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ZUSAMMENFASSUNG 

Bluthochdruck ist der wichtigste Risikofaktor für Mortalität und Morbidität weltweit. Daher 

besitzen Faktoren, die den Blutdruck erhöhen und auf große Teile der Bevölkerung einwirken, 

eine hohe Relevanz bei der Erforschung von kardiovaskulären Erkrankungen. Es gibt erste 

Hinweise darauf, dass Luftverschmutzung ein solcher Faktor ist.  

Der Zusammenhang zwischen Luftverschmutzung und kardiovaskulärer Morbidität und Mor-

talität ist in den letzten zwei Jahrzehnten eingehend untersucht und nachgewiesen worden. 

Einige Studien haben gezeigt, dass eine kurzfristige Erhöhung der Konzentration der Luft-

schadstoffe zu einer akuten Steigerung des Blutdrucks führen kann. Es wird vermutet, dass 

Langzeitexpositionen gegenüber Luftverschmutzung stärkere Auswirkungen auf den Blut-

druck haben könnten. Außerdem könnte chronisch erhöhter Blutdruck als Teil des pathologi-

schen Wirkungspfads verstanden werden, wie Luftverschmutzung zu Herz-Kreislauf Erkran-

kungen und Mortalität führen könnte.  

Bislang ist die Evidenz für den Zusammenhang zwischen langfristiger Belastung gegenüber 

Luftverschmutzung und arteriellem Blutdruck nicht ausreichend. Es ist außerdem nicht klar, 

welche Partikel, Gase und andere Komponenten der Luftverschmutzung für eine Erhöhung 

des Blutdrucks verantwortlich sein könnten. Auch der biologische Wirkungspfad der Luftver-

schmutzung auf den Blutdruck ist noch nicht etabliert beschrieben worden.  

Ziel dieser Studie war es, sowohl die Assoziation zwischen der langfristigen Luftschad-

stoffexposition und dem arteriellen Blutdruck, als auch mögliche zugrundeliegende Wir-

kungspfade, zu untersuchen. Die Forschungsfragen wurden mithilfe zweier methodischer An-

sätze beantwortet: (1) Auswertung von Daten einer großen bevölkerungsbasierten Kohorten-

studie und (2) Messung und statistische Auswertung von Daten aus einem Tierexperiment.  

Für den ersten methodischen Ansatz wurden Daten aus der Heinz Nixdorf Recall Studie, einer 

prospektiven Kohorte im Ruhrgebiet, ausgewertet. Langzeitkonzentrationen verschiedener 

Komponenten der Luftverschmutzung aus urbanem Hintergrund wurden mit einem Dispersi-

ons- und Chemie-Transport Modell geschätzt und den Wohnadressen der Studienteilnehmer 
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zugewiesen. Blutdruckmessungen, Laboruntersuchungen, anthropometrische Messungen so-

wie Befragungen zum Lebensstil, zur Bildung, zu Vorerkrankungen und anderen Risikofakto-

ren wurden von geschulten Mitarbeitern anhand standardisierter Vorgaben durchgeführt und 

erfasst. Außerdem wurden Informationen über Verkehrslärm und der sozio-ökonomische Sta-

tus der Nachbarschaft erhoben. Der Zusammenhang zwischen Langzeitbelastung gegenüber 

Luftschadstoffen mit dem gemessenen Blutdruck und einer Hypertonie wurden mit multiplen 

Regressionsmodellen analysiert, welche für relevante Kovariablen und die Einnahme von 

antihypertensiven Medikationen adjustiert wurden. Multi-Pollutant Modelle (Einbeziehung 

mehrerer Luftverschmutzungskomponenten) wurden berechnet, um die verantwortlichen 

Komponenten für eine Blutdrucksteigerung zu identifizieren. Die Analysen wurden sowohl 

im Querschnitt (Blutdruck, Prävalenz der Hypertonie) als auch im Längsschnitt (Inzidenz 

einer Hypertonie) durchgeführt.  

Die Analysen zeigten eine positive Assoziation zwischen der langfristigen Exposition gegen-

über Feinstaub aus dem städtischen Hintergrund und einer Erhöhung des Blutdrucks. Dieser 

Zusammenhang war unabhängig von Expositionen gegenüber gasförmigen Luftschadstoffen 

(mit der Ausnahme von Ammoniak). Die Assoziation war linear, ohne Schwellenwert. Ver-

kehrslärm, der sozio-ökonomische Status der Nachbarschaft und andere relevante Störfakto-

ren hatten auf diesen Befund keinen Einfluss. Zusätzlich weisen die Ergebnisse auf einen po-

sitiven Zusammenhang von langfristigen Ammoniak-Expositionen am Wohnort und Blut-

druckwerten hin, welcher in weiteren Studien Bestätigung finden sollten. Assoziationen mit 

arterieller Hypertonie wurden nicht beobachtet.  

Im experimentellen Tierversuch wurde die 13-wöchige Exposition gegenüber Dieselabgasen 

und Stickstoffoxiden untersucht. Die Expression von Genen, die auf dem Wirkungspfad zwi-

schen Luftverschmutzung und höheren Blutdruckwerten beteiligt sein können, wurde mithilfe 

quantitativer Echtzeit-Polymerase-Kettenreaktion in Mäuselungen gemessen. Die Exposition 

gegenüber Dieselabgasen und Stickoxide wirkte sich auf die Aktivität von fünf Genen aus: 

CYP1A1, NQO1, iCAM, iNOS und TNF. Die Produkte dieser Gene sind in den Fremdstoff-

metabolismus, in Entzündungsprozesse, oxidativen Stress und Gefäßtonus-Regelung einge-

bunden.  
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Zusammenfassend lässt sich festhalten, dass sich positive Assoziationen zwischen der lang-

fristigen Exposition gegenüber Luftverschmutzung mit erhöhtem Blutdruck in einer bevölke-

rungsbasierten Kohorte zeigten. Erkenntnisse des experimentellen Teils dieser Studie deuten 

drauf hin, dass verkehrsbezogene Luftverschmutzungspartikel zu Entzündungen, oxidativem 

Stress und Gefäßreaktionen führen können, was wiederum den Bluthochdruck beeinflussen 

könnte.  

Blutdruck ist einer der wichtigsten modifizierbaren Risikofaktoren für Morbidität und Morta-

lität weltweit. Die Zahl der Hypertoniker in der Bevölkerung steigt stetig an. Eine relativ ge-

ringe Erhöhung des Blutdrucks aufgrund der Einwirkung von Luftverschmutzung könnte, auf 

Bevölkerungsebene, zu einer wesentlich höheren Belastung der Bevölkerung führen. Die Er-

gebnisse dieser Studie liefern Hinweise dafür, dass weitere Maßnahmen zur Verringerung der 

Luftverschmutzung zu erheblichen gesundheitlichen Vorteilen für die Bevölkerung führen 

könnten. 
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ABSTRACT 

High blood pressure is a major determinant for mortality and disability in the developed 

world. Therefore, factors which increase blood pressure and which affect large populations 

have a high priority in cardiovascular health research. One of such factors may be ambient air 

pollution.  

The link between air pollution and cardiovascular morbidity and mortality has been estab-

lished in the last two decades. There are studies showing that short-term elevations in air pol-

lution can lead to increased blood pressure within hours or days. It has been suggested that 

long-term exposure to air pollution would have an even stronger effect on blood pressure. 

Moreover, chronically elevated blood pressure could be a part of the pathophysiologic mech-

anism on how exposure to air pollution can lead to cardiac events and mortality.  

So far, only few studies have investigated the effect of long-term exposure to air pollution on 

blood pressure, with mixed results. Multiple questions remain unanswered yet. Which pollu-

tant (or pollutants) in the air pollution mixture could be responsible for blood pressure eleva-

tion? Is the association of air pollution with blood pressure confounded by the influence of 

concurrent residential exposures, such as road traffic noise and neighborhood deprivation? 

Finally, it is not clear through which biologic pathways air pollution could chronically in-

crease blood pressure and lead to hypertension. It is likely that inflammation and oxidative 

stress, triggered by inhaled pollutants, play a central role in this process. Oxidative damage, 

autonomic nervous system imbalance, and vascular endothelial dysfunction could be some of 

the mechanisms involved in chronic blood pressure elevation following long-term air pollu-

tion exposure.  

The aim of this study was to investigate the effect of long-term air pollution and its specific 

components on blood pressure and hypertension and to investigate possible underlying patho-

physiologic mechanisms. In the research part of this study, I applied two methodologies: (1) 

observational, including statistical analyses of the data from a prospective cohort study, and 

(2) experimental, using a controlled-exposure animal study.  
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I conducted the observational part of this study using a population-based cohort, the Heinz 

Nixdorf Recall Study in the highly urbanized Ruhr area of Germany. Long-term concentra-

tions of urban background air pollution (particulate and gaseous pollutants) at participants’ 

residences were modeled with dispersion and chemistry transport model. Related residential 

exposures (road traffic noise, area-level socio-economic status) were also assessed. Blood 

pressure was measured at baseline and after five years of follow-up with a standardized pro-

cedure. Information on cardiovascular risk factors, co-morbidities, lifestyle and socio-

economic factors was collected. Cross-sectional and longitudinal multiple regression analyses 

were performed, taking into account relevant confounders, and the intake of blood pressure 

lowering medication. I also employed multi-pollutant models to identify the responsible com-

pounds.  

I found a positive association of long-term exposure to fine particulate matter with blood 

pressure. This association was independent of gaseous pollutants (except ammonia), traffic 

noise, other co-exposures, and relevant confounders. The association of air pollution with 

blood pressure was linear and without a threshold. I also found a positive association of long-

term ammonia exposure at residence with blood pressure, which should be confirmed in fur-

ther studies. I observed no associations with prevalent or incident hypertension.  

In the experimental part of this study, I measured and compared gene expression in mice 

lungs after controlled 13-week exposure to diesel engine exhaust and nitrogen oxides. I found 

changes in the activity of the following genes: CYP1A1, NQO1, iCAM, iNOS, and TNFα. 

These genes are involved in xenobiotic metabolism, inflammation, oxidative stress and vascu-

lar tone regulation.  

In summary, I found a positive association of long-term exposure to air pollution with elevat-

ed blood pressure in a population-based cohort. This association is likely attributable to fine 

particulate matter and independent from co-exposure to most gases in the air pollution mix-

ture, to road traffic noise, to residential deprivation, or from relevant confounders. My find-

ings from the experimental part of this study provide supportive evidence that traffic-related 

air pollution can induce inflammation, oxidative stress and vascular reactions, which might 

favor hypertension in the long run. 
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1. THEORETICAL BACKGROUND 

1.1. Introduction 

High blood pressure (BP) is a leading risk factor for global mortality and disability, account-

ing for at least 15% of all health loss in adults aged 50 and older and for more than 9 million 

deaths in 2010 worldwide (Ezzati et al. 2002; Lim et al. 2013; Lipfert et al. 2003). The risk 

for cardiovascular diseases (CVDs), such as heart failure, infarction, and stroke, doubles with 

every increase in either systolic BP (SBP) of 20 mmHg or diastolic BP (DBP) of 10 mmHg, 

even within a normal BP range (Carretero and Oparil 2000; Lewington et al. 2002). The asso-

ciation of BP with mortality is not linear, with a rapid increase in risk at values close to hyper-

tension: 140 mmHg SBP and 90 mmHg diastolic DBP (Lipfert et al. 2003). The risk of devel-

oping hypertension for the population aged 55 and older is 90%, and the lifetime probability 

of receiving the BP lowering medication (BPLM) is 60% (Vasan 2002).  

Even small absolute decreases in BP lead to a substantial reduction of CVD risk in the popula-

tion (Cook et al. 1995; Erlinger et al. 2003). A reduction in SBP by 2 mmHg reduces stroke 

mortality by 5%, coronary heart disease (CHD) mortality by 4%, and total mortality by 3% 

(Whelton et al. 2002). A reduction in DBP by 2 mmHg has been linked to 6% decrease in the 

risk of CHD and 15% reduction in the risk of stroke and transient ischemic attack (Cook et al. 

1995). Hence, even factors with relatively small impacts on BP, but affecting large propor-

tions of the population, should have a high priority in cardiovascular health research.  

Ambient particulate matter (PM) air pollution is one of such factors. It is a major risk factor 

for global mortality (Lim et al. 2013) and cardiovascular disease. According to estimation 

from the World Health Organization (WHO), urban outdoor air is responsible for 5% of all 

cardiopulmonary deaths worldwide (WHO 2014). In an updated Scientific Statement from the 

American Heart Association published in 2010, the authors concluded that exposure to fine 

outdoor PM can trigger CVD-related events and mortality within hours or weeks (Brook et al. 

2010).  This effect was even stronger with the long-term exposure (Brook et al. 2010).  

Chronically elevated BP may be one of the underlying mechanisms of PM-induced cardiovas-

cular morbidity and mortality (Brook 2007). Short-term increases in PM air pollution lead to 
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acute increases in arterial BP (Brook 2007; Brook et al. 2009; Chuang et al. 2010; Delfino et 

al. 2010; Dvonch et al. 2009; Mordukhovich et al. 2009; Zanobetti et al. 2004). It has been 

suggested that long-term exposure to outdoor PM can lead to a chronically elevated BP and 

possibly to hypertension (Brook et al. 2010). Indeed, like other cardiovascular outcomes, BP 

is more strongly associated with longer-term average air pollution than with short-term expo-

sure to air pollution (Auchincloss et al. 2008). The associations between long-term air pollu-

tion with elevated BP and the elevated prevalence or incidence of hypertension have been 

reported in a few recent studies from Canada, China, Taiwan, and the USA (Chen et al. 2013; 

Chuang et al. 2011; Coogan et al. 2012; Dong et al. 2013; Johnson and Parker 2009; Schwartz 

et al. 2012). However, these studies differ with regard to the methodologies and the defini-

tions of exposures and outcomes. The results are, in part, not consistent. For example, in one 

study long-term exposure to nitrogen dioxide, a marker of traffic-related air pollution, was 

associated with lower BP and a decreased prevalence of hypertension (Sørensen et al. 2011). 

Therefore, more research on the long-term effects of different pollutants on BP and hyperten-

sion is needed. 

Mostly cross-sectional or repeated measures data have been used in studies of the association 

of air pollution with arterial BP. The cross-sectional analysis with BP as outcome may be 

complicated by participants’ concurrent intake of BPLM, which amounts to 41.0–77.9% of 

the adult population in Europe and North America (Wolf-Maier et al. 2003). If the BP-

lowering effect of medication is not properly accounted for, it may compromise the analysis 

with BP (Tobin et al. 2005).  

Few biologic mechanisms have been suggested for the effect of air pollution on BP (Brook 

2007). The inhalation of particles and their deposition in the lungs can cause local oxidative 

stress. First, the particles can stimulate lung autonomic receptors (either directly or through 

oxidative stress and inflammation) and can lead to systemic vagal withdrawal and autonomic 

imbalance, resulting in acute peripheral artery constriction (Brook 2007). Second, local oxida-

tive stress may extend to systemic oxidative stress, together with elevated levels of circulating 

and vascular cytokines, which can instigate vascular endothelial dysfunction and lead to vaso-

constriction (Brook 2007). The third hypothesized pathway is the translocation of nanoparti-
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cles and soluble compounds to the systemic circulation, which can alter blood rheology and 

can result in oxidative stress in vascular tissue (Brook 2007). The imbalance of the autonomic 

nervous system (ANS) may be primarily responsible for acute BP elevation following air pol-

lution, as shown by Brook et al. (2009). However, more research is needed on the exact 

mechanisms of air pollution-induced BP elevation.  

1.2. Air pollution – the exposure of interest 

1.2.1. Definition and characteristics 

Atmospheric air pollution can be defined as the presence in the atmosphere of gases or partic-

ulate matter, which are not normal air constituents and can harm living organisms and the 

environment (Yu 2005). Air pollution consists of organic, inorganic, gaseous, particulate, and 

liquid compounds. There are natural components of air pollution, such as sea salt, dust, sand, 

pollen and spores. The major anthropogenic constituents of air pollution are combustion 

products: smoke, fumes, soot, and others (Dockery 2009). Traffic and industry emit particu-

late mixtures that transform further in the atmosphere. Interactions between different compo-

nents can change the toxicity of the mixture. For example, sodium chloride (NaCl), frequent 

air pollution component, does not pose any hazard to health per se (Mills et al. 2009). How-

ever, it can form toxic compounds through synergy with other pollutants. For example, Last et 

al. demonstrated a synergistic interaction of NaCl with NO2, which could potentially form a 

toxic compound, nitrosyl chloride, NOCl (Last and Warren 1987; Last et al. 1994). A syner-

gistic effect of PM10 and NO2 in emergency cardiac hospitalizations in Hong Kong has been 

recently reported by Yu et al. (2013). Air pollutants can be divided into two groups by their 

physical characteristics: particles, or PM, and gaseous pollutants, such as ozone, nitrogen ox-

ides, and others.  

PM is composed of solid and liquid aerosols that are dispersed in the air (Pope and Dockery 

2006). PM is frequently used as an exposure in observational and experimental studies on air 

pollution effects, and the most consistent adverse health effects have been reported for this 

component of air pollution (Araujo and Nel 2009). The number of particles and their size, 

surface area, and chemical composition contribute to the toxicity of the air pollution mixture 
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(Mills et al. 2009).  

Sources of air pollution in Germany 

According to the German Federal Environment Agency (2013), energy production, such as 

the burning of fuels (industrial and private) and traffic (combustion, tire and brake wear), was 

a major source of PM2.5 (70%), sulfur dioxide (81%), nitrogen oxides (84%), and carbon 

monoxide (77%). Industry (such as steel production) was the second major emitter of PM2.5 

(15%), PM10 (31%), sulfur dioxide (19%), and carbon monoxide (23%). The use of solvents 

and other products contributed mostly to volatile organic compounds (VOCs) emissions 

(68%) but also to PM2.5 (9%) and PM10 (5%). Agriculture was a major source of atmospheric 

ammonia (94%), mostly emitted through the use of fertilizers.  

1.2.2. Classification of PM  

Classification by size 

Particle size is an important parameter, as it influences particle behavior in the atmosphere 

and within the human respiratory tract. PM is classified according to the aerodynamic diame-

ter, defined as the diameter of a spherical particle with a density of 1000 kg/m
3
 and the same 

settling velocity as an irregular particle. By definition, the aerodynamic diameter of 50% of 

the particles in the defined fraction should be less than or equal to the selected cut point 

(Chow 1995). The sizes of particles range from 0.5 mm to 10
-7

mm (Yu 2005). In relation to 

health effects, the inhalable particles (also called ―thoracic fraction‖) with diameters ≤ 10 µm 

are investigated. Thoracic fraction includes coarse, fine, and ultrafine PM. 

Coarse PM consists of particles > 2.5 and ≤ 100 µm in diameter (Kelly and Fussell 2012). 

Size of coarse PM is comparable to some cells in the human body, e.g., red blood cells (Brook 

2008). Particles with aerodynamic diameters ≤ 10 µm (PM10) can be deposited in the naso-

pharynx, and smaller particles (PM10-2.5) may be inhaled to the lungs (Kelly and Fussell 

2012).  PM10 is defined by the European Commission in Directive 2008/50/EC as “particulate 

matter which passes through a size-selective inlet as defined in the reference method for the 

sampling and measurement of PM10, EN 12341, with a 50% efficiency cut-off at 10-µm aero-
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dynamic diameter‖ (Directive 2008/50/EC). Sources of coarse PM include: black smoke, soil, 

agricultural and road dust, soil, crustal materials from roads, tire wear emissions, construction 

debris, farming, mining operations, volcano eruptions, sea salt, pollen, mold, spores, other 

plant parts, and secondary particles (Araujo and Nel 2009; Kelly and Fussell 2012; Pope and 

Dockery 2006). The lifetime of coarse PM is hours to days (Brook 2008). Coarse PM can 

disperse over large areas (10 to 100 km) and contributes to most of the total PM mass (Brook 

2008). 

Fine particles have aerodynamic diameters > 0.1 and ≤ 2.5 µm, which is comparable to sizes 

of bacteria or viruses (Brook 2008). Together with ultrafine particles (UFPs) they are classi-

fied as PM2.5. The European Commission defines PM2.5 as “particulate matter which passes 

through a size-selective inlet as defined in the reference method for the sampling and meas-

urement of PM2.5, EN 14907, with a 50% efficiency cut-off at 2.5-µm aerodynamic diameter” 

(Directive 2008/50/EC). Fine particles consist of soot, organic compounds, endotoxin, sul-

fates, nitrates, metals, etc. (Brook 2008). Main sources of PM2.5 include: combustion (fuel 

combustion and tailpipe and brake emissions from mobile sources, power plants, residential 

wood and coal burning, wildfires), industrial processes (smelters, cement plants, steel and 

paper mills), and secondary gas-to-particle conversion (Araujo and Nel 2009; Pope and 

Dockery 2006). PM2.5 includes UFPs in the nucleation and Aitken modes, along with accumu-

lation mode particles (0.1–1 μm; Araujo and Nel 2009). Fine particles have longer lifetimes 

than UFPs (up to weeks) and are distributed over large areas, forming the background air pol-

lution (Brook 2008). Fine particles can reach alveoli and terminal bronchioles after inhalation 

(Dockery 2009; Kelly and Fussell 2012). Many adverse health effects, both acute and chronic, 

have been attributed to the fine particle fraction (European Environment Agency 2012). PM2.5 

can be distributed regionally (up to 1000 km; Brook 2008). Fine and ultrafine particles are 

major contributors to the number of particles and the surface area of PM, but not to its total 

mass. 

UFPs have aerodynamic diameters ≤ 0.1 µm (PM0.1), which is comparable to the size of mol-

ecules or smaller viruses (Brook 2008). UFPs are by far the most numerous particles in the 

PM mixture. They contribute mostly to surface area but not to the mass of PM (Kelly and 
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Fussell 2012). UFPs are very unstable, and they quickly (within minutes to hours) coagulate 

or condense into larger particles (Brook 2008). The major components of this fraction include 

sulfates, nitrates, elemental carbon, organic carbon, UFPs aggregates, endotoxin, and metals 

(Kelly and Fussell 2012). The major emission sources are combustion processes, such as au-

tomobile emissions (Araujo and Nel 2009; Pope and Dockery 2006). UFPs can also occur 

through the nucleation of gas-phase species to condensed-phase species in the newly emerg-

ing particles that did not grow (aerodynamic diameter < 0.01 μm, classified as nucleation 

mode) or through the coagulation of recently formed particles (0.01–0.1 μm, Aitken mode; 

Araujo and Nel 2009). Lifetime of UFPs is minutes to hours (Brook 2008). UFPs are mostly 

distributed within a 100-m distance from their source (Brook 2008); their concentration de-

creases exponentially with increasing distance from the road to approximately 300 m, where 

they cannot be further distinguished from background particles (Zhu et al. 2002). Combustion 

nanoparticles can carry on their surfaces many substances that can trigger adverse reactions in 

organisms: oxidized transition metals, polycyclic aromatic hydrocarbons, soluble organic 

compounds, and others. (Mills et al. 2009). The small size of the ultrafine particles allows 

them to penetrate the air-blood barrier in the lungs (Kelly and Fussell 2012; Mills et al. 2009). 

Primary and secondary particles 

Airborne particles are classified as primary, originating directly from various sources, and 

secondary, forming from the interactions of primary air pollutants (Dockery 2009). Primary 

PM includes larger particles, usually 1 to 20 µm in diameter (Yu 2005). The primary particles 

are emitted directly to the atmosphere by physical and chemical processes, such as combus-

tion, erosion (Kelly and Fussell 2012). The secondary particles, such as sulfates (SO4
2-

) and 

nitrates (NO3
-
), are smaller than the primary particles.  They are generated through chemical 

reactions in the atmosphere, e.g., the reactions of inorganic and organic gases with atmospher-

ic oxygen, water vapor, free radicals, and reactive species (Araujo and Nel 2009). The prima-

ry particles contribute a minor amount to the total mass of PM, but can be more hazardous, 

than the secondary particles, because they act as condensation nuclei for the secondary aero-

sol mass and may carry various toxic trace species (Yu 2005). 
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1.2.3. Chemical composition of PM  

The composition of PM depends on the source from which the particles originate. For exam-

ple, sea salt aerosols consist mainly of sodium chloride, NaCl, but also include magnesium, 

sulfate, calcium, potassium, and some organic compounds (Perrino 2010). Sea salt is one of 

the dominant contributors to atmospheric aerosols worldwide: the yearly sea salt flux from the 

ocean to the atmosphere is estimated to be 3.3×10
12

 kg per year (Intergovernmental Panel on 

Climate Change 2007). The crustal matter originating from the Earth’s crust consists of min-

eral oxides (Perrino 2010). 

Organic matter is another major constituent of PM. It consists of various organic chemical 

compounds, primary (such as VOCs) and secondary (occurring through the oxidation of 

VOCs). VOCs can be of natural origin, e.g., isoprene, terpenoids, esters produced by plants, 

and anthropogenic, e.g., n-butane, ethylene, benzene from the motor vehicle exhaust (Blake 

and Blake 2003; Guenther 2003). Elemental carbon, also called black carbon, is another im-

portant compound of PM. Together, organic matter and elemental carbon form the carbona-

ceous fraction of PM. 

Sulfates and nitrates are important compounds of PM (Kelly and Fussel 2012). Sulfates  

(SO4
2-

) are created through the oxidation of sulfur dioxide (SO2). Similarly to sulfates, nitrates 

(NO3
-
) are formed through the oxidation of nitrogen dioxide (NO2). Ammonium nitrate 

(NH4NO3) and bisulfate ( (NH4)2SO4) are common secondary particles and are formed from 

atmospheric ammonia, sulfate and nitrate (Perrino 2010). If ammonia is not present in the 

atmosphere, the following acids are formed instead: sulfuric acid (H2SO4) as liquid aerosol 

droplets, and nitric acid (HNO3) as gas (Perrino 2010). 

