” (Garzotto et al., 1995).

When a different context-recognition or adaptation mechanism is required, the necessary custom
programming is reduced to the essentials of that functionality. An architecture and a default imple-
mentation for components for context are provided; these are furthermore based on an existing com-
ponent framework (Excalibur), therefore allowing to specify in the application configuration which
actual software implementations accomplish the given component roles in the run-time environment.

Design Aspects

The work presented in this dissertation is designed to support context-awareness in Web Engineering,
that is, in a systematic approach to Web application development. For this purpose, knowledge about



5.6 Discussion 123

context is structured and, along with domain knowledge and the relation of this domain knowledge to
context, represented in (formal) ontologies, as are the individual application models. The model as a
whole is uniform, thus permitting uniform model handling and usage of common mechanisms for the
various stages of application generation.

The system architecture is designed to make use of modeled knowledge; each functional concern
in this architecture is identified and handled separately. Specifically, to support a development process
where responsibilities are clearly defined and to provide a system where implementations are exten-
sible, the approach presented in this dissertation consistently follows the “separation of concerns”
(SoC) design principle within the engineering process, at various levels:

• design and modeling: the domain ontology as such is modeled, and context factors relevant to
the domain are defined within context ontologies. The Web application model is established,
based upon the domain ontology. Context relations between elements of the application model
are defined separately. Adaptation specifications define a strategy for an adaptation; these spec-
ifications can in turn be referenced at those places in an application model where adaptation is
desired;

• architecture and implementation: the underlying architecture (Excalibur and Cocoon) follows
the SoC principle; the framework for context extends this architecture to account for context-
awareness and adaptation, while remaining pluggable to allow for customization of the default
mechanisms for context recognition and adaptation.

The approach is extensible, consequently to the choice of software techniques and the conceptual
design. On the one hand, as discussed above, the component-based approach to adaptation allows to
replace or extend the way each concern is implemented as a software component. On the other hand,
all application knowledge is specified in ontologies, therefore with formal semantics. This is a prereq-
uisite for reasoning support; that is, for allowing for complex inferences to be mechanically achieved.
Existing reasoners such as FaCT (Horrocks, 1998) or RACER (Haarslev et al., 2004) can be plugged
in via JENA to further support adaptation. In addition, the chosen content-based architecture (based
on XML) fulfills requirements of Web applications, by addressing the information-centered nature of
a Web application, while at the same time enabling operational features by way of Web Service inte-
gration. A service description is treated as a piece of content; therefore content-based methodologies
can be used to describe parts of the system, whereas context information can be modeled in addition
as described in this work.

Technical Aspects

In CATWALK, the two separate concerns of dynamic Web application generation per se and adapta-
tion are handled using two separate mechanisms. The generation is handled as a sequence of XML
transformations. XSLT stylesheets are used to filter incoming XML, such as an ontology specified in
OWL, and to aggregate results from a previous step with parts of the application model, for example to
determine which content containers are to be used at this stage. Each generation phase is, in addition,
supported by a custom XML transformer, implemented in Java, which allows for the integration of
adaptation results where specified. Adaptation functionality, as is context recognition functionality, is
implemented as a separate component, which can be accessed from the transformer components.

The pipeline processing, as a sequence of XML transformations, thus uses a combination of Java
and XSL technology. XSL, compared to Java, is more concise when manipulating XML, and pro-
cessing statements specified as XSL are easier to change, being interpreted at run-time and therefore



124 5. The CATWALK Context Framework

not requiring application restart. A significant disadvantage of XSL in this approach is that exact
knowledge of the syntax of a language is necessary if XSLT is used for processing it. This is problem-
atic in particular for ontologies, as an ontology can be represented in differing syntaxes. Accessing
ontologies via an API (such as JENA) abstracts ontology syntax, and furthermore provides built-in
knowledge about the structures, such as transitivity of superclass relationships.

A potential danger in the consistent separation of code according to concerns is that integration
and sequencing of components appears complex; see, for example, Figure 5.13. However, these
mechanisms are realized with existing features in a public framework (Apache Cocoon); information
regarding the underlying mechanisms is thus publicly documented, and the techniques are reusable.
An alternative software architecture that would not follow the SoC principle, yet fulfill the same
requirements, would ultimately require the same complexity, whereas in that case a higher complexity
would be transposed into the software components themselves.

Whatever the technical choices, connections between components and processing steps should
be clearly documented; as illustrated in this chapter, UML diagrams (such as class diagrams and
sequence diagrams) are helpful in this regard. To document pipeline designs, no standard notation
exists and thus this dissertation proposes a notation as shown in the above-mentioned Figure 5.13.

Weaknesses

Support for matching arbitrary environment information onto the context ontologies of a specific ap-
plication model is limited in the approach presented in this dissertation. Supporting arbitrary sensing
in a general-purpose, unifying approach is problematic. In particular, there are no existing Web stan-
dards specifying how environment information is defined and how a Web client would communicate
this information to the Web server. Current approaches must thus either define a specific protocol
and language for transmitting client context information in an application-relevant way, or, as in the
approach followed in this dissertation, require custom programming for context matching when the
required information does not conform to generally valid patterns (for example, seasons in the cat-
egory Time or browser type in the category Hardware Device). However, such a task is facilitated
when the provided framework classes are extended and when configuration mechanisms are used as
explained in Section 5.2.2. Likewise, custom programming is required to support integration of data
originating from any additional, system-external environment sensors.



Chapter 6

Summary and Future Directions

In this chapter, we summarize the engineering method for adaptive, context-aware Web applications
presented in this dissertation, and discuss future opportunities for research.

6.1 Summary

The growing complexity of Web-based systems, resulting notably from an increasing information and
service offering, poses problems to users and application providers. On the one hand, the increased
offering can confuse users regarding what is relevant for them, which makes the application more
difficult to use and impedes joy-of-use. On the other hand, this situation also means the application
provider’s interests are not served. The provider would like to guide the user towards a certain resource
selection appropriate to the user: in consumer-oriented applications, to increase the likelihood of
consumption and customer loyalty; in a professional environment, to increase user acceptance and
productivity.

An approach to address this situation is the adaptation of the application, at run-time, to the context
of usage. To ultimately achieve such support, the following challenges and requirements must be met:

Requirements concerning the conceptual approach: The challenges already existing for Web
Engineering are compounded by the requirement to account for context and to define adaptation ac-
cording to this context. This requires a precise definition of context, and an understanding of its key
characteristics. Information about the context of usage of an application must be represented in a
formal model that is usable in a Web Engineering process. The corresponding analysis and design
processes themselves must be structured and systemized.

Requirements concerning system functionality and design: A system supporting an adaptive
Web application must dynamically generate a response for a user request to the application. The gen-
eration process must be able to function independently of context considerations, whereas each phase
of the generation process can in addition be influenced by the context. Therefore, the system must
be context-aware; it must interpret environment information as context knowledge, and use the con-
ceptual information about context to support adaptation at the various levels of the Web application:
navigation, resource selection and integration, and presentation. This Web application may offer the
user, in addition to information selection and presentation, operational features.



126 6. Summary and Future Directions

State of the art: The question of what sort of adaptation is effective, to what degree, in which situ-
ations and with which kinds of mechanisms, is currently difficult to address in a systematic manner. A
review of existing work shows that there is no established Web Engineering process which accounts
for context comprehensively, while producing artifacts usable by a run-time system. Notably, exist-
ing approaches focus either on the design phase of engineering, or focus on a particular aspect of a
run-time system, such as context sensing. In the first case, resulting applications are disconnected
from the original models, making rapid prototyping and the comparative studies of varying context
representations and mechanisms difficult. In the second case, the lack of a systematic (engineering)
approach means that resulting applications are ad-hoc, particular solutions, difficult to maintain and
reuse.

Contributions: Building on this problem analysis, the major contributions of this dissertation can
be summarized as follows:

• A conceptual framework for context represents the underlying information regarding context
of usage of an application (Chapter 3). A context model in this framework is understood as a
combination of semantic and associative networks, using ontologies for knowledge representa-
tion. This model is integrated in a general-purpose, compositional approach to Web application
development (Section 3.4), in which adaptation effects can be specified according to the context
model and ontological knowledge (Section 3.5).

• A specific Web software architecture for context is proposed (Chapter 4). Systems conforming
to this architecture are capable of interpreting application and context models in order to support
adaptive applications. The architecture supports operational features via the incorporation of
Web Services, whose selection and integration within the user interface is guided by context.

• A software framework supports the engineering of adaptive Web applications according to the
method presented in this dissertation. The presented framework, called CATWALK (Chapter 5),
is an implementation of the architecture for context described in Chapter 4. The framework con-
sists of a set of components, each component being responsible for a specific concern, and of a
sequencing of these components which generates an adaptive Web application. The framework
contains default implementations for context inference and adaptation mechanisms, and thus
supports model-based prototyping of adaptive Web applications. The usage of the framework
is illustrated in a case-study describing an e-commerce scenario. Indeed, the method presented
in this dissertation can be used in particular regarding systemization of the engineering of adap-
tive e-commerce systems, to formalize usage of user profiles and associated adaptations, and to
enhance adaptation by taking into account further context factors.

• The engineering method for adaptive, context-aware Web applications presented in this disser-
tation follows the principle of separation of concerns, in order to support a Web Engineering
process accounting for context in which people with different expertise participate (Section
5.6). Domain, application, context, and adaptation concerns can be modeled in separate, suc-
ceeding steps. The system supporting the adaptive application at run-time is designed such
that system concerns are handled separately as components; these components either support
context-awareness or adaptation, or achieve a step of the generation process. This design al-
lows for customization, meaning that application developers specializing in a particular aspect
of context-awareness, adaptation, or application generation, can extend or replace the manner
in which each concern is implemented, without altering the other aspects of the architecture or



6.2 Future Directions 127

requiring code changes in the application itself. Application testers can evaluate the effects of
individual context factors in the generated prototype.

• The generic nature of the conceptual framework for context and the component-based system ar-
chitecture support the implementation and comparative evaluation of various context-inference
and adaptation algorithms and strategies.

Table 6.1 summarizes how information about context is represented and used in the approach
presented in this dissertation.

explicit implicit
context knowledge • semantic network (context • relation following during adaptation

ontologies) (via adaptation spec)
• associative network (context • relation following during context
relations) inference

context usage • model specification according to • computation of context-relevant
context rules ontology items
• value specification according to
context hints

Table 6.1: Accounting for, and using context: summary

6.2 Future Directions

This dissertation introduces models for Web applications, a corresponding architecture, and a software
framework enabling rapid prototyping of context-aware, component-based Web applications. Future
research can use and extend this approach along several directions.

Supporting Application Modeling

For large-scale scenarios, a user modeling a Web application and relevant context factors needs to be
supported by appropriate software.

System support for the modeling process includes tools for visualization and editing of complex
networks. In addition, modeling can be facilitated, on the one hand, by usage or creation of context
catalogs pertinent to specific business domains, and, on the other hand, by the system generating
proposals for influence relations based on data mining. In this regard, the approach of this dissertation
provides a basis by defining context factors within ontologies, and supporting their association with a
domain ontology, thus allowing the use of common vocabularies and mechanisms.

Enhancing the Context System

The architecture for context presented in this work, and in particular the CATWALK system, pro-
vides a framework for achieving adaptivity in Web applications. Default implementations for core
components are discussed in this work. Future research can enhance this system to provide further
functionality or to plug-in alternative implementations and interpretations for context.

Further functionality could notably be integration with distributed agents that would be responsi-
ble for sensing the physical environment, thus enabling richer context sensing than that available by



128 6. Summary and Future Directions

using standard HTTP data alone. Alternatively, extensions to HTTP or standardization attempts for
richer Web client to Web server communication can be studied, such as (W3C Device Independence Working Group,
n.d.) that can be used for transmitting more elaborate client information.

Some context information is irregular and difficult to predict, and therefore difficult to model
explicitly. For such context information, it may be helpful to have a system that “learns” over the
course of operation, to make more accurate assessments of context over time. One possibility is to use
Hidden Markov Models, as described, for example, in (Yonezawa et al., 2001). In addition, context
influence relations may be refined or created during system operation. Possible approaches are to
track user behavior regarding the adaptively proposed links; or to gather user feedback regarding
context relations during system operation, in analogy to the proposal described in (Staff, 2002) that
recommends gathering user feedback regarding which documents are relevant to each other.

The described framework is a basis for studying alternative context mechanisms, as discussed in
Section 5.6. Notably, context-inference plug-ins can be added declaratively to the run-time system in
order to study implications of other techniques for inference and to research their effectivity within
adaptive Web applications.

As stated, the focus of the CATWALK system is to support rapid prototyping of adaptive Web
applications. For the goal of supporting rapid application development for potentially commercial-
grade software, a comprehensive definition of user interface patterns and their application to specific
information structures is required, where patterns in this sense are understood as specifications that
are interpretable by the system. In addition, a seamless integration of interactive services requires to
address the issue of semantic interoperability in more depth. In this regard, two general directions of
research are conceivable: development of custom catalogs to explicitly realize “contextual interoper-
ability” (Strang et al., 2003b), or integration of standardized catalogs, upon which context ontologies,
matching mechanisms and services would be built.

Usability

The goal of adaptivity as outlined in this work is to present the end-user relevant information and
application navigation possibilities, and to provide relevant interactive services. The assumption is
that providing Web applications tailored to user needs raises productivity and joy-of-use of people
working with these applications.

This dissertation presents a method for achieving dynamic Web applications that may be adaptive.
The engineer defines which application elements shall adapt according to context. In addition, context
can be simulated (or deactivated) in the run-time system. This work thus provides a basis for conduct-
ing general-purpose usability studies regarding use of context, notably for comparing effects of using
classic (non-adaptive) mechanisms with the use of adaptation mechanisms. Future work can therefore
attempt to quantify usefulness of adaptation, in particular, to ascertain for what purposes and in which
application situations an adaptation mechanism in fact enhances user productivity or enjoyment. This,
in turn, is a prerequisite to address the issue of cost-benefit in engineering, meaning, to determine in
which situations the added effort required for context and adaptation engineering yields a significant
benefit.



Appendix A

Standards and Standard Authorities

This appendix provides an overview of standards mentioned in this work; whereas standard is under-
stood as something established by an authority. In Web Engineering, several such authorities exist;
those authorities particularly relevant to this work are summarized in Table A.1. The standards are
listed in Table A.2.