The relative contributions of different components to the total PM mass in Europe were inves-

tigated by Putaud et al. (2004). Approximately 70% of the total mass of the PM mixture was 

identified. The rest was assumed to be either water vapor or non-estimated matter. Organic 

matter was a major contributor to the annual average PM2.5 and PM10 in the near-city and ur-

ban background (mass contribution 20% to PM10 and 22% to PM2.5) and near the road (22% 

and 29%, respectively; Putaud et al. 2004). Sulfate was the second largest part of urban and 
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traffic PM and a major contributor to the masses of PM10 and PM2.5 from the natural and rural 

background (Putaud et al. 2004). Nitrate was correlated with instances of high PM concentra-

tions; the authors related this observation to specific meteorological conditions, such as cold 

periods, when atmospheric NH4NO3 was very stable (Putaud et al. 2004). The contribution of 

black carbon was relatively small in the urban background and rural sites and was higher near 

the road (Putaud et al. 2004). 

Metals are an important part of the PM mixture: although not largely contributing to total 

mass or size, they define the chemical reactivity and toxicity of the mixture. The following 

transition metals were detected in PM2.5 and UFP: iron (Fe), lead (Pb), mercury (Hg), cadmi-

um (Cd), silver (Ag), nickel (Ni), vanadium (V), chromium (Cr), manganese (Mn), and cop-

per (Cu; Lodovici and Bigagli 2011; Yu 2005). Transition metals can originate from the 

earth’s crust, combustion sources, waste water discharges, and other sources (Lodovici and 

Bigagli 2011). Zink (Zn) is found in traffic-related PM, originating from waste oil (Lodovici 

and Bigagli 2011). Cu and Fe are components of brake wear; in addition, Fe is a soot suppres-

sant emitted as UFP (Lodovici and Bigagli 2011). Particulate iron oxide (Fe3O4) can also be 

produced during combustion of coal which contains iron sulfide (FeS2; Yu 2005): 

3𝐹𝑒𝑆2 + 8𝑂2 → 𝐹𝑒3𝑂4 + 6𝑆𝑂2       [1] 

Lead halide particles can be produced during combustion of leaded gasoline, in a reaction of 

tetraethyl lead (Pb(C2H5)4) with molecular oxygen and halogenated scavengers (dichlorethane 

and dibromoethane; Yu 2005): 

𝑃𝑏(𝐶2𝐻5)4 + 𝑂2 + 𝑕𝑎𝑙𝑜𝑔𝑒𝑛𝑎𝑡𝑒𝑑 𝑠𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟𝑠 → 𝐶𝑂2 + 𝐻2𝑂 + 𝑃𝑏𝐶𝑙2 + 𝑃𝑏𝐵𝑟𝐶𝑙2 

+ 𝑃𝑏𝐵𝑟2    [2] 

Quass et al. (2004) analyzed the chemical composition of PM1–PM10 from an urban back-

ground measurement station. They found that larger particles (PM10) contained higher propor-

tions of metal oxides (including aluminum and iron oxides), of calcium, potassium, magnesi-

um, sodium and chloride. Smaller particles (PM2.5 and PM1) contained more ammonia, sul-

fates, nitrates, organic matter, and elemental carbon (Figure 1). 
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Figure 1. Chemical composition of PM10, PM2.5, and PM1 from an urban background station 

in Germany.  

Legend: Adapted from Quass et al. 2004, Figure 3. Mass concentration (%) of the respective 

components of PM1, PM2.5, and PM10 are presented. 

1.2.4. Ozone 

Ozone (O3) is an important outdoor pollutant. As a secondary pollutant, it is formed in the 

troposphere through a complex series of reactions. These reactions involve nitrogen oxides 

(NOx), VOCs, and the presence of sunlight (Brunekreef and Holgate 2002; Melkonyan and 

Wagner 2013). Brönnimann and Neu (1997) distinguish the following two types of chemical 

processes affecting ozone concentrations: (i) the photostatic equilibrium and (ii) the substitu-

tion of O3 with peroxyl radicals. The photostationary equilibrium consists of three reactions: 

NO2 + hυ1(λ <  200 nm) → NO + O∗      [3] 

O∗ + O3 → O3          [4] 

NO + O3 → NO2 + O2        [5] 

1
hv – radiation energy with a frequency v at the wavelength λ < 400 nm (also < 420 nm); h – 

the Planck constant (Melkonyan and Kuttler 2012). 
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NO, emitted from traffic, is introduced to the equilibrium. Decrease in the concentration of 

NO leads to increases in the ozone concentration. Simultaneously, NO, originating from the 

traffic, scavenges O3, which explains the lower concentrations of ozone observed in a city 

center compared to the suburbs (Brönnimann and Neu 1997; Brunekreef and Holgate 2002). 

The substitution of O3 with a peroxyl radical occurs as follows: 

NO + RO2
1 → NO2 + RO         [6] 

NO + HO2 → NO2 + HO∗²        [7] 

1
R is an organic part; RO2 is peroxide radical. ²Hydroxyl radical. 

This process replaces reaction [5] in the photostationary equilibrium and decreases O3 de-

struction, which results in a higher O3 concentration. Peroxyl radicals are products of hydro-

carbons (such as VOCs) and carbon monoxide in reactions with hydroxyl radicals (Brön-

nimann and Neu 1997).  

Temperature and radiation influence chemical activity. The concentration of hydroxyl radicals 

increases in the sunlight (Melkonyan and Kuttler 2012). Decreasing the VOC emissions di-

minished the O3 concentrations (Brönnimann and Neu 1997). On hot, sunny days, the synthe-

sis of O3 dominates over destruction, leading to elevated ozone levels. In contrast, the destruc-

tion of O3 occurs more readily on cold, cloudy days (Brönnimann and Neu 1997). The reac-

tive biogenic VOCs (isoprene, monoterpenes, etc.) are emitted in significant quantities on the 

hot days, resulting in increased amounts of ozone above green areas in the summer (Melkon-

yan and Kuttler 2012).  

The measurement of atmospheric O3 is conducted using continuous and discontinuous (such 

as passive sampler) methods (WHO 1999). The following methods to sample O3 are common-

ly used: laminar flow, turbulent flow and sampling without a manifold (WHO 1999). The au-

tomated measurements most frequently employed to measure O3 include chemiluminescence, 

ultraviolet photometry and differential optical absorption system spectrometry (WHO 1999). 

The reference method to measure O3 in the European Union (EU) is continuous measurement 

by ultraviolet photometry according to the standard EN 14625:2005 (Directive 2008/50/EC). 
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1.2.5. Nitrogen oxides 

The most common atmospheric nitrogen oxides are nitrogen monoxide (NO) and nitrogen 

dioxide (NO2). Nitrogen oxides are produced from the reaction of nitrogen (N2) and oxygen 

(O2) gases during combustion, especially at high temperatures (Yu 2005): 

𝑁2 + 𝑂2 →1 2𝑁𝑂         [8] 

2𝑁𝑂 + 𝑂2 → 2𝑁𝑂2         [9] 

1
Reaction temperature 1210 °C (Yu 2005). 

The primary sources of NO2 include road transportation and power generation (Kelly and 

Fussell 2012). In the presence of oxidants (e.g., O3) NO is transformed to NO2, which is why 

the nitrogen oxides are usually referred to cumulatively as NOx. The major sources of anthro-

pogenic emissions of NOx are transportation, power generation, and fossil fuel burning for 

heating (Brunekreef and Holgate 2002; Lodovici and Bigagli 2011). NOx can also occur natu-

rally during thunderstorms. NOx contributes to the formation of tropospheric O3 and fine PM. 

The reaction of NOx with VOCs forms photochemical smog. The most substantial formation 

of photochemical smog occurs in summer. The major components of photochemical smog are 

ozone, nitrogen oxides, peroxyacetyl nitrate, radical oxygen forms, and various organic com-

pounds (Yu et al. 2005). Nitrogen oxides are the precursors of nitric acid, which, when dis-

solved in atmospheric vapor, forms a component of acid rain.  

The most commonly used methods to measure nitrogen oxides are passive and active sam-

pling, automatic analysis and remote sensing (WHO 1999). In the EU, according to the stand-

ard EN14211:2005 (Directive 2008/50/EC), the reference method for the measurement of 

NOx is chemiluminescence. 

1.2.6. Sulfur dioxide 

Sulfur dioxide (SO2) is an important gaseous constituent of air pollution and constitutes a ma-

jor part (95%) of anthropogenic emissions of sulfur (S) in the atmosphere (Yu 2005). SO2 

mainly originates from power generation and industrial processes including combustion of 

sulfur-containing fuels, such as coal or oil, petroleum refining, and nonferrous smelting 
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(Kelly and Fussell 2012; Yu 2005). In addition, domestic heating and diesel engines can also 

emit SO2 (WHO 1999). Natural sources of SO2 include volcanic eruptions and geothermal 

springs (WHO 1999). Concentrations of atmospheric SO2 have been reduced substantially in 

the USA, Western Europe, and Japan in the past decades, whereas in other countries, such as 

China and South Korea, emissions are increasing (Environmental Protection Agency 2013; 

WHO Air Quality Guidelines for Europe 2000; Lu et al. 2000). SO2 emissions worldwide 

have been largely reduced through flue-gas desulfurization, a technology to bind emitted SO2 

at power plants (Lu et al. 2000). Technologies that allow the removal of sulfur from fuels pri-

or to combustion, such as the Claus and Stretford processes, are also used to reduce atmos-

pheric SO2 emissions. Similar to NOx, SO2 is a precursor for acid rain (forming sulfuric acid) 

and secondary particle formation. SO2 is hazardous to both human health and the environment 

(European Environment Agency 2012; Lu et al. 2000). SO2 is the most important precursor to 

PM2.5 (European Environment Agency 2012). 

The reference measurement method of SO2 in the EU is automated measurement by ultravio-

let fluorescence, as described in EN 14212:2005 (Directive 2008/50/EC). Other commonly 

used methods include active and passive sampling with spectrophotometry, chromatography, 

acidimetry, and others (WHO 1999).  

NO2 and SO2 are the main sources of atmospheric acidity (Kumar et al. 2004). They can be 

oxidized by O3, hydrogen peroxide (H2O2), or hydroxyl radical to sulfuric and nitric acids, 

respectively. The two acids can be further neutralized by atmospheric ammonia, forming am-

monium bisulfate and ammonium nitrate and then remaining in the aerosol phase. Alternative-

ly, sulfuric and nitric acids could be deposited on the Earth’s surface (Kumar et al. 2004). NO2 

can also react with VOCs in direct sunlight, resulting in the production of ground-level O3 

(WHO 2003). 

1.2.7. Ammonia 

Anthropogenic ammonia (NH3) is emitted during agricultural activities, animal feedlot opera-

tions, the decomposition of organic matter, and biomass burning, and, to a lesser extent, from 

industry, traffic, and volatilization from soils and oceans (Behera et al. 2013; Krupa 2003). 
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NH3 is deposited within the first 4–5 km from its source (Krupa 2003) and is an important 

precursor of secondary particles in the atmosphere (Perrino 2010). Atmospheric NH3 reacts 

with acids, such as sulfuric (H2SO4), nitric (HNO3), nitrous (HNO2), and hydrochloric (HCl) 

acids, and with oxides, e.g., SO2. The emerging ammonium salts, such as ammonium nitrate 

(NH4NO3) or ammonium bisulfate ((NH4)2SO4), form secondary particles, mostly in the PM2.5 

fraction (WBK and Associates Inc. 2004). Approximately 1% of total atmospheric ammonia is 

involved in the formation of NO (WBK and Associates Inc. 2004). It is estimated that the 

global emissions of NH3 may increase due to increasing anthropogenic activity (Sutton et al. 

2013). 

1.2.8. Carbon monoxide 

Carbon monoxide (CO) is present in small amounts in the atmosphere. CO is a product of (i) 

incomplete combustion of carbon-containing fuels, occurring when the supply of oxygen is 

not sufficient for complete oxidation, (ii) reactions between carbon dioxide (CO2) and carbon-

containing compounds at high temperature, and (iii) CO2 dissociation at high temperature 

(European Environment Agency 2012; Yu 2005). The anthropogenic sources of CO include 

internal combustion engines, man-made fires and fuel combustion, and the natural source of 

CO is volcanic activity (WHO Air Quality Guidelines for Europe 2000). CO is involved in 

photochemical smog formation (Yu 2005). CO reacts with hydroxyl radicals and contributes 

to the synthesis of tropospheric O3. CO is highly toxic because it reduces oxygen delivery to 

the body’s organs and tissues (European Environment Agency 2012). The introduction of cat-

alytic converters in road vehicles has reduced formerly significant amounts of CO at traffic 

sites (European Environment Agency 2012). 

The most common routine measurement method of CO in the atmosphere is non-dispersive 

infrared spectrometry, an automated continuous method (WHO 1999). This method allows for 

the measurement of CO concentrations within the range of 0.5–115 mg/m³.  

1.2.9. Measurement of air pollution 

Commonly used measurement systems of suspended PM are high-, medium- and low-volume 

samplers (defined by the volume of air sampled per unit time; UNEP/WHO 1994). Every 
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sampler should conform to the CEN standard EN 12341 (WHO 1999). The samplers collect 

PM on a filter using high- or low-volume flow (WHO 1999). High- and medium-volume 

samplers can be equipped with PM10 inlets to allow fraction determination (UNEP/WHO 

1994). The filter with collected particles can be analyzed using physical and chemical meth-

ods, the most important of which are the estimation of total sample mass, the characterization 

of PM size distribution, and the chemical analysis of particle fractions (UNEP/WHO 1994). 

The estimation of mass (gravimetry) is achieved using microbalance techniques, tapered ele-

ment oscillating microbalance techniques, and radiometry (pseudogravimetry; UNEP/WHO 

1994). Reflectometry (blackness of filter) is a measure of the total graphitic carbon content in 

the aerosol; thanks to technical simplicity and low cost, this method is widely used 

(UNEP/WHO 1994). Nephelometry (the light scattering capacity of the aerosol) is used as a 

measure of PM2.5 (UNEP/WHO 1994). Chemical characterization of the PM allows for ion 

groups, metals and other functional entities in bulk specimens to be determined (UNEP/WHO 

1994). Additionally, physical methods allow for the elementary molecular or crystalline com-

positions of the particles to be determined (UNEP/WHO 1994). The reference method EN 

12341:1999 is used in the EU for the sampling and measurement of PM10; for PM2.5, EN 

14907:2005 is used (Directive 2008/50/EC). 

The methods to sample gases and vapors can be divided in two groups: (i) sampling in the 

original atmospheric state, without measuring concentrations and (ii) sampling of the atmos-

phere with an assessment of the concentrations of gases and vapors.  

1.2.10. Current regulatory standards 

In the EU, the standards for ambient air quality are set by Council Directive 2008/50/EC, 

which became active on 11 June 2008. This directive sets the maximum limits for 1-hour and 

24-hour average SO2 at 350 µg/m³ and 125 µg/m³, respectively. The 1-hour and 1-year limits 

for NO2 are 200 µg/m³ and 40 µg/m³. The daily maximum for CO is set to 10 µg/m³. Daily 

PM10 has a limit of 50 µg/m³, which is not to be exceeded more than 35 times a calendar year, 

and a yearly limit of 40 µg/m³ (European Commission Air Quality Standards). The target val-

ue for PM2.5 is 25 µg/m³ for the yearly average, which became active 1 January 2010; it will 
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be set as the limit beginning 1 January 2015. The additional objectives of Directive 

2008/50/EC target the population exposure for PM2.5. They include an average exposure indi-

cator, a 3-year running annual mean concentration of PM2.5 representing the urban back-

ground exposure. The EU member states are obligated to reach an average exposure indicator 

limit of 20 µg/m³ by 2015 (years 2013–2015). In addition, the exposure reduction target has 

been set; depending on its average exposure indicator value in 2010, each country is to reach 

a percentage reduction (0, 10, 15, or 20%) and to implement all measures to reach an AEI 

limit of 18 µg/m³ (European Commission Air Quality Standards). 

According to the current WHO Air Quality Guidelines (2005), the recommended 24-hour 

mean for PM2.5 is 25 µg/m³, and the recommended annual mean is 10 µg/m³; for PM10, these 

values are 50 and 20 µg/m³, respectively. It is estimated that reductions of PM concentrations 

to these levels will reduce air pollution-related mortality by 15% (WHO Air Quality Guide-

lines). In addition, three interim targets have been set for PM2.5 and PM10, suggested as help-

ful milestones in the process of reducing the exposure over time. For example, for annual 

mean concentrations of PM2.5, the recommended interim targets were 35, 25 and 15 µg/m³. 

According to the report of the European Environment agency (2012), up to 30% of EU’s ur-

ban population was exposed to PM2.5 concentrations above the EU reference values in 2008–

2010. In the same period, the vast majority (90–95%) of the EU population lived above the 

PM2.5 threshold recommended by the WHO (European Environment Agency 2012). 

Two countries outside the EU have already set limits for PM2.5: USA, at 12 µg/m³ for the an-

nual concentration (Environmental Protection Agency 2012), and Japan, at 15 µg/m³ (Minis-

try of the Environment 2009). 

1.3. Arterial BP – the outcome of interest 

1.3.1. The definition of BP 

The cardiovascular system can be schematized as consisting of a pump (heart), a series of 

distributing and collecting tubes (arteries and veins), and a system of thin vessels that facili-

tate the rapid exchange between the tissues and circulation (Pappano and Wier 2013). Arterial 

BP, or simply BP, is one of the principal vital signs. It is defined as the lateral pressure exerted 
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by a column of blood upon the walls of blood vessels (Pal and Pal 2005). During a single 

heartbeat, BP changes from the maximum, SBP, to the minimum, DBP (Pappano and Wier 

2013). Pulse pressure (PP) is defined as the difference between the SBP and the DBP. SBP 

depends mainly on the cardiac output and increases when cardiac output increases (Pal and 

Pal 2005). DBP depends on the peripheral resistance (Pal and Pal 2005). BP can be calculated 

using the following formula (Steffel and Lüscher 2011): 

BP =  Cardiac output × Resistance      [10] 

Cardiac output is defined as the total blood flow out of the left ventricle, usually per one mi-

nute (Pappano and Wier 2013). It is the product of stroke volume with heart rate. Stroke vol-

ume is the amount of blood pumped out from the ventricle with a heartbeat. Cardiac output is 

the blood flow perfusing all of the tissues of the body. It can change, adapting to the metabolic 

demands of the body: e.g., during severe exercise, it can increase four to five-fold (Pappano 

and Wier 2013). The following factors control cardiac output: heart rate, myocardial contrac-

tility, preload, and afterload (Pappano and Wier 2013). Cardiac output also depends on the 

vascular resistance (Pappano and Wier 2013). 

Total peripheral resistance is the resistance of the peripheral vasculature to the blood flow 

(Pappano and Wier 2013). It increases during vasoconstriction and decreases during vasodila-

tion. The main factors influencing the peripheral resistance are the tone of the small arterioles 

(also known as the resistance arterioles, diameters 100–450 μm), the tone of the pre-capillary 

arterioles (4–100 μm in diameter), and the blood viscosity. The regulatory factors influencing 

peripheral resistance include platelet-derived factors (such as serotonin), which dilate the ves-

sel. Endothelium-derived NO, released following cholinergic stimulation, also works as a 

vasodilator (Pappano and Wier 2013). If the endothelium is damaged (e.g., removed), blood 

vessel dilation does not occur after these stimuli (Pappano and Wier 2013).  

The factors controlling arterial BP may be divided in two large groups: ―physical‖, such as 

arterial blood volume and the elastic characteristics of the system, and ―physiological‖, such 

as cardiac output and peripheral resistance (Pappano and Wier 2013).  
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1.3.2. General mechanism of BP regulation 

BP is regulated as follows: (i) sensors estimate the pressure and transfer a signal to an evalua-

tor; (ii) evaluators translate the coded signal from the sensors, compare the BP with a set point 

(a value desirable under current conditions) and trigger, if needed, the compensatory mecha-

nisms; and (iii) according to the signal from the evaluators, the effector mechanism can 

change the heart rate, the cardiac output or the total peripheral vascular resistance to stabilize 

the BP (Ackermann 2004). BP regulation can produce acute or long-term changes in pressure. 

The short-term responses are mainly produced by baroreceptors (the non-encapsulated nerve 

endings located in the arterial wall of the carotid sinus and the aortic arch) and by the stretch 

sensors in the cardiac atria (Ackermann 2004). The signal is conveyed to the midbrain (neu-

rons in the nucleus tractus solitarius) and can trigger (i) the increased production of angioten-

sin II, which increases sodium and water retention in the kidneys, thereby increasing the 

blood volume; (ii) cardiac parasympathetic outflow, which results in lower heart rate, and, 

correspondingly, lower cardiac output and BP; and (iii) sympathetic nervous outflow, with the 

release of adrenalin, renin and noradrenaline, activating α- and β-adrenoreceptors in the cell 

membranes of the target tissues, resulting in increases in heart rate, cardiac contractility and 

vascular resistance – all of which can lead to a raise in BP (Ackermann 2004).  

1.3.3. Regulation of BP through the control of blood flow 

BP keeps blood flow at the level required for its metabolic activity, which is why maintaining 

a stable BP level is crucially important (Ackermann 2004; Sears and Casadei 2002). Control 

of blood flow and regulation of BP can be seen as two different aspects of the common pro-

cess, each one affecting and being affected by the other. The auto-regulation of blood flow 

involves two processes: (i) metabolic, regulating the coupling between blood flow and tissue, 

and (ii) myogenic, modulating the blood vessel response to BP change (Sears and Casadei 

2002). The metabolic response to BP change is affected by the concentrations of vasodilator 

metabolites and oxygen (Sears and Casadei 2002). Dilation of an arteriole can increase perfu-

sion and oxygen supply. It has been suggested that the lack of oxygen also has a vasodilatory 

effect through a diminished adenosine triphosphate to adenosine diphosphate ratio and the 
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opening of Kadenosine triphosphate channels, relaxing the smooth muscle (Sears and Casadei 2002). 

In addition, a vasodilatory effect was suggested for adenosine in coronary muscle and potas-

sium in skeletal muscle (Sears and Casadei 2002). The myogenic response is a cascade of 

reactions in the vascular smooth muscle cells, occurring in response to changes in pressure 

(Sears and Casadei 2002). It has been suggested that stretching in the arteriolar wall leads to 

constriction of vessels: it activates calcium channels in the vascular muscle cells and that se-

cond messengers, such as arachidonic acid (an inhibitor of KCa channels), act as local vaso-

constrictors (Sears and Casadei 2002). 

1.3.4. Heart rate, stroke volume and peripheral resistance 

BP regulation involves thee parameters: heart rate, stroke volume, and total peripheral vascu-

lar resistance (Ackermann 2004). Heart rate is set and controlled by cardiac pacemaker cells 

(located in the right atrium) which create the impulse (Ackermann 2004). The sympathetic 

nervous activity increases the heart rate, whereas the parasympathetic activity decreases it 

(Ackermann 2004). Stroke volume depends on cardiac performance: preload, afterload, heart 

rate and contractility. In a healthy heart, an increase in preload is associated with a higher ven-

tricular performance, and the increase in afterload is associated with a higher ventricular con-

tractility (Ackermann 2004). Short-term changes in the ventricular contractility occur due to 

neurohumoral factors, whereas long-term changes depend on the morphological changes in 

the contractile proteins actin and myosin (Ackermann 2004). Total peripheral vascular re-

sistance is regulated mainly through changing the luminal arteriolar diameter (Ackermann 

2004). The arteriolar diameter is determined by the degree of constriction or relaxation of 

smooth muscle cells located in the medial layer of the arteriole. This diameter results from the 

action of vasodilators or vasoconstrictors. Most of the factors that act as vasodilators (widen-

ing the arteriolar diameter) are byproducts of tissue metabolism, whereas vasoconstriction 

(narrowing of the arteriole) is achieved through sympathetic nervous activity and the actions 

of chemical compounds such as adrenaline, angiotensin II, or vasopressin (Ackermann 2004). 

Vasoconstriction, which is mediated sympathetically, controls peripheral vascular resistance, 

except for parts of vessels where vasodilatory products are produced by the tissue (Acker-

mann 2004). 
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1.3.5. Endocrine and paracrine regulation of BP 

Endocrine regulation 

The long-term control of BP involves the kidney and angiotensin II (Ackermann 2004). The 

kidney is the most important organ controlling blood volume and pressure (Sears and Casadei 

2002). Kidneys regulate BP through two mechanisms: the modulation of sodium (and there-

fore liquid) balance and the production of vasoactive substances. These substances include 

angiotensin II, prostaglandin and NO, the endothelium-derived relaxation factor (Takenaka et 

al. 2004). 

The endocrine regulation mechanisms include adrenal glands, renin-angiotensin system, and 

vasopressin release. The adrenal medulla of the adrenal gland produces two hormones influ-

encing BP: adrenaline and noradrenaline. These hormones are produced in response to sym-

pathetic stimulation, cause vasoconstriction and increased cardiac output (Sears and Casadei 

2002). The receptors involved in vasoconstriction response are: (i) α1A receptors in the vascu-

lar smooth muscle cells and (ii) α2C receptors in the arteries and veins. The β1 and β2 adrener-

gic receptors, also located in the vasculature, mediate vasodilation (Sears and Casadei 2002). 

The renin-angiotensin system is an important BP regulation system that involves the kidneys 

and controls the cardiac output by modulating urinary salt and water excretion (Suzuki and 

Saruta 2004). If BP is falling, a decrease in renal perfusion pressure, or sympathetic nervous 

activity, or prostacyclin production affects the activity of juxtaglomerular cells in the kidneys. 

This triggers the secretion of renin into circulation (Sears and Casadei 2002). Renin cleaves 

angiotensinogen to angiotensin I, and angiotensin-converting enzyme (ACE) subsequently 

cleaves it to angiotensin II; ACE catalyzes the breakdown of the vasodilator bradykinin to 

inactive peptides (Sears and Casadei 2002). Angiotensin II mediates vasoconstriction and so-

dium and liquid retention (through the release of aldosterone from the adrenal cortex), in-

creasing blood volume and elevating BP (Fujita 2001; Sears and Casadei 2002). Angiotensin 

II also stimulates smooth muscle proliferation (Sears and Casadei 2002). In addition to the 

kidney renin-angiotensin system, there are local systems within the vasculature (Ching and 

Beevers 1991). A local renin system may be activated by local vascular damage, independent 
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of the systemic BP (Ching and Beevers 1991). Angiotensin also plays a role in vascular re-

modeling through the stimulation of angiotensin type 2 receptors (Sears and Casadei 2002).  

Vasopressin, or antidiuretic hormone, acts to retain water in the body and to constrict blood 

vessels. It is secreted in nervous fibers of the supraoptic and paraventricular nuclei of the hy-

pothalamus in response to reductions in plasma volume (activated by baroreceptors; a > 10% 

reduction in blood volume activates the secretion) and increases in plasma osmolality (osmo-

receptors in the hypothalamus) and in response to cholecystokinin, a substance secreted by the 

small intestine (Ashton 2007). Angiotensin II activates and atrial natriuretic peptide inhibits 

vasopressin secretion (Ashton 2007). 

Paracrine regulation 

The auto-regulation of BP (paracrine regulation) produces immediate responses to local 

changes and alters the perfusion of tissues in the area. Different effector mechanisms operate 

at the different sites of the vascular system (Storkebaum and Carmeliet 2011). The release of 

endothelial NO, a decreased supply of O2, decreased pH, an increased supply of CO2, in-

creased temperature, and histamine release (local inflammation) have local vasodilatory ef-

fects (Storkebaum and Carmeliet 2011). Prostaglandins and ETs released by damaged endo-

thelial cells are local vasoconstrictors (Silldorff et al. 1995). 

1.3.6. The neural regulation of blood pressure 

The neural regulation of BP results in acute adjustments to systemic changes and body-wide 

responses, controlled by the medulla oblongata (Schmidt et al. 2011). Neural regulation of BP 

responds to baroreceptors and chemoreceptors. Baroreceptors are located in the high- and 

low-pressure receptor zones in the left and right carotid sinuses, in the aortic arch, and in ar-

teries (Sears and Casadei 2002). The baroreceptors detect changes in arterial pressure and 

send signals to a region in the medulla part of the brainstem (the rostral ventrolateral medul-

la). The rostral ventrolateral medulla adjusts the arterial pressure by altering heart rate (force 

and speed of contractions) and systemic vascular resistance. Baroreceptors in the low-pressure 

receptor zones are located in pulmonary veins, the venae cavae, the atria, and the kidneys (re-

nal baroreceptors; Ashton 2007). They regulate BP by affecting the secretion of vasopressin, 
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renin and aldosterone, which results in increases in blood volume and cardiac output and, as a 

result, increased BP (Ashton 2007). Chemoreceptors are located in the aorta and carotid arter-

ies (Ashton 2007). They react to changes in the concentrations of O2, CO2, and pH (Ashton 

2007).  

1.3.7. The role of vascular endothelium 

The vascular endothelium plays a major role in maintaining local homeostasis through its sen-

sory and effector capacity (Wilson and Lerman 2001). The vasoregulatory role of the endothe-

lium is achieved through the emission of relaxing or constricting factors. NO, the endotheli-

um-derived relaxing factor, is synthesized by endothelial nitric oxide synthase enzyme 

(eNOS) as a response to shear stress (Sears and Casadei 2002). NO diffuses from the inner 

vascular layer (endothelium) to the medial layer (smooth muscle cells) and triggers vasodila-

tion through a decrease in Ca
2+ 

release and activation of K channels; this process involves the 

enzymes guanylate cyclase and protein kinase G (Ching and Beevers 1991; Sears and Casadei 

2002). NO has a half-life of a few seconds and acts rapidly (Wilson and Lerman 2001). The 

circulating agents, such as bradykinin, adenosine, serotonin, histamine, acetylcholine, may 

also activate NO synthesis (Sears and Casadei 2002; Wilson and Lerman 2001). In addition to 

NO, the vascular endothelium can produce other vasodilatory substances, such as prostacyclin 

(Sears and Casadei 2002). In response to angiotensin, vasopressin, thrombin, and adrenaline, 

endothelial cells can release ET-1, a vasoconstrictor (Ching and Beevers 1991; Sears and 

Casadei 2002).  

Endothelium plays the role of an anti-inflammatory barrier: it prevents infiltration of the cir-

culating inflammatory cells under normal conditions (Wilson and Lerman 2001). Endotheli-

um-derived NO has an additional, ―antiatherogenic‖, function: it interacts with adhesion mol-

ecules, such as vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion mol-

ecule-1 (ICAM-1) and endothelial leukocyte adhesion molecule-1, also known as e-selectin, 

to prevent the endothelial adhesion of leukocytes and their further migration to the arterial 

wall; in addition, NO inhibits platelet aggregation (Wilson and Lerman 2001). The same anti-

atherogenic role was observed for the other endothelium-derived relaxing factor, prostacyclin 
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(Sears and Casadei 2002). Endothelium-derived vasoconstrictor ET-1 is a proatherogenic fac-

tor (Wilson and Lerman 2001). 

The imbalance between NO and endothelin may be associated with CVD (Sears and Casadei 

2002). Endothelial dysfunction is characterized by abnormal endothelium-dependent relaxa-

tion, impaired vasoreactivity, decreased NO bioavailability, and increased expression of adhe-

sion molecules and transendothelial migration of circulating monocytes (Wilson and Lerman 

2001). Endothelial dysfunction is associated with early stages of atherosclerosis and may play 

an important role in atherogenesis (Wilson and Lerman 2001). However, the results of a re-

cent analysis in the Multi-Ethnic Study of Atherosclerosis suggest that impaired endothelial 

function is not an independent predictor of hypertension incidence and may not play a sub-

stantial role in hypertension development (Shimbo et al. 2010). 

There are two other nitric oxide synthase enzymes, which produce NO in mammals: inducible 

(iNOS) and neuronal (nNOS). INOS plays an important role in the immune defense (because 

of the free radical properties of NO). ENOS and nNOS are constitutively expressed calcium-

dependent isoforms (Lee and Yen 2008). INOS is either not expressed or expressed at a min-

imal level under normal, non-pathological conditions (Lee and Yen 2008). INOS expression is 

induced in vascular cells by proinflammatory cytokines (Lee and Yen 2008). NO plays a dual 

role: on the one hand, the constitutive production of NO is a mechanism to protect the cells of 

the vascular endothelium, on the other hand, disproportionate (i.e., too much or too little) NO 

production in pathological conditions can result in cytotoxic effects (Lee and Yen 2008). In 

addition to NO production, iNOS simultaneously catalyzes the production of peroxynitrite, a 

potent oxidant that can trigger oxidative damage of the vascular endothelium and can mediate 

protein nitration, guanidine nitration, and deoxyribonucleic acid (DNA) single-strand break-

age, processes that are toxic and mutagenic (Lee and Yen 2008). It has been suggested that the 

increase of iNOS expression results from vascular injury (Lee and Yen 2008). 

1.3.8. The interplay of CO and NO in BP regulation 

NO and CO are important gas transmitters involved in the compensatory regulation of blood 

pressure during the genesis of hypertension (Lee and Yen 2008). Under pathological stress 
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conditions, NO is produced by iNOS (Lee and Yen 2008). CO is produced by heme oxygen-

ase (HO), an enzyme catalyzing the oxidative degradation of heme to biliverdin, CO and iron 

(Lee and Yen 2008). There are three isoforms of this enzyme: HO-1, HO-2, and HO-3 (Lee 

and Yen 2008). Isoforms 2 and 3 are active constitutively, whereas isoform 1, similar to iNOS, 

is normally not active (Lee and Yen 2008). HO-1 expression is induced by oxidative stress, 

cytokines, NO, and other stimuli (Lee and Yen 2008). HO-1 is expressed in the endothelial 

and foam cells of atherosclerotic lesions (Lee and Yen 2008).  

Though CO was originally considered a toxic metabolic waste product, its cytoprotective 

function was discovered recently (Lee and Yen 2008). CO can act as a vasodilator similarly to 

NO (Lee and Yen 2008). Depending on the experimental conditions, CO can act as a vasocon-

strictor or vasodilator (Lamon et al. 2009). The vasoconstricting function of CO is activated 

by the oxidative stress response (Lamon et al. 2009). Alternatively, it has been suggested that 

CO promotes vasoconstriction by inhibiting the formation of NO, the endothelium-derived 

relaxation factor (Johnson and Johnson 2003). It has been suggested that NO and CO dynami-

cally affect each other and that under certain pathological conditions, such as oxidative stress, 

iNOS and HO-1 cooperate and compensate for each other (Lee and Yen 2008).  

1.3.9. Individual factors affecting BP 

Among the factors influencing the average BP level, are age, sex, race, family history, socio-

economic status, early life experiences, body mass index (BMI), nutrition (in particular, sodi-

um, potassium, calcium and magnesium intake, fish oil intake, licorice, tyramine-containing 

foods, coffee consumption, alcohol intake), physical activity, and environmental factors 

(Chobanian et al. 2003; Drøyvold et al. 2005; Geleijnse et al. 2005; Steffel and Lüscher 2011; 

Whelton 1994).  

BP at birth is measured at approximately 70 mmHg SBP to 50 mmHg DBP (Whelton 1994). 

SBP rises gradually over childhood, adolescence, and adulthood, reaching approximately 140 

mmHg by 70-80 years of age (Whelton 1994). The estimated annual increase of SBP in adults 

is approximately 0.9 mmHg (Wills et al. 2012). DBP also increases over a substantial period 

of life, although the rate of increase is smaller than that for SBP (Whelton 1994). After the age 



Theoretical Background 

31 

of 50, the average DBP stops increasing or even declines due to the growing rigidness of the 

arteries (Whelton 1994).  

The prescription drugs that affect BP levels include cortisone and other steroids, estrogens, 

non-steroidal anti-inflammatory drugs, phenylpropanolamines, cyclosporine and tacrolimus, 

erythropoietin, sibutramine, antidepressants (especially venlafaxine), clozapine, and others 

(Chobanian et al. 2003). Environmental chemicals, such as lead, mercury, heavy metals, and 

lithium salts, are also associated with arterial hypertension (Chobanian et al. 2003). 

During the measurement, the BP reading may be influenced by many factors. For example, 

using different recording devices in one study produces a systematic difference in measure-

ment. In the analysis comparing a random-zero sphygmomanometer (RZS) with an automated 

oscillometric measurement device (AOD), the differences (AOD-RZS) constituted 3.9 mmHg 

for SBP and 2.6 mmHg for DBP (Stang et al. 2006). The measurement procedure can influ-

ence BP levels, particularly, the resting time before the measurement, the consumption of 

food or beverages before the measurement, rigorous exercise, smoking, the use of medication, 

appropriateness of cuff size for measurement, body position, and the arm with which the 

measurement is performed (Kuulasmaa et al. 1998). Therefore, it is important to use a stand-

ardized measurement procedure. 

1.3.10. Arterial hypertension 

Hypertension can be defined as a condition when the vasodilatory response is inefficient or 

when the arteries are injured in the inflammatory process and are therefore less compliant and 

constricted (Lee and Yen 2008). The clinical definition of hypertension given in the Seventh 

Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment 

of High Blood Pressure (JNC7) is SBP ≥ 140 mmHg or DBP ≥ 90 mmHg, or medication with 

antihypertensive agents (Chobanian et al. 2003). Hypertension can be further divided to stage 

1, characterized with SBP 140–159 mmHg or DBP 90–99 mmHg, and stage 2, with SBP ≥ 

160 mmHg or DBP ≥ 100 mmHg (Chobanian et al. 2003). Normal blood pressure is defined 

as SBP ≤ 120 mmHg and DBP ≤ 80 mmHg. Higher BP values indicating prehypertension are 

defined as SBP 120–139 mmHg or DBP 80–89 mmHg. Prehypertension is independently as-
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sociated with cardiovascular risk (Chobanian et al. 2003; Erbel et al. 2012).  

Essential (primary) hypertension is arterial hypertension without an underlying primary dis-

ease; it constitutes 90–95% of all hypertension cases (Carretero and Oparil 2000; Steffel and 

Lüscher 2011). Secondary hypertension occurs as a symptom of another primary disease, such 

as kidney disease, endocrine disruptions, obstructive sleep disturbance, and others (Steffel and 

Lüscher 2011). 

Three hemodynamic subtypes of essential hypertension are defined: isolated systolic hyper-

tension (DBP is normal), isolated diastolic hypertension (SBP is normal), or combined hyper-

tension (both SBP and DBP are high; Victor and Kaplan 2008). Isolated diastolic hypertension 

is more frequent in men than in women; it is also attributed to middle-age weight gain (Victor 

and Kaplan 2008). If not treated, isolated hypertension can progress to combined hypertension 

(Victor and Kaplan 2008).  

The global burden of hypertension is rather high. In 2002, up to 20% of the population in the 

developed countries had high BP, and it was estimated that at least 500 million people world-

wide had or would eventually have hypertension (Mulvany 2002). Hypertension was deemed 

the major risk factor for global mortality in the Global Burden of Disease Study 2010 (Lim et 

al. 2013). 

1.3.11. Pathogenesis of hypertension 

The pathogenesis of hypertension, despite the large volume of research and attention given to 

this topic, is not yet completely understood (Hayashi 2001; Mulvany 2002). Hypertension is 

associated with endothelial dysfunction, altered vascular contractility, and arterial remodeling 

(Paravicini and Touyz 2006). The underlying pathology of arterial hypertension involves ele-

vated systemic vascular resistance, increased cardiac output, or both (Steffel and Lüscher 

2011). The early stages of hypertension are characterized by increased cardiac output, likely 

due to left ventricular hyperactivity (Ching and Beevers 1991). In advanced hypertension, the 

cardiac output is normal, whereas the systemic vascular resistance is increased (Ching and 

Beevers 1991). In response to increased cardiac output in hypertension, the peripheral arteries 

contract, thereby increasing the systemic vascular resistance and further increasing the BP 
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(Ching and Beevers 1991). The regulation of BP is a complex process, and an increase in the 

BP value arises from an imbalance between the vasoconstrictive (such as angiotensin II, endo-

thelin, thromboxane) and vasodilatory (NO, prostacyclin) substances (Steffel and Lüscher 

2011). At the cellular level, hypertension is associated with changes in vascular muscle cell 

growth, apoptosis, cell migration, inflammation, and fibrosis (Paravicini and Touyz 2006). 

It has been suggested that the kidney plays a role in hypertension development (Hayashi 

2001). For example, sodium retention, a result of inadequate renal sodium excretion, is a well-

known determinant of hypertension (Hayashi 2001). It has been suggested that salt sensitivity 

plays a role in hypertension development (Hayashi 2001). The kidney is also responsible for 

the production of various vasoactive substances, such as the renin-angiotensin system, prosta-

glandins, and NO (Hayashi 2001).  

It has been suggested that the endothelial damage occurring in hypertension increases free 

radical production and thus destroys endothelium-derived NO; this process can be reversed by 

antioxidants such as superoxide dismutase, which scavenges free radicals (Ching and Beevers 

1991). In addition, a damaged endothelium produces lower amounts of endothelium-derived 

NO compared to a healthy endothelium (Ching and Beevers 1991). Tissue damage related to 

reactive oxygen species (ROS) activity potentiates vasoconstriction by destroying endotheli-

um-derived NO (Ching and Beevers 1991).  

1.3.12. Small artery remodeling 

The wall of a small artery consists of three layers: (i) the intima, the inner layer, which con-

sists of longitudinally arranged endothelial cells; (ii) the media, the middle layer, which con-

sists of circumferentially aligned smooth cells; and (iii) the adventitia, the outer layer, which 

consists of connective tissue and sympathetic nerves (Mulvany 2002). In hypertensive indi-

viduals, the structure of a small artery is altered: the lumen is reduced, and the ratio of media 

to lumen is increased (Mulvany 2002). This process is called remodeling. It has been suggest-

ed that the small artery diameter decreases and causes thickening of the arterial wall, ensuring 

that the wall tension remains normal (Mulvany 2002).  

The only parameter that is consistently above normal values in hypertensive individuals is the 
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peripheral vascular resistance; most of the other factors, such as sympathetic activity and 

plasma renin activity, remain within normal range (Mulvany 2002). Increased peripheral vas-

cular resistance results in higher BP, according to formula [10]. It has been suggested that 

vascular remodeling is the largest contributor to the increased peripheral resistance, possibly 

through narrowing of the resistance arterioles (Mulvany 2002). Narrowed arteriole diameter 

was a predictor of hypertension development in a rat model (Mulvany 2002). 

The following factors could initiate remodeling: the activation of alpha receptors of the ANS 

by adrenaline; triggering noradrenaline release, which causes vasoconstriction; and circulating 

vasoconstriction hormones, such as angiotensin, vasopressin, prostaglandins, and serotonin 

(Ching and Beevers 1991). The cellular mechanisms of vascular remodeling are not yet com-

pletely understood. It has been shown that the phosphorylation of extracellular signal-

regulated kinases 1 and 2, the expression of the proto-oncogenes c-fos and c-myc, and the 

activities of the platelet-derived growth factor beta receptor and matrix metalloproteinases 2 

and 9 are involved in remodeling (Mulvany 2002). BPLM intake can somewhat reverse vas-

cular remodeling by increasing the lumen diameter, but this process is impaired and does not 

suffice to fully normalize the small artery structure (Heagerty et al. 2010). 

1.3.13. Medication against high blood pressure 

The control of BP, especially of SBP, achieved either with lifestyle modification or medica-

tion, reduces total mortality, cardiovascular mortality, stroke and heart failure (Chobanian et 

al. 2003). The first step in BP control is lifestyle modification. If the aimed BP value is not 

achieved, then medication is prescribed (Chobanian et al. 2003). According to the Anatomical 

Therapeutic Chemical Classification System of the WHO Collaborating Centre for Drug Sta-

tistics Methodology, BPLM includes the following classes of drugs or any combination of 

them: diuretics, β-blockers, ACE inhibitors, angiotensin-receptor antagonists, calcium-

channel blockers, α-blockers, centrally active antihypertensive drugs, and hydralazine. In the 

initial treatment phase, thiazide-type diuretics are used, sometimes in combination with other 

classes of drugs (e.g., an angiotensin converting enzyme inhibitor). A drug from another class 

can be chosen if the initial drug is tolerated. Most often, hypertension is treated with two or 
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more drugs, especially if the initial BP values are very high (Chobanian et al. 2003). 

BP values can diminish substantially after effective therapy with BPLM. Clinical trials have 

reported reductions in SBP of approximately 5.4–8.4 mmHg and in DBP of 2.3–4.2 mmHg in 

response to medication (Turnbull 2003). In diabetic patients, antihypertensive treatment with 

nebivolol yielded an approximately 20 mmHg decrease in SBP (Schmidt et al. 2007). Similar 

results were reported for combination therapy in other studies (Everett et al. 2008; Mourad et 

al. 2007). 

1.4. Association of air pollution with CVD 

1.4.1. Air pollution and cardiovascular mortality and events 

Positive associations of short-term elevations in PM10, PM2.5, UFP, elemental and organic 

carbon with cardiovascular mortality were identified in several studies, as reviewed by 

Rückerl et al. (2011). As estimated in a few time-series U.S. studies, an increase in the 24-

hour mean PM2.5 by 10 µg/m³ is associated with an increase in the relative risk for daily car-

diovascular mortality by 0.4–1.0% (Brook et al. 2010). Brook et al. (2010) also noted that the 

risk is not equally distributed in the population: the susceptible groups, such as the elderly and 

subjects with coronary artery or structural heart disease, may be at higher risk of cardiovascu-

lar mortality due to PM. In Europe, the analysis of two large population-based studies showed 

a positive association with cardiovascular mortality: assuming the association was linear, a 10 

µg/m³ increase in PM10 was associated with a 0.7% increase in cardiovascular mortality (Sa-

moli et al. 2004). In a later re-analysis with North American and European studies together, 

Samoli et al. (2008) found that results for short-term mortality were quite similar. 

Similar to acute effects, the long-term exposure to PM was also associated with cardiovascu-

lar deaths (Brook et al. 2010; Brunekreef et al. 2009; Miller and Siscovick 2007; Pope et al. 

2004). For example, in the study with approximately 500,000 adults from the USA, a 10 

µg/m³ increase in PM10 was associated with a 6% elevation in cardiopulmonary mortality risk 

(Brook et al. 2010). Additionally, reduced exposures to air pollution are associated with lower 

mortality (Laden et al. 2006). In a Dutch cohort, an increase in the yearly mean PM2.5 by 10 

µg/m³ was related to a 4% higher risk or cardiovascular mortality (Brunekreef et al. 2009). In 
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a recent meta-analysis of studies from the USA, Canada, China, Japan, Germany, the Nether-

lands, Switzerland, Italy, and New Zealand, an increase in the long-term PM2.5 by 10 µg/m³ 

was associated with an increase in cardiovascular mortality by 11% (Hoek et al. 2013).  

Short-term elevations in PM concentrations have shown associations with CVD events, such 

as the triggering of an acute myocardial infarction, heart failure and ischemic stroke hospitali-

zation, and discharge of implanted automatic cardioverter defibrillators (Araujo and Nel 

2009). Short- and long-term exposure to PM is associated with hospital admissions for is-

chemic heart disease, heart failure, cerebrovascular disease, cardiac arrhythmias and arrest 

(Brook et al. 2010; Domínguez-Rodríguez et al. 2011) In a meta-analysis of 35 studies on air 

pollution and heart failure, daily increases in CO, SO2, NO2, PM2.5, PM10 were positively as-

sociated with heart failure hospitalization or death (Shah et al. 2013). In a recent meta-

analysis of 11 European cohorts, long-term exposure to traffic-related air pollution was asso-

ciated with an elevated risk of new coronary events, even at air pollution levels below the 

current European limits (Cesaroni et al. 2014). 

1.4.2. Air pollution and atherosclerosis 

The association of different air pollutants with cardiovascular events may share a common 

underlying pathology – atherosclerosis. This disorder is characterized by atherogenesis (the 

development of atheromatous plaques) and, in more advanced stages, smooth muscle cell pro-

liferation, fibrous cap formation, necrotic cores, calcification, rupture, hemorrhage and 

thrombosis (Araujo and Nel 2009). Atherogenesis is a lifelong process (Künzli et al. 2011). 

The early central features of the artery wall pathology are oxidative stress, followed by sys-

temic and vascular inflammation, endothelial dysfunction, and lipid deposition in the arterial 

wall (Künzli et al. 2011). These pathologic changes result in reduced vascular reactivity, arte-

rial stiffening, thickening of the arterial wall, arterial stenosis, and plaque formation (Künzli 

et al. 2011). The atheromatic plaque formation (lipid deposition and oxidation in the artery 

wall) is regarded as an intermediate between risk factor exposure and clinical events (Erbel et 

al. 2010). Coronary plaque rupture leads to acute coronary manifestations, such as myocardial 

infarction; carotid plaque rupture causes cerebral stroke and vascular dementia (Künzli et al. 
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2011).  

According to a lifetime model of atherosclerosis development, progression of atherosclerosis 

can be divided into 3 phases: normal, preclinical and clinical disease manifestation (Künzli et 

al. 2011). Acute clinical events may manifest at approximately 40 years of age or later, de-

pending on the degree of individual risk (Künzli et al. 2011). The degree of atherosclerosis at 

any age reflects a combination of genetic predisposition and cumulative exposure to internal 

and external factors that have either protective or deteriorating effects on vascular health 

(Künzli et al. 2011).  

An external factor possibly affecting vascular health is outdoor air pollution. It has been sug-

gested that air pollution plays roles in pulmonary and systemic inflammation, cardiac auto-

nomic function impairment, and accelerated atherosclerosis (Mills et al. 2009; Pope et al. 

2004). Some studies indicated associations between air pollution and systemic inflammation 

and endothelial dysfunction (Brook et al. 2010; Hertel et al. 2010; Hoffmann et al. 2009; 

Krishnan et al. 2012). Exposure to air pollution induced vascular inflammation and oxidative 

stress and promoted atherosclerotic plaque expansion or rupture (Brook et al. 2010; Mills et 

al. 2009). Künzli et al. (2004, 2010) have identified a cross-sectional and a prospective asso-

ciation of air pollution with subclinical atherosclerosis, measured as carotid intima-media 

thickness. The studies with a population-based German cohort showed that living close to a 

major road and being exposed to elevated concentrations of PM2.5 were positively associated 

with the markers of subclinical atherosclerosis (Bauer et al. 2010; Hoffmann et al. 2007). A 

positive, though much weaker, association of long-term PM with intima-media thickness was 

also identified in an American population-based cohort (Diez Roux et al. 2008). Two hypothe-

ses of the association of air pollution with atherosclerosis have been suggested by Künzli et 

al. (2011): (i) long-term exposure to outdoor air pollution causes atherogenesis, therefore, 

exposed individuals would have a faster progression of vascular pathologies and would reach 

the clinical manifestations of atherosclerosis at earlier ages than non-exposed individuals; and 

(ii) short-term exposure to air pollution can trigger cardiovascular events in susceptible indi-

viduals (i.e., those with pre-existing subclinical atherosclerosis). Considering the longitudinal 

nature of atherogenesis, the chronic effect of air pollution on atherosclerosis, described by 
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hypothesis (i), is relevant at any age. The acute effect on cardiovascular events, described by 

hypothesis (ii), is more relevant at an older age, when atherogenesis reaches the pre-clinical 

stage. 