Table A.1: Standard authorities

Acronym Name Homepage

DCMI Dublin Core Metadata Initiative http://dublincore.org
IETF The Internet Engineering Task

Force
http://www.ietf.org

ISO International Organization for
Standardization

http://www.iso.org

JCP Java Community Process http://jcp.org
OASIS Organization for the Advance-

ment of Structured Information
Standards

http://www.oasis-open.org

OMA Open Mobile Alliance http://www.openmobilealliance.org
OMG Object Management Group http://www.omg.org
W3C World Wide Web Consortium http://www.w3.org

Table A.2: Standards

Acronym Name & Reference Authority

CSS Cascading Style Sheets W3C
http://www.w3.org/Style/CSS/

DocBook The DocBook Document Type OASIS
http://www.oasis-open.org/docbook/specs

Dublin Core DCMI Metadata Terms DCMI
http://dublincore.org/documents/dcmi-terms/

HTTP Hypertext Transfer Protocol IETF
http://www.ietf.org/rfc/rfc2616.txt

http://dublincore.org
http://www.ietf.org
http://www.iso.org
http://jcp.org
http://www.oasis-open.org
http://www.openmobilealliance.org
http://www.omg.org
http://www.w3.org
http://www.w3.org/Style/CSS/
http://www.oasis-open.org/docbook/specs
http://dublincore.org/documents/dcmi-terms/
http://www.ietf.org/rfc/rfc2616.txt


130 A. Standards and Standard Authorities

Table A.2: (continued)

ISO 9126 Information technology - Software Product evaluation - Quality Char-
acteristics and Guidelines for their Use

ISO

Standard ISO/IEC 9126
JSR-53 JavaTM Servlet 2.3 and JavaServer PagesTM 1.2 Specifications JCP

http://www.jcp.org/en/jsr/detail?id=053
JSR-54 JDBC 3.0 Specification JCP

http://www.jcp.org/en/jsr/detail?id=054
JSR-168 Portlet Specification JCP

http://www.jcp.org/en/jsr/detail?id=168
JSR-901 Java Language Specification JCP

http://www.jcp.org/en/jsr/detail?id=901
OWL Web Ontology Language W3C

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
RDF Resource Description Framework W3C

http://www.w3.org/RDF/#specs
SGML Standard Generalized Markup Language ISO

ISO 8879:1986
SMIL Synchronized Multimedia Integration Language W3C

http://www.w3.org/TR/REC-smil/
SOAP Simple Object Access Protocol W3C

http://www.w3.org/TR/soap12-part1/
UDDI Universal Description Discovery and Integration OASIS

http://uddi.org/pubs/uddi_v3.htm
URI Uniform Resource Identifiers IETF

http://www.ietf.org/rfc/rfc2396.txt
URL Uniform Resource Locators IETF

http://www.ietf.org/rfc/rfc1738.txt
WSDL Web Services Description Language W3C

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
WSRP Web Services for Remote Portlets Specification OASIS

http://www.oasis-open.org/committees/wsrp
XML eXtensible Markup Language W3C

http://www.w3.org/TR/xml11/
XML Schema XML Schema W3C

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
XPath XML Path Language (XPath) 2.0 W3C

http://www.w3.org/TR/xpath20/
XSL The Extensible Stylesheet Language Family (XSL) W3C

http://www.w3.org/Style/XSL/
XSLT XSL Transformations (XSLT) Version 2.0 W3C

http://www.w3.org/TR/xslt20/

http://www.jcp.org/en/jsr/detail?id=053
http://www.jcp.org/en/jsr/detail?id=054
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=901
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/RDF/#specs
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/soap12-part1/
http://uddi.org/pubs/uddi_v3.htm
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.oasis-open.org/committees/wsrp
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/xpath20/
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xslt20/


Appendix B

Model Elements Type Definition in OWL

This appendix provides the definitions, in OWL, of the types of elements which can be used in a Web
application model as described in this work. See Section 3.5 for further explanations.

<?xml v e r s i o n =” 1 . 0 ” encod ing =”UTF−8”?>
<!DOCTYPE rdf :RDF [

<!ENTITY r d f ” h t t p : / / www. w3 . o rg /1999/02/22 − rd f−syn tax−ns # ” >
<!ENTITY r d f s ” h t t p : / / www. w3 . o rg / 2 0 0 0 / 0 1 / rd f−schema # ” >
<!ENTITY xsd ” h t t p : / / www. w3 . o rg / 2 0 0 1 / XMLSchema#” >
<!ENTITY owl ” h t t p : / / www. w3 . o rg / 2 0 0 2 / 0 7 / owl # ” >
<!ENTITY w i s e b a s e ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / wi se ” >
]>

<rdf :RDF
xmlns :owl =”&owl ; ”
x m l n s : r d f =”&r d f ; ”
x m l n s : r d f s = ”&r d f s ; ”
x m l n s : x s d = ”&xsd ; ”
xmlns = ”&w i s e b a s e ; # ”
x m l n s : w i s e = ”&w i s e b a s e ; # ”
x m l : b a s e = ”&w i s e b a s e ; ”
>
<owl :On to lo gy r d f : a b o u t =” ”>
<rd f s : commen t>Core t y p e s f o r a p p l i c a t i o n mode l ing</ r d f s : commen t>
<o w l : v e r s i o n I n f o >$ I d : co re−t y p e s . owl 621 2006−03−25 17 : 4 8 : 1 8 Z k a l t z $</ o w l : v e r s i o n I n f o >

</ owl :On to logy>

<!−− Conten t−p i e c e t y p e d e f i n i t i o n s −−>

<o w l : C l a s s r d f : I D =” c o n t e n t ” />

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” s o u r c e ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # c o n t e n t ” />
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; anyURI ”/>

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : C l a s s r d f : I D =” t e x t ”>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # c o n t e n t ” />
< r d f s : l a b e l xml : lang=” en ”> t e x t b r i c k</ r d f s : l a b e l >

</ o w l : C l a s s>

<o w l : C l a s s r d f : I D =” image ”>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # c o n t e n t ” />
< r d f s : l a b e l xml : lang=” en ”>i m a g e b r i c k</ r d f s : l a b e l >

</ o w l : C l a s s>



132 B. Model Elements Type Definition in OWL

<o w l : C l a s s r d f : I D =” document ”>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # c o n t e n t ” />
< r d f s : l a b e l xml : lang=” en ”>d o c u m e n t b r i c k</ r d f s : l a b e l >

</ o w l : C l a s s>

<o w l : C l a s s r d f : I D =” s e r v i c e ”>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # c o n t e n t ” />
< r d f s : l a b e l xml : lang=” en ”>s e r v i c e b r i c k</ r d f s : l a b e l >

</ o w l : C l a s s>
<o w l : D a t a t y p e P r o p e r t y r d f : I D =” o p e r a t i o n ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # s e r v i c e ” />
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>
<o w l : C l a s s r d f : I D =” s e r v i c e P a r a m e t e r ”>
</ o w l : C l a s s>
<o w l : O b j e c t P r o p e r t y r d f : I D =” p a r a m e t e r ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # s e r v i c e ” />
< r d f s : r a n g e r d f : r e s o u r c e =” # s e r v i c e P a r a m e t e r ” />

</ o w l : O b j e c t P r o p e r t y>
<o w l : D a t a t y p e P r o p e r t y r d f : I D =” o r d e r ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # s e r v i c e P a r a m e t e r ” />
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; i n t e g e r ” />

</ o w l : D a t a t y p e P r o p e r t y>
<o w l : D a t a t y p e P r o p e r t y r d f : I D =” h i n t ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # s e r v i c e P a r a m e t e r ” />
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =” r e l a t e d −c o n t e n t ”>
<r d f s : d o m a i n r d f : r e s o u r c e =”&owl ; Thing ” />
< r d f s : r a n g e r d f : r e s o u r c e =” # c o n t e n t ” />

</ o w l : O b j e c t P r o p e r t y>

<!−−
D e f i n e how domains can be e x p l o r e d

−−>
<o w l : C l a s s r d f : a b o u t =” #DomainLookupSpec ”>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # maxItems ” />
<o w l : m a x C a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : m a x C a r d i n a l i t y >

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>

</ o w l : C l a s s>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” r e s o u r c e T y p e ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” #DomainLookupSpec ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” maxItems ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” #DomainLookupSpec ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; i n t e g e r ” />

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : C l a s s r d f : a b o u t =” # Re la t i onLookup Spe c ”>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # DomainLookupSpec ” />

</ o w l : C l a s s>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” t y p e ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # Re la t i onLook upS pe c ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” d e p t h ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # Re la t i onLook upS pe c ”/>



133

< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; i n t e g e r ” />
</ o w l : D a t a t y p e P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” r e l e v a n c e ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # Re la t i onLook upS pe c ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; f l o a t ” />

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : C l a s s r d f : a b o u t =” # QuerySpec ”>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # DomainLookupSpec ” />

</ o w l : C l a s s>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” que ry ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # QuerySpec ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>

<!−−
A d a p t a t i o n s t r u c t u r e d e f i n i t i o n s
−−>
<o w l : C l a s s r d f : a b o u t =” # A d a p t a t i o n ”/>

<o w l : O b j e c t P r o p e r t y r d f : I D =” p r e A d a p t a t i o n ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # A d a p t a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&owl ; Thing ”/>

</ o w l : O b j e c t P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =” p o s t A d a p t a t i o n ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # A d a p t a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&owl ; Thing ”/>

</ o w l : O b j e c t P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” a d a p t a t i o n R e s o u r c e T y p e ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # A d a p t a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” a d a p t a t i o n M a x I t e m s ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # A d a p t a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; i n t e g e r ” />

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” r e l e v a n c e T h r e s h o l d ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # A d a p t a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; f l o a t ” />

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” i temNamespace ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # A d a p t a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” c o n t e x t F a c e t ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # A d a p t a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =” d o m a i n E x p l o r a t i o n ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # A d a p t a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =” # DomainLookupSpec ”/>

</ o w l : O b j e c t P r o p e r t y>

<!−−
D e f i n e a c o n t e x t r u l e
−−>

<o w l : C l a s s r d f : a b o u t =” # C o n t e x t R u l e ”>



134 B. Model Elements Type Definition in OWL

<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # f a c t o r ” />
<o w l : m i n C a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : m i n C a r d i n a l i t y>

</ o w l : R e s t r i c t i o n >
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # r u l e ” />
<o w l : m a x C a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : m a x C a r d i n a l i t y >

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>

</ o w l : C l a s s>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” f a c t o r ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # C o n t e x t R u l e ” />
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” r u l e ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # C o n t e x t R u l e ” />
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>

<!−−
D e f i n i t i o n o f c o n t e x t r e l a t i o n s
−−>
<o w l : C l a s s r d f : a b o u t =” # C o n t e x t R e l a t i o n ”>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # r e l e v a n c e I t e m ” />
<o w l : m i n C a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>2</ o w l : m i n C a r d i n a l i t y>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # i n f l u e n c e V a l u e ” />
<o w l : c a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : c a r d i n a l i t y>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>

</ o w l : C l a s s>

<o w l : O b j e c t P r o p e r t y r d f : I D =” r e l e v a n c e I t e m ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # C o n t e x t R e l a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&owl ; Thing ”/>

</ o w l : O b j e c t P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” i n f l u e n c e V a l u e ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # C o n t e x t R e l a t i o n ” />
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; f l o a t ” />

</ o w l : D a t a t y p e P r o p e r t y>

<!−−
D e f i n i t i o n o f n a v i g a t i o n s t r u c t u r e s
−−>
<o w l : C l a s s r d f : a b o u t =” # N a v R e l a t i o n ”>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # n a v R e l a t i o n S r c ” />
<o w l : c a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : c a r d i n a l i t y>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # n a v R e l a t i o n T a r g e t ” />
<o w l : m a x C a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : m a x C a r d i n a l i t y >

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>



135

<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # n a v R e l a t i o n T y p e ” />
<o w l : c a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : c a r d i n a l i t y>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # a d a p t a t i o n P r o p e r t y ” />
<o w l : m a x C a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : m a x C a r d i n a l i t y >

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # lookup ” />
<o w l : m a x C a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : m a x C a r d i n a l i t y >

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>

</ o w l : C l a s s>

<o w l : O b j e c t P r o p e r t y r d f : I D =” n a v R e l a t i o n S r c ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # N a v R e l a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&owl ; Thing ”/>

</ o w l : O b j e c t P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =” n a v R e l a t i o n T a r g e t ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # N a v R e l a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&owl ; Thing ”/>

</ o w l : O b j e c t P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” n a v R e l a t i o n T y p e ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # N a v R e l a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =” a d a p t a t i o n P r o p e r t y ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # N a v R e l a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =” # A d a p t a t i o n ”/>

</ o w l : O b j e c t P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =” lookup ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # N a v R e l a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =” # DomainLookupSpec ”/>

</ o w l : O b j e c t P r o p e r t y>

<!−−
Views : a s s o c i a t e v i ew s e l e c t i o n i n f o r m a t i o n w i t h n a v i g a t i o n c o n t a i n e r s
−−>

<o w l : C l a s s r d f : a b o u t =” #View ”>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # v i e w C o n t a i n e r ” />
<o w l : c a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : c a r d i n a l i t y>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # c o n t e x t R u l e ” />
<o w l : c a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : c a r d i n a l i t y>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>

</ o w l : C l a s s>

<o w l : O b j e c t P r o p e r t y r d f : I D =” v i e w C o n t a i n e r ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” #View ”/>
< r d f s : r a n g e r d f : r e s o u r c e =” # N a v R e l a t i o n ”/>



136 B. Model Elements Type Definition in OWL

</ o w l : O b j e c t P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =” c o n t e x t R u l e ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” #View ”/>
< r d f s : r a n g e r d f : r e s o u r c e =” # C o n t e x t R u l e ” />

</ o w l : O b j e c t P r o p e r t y>

<!−−
P r e s e n t a t i o n s : a s s o c i a t e GUI i n f o r m a t i o n w i t h n a v i g a t i o n c o n t a i n e r s
−−>

<o w l : C l a s s r d f : a b o u t =” # P r e s e n t a t i o n ”>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # p r e s e n t a t i o n C o n t a i n e r ” />
<o w l : c a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : c a r d i n a l i t y>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # s t y l e ” />
<o w l : m a x C a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : m a x C a r d i n a l i t y >

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # p r e s e n t a t i o n A d a p t a t i o n ” />
<o w l : m a x C a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : m a x C a r d i n a l i t y >

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>

</ o w l : C l a s s>

<o w l : O b j e c t P r o p e r t y r d f : I D =” p r e s e n t a t i o n C o n t a i n e r ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # P r e s e n t a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =” # N a v R e l a t i o n ”/>

</ o w l : O b j e c t P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =” s t y l e ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # P r e s e n t a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =” # S t y l e ” />

</ o w l : O b j e c t P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =” p r e s e n t a t i o n A d a p t a t i o n ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # P r e s e n t a t i o n ”/>
< r d f s : r a n g e r d f : r e s o u r c e =” # A d a p t a t i o n ”/>

</ o w l : O b j e c t P r o p e r t y>

<!−−
S t y l e s
−−>

<o w l : C l a s s r d f : a b o u t =” # S t y l e ”>
<r d f s : s u b C l a s s O f>
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =” # c l a s s ” />
<o w l : c a r d i n a l i t y r d f : d a t a t y p e =”&xsd ; n o n N e g a t i v e I n t e g e r ”>1</ o w l : c a r d i n a l i t y>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f>

</ o w l : C l a s s>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” c l a s s ”>
<r d f s : d o m a i n r d f : r e s o u r c e =” # S t y l e ” />
< r d f s : r a n g e r d f : r e s o u r c e =”&xsd ; s t r i n g ”/>

</ o w l : D a t a t y p e P r o p e r t y>
</ rdf:RDF>

Listing B.1: Model elements in OWL syntax



Appendix C

Models for a Prototypical Web
Application

This appendix provides the models for the Web application prototype discussed in Section 5.5. These
models instantiate the model definitions introduced in Section 3.5 and use the OWL type definitions
shown in Appendix B.