1.4.3. Association of air pollution with BP and hypertension 

The causal association between air pollution and atherosclerosis and cardiovascular events 

may involve elevated BP and hypertension (Brook et al. 2009). In a few recent studies, a posi-

tive association between short-term increases in PM air pollution and acute elevations in arte-

rial BP has been reported (Brook et al. 2010, 2011; Chuang et al. 2010; Delfino et al. 2010; 

Dvonch et al. 2009; Hoffmann et al. 2012; Mordukhovich et al. 2009; Zanobetti et al. 2004). 

The association was reported in both the general population (Auchincloss et al. 2008; Brook 

et al. 2011) and among more susceptible individuals, such as diabetics (Hoffmann et al. 2012), 

the elderly (Mordukhovich et al. 2009; Wilker et al. 2010), and subjects with chronic obstruc-

tive pulmonary disease (Linn et al. 1999). In a Dutch cohort of pregnant women, the residen-

tial outdoor PM10 concentration was associated with increases in BP in the second and third 

trimesters (van den Hooven et al. 2011). Some studies report inverse associations of short-

term air pollution exposure with BP. For example, ambient PM10 concentration was associated 

with higher BP in the first trimester of pregnancy and lower BP in the later trimesters in a 

French cohort; higher NO2 concentrations were associated with decreased BP throughout the 

entire pregnancy period (Hampel et al. 2011). In a Taiwanese cohort, short-term exposure to 

various air pollutants was negatively associated with SBP and positively associated with DBP 

(Chen et al. 2012). 

Based on the evidence from short-term studies with air pollution and BP, a positive associa-

tion between long-term exposure to air pollution and elevated BP, independent from and pos-

sibly also stronger than short-term fluctuations, has been proposed (Rückerl et al. 2011). 

Stronger associations with long-term than with short-term exposure levels have already been 

shown for other health outcomes (Brook et al. 2010; Diez Roux et al. 2006). There is also 

some supporting evidence for a long-term association with BP. For example, Auchincloss et 

al. (2008) reported that the association of longer-term averages (30- or 60-day means) of 
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PM2.5 with BP was stronger than the results observed for daily or weekly averages.  

Thus far, the evidence for long-term effects is rather scarce. In two American studies with 

selected populations (elderly men and black women, respectively), traffic-related air pollution 

was linked to higher BP or hypertension (Coogan et al. 2012; Schwartz et al. 2012). Long-

term exposures to PM and gaseous air pollutants were associated with high BP and hyperten-

sion in two large Asian cohorts (Chuang et al. 2011; Dong et al. 2013). Long-term PM con-

centrations were positively related to self-reported hypertension among white American adults 

(Johnson and Parker 2009). In a large cohort of non-hypertensive adults from Canada, long-

term exposure to PM2.5 was positively associated with incident physician-diagnosed hyperten-

sion (Chen et al. 2013). One study reported a negative long-term association of air pollution 

with BP: in a large population-based Danish cohort of older adults, long-term exposure to 

nitrogen oxides, indicators of traffic-related air pollution, was associated with decreased BP 

and a lower prevalence of self-reported hypertension (Sørensen et al. 2012). 

1.5. Pathophysiology of the adverse cardiovascular effects of air pollution 

Oxidative stress, a condition involving chronically elevated levels of ROS, plays a central role 

in the development of adverse effects of air pollution on the cardiovascular system (Brook et 

al. 2010; Paravicini and Touyz 2006). Three general pathways have been suggested based on 

the current evidence: (i) pulmonary inflammation and oxidative stress, (ii) ANS imbalance 

and (iii) direct translocation of PM constituents to the systemic blood flow (Brook et al. 

2010).  

1.5.1. Initiation of pulmonary inflammation and oxidative stress 

Inhalation of particles into the lung can trigger a localized inflammatory response in the lung 

(Mills et al. 2009). Exposure to PM has been correlated with the concentrations of redox-

active compounds and macrophage damage in bronchial epithelium (Lodovici and Bigagli 

2011). Transition metals, such as Fe, Pb, Ni, V, Cr, Mn, Cu, can be adsorbed on the surfaces 

of fine and ultrafine particles and can generate ROS (e.g., as hydroxyl radical) with Fenton’s 

reaction (Lodovici and Bigagli 2011): 
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Fe2+ + H2O2 + H+ → Fe3+ + 𝐻𝑂∗+H2O      [11] 

For example, when polycyclic aromatic hydrocarbons (PAH) are metabolized with cyto-

chrome P450, redox-active quinones are formed, which can trigger ROS production (Lodovici 

and Bigagli 2011). PM can inhibit the oxidative stress responses; activate the proinflammato-

ry genes, such as tumor necrosis factor alpha (TNFα); and stimulate the production of proin-

flammatory cytokines and chemokines (Lodovici and Bigagli 2011). Diesel exhaust particles 

can cause lipid peroxidation and ROS production (Lodovici and Bigagli 2011). Gaseous pol-

lutants, such as ozone and nitrogen oxides, can induce oxidative stress and inflammation. For 

example, O3 induces oxidative stress through the formation of ozonide O3
–
 and hydrogen per-

oxide (Lodovici and Bigagli 2011).  

1.5.2. Transformation from local to systemic inflammation and oxidative stress 

The cytokines, activated immune cells, and platelets, which are synthesized or released due to 

pulmonary inflammation and oxidative stress, can reach the systemic circulation. The plasma 

levels of cytokines, such as interleukin (IL) 1β, IL-6, and granulocyte-macrophage colony-

stimulating factor, are elevated after exposure to PM (Mills et al. 2009). PM is associated with 

the increased release of neutrophils and monocytes into the systemic circulation (Mills et al. 

2009). Finally, the acute-phase proteins and coagulation markers, such as C-reactive protein 

(CRP), ICAM-1, VCAM-1, fibrinogen, and platelets are associated with short- and long-term 

exposure to PM and gaseous pollutants, such as NO2 and CO, in the general population (Bind 

et al. 2012; Delfino et al. 2008; Hennig 2014; Hertel et al. 2010; Lucking et al. 2008; Pek-

kanen et al. 2000).  

1.5.3. Inflammation, oxidative stress and arterial BP  

There are many links from the immune system and inflammatory processes CVD, and to hy-

pertension in particular. For example, the Toll-like receptors, which are part of the innate im-

mune system and can ―sense‖ pathogens, toxins and other substances, play a role in CVD. 

These receptors can be activated by oxidized lipoproteins, are involved in atherosclerosis de-

velopment, and can send inflammatory response signals that can affect the cardiovascular 

system (e.g., ROS, reactive nitrogen species [RNS], etc.; Harrison et al. 2011).  
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Oxidative stress is an imbalance between ROS formation and antioxidant defense mecha-

nisms (Touyz and Schiffrin). If ROS production in the cell predominates the antioxidant de-

fense reactions, cellular oxidative stress may develop, triggering signaling pathways as a re-

sult of redox disequilibrium that result in the activation of cytokine and adhesion molecule 

expression (Araujo and Nel 2009). It has been suggested that oxidative stress mediates the 

adverse cardiovascular effects of air pollution with PM (Araujo and Nel 2009).  

The vasculature is a rich source of ROS and RNS. Under normal conditions, these molecules 

function to maintain vascular integrity, which is achieved through the regulation of smooth 

cell contraction, relaxation, and growth (Touyz and Schiffrin). Common endogenous ROS 

include superoxide anion 
*
O2

–
, hydrogen peroxide H2O2, hydroxyl radical HO

*
, and hypo-

chlorous acid HOCl; common RNS include NO and peroxynitrite (ONOO
–
; Touyz and 

Schiffrin). Under pathological conditions, the same compounds act detrimentally: they may 

trigger endothelial dysfunction, smooth muscle cell apoptosis, inflammation, and other vascu-

lar damage (Touyz and Schiffrin).  

Though the clear cause-and-effect relationships are not yet completely understood, it is known 

that oxidative stress occurs in hypertension (Khullar et al. 2003). Patients with hypertension 

have elevated concentrations of oxidative stress byproducts and demonstrate decreased activi-

ty levels of endogenous antioxidant enzymes in whole blood and mononuclear cells compared 

to healthy individuals (Redón et al. 2003). Oxidative stress in hypertension can promote vas-

cular smooth muscle cell proliferation and hypertrophy and collagen deposition; can stimulate 

the expression of proinflammatory molecules, such as adhesion molecules and chemotactic 

proteins; and can mediate the oxidation of lipids and cell migration(Touyz and Schiffrin). All 

of these processes contribute to arterial remodeling and hypertension development (Touyz and 

Schiffrin). 

Oxidative stress and hypertension are closely related. On the one hand, the production of ROS 

and other markers of oxidative stress is increased during hypertension; on the other hand, the 

deactivation of free radicals with antioxidants improves vascular function and leads to re-

duced BP (Touyz and Schiffrin). Furthermore, animal models that are unable to produce ROS 
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tend to have lower BPs compared to controls (Touyz and Schiffrin). ROS have multiple ef-

fects on the organism that are relevant to hypertension; they promote sympathetic outflow in 

the central nervous system, and they trigger blood vessel constriction and sodium and volume 

retention in the kidneys (Harrison et al. 2011). In addition to this prohypertensive action, ROS 

activate the inflammatory response, which might also be relevant for hypertension. Harrison 

et al. (2011), analyzing the findings of their and other researchers’ studies, hypothesize that 

hypertensive stimuli, such as angiotensin II, may activate T-cells and, in turn, the entry of 

other inflammatory cells into the vasculature; these events lead to the release of cytokines 

causing vasoconstriction, sodium retention, and other effects that further increase BP and lead 

to more severe hypertension. 

Paravicini and Touyz (2006) delineate the three most relevant sources of ROS in vascular pa-

thology: xanthine oxidase, eNOS and nicotinamide adenine dinucleotide phosphate 

(NAD(P)H) oxidase. Of them, NAD(P)H oxidase is the main ROS source (Paravicini and 

Touyz 2006). The NAD(P)H oxidase enzyme is a multi-component, NADPH-dependent en-

zyme that has been characterized in three types of vascular wall cells. The enzyme generates 

superoxide anion in the presence of molecular oxygen (Yu et al. 2008). NAD(P)H oxidase 

plays a significant role in atherosclerosis progression, and its inhibition can slow down ad-

verse cardiovascular processes (Yu et al. 2008). The increased activity of vascular NAD(P)H 

oxidase is associated with hypertension pathology (Touyz and Schiffrin). NAD(P)H oxidase is 

activated by vasoactive hormones (such as angiotensin II), growth factors and mechanical 

stimuli (Paravicini and Touyz 2006). Therefore, angiotensin II may be one of the factors link-

ing hypertension with oxidative stress (Khullar et al. 2003). Its effects are mediated by ROS, 

which are produced with the help of NAD(P)H oxidase (Paravicini and Touyz 2006). The 

antioxidant defense enzymes, such as superoxide dismutase, play an important role in in-

flammation-mediated BP regulation (Gongora et al. 2006; Lob et al. 2010). 

1.5.4. The role of endothelial dysfunction 

An important function of the endothelium is to maintain vascular homeostasis (Widlansky et 

al. 2003). This function is achieved via the interactions of the endothelium with the cells in 
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the vessel wall and lumen (Widlansky et al. 2003). Endothelial dysfunction is characterized 

by the impaired vasomotion and vascular tone, the pro-thrombotic and pro-inflammatory 

state, and proliferation in the arterial wall (Widlansky et al. 2003). Vascular oxidative stress 

decreases the bioavailability of NO, a potent vasodilator; together with an inflammatory re-

sponse, this effect may promote endothelial dysfunction (Touyz and Schiffrin). Inflammation 

mediates oxidative stress in CVD and leads to vascular injury and endothelial dysfunction 

(Lin et al. 2013). Oxidative stress and endothelial dysfunction are often observed in hyperten-

sive subjects, and these conditions have been suggested to play causal roles in hypertension 

development (Lin et al. 2013). Endothelial dysfunction is also considered an early step in ath-

erosclerosis development (Sitia et al. 2010). It has been hypothesized that vascular damage 

due to oxidative stress is a link from hypertension to atherosclerosis (Alexander 1995).  

The inflammatory response induced by air pollution exposure can impair the function of the 

vascular endothelium. For example, in a cohort study with 704 elderly American men, short-

term exposure to traffic-related pollutants (PM2.5, NO2, CO) was associated with vascular cell 

adhesion molecules related to both inflammation and vascular function (Bind et al. 2012). 

Vascular tone regulation was affected by short-term exposure to diesel exhaust in a panel 

study with healthy volunteers (Mills et al. 2005). In an animal model of PM10 exposure, anti-

inflammatory drugs reduced atherosclerosis and improved endothelial function, protecting 

against the adverse effects of PM10 (Miyata et al. 2013). Anti-inflammatory and antioxidant 

medications (such as statins) have beneficial effects on endothelial progenitor cells and there-

fore protect against endothelial injury and aging (Tousoulis et al. 2008).  

1.5.5. Air pollution, ANS imbalance and hypertension 

Short-term exposure to PM can affect the autonomic control of the heart rate, resulting mostly 

in decreased heart rate variability (Brook et al. 2009, 2010; Chuang et al. 2007; Elder et al. 

2007). Air pollution can activate the sympathetic nervous system and trigger parasympathetic 

withdrawal, resulting in an acute increase in BP (Brook et al. 2010; Miller et al. 2012). It is 

hypothesized that deposited particles could alter central nervous system activity either directly 

or by interacting with lung receptors and by altering ANS reflex arcs (Brook et al. 2004). 
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Sympathetic nervous system activation is the most probable mechanism of BP elevation short-

ly after exposure; it has been suggested that decreased heart rate variability leads to elevated 

DBP (Brook et al. 2009). PM inhalation increases baroreceptor reflex sensitivity, which corre-

sponds to the upregulation of vagal reflexes (Shannahan et al. 2012). Additionally, it was sug-

gested that the contradictory results of animal experimental studies, where PM increased BP 

in some studies and decreased in others, were due to the stimulation of either the sympathetic 

or the parasympathetic nervous system (Shannahan et al. 2012).  

Typically, in the state of ANS imbalance, the sympathetic nervous system is hyperactivated 

whereas the parasympathetic nervous system is hypoactive (Thayer et al. 2010). This auto-

nomic imbalance is related to a number of pathologic cardiovascular conditions (Thayer et al. 

2010). In particular, vagal tone is lower in persons with hypertension, and it has been suggest-

ed that decreased heart rate variability may precede hypertension (Thayer et al. 2010). In a 

recent case-control study, the ANS imbalance contributed to prehypertension status and cardi-

ovascular risks caused by insulin resistance, dyslipidemia, inflammation, and oxidative stress 

in diabetic subjects (Pal et al. 2013). 

1.5.6. Translocation of particles into the circulation 

It has been suggested that ultrafine and nanoparticles could rapidly translocate to the circula-

tion (Mills et al. 2009). This translocation has been demonstrated in some recent animal stud-

ies (Mills et al. 2009; Shannahan et al. 2012). Moreover, the capacity of UFPs to translocate 

to secondary organs, such as the liver, the kidney, and the heart, was demonstrated (Shan-

nahan et al. 2012). Both particle size and charge play roles in the translocation (Shannahan et 

al. 2012). It is also possible that particles do not cross the lung-blood barrier directly, but are 

ingested and transported by alveolar macrophages (Mills et al. 2009).  

Translocated UFPs or soluble compounds can induce arrhythmias, reduce myocyte contractili-

ty, and reduce the coronary blood flow (Lodovici and Bigagli 2011). UFP exposure stimulates 

the expression of genes related to inflammation and coagulation, and diesel exhaust may trig-

ger inflammation and oxidative stress (Mills et al. 2009; Shannahan et al. 2012). Translocated 

particles affect vascular reactivity, inhibiting vascular NO production and stimulating vaso-
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constriction through oxidative stress (Shannahan et al. 2012). Apart from the particles’ effects, 

additional toxicity was attributed to transition metals and organic components from UFPs, 

which could also translocate through the lung-blood barrier and had cardiotoxic effects 

(Shannahan et al. 2012). The process of translocation can be compared to the accumulation of 

LDL particles (which are approximately the size of a nanoparticle) in the arterial wall, which 

constitutes the pathophysiology of atherosclerosis (Mills et al. 2009).  

1.6. Methodological challenges in the investigation of air pollution associations with BP 

and hypertension 

1.6.1. The responsible components 

Many constituents of air pollution are correlated. Therefore, the adverse health effects, ob-

served with specific components of the mixture, may actually reflect the toxicity of other 

components correlated with them. For example, NO2 is an indicator of traffic-related air pol-

lution but also contributes to the generation of O3 and oxidant pollutants and is a precursor of 

nitrates in PM (WHO 2003). It is necessary to disentangle the effects of individual com-

pounds, which can be achieved with multipollutant models, such as models including both 

particulate and gaseous components. The results with multipollutant models may differ sub-

stantially from single-pollutant models. For example, though it is generally considered that 

the PM component of air pollution contributes to elevated BP, Coogan et al. found that NOx 

but not PM2.5 was associated with the incidence of hypertension and diabetes mellitus in a 

two-pollutant model to which both these exposures were included (Coogan et al. 2012). 

1.6.2. Related exposures at the residence 

In studies of air pollution effects, it is important to take into account other residential expo-

sures that may confound the results. One of such exposures is road traffic noise. Daytime 

noise at a level of 65 dB is harmful for health (Babisch 2008). It is assumed that the adverse 

effects of noise occur through the stress response system (Babisch 2008). Road traffic noise 

was associated with the risk of myocardial infarction in a dose-response manner (Babisch 

2008). The association of road traffic noise with BP and hypertension has been extensively 

studied. Laboratory studies demonstrated that acute noise exposure affects the sympathetic 
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ANS and endocrine system, triggering a number of nonspecific physiological responses, in-

cluding altered heart rate variability, vasoconstriction and elevated BP, stress hormones, and 

others. (Babisch and Kamp 2009). Although it is likely that road traffic noise does not con-

found the results with air pollution and cardiovascular outcomes, as shown in recent studies 

(Beelen et al. 2009; Viehmann et al. 2010), it is important to investigate the role of road traffic 

noise in the effects observed with air pollutants.  

Residential characteristics, such as neighborhood-level income, population density, and other 

socio-economic factors, are associated with CVD (Diez Roux 2003; Dragano et al. 2009b; 

Gerber et al. 2011). Similarly to road traffic noise, residential deprivation may confound the 

association with air pollution and needs to be taken into account. 

1.6.3. Correction for BPLM intake in BP analysis 

The lifetime risk of developing hypertension for normotensive individuals aged 55–65 is more 

than 90% (Chobanian et al. 2003). Therefore, a substantial proportion of the general popula-

tion is on BPLM. In medicated subjects, the measured value will be greatly influenced by 

medication and will not reflect the actual (―underlying‖) value. This disparity could lead to 

bias in an analysis with BP as the outcome (Tobin et al. 2005). 

Thus far, there is no universally used strategy to correct for BPLM intake in the analyses with 

BP. Many researchers still use the ―naïve‖ methods of adjustment, which are not recommend-

ed because they can yield biased results (McClelland et al. 2008; Tobin et al. 2005). ―Naïve‖ 

adjustment strategies include (i) ignoring the problem, (ii) adjusting for BPLM intake with an 

indicator variable, (iii) excluding medicated participants from the analysis (McClelland et al. 

2008), or (iv) adjusting for baseline BP, which all lead to biased results in genetic association 

studies (McArdle and Whitcomb 2009). The only conditions under which the model ignoring 

treatment will provide an unbiased estimate of the actual effect are if (i) no participants are 

taking any medications and if (ii) the medication has no effect (McClelland et al. 2008). These 

adjustments can barely be fulfilled in a real-life cohort, which is why it is very important to 

use more sophisticated techniques to correct for medication intake. 

In a study by Tobin et al. (2005), various techniques to correct for BPLM were estimated us-
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ing simulated and real data. Among the recommended methods that had already been used in 

a few other studies were fixed addition (adding a fixed increment to measured BP values in 

medicated individuals; Newton-Cheh et al. 2009; Timpson et al. 2009); censored normal re-

gression (censoring BP values in medicated individuals with the assumption that the distribu-

tion of BP in medicated and non-medicated subpopulations does not differ); and a semi-

parametric method to substitute BP values in medicated individuals, based on averaging the 

ordered residuals (Tobin et al. 2008). These and other methods of correction for BPLM imply 

some assumptions for the dataset and should be carefully considered before the analysis strat-

egy is chosen. 

1.7. Summary: rationale for this project 

The long-term effects of air pollution on BP are not completely understood. In 2010, high BP 

was deemed one of three major risk factors for mortality worldwide (Lim et al. 2013). It is 

hypothesized that long-term exposure to air pollution could raise BP chronically and lead to 

hypertension (Brook 2007), but the evidence is scarce and not conclusive.  

The components of the air pollution mixture that are responsible for the positive association 

with BP should be identified. Thus far, the most consistent association with CVD has been 

reported for PM2.5. However, it is possible that other components, such as nitrogen oxides or 

carbon monoxide, can affect cardiovascular health. Due to the correlations of individual mix-

ture components, the results with one exposure may actually reflect the toxic effects of the 

other component. It is also possible that PM interacts with gaseous pollutants, which may 

alter the composition and toxicity of the mixture (WHO 2003). 

Detailed information is needed regarding the exact mechanistic pathways through which air 

pollution can lead to hypertension. It is hypothesized that air pollution could elevate BP 

through oxidative stress and inflammation, ANS imbalance, and vascular dysfunction (Brook 

et al. 2010). Experimental animal studies or controlled-exposure human studies are scarce and 

do not provide conclusive information.  

It is important to disentangle air pollution effects from other related exposures. Exposure to 

traffic particles co-occurs with exposure to road traffic noise. Traffic noise acts through stress-
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response mechanisms, which may overlap with those involved in particle effects or may inter-

act with them (Babisch 2008). Additionally, air pollution may correlate with the neighbor-

hood-level deprivation. The effects of air pollution may thus reflect the differences in health 

caused by numerous factors related to socio-economic status.  

The choice of an appropriate strategy to correct for the effect of BPLM is important. Out-

come-affecting medication is an acknowledged constraint in analyses (Tobin et al. 2005). The 

literature offers recommendations regarding methods to correct for this effect.  
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2. STUDY AIMS AND HYPOTHESES 

Aim of the study 

The aim of this study is to investigate the effect of long-term air pollution and its specific 

components on BP and hypertension in humans and to investigate possible pathophysiologic 

mechanisms in an animal model. PM2.5 is the primary exposure of interest in this study. In 

addition, coarse (PMcoarse, PM10) and ultrafine (PM1, particle number (PN)) particles will be 

analyzed as exposures. Common gases of the air pollution mixture will be investigated as co-

exposures.  

Specific objectives 

1. Study the long-term association of PM2.5, PM10, PN, PM1, nitrogen oxides (NO2, NO), 

SO2, CO, NH3, and O3 with arterial BP and hypertension in a population-based cohort.  

a. Perform cross-sectional and longitudinal analysis, controlling for the relevant con-

founders. 

b. Study the robustness of the results using different covariate specifications. 

c. Test the independence of results with PM from co-exposure to the gasous com-

pounds, using multipollutant models and other methods. 

d. Test the independence of results for PM from other residential exposures: i.e., road 

traffic noise and neighborhood characteristics.  

e.  Identify the susceptible population groups using effect modification analysis. 

f. Select and apply different strategies to correct for BPLM intake in the analysis of 

the effect of air pollution on BP.  

2. Investigate the expression profiles of genes related to air pollution and hypertension in 

murine lung tissue after experimental exposure to diesel exhaust. 

a. Prepare the biologic materials. 

b. Measure the expression levels of selected genes involved in inflammation, oxida-

tive stress, and vascular response and compare them to housekeeping genes. 

c. Investigate quantitative data on gene expression in exposed animals compared to 

non-exposed controls. 
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3. Integrate the results, discuss them and make conclusions.  

Hypotheses 

1. Long-term residential exposure to fine PM is linearly associated with an increase in arteri-

al BP and risk of hypertension in the general population. This association is independent 

from the following factors: short-term air pollution fluctuations, co-exposure to common 

gases in the air pollution mixture, road traffic noise, neighborhood social factors, and per-

sonal risk factors. 

2. Traffic-related air pollution can affect the expression of genes related to elevated BP and 

hypertension in an animal model setting.
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3. MATERIALS AND METHODS 

3.1.  Observational part 

3.1.1. Study population 

I used data from the prospective ongoing Heinz Nixdorf Recall (Risk Factors, Evaluation of 

Coronary Calcium and Lifestyle; HNR) study. The HNR study aims to evaluate the prognostic 

value of noninvasive visualization and quantification of atherosclerosis (e.g., electron-beam 

computed tomography for the prediction of cardiac events), in a population-based cohort, and 

investigate whether electron-beam computed tomography, as a novel method of risk assess-

ment, provides independent information in addition to the traditional analysis of risk factors 

(Erbel et al. 2012; Schmermund et al. 2002). Parallel to the main aim of the study, a large 

amount of individual data, such as health characteristics, biomarkers, socio-economic indica-

tors, genetic polymorphisms, environmental exposures, residential context factors, etc., is 

being collected and used in various investigations. The study population was randomly select-

ed from the mandatory registries of three adjacent cities: Bochum, Essen, and Mülheim an der 

Ruhr. These three cities are located in the densely populated Ruhr area, with a tight traffic and 

industrial network. Study participants were aged 45 to 75 years at baseline. If a participant 

had overt CHD, defined as diagnosed myocardial infarction or revascularization of coronary 

arteries, including balloon dilatation and coronary bypass surgery, he (or she) was excluded 

from the primary HNR analysis as a prevalent case, but not from the HNR cohort or the anal-

ysis cohort, included in the current study. 

Baseline examination 

In total, 4,814 participants were invited to the university hospital of Essen to undergo the first 

(baseline) physical examination and medical history assessment. The first baseline examina-

tion of a participant was performed on December 11, 2000 and the last on August 13, 2003. 

All participants signed informed consent forms. Examinations in the cohort were conducted in 

accordance to the recommendations for research on human subjects, adopted by the 18
th

 

World Medical Assembly, Declaration of Helsinki (World Medical Association 1964) and 

later revisions, and were approved by the ethics committee at the University of Essen, Ger-
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many (Schmermund et al. 2002). An external review board evaluated the study. Study person-

nel underwent certification (the German Institute for Standardization, Euronorm ISO 

9001:2000), and regular quality checks.  

During the baseline visit, the following measurements were performed: anthropometric meas-

urements, laboratory blood tests (blood sugar, lipids, inflammatory factors and others), BP 

measurement, resting and exercise electrocardiograms, ankle-brachial index measurement, 

coronary calcification assessment with non-contrast-enhanced electron-beam computed to-

mography, and carotid artery intima-media thickness measurement with B-mode sonography 

(Bauer et al. 2010; Schmermund et al. 2002). Information on current medication, lifestyle 

(diet, physical activity, smoking, and alcohol consumption), and individual socio-economic 

status (SES, defined as education, economic activity, household income) was collected in a 

computer-assisted personal interview. Except for electron-beam computed tomography results 

and experimental findings (novel risk factors, genetic polymorphisms), the results were re-

ported to a participant and, upon each participant’s agreement, to his primary physician 

(Schmermund et al. 2002). 

Follow-up period and second examination 

During the follow-up period, self-report questionnaires were sent to participants annually by 

post. In these questionnaires, the study end points were assessed. The primary endpoints in-

cluded nonfatal myocardial infarction and cardiac death. The secondary endpoints included 

all-cause mortality, cerebrovascular events, coronary revascularization, angiographically de-

fined incident peripheral vascular disease, hospitalization for cardiac disease, and initiation of 

medical therapy for cardiac disease (Schmermund et al. 2002). Endpoints were affirmed by 

the endpoint committee, including cardiologists and at least one epidemiologist. Some addi-

tional information, e.g., lifestyle, nutrition, traffic noise annoyance, etc., was also gathered in 

annual questionnaires. Five years after the baseline interview, the participants were re-invited 

to a follow-up assessment of their medical history, physical and health risk factor status, blood 

tests, blood pressure measurement, non-contrast electron-beam computed tomography imag-

ing, and electrocardiograms (Lehmann et al. 2014). Follow-up assessment was completed for 



Materials and Methods 

53 

4,359 participants. Loss to follow-up constituted 9.5% of the study population, which was 

lower than the estimation of 15% (Schmermund et al. 2002). The first follow-up investigation 

was performed on May 15, 2006, and the last one on September 18, 2008. 

Participants included in the current analysis 

In the analysis with baseline data I included all participants with no missing information on: 

(i) exposure (modeled air pollution concentrations); (ii) outcome (measured BP and BPLM 

intake); and (iii) residential co-exposures and covariates in the main model. In total 4,584 

participants, comprising 95.2% of the baseline sample, were included to the current analysis 

with baseline data (Figure 2).  

 

Figure 2. Baseline and follow-up examination in the HNR study and the inclusion of partici-

pants in this analysis. 

Legend: BL = baseline examination, FU = follow-up examination. 

Out of 4,359 participants who filled out the follow-up questionnaires, arterial BP was meas-

ured in 4,157 participants. I excluded 685 participants who changed their residences during 

follow-up (to avoid exposure misclassification) and 220 with missing information on expo-
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sures or covariates. The remaining sample of 3,240 participants was included in the analysis 

of the follow-up data. 

3.1.2. Exposure assessment 

Air pollution 

The European Air pollution Dispersion Chemistry and Transport Model (EURAD-CTM) was 

employed to assess individual air pollution exposure at the home addresses of the HNR partic-

ipants (Ebel et al. 2007; Memmesheimer et al. 2004). The EURAD-CTM is a validated, time-

dependent, three-dimensional model. With the help of this model, the daily mass concentra-

tions of PM1, PM2.5, PM10, PN, NO2, NO, SO2, O3, CO, and NH3 were modeled for the study 

area (approximately 600 km²) with a resolution of 1 km², as shown in Figure 3. This resolu-

tion is the smallest for the anthropogenic emissions, such as industrial sources, household 

heating, traffic, agriculture, etc., provided by the North Rhine-Westphalia State Agency for 

Nature, Environment and Consumer Protection. The EURAD-CTM “simulates the physical, 

chemical and dynamical processes that control emission, production, transport and chemical 

transformation and deposition of atmospheric trace species” (Rhenish Institute for Environ-

mental Research); it is based on the fundamental physical principles of conservation of mass, 

momentum and energy (Hennig et al. 2014). The model combines the fluid dynamic equations 

with information on chemical and physical transformations that air pollution constituents un-

dergo in the atmosphere (Hennig et al. 2014). The upper vertical boundary of the model is 16 

km; the lowest layer is approximately 40 m high (Hennig et al. 2014). The EURAD-CTM 

uses the sequential nesting method, starting from the large Europe-wide scale and narrowing 

down to the Ruhr area (in total, there were 4 nests with grid sizes of 125 km, 25 km, 5 km, 

and 1 km), which allowed to include the long-range transport and formation of secondary par-

ticles in the atmosphere (Hennig et al. 2014; Memmesheimer et al. 2004).  
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Figure 3. Modeled yearly concentrations of urban background PM2.5 in the study area.  

Legend: A = year2001, B = year 2002, C = year 2003. Source: I. Vanberg, unpublished (per-

sonal communication). 

A

B

C
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With the help of the EURAD-CTM model, the mean daily concentration of each respective 

pollutant was modeled in 1 km
2
 grid cells. The primary output concentrations were then cali-

brated with measured PM10 concentrations from 6 routine monitoring sites throughout the 

study area, taking into account the nature of the monitoring station (traffic, industrial site, 

urban background, regional background). Data from measurement stations were supplied by 

the North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection. 

The calibrated values were assigned to the participants’ addresses using the geographic infor-

mation system (ArcView 9.2, ESRI, Redlands, CA, USA). I calculated the mean of the 365 

daily PM values prior to the participant’s examination date to assess the individual long-term 

residential exposure. To discriminate the spatial contrast in exposure from the temporal con-

trast, I calculated a long-term grid-specific mean concentration as the average of the baseline 

period (2000–2003) and the follow-up period (2006–2008) for each grid cell 1×1 km. The 

long-term grid-specific mean concentration was assigned to each participant’s residence.  

Short-term air pollution and meteorology 

Short-term exposure was included as a covariate in the analysis. I calculated the respective 

short-term mean (the choice of averaging time was based on model fit), subtracting the yearly 

mean to avoid over-adjustment. In addition to air pollutant concentrations, the EURAD-CTM 

model predicts meteorological parameters (Hennig et al. 2014). I used mean of lags 0–6 with 

all PM metrics, PN, NOx, SO2, and CO, mean lags 0–1 with NH3, and mean of lags 0–2 with 

O3. Daily mean temperature (t°), precipitation, and wind speed were assigned to each partici-

pant’s address, similarly to air pollution. Two-day mean temperature and East-West wind were 

selected as the short-term meteorology variables based on the best model fit and were includ-

ed as covariates in some adjustment models.  

Traffic indicators 

Distance from participant’s residence to the nearest major road was estimated using digital-

ized maps (ArcView 9.2, ESRI, Redlands, CA, USA) and daily traffic counts provided by the 

North Rhine–Westphalia State Agency for Nature, Environment and Consumer Protection. A 

major road was defined as a road section in the upper quartile of the daily traffic count (> 
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22,980 vehicles per day for general traffic, > 756 vehicles per day for heavy-duty traffic and > 

4,341 for diesel traffic). I categorized distance to major road as follows: ≤ 50 m, 51-100 m, 

101-200 m, and > 200 m (reference category). When entered as a covariate in the analysis 

with air pollution or road traffic noise as main exposures, linear distance to road in upper 

quartile of diesel vehicle density was used as a covariate, based on the better model fit. 

Road traffic noise 

Long-term road noise was modeled according to the Directive 2002/49/EC of the European 

Parliament and of the Council as weighted 24-hour mean (Lden) and night-time mean (Lnight). 

The following formula was used: 

𝐿𝑑𝑒𝑛  =  10𝑙𝑔
1

24
(12 × 10

𝐿𝑑𝑎𝑦

10 + 4 × 10
𝐿𝑒𝑣𝑒𝑛𝑖𝑛𝑔+5

10 + 8 × 10
𝐿𝑛𝑖𝑔𝑕𝑡+10

10 )  [12] 

where Lday was the A-weighted long-term average sound level, as defined in ISO 1996-2: 

1987, determined over all of the day periods of the year; Levening was the A-weighted long-

term average sound level, as defined in ISO 1996-2: 1987, determined over all of the evening 

periods of the year; and Lnight was the A-weighted long-term average sound level, as defined 

in ISO 1996-2: 1987, determined over all of the night periods of a year (Directive 

2002/49/EC). The small-scale topography of the area, dimensions of buildings, noise barriers, 

street axis, vehicle type-specific traffic density, speed limit, and type of street surface were 

included in the noise model (Directive 2002/49/EC). The calculation method VBUS/RLS-90 

(VBUS 2006; RLS 90) and the software CadnaA (DataKustik GmbH 2014) were used for the 

noise modeling at façade points. The highest façade point noise level within a buffer of 10 m 

from the residence was used as the individual noise level. The reference level was set to 45 

dB for Lden and to 40 dB for Lnight. I additionally categorized continuous values of road traffic 

noise in 5-dB categories. Merging of the continuous noise variable into 5-dB categories was 

performed to correct for pseudo-precision – a very precise modeling of noise combined with 

no information on actual exposure (i.e., location of bedroom, ventilation patterns, etc.). This 

definition (continuous noise variable in 5-dB categories) was used when road traffic noise was 

entered as a covariate in the analysis with air pollution or traffic indicators as main exposure. 

According to a better model fit, Lnight was used as a covariate in these analyses. Tram noise, 
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obtained from isophone maps, was included to the analyses as well. It was defined with 5-dB 

categories, ranging from ≤5 to >65 dB. In the analysis with noise as a main exposure, I addi-

tionally included noise as categorical variable to account for a possible threshold of a biologi-

cal effect. 

Neighborhood-level socio-economic status 

Table 1. The neighborhood-level social characteristics obtained for the HNR study area and 

their definitions.  

Variable Definition 

Population density Npopulation
1
/AreaNeighb.(km

2
) 

Percentage of elderly residents (Naged ≥ 65/Npopulation)×100 

Unemployment rate Nunemployed/(NEconomicly active)×100 

Social welfare rate (Nreceiving welfare benefits/Npopulation)×100 

Residential turnover ((Nmoved in + Nmoved out)/Npopulation)×100 

Source: Jöckel et al 2010. 
1
Number of residents in the neighborhood. 

The study area was divided into 106 neighborhoods, each corresponding to a statistical unit 

with a median size of 11,263 inhabitants (interquartile range 7,875–16,022) (Dragano et al. 

2009a). The socio-economic characteristics for each neighborhood in the study area were re-

trieved from the city departments in charge of statistics and monitoring in Essen, Bochum, 

and Mülheim an der Ruhr (Jöckel et al. 2010). The neighborhood-level data were assigned to 

the HNR participants by address linkage (Jöckel et al. 2010; Dragano et al. 2009a). The fol-

lowing data were retrieved: population density, age structure, unemployment rate, social wel-

fare rate, and residential turnover (Table 1).  

3.1.3. Assessment of study outcomes 

Blood pressure measurement 

BP measurements at baseline and follow-up were conducted according to the WHO monitor-

ing trends and determinants in cardiovascular disease (MONICA) measurement protocol 

(Hense et al. 1995). BP was recorded using the AOD (Omron HEM-705CP; OMRON Corpo-

ration, Hoofddorp, the Netherlands), and the RZS (Mark II; Hawksley, Lancing, United King-
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dom; Stang et al. 2006). The rationale of using two BP recording devices on one subject was 

to investigate differences between obtained values, to compare the values, and to develop a 

conversion algorithm that could be used in other studies in which comparisons between popu-

lations or population groups are limited because of the different devices used (Stang et al. 

2006). AOD is currently used in the vast majority of epidemiologic studies with BP (Stang et 

al. 2006). In the current study, the values obtained with an AOD were used (unless the AOD 

values were missing; see details below). The AOD displayed BP values to the nearest 1 

mmHg, and the RZS displayed the values to the nearest 2 mmHg (Stang et al. 2006). The 

measurement devices were regularly calibrated by the Bureau of Standards, the Board of 

Weights and Measures (Stang et al. 2006).  

According to the standards of the WHO MONICA BP recording protocol, study personnel 

conducting BP measurements were certified and regularly trained in measuring BP (Hense et 

al. 1995; Stang et al. 2006). Arm circumference was measured before BP recording, and the 

appropriate cuff size was chosen according to the protocol (Stang et al. 2006). The HNR par-

ticipants were asked not to drink coffee or any other beverages containing caffeine before the 

measurement. BP measurements were performed on the right arm, in a seated position with at 

least 5 minutes of rest before measurement and with a 3-minute interval between the BP read-

ings. To ensure that these standards were followed, the BP measurement was conducted in the 

middle of the computer-assisted personal interview; the participants were asked at least 53 

questions before their BP was measured (Stang et al. 2006). 

At baseline, participants were randomly assigned to the order of measurement devices, de-

pending on whether their personal identification number was odd or even (Stang et al. 2006). 

At baseline, BP was measured with both devices in all participants, whereas at follow-up, BP 

was measured with AOD in all participants and RZS in a subsample (n = 885, 21% of the fol-

low-up sample). At follow-up, for those 885 participants whose BPs were measured with both 

devices, the order of devices was opposite to baseline. On average, the intervals between the 

two devices were 22 minutes at baseline (Stang et al. 2006) and 23.5 minutes at follow-up. BP 

was measured three times with both types of measurement device. Due to the time constraints 

and personnel shortage, a reduced program of BP recordings (two measurements with AOD 
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and one with RZS) was applied for approximately 13% of the study participants at baseline 

(Stang et al. 2006). At the follow-up measurement, the reduced program was not applied. 

During the measurement, some information related to BP value and measurement conditions 

was recorded: room temperature, participant’s intake of coffee and other beverages before the 

measurement, whether a participant was diagnosed with hypertension and whether he or she 

received antihypertensive treatment.  

A standard quality assurance protocol was applied to check the BP values for plausibility at 

baseline (Author: A. Stang, personal communication). Briefly, the following parameters were 

checked: 

 The availability of each measurement (1
st
, 2

nd
, 3

rd
) of SBP and DBP with both recording 

devices;  

 With RZS measurements only: the availability of the correction factor; 

 Whether the correct sleeve size was used during measurement; 

 Temperature in the measurement room (allowed range: 18–28 °C); 

 Whether the order of devices was the same as assigned to the participant; 

 Plausibility of the measured BP values and their variability within one participant. 

The final SBP and DBP values at baseline and follow-up (―best-off‖ BP) were calculated as 

shown at Figure 4. BP was calculated as the mean of the 2
nd

 and 3
rd

 measurement values with 

AOD. The 1
st
 measurement was generally disregarded, as it was assumed to be higher than 

the consequent measurements (Stang et al. 2006; Pickering et al. 2005). 

A strategy to diminish the number of missing values was used (Author: A. Stang, personal 

communication). If the readings 2 and 3 with AOD were missing, the first available of the 

following options was selected: (i) mean of the readings 1&3 or 1&2 with AOD; (ii) the sin-

gle available BP with AOD; (iii) mean of readings 2&3 with RZS; (iv) mean of the readings 

1&3 or 1&2 with RZS; (v) the single available BP with RZS; or (vi) the BP value from the 

pre-stress phase of the ergometric stress testing. PP was calculated as the difference (SBP mi-

nus DBP) of the final BP values. 
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Figure 4. The “best off” BP value calculation strategy.  

Legend: R = reading; BL = baseline measurement; FU = follow-up measurement.
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Assessment of BPLM intake 

Current BPLM intake was assessed at the baseline visit in a physician-conducted interview. Par-

ticipants were additionally asked to bring to the examination all packages of medication, which 

they had been taking during the past 7 days. The list of drugs included as BPLM was defined by 

HNR study cardiologists using the WHO Anatomical Therapeutic Chemical Classification Sys-

tem; in 294 participants (6% of the total HNR sample) missing information on ATC codes was 

replaced with self-reported intake of BPLM, recorded during BP measurement or ergometric 

stress testing was used instead. 

Table 2. Blood pressure-lowering medications in the HNR study.  

Class ATC codes included 

Diuretics 

Thiazides: C03EA14, C03BA04, C03BA03, C03AA03, C03BA11, 

C03BA08, C03BA02, C03BA10.  

Loop diuretics: C03CA02, C03CX01, C03CA01, C03CA03, 

C03CA04. 

Beta-blocking agents 

Selective: C07AB04, C07AB03, C07AB05, C07AB07, C07AB08, 

C07AB02, C07AB12, C07AB13.  

Non-selective: C07AA01, C07AA19, C07AA30, C07AA15, 

C07AA14, C07AA18, C07AA12, C07AA02, C07AA23, C07AA03, 

C07AA05.  

Alpha and beta blocking agents: C07AG02. 

ACE inhibitors 
C09AA07, C09AA01, C09AA08, C09AA02, C09AA09, C09AA03, 

C09AA13, C09AA04, C09AA06, C09AA05, C09AA11, C09AA10.  

Angiotensin II antagonists C09CA06, C09CA02, C09CA04, C09CA01, C09CA07, C09CA03. 

Selective calcium channel 

blockers 

Dihydropyridine derivatives: C08CA01, C08CA02, C08CA03, 

C08CA09, C08CA13, C08CA04, C08CA05, C08CA10, C08CA07, 

C08CA08.  

Benzothiazepine derivatives: C08DB01.  

Phenylalkylamine derivatives: C08DA02, C08DA01. 

Alpha-adrenoreceptor 

antagonists 
C02CA07, C02CA04, C02CA01, C02CA08. 

Anti-sympathetic nervous 

system agents 
C02AC01, C02CC07, C02AC02, C02AB01, C02AC05. 

Arteriolar vasodilators C04AX37, C02DB01, C02DC01. 

Other BP-lowering agents C03BX03. 

Combination drugs 

Diuretics and potassium-sparing agents: C03EA01, C03EA06, 

C03EA12, C03EA14, C03EA15, C03EA21, C03EA41, C03EB01, 

C03EB02, C03EB21. Beta blocking agents and diuretics: C07BA01, 
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Class ATC codes included 

C07BA02, C07BA05, C07BA12, C07BA14, C07BA18, C07BB02, 

C07BB03, C07BB04, C07BB07, C07BG02, C07CA02, C07CA03, 

C07CA05, C07CA23, C07CB02, C07CB03, C07CB04, C07CB08, 

C07DA05, C07DB01.  

Loop diuretics and ACE inhibitors: C09BA01, C09BA02, C09BA03, 

C09BA04, C09BA05, C09BA06, C09BA07, C09BA08, C09BA09, 

C09BA13.  

Thiazides and angiotensin II antagonists: C09DA01, C09DA03, 

C09DA04, C09DA06, C09DA07. ACE inhibitors and calcium 

channel blockers: C09BB05, C09BB10.  

Calcium channel blockers and diuretics: C08GA01, C08GA02.  

Definition of hypertension 

Prevalent hypertension was defined as SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or as the current 

use of BPLM (Chobanian et al. 2003). In the analysis of incident hypertension, the prevalent cas-

es (hypertensive at baseline) were excluded. 

Self-reported hypertension and BPLM intake 

At baseline and follow-up examinations (during a computer-assisted interview), the HNR partici-

pants were asked whether they had physician-diagnosed hypertension and, if yes, whether they 

were treated for high BP with medications. These variables were used as additional outcomes: 

self-reported physician diagnosed hypertension and self-reported BPLM intake. 

3.1.4. Individual-level covariates 

Age, sex, lifestyle, and co-morbidities 

Age at the examination date was calculated as the difference in years with the date of birth. Life-

style was represented with smoking, alcohol consumption, and physical activity. BMI was calcu-

lated as weight divided by squared height in meters. I assessed current and previous smoking, the 

lifetime cumulative exposure in pack-years, and any environmental tobacco smoke (ETS) expo-

sure (at home, at work, at other places). Amount of alcohol intake was given as a number of 

drinks per week (one drink defined as 0.25 L beer, 0.1 L wine, or 0.02 L spirits) and was catego-

rized as 0, 1–3, 4–6, and > 6 drinks per week. I categorized each participant’s sport and physical 

activity as self-reported times of physical exercise per week: < 1, 1, 2–3, and > 3 times/week. 

CVD, representing chronic disease or markers of deprived health, was included as CHD (self-
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reported history of myocardial infarction or coronary intervention) and type 2 diabetes mellitus 

(T2DM; prior physician diagnosis of T2DM or use of antidiabetic drugs or random blood glucose 

≥ 11.1 mmol/L or fasting blood glucose ≥ 7 mmol/L).  

Individual socio-economic status 

Individual level SES was assessed as years of formal education (United Nations Educational, 

Scientific, and Cultural Organization 1997) and was categorized as low (≤ 10 years), medium 

(11–17 years), and high educational level (≥ 18 years). Economic activity was categorized as em-

ployed, retired, unemployed, or economically inactive. 

Other covariates 

As surrogates for the study surface area characteristics (influencing the distribution, accumulation 

and transport of the pollutants), I used indicator variables for city (Mülheim, Essen, Bochum) and 

geographic area (North, Center, South). To account for temporal variations in exposure and out-

come, I calculated the time trend variable as the count of days starting from the first examination 

date at baseline or follow-up, correspondingly, to the examination date of each participant.  

3.1.5. Statistical analysis 

Causal graphs to define the adjustment sets 

The adjustment sets were identified using causal graphs (Glymour and Greenland 2008). The 

most likely causal relations between variables were based on prior biological and epidemiological 

knowledge and derived adjustment sets (Figure 5). The minimal sufficient sets were obtained 

using DAGitty 2.0 (Textor et al. 2011). Two minimal sufficient adjustment sets were identified to 

estimate the direct (causal) effect of air pollution on BP. They included the following concepts: (i) 

short-term air pollution, age, sex, lifestyle, CVD, and road traffic noise; and (ii) short-term air 

pollution, age, sex, BPLM intake, lifestyle, and road traffic noise. The adjustment set (i) was se-

lected as the main model because the relationship between air pollution BPLM intake and the 

resulting BP was investigated separately (see the subsection ―Correction for BPLM intake‖). 
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Figure 5. Hypothesized associations between air pollution, individual and neighborhood-level 

risk factors, and arterial BP.  

Legend: question mark (?) = the study question; weather = short-term meteorology; surface = 

study area characteristics. 

Selection of variables for the statistical model 

I checked how many missing values each of the variables, suggested for the main or extended 

adjustment sets, had and selected the variables with fewer missing values. For example, intima-

media thickness, which is a measure of the progression of atherosclerosis, had 1,000 missing val-

ues and was therefore omitted from the analysis. I checked all of the variables for the plausibility 

of values. Pack-years of smoking at baseline had one extremely high value (400 pack-years, 

which was twice as high as the second highest value). After consulting with data managers and 

the HNR study team, I assigned this participant the second highest value (204 pack-years), which 

resulted in the improved model fit. If more than one variable was available for controlling for 

possible confounding, for example, different blood lipids as a surrogate for the nutrition compo-

nent of lifestyle, the decision on the variable was made in the model checks step. 
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Statistical analysis  

Statistical analyses were performed using the following software: SAS version 9.2 (SAS Institute 

Inc., Cary, NC, USA), STATA version 12.0 (StataCorp, College Station, TX, 12 USA; 

www.stata.com) and R version 2.13.1 (R Core Team 2013). 

Univariate analyses of data, such as descriptive statistics, correlations, cross-tables and subgroup 

comparisons were performed prior to the regression analysis. The distribution of longitudinal 

variables was checked for normality. The parametric statistical procedures (e.g., Pearson’s corre-

lation coefficient calculation and the T-test in two groups) were employed regardless of the vari-

ables’ distribution based on the central limit theorem, because the number of participants in the 

analysis was substantial. 

Exposure was entered as a linear term in all analyses based on the reported linearity of the associ-

ation with cardiovascular mortality (Brook et al. 2010). Regression estimates were presented per 

interquartile range (IQR) of respective pollutant concentration. In addition, the dose-response 

relationship of exposure with outcome was tested using categorical exposure (by quartiles) and 

penalized splines (Hastie and Tibishirani 2007).  