Conceptual Model

Listing C.1 shows an extract of the domain ontology used.

<?xml v e r s i o n =” 1 . 0 ” encod ing =”UTF−8”?>
<!DOCTYPE rdf :RDF [
<!ENTITY r d f ” h t t p : / /www. w3 . o rg /1999/02/22 − rd f−syn tax−ns # ” >
<!ENTITY r d f s ” h t t p : / /www. w3 . o rg / 2 0 0 0 / 0 1 / rd f−schema# ” >
<!ENTITY xsd ” h t t p : / /www. w3 . o rg / 2 0 0 1 / XMLSchema# ” >
<!ENTITY owl ” h t t p : / /www. w3 . o rg / 2 0 0 2 / 0 7 / owl # ” >
<!ENTITY wise ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / wi se #” >
]>

<rdf :RDF
xmlns :owl =”&owl ; ”
x m l n s : r d f = ”&r d f ; ”
x m l n s : r d f s = ”&r d f s ; ”
x m l n s : x s d = ”&xsd ; ”
x m l n s : w i s e = ”&wise ; ”
xmlns = ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / domain #”
x m l : b a s e = ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / domain ”
>

<owl :On to log y r d f : a b o u t =” ”>
<rd f s : commen t>Domain o n t o l o g y f o r e−commerce c a s e s t u d y</ r d f s : commen t>
<o w l : v e r s i o n I n f o >$ I d : domain . owl 688 2006−05−01 17 : 0 8 : 5 6 Z k a l t z $</ o w l : v e r s i o n I n f o >

</ owl :On to logy>

<!−−
Concep t s u s e d : some examples
−−>

<o w l : C l a s s r d f : I D =” wear ”>
< r d f s : l a b e l xml : lang=” en ”>Wear</ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>Kle idung</ r d f s : l a b e l >

</ o w l : C l a s s>

<o w l : C l a s s r d f : I D =” shoe ”>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # wear ” />
< r d f s : l a b e l xml : lang=” en ”>Shoes</ r d f s : l a b e l >



138 C. Models for a Prototypical Web Application

< r d f s : l a b e l xml : lang=” de ”>Schuhe</ r d f s : l a b e l >
</ o w l : C l a s s>

<o w l : C l a s s r d f : I D =” s p o r t s s h o e ”>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # shoe ” />
< r d f s : l a b e l xml : lang=” en ”>S p o r t s s h o e s</ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>S p o r t s c h u h e </ r d f s : l a b e l >
<w i s e : r e l a t e d−c o n t e n t r d f : r e s o u r c e =” # t0009 ” />

</ o w l : C l a s s>

<o w l : C l a s s r d f : I D =” ou tdoorRunn ingShoe ”>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # s p o r t s s h o e ” />
< r d f s : l a b e l xml : lang=” en ”>Outdoor r u n n i n g s h o e s</ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>Laufschuhe f ü r d r a u s s e n</ r d f s : l a b e l >
<w i s e : r e l a t e d−c o n t e n t r d f : r e s o u r c e =” # i0003 ” />

</ o w l : C l a s s>

<!−−
I n s t a n c e s o f c o n c e p t s : an example
−−>

<s t o r e s r d f : I D =” d u i s b u r g ”>
< r d f s : l a b e l xml : lang=” en ”>Duisburg</ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>Duisburg</ r d f s : l a b e l >

</ s t o r e s>

<!−−
I n s t a n c e s o f c o n t e n t r e s o u r c e s : some examples
−−>

<w i s e : t e x t r d f : I D =” t0007 ”>
< r d f s : l a b e l xml : lang=” en ”>Our s t o r e l o c a t e d a t For s thausweg 3 i s l o o k i n g f o r w a r d t o

s e r v i n g you , Monday t o Fr iday , 8 AM t o 8 PM.</ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>Unser Geschä f t am Fors thausweg 3 f r e u t s i c h a u f I h r e n Besuch

, von Montag b i s F r e i t a g 8 b i s 2 0 Uhr .</ r d f s : l a b e l >
</ w i s e : t e x t>

<w i s e : t e x t r d f : I D =” t0006 ”>
< r d f s : l a b e l xml : lang=” en ”>You may p a r t i c u l a r l y e n j o y t h e f o l l o w i n g i t em ( s ) :</

r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>S p e z i e l l f ü r S i e im Angebo t :</ r d f s : l a b e l >

</ w i s e : t e x t>

<w i s e : t e x t r d f : I D =” t0008 ”>
< r d f s : l a b e l xml : lang=” en ”>V i s i t one o f our r e t a i l o u t l e t s . Or p e r h a p s you would l i k e

t o t r y our a u c t i o n s e r v i c e ?</ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>Besuchen S i e e i n e s u n s e r e r Geschä f t e . Oder machen S i e doch

e i n f a c h von unserem A u k t i o n s d i e n s t Gebrauch !</ r d f s : l a b e l >
</ w i s e : t e x t>

<w i s e : t e x t r d f : I D =” t0009 ”>
< r d f s : l a b e l xml : lang=” en ”>A p p r o p r i a t e s p o r t s h o e s a r e t h e key t o

a v o i d i n g i n j u r y . Be s u r e t o choose an a p p r o p r i a t e s o r t , a c c o r d i n g t o
t h e t y p e o f s p o r t you e n j o y .</ r d f s : l a b e l >

< r d f s : l a b e l xml : lang=” de ”>G e e i g n e t e S p o r t s c h u h e s i n d enorm
w i c h t i g , um V e r l e t z u n g s g e f a h r zu min imie ren . Wä h l e n S i e Spor t s chuhe ,
d i e f ü r d i e von Ihnen p r a k t i z i e r t e S p o r t a r t g e e i g n e t s i n d .</ r d f s : l a b e l >

</ w i s e : t e x t>

<w i s e : t e x t r d f : I D =” t0010 ”>
< r d f s : l a b e l xml : lang=” en ”>S p e c i a l o f f e r o f t h e month: RGG s p o r t i n g

s o c k s f o r a mere 9 $ 9 5 . </ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>Diesen Monat im S p e z i a l a n g e b o t :

RGG S p o r t l e r s o c k e n f ü r nu r 9 $ 9 5 . </ r d f s : l a b e l >
</ w i s e : t e x t>



139

<w i s e : i m a g e r d f : I D =” i0003 ”>
< r d f s : l a b e l xml : lang=” en ”>Running o u t d o o r s</ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>Laufen i n d e r f r e i e n Na tu r</ r d f s : l a b e l >
<w i s e : s o u r c e r d f : d a t a t y p e =”&xsd ; anyURI ”>r e s o u r c e s / ou tdoor−r u n n i n g . j p g</ w i s e : s o u r c e>

</ w i se : image>

<wise :documen t r d f : I D =” d0002 ”>
< r d f s : l a b e l xml : lang=” en ”>Download t h e e n t i r e p r o d u c t c a t a l o g </ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>Hie r können S i e den k o m p l e t t e n P r o d u k t k a t a l o g

h e r u n t e r l a d e n </ r d f s : l a b e l >
<w i s e : s o u r c e r d f : d a t a t y p e =”&xsd ; anyURI ”>r e s o u r c e s / p r o d u c t c a t a l o g . pd f</ w i s e : s o u r c e>

</ w i se :documen t>

<w i s e : s e r v i c e r d f : I D =” s0001 ”>
< r d f s : l a b e l xml : lang=” en ”>Auc t ion s e r v i c e</ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>A u k t i o n s d i e n s t </ r d f s : l a b e l >
<w i s e : s o u r c e r d f : d a t a t y p e =”&xsd ; anyURI ”>r e s o u r c e s / A u c t i o n S e r v i c e . wsdl</ w i s e : s o u r c e>
<w i s e : o p e r a t i o n >s e a r c h</ w i s e : o p e r a t i o n >
<w i s e : p a r a m e t e r r d f : r e s o u r c e =” # sp001 ” />
<w i s e : p a r a m e t e r r d f : r e s o u r c e =” # sp002 ” />
<w i s e : p a r a m e t e r r d f : r e s o u r c e =” # sp003 ” />

</ w i s e : s e r v i c e>

<w i s e : s e r v i c e P a r a m e t e r r d f : I D =” sp001 ”>
<w i s e : h i n t >h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / domain # wear</ w i s e : h i n t >
<w i s e : o r d e r>1</ w i s e : o r d e r>
< r d f s : l a b e l xml : lang=” en ”>Category </ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>K a t e g o r i e</ r d f s : l a b e l >

</ w i s e : s e r v i c e P a r a m e t e r >

<w i s e : s e r v i c e P a r a m e t e r r d f : I D =” sp002 ”>
<w i s e : h i n t >h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / c o n t e x t / t ime # Season</ w i s e : h i n t >
<w i s e : o r d e r>2</ w i s e : o r d e r>
< r d f s : l a b e l xml : lang=” en ”>Season</ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”> J a h r e s z e i t </ r d f s : l a b e l >

</ w i s e : s e r v i c e P a r a m e t e r >

<w i s e : s e r v i c e P a r a m e t e r r d f : I D =” sp003 ”>
<w i s e : h i n t >s i z e</ w i s e : h i n t >
<w i s e : o r d e r>3</ w i s e : o r d e r>
< r d f s : l a b e l xml : lang=” en ”>S i z e</ r d f s : l a b e l >
< r d f s : l a b e l xml : lang=” de ”>Größe</ r d f s : l a b e l >

</ w i s e : s e r v i c e P a r a m e t e r >

</ rdf:RDF>

Listing C.1: Conceptual model for the case study

Navigation Model

Listing C.2 shows an extract of the navigation model used.

<?xml v e r s i o n =” 1 . 0 ” encod ing =”ISO−8859−15”?>

<!DOCTYPE rdf :RDF [
<!ENTITY xsd ” h t t p : / /www. w3 . o rg / 2 0 0 1 / XMLSchema# ” >
<!ENTITY owl ” h t t p : / /www. w3 . o rg / 2 0 0 2 / 0 7 / owl# ” >
<!ENTITY domain ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / domain# ” >
<!ENTITY wise ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / wi se #” >
]>

<rdf :RDF



140 C. Models for a Prototypical Web Application

x m l n s : x s d = ”&xsd ; ”
xmlns :owl = ”&owl ; ”
x m l n s : r d f = ” h t t p : / / www. w3 . o rg /1999/02/22 − rd f−syn tax−ns # ”
x m l n s : r d f s =” h t t p : / / www. w3 . o rg / 2 0 0 0 / 0 1 / rd f−schema #”
x m l n s : w i s e = ”&wise ; ”
xmlns=” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / n a v i g a t i o n # ”
x m l : b a s e =” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / n a v i g a t i o n ”
>

<owl :On to log y r d f : a b o u t =” ”>
<rd f s : commen t>N a v i g a t i o n Model</ r d f s : commen t>
<o w l : v e r s i o n I n f o >$ I d : navModel . owl 688 2006−05−01 17 : 0 8 : 5 6 Z k a l t z $</ o w l : v e r s i o n I n f o >

</ owl :On to logy>

<!−−
Examples o f f i x e d n a v i g a t i o n r e l a t i o n s
−−>

<w i s e : N a v R e l a t i o n r d f : I D =” r1 ”>
<w i s e : n a v R e l a t i o n S r c r d f : r e s o u r c e =”&domain ; home ” />
<w i s e : n a v R e l a t i o n T a r g e t r d f : r e s o u r c e =”&domain ; t i p s ” />
<w i s e : n a v R e l a t i o n T y p e >l i n k</ w i s e : n a v R e l a t i o n T y p e >

</ w i s e : N a v R e l a t i o n>

<w i s e : N a v R e l a t i o n r d f : I D =” r2 ”>
<w i s e : n a v R e l a t i o n S r c r d f : r e s o u r c e =”&domain ; home ” />
<w i s e : n a v R e l a t i o n T a r g e t r d f : r e s o u r c e =”&domain ; wear ” />
<w i s e : n a v R e l a t i o n T y p e >l i n k</ w i s e : n a v R e l a t i o n T y p e >

</ w i s e : N a v R e l a t i o n>

<w i s e : N a v R e l a t i o n r d f : I D =” r5 ”>
<w i s e : n a v R e l a t i o n S r c r d f : r e s o u r c e =”&domain ; home ” />
<w i s e : n a v R e l a t i o n T a r g e t r d f : r e s o u r c e =”&domain ; t0001 ” />
<w i s e : n a v R e l a t i o n T y p e >c o n t e n t </ w i s e : n a v R e l a t i o n T y p e >