Outcomes were not transformed for the analysis. BP was analyzed with a linear regression model, 

and BPLM and hypertension with a logistic regression. To correct for the BPLM intake in a sen-

sitivity analysis, I also used a right-censored regression (see the section ―Correction for BPLM 

intake‖). In the analysis with the incidence of hypertension as an outcome, a Poisson regression 

with robust variance estimation was used. 

I conducted cross-sectional and longitudinal analysis. For the cross-sectional analysis, exposure 

and outcome values from the same time period were used (baseline or follow-up, respectively). 

Longitudinal analysis was conducted in few different ways: (i) the association of baseline air pol-

lution concentrations with BP, the incidence of hypertension, and BPLM intake at follow-up; (ii) 

the association of baseline air pollution concentration with change in BP from baseline to follow-

up, the incidence of hypertension, and BPLM intake at follow-up; and (iii) the association of 

change in air pollution from baseline to follow-up with change in BP from baseline to follow-up, 

the incidence of hypertension, and BPLM intake at follow-up. The longitudinal analysis with 

change in BP as the outcome was conducted in a subsample of participants not taking BPLM. 

The non-linearity of covariate-outcome relationships was investigated using squared terms cen-

http://www.stata.com/
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tered on the mean. Non-linearity was tested for the following covariates: age, BMI, lipid ratio 

(LDL/HDL), HDL, triglycerides, and time trend. Of them, a significant non-linear relationship 

was observed for age, but only with DBP; this observation is consistent with the evidence that 

DBP increases only until a certain age, after which, with the progression of arterial stiffness, DBP 

starts to decrease (Chobanian et al. 2003; Whelton 1994). Non-linear terms were also significant 

for BMI, triglycerides (only with DBP), and time trend. The variables which showed a deviation 

from a linear relation with BP were included to the main adjustment model as polynomials and 

linear terms, centered on the mean. 

Regression model checks 

I checked the following assumptions of the linear regression model: collinearity of predictor vari-

ables, distribution of residuals, and presence of influential observations. These checks were per-

formed with the main adjustment set, but without the exposure in the model (the ―empty‖ model). 

The collinearity of predictor variables was checked using correlations. Variables with Pearson’s 

correlation coefficients > 0.7 were not included in the model simultaneously. For example, of the 

two highly correlated meteorological variables humidity and temperature, only humidity was left 

in the model. In addition, I considered the variance inflation factor (VIF) as another measure of 

collinearity: a variable with VIF > 10 was excluded from the analysis. The distribution of residu-

als was close to normal, although the Kolmogorov-Smirnov test revealed a deviation from nor-

mality. I checked the leverage of individual observations plotting the leverage against the squared 

residual plot. One observation had a substantially high leverage. This participant was deleted 

from the analysis, which resulted in a better model fit. Using the main adjustment set with SBP, 

DBP and PP as outcomes, I computed the plot of residuals versus fitted values, and found no evi-

dence that the model was making unusually large or small predictions. 

The main adjustment model 

The main adjustment set with SBP, PP, hypertension and BPLM as outcomes included time trend 

(linear and squared terms, centered on mean), short-term exposure (mean of lags 0–1 with NH3, 

mean of lags 0–2 with O3, and mean of lags 0–6 with all PM metrics, PN, NOx, SO2, and CO; for 

all short-term exposures, yearly mean was subtracted), Lnight traffic (linear, in 5-dB categories), 

Lden tram (linear, in 5-dB categories), distance to major road (upper quartile of diesel vehicle den-

sity), age, sex, BMI (linear and squared terms, centered on the mean), waist-hip ratio (WHR), 

blood lipids (lipid ratio, HDL, triglycerides), smoking status, ETS, physical activity (in catego-
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ries), education (in categories), and economic activity (in categories). The main adjustment set 

with DBP as the outcome additionally included linear and squared terms for age and the concen-

tration of blood triglycerides. 

The following covariates in the main model were significant predictors of SBP: sex, age, BMI, 

current smoking, alcohol consumption > 6 drinks/week, sport < 1 time/month, educational status, 

road traffic noise, and the city of residence (the model estimates with all outcomes are presented 

in Tables 38–42 in the Appendix). 

Subjects excluded from the analysis at baseline 

I preformed complete case analysis, excluding participants with missing values. At baseline, 230 

subjects were excluded due to missing values (Appendix Table 43). There were slightly more 

men, smokers, subjects with CHD, participants with lower educational levels, those practicing no 

sport, and retired people; the distributions of exposure, outcome and the remaining personal char-

acteristics were quite similar to the main analysis subset. At follow-up, 685 participants were not 

included because they changed their addresses during the follow-up period. This group was not 

compared to the main group. The examination of personal characteristics of the 232 subjects ex-

cluded from the follow-up sample (those who did not change their addresses) due to missing val-

ues did not reveal any substantial differences to the follow-up analysis subset with regard to ex-

posure, though some characteristics differed slightly (Appendix Table 44); the excluded subjects 

had lower BP values, higher rates of medication use and hypertension, more women, more sub-

jects with CHD, fewer smokers, more exposure to CHD, lower educational levels and no sport 

activity. 

Sensitivity analyses  

In addition to the analysis with the main outcomes (BP, hypertension based on BP and BPLM 

intake, and BPLM intake), I conducted a sensitivity analysis with self-reported hypertension and 

BPLM intake as outcomes.  

In the extended adjustment sets, those variables that were not included in the main model but 

were nevertheless important predictors of BP were added, including (i) short-term meteorology 

(humidity and wind speed), (ii) alcohol and pack-years of smoking (available for a subset of 

4,368 participants), (iii) co-morbidities (CHD, T2DM), (iv) city of residence and geographic area 

(North, Center, South), and (v) area-level SES (in the mixed-effects regression model). In the 
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additional analysis, I deleted 3 influential observations (with high residual/leverage). 

I investigated the spatial component of exposure definition. The individual 365-day mean reflects 

both spatial and temporal differences in the study area during the baseline period: for example, 

two participants living on the same street, but coming for baseline measurements of BP on differ-

ent dates would be assigned different 365-day mean concentrations of residential air pollution. 

Therefore, in a sensitivity analysis, the grid-specific mean of the baseline period (2000–2003) 

representing only spatial differences was used as a main exposure. I did not adjust for time trend 

in this model because the grid-specific mean had only spatial variation. 

I calculated the two-exposure models combining particulate and gaseous components: in one 

model, both of the exposures were entered as independent predictors, in the other interactions 

with high levels of one of the pollutants were tested. For the interaction analysis, the pollutant 

was dichotomized at the 75
th

 percentile, and analyses with product terms Exposure1×Exposure2 

(dichotomous) were conducted.  

Analysis of effect modification. 

I tested for effect modification of results with BP as the outcome using the product term expo-

sure×effect modifier. The Z-test was used to assess the significance of effect modification. The 

following factors were tested: sex, age ≥ 60 years, BMI ≥ 30 kg/m², CHD, T2DM, current smok-

ing, passive smoking, acute inflammation (CRP > 3 µg/L), high alcohol consumption, no sport 

activity, low education level, T2DM, CHD, city of residence, meteorological season (winter vs. 

other), road traffic noise ≥ 65 dB vs. lower, and living < 100 m to the major road (upper quartile 

of the diesel vehicles density) vs. living farther away.  

Correction for BPLM intake 

As a first attempt to correct for medication effect, I included medication as a covariate. An air 

pollution-related increase in BP may lead to BPLM intake in the most susceptible individuals. 

Therefore, BPLM intake may lay in the causal pathway from air pollution to BP. Adjustment for 

the variable that mediates the effect of exposure on the outcome may lead to a biased estimate of 

the main association, which is why other methods of correction were applied as well. 

My second approach was to use binary outcomes: BPLM intake and hypertension. The latter out-

come combines BPLM and high BP values. Using these outcomes would help to diminish the 

bias in the analysis. However, dichotomizing the variable implies power loss. Additionally, it is 
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possible that in the less susceptible participants, a change in BP related to air pollution would 

likely not result in hypertension. Thus, it is possible that a null association of air pollution with 

BPLM intake and hypertension will be observed. 

The third approach was to implement some of the correction techniques recommended in the lit-

erature (Tobin et al. 2005). I chose to use the fixed addition method. With this method, a fixed 

increment (e.g., 5 or 10 mmHg) is added to BP values of medicated participants. The advantages 

of this method are that it is simple and straightforward. The limitation of this method is that an 

assumption regarding treatment effect is made. In a population-based cohort, the participants will 

vary greatly by the treatment scheme, achieved control of hypertension, and other related factors. 

Along with the fixed addition method, I implemented another recommended strategy: the normal 

censored regression. With this method, BP values in the medicated participants are right-

censored: it is assumed that the ―real‖, underlying BP (without the treatment effect) in subjects 

taking BPLM is at least as high as the measured value (Tobin et al. 2005). The model is fit into a 

linear regression equation as follows:  

𝐵𝑃∗  =  𝛽0 + 𝛽1 ∗ 𝑃𝑀 + 𝛽2 ∗ 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒2 + ⋯ + 𝛽𝑥 ∗ 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑥 + 𝜀𝑖   [13], 

where BP
*
 = censored BP (BP

*
 = BP in participants not taking BPLM and BP

*
 ≥ BP in partici-

pants taking BPLM); β0 = intercept; β1…βx regression coefficients; and εi = error term (Tobin et 

al. 2005). Model parameters were estimated by maximum likelihood using a Newton-Raphson 

algorithm (Jennrich and Robinson 1969). Standard errors were estimated from the inverse of the 

observed information matrix.  

In addition, I estimated the association of air pollution with blood pressure in participants taking 

BPLM (―medicated‖) and not taking BPLM (―non-medicated‖) separately. The interaction term 

exposure×BPLM intake was used to increase power. This method avoids making assumptions 

about treatment effect and BP distribution. BPLM intake was entered as a separate outcome in the 

study. 

3.2. Experimental part 

3.2.1. Experimental setting 

Study animals 

Eight-week-old C57BL/6J female mice obtained from the Charles River Company (Sulzfeld, 



Materials and Methods 

71 

Germany) were used in the experiment. The Animal Ethics Committee of the Dutch National 

Vaccine Institute approved the experiment. Animals were housed in inhalation chambers during 

the entire experiment. The temperature was maintained at 22 ± 2 ⁰C and the relative humidity at 

30–70% with a 12-hour light/dark cycle. The animals were allowed ad libitum access to a com-

mercially available rodent diet (CRM) and tap water via an automatic drinking water system 

(Gerlofs-Nijland 2012). 

Exposure 

Diesel engine exhaust (DEE) was generated using a 100 KVA common-rail diesel generator 

(Stammis, Heerhugowaard, Netherlands) under load (38 KW) and idling conditions fueled with 

EN590 diesel. Exposure level was controlled with a proportional-integral-derivative controller. 

NO2 was generated by heating liquid nitrogen and mixing it with diluted diesel in two different 

concentrations to obtain low and high NO2 conditions. To remove the particulate fraction (filtered 

DEE), the flow was split after the addition of NO2 and partially passed through a HEPA filter 

(Gerlofs-Nijland 2012).  

Table 3. Group codes, exposure test atmospheres, and concentrations of NO2. 

Group Abbreviation Exposure 
NO2 

concentration 

1 Control Clean air – 

2 DEE DEE (~ 1 mg/m³) 2 ppm
1 

3 DEE + NO2 (low) DEE + low NO2 4 ppm 

4 DEE + NO2 (high) DEE + high NO2 15 ppm 

5 DEE (filtered) + NO2 (low) Filtered DEE + low NO2 4 ppm 

6 DEE (filtered) + NO2 (high) Filtered DEE + high NO2 15 ppm 

7 NO2 (high) High NO2 15 ppm 

1
ppm = parts per million 

The following test atmospheres were generated: (i) control with clean air (HEPA filtered, chemi-

cally purified with activated charcoal and purafill and conditioned to a temperature of 21 ⁰C and 

a relative humidity of 55%); (ii) DEE diluted to 1 mg/m
3
 with clean and conditioned air; (iii) 

DEE combined with low-concentration NO2 (volume concentration NO2/NOx approximately 

20%); (iv) DEE combined with high-concentration NO2 (NO2/NOx ~ 50% v/v of NOx); (v) fil-

tered DEE (only the gaseous fraction) combined with low-concentration NO2; (vi) filtered DEE 
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combined with high-concentration NO2; and (vii) high-concentration NO2 alone (Table 3). The 

animals (10 per exposure group) were exposed over 13 weeks (5 days per week, 6 h per day) to 

different test atmospheres in whole-body exposure units. On the day after the last exposure day, 

the animals were anesthetized with a mixture of Ketamine (100 mg/ml) and Xylazine (20 mg/ml) 

in a 10:8 ratio and sacrificed via exsanguination. Necropsy was performed on the day after the 

last exposure day. Lung tissue samples were snap-frozen in liquid nitrogen and stored at -80 °C 

(Gerlofs-Nijland 2012). 

3.2.2. Measurement of gene expression in the lung tissue 

Lung tissues were ground and homogenized in Trizol®. To extract ribonucleic acid (RNA), the 

RNeasy® mini kit was used in combination and the DNAse treatment with the QIAGEN ® 

RNAse-free DNAse set. The extraction was performed according to the manufacturer’s instruc-

tions (Qiagen 2012; 5 PRIME 2007). Next, coding DNA was synthesized from 0.5 µg of RNA 

with the iScript Advanced coding DNA Synthesis Kit for real time quantitative polymerase chain 

reaction (RT-qPCR) (BioRad, CA, USA). Coding DNA was consequently diluted 1:15 in DNA-

free water (Van Berlo et al. 2010).  

Five genes involved in oxidative, inflammatory, or vascular responses, were investigated: 

CYP1A1, iNOS, TNFα, NAD(P)H dehydrogenase quinone 1 (NQO1), and ICAM-1. Three 

housekeeping genes were also selected for this study: glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), hypoxanthine-guanine phosphoribosyltransferase (HPRT), and β-actin. The sequences 

of the RT-qPCR primers are presented in Table 4. The primers were designed using Primer Ex-

press software  Version 3.0 (Applied Biosystems). The PCR efficiencies of the primers were 90% 

or higher (data not shown). I used the SYBR© Green Supermix (BioRad), diluted coding DNA, 

and 0.3 µM primers in a total volume of 25 µL. The RT-qPCR reactions were run with the iQ5
TM

 

real-time PCR detection system (BioRad, CA, USA). Cycling conditions were as follows: 3 min 

denaturation at 95 °C, and then 40 cycles of 15 s at 95 °C and 45 s 60 °C (Van Berlo et al. 2010). 

Melt curves (60–95°C) were produced for product identification and purity. The threshold cycle 

(Ct), the PCR cycle at which fluorescence rises above threshold background fluorescence, indi-

cating that the amount of amplified material has reached the threshold (Livak and Schmittgen 

2001), was calculated using iQ5™ Optical System Software (BioRad, CA, USA).  

Table 4. Primer sequences used in the current study 
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Gene Sense (forward) primer Antisense (reverse) primer 

CYP1A1 5́ -CCTCATGTACCTGGTAACCA-3 5́ -AAGGATGAATGCCGGAAGGT-3 

iNOS 5́ -AACATCAGGTCGGCCATCA-3 5́ -CGTACCGGATGAGCTGTGAA-3 

TNFα 5́ -AGGCTGCCCCGACTACGT-3 5́ -ACTTTCTCCTGGTATGAGATAGCAAAT-3 

NQO1 5́ -CCATGGCGGCGAGAAG-3 5́ -CATGGCGTAGTTGAATGATGTCTT-3 

ICAM-1 5́ -GTCCGCTGTGCTTTGAGAACT-3 5́ -CGGAAACGAATACACGGTGAT-3 

GAPDH 5́ -AACCTGCCAAGTATGATGACATCA-3 5́ -GGTCCTCAGTGTTAGCCCAAGAT-3 

HPRT 5́ -AAGACTTGCTCGAGATGTCATGAA-3 5́ -AAAGAACTTATAGCCCCCCTTGA-3 

β-actin 5́ -CGTGAAAAGATGACCCAGATCA-3 5́ -CACAGCCTGGATGGCTACGT-3 

3.2.3. Relative gene expression calculations (2
-ΔΔCt

 method) 

I calculated difference in gene expression in each exposed group compared to the control group 

using a housekeeping gene as an endogenous reference. For that, I used the 2
-ΔΔCt

 method (Livak 

and Schmittgen 2001). I ran a linear regression model as follows: 

∆𝐶𝑡  =  𝛽0 + 𝛽1 × 𝐺𝑟𝑜𝑢𝑝2 + 𝛽3 × 𝐺𝑟𝑜𝑢𝑝3 + 𝛽4 × 𝐺𝑟𝑜𝑢𝑝4 + 𝛽5 × 𝐺𝑟𝑜𝑢𝑝5 + 𝛽6 × 𝐺𝑟𝑜𝑢𝑝6 +

𝛽7 × 𝐺𝑟𝑜𝑢𝑝7 + 𝜀          [14] 

The dependent variable ΔCt was calculated as: 

∆𝐶𝑡  =  𝐶𝑡(𝐺𝑒𝑛𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡) − 𝐶𝑡(𝐻𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑖𝑛𝑔 𝑔𝑒𝑛𝑒)    [15] 

In the formula [14], ß0 is the intercept; ß1 to ß7 are linear regression coefficients for each of the 

exposure groups (independent predictors in the linear regression model); and ε is residual error. 

The fold change of gene expression for the exposed group X compared to the control group was 

calculated as 2−𝛽𝑋. The 95% confidence interval was calculated as 2−(𝛽𝑋±1.96×𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟𝛽𝑋
). 

As a sensitivity analysis, I calculated the fold change in expression without normalizing for the 

housekeeping gene. In addition, I tested for an exposure-response relationship with NO2 concen-

tration, which was entered as a continuous predictor in the linear regression model. The data were 

prepared using Microsoft Office Excel 2010. Analyses were performed using SAS (version 9.2; 

SAS Institute Inc., Cary, NC, USA). Graphs were produced with R 2.13.1 (R Core Team 2013).  
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4. OBSERVATIONAL STUDY RESULTS 

4.1. Cross-sectional analysis with BP and hypertension at baseline 

4.1.1. Description of study population 

At baseline, 4,584 participants with no missing values for exposure, outcome, and covariates 

were included. The distribution of outcomes in the study population at baseline is summarized in 

Table 5. On average, the study participants at baseline had slightly elevated SBP: 133.2 mmHg 

(standard deviation (SD) = 20.8 mmHg), which, according to the JNC7 classification, is in the 

pre-hypertensive range (Chobanian et al. 2003). DBP was very close to normal range, with a 

mean value of 81.4 mmHg (standard deviation, SD, 10.9 mmHg). The average PP was 51.7 

mmHg (SD 14.7 mmHg). At the time of the baseline measurement, 1,628 (35.5%) participants 

took BPLM, and 2,611 (57.0%) had prevalent hypertension according to the JNC7 definition 

(Chobanian et al. 2003). During baseline examination, participants also indicated whether they 

had hypertension diagnosed by a physician (42.7%) and whether it was treated with medications 

(31.2%).  

Table 5. Average BP values and rates of hypertension and BPLM intake in the analysis sample. 

Variable (unit) Statistics Description N missing 

SBP (mmHg) Mean ± SD
 

133.2 ± 20.8 – 

DBP (mmHg) Mean ± SD 81.4 ± 10.9 – 

PP (mmHg) Mean ± SD 51.7 ± 14.7 – 

Hypertension n (%) 2,611 (57.0%) – 

BPLM intake n (%) 1,628 (35.5%) – 

Self-reported hypertension
1 

n (%) 1,955 (42.7%) 10 

Self-reported BPLM intake
1 

n (%) 1,432 (31.2%) 1 

N = 4,584. 
1
For the complete case analysis, participants with missing values of BP or BPLM intake were 

excluded; the outcomes in the sensitivity analyses contained few additional missing values. 

The distribution of BP was quite symmetric but was slightly skewed either to the left (PP, SBP) or 

to the right (DBP) of the mean value (Figure 6). The distribution deviated from normal (p < 0.01 

with Shapiro-Wilk test of normality for SBP, DBP and PP). 
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Figure 6. Distribution of BP in the study population.  

Legend: blue line indicates normal distribution. 

I compared the distribution of hypertension and BPLM intake according to the definition used in 

this study: the JNC7 definition for hypertension (Chobanian et al. 2003) and BPLM intake ac-

cording to the ATC codes (see Methods, ―Assessment of BPLM intake‖) in Table 6.  

Table 6. Difference between hypertension and BPLM intake, included as main outcomes accord-

ing to the study definition, and self-reported hypertension and BPLM intake. 

Hypertension 

(JNC7 definition) 

Self-reported 

hypertension = No 

Self-reported 

hypertension = Yes 

Self-reported 

hypertension = Missing 

No 1,747 (88.5%) 220 (11.2%) 6 (0.3%) 

Yes  872 (33.4%) 1,735 (66.4%) 4 (0.2%) 

BPLM intake 

(ATC codes) 

Self-reported BPLM 

intake = No 

Self-reported 

BPLM intake = Yes 

Self-reported BPLM 

intake = Missing 

No 2,870 (97.1%) 85 (2.9%) 1 (0.0%) 

Yes  281 (17.3%) 1,347 (82.7%) 0 (0.0%) 

N = 4,584.    

Of 2,611 participants with hypertension according to the study definition, 66.4% reported physi-

cian-diagnosed hypertension. Of 1,973 non-hypertensive (study definition), 11.2% reported hav-

ing physician-diagnosed hypertension. The overall agreement for main definition of hypertension 

and for self-reported hypertension was 76.1%, Cohen’s kappa was 0.53, which corresponds to 
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fair to good agreement. Among 1,628 participants taking BPLM according to the study definition, 

82.7% also reported medication use. The overall agreement for the study definition of BPLM and 

self-reported BPLM intake was 92.0%. Cohen’s kappa was 0.82, which corresponds to excellent 

agreement. 

Table 7. Distribution of personal characteristics in the baseline analysis sample. 

Variable (unit), statistics Description N missing 

Age (years), Mean ± SD
 

59.6 ± 7.8 – 

Sex (male), n (%) 2,274 (49.6%) – 

CHD, n (%) 296 (6.5%) – 

T2DM, n (%) 623 (13.6%) – 

BMI (kg/m²), Mean ± SD 27.9 ± 4.6 – 

LDL:HDL ratio, Mean ± SD 2.7 ± 1.1 – 

Smoking, n (%) 
 

– 

 Current 1,064 (23.2%)  

 Former 1,585 (34.6%)  

 Never 1,935 (42.2%)  

Smoking pack-years
1
, Mean ± SD 16.1 ± 24.6 112 

ETS exposure, n (%) 1,658 (36.2%) – 

Alcohol (drinks/week)
1
, Mean ± SD 5.3 ± 10.2 107 

No sport, n (%) 2,100 (45.8%) – 

Education, n (%) 
 

– 

 < 10 years (low) 517 (11.3%)  

 11–17 years (middle) 2,558 (55.8%)  

 ≥ 18 years (high) 1,509 (32.9%)  

Economic activity  – 

Employed 1,847 (40.3%)  

Unemployed 290 (6.3%)  

Housewife/homemaker 642 (14.0%)  

Retired 1,805 (39.4%)  

N = 4,584. 
1
For the complete case analysis, missing values in all variables in the main adjustment model 

were excluded; some variables, used only in the sensitivity analyses, may contain missing values: 

pack-years of smoking, alcohol consumption.  
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Other characteristics of the study population are presented in Table 7. On average, the study par-

ticipants were 59.6 (SD 7.8) years old. Gender distribution was equal (49.6% men). CHD was 

reported by 6.5%. T2DM was found in 13.6%. The average BMI of the participants was 27.9 

kg/m² (SD 4.6 kg/m²), which corresponds to the WHO definition of overweight, indicating the 

presence of overweight subjects in the population. Twenty-three percent (N = 1,064) were smok-

ers, and thirty-five percent (n = 1,585) were former smokers, leaving forty-two percent of the 

analysis sample (n = 1,935) with no history of smoking. This percentage is lower than the one 

estimated by the World Health Organization for the year 2000 for the European region (29.9%) 

and for Germany (34.8%; European health for all database 2014). On average, participants re-

ported 16.1 pack-years of smoking (SD 24.6 pack-years). Approximately one-third of the study 

population (36.2%) reported exposure to ETS. Forty-five percent of study participants did not 

practice sport regularly. Approximately half of all of the study population at baseline had second-

ary education (11-17 years; n = 2,558, 55.8%), thirty-three percent reported having tertiary edu-

cation (≥ 18 years; n = 1,509), and the remaining 517 (11.3%) had primary education only (≤ 10 

years). Equal proportions of the population (approximately 40%) reported being employed or 

retired at the time of the baseline measurement. 

4.1.2. Description of exposure 

Particulate matter  

The distributions of modeled long-term concentrations of PM in the analysis sample at baseline 

are given in Table 8. The mean concentration of background PM2.5 365 days prior to BP meas-

urement at baseline was 16.7 µg/m³ PM2.5 (SD 1.6 µg/m³). The grid-specific mean of the baseline 

period (2000–2003) was slightly higher than the individual 365-day mean: 17.1 µg/m³ (SD 1.4 

µg/m³). The average concentration of the individual 365-day mean PM10 was 20.7 µg/m³ PM10 

(SD 2.6 µg/m³). Equivalently to PM2.5, the grid-specific mean value of PM10 was slightly higher 

than the individual 365-day mean: 21.1 µg/m³, SD 2.6 µg/m³. For comparison, the yearly mean 

concentration of PM10 for the Rhein–Ruhr area in 2000 was 24 µg/m³, as reported by the North 

Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection.  

On average, 365-day mean PMcoarse reached 4.0 µg/m³ (SD 1.5 µg/m³). The mean concentration 

of PM1 was 11.6 µg/m³ (SD 1.3 µg/m³) one year before the baseline measurement. The mean 

365-day concentration of particle number, also representing the ultrafine fraction of particles, was 

8.8×10
4
/L (SD 1.9×10

4
/L). The grid-specific mean values for the entire baseline period (2000–
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2003) for PMcoarse, PM1, and PN did not differ from the individual 365-day mean values. 

Table 8. Concentrations of particulate matter in the study population at baseline. 

Exposure (unit) 
 Individual 365-day mean  Mean of 2000–2003  Correlation 

 Mean ± SD
 
Min –Max IQR

 
 Mean ± SD Min –Max IQR  Pearson’s ρ 

PM2.5 (µg/m³)  16.7 ± 1.6 13.3 – 22.4 2.4  17.1 ± 1.4 14.5 – 21.6 2.3  0.875
*1

 

PM10 (µg/m³)  20.7 ± 2.6 15.8 – 29.3 4.0  21.1 ± 2.6 17.2 – 29.1 4.1  0.933
*
 

PMcoarse (µg/m³)  4.0 ± 1.6 2.1 – 11.8 1.7  4.0 ± 1.5 2.2 – 9.2 1.9  0.895
*
 

PM1 (µg/m³)  11.6 ± 1.3 8.7 – 16.1 1.9  12.0 ± 1.1 9.9 – 15.7 1.7  0.863
*
 

PN (×10
4
/L)  8.8 ± 1.9 4.9 – 18.4 2.7  8.8 ± 1.9 5.0 – 18.1 2.7  0.987

*
 

N = 4,584. 
1
Significance: * = p < 0.05.  

I observed a strong to very strong correlation of the individual 365-day mean concentration with 

the grid cell-specific mean concentration (Table 8): Pearson’s ρ was > 0.85 for all pollutants and 

was higher than 0.9 for PM10 and PN.  

Gaseous pollutants  

Table 9. Concentrations of gaseous pollutants in the study population at baseline. 

Exposure 

 (unit) 

 Individual 365-day mean  Mean of 2000–2003  Correlation 

 Mean ± SD
 

Min –Max IQR
 
 Mean ± SD Min –Max IQR  Pearson’s ρ 

O3 (µg/m³)  35.4 ± 1.6 29.9 – 39.6 2.2  34.7 ± 1.4 30.1 – 38.1 1.9  0.874
*1

 

NO2 (µg/m³)  40.1 ± 4.2 27.6 – 53.3 5.7  41.3 ± 4.0 28.4 – 53.1 5.1  0.935
*
 

NO (µg/m³)  12.7 ± 4.5 4.8 – 35.7 5.5  13.2 ± 4.4 5.9 – 30.7 5.8  0.964
*
 

SO2 (µg/m³)  8.7 ± 1.1 5.9 – 16.3 1.5  9.1 ± 1.0 6.7 – 17.1 1.5  0.874
*
 

CO (µg/m³)  0.3 ± 0.1 0.2 – 0.6 0.1  0.3 ± 0.1 0.3 – 0.6 0.1  0.967
*
 

NH3 (µg/m³)  2.6 ± 0.4 1.8 – 3.7 0.5  2.7 ± 0.3 2.2 – 3.6 0.4  0.724
*
 

N = 4,584. 
1
Significance: * = p < 0.05. 

The average modeled long-term concentrations of gaseous pollutants in the analysis sample at 

baseline are presented in Table 9. The average concentrations of gaseous pollutants 365 days be-

fore BP measurement were 35.4 µg/m³ O3 (SD 1.6 µg/m³), 40.1 µg/m³ NO2 (SD 4.2 µg/m³), 8.7 

µg/m³ SO2 (SD 1.1 µg/m³), 0.3 µg/m³ CO (SD 0.1 µg/m³), and 2.6 µg/m³ NH3 (SD 0.4 µg/m³). 

These values were close to the yearly mean values for 2000 in the Rhein-Ruhr area, as reported 

by the North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection 
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(LANUV 2000b): 33 µg/m³ for O3, 30 µg/m³ for NO2, 8 µg/m³ for SO2, and 0.4 µg/m³ for CO. 

The grid-specific mean concentrations for the 2000–2003 period were quite similar to the indi-

vidual 365-day mean, though the standard deviation was smaller due to the longer averaging pe-

riod. The individual 365-day mean was very collinear with the grid cell mean for 2000–2003: 

Pearson’s correlation coefficient varied from 0.724 (observed for NH3) and 0.967 (observed for 

CO; Table 9). 

Ambient noise, distance to major road, and neighborhood SES indicators (Table 10) 

The mean level of 24-hour weighted mean road traffic noise at the residence, defined as the max-

imum façade value of the 10-m buffer around the geocoded address, was 53.9 dB. Mean level of 

night-time noise was 45.1 dB. Average tram noise was 12.2 dB.  

Table 10. The average levels of ambient noise, distance to major road and neighborhood-level 

unemployment rate in the baseline analysis sample. 

Variable (unit) Mean ± SD 

Ambient noise   

Lden (traffic) (dB)
1
 53.9 ± 9.6 

Lnight (traffic) (dB)
1
 45.1 ± 9.3 

Lden (tram) (dB) 12.2 ± 13.6 

Distance to major road by vehicle type   

Diesel vehicles (km) 0.9 ± 0.8 

Area socio-economic characteristics   

Population density (×10³ residents/km²) 3.6 ± 2.1 

Proportion of residents ≥ 65 years (%) 28.3 ± 3.3 

Unemployment rate (%) 12.5 ± 3.4 

Social welfare rate (%) 4.6 ± 2.7 

N = 4,584. 
1
Traffic Lden and Lnight variable contain 46 missing values. In the analyses, Lden was entered in 5-

dB categories, and the missing values were replaced with available noise isophones data. 

On average, study participants resided far away from highly trafficked roads (Table 10). The 

mean distance from participants’ residences to major roads with high densities of all-type, diesel, 

and heavy-duty vehicles was 0.9 km (shown for diesel vehicles only). The mean population den-

sity in the 106 neighborhoods in the study area was 36,000 residents per 1 km². Approximately 
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one-third of each neighborhood residents were older than 65 years of age, 12.5% were unem-

ployed, and 4.6% received social welfare support (Table 10). 

Short-term air pollution and meteorology (Table 11) 

Short-term concentrations of air pollutants were quite similar to yearly mean concentrations for 

all pollutants except NH3, for which the short-term value was substantially smaller than the long-

term one. The short-term mean all-source PM2.5 concentration was 16.8 µg/m³. The mean tem-

perature 2 days before the BP measurement was 10.3° C; the mean relative humidity was 6.5 

g/kg.  

Table 11. Description of short-term air pollution and meteorology in the study population. 

Variable Time lag (days) Unit  Mean ± SD 

PM2.5 lag 0–6  µg/m³ 16.8 ± 6.1 

PM10 lag 0–6  µg/m³ 20.9 ± 7.3 

PN lag 0–6  ×10
4
/L 8.7 ± 2.8 

O3 lag 0–2 µg/m³ 36.4 ± 21.1 

NO2 lag 0–6 µg/m³ 40.7 ± 15.9 

SO2 lag 0–6 µg/m³ 9.1 ± 4.4 

CO lag 0–6 µg/m³ 0.3 ± 0.1 

NH3 lag 0–1 µg/m³ 0.2 ± 2.6 

Humidity lag 0–1  g/kg 6.5 ± 2.5 

Temperature  lag 0–1 °C 10.3 ± 7.6 

North-South wind  lag 0–1  m/s 1.3 ± 1.9 

East-West wind  lag 0–1  m/s 0.8 ± 2.2 

N = 4,584.    

Correlation of exposures at baseline (Table 11) 

The different metrics of PM (PM2.5, PM10, PM1, and PN) showed moderate to high correlations 

(Pearson’s ρ 0.625 to 0.990). PMcoarse was highly correlated with PM10 (ρ = 0.811) and weakly to 

moderately correlated with smaller particles (ρ 0.328 to 0.519). I observed mostly high correla-

tions between particulate and gaseous pollutants. O3 was inversely correlated with all PM metrics 

(ρ -0.752 to -0.434). NO2, SO2 and NH3 were highly positively correlated with PM10, PM2.5, PM1 

and PN. NO2, SO2 and NH3 were not or only weakly correlated with coarse particles. NO and CO 
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were weakly to moderately correlated with PM2.5 and PM1 and were highly correlated with 

PMcoarse and PN. Gaseous compounds correlated moderately to highly with each other. O3 showed 

an inverse moderate correlation with all other gaseous compounds (ρ -0.628 to -0.374).  

NO2 was highly positively correlated with SO2 (0.740) and moderately correlated with NH3 

(0.623), NO (0.443), and CO (0.405). NO, in turn, correlated highly with CO (0.901) and moder-

ately with other gases. A high correlation was also observed between NH3 and SO2 (0.734). 

Short-term concentrations of PM2.5 did not correlate with any of the exposures but weakly in-

versely correlated with short-term humidity. The 24-hour mean traffic noise was weakly correlat-

ed with PN, NO, and CO (ρ 0.234, 0.266, and 0.231). A moderate correlation of tram noise was 

observed with NO (0.451) and CO (0.582). Tram noise was also weakly correlated with PM10, 

PMcoarse, PN, and SO2 (ρ 0.235, 0.277, and 0.216). Road traffic noise and tram noise were only 

weakly collinear (ρ 0.249). Distance to major road correlated weakly and inversely with most of 

the air pollutants. Moderate correlations of distance to major road with traffic noise Lden and Lnight 

were observed (ρ = -0.382 and -0.415). The area-level unemployment rate correlated moderately 

with CO (ρ 0.421) and weakly with PMcoarse, PN, NO, SO2, and road traffic noise.  

The Shapiro-Wilk test for normality of distribution revealed deviations from normality for all en-

vironmental variables at baseline (p < 0.01). The parametric statistics were employed for the de-

scription of these variables based on the central limit theorem.  
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Table 12. Correlation matrix of exposures and environmental variables in the study population at baseline. 
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PMcoarse
1
  0.328

*
 0.811

*
 1 

PM1
1
  0.990

*
 0.818

*
 0.337

*
 1 

PN
1
  0.625

*
 0.703

*
 0.519

*
 0.645

*
 1 

O3
1
  -0.572

*
 -0.618

*
 -0.434

*
 -0.567

*
 -0.752

*
 1 

NO2
1
  0.670

*
 0.506

*
 0.149

*
 0.685

*
 0.732

*
 -0.628

*
 1 

NO
1
  0.415

*
 0.752

*
 0.814

*
 0.428

*
 0.696

*
 -0.511

*
 0.443

*
 1 

SO2
1
  0.761

*
 0.588

*
 0.192

*
 0.799

*
 0.684

*
 -0.558

*
 0.740

*
 0.403

*
 1 

CO
1
  0.262

*
 0.596

*
 0.714

*
 0.298

*
 0.599

*
 -0.374

*
 0.405

*
 0.901

*
 0.431

*
 1 

NH3
1
  0.840

*
 0.728

*
 0.341

*
 0.824

*
 0.611

*
 -0.529

*
 0.623

*
 0.502

*
 0.734

*
 0.377

*
 1 

PM2.5 (short)
2  -0.027 -0.026 -0.016 -0.046

*
 -0.015 -0.060

*
 -0.000 0.001 -0.026 -0.010 -0.054

*
 1 

Humidity  0.002 -0.018 -0.031
*
 0.026 -0.012 0.051

*
 0.003 -0.035

*
 0.004 -0.042

*
 0.017 -0.316

*
 1 

Lden (traf.) 
 0.085

*
 0.185

*
 0.218

*
 0.093

*
 0.234

*
 -0.136

*
 0.140

*
 0.266

*
 0.078

*
 0.231

*
 0.094

*
 0.020 -0.012 1 

Lnight (traf.) 
 0.120

*
 0.212

*
 0.226

*
 0.125

*
 0.255

*
 -0.163

*
 0.167

*
 0.275

*
 0.087

*
 0.218

*
 0.117

*
 0.021 -0.009 0.994

*
 1 

Lden (tram) 
 0.021 0.235

*
 0.366

*
 0.050

*
 0.277

*
 -0.085

*
 0.074

*
 0.451

*
 0.216

*
 0.582

*
 0.123

*
 -0.019 -0.039

*
 0.249

*
 0.208

*
 1 

Road
3  -0.162

*
 -0.298

*
 -0.325

*
 -0.170

*
 -0.330

*
 0.228

*
 -0.277

*
 -0.400

*
 -0.104

*
 -0.315

*
 -0.144

*
 -0.003 0.006 -0.382

*
 -0.415

*
 -0.077

*
 1 

nSES
4
  -0.054

*
 0.089

*
 0.201

*
 0.000 0.340

*
 -0.115

*
 0.166

*
 0.327

*
 0.224

*
 0.421

*
 0.113

*
 -0.014 -0.006 0.175

*
 0.155

*
 0.329

*
 -0.165

*
 

N = 4,584. Pearson’s rho is presented. 
1
Long-term air pollution = individual 365-day mean. ²Lag of 0–6 days, basic effect (365-day mean) subtracted. 

3
Distance to highly trafficked road 

(upper quartile of diesel vehicle density). 
4
Unemployment rate in the neighborhood.

 5
* = p < 0.05. 
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4.1.3. Stratified description of participants 

Stratification by hypertension status  

Table 13. Description of participants by hypertension status. 

Variable (unit)  Statistics 
 Prevalent hypertension  

pdifference
2
 

 No (n = 1,973) Yes (n = 2,611)  

PM2.5 (µg/m³)  Mean ± SD
  16.7 ± 1.6 16.7 ± 1.6   

PM10 (µg/m³)  Mean ± SD  20.7 ± 2.6 20.7 ± 2.6   

PMcoarse (µg/m³)  Mean ± SD  4.0 ± 1.5 4.1 ± 1.6   

PM1 (µg/m³)  Mean ± SD  11.6 ± 1.3 11.6 ± 1.3   

PN (×10
4
/L)  Mean ± SD  8.8 ± 1.9 8.9 ± 1.9   

O3 (µg/m³)  Mean ± SD  35.5 ± 1.6 35.4 ± 1.6   

NO2 (µg/m³)  Mean ± SD  40.0 ± 4.2 40.2 ± 4.1   

NO (µg/m³)  Mean ± SD  12.5 ± 4.4 12.8 ± 4.6  * 

SO2 (µg/m³)  Mean ± SD  8.7 ± 1.1 8.7 ± 1.1  
 

CO (µg/m³)  Mean ± SD  0.3 ± 0.1 0.3 ± 0.1  * 

NH3 (µg/m³)  Mean ± SD  2.6 ± 0.4 2.6 ± 0.4  
 

Lden traffic (dB)  Mean ± SD  53.6 ± 9.4 54.2 ± 9.8  (*) 

Lden tram (dB)  Mean ± SD  11.9 ± 13.4 12.5 ± 13.7   

Road
1

 (km)  Mean ± SD  0.9 ± 0.8 0.9 ± 0.8   

Unemployment (%)  Mean ± SD  12.4 ± 3.4 12.6 ± 3.5  ** 

SBP (mmHg)  Mean ± SD  119.8 ± 12.2 143.3 ± 20.3  *** 

DBP (mmHg)  Mean ± SD  76.1 ± 7.4 85.4 ± 11.3  *** 

PP (mmHg)  Mean ± SD  43.7 ± 8.9 57.8 ± 15.4  *** 

BPLM intake  %  0.0% 62.4%  *** 

Age (years)  Mean ± SD  57.0 ± 7.3 61.6 ± 7.5  *** 

Sex (male)  %  42.6% 54.9%  *** 

CHD    1.3% 10.4%  *** 

T2DM  %  6.2% 19.1%  *** 

BMI (kg/m²)  Mean ± SD  26.5 ± 4.0 29.0 ± 4.7  *** 

Smoking: Current  %     *** 

Former    27.9% 19.7%  
 

Never    30.4% 37.7%  
 

ETS exposure    41.7% 42.6%  
 

No sport  %  39.3% 33.8%  *** 

Education: < 10 yrs  %  40.5% 49.8%  *** 

BPLM intake  %  8.7% 13.2%  *** 

N = 4,584. 
1
Distance to road in upper quartile of diesel vehicle density. 

2
Student’s T test significance was 

applied with continuous variables, and χ²-test was applied with stratum-specific proportions 

with categorical variables. Test significance: (*) =  p < 0.1; * = p < 0.05; ** =  p < 0.01; 

*** = p < 0.001.
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Hypertensive and non-hypertensive participants did not differ with regard to exposure concen-

trations (although Student’s T-test revealed significant differences in concentrations of NO 

and CO between these groups, the absolute differences were quite small). I observed incre-

mentally higher values of road traffic noise and neighborhood unemployment rate in partici-

pants with hypertension (Table 13).  

Hypertensive participants differed from the non-hypertensive ones substantially with regard to 

personal characteristics. Subjects without hypertension had lower BP values, were younger 

and had lower BMIs (T-test p < 0.001 for these characteristics). The hypertensive participants 

were more frequent alcohol drinkers (not shown) and had lower physical activity and educa-

tional levels; there were more men, former smokers, diabetics and subjects with CHD among 

the hypertensive. 

The medicated subjects differed from the non-medicated in the same way as did the hyperten-

sive subjects from the non-hypertensive; in addition, they resided on average closer to major 

roads (T-test p < 0.05; Appendix Table 45). 

 Stratification by city (Table 14) 

I observed differences in exposure and environmental covariates by the city of residence. The 

highest levels of particulate matter and gaseous pollutants were found in Mülheim, whereas 

the lowest concentrations were observed in Bochum (T-test p < 0.001). In contrast, the noise 

levels were higher in Essen, especially the tram noise (T-test p < 0.01). On average, partici-

pants in Mülheim lived nearer to major roads than participants in Essen and Bochum, and the 

neighborhood-level unemployment rate was lower in Mülheim (for both, T-test p < 0.001). 

The mean values of BP and age were lower in Essen, than in Bochum (p < 0.05). Subpopula-

tions in the three cities differed slightly by sex distribution, smoking, alcohol consumption, 

and physical activity, but these differences were not statistically significant. The proportion of 

participants with lower education levels was significantly smaller in Essen, than in Bochum (p 

< 0.05). 
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Table 14. Description of study participants at baseline by city. 

Variable (unit) Statistics 

City pdifference
2 

B
o
/ 

E
s3

 

E
s/

M
h

 

B
o
/M

h
 

Bochum  

(N = 1,331) 

Essen  

(N = 1,572) 

Mülheim  

(N = 1,681) 

PM2.5 (µg/m³) Mean ± SD
 

15.3 ± 0.9 16.4 ± 1.2 18.0 ± 1.3 *** *** *** 

PM10 (µg/m³) Mean ± SD 18.2 ± 1.3 21.1 ± 2.3 22.3 ± 2.0 *** *** *** 

PMcoarse (µg/m³) Mean ± SD 2.9 ± 0.7 4.7 ± 2.0 4.4 ± 1.1 *** *** *** 

PM1 (µg/m³) Mean ± SD 10.5 ± 0.9 11.5 ± 1.1 12.6 ± 1.1 *** *** *** 

PN (×10
4
/L) Mean ± SD 7.9 ± 1.7 9.1 ± 2.0 9.3 ± 1.7 *** *** *** 

O3 (µg/m³) Mean ± SD 36.5 ± 1.3 35.4 ± 1.3 34.6 ± 1.4 *** *** *** 

NO2 (µg/m³) Mean ± SD 39.0 ± 4.6 39.4 ± 3.9 41.8 ± 3.5 ** *** *** 

NO (µg/m³) Mean ± SD 9.8 ± 2.3 14.9 ± 5.6 12.9 ± 3.1 *** *** *** 

SO2 (µg/m³) Mean ± SD 8.1 ± 0.7 8.8 ± 1.3 9.1 ± 1.0 *** *** *** 

CO (µg/m³) Mean ± SD 0.3 ± 0.0 0.4 ± 0.1 0.3 ± 0.0 *** *** *** 

NH3 (µg/m³) Mean ± SD 2.3 ± 0.2 2.6 ± 0.3 2.8 ± 0.3 *** *** *** 

Lden traffic (dB) Mean ± SD 52.8 ± 10.5 55.1 ± 9.6 53.7 ± 8.7 *** *** ** 

Lden tram (dB) Mean ± SD 6.7 ± 9.8 24.6 ± 14.9 5.0 ± 0.0 *** *** *** 

Road
1

 (km) Mean ± SD 1.1 ± 1.0 0.9 ± 0.8 0.8 ± 0.5 *** *** *** 

Unemployment (%) % 13.4 ± 3.0 13.7 ± 3.9 10.7 ± 2.5 * *** *** 

SBP (mmHg) Mean ± SD 132.1 ± 20.6 133.8 ± 21.1 133.4 ± 20.8 * 
 

(*) 

DBP (mmHg) Mean ± SD 80.7 ± 10.4 81.7 ± 11.0 81.7 ± 11.0 * 
 

* 

PP (mmHg) Mean ± SD 51.3 ± 14.8 52.1 ± 15.0 51.7 ± 14.4    

Hypertension % 56.5% 58.5% 55.9%    

BPLM intake % 37.0% 35.8% 34.1%  
 

 

Age (years) Mean ± SD 59.2 ± 7.7 59.9 ± 7.8 59.7 ± 7.9 * 
 

(*) 

Sex (male) % 51.2% 47.6% 50.3%    

CHD % 5.9% 7.7% 5.7%    

T2DM % 14.0% 14.6% 12.4%    

BMI (kg/m²) Mean ± SD 28.0 ± 4.6 27.9 ± 4.6 27.9 ± 4.6    

Smoking: Current % 23.2% 22.5% 18.4%    

Former % 35.7% 36.5% 28.3%    

Never % 41.1% 41.0% 32.5%    

ETS exposure % 37.2% 36.5% 35.1%    

No sport % 46.3% 47.0% 44.3%    

Education: < 10 yrs % 11.3% 11.4% 8.9% *   

N = 4,584. 
1
Distance to road in upper quartile of diesel vehicle density. 

2
Student’s T test significance 

was applied with continuous variables, and χ²-test was applied with stratum-specific propor-

tions with categorical variables. Test significance: (*) =  p < 0.1; * = p < 0.05; ** =  p < 

0.01; *** = p < 0.001.
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4.1.4. Cross-sectional association of air pollution with BP and hypertension  

Particulate matter (Table 15) 

Yearly mean concentrations of PM2.5 and PM1 were positively associated with SBP and DBP 

and showed a positive relationship with PP, independent of lifestyle, personal characteristics, 

ambient noise, distance to major road, short-term PM, and time trend (Table 15). The IQR 

increase in the yearly mean PM2.5 (2.4 µg/m³) was associated with higher SBP by 1.1 mmHg 

(95% confidence interval (CI): 0.2, 2.0), higher DBP by 0.7 mmHg (95% CI: 0.2, 1.2), and 

higher PP by 0.4 mmHg (95% CI: -0.2, 1.0). Estimates with PM1 (presented per IQR) were 

almost identical. The PM10 exposure was positively associated with DBP and showed a weak-

er positive relationship with SBP. No clear associations were identified with PMcoarse and PN 

concentrations, although effect estimates were mostly positive. No association between expo-

sure to PM and prevalent hypertension was observed. The yearly mean concentrations of dif-

ferent PM metrics, but not of PN, were linked to lower odds ratios (ORs) for BPLM intake 

(Table 15). 

Gaseous pollutants (Table 15) 

The yearly mean concentration of NH3 was positively associated with BP: per IQR (0.5 

µg/m³), the estimated increase in SBP was 1.3 mmHg (95% CI: 0.4, 2.2), the increase in DBP 

was 0.7 mmHg (95% CI: 0.2, 1.2), and the increase in PP was 0.6 mmHg (95% CI: 0.0, 1.2). 

NH3 exposure was related to elevated OR for hypertension and lower OR for BPLM intake. 

Long-term NO concentration was positively associated with DBP (0.6 mmHg (95% CI: 0.1, 

1.0)
 
per 5.5 µg/m³) and related to elevated SBP and OR for hypertension. The findings with 

other gaseous pollutants were weaker. Exposure to O3 was inversely related to BP and was 

positively related to BPLM intake. The yearly mean concentration of NO2 was weakly posi-

tively related to SBP and PP; NO2, NO and CO concentrations were weakly positively related 

to the OR for hypertension.  
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Table 15. The associations of ambient air pollution concentrations (individual 365-day means) with BP and hypertension. 