</ w i s e : N a v R e l a t i o n>

<w i s e : N a v R e l a t i o n r d f : I D =” r6 ”>
<w i s e : n a v R e l a t i o n S r c r d f : r e s o u r c e =”&domain ; home ” />
<w i s e : n a v R e l a t i o n T a r g e t r d f : r e s o u r c e =”&domain ; t0002 ” />
<w i s e : n a v R e l a t i o n T y p e >c o n t e n t </ w i s e : n a v R e l a t i o n T y p e >

</ w i s e : N a v R e l a t i o n>

<w i s e : N a v R e l a t i o n r d f : I D =” r8b ”>
<w i s e : n a v R e l a t i o n S r c r d f : r e s o u r c e =”&domain ; wear ” />
<w i s e : n a v R e l a t i o n T a r g e t r d f : r e s o u r c e =”&domain ; d0002 ” />
<w i s e : n a v R e l a t i o n T y p e >c o n t e n t </ w i s e : n a v R e l a t i o n T y p e >

</ w i s e : N a v R e l a t i o n>

<!−−
Example n a v i g a t i o n r e l a t i o n s v i a dynamic o n t o l o g y l o o k u p :
a s s o c i a t i o n o f sub−l i n k s or c o n t e n t p i e c e s ;
l ookup s p e c i f i c a t i o n v i a t y p e or v i a f r e e h a n d query
−−>

<w i s e : N a v R e l a t i o n r d f : I D =” r9 ”>
<w i s e : n a v R e l a t i o n S r c r d f : r e s o u r c e =”&domain ; shoe ” />
<w i s e : l o o k u p r d f : r e s o u r c e =” rLookup1 ” />
<w i s e : n a v R e l a t i o n T y p e >l i n k</ w i s e : n a v R e l a t i o n T y p e >

</ w i s e : N a v R e l a t i o n>

<w i s e : R e l a t i o n L o o k u p S p e c r d f : I D =” rLookup1 ”>
<w i s e : t y p e >s u b c l a s s</ w i s e : t y p e >
<w i s e : d e p t h >1</ w i s e : d e p t h >

</ w i s e : R e l a t i o n L o o k u p S p e c>

<w i s e : N a v R e l a t i o n r d f : I D =” r18b ”>



141

<w i s e : n a v R e l a t i o n S r c r d f : r e s o u r c e =”&domain ; s p o r t s s h o e ” />
<w i s e : l o o k u p r d f : r e s o u r c e =” rLookup2 ” />
<w i s e : n a v R e l a t i o n T y p e >c o n t e n t </ w i s e : n a v R e l a t i o n T y p e >

</ w i s e : N a v R e l a t i o n>

<w i s e : R e l a t i o n L o o k u p S p e c r d f : I D =” rLookup2 ”>
<w i s e : t y p e >&wise ; r e l a t e d −c o n t e n t </ w i s e : t y p e >
<w i s e : d e p t h >1</ w i s e : d e p t h >

</ w i s e : R e l a t i o n L o o k u p S p e c>

<w i s e : N a v R e l a t i o n r d f : I D =” r21 ”>
<w i s e : n a v R e l a t i o n S r c r d f : r e s o u r c e =”&domain ; s p e c i a l o f f e r s ” />
<w i s e : l o o k u p r d f : r e s o u r c e =” q1 ” />
<w i s e : n a v R e l a t i o n T y p e >c o n t e n t </ w i s e : n a v R e l a t i o n T y p e >

</ w i s e : N a v R e l a t i o n>

<wise :QuerySpec r d f : I D =” q1 ”>
<w i s e : q u e r y>

p r e f i x w i s e : & l t ; h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / wi se#&g t ;
p r e f i x domain : & l t ; h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / domain#&g t ;
s e l e c t ? u r i where { d o m a i n : s p e c i a l o f f e r s w i s e : r e l a t e d−c o n t e n t ? u r i . }

</ w i s e : q u e r y>
</ w i se :QuerySpec>

<!−−
A d a p t a t i o n examples
−−>

<w i s e : N a v R e l a t i o n r d f : I D =” a r 1 ”>
<w i s e : n a v R e l a t i o n S r c r d f : r e s o u r c e =”&domain ; wear ” />
<w i s e : n a v R e l a t i o n T y p e >c o n t e n t </ w i s e : n a v R e l a t i o n T y p e >
<w i s e : a d a p t a t i o n P r o p e r t y r d f : r e s o u r c e =” a1 ”/>

</ w i s e : N a v R e l a t i o n>

<w i s e : A d a p t a t i o n r d f : I D =” a1 ”>
<w i s e : a d a p t a t i o n R e s o u r c e T y p e >any</ w i s e : a d a p t a t i o n R e s o u r c e T y p e >
<wise : i t emNamespace>&domain ;</ w i se : i t emNamespace>
<w i s e : a d a p t a t i o n M a x I t e m s >3</ w i s e : a d a p t a t i o n M a x I t e m s >
<w i s e : r e l e v a n c e T h r e s h o l d >0 . 1</ w i s e : r e l e v a n c e T h r e s h o l d >
<w i s e : p r e A d a p t a t i o n r d f : r e s o u r c e =”&domain ; t0006 ” />
<w i s e : d o m a i n E x p l o r a t i o n r d f : r e s o u r c e =” d0 ”/>

</ w i s e : A d a p t a t i o n>

<w i s e : R e l a t i o n L o o k u p S p e c r d f : I D =” d0 ”>
<w i s e : t y p e >h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / wi se # r e l a t e d −c o n t e n t </ w i s e : t y p e >
<w i s e : d e p t h >1</ w i s e : d e p t h >
<w i s e : r e l e v a n c e >90</ w i s e : r e l e v a n c e >

</ w i s e : R e l a t i o n L o o k u p S p e c>

<w i s e : N a v R e l a t i o n r d f : I D =” a r 2 ”>
<w i s e : n a v R e l a t i o n S r c r d f : r e s o u r c e =”&domain ; t i p s ” />
<w i s e : n a v R e l a t i o n T y p e >l i n k</ w i s e : n a v R e l a t i o n T y p e >
<w i s e : a d a p t a t i o n P r o p e r t y r d f : r e s o u r c e =” a2 ”/>

</ w i s e : N a v R e l a t i o n>

<w i s e : A d a p t a t i o n r d f : I D =” a2 ”>
<w i s e : a d a p t a t i o n R e s o u r c e T y p e >any</ w i s e : a d a p t a t i o n R e s o u r c e T y p e >
<wise : i t emNamespace>&domain ;</ w i se : i t emNamespace>
<w i s e : a d a p t a t i o n M a x I t e m s >5</ w i s e : a d a p t a t i o n M a x I t e m s >
<w i s e : r e l e v a n c e T h r e s h o l d >0 . 1</ w i s e : r e l e v a n c e T h r e s h o l d >
<w i s e : d o m a i n E x p l o r a t i o n r d f : r e s o u r c e =” d1 ”/>
<w i s e : d o m a i n E x p l o r a t i o n r d f : r e s o u r c e =” d2 ”/>

</ w i s e : A d a p t a t i o n>

<w i s e : R e l a t i o n L o o k u p S p e c r d f : I D =” d1 ”>
<w i s e : t y p e >s u p e r c l a s s</ w i s e : t y p e >
<w i s e : d e p t h >2</ w i s e : d e p t h >



142 C. Models for a Prototypical Web Application

<w i s e : r e l e v a n c e >90</ w i s e : r e l e v a n c e >
</ w i s e : R e l a t i o n L o o k u p S p e c>

<w i s e : R e l a t i o n L o o k u p S p e c r d f : I D =” d2 ”>
<w i s e : t y p e >s u b c l a s s</ w i s e : t y p e >
<w i s e : d e p t h >2</ w i s e : d e p t h >
<w i s e : r e l e v a n c e >95</ w i s e : r e l e v a n c e >

</ w i s e : R e l a t i o n L o o k u p S p e c>

</ rdf:RDF>

Listing C.2: Navigation model for the case study

View Model

<?xml v e r s i o n =” 1 . 0 ” encod ing =”ISO−8859−15”?>
<!DOCTYPE rdf :RDF [

<!ENTITY owl ” h t t p : / / www. w3 . o rg / 2 0 0 2 / 0 7 / owl #” >
<!ENTITY view ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / view ” >
<!ENTITY wise ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / wi se # ” >
<!ENTITY nav ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / n a v i g a t i o n # ” >
<!ENTITY d e v i c e ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / c o n t e x t / d e v i c e #”>

]>

<rdf :RDF
xmlns :owl = ”&owl ; ”
x m l n s : r d f = ” h t t p : / / www. w3 . o rg /1999/02/22 − rd f−syn tax−ns # ”
x m l n s : r d f s =” h t t p : / / www. w3 . o rg / 2 0 0 0 / 0 1 / rd f−schema #”
x m l n s : w i s e =”&wise ; ”
xmlns :nav =”&nav ; ”
xmlns=”&view ; # ”
x m l : b a s e =”&view ; ”

>
<owl :On to log y r d f : a b o u t =” ”>

<rd f s : commen t>View Model</ r d f s : commen t>
<o w l : v e r s i o n I n f o >$ I d : view . owl 620 2006−03−25 15 : 3 0 : 4 8 Z k a l t z $</ o w l : v e r s i o n I n f o >

</ owl :On to logy>

<wise:View r d f : I D =” v1 ”>
<w i s e : v i e w C o n t a i n e r r d f : r e s o u r c e =”&nav ; r8b ”/>
<w i s e : c o n t e x t R u l e r d f : r e s o u r c e =” # cRule1 ” />

</wise :View>

<w i s e : C o n t e x t R u l e r d f : I D =” cRule1 ”>
<w i s e : f a c t o r >&d e v i c e ; d e s k t o p</ w i s e : f a c t o r >
<w i s e : r u l e >t r u e</ w i s e : r u l e >

</ w i s e : C o n t e x t R u l e>

</ rdf:RDF>

Listing C.3: View model for the case study

Presentation Model

<?xml v e r s i o n =” 1 . 0 ” encod ing =”ISO−8859−15”?>
<!DOCTYPE rdf :RDF [

<!ENTITY owl ” h t t p : / / www. w3 . o rg / 2 0 0 2 / 0 7 / owl # ” >



143

<!ENTITY p r e s e n t a t i o n ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / p r e s e n t a t i o n # ” >
<!ENTITY wise ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / wi se # ” >
<!ENTITY nav ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / n a v i g a t i o n #” >

]>

<rdf :RDF
xmlns :owl = ”&owl ; ”
x m l n s : r d f = ” h t t p : / /www. w3 . o rg /1999/02/22 − rd f−syn tax−ns #”
x m l n s : r d f s = ” h t t p : / /www. w3 . o rg / 2 0 0 0 / 0 1 / rd f−schema# ”
x m l n s : w i s e = ”&wise ; ”
xmlns :nav = ”&nav ; ”
xmlns = ”&p r e s e n t a t i o n ; ”
x m l : b a s e = ”&p r e s e n t a t i o n ; ”

>
<owl :On to log y r d f : a b o u t =” ”>

<rd f s : commen t>P r e s e n t a t i o n Model</ r d f s : commen t>
<o w l : v e r s i o n I n f o >$ I d : p r e s e n t a t i o n . owl 620 2006−03−25 15 : 3 0 : 4 8 Z k a l t z $</

o w l : v e r s i o n I n f o >
</ owl :On to logy>

<!−−
I n s t a n c e s o f p r e s e n t a t i o n s
−−>

<w i s e : P r e s e n t a t i o n r d f : I D =” p1 ”>
<w i s e : p r e s e n t a t i o n C o n t a i n e r r d f : r e s o u r c e =”&nav ; r20a ” />
<w i s e : s t y l e r d f : r e s o u r c e =” # s t y l e 2 ” />
<w i s e : p r e s e n t a t i o n A d a p t a t i o n r d f : r e s o u r c e =” # a1 ” />

</ w i s e : P r e s e n t a t i o n >

<!−−
A d a p t a t i o n p r o p e r t y i n s t a n c e s
−−>

<w i s e : A d a p t a t i o n r d f : I D =” a1 ”>
<wise : i t emNamespace>&p r e s e n t a t i o n ;</ w i se : i t emNamespace>
<w i s e : a d a p t a t i o n M a x I t e m s >1</ w i s e : a d a p t a t i o n M a x I t e m s >
<w i s e : r e l e v a n c e T h r e s h o l d >0 . 1</ w i s e : r e l e v a n c e T h r e s h o l d >

</ w i s e : A d a p t a t i o n>

<!−−
I n s t a n c e s o f s t y l e
−−>

<w i s e : S t y l e r d f : I D =” s t y l e 1 ”>
<w i s e : c l a s s>s p o r t y S t o r e </ w i s e : c l a s s>

</ w i s e : S t y l e >

<w i s e : S t y l e r d f : I D =” s t y l e 2 ”>
<w i s e : c l a s s>c o n s e r v a t i v e S t o r e</ w i s e : c l a s s>

</ w i s e : S t y l e >

</ rdf:RDF>

Listing C.4: Presentation model for the case study

Context Relations

<?xml v e r s i o n =” 1 . 0 ”?>
<!DOCTYPE rdf :RDF [

<!ENTITY xsd ” h t t p : / / www. w3 . o rg / 2 0 0 1 / XMLSchema#”>
<!ENTITY owl ” h t t p : / / www. w3 . o rg / 2 0 0 2 / 0 7 / owl # ”>
<!ENTITY wise ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / wi se # ” >
<!ENTITY r e l e v a n c e ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / r e l e v a n c e #”>
<!ENTITY domain ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / domain # ”>



144 C. Models for a Prototypical Web Application

<!ENTITY t ime ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / c o n t e x t / t ime # ”>
<!ENTITY u s e r ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / c o n t e x t / u s e r # ”>
<!ENTITY d e v i c e ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / c o n t e x t / d e v i c e # ”>
<!ENTITY l o c a t i o n ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / c o n t e x t / l o c a t i o n #”>
<!ENTITY view ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / view # ”>
<!ENTITY p r e s e n t a t i o n ” h t t p : / / w i se . i n t e r a c t i v e s y s t e m s . i n f o / p r e s e n t a t i o n # ”>
]>

<rdf :RDF
xmlns :owl =” h t t p : / / www. w3 . o rg / 2 0 0 2 / 0 7 / owl #”
x m l n s : r d f =” h t t p : / / www. w3 . o rg /1999/02/22 − rd f−syn tax−ns #”
x m l n s : r d f s =” h t t p : / / www. w3 . o rg / 2 0 0 0 / 0 1 / rd f−schema #”
x m l n s : x s d =” h t t p : / / www. w3 . o rg / 2 0 0 1 / XMLSchema# ”
x m l n s : w i s e = ”&wise ; ”
xmlns = ”&r e l e v a n c e ; ”
x m l n s : r e l e v a n c e = ”&r e l e v a n c e ; ”
x m l : b a s e = ”&r e l e v a n c e ; ”

xmlns :doma in = ”&domain ; ”
x m l n s : t i m e = ”&t ime ; ”
x m l n s : u s e r = ”&u s e r ; ”
x m l n s : d e v i c e = ”&d e v i c e ; ”
x m l n s : l o c a t i o n = ”&l o c a t i o n ; ”
xmlns :v i ew = ”&view ; ”
x m l n s : p r e s e n t a t i o n = ”&p r e s e n t a t i o n ; ”
>
<owl :On to log y r d f : a b o u t =” ”>

<rd f s : commen t>C o n t e x t R e l a t i o n s Onto logy</ r d f s : commen t>
<o w l : v e r s i o n I n f o >$ I d : c o n t e x t r e l a t i o n s . owl 589 2006−03−19 18 : 5 5 : 2 4 Z k a l t z $</

o w l : v e r s i o n I n f o >
< r d f s : l a b e l >C o n t e x t R e l a t i o n s Onto logy</ r d f s : l a b e l >

</ owl :On to logy>

<w i s e : C o n t e x t R e l a t i o n r d f : I D =” re01 ”>
<w i s e : r e l e v a n c e I t e m r d f : r e s o u r c e =”&domain ; ou tdoorRunn ingShoe ” />
<w i s e : r e l e v a n c e I t e m r d f : r e s o u r c e =”&t ime ; summer” />
<w i s e : i n f l u e n c e V a l u e r d f : d a t a t y p e =”&xsd ; f l o a t ”>1 . 0</ w i s e : i n f l u e n c e V a l u e >

</ w i s e : C o n t e x t R e l a t i o n >

<w i s e : C o n t e x t R e l a t i o n r d f : I D =” re02 ”>
<w i s e : r e l e v a n c e I t e m r d f : r e s o u r c e =”&domain ; ou tdoorRunn ingShoe ” />
<w i s e : r e l e v a n c e I t e m r d f : r e s o u r c e =”&t ime ; summer” />
<w i s e : r e l e v a n c e I t e m r d f : r e s o u r c e =”&u s e r ; A t h l e t e ” />
<w i s e : i n f l u e n c e V a l u e r d f : d a t a t y p e =”&xsd ; f l o a t ”>1 . 0</ w i s e : i n f l u e n c e V a l u e >

</ w i s e : C o n t e x t R e l a t i o n >

<w i s e : C o n t e x t R e l a t i o n r d f : I D =” re03 ”>
<w i s e : r e l e v a n c e I t e m r d f : r e s o u r c e =”&u s e r ; Spor tsman ” />
<w i s e : r e l e v a n c e I t e m r d f : r e s o u r c e =”&p r e s e n t a t i o n ; s t y l e 1 ” />
<w i s e : i n f l u e n c e V a l u e r d f : d a t a t y p e =”&xsd ; f l o a t ”>1 . 0</ w i s e : i n f l u e n c e V a l u e >

</ w i s e : C o n t e x t R e l a t i o n >

<w i s e : r d f : I D =” re04 ”>
<w i s e : r e l e v a n c e I t e m r d f : r e s o u r c e =”&domain ; s k i C l o t h i n g ” />
<w i s e : r e l e v a n c e I t e m r d f : r e s o u r c e =”&t ime ; autumn ” />
<w i s e : i n f l u e n c e V a l u e r d f : d a t a t y p e =”&xsd ; f l o a t ”>1 . 0</ w i s e : i n f l u e n c e V a l u e >

</ w i s e : C o n t e x t R e l a t i o n >

</ rdf:RDF>

Listing C.5: Context relations model for the case study



Appendix D

CATWALK Framework UML Diagrams

This appendix contains supplementary UML diagrams to document the CATWALK framework, as
described in Chapter 5.

Figure D.1 provides the class diagram containing interface and default implementations for the
ContextExtractor component.

Figure D.1: ContextExtractor class diagram



146 D. CATWALK Framework UML Diagrams

Figure D.2 describes how the framework sets up an object-oriented representation of the context
model (in the figure, the instance cmodel of the class ContextModel) by using Excalibur’s source
resolving mechanism. This mechanism in turn allows for accessing a, possibly remote, location of
model sources.

Figure D.2: Context model setup sequence diagram

Figure D.3 shows a class diagram for the components and classes used in supporting the feature of
context simulation. The generators provide an XML representation of current application information.
The XML-serialized representation is usable for GUI generation, and for debugging during develop-
ment, for example via logging statements. The ContextStateGenerator outputs context state; the
ContextHistoryGenerator outputs past states of context. The ContextModelGenerator can be
used to output available context factors (see Section 5.2.3) in a serialized form.

The integration of the simulation generator components in a Cocoon pipeline is illustrated in
the pipeline processing diagrams of Figure D.4. The upper pipeline creates the GUI for the context
simulator. The action registered as contextinfo, implemented by the ContextInfoAction class, is
called prior to each request for the context simulation GUI, to check if context and application models
are to be reloaded. Output from the generators as described above is then aggregated, and an XSLT
stylesheet applied to generate a user interface.

When the user chooses to activate or deactivate a factor, the lower pipeline is processed, resulting
in the action registered as contextsimulator being executed. This action is implemented by the
ContextSimulatorAction Java class, whose processing steps are illustrated in the following.

The sequence diagram in Figure D.5 documents the processing steps triggered by an execution of
the contextsimulator action. The method applySimulationCommands is called to set the context



147

Figure D.3: Context simulation class diagram

factors the user wishes to simulate. This processing step is also called at each request within the actual
Web application, to ensure that any existing simulation commands are processed after context sensing
mechanisms. For simplicity, the sequence diagram refers to a ContextManager, which is in fact a
component interface (see Section 5.2.1); in the actual system, a concrete component registered for
this instance is retrieved by Excalibur.



148 D. CATWALK Framework UML Diagrams

Figure D.4: Context simulation pipelines

Figure D.5: Context simulation processing sequence diagram



List of Figures

1.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 A three-tier architecture based on Cocoon . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 A context-aware e-commerce Web application . . . . . . . . . . . . . . . . . . . . . 47
3.2 Context factor categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Context knowledge and relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Context model for an e-commerce scenario . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Context model for an industry maintenance scenario . . . . . . . . . . . . . . . . . . 58
3.6 Context modeling augmenting the WISE methodology . . . . . . . . . . . . . . . . 60
3.7 Content block types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8 Representation of a context relation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.9 Context relation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.10 Ontology lookup specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.11 Adaptation specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.12 Navigation model entry definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.13 View and presentation model definition . . . . . . . . . . . . . . . . . . . . . . . . 67
3.14 Editing context relations using the MatrixBrowser . . . . . . . . . . . . . . . . . . 68
3.15 ContextBrowser: multi-dimensional context relations . . . . . . . . . . . . . . . . . 69

4.1 Operational environment of the context-aware architecture . . . . . . . . . . . . . . 72
4.2 Composite structure diagram of the context-aware architecture . . . . . . . . . . . . 73
4.3 Types of context-relevant resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Cocoon pipeline example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Cocoon component architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Context-leveraging stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7 Example of top-level user interface structures and stylesheets . . . . . . . . . . . . . 92
4.8 Principles for a SoC-based Web software architecture for context (WSAC) . . . . . . 93

5.1 Context framework component architecture . . . . . . . . . . . . . . . . . . . . . . 96
5.2 ContextManager class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 Request context extraction and notification sequence diagram . . . . . . . . . . . . . 99
5.4 ContextReasoner component class diagram . . . . . . . . . . . . . . . . . . . . . . 100
5.5 Context sensing activity regarding context state . . . . . . . . . . . . . . . . . . . . 101
5.6 Model representation class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.7 Ontology lookup class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.8 Ontology exploration class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 104



150 LIST OF FIGURES

5.9 AdaptationEngine interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.10 Adaptive transformers: class diagram . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.11 Navigation tree example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.12 Pipeline processing for navigation structure generation . . . . . . . . . . . . . . . . 109
5.13 Pipeline processing for content generation . . . . . . . . . . . . . . . . . . . . . . . 111
5.14 Processing flow for response generation to a typical user request . . . . . . . . . . . 114
5.15 Case study: application screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.16 Case study: model extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.17 Navigation adaptation demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.18 Content adaptation demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.19 Service adaptation demonstration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.20 Service adaptation demonstration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.21 Presentation adaptation demonstration - View . . . . . . . . . . . . . . . . . . . . . 120
5.22 Presentation adaptation demonstration - GUI attributes . . . . . . . . . . . . . . . . 120
5.23 Context simulation screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D.1 ContextExtractor class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
D.2 Context model setup sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . 146
D.3 Context simulation class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
D.4 Context simulation pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
D.5 Context simulation processing sequence diagram . . . . . . . . . . . . . . . . . . . 148



List of Tables

1.1 Network-centric applications in a professional environment . . . . . . . . . . . . . . 15

2.1 Applications using context-awareness . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Architectural approaches in research regarding adaptivity . . . . . . . . . . . . . . . 29

3.1 Adaptation effects in a Web application . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Context characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Content-driven vs. technology-driven representation . . . . . . . . . . . . . . . . . . 76
4.2 General architectural approaches for adaptive systems . . . . . . . . . . . . . . . . . 77
4.3 Component type overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Accounting for, and using context: summary . . . . . . . . . . . . . . . . . . . . . . 127

A.1 Standard authorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



152 LIST OF TABLES



List of Listings

4.1 Cocoon pipeline configuration example . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 GUI pattern and XSLT templating example . . . . . . . . . . . . . . . . . . . . . . 92
5.1 Context extractor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Sitemap configuration for model access . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Navigation generation input structure definition . . . . . . . . . . . . . . . . . . . . 110
5.4 Navigation generation output structure definition . . . . . . . . . . . . . . . . . . . 110
5.5 Content generation structure definition . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6 Service generation structure definition . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.1 Model elements in OWL syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.1 Conceptual model for the case study . . . . . . . . . . . . . . . . . . . . . . . . . . 137
C.2 Navigation model for the case study . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.3 View model for the case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.4 Presentation model for the case study . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.5 Context relations model for the case study . . . . . . . . . . . . . . . . . . . . . . . 143



154 LIST OF LISTINGS



Bibliography

Rakesh Agrawal, Jr. Roberto J. Bayardo, Daniel Gruhl, and Spiros Papadimitriou. Vinci: a service-
oriented architecture for rapid development of web applications. In WWW ’01: Proceedings of the
tenth international conference on World Wide Web, pages 355–365. ACM Press, 2001.

Grigoris Antoniou and Frank van Harmelen. Web Ontology Language. In Handbook on Ontologies.
Springer-Verlag, 2004.

Dhouha Ayed, Chantal Taconet, Nawel Sabri, and Guy Bernard. Context-aware distributed deploy-
ment of component-based applications. In Robert Meersman, Zahir Tari, and Angelo Corsaro, edi-
tors, OTM Workshops, volume 3292 of Lecture Notes in Computer Science, pages 36–37. Springer,
2004.

B. Badrinath, Armando Fox, Leonard Kleinrock, Gerald Popek, Peter Reiher, and M. Satyanarayanan.
A conceptual framework for network and client adaptation. Mobile Networks and Applications, 5
(4):221–231, 2000.

Sean Baker. Web Services and CORBA. In On the Move to Meaningful Internet Systems, 2002 -
DOA/CoopIS/ODBASE 2002 Confederated International Conferences DOA, CoopIS and ODBASE
2002, pages 618–632, London, UK, 2002. Springer-Verlag.

Stefania Bandini, Flavio De Paoli, Sara Manzoni, and Paolo Mereghetti. A support system to COTS-
based software development for business services. In Proceedings of the 14th international confer-
ence on Software engineering and knowledge engineering, pages 307–314. ACM Press, 2002.

Luciano Baresi, Franca Garzotto, and Paolo Paolini. From web sites to web applications: New issues
for conceptual modeling. In ER ’00: Proceedings of the Workshops on Conceptual Modeling
Approaches for E-Business and The World Wide Web and Conceptual Modeling, pages 89–100,
London, UK, 2000. Springer-Verlag.

Chris Barry and Michael Lang. A survey of multimedia and web development techniques and method-
ology usage. IEEE MultiMedia, 8(2):52–60, 2001.

Christian Becker and Daniela Nicklas. Where do spatial context-models end and where do ontologies
start? A proposal of a combined approach. In Proceedings of the First International Workshop
on Advanced Context Modelling, Reasoning and Management in conjunction with UbiComp 2004,
2004.

Michael Beigl, Albert Krohn, Tobias Zimmer, Christian Decker, and Philip Robinson. AwareCon: Sit-
uation Aware Context Communication. In Proceedings of UbiComp 2003: Ubiquitous Computing,
pages 132–139, Berlin, 2003. Springer.



156 BIBLIOGRAPHY

Fernando Bellas, Daniel Fernandez, and Abel Muino. A flexible framework for engineering ”my”
portals. In Proceedings of the 13th international conference on World Wide Web, pages 234–243.
ACM Press, 2004.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American, May
2001.

Howard Block, Rob Castle, and David Hritz. Creating Web Portals with BEA WebLogic. Apress,
2003.

Stefano Bocconi and Frank Nack. Vox populi: Automatic generation of biased video sequences.
In Proceedings of the 1st ACM workshop on Story representation, mechanism and context, pages
9–16. ACM Press, 2004.

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris Ferris, and
David Orchard. Web Services Architecture. Working Group Note, http://www.w3.org/TR/ws-arch/,
W3C, 2004.

Jan Bosch. Design Patterns as Language Constructs. Journal of Object-Oriented Programming, 11
(2):18–32, 1998.

Henning Böttger, Anders Møller, and Michael I. Schwartzbach. Contracts for cooperation between
Web service programmers and HTML designers. Journal of Web Engineering, 5(1):65–89, 2006.

Craig Boyle and Swee Hor Teh. Multimedia intelligent documentation: Metadoc v. In SIGDOC ’93:
Proceedings of the 11th annual international conference on Systems documentation, pages 21–27,
New York, NY, USA, 1993. ACM Press.

Claus Brabrand, Anders Møller, Anders Sandholm, and Michael I. Schwartzbach. A runtime system
for interactive Web services. Computer Networks, 31(11-16):1391–1401, May 1999.

Martin Bravenboer and Eelco Visser. Concrete syntax for objects: domain-specific language em-
bedding and assimilation without restrictions. In Proceedings of the 19th annual ACM SIGPLAN
Conference on Object-oriented programming, systems, languages, and applications, pages 365–
383. ACM Press, 2004.

Patrick Brézillon. Context in problem solving: A survey. The Knowledge Engineering Review, 14(1):
47–80, 1999.

Patrick Brézillon. Using Context for Supporting Users Efficiently. In HICSS ’03: Proceedings of
the 36th Annual Hawaii International Conference on System Sciences (HICSS’03) - Track 5, page
127.3. IEEE Computer Society, 2003.

Patrick Brézillon. A Context Approach of Social Networks. In Proceedings of the KI-2004 Interna-
tional Workshop on Modelling and Retrieval of Context, Vol-114. CEUR, 2004.

Patrick Brézillon, Marcos Borges, Jose Pino, and Jean-Charles Pomerol. Context-awareness in group
work: three case studies. In R. Meredith, G. Shanks, D. Arnott, and S. Carlsson, editors, IFIP Inter-
national Conference on Decision Support Systems (DSS-2004), pages 115–124. Monash University,
Australia, 2004.



BIBLIOGRAPHY 157

Peter Brusilovsky, Alfred Kobsa, and Julita Vassileva. Adaptive Hypertext and Hypermedia. Kluwer
Academic Publishers, 1998.

Robin Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User-
Adapted Interaction, 12(4):331–370, 2002.

Jenna Burrell, Paul Treadwell, and Geri K. Gay. Designing for context: usability in a ubiquitous
environment. In Proceedings on the 2000 conference on Universal Usability, pages 80–84. ACM
Press, 2000.

Christoph Bussler, Dieter Fensel, and Alexander Maedche. A conceptual architecture for semantic
web enabled web services. SIGMOD Record, 31(4):24–29, 2002.

Mario Cannataro, Alfredo Cuzzocrea, and Andrea Pugliese. XAHM: an adaptive hypermedia model
based on XML. In Proceedings of the 14th international conference on Software engineering and
knowledge engineering, pages 627–634, New York, NY, USA, 2002. ACM Press.

Mario Cannataro and Andrea Pugliese. A Flexible Architecture for Adaptive Hypermedia Systems.
In IJCAI’s Workshop on Intelligent Techniques for Web Personalization, 2001.

Leslie Carr, Wendy Hall, Sean Bechhofer, and Carole Goble. Conceptual linking: ontology-based
open hypermedia. In WWW ’01: Proceedings of the 10th international conference on World Wide
Web, pages 334–342, New York, NY, USA, 2001. ACM Press.

Ricardo Carreira, Jaime M. Crato, Daniel Gonçalves, and Joaquim A. Jorge. Evaluating adaptive user
profiles for news classification. In IUI ’04: Proceedings of the 9th international conference on
Intelligent user interface, pages 206–212. ACM Press, 2004.

Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne, and Kevin Wilkinson.
Jena: implementing the semantic web recommendations. In Proceedings of the 13th international
World Wide Web conference - Alternate track papers & posters, pages 74–83, New York, NY, USA,
2004. ACM Press.

Stefano Ceri, Florian Daniel, and Maristella Matera. Extending webml for modeling multi-channel
contextaware web applications. In Proceedings of WISE - MMIS’03 Workshop, pages 615–626.
IEEE Computer Society, 2003.

Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language (WebML): a modeling
language for designing Web sites. Computer Networks (Amsterdam, Netherlands: 1999), 33(1–6):
137–157, 2000.

Humberto Cervantes and Richard S. Hall. Autonomous Adaptation to Dynamic Availability Using
a Service-Oriented Component Model. In ICSE ’04: Proceedings of the 26th International Con-
ference on Software Engineering, pages 614–623, Washington, DC, USA, 2004. IEEE Computer
Society.

Guanling Chen and David Kotz. A survey of context-aware mobile computing research. Techni-
cal Report TR2000-381, Dept. of Computer Science, Dartmouth College, November 2000. URL
citeseer.ist.psu.edu/chen00survey.html.

citeseer.ist.psu.edu/chen00survey.html


158 BIBLIOGRAPHY

Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-aware pervasive computing en-
vironments. Special Issue on Ontologies for Distributed Systems, Knowledge Engineering Review,
18(3):197–207, May 2004.

Peter Chen. The entity-relationship model–toward a unified view of data. ACM Transactions on
Database Systems, Vol. 1, No. 1:9–36, 1976.

Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday, and Christos Efstratiou. Developing a
context-aware electronic tourist guide: some issues and experiences. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 17–24. ACM Press, 2000.

Dickson K. W. Chiu, Danny Kok, Alex K. C. Lee, and S. C. Cheung. Integrating Heterogeneous
Web Services with WebXcript. In COMPSAC ’03: Proceedings of the 27th Annual International
Conference on Computer Software and Applications, page 272. IEEE Computer Society, 2003.

Tim Clerckx, Frederik Winters, and Karin Coninx. Tool support for designing context-sensitive user
interfaces using a model-based approach. In TAMODIA ’05: Proceedings of the 4th international
workshop on Task models and diagrams, pages 11–18, New York, NY, USA, 2005. ACM Press.

Jim Conallen. Building Web applications with UML (2nd Edition). Addison-Wesley, Reading, Mass.,
2002.

Jeff Conklin. Hypertext: an introduction and survey. Computer, 20(9):17–41, 1987.

K.W. Copeland and C.J. Hwang. Third generation web applications, full service intranets, edi - the
fully integrated business model for electronic commerce. In Proceedings of the 7th Annual Internet
Society Networking Conference, 1997.

G. Costagliola, F. Ferrucci, and R. Francese. Web engineering: Models and methodologies for the
design of hypermedia applications. Handbook of Software Engineering & Knowledge Engineering,
8:181–199, 2002.

Michel Crampes and Sylvie Ranwez. Ontology-supported and ontology-driven conceptual navigation
on the world wide web. In HYPERTEXT ’00: Proceedings of the eleventh ACM on Hypertext and
hypermedia, pages 191–199. ACM Press, 2000.

Tony Culshaw. Enterprise Application Integration using Apache Cocoon 2.1. Website, 2003.
http://www.xml.com/pub/a/2003/11/12/cocoon-eai.html. Last visited May 20,
2006.

Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, 2000.

Ravi Darbhamulla and Pamela Lawhead. Paving the way towards an efficient learning management
system. In Proceedings of the 42nd annual Southeast regional conference, pages 428–433. ACM
Press, 2004.

Andrea R. de Andrade, Ethan V. Munson, and Mariada G. Pimentel. A document-based approach
to the generation of web applications. In Proceedings of the 2004 ACM symposium on Document
engineering, pages 45–47. ACM Press, 2004.

http://www.xml.com/pub/a/2003/11/12/cocoon-eai.html


BIBLIOGRAPHY 159

O. M. F. De Troyer and C. J. Leune. WSDM: a user centered design method for Web sites. Computer
Networks and ISDN Systems, 30(1-7):85–94, 1998.

Yogesh Deshpande and San Murugesan. Summary of the second ICSE workshop on web engineering.
SIGSOFT Software Engineering Notes, 26(1):76–77, 2001.

Anind K. Dey. Understanding and using context. Personal and Ubiquitous Computing, 5(1):4–7,
2001.

Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Human Computer Interaction,
16(2-4), 2001.

Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. a cappella: programming by
demonstration of context-aware applications. In CHI ’04: Proceedings of the 2004 conference on
Human factors in computing systems, pages 33–40. ACM Press, 2004.

Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-computer interaction, third
edition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2003.

Alan Dix, Tom Rodden, Nigel Davies, Jonathan Trevor, Adrian Friday, and Kevin Palfreyman. Ex-
ploiting space and location as a design framework for interactive mobile systems. Transactions on
Computer-Human Interaction, 7(3):285–321, 2000.

Mark Doernhoefer. Surfing the net for software engineering notes. SIGSOFT Software Engineering
Notes, 29(3):15–24, 2004.

Paul Dourish. What we talk about when we talk about context. Personal and Ubiquitous Computing,
8(1):19–30, 2004.

Reiner Dumke, Mathias Lother, Cornelius Wille, and Fritz Zbrog. Web Engineering. Pearson Studium,
2003.

Andreas Eberhart and Stefan Fischer. Web Services. Hanser Fachbuchverlag, 2003.

Christopher C. Ellsworth, Jr. James B. Fenwick, and Barry L. Kurtz. The Quiver system. In Proceed-
ings of the 35th SIGCSE technical symposium on Computer science education, pages 205–209.
ACM Press, 2004.

Thomas Erl. Service-Oriented Architecture : Concepts, Technology, and Design. Prentice Hall, 2005.

Steven Feiner, Blair Macintyre, and Dorée Seligmann. Knowledge-based augmented reality. Commu-
nications of the ACM, 36(7):53–62, 1993.

Zoltán Fiala, Michael Hinz, Geert-Jan Houben, and Flavius Frasincar. Design and implementation
of component-based adaptive Web presentations. In Proceedings of the 2004 ACM symposium on
Applied computing, pages 1698–1704, New York, NY, USA, 2004. ACM Press.

Roy T. Fielding and Richard N. Taylor. Principled design of the modern Web architecture. ACM
Transactions on Internet Technology, 2(2):115–150, 2002.

Robert Flenner. Jini and Javaspaces Application Development. Sams, 2001.



160 BIBLIOGRAPHY

George H. Forman and John Zahorjan. The challenges of mobile computing. IEEE Computer, 27(4):
38–47, 1994.

Flavius Frasincar, Geert-Jan Houben, and Peter Barna. Hera presentation generator. In WWW ’05:
Special interest tracks and posters of the 14th international conference on World Wide Web, pages
952–953, New York, NY, USA, 2005. ACM Press.

Svend Frolund and Kannan Govindarajan. cl: A language for formally defining web services inter-
actions. Technical Report HPL-2003-208, Hewlett Packard Laboratories, October 10 2003. URL
http://www.hpl.hp.com/techreports/2003/HPL-2003-208.pdf.

Franca Garzotto, Luca Mainetti, and Paolo Paolini. Hypermedia design, analysis, and evaluation
issues. Communications of the ACM, 38(8):74–86, 1995.

Franca Garzotto, Paolo Paolini, and Daniel Schwabe. HDM - a model-based approach to hypertext
application design. ACM Transactions on Information Systems, 11(1):1–26, 1993.

James H. Gilmore and B. Joseph Pine. Markets of One: Creating Customer-Unique Value through
Mass Customization. Harvard Business School Press, 2000.

Athula Ginige and San Murugesan. Guest editors’ introduction: Web engineering - an introduction.
IEEE MultiMedia, 8(1):14–18, 2001.

Aniruddha Gokhale, Bharat Kumar, and Arnaud Sahuguet. Reinventing the Wheel? CORBA vs. Web
Services. In Proceedings of the 11th International World Wide Web Conference, 2002.

Richard Gold and Cecilia Mascolo. Use of context-awareness in mobile peer-to-peer networks. In
Proc. IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS 01), 2001.

Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho-Garcia. Ontological Engi-
neering. Springer, 2004.

William G. Griswold, Robert Boyer, Steven W. Brown, and Tan Minh Truong. A component archi-
tecture for an extensible, highly integrated context-aware computing infrastructure. In ICSE ’03:
Proceedings of the 25th International Conference on Software Engineering, pages 363–372. IEEE
Computer Society, 2003.

John Grundy and Biao Yang. An environment for developing adaptive, multi-device user interfaces.
In CRPITS ’18: Proceedings of the Fourth Australian user interface conference on User interfaces
2003, pages 47–56. Australian Computer Society, Inc., 2003.

V. Haarslev, R. Möller, and M. Wessel. Querying the Semantic Web with Racer + nRQL. In Pro-
ceedings of the KI-2004 International Workshop on Applications of Description Logics. CEUR,
2004.

Frank Halasz and Mayer Schwartz. The Dexter hypertext reference model. Communications of the
ACM, 37(2):30–39, 1994.

George T. Heineman and William T. Councill, editors. Component-based software engineering:
putting the pieces together. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2001.

http://www.hpl.hp.com/techreports/2003/HPL-2003-208.pdf


BIBLIOGRAPHY 161

George T. Heineman and Helgo M. Ohlenbusch. An Evaluation of Component Adaptation Tech-
niques. In 2nd Annual Workshop on Component-Based Software Engineering, Los Angeles, CA,
1999.

I.T. Hernadvölgyi, G. Ucelli, O. Symonova, L. Delpero, and R. de Amicis. Shape Semantics from
Shape Context. In Proceedings of the KI-2004 International Workshop on Modelling and Retrieval
of Context, Vol-114. CEUR, 2004.

Ian Horrocks. The FaCT System. In TABLEAUX ’98: Proceedings of the International Conference
on Automated Reasoning with Analytic Tableaux and Related Methods, pages 307–312, London,
UK, 1998. Springer-Verlag.

T. Isakowitz, Edward A. Stohr, and P. Balasubramanian. RMM: a methodology for structured hyper-
media design. Communications of the ACM, 38(8):34–44, 1995.

Jens Jahnke, Yury Bychkov, David Dahlem, and Luay Kawasme. Context-Aware Information Services
for Health care. In Proceedings of the KI-2004 International Workshop on Modelling and Retrieval
of Context, Vol-114. CEUR, 2004.

Yuhui Jin, Stefan Decker, and Gio Wiederhold. Ontowebber: Model-driven ontology-based web site
management. In Isabel F. Cruz, Stefan Decker, Jérôme Euzenat, and Deborah L. McGuinness,
editors, SWWS, pages 529–547, 2001.

Joachim Wolfgang Kaltz. Using Context-Awareness to Support User Interaction with Web Services.
In International Conference on Internet and Web Applications and Services (ICIW’06). IEEE, 2006.

Joachim Wolfgang Kaltz, Steffen Lohmann, Eike Lang, Tim Hussein, and Jürgen Ziegler. Ontolo-
giebasiertes Engineering kontextadaptiver Webanwendungen. i-com Zeitschrift für interaktive und
kooperative Medien, 3/2005:22–30, 2005a.

Joachim Wolfgang Kaltz, Steffen Lohmann, and Jürgen Ziegler. Eine komponentenorientierte Ar-
chitektur für die kontextsensitive Adaption von Web-Anwendungen. In Informatik 2005 - Infor-
matik Live!, Beiträge der 35. Jahrestagung der Gesellschaft für Informatik e.V. (GI), pages 129–
133, Bonn, Germany, 2005b. Köllen-Verlag.

Joachim Wolfgang Kaltz and Jürgen Ziegler. A Conceptual Model for Context-aware Web Engineer-
ing. In Proceedings of the KI-2004 International Workshop on Modelling and Retrieval of Context,
Vol-114. CEUR, 2004.

Joachim Wolfgang Kaltz and Jürgen Ziegler. Supporting Systematic Usage of Context in Web Ap-
plications. In The 19th International FLAIRS Conference, special track on Modeling and Applying
Contexts in the Real World (MAC-06). AAAI, 2006.

Joachim Wolfgang Kaltz, Jürgen Ziegler, and Steffen Lohmann. Context-aware Web Engineering:
Modeling and Applications. RIA — Revue d’Intelligence Artificielle, Special Issue on Applying
Context Management, 19(3):439–458, 2005c.

Gerti Kappel, Birgit Pröll, Werner Retschitzegger, and Wieland Schwinger. Customisation for Ubiqui-
tous Web Applications - A Comparison of Approaches. International Journal of Web Engineering
and Technology, 1(1):79–111, 2003.



162 BIBLIOGRAPHY

Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plexousakis, and Michel
Scholl. RQL: a declarative query language for RDF. In WWW ’02: Proceedings of the 11th
international conference on World Wide Web, pages 592–603, New York, NY, USA, 2002. ACM
Press.

Jalal Kawash. Declarative user interfaces for handheld devices. In WISICT ’04: Proceedings of
the winter international synposium on Information and communication technologies, pages 1–6.
Trinity College Dublin, 2004.

KDE Community. Tenor, n.d. URL http://appeal.kde.org/wiki/Tenor. Last visited
March 16, 2006.

Markus Keidl and Alfons Kemper. Towards context-aware adaptable web services. In Proceedings
of the 13th international World Wide Web conference - Alternate Track Papers & Posters, pages
55–65, New York, NY, USA, 2004. ACM Press.

Norbert Kiesel, Andy Schuerr, and Bernhard Westfechtel. GRAS, A Graph-Oriented (Software) En-
gineering Database System. Information Systems, 20(1):21–51, 1995.

Ross King, Niko Popitsch, and Utz Westermann. METIS: a flexible database foundation for unified
media management. In Proceedings of the 12th annual ACM international conference on Multime-
dia, pages 744–745. ACM Press, 2004.

Nora Koch. Software Engineering for Adaptive Hypermedia Systems: Reference Model, Modeling
Techniques and Development Process. PhD thesis, Ludwig-Maximilians-University Munich, 2001.

Anders Kofod-Petersen and Agnar Aamodt. Case-based situation assessment in a mobile context-
aware system. In A. Kruger and R. Malaka, editors, Proceedings of AIMS2003, Workshop on
Artificial Intelligence for Mobile Systems, Seattle (WA), USA, 2003.

Andreas Kraus and Nora Koch. Generation of Web Applications from UML Models using an XML
Publishing Framework. In Proceedings of the 6th World Conference on Integrated Design and
Process Technology (IDPT), volume 1, 2002.

Mik Lamming and Mike Flynn. Forget-me-not: intimate computing in support of human memory. In
Proceedings FRIEND21 Symposium on Next Generation Human Interfaces, 1994.

Dongwon Lee and Wesley W. Chu. Comparative analysis of six XML schema languages. SIGMOD
Record, 29(3):76–87, 2000.

Yuangui Lei, Enrico Motta, and John Domingue. Design of customized web applications with On-
toWeaver. In K-CAP ’03: Proceedings of the international conference on Knowledge capture,
pages 54–61. ACM Press, 2003.

Quanzhong Li, Michelle Y. Kim, Edward So, and Steve Wood. Xvm: a bridge between xml data
and its behavior. In Proceedings of the 13th international conference on World Wide Web, pages
155–163. ACM Press, 2004.

Henry Lieberman. Letizia: an agent that assists web browsing. In Chris S. Mellish, editor, Proceedings
IJCAI-95, 14th International Joint Conference on Artificial Intelligence, pages 924–929. Morgan
Kaufmann Publishers, 1995.

http://appeal.kde.org/wiki/Tenor


BIBLIOGRAPHY 163

Fernanda Lima and Daniel Schwabe. Application modeling for the semantic web. In LA-WEB ’03:
Proceedings of the First Conference on Latin American Web Congress, page 93, Washington, DC,
USA, 2003. IEEE Computer Society.

Hugo Liu and Pattie Maes. What would they think?: a computational model of attitudes. In Proceed-
ings of the 2004 International Conference on Intelligent User Interfaces, pages 38–45, 2004.

Sushil J. Louis and Anil Shankar. Context learning can improve user interaction. In Du Zhang, Éric
Grégoire, and Doug DeGroot, editors, IRI, pages 115–120. IEEE Systems, Man, and Cybernetics
Society, 2004.

Zakaria Maamar, Soraya Kouadri, and Hamdi Yahyaoui. A Web services composition approach based
on software agents and context. In Proceedings of the 2004 ACM symposium on Applied computing,
pages 1619–1623. ACM Press, 2004.

Ankur Mani, Hari Sundaram, David Birchfield, and Gang Qian. The networked home as a user-centric
multimedia system. In NRBC ’04: Proceedings of the 2004 ACM workshop on Next-generation
residential broadband challenges, pages 19–30, New York, NY, USA, 2004. ACM Press.

Ioana Manolescu, Marco Brambilla, Stefano Ceri, Sara Comai, and Piero Fraternali. Model-driven
design and deployment of service-enabled web applications. ACM Transactions on Internet Tech-
nology, 5(3):439–479, 2005.

Stefano Mazzocchi. Introducing Cocoon 2.0. Website, 2002.
http://www.xml.com/pub/a/2002/02/13/cocoon2.html. Last visited May 20,
2006.

Brian McBride. RDF and its Vocabulary Description Language. In Handbook on Ontologies.
Springer-Verlag, 2004.

John L. McCarthy. Notes on formalizing context. In Proceedings of the International Joint Confer-
ences on Artificial Intelligence (IJCAI), pages 555–562, 1993.

Robert Meersman. Semantic Web and Ontologies: Playtime or Business at the Last Frontier in Com-
puting ? In Proceedings of the NSF-EU Workshop on Database and Information Systems Research
for Semantic Web and Enterprises (on-line), pages 61–67, 2002.

Marius Mikalsen and Anders Kofod-Petersen. Representing and Reasoning about Context in a Mobile
Environment. In Proceedings of the KI-2004 International Workshop on Modelling and Retrieval
of Context, Vol-114. CEUR, 2004.

Scott Mitchell. Designing Active Server Pages. O’Reilly, Sebastopol, CA, USA, 2000.

Lajos Moczar and Jeremy Aston. Cocoon Developer’s Handbook. Sams, Indianapolis, IN, USA,
2002.

Francisco Jose Monaco, Adilson Gonzaga, and Leonardo B. Guerreiro. Restraining content explosion
vs. constraining content growth. In Web Engineering, Software Engineering and Web Application
Development, pages 148–155. Springer-Verlag, 2001.

Adam Moore, Timothy J. Brailsford, and Craig D. Stewart. Personally tailored teaching in WHURLE
using conditional transclusion. In Proceedings of the twelfth ACM conference on Hypertext and
Hypermedia, pages 163–164. ACM Press, 2001.

http://www.xml.com/pub/a/2002/02/13/cocoon2.html


164 BIBLIOGRAPHY

David R. Morse, Stephen Armstrong, and Anind K. Dey. The what, who, where, when, why and
how of context-awareness. In CHI ’00 extended abstracts on Human factors in computing systems,
pages 371–371. ACM Press, 2000.

Thomas J. Mowbray and William A. Ruh. Inside Corba: Distributed Object Standards and Applica-
tions. Addison Wesley Longman, 1997.

John Paul Mueller. Active X From the Ground Up. McGraw-Hill, 1997.

San Murugesan, Yogesh Deshpande, Steve Hansen, and Athula Ginige. Web Engineering: A New
Discipline for Development of Web-Based Systems. In S. Murugesan and Y. Desphande, editors,
Web Engineering. Managing Diversity and Complexity of Web Application Development, volume
2016 of LNCS, page 3 ff, Berlin, Heidelberg, 2001. Springer.

Jocelyne Nanard and Marc Nanard. Hypertext design environments and the hypertext design process.
Communications of the ACM, 38(8):49–56, 1995.

Surya Nepal and Uma Srinivasan. Dave: a system for quality driven adaptive video delivery. In
Proceedings of the 5th ACM SIGMM international workshop on Multimedia information retrieval,
pages 223–230. ACM Press, 2003.

Gustav Neumann and Uwe Zdun. Distributed web application development with active web objects.
In Proceedings of The 2nd International Conference on Internet Computing, pages 623–629, 2001.

Eric Newcomer. Understanding Web Services: XML, WSDL, SOAP, and UDDI. Addison-Wesley,
2002.

Hung Q. Ngo, Anjum Shehzad, Saad Liaquat, Maria Riaz, and Sungyoung Lee. Developing Context-
Aware Ubiquitous Computing Systems with a Unified Middleware Framework. In Embedded and
Ubiquitous Computing: International Conference EUC 2004, Aizu-Wakamatsu City, Japan. Pro-
ceedings, pages 672 – 681. Springer-Verlag, 2004.

Jakob Nielsen. Hypertext and hypermedia. Academic Press Professional, Inc., San Diego, CA, USA,
1990.

Marko Niinimaki, Miika Tuisku, and Matti Heikkurinen. Designing for flexibility: separating user
interface design from program logic and data. In Proceedings of the 1st international symposium
on Information and communication technologies, pages 475–480. Trinity College Dublin, 2003.

Daniel Oberle, Steffen Staab, Rudi Studer, and Raphael Volz. Supporting application development in
the semantic web. ACM Transactions on Internet Technology, 5(2):328–358, 2005.

Object Management Group. Unified Modeling Language, n.d. URL
http://www.omg.org/technology/documents/formal/uml.htm. Last visited
October 20, 2005.

Open Mobile Alliance. User Agent Profile, 2003. URL
http://www.openmobilealliance.org/release_program/docs/UAProf/OMA-UAProf-V2_0-20030520-C.PDF.
Last visited May 21, 2006.

Reinhard Oppermann, editor. Adaptive user support: ergonomic design of manually and automatically
adaptable software. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA, 1994.

http://www.omg.org/technology/documents/formal/uml.htm
http://www.openmobilealliance.org/release_program/docs/UAProf/OMA-UAProf-V2_0-20030520-C.PDF


BIBLIOGRAPHY 165

Randy J. Pagulayan, Kevin Keeker, Dennis Wixon, Ramon L. Romero, and Thomas Fuller. User-
centered design in games. The human-computer interaction handbook: fundamentals, evolving
technologies and emerging applications, pages 883–906, 2003.

Daniela Petrelli, Elena Not, Massimo Zancanaro, Carlo Strapparava, and Oliviero Stock. Modelling
and adapting to context. Personal and Ubiquitous Computing, 5(1):20–24, 2001.

Marlon Pierce, Geoffrey Fox, Choonhan Youn, Steve Mock, Kurt Mueller, and Ozgur Balsoy. In-
teroperable Web services for computational portals. In Supercomputing ’02: Proceedings of the
2002 ACM/IEEE conference on Supercomputing, pages 1–12, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

Salil Pradhan. Semantic location. Personal and Ubiquitous Computing, 4(4):213–216, 2000.

Steve Punte. Getting Started With Cocoon 2. Website, 2002.
http://www.xml.com/pub/a/2002/07/10/cocoon2.html. Last visited May 20,
2006.

Jean-Philippe Ramu, Yvonne Barnard, Francis Payeur, and Patrick Larroque. Contextualised opera-
tional documentation in aviation. In Human Factors in Design. Shaker Publishing, 2004.

Germano Resconi and Lakhmi C. Jain. Intelligent Agents - Theory and Applications. Springer, 2004.

Howard Rheingold. Smart Mobs: The Next Social Revolution. Perseus Publishing, 2002.

John Riedl and Joseph Konstan. Word of Mouse: The Marketing Power of Collaborative Filtering.
Warner Business Books, 2002.

James Robertson. Content reuse in practice. Website, 2004.
http://www.steptwo.com.au/papers/kmc_contentreuse/pdf/KMC_ContentReuse.pdf.
Last visited March 13, 2006.

Cristiano Rocha, Daniel Schwabe, and Marcus Poggi Aragao. A hybrid approach for searching in the
semantic web. In WWW ’04: Proceedings of the 13th international conference on World Wide Web,
pages 374–383, New York, NY, USA, 2004. ACM Press.

Matthew J. Rutherford and Alexander L. Wolf. A case for test-code generation in model-driven sys-
tems. In GPCE ’03: Proceedings of the second international conference on Generative program-
ming and component engineering, pages 377–396, New York, NY, USA, 2003. Springer-Verlag
New York, Inc.

Michael Samulowitz, Florian Michahelles, and Claudia Linnhoff-Popien. Adaptive interaction for
enabling pervasive services. In Proceedings of the 2nd ACM international workshop on Data engi-
neering for wireless and mobile access, pages 20–26. ACM Press, 2001.

J. Ben Schafer, Joseph A. Konstan, and John Riedl. E-commerce recommendation applications. Data
Mining and Knowledge Discovery, 5(1-2):115–153, 2001.

Arno Scharl. Evolutionary Web Development. Springer-Verlag, Secaucus, NJ, USA, 2000.

Herbert Schildt. Java: The Complete Reference, J2SE 5 Edition. McGraw-Hill Osborne Media, 2004.

http://www.xml.com/pub/a/2002/07/10/cocoon2.html
http://www.steptwo.com.au/papers/kmc_contentreuse/pdf/KMC_ContentReuse.pdf


166 BIBLIOGRAPHY

Bill Schilit and M. Theimer. Disseminating Active Map Information to Mobile Hosts. IEEE Network,
8(5):22–32, 1994.

Bill N. Schilit, Anthony LaMarca, Gaetano Borriello, William G. Griswold, David McDonald, Ed-
ward Lazowska, Anand Balachandran, Jason Hong, and Vaughn Iverson. Challenge: ubiquitous
location-aware computing and the ”place lab” initiative. In WMASH ’03: Proceedings of the 1st
ACM international workshop on Wireless mobile applications and services on WLAN hotspots,
pages 29–35, New York, NY, USA, 2003. ACM Press.

Albrecht Schmidt. Implicit Human Computer Interaction Through Context. In Personal Technologies
Volume 4(2 and 3), pages 192 – 199, 2000.

Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is more to context than location.
Computers and Graphics, 23(6):893–901, 1999.

Albrecht Schmidt and Kristof Van Laerhoven. How to build smart appliances. IEEE Personal Com-
munications, pages 66–71, 2001.

Barbara Schmidt-Belz, Heimo Laamanen, Stefan Poslad, and Alexander Zipf. Location-based mobile
tourist services - first user experiences. In A. J. Frew, M. Hitz, and P. O’Connor, editors, Proceed-
ings of the 10th International Conference on Information Technologies in Tourism (ENTER 2003),
Helsinki, Finland, 2003. Springer-Verlag.

Jean-Guy Schneider and Jun Han. Components - the Past, the Present, and the Future. In Wolf-
gang Weck Clemens Szyperski and Jan Bosch, editors, Proceedings of Ninth International Work-
shop on Component-Oriented Programming, 2004.

Daniel Schwabe and Gustavo Rossi. An object oriented approach to web-based applications design.
Theory and Practice of Object Systems, 4(4):207–225, 1998.

Ahmed Seffah and Eduard Metzker. The obstacles and myths of usability and software engineering.
Communications of the ACM, 47(12):71–76, 2004.

Michael Semrau and Achim Kraiss. Mobile commerce for financial services—killer applications or
dead end? SIGGROUP Bulletin, 22(1):22–25, 2001.

Humphrey Sheil. Distributed scientific computing in java: observations and recommendations. In
PPPJ ’03: Proceedings of the 2nd international conference on Principles and practice of program-
ming in Java, pages 219–222, New York, NY, USA, 2003. Computer Science Press, Inc.

B.I.J. Siljee, I.E. Bosloper, and J.A.G. Nijhuis. A Classification Framework for Storage and Retrieval
of Context. In Proceedings of the KI-2004 International Workshop on Modelling and Retrieval of
Context, Vol-114. CEUR, 2004.

Aaron Skonnard and Martin Gudgin. Essential XML Quick Reference: A Programmer’s Reference to
XML, XPath, XSLT, XML Schema, SOAP, and More. Addison-Wesley, 2001.

Peter Spyns, Robert Meersman, and Mustafa Jarrar. Data modelling versus ontology engineering.
SIGMOD Record, 31(4):12–17, 2002.

Christopher Staff. Hypercontextr: A model for adaptive hypertext. In A. Jameson, C. Paris, and
C. Tasso, editors, Proceedings of the Sixth International Conference on User Modeling, pages 33–
39. Springer, Berlin, 1997.



BIBLIOGRAPHY 167

Christopher D Staff. The hypercontext framework for adaptive hypertext. In HYPERTEXT ’02:
Proceedings of the thirteenth ACM conference on Hypertext and hypermedia, pages 11–20. ACM
Press, 2002.

Stanford Medical Informatics. The Protégé Ontology Editor and Knowledge Acquisition System, n.d.
URL http://protege.stanford.edu/. Last visited March 8, 2006.

Martin Staudt, Jorg-Uwe Kietz, and Ulrich Reimer. A data mining support environment and its appli-
cation on insurance data. In Knowledge Discovery and Data Mining, pages 105–111, 1998.

Thomas Strang and Claudia Linnhoff-Popien. A Context Modeling Survey. In Workshop on Advanced
Context Modelling, Reasoning and Management as part of UbiComp 2004 - The Sixth International
Conference on Ubiquitous Computing, 2004.

Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank. Applications of a Context Ontology
Language. In Dinko Begusic and Nikola Rozic, editors, Proceedings of International Conference on
Software, Telecommunications and Computer Networks (SoftCom2003), pages 14–18. University
of Split, Croatia, 2003a.

Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank. CoOL: A Context Ontology Lan-
guage to enable Contextual Interoperability. In Jean-Bernard Stefani, Isabelle Dameure, and Daniel
Hagimont, editors, Proceedings of 4th International Conference on Distributed Applications and
Interoperable Systems (DAIS2003), volume 2893 of Lecture Notes in Computer Science (LNCS),
pages 236–247, Paris, France, 2003b. Springer.

Jun-Zhao Sun and Jaakko Sauvola. Towards a conceptual model for context-aware adaptive services.
In Proceedings of the Fourth International Conference on Parallel and Distributed Computing,
Applications and Technologies, pages 90 – 94, 2003.

Koichi Terai, Noriaki Izumi, and Takahira Yamaguchi. Coordinating Web Services based on business
models. In Proceedings of the 5th international conference on Electronic commerce, pages 473–
478. ACM Press, 2003.

Scott M. Thayer and Peter Steenkiste. An Architecture for the Integration of Physical and Informa-
tional Spaces. Personal and Ubiquitous Computing, 7(2):82–90, 2003.

The Apache Software Foundation. The Apache Cocoon Project, n.d.a. URL
http://cocoon.apache.org. Last visited September 09, 2005.

The Apache Software Foundation. Apache Excalibur, n.d.b. URL
http://excalibur.apache.org. Last visited September 09, 2005.

The Apache Software Foundation. Struts, n.d.c. URL http://struts.apache.org. Last
visited September 09, 2005.

The Apache Software Foundation. WebServices - Axis, n.d.d. URL
http://ws.apache.org/axis/. Last visited September 09, 2005.

Jerome Thomere, Ken Barker, Vinay Chaudhri, Peter Clark, Michael Eriksen, Sunil Mishra, Bruce
Porter, and Andres Rodriguez. A web-based ontology browsing and editing system. In Eighteenth
national conference on Artificial intelligence, pages 927–934. American Association for Artificial
Intelligence, 2002.

http://protege.stanford.edu/
http://cocoon.apache.org
http://excalibur.apache.org
http://struts.apache.org
http://ws.apache.org/axis/


168 BIBLIOGRAPHY

Michael E. Tipping. Sparse bayesian learning and the relevance vector machine. Machine Learning
Research, 1:211–244, 2001.

Wolfgang Trumler, Faruk Bagci, Jan Petzold, and Theo Ungerer. Smart Doorplates - Toward an
Autonomic Computing System. Personal and Ubiquitous Computing, 7(3-4):221–226, 2003.

Eric van der Vlist. XML Schema. O’Reilly, Sebastopol, CA, USA, 2002.

Eric van der Vlist. RELAX NG. O’Reilly, Sebastopol, CA, USA, 2003.

Jacco van Ossenbruggen, Joost Geurts, Frank Cornelissen, Lynda Hardman, and Lloyd Rutledge. To-
wards second and third generation web-based multimedia. In Proceedings of the tenth international
conference on World Wide Web, pages 479–488. ACM Press, 2001.

Chris Vandervelpen and Karin Coninx. Towards model-based design support for distributed user
interfaces. In NordiCHI ’04: Proceedings of the third Nordic conference on Human-computer
interaction, pages 61–70, New York, NY, USA, 2004. ACM Press.

Steve Vandivier and Kelly Cox. Oracle9i Application Server Portal Handbook. Osborne/McGraw-
Hill, 2001.

Giannis Varelas, Epimenidis Voutsakis, Paraskevi Raftopoulou, Euripides G.M. Petrakis, and Evange-
los E. Milios. Semantic similarity methods in wordnet and their application to information retrieval
on the web. In WIDM ’05: Proceedings of the 7th annual ACM international workshop on Web
information and data management, pages 10–16, New York, NY, USA, 2005. ACM Press.

Richard Vdovjak, Flavius Frasincar, Geert-Jan Houben, and Peter Barna. Engineering semantic web
information systems in hera. Journal of Web Engineering, 2(1-2):3–26, 2003.

Carl Vieregger. Product Roundup: A Peck of Java Portlets. Software Development, (3):27–29, 2003.

W3C. SPARQL Query Language for RDF. Working Draft, http://www.w3.org/TR/2005/WD-rdf-
sparql-query-20050217/, W3C, 2005.

W3C Device Independence Working Group. Device Independence Activity, n.d. URL
http://www.w3.org/2001/di/. Last visited April 4, 2006.

Ethan Watrall. Dreamweaver MX: Design and Technique. Sybex Inc, 2002.

Christian Wege. Portal server technology. IEEE Internet Computing, 6(3):73–77, 2002.

Florian Wegscheider, Thomas Dangl, Michael Jank, and Rainer Simon. A multimodal interaction
manager for device independent mobile applications. In Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters, pages 272–273. ACM Press,
2004.

Graham Wilcock. Integrating Natural Language Generation with XML Web Technology. In Proceed-
ings of the Demo Sessions of EACL-2003, Budapest, pages 247 – 250, 2003.

Terry Winograd. Architectures for Context. Human-Computer Interaction, 16:401–419, 2001.

WISE. Web Information and Service Engineering, Bundesministerium für Bildung und Forschung
(BMBF) funded project (Nr. 01ISC30F), n.d. URL http://www.wise-projekt.de. Last
visited May 20, 2006.

http://www.w3.org/2001/di/
http://www.wise-projekt.de


BIBLIOGRAPHY 169

Michael Wissen. Eine komponentenorientierte Vorgehensweise zur Modellierung von Websites. i-
com, 4(1):13–21, 2004a.

Michael Wissen. Eine Vorgehensweise zur systematischen Modellierung web-
basierter Anwendungen. Dissertation, Institut für Arbeitswissenschaft und Tech-
nologiemanagement der Universität Stuttgart, Stuttgart, Germany, 2004b. URL
http://elib.uni-stuttgart.de/opus/volltexte/2005/2272/.

Michael Wissen and Jürgen Ziegler. A Methodology for the Component-Based Development of Web
Applications. In Proceedings of 10th Int. Conf. on Human - Computer Interaction (HCI Interna-
tional 2003), Vol. 1, Crete, Greece, 2003.

Tomoko Yonezawa, Brian Clarkson, Michiaki Yasumura, and Kenji Mase. Context-aware sensor-
doll as a music expression device. In CHI ’01 extended abstracts on Human factors in computing
systems, pages 307–308. ACM Press, 2001.

M. R. Zakaria, A. Moore, C. D. Stewart, and T. J. Brailsford. ”Pluggable” user models for adaptive
hypermedia in education. In Proceedings of the fourteenth ACM conference on Hypertext and
hypermedia, pages 170–171. ACM Press, 2003.

Jia Zhang, Jen-Yao Chung, and Carl K. Chang. Towards increasing web application productivity. In
SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing, pages 1677–1681, New
York, NY, USA, 2004. ACM Press.

Carsten Ziegeler and Matthew Langham. Cocoon: Building XML Applications. Sams, Indianapolis,
IN, USA, 2002.

Jürgen Ziegler, Christoph Kunz, and Veit Botsch. Matrix browser: visualizing and exploring large
networked information spaces. In CHI ’02 extended abstracts on Human factors in computing
systems, pages 602–603. ACM Press, 2002.

Jürgen Ziegler, Steffen Lohmann, and Joachim Wolfgang Kaltz. Kontextmodellierung für adaptive
webbasierte Systeme. In C. Stary, editor, Mensch & Computer 2005: Kunst und Wissenschaft -
Grenzüberschreitungen der interaktiven ART, pages 181–189, München, Germany, 2005. Olden-
bourg.

Olaf Zimmermann, Vadim Doubrovski, Jonas Grundler, and Kerard Hogg. Service-oriented archi-
tecture and business process choreography in an order management scenario: rationale, concepts,
lessons learned. In OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 301–312, New York,
NY, USA, 2005. ACM Press.

Zope Community. Zope.org, n.d. URL http://www.zope.org. Last visited March 16, 2006.

http://elib.uni-stuttgart.de/opus/volltexte/2005/2272/
http://www.zope.org

	Introduction
	Theme Explanation
	Adaptivity and Context
	Web Applications
	Web Engineering

	Problems and Challenges
	Goals of this Dissertation

	State of the Art
	Context-awareness
	Accounting for Context
	Context Representation
	Architectures for Adaptivity

	Common Approaches to Web Application Development
	Portal Technology
	Web Content Management Systems
	Web Services
	Application Frameworks

	Methodologies for Web Engineering
	Engineering for Context-awareness and Usability

	Context in Web Applications
	Adaptation to Context
	Context Usages and Characteristics
	Example Scenarios
	Categorization of Context Elements
	Aspects of Context

	A Unifying Context Model
	A Formal Definition of Context
	Concrete Context Model
	Context Knowledge and Relations
	Example Context Models

	Context Modeling in the Web Engineering Process
	Application Models and Context
	Domain Ontology
	Context Representation
	Ontology Lookups
	Adaptation Specifications
	Navigation Model
	Modeling for Presentation

	Model Visualization and Editing
	Summary

	A Web Software Architecture for Context
	Requirements for an Adaptive Run-time System
	System Environment
	Reference Architecture
	Web Application Elements

	Processing and Architectural Approaches
	Information Processing
	Architectures for Adaptive Systems
	Component-based Software Engineering and Adaptation
	Processing in the Cocoon Framework
	Using Cocoon for Adaptivity
	Components in Cocoon

	Principles of the Web Software Architecture for Context
	Processing Model
	Architectural Components
	Domain-specific Components
	Navigation and Patterns for Presentation

	Summary

	The CATWALK Context Framework
	Architectural Overview
	Components for Context
	Context Manager
	Context Sensing
	Model Representation and Access
	Ontology Exploration
	Adaptation to Context

	Components for Application Generation
	Navigation Generation
	Content Generation
	Service Incorporation
	View Filtering
	Presentation Information Generation
	Summary

	Context Simulation
	Case Study: Example Web Application
	Application Generation
	Adaptation Effects
	Context Simulation

	Discussion

	Summary and Future Directions
	Summary
	Future Directions

	Standards and Standard Authorities
	Model Elements Type Definition in OWL
	Models for a Prototypical Web Application
	CATWALK Framework UML Diagrams
	List of Figures
	List of Tables
	List of Listings
	Bibliography