Exposure 

 

IQR 

 Change in BP, mmHg (95% CI)  Hypertension  BPLM intake 

 
 SBP

 
 DBP

1 
 PP  

Odds ratio 

(95% CI) 
 

Odds ratio 

(95% CI) 

PM2.5  (µg/m³)  2.4  1.1 (0.2, 2.0)  0.7 (0.2, 1.2)  0.4 (-0.2, 1.0)  1.00 (0.90, 1.11)  0.96 (0.86, 1.07) 

PM10  (µg/m³)  4.0  0.9 (0.0, 1.8)  0.7 (0.2, 1.2)  0.2 (-0.4, 0.9)  1.00 (0.90, 1.11)  0.95 (0.85, 1.06) 

PMcoarse  (µg/m³)  1.7  0.3 (-0.4, 1.0)  0.3 (-0.1, 0.7)  0.0 (-0.5, 0.4)  1.00 (0.92, 1.08)  0.96 (0.89, 1.04) 

PM1  (µg/m³)  1.9  1.1 (0.2, 2.1)  0.7 (0.2, 1.2)  0.5 (-0.2, 1.1)  1.01 (0.90, 1.12)  0.96 (0.86, 1.08) 

PN  (×10
4
/L)  2.7  0.5 (-0.4, 1.3)  0.3 (-0.2, 0.8)  0.2 (-0.5, 0.8)  1.00 (0.90, 1.11)  1.00 (0.90, 1.11) 

O3  (µg/m³)  2.2  -0.7 (-1.5, 0.1)  -0.3 (-0.8, 0.1)  -0.3 (-0.9, 0.2)  1.00 (0.91, 1.10)  1.04 (0.94, 1.14) 

NO2  (µg/m³)  5.7  0.7 (-0.1, 1.5)  0.3 (-0.1, 0.7)  0.4 (-0.2, 0.9)  1.06 (0.96, 1.16)  1.02 (0.93, 1.13) 

NO  (µg/m³)  5.5  0.4 (-0.4, 1.2)  0.6 (0.1, 1.0)  -0.1 (-0.7, 0.4)  1.06 (0.96, 1.17)  1.01 (0.92, 1.12) 

SO2  (µg/m³)  1.5  0.4 (-0.4, 1.2)  0.2 (-0.3, 0.6)  0.3 (-0.3, 0.8)  1.01 (0.92, 1.11)  1.01 (0.91, 1.11) 

CO  (µg/m³)  0.1  0.3 (-0.4, 1.0)  0.4 (0.0, 0.8)  -0.1 (-0.6, 0.4)  1.05 (0.96, 1.14)  0.99 (0.91, 1.08) 

NH3 (µg/m³)  0.5  1.3 (0.4, 2.2)  0.7 (0.2, 1.2)  0.6 (0.0, 1.2)  1.02 (0.91, 1.13)  0.95 (0.85, 1.06) 

N = 4,584. The results are presented per given IQRs of exposure concentrations. 

Adjusted for: time trend, short-term exposure, Lnight traffic (linear, in 5-dB categories), Lden tram (linear, in 5-dB categories), distance to major road 

(upper quartile of diesel vehicle density), age, sex, BMI (linear and squared terms, centered on mean), WHR, blood lipids (lipid ratio, HDL, triglyc-

erides), smoking status, ETS, physical activity (in categories), education (in categories), and economic activity (in categories).  
1
In the analysis with DBP, age and blood triglycerides were entered as linear and squared terms, centered on the mean. 
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4.1.5. Sensitivity analyses 

Results with self-reported binary outcomes (Table 16) 

Yearly mean concentrations of PM1 to PM10 were related to lower ORs for self-reported hyper-

tension. The strongest association was observed with PM10: OR 0.86 (95% CI: 0.77, 0.95) per 

IQR of 4 µg/m³. Similarly to results with self-reported hypertension, higher long-term concentra-

tions of PM were related to lower ORs of self-reported BPLM intake, but the confidence intervals 

were generally wider. No statistically significant associations of gaseous pollutants with hyper-

tension or BPLM intake were observed. Concentration of O3 was related to an elevated OR for 

hypertension, and concentrations of NO, SO2, CO, NH3 were related to decreased ORs for self-

reported hypertension. Exposure to CO and NH3 were inversely related to ORs for BPLM intake.  

Table 16. The cross-sectional associations with self-reported hypertension and BPLM intake. 

Exposure (unit)  IQR  
Self-reported hypertension

1 

Odds ratio (95% CI) 
 

Self-reported BPLM intake
2 

Odds ratio (95% CI) 

PM2.5  (µg/m³)  2.4  0.90 (0.81, 1.00)  0.94 (0.84, 1.05) 

PM10  (µg/m³)  4.0  0.86 (0.77, 0.95)  0.91 (0.81, 1.01) 

PMcoarse  (µg/m³)  1.7  0.89 (0.83, 0.97)  0.93 (0.86, 1.01) 

PM1  (µg/m³)  1.9  0.90 (0.81, 1.00)  0.94 (0.84, 1.06) 

PN  (×10
4
/L)  2.7  0.96 (0.87, 1.07)  1.00 (0.90, 1.11) 

O3  (µg/m³)  2.2  1.06 (0.97, 1.17)  1.02 (0.92, 1.13) 

NO2  (µg/m³)  5.7  0.99 (0.90, 1.08)  1.02 (0.92, 1.12) 

NO  (µg/m³)  5.5  0.93 (0.85, 1.03)  0.98 (0.89, 1.09) 

SO2  (µg/m³)  1.5  0.95 (0.86, 1.04)  1.02 (0.92, 1.13) 

CO  (µg/m³)  0.1  0.93 (0.86, 1.01)  0.97 (0.89, 1.06) 

NH3 (µg/m³)  0.5  0.92 (0.83, 1.02)  0.95 (0.85, 1.06) 

The results are presented per given IQRs of exposure concentrations. 

Adjusted for: time trend, short-term exposure, Lnight traffic, Lden tram, distance to major road, age, 

sex, BMI, WHR, blood lipids, smoking status, ETS, physical activity, education, and economic 

activity. 
 1
Analysis subset: N = 4,574.

2
Analysis subset: N = 4,583. 

Models from crude to main (Figure 7) 

I calculated results with a range of reduced models: the covariates from the main model were 

added in steps to observe the changes in the estimate with exposure after adjustment (models 0 to 
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MAIN, Figure 7 with PM2.5 and PM10).  

 

Figure 7. Estimated associations of PM2.5 and PM10 with SBP and DBP, using different adjust-

ment models.  

Legend: N = 4,584 (if not indicated otherwise). The results are presented per given IQRs of expo-

sure concentrations. Reduced models: M0 = crude model (only exposure); M1 = added time 

trend; M2: added age, sex; M3: added BMI, WHR, blood lipids, smoking, ETS, physical activity, 

educational level, economic activity; M4: added Lnight traffic, Lden tram; MAIN = M4 with short-

term exposure; sensitivity models (MAIN with additional covariates): SM6 = MAIN with short-

term humidity, wind speed; SM7 = MAIN with alcohol, pack-years of smoking (N = 4,368); SM8 

= MAIN with CHD, T2DM; SM9 = MAIN with city, geographic area; SM10 = MAIN, influential 

observations (high residual, high leverage excluded, N = 4,581); MAIN* = MAIN model, grid-

specific mean for 2000-2003 (representing the spatial contrast only) as the exposure.  

The crude association of the yearly mean PM2.5 with BP concentration was positive and statisti-

cally significant in the presence of the time trend (models M1 to MAIN); without the time trend, 

a null effect was observed (model M0). PM10 showed a crude positive association with BP, which 

became stronger after addition of time trend to the model.  Adjustment for personal risk factors 
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resulted in decreased estimates (models M2, M3). Further adjustment for road traffic noise and 

short-term air pollution did not affect the estimates substantially (models M4 and MAIN). Ad-

justment for the variables in the main model had similar effects on the estimates with gaseous 

compounds (not shown). In addition to what was observed with PM, the precision of estimates 

further decreased, and they diminished towards null after adjustment for short-term pollutant 

concentration. Only the results with NH3 were robust across different model specifications. 

Extended adjustment sets 

Adjustment for short-term meteorology (model SM6), additional personal risk factors (alcohol 

consumption and pack-years of smoking), estimated with a reduced analysis sample due to miss-

ing values (model SM7), and co-diseases, namely, CHD and T2DM (model SM8), did not affect 

the estimates (Figure 7 with PM2.5 and PM10). Adjustment for city and geographic location (SM9) 

led to an increase in the estimate and a wider confidence interval. Exclusion of the observations 

with high residuals or leverages (SM10) did not affect the estimates substantially. 

Spatial versus spatiotemporal variations in exposure 

When grid-specific means over the entire baseline period (2000–2003) were used instead of indi-

vidual 365-day means, without adjustment for time trend, the estimated relationship with BP was 

slightly weaker than in the main model with 365-day mean. The confidence intervals were wider 

with SBP. With DBP, the association with grid-specific mean was statistically significant. 

Adjusting for neighborhood SES 

I calculated the mixed-effects models, which included a neighborhood-level SES parameter and 

random intercept for the neighborhood, in addition to the long-term air pollution exposure and 

covariates from the main model. The results for the main exposure remained unchanged after 

adjustment for various neighborhood SES variables (Figure 8). 
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Figure 8. The associations of long-term exposure to PM2.5 and PM10 with SBP and DBP, adjusted 

for neighborhood-level SES.  

Legend: N = 4,584. The results are presented per given IQRs of exposure concentrations. Adjust-

ed for time trend, short-term exposure, Lnight traffic, Lden tram, distance to major road, age, sex, 

BMI, WHR, blood lipids, smoking status, ETS, physical activity, education, and economic activity.  

4.1.6. Independence of PM effects from gaseous compounds 

Multi-pollutant models 

I computed multi-pollutant models, adding each of the gaseous compounds to the main model 

with PM2.5 or PM10 and SBP (Figure 9). In comparison to the main adjusted model (adjustment 

set MAS1), adjustment for O3, NO2, and SO2 resulted in slightly lower estimates. Adjustment for 

NO and CO had no effect on the estimates for PM2.5 and PM10 but slightly increased confidence 

intervals. I observed null association of PM with BP after adjustment for NH3. 
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Figure 9. Multipollutant models: association of the 365-day mean PM2.5 and PM10 concentra-

tions with SBP, adjusted for the 365-day mean concentration of gaseous pollutants.  

Legend: N = 4,584. The results are presented per given IQRs of exposure concentrations. Adjust-

ed for time trend, short-term exposure, Lnight traffic, Lden tram, distance to major road, age, sex, 

BMI, WHR, blood lipids, smoking status, ETS, physical activity, education, and economic activity. 

Interaction of PM with gaseous compounds 

I dichotomized each of the gaseous compounds at the 75
th

 percentile and computed product terms 

with PM2.5 and PM10 to estimate the association of PM with BP at different concentration levels 

of the gaseous component (Figure 10). For all interactions tested, the estimates at the gas levels 

below the cut point were quite similar to the main model. At high levels of O3 and NO2, the effect 

estimate for PM was also similar to the main model, although less precise. Close to null or in-

verse association was observed at high levels of NO and CO; this interaction was statistically 

significant (p < 0.05). The results with interaction by NH3 were inconsistent for PM2.5 and PM10.  
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Figure 10. Effect modification of the associations of the 365-day mean PM2.5 and PM10 concen-

trations with SBP by 365-day mean concentrations of gaseous pollutants.  

Legend: N = 4,584. The results are presented per given IQRs of exposure concentrations. Adjust-

ed for time trend, short-term exposure, Lnight traffic, Lden tram, distance to major road, age, sex, 

BMI, WHR, blood lipids, smoking status, ETS, physical activity, education, economic activity; 

high = concentration ≥ 75
th

 percentile; low = concentration < 75
th

 percentile. * = pinteraction < 

0.05; (*) = pinteraction < 0.1. Adjusted for time trend, short-term exposure, Lnight traffic, Lden tram, 

distance to major road, age, sex, BMI, WHR, blood lipids, smoking status, ETS, physical activity, 

education, and economic activity. 

4.1.7. Independence of the gaseous compounds from PM  

Multi-pollutant models 

Adjustment for PM10 or PM2.5 led to changes of the effect estimate towards zero and also to loss 

of precision for all gases but NH3 (Figure 11). With NH3, the estimates remained unchanged, but 
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the confidence intervals increased. 

 

Figure 11. The multipollutant models: association of 365-day mean exposure to gaseous pollu-

tants with SBP, adjusted for the 365-day mean concentrations of PM2.5 and PM10.  

Legend: N = 4,584. The results are presented per given IQRs of exposure concentrations. Adjust-

ed for time trend, short-term exposure, Lnight traffic, Lden tram, distance to major road, age, sex, 

BMI, WHR, blood lipids, smoking status, ETS, physical activity, education, and economic activi-

ty. 

Interaction of gaseous pollutants with dichotomized PM  

At lower concentrations of PM2.5 or PM10, the estimates for O3, nitrogen oxides, SO2, CO and 

NH3 were similar to the main model, although the precision of these results was often lower than 

in the main model (Figure 12). At high levels of PM, I observed mostly null associations of the 

gaseous compounds with BP. The results with NH3 were similar to the main model at high levels 

of PM10 but diminished towards null at high levels of PM2.5.  
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Figure 12. Effect modification of the association of 365-day mean concentrations of gaseous pol-

lutants with SBP by 365-day mean concentrations of PM2.5 and PM10.  

Legend: N = 4,584. The results are presented per given IQRs of exposure concentrations. Adjust-

ed for time trend, short-term exposure, Lnight traffic, Lden tram, distance to major road, age, sex, 

BMI, WHR, blood lipids, smoking status, ETS, physical activity, education, economic activity; 

high = concentration ≥ 75
th

 percentile; low = concentration < 75
th

 percentile. * = pinteraction < 

0.05; (*) = pinteraction < 0.1.  

4.1.8. Linearity of exposure-outcome association 

I divided long-term grid-specific mean exposure concentrations (mean of 2000–2003) into quar-

tiles to check the linearity of the exposure-outcome relationship. A monotonic relationship was 

observed for PM with DBP; with SBP, the relationship was similarly linear, though the estimate 

for quartile 3 was slightly lower than for quartile 2 (Figure 13). Similarly to PM, monotonic in-

verse relationships with both systolic and DBP were observed with O3 (Figure 14). For the rest of 

gaseous pollutants, I found a gradual increase in estimates for quartiles 2–4 compared to quartile 

1. The estimate for quartile 3 was in some cases lower than the estimate for quartile 2, as was 

already observed with PM. The results for quartile 4 were either significantly different from 0 (p 

< 0.05) or close to significance (p < 0.1) for all pollutants. 
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Figure 13. The associations of grid-specific mean concentrations of PM (2000–2003), divided in 

quartiles, with SBP and DBP.  

Legend: N = 4,584. Adjusted for Lnight traffic, Lden tram, distance to major road, age, sex, BMI, 

WHR, blood lipids, smoking status, ETS, physical activity, education, and economic activity. 
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Figure 14. The associations of grid-specific mean concentrations of gaseous pollutants (2000–

2003), divided in quartiles, with SBP and DBP.  

Legend: N = 4,584. Adjusted for Lnight traffic, Lden tram, distance to major road, age, sex, BMI, 

WHR, blood lipids, smoking status, ETS, physical activity, education, and economic activity. 

I tested the linearity of exposure effects using penalized splines with 4 knots (Figure 15). The two 

models – a linear regression with exposure as a continuous covariate and a generalized additive 

model with a penalized spline – were compared using ANOVA. The exposure-outcome relation-

ships did not significantly deviate from linearity.  
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Figure 15. The associations of long-term grid-specific mean air pollution concentrations (2000–

2003), entered as penalized splines, with SBP.  

Legend: N = 4,584. Adjusted for Lnight traffic, Lden tram, distance to major road, age, sex, BMI, 

WHR, blood lipids, smoking status, ETS, physical activity, education, and economic activity. 
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4.1.9. Association of other environmental exposures with BP and hypertension 

Road traffic noise 

I analyzed road traffic noise both as a continuous variable (with the original modeled noise value and merged into 5-dB categories) and as a 

categorical variable (Table 17). I controlled for air pollution and distance to major road in the model.  

Table 17. The cross-sectional associations of 24-hour mean road traffic noise with BP, hypertension, and BPLM intake.  

Exposure  N  SBP (mmHg)  DBP (mmHg)  PP (mmHg)  Hypertension (OR)  BPLM (OR) 

Lden (original value, continuous)         

(per 5 dB)  4,538  0.26 (-0.06, 0.58)  0.07 (-0.10, 0.25)  0.19 (-0.03, 0.41)  1.02 (0.99, 1.06)  1.01 (0.97, 1.05) 

Lden (in 5-dB categories, as continuous)         

(per 5 dB)  4,584  0.31 (0.01, 0.61)  0.10 (-0.07, 0.26)  0.22 (0.01, 0.43)  1.03 (0.99, 1.06)  1.01 (0.98, 1.05) 

Lden (in 5-dB categories, as categorical)         

 < 40 dB  177  3.29 (0.07, 6.50)  1.28 (-0.46, 3.02)  2.05 (-0.18, 4.28)  1.17 (0.80, 1.73)  0.98 (0.67, 1.45) 

 ≥ 40 and < 45 dB  580  Reference  Reference  Reference  Reference  Reference 

 ≥ 45 and < 50 dB  1,028  2.04 (0.11, 3.98)  -0.24 (-1.29, 0.81)  2.32 (0.98, 3.66)  1.05 (0.83, 1.32)  1.02 (0.80, 1.29) 

 ≥ 50 and < 55 dB  901  2.93 (0.89, 4.96)  -0.14 (-1.24, 0.97)  3.06 (1.65, 4.48)  1.00 (0.78, 1.27)  0.95 (0.74, 1.21) 

 ≥ 55 and < 60 dB  599  2.13 (-0.11, 4.37)  -0.33 (-1.54, 0.89)  2.46 (0.91, 4.02)  1.12 (0.86, 1.47)  1.10 (0.84, 1.45) 

 ≥ 60 and < 65 dB  510  2.62 (0.31, 4.93)  0.38 (-0.87, 1.63)  2.29 (0.69, 3.89)  1.00 (0.76, 1.32)  0.99 (0.75, 1.31) 

 ≥ 65 and < 70 dB  492  3.48 (1.14, 5.82)  0.42 (-0.85, 1.69)  3.08 (1.46, 4.70)  1.26 (0.96, 1.67)  1.07 (0.80, 1.42) 

 ≥ 70 dB  251  1.62 (-1.36, 3.66)  0.79 (-0.83, 1.89)  0.87 (-1.20, 2.28)  1.20 (0.84, 1.53)  1.15 (0.80, 1.47) 

Adjusted for time trend, 365-day mean PM2.5, short-term mean PM2.5, Lden tram, distance to major road, age, sex, BMI, WHR, blood lipids, 

smoking status, ETS, physical activity, education, and economic activity.  
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Table 18. The cross-sectional associations of night-time mean road traffic noise with BP, hypertension, and BPLM intake.  

Exposure  N  SBP (mmHg)  DBP (mmHg)  PP (mmHg)  Hypertension (OR)  BPLM (OR) 

Lnight (continuous)         

(per 5 dB)  4,538  0.29 (-0.04, 0.62)  0.08 (-0.10, 0.26)  0.22 (-0.01, 0.45)  1.03 (0.99, 1.07)  1.01 (0.97, 1.05) 

Lnight (in 5-dB categories, as continuous)         

(per 5 dB)  4,584  0.23 (-0.04, 0.50)  0.11 (-0.03, 0.26)  0.12 (-0.07, 0.30)  1.02 (0.99, 1.06)  1.01 (0.98, 1.05) 

Lnight (in 5-dB categories, as categorical)         

< 30 dB  121  4.10 (0.39, 7.81)  3.26 (1.25, 5.28)  0.82 (-1.76, 3.39)  1.21 (0.77, 1.89)  0.93 (0.59, 1.45) 

≥ 30 and < 35 dB  449  -1.51 (-3.66, 0.63)  0.51 (-0.65, 1.67)  -2.05 (-3.54, -0.57)  1.18 (0.92, 1.52)  1.25 (0.97, 1.62) 

≥ 35 and < 40 dB  939  Reference  Reference  Reference  Reference  Reference 

≥ 40 and < 45 dB  953  1.62 (-0.08, 3.33)  0.35 (-0.58, 1.27)  1.26 (0.08, 2.45)  1.02 (0.84, 1.25)  1.04 (0.85, 1.28) 

≥ 45 and < 50 dB  693  1.00 (-0.87, 2.88)  0.39 (-0.62, 1.41)  0.57 (-0.73, 1.87)  1.00 (0.80, 1.25)  0.89 (0.71, 1.12) 

≥ 50 and < 55 dB  551  0.75 (-1.26, 2.75)  0.51 (-0.58, 1.59)  0.26 (-1.13, 1.65)  1.04 (0.82, 1.31)  1.12 (0.88, 1.43) 

≥ 55 and < 60 dB  541  2.02 (0.00, 4.04)  0.71 (-0.38, 1.81)  1.28 (-0.13, 2.68)  1.29 (1.01, 1.64)  1.18 (0.93, 1.51) 

≥ 60 dB  291  1.24 (-1.33, 2.94)  1.25 (-0.15, 2.17)  0.01 (-1.77, 1.19)  1.16 (0.86, 1.42)  1.04 (0.76, 1.28) 

Adjusted for time trend, 365-day mean PM2.5, short-term mean PM2.5, Lden tram, distance to major road, age, sex, BMI, WHR, blood lipids, 

smoking status, ETS, physical activity, education, and economic activity. 

Noise as a continuous variable. Road traffic noise values Lden and Lnight were weakly positively related to SBP and PP (Tables 17, 18). When 

continuous noise values were merged into 5-dB categories, the linear association was significant with SBP and PP. For example, a 5 dB in-

crease in Lden was associated with an increase in SBP by 0.31 mmHg (95% CI: 0.01, 0.61). Results with Lnight and BP were similar. I also 

detected weak positive relationships of Lden and Lnight with hypertension. 
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Noise as a categorical variable. I used category 40-45 dB as a reference with Lden and category 

30-35 dB as a reference with Lnight (both in 5-dB categories). The following Lden traffic categories 

were associated with elevated SBP and PP compared to the reference (≥ 40 and < 45 dB): ≥ 50 

and < 55 dB, ≥ 60 and < 65 dB, ≥ 65 and < 70 dB. The lowest noise level, observed in a very 

small category of participants, was associated with elevated BP compared to the reference. The 

ORs for hypertension and BPLM intake were mostly elevated but not for all categories above the 

reference. There were significant positive associations of Lnight ≥ 55 and < 60 dB with hyperten-

sion: OR 1.29 (95% CI: 1.01, 1.64), compared to the reference group (Lnight ≥35 and <40 dB). 

Tram noise 

No associations of tram noise with the study outcomes were detected: the estimates (per 5 dB) 

were 0.02 mmHg (-0.19, 0.22) with SBP, 0.02 mmHg (-0.09, 0.13) with DBP, and -0.01 mmHg  

(-0.15, 0.13) with PP. The OR for hypertension was 1.00 (0.97, 1.02), and the OR for BPLM in-

take was 1.00 (0.97, 1.02). 

Traffic indicators (Table 19) 

I estimated the associations between distance to high general traffic (continuous and in catego-

ries) and BP, hypertension and BPLM intake, independently of co-exposure to background air 

pollution, road traffic noise, and other relevant confounders. Distance to a major road (high den-

sity of all-type vehicles) was weakly inversely associated with BPLM intake: the OR was 0.99 

(95% CI: 0.98, 1.00) per 100 m. When I truncated distance to a major road at 400 m, this effect 

was stronger: the OR was 0.92 (95% CI: 0.87, 0.98) per 100 m. Results with hypertension were 

weaker. No associations with BP were detected. The findings with distance to major road with 

high heavy-duty and diesel vehicles were very similar (not shown). 

When considering distance to high heavy-duty and diesel traffic, I observed elevated BP in partic-

ipants living ≤ 50 m from the road, and in other categories ≤ 500 m, compared to the reference    

> 500 m, but these findings were not statistically significant. The ORs for BPLM intake were 

elevated for all categories compared to the reference (> 500 m); this association was statistically 

significant for the categories ≤ 50 m and > 50 and ≤ 100 m compared to > 500 m. There were 

positive, yet imprecise, relationships of distance > 100 and ≤ 200 m, > 200 and ≤ 300 m with 

ORs for hypertension.  
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Table 19. The cross-sectional associations of distance to road with high all-type traffic with BP, hypertension, and BPLM intake. 

Exposure  N  SBP (mmHg)  DBP (mmHg)  PP (mmHg)  Hypertension (OR)  BPLM (OR) 

Distance to road with high all-type traffic (continuous)       

(per 100 m)  4,584  0.00 (-0.07, 0.08)  0.00 (-0.04, 0.05)  0.00 (-0.05, 0.05)  0.99 (0.98, 1.00)  0.99 (0.98, 1.00) 

Truncated400 m (per 100 m)  4,584  0.05 (-0.48, 0.59)  0.01 (-0.28, 0.30)  0.05 (-0.32, 0.42)  0.97 (0.91, 1.04)  0.92 (0.87, 0.98) 

Distance to road with high all-type traffic (in categories)  
 

 
 

 
 

> 500 m  2,885  Reference  Reference  Reference  Reference  Reference 

≤ 50 m  137  -0.38 (-3.80, 3.04)  0.19 (-1.66, 2.04)  -0.66 (-3.04, 1.71)  1.01 (0.67, 1.50)  1.34 (0.89, 2.00) 

> 50 and ≤ 100 m  187  -0.61 (-3.47, 2.25)  -1.17 (-2.72, 0.38)  0.55 (-1.44, 2.55)  1.13 (0.81, 1.59)  1.60 (1.14, 2.23) 

> 100 and ≤ 200 m  384  0.13 (-1.92, 2.17)  0.24 (-0.86, 1.35)  -0.13 (-1.55, 1.29)  1.08 (0.84, 1.37)  1.08 (0.85, 1.38) 

> 200 and ≤ 300 m  368  -0.14 (-2.21, 1.93)  0.09 (-1.03, 1.20)  -0.16 (-1.60, 1.28)  1.16 (0.91, 1.49)  1.23 (0.96, 1.57) 

> 300 and ≤ 500 m  623  -0.34 (-1.99, 1.31)  -0.69 (-1.58, 0.20)  0.39 (-0.75, 1.54)  1.01 (0.83, 1.23)  1.11 (0.91, 1.35) 

Distance to road with high heavy-duty traffic (in categories)       

> 500 m  2,884  Reference  Reference  Reference  Reference  Reference 

≤ 50 m  118  2.28 (-1.34, 5.90)  1.22 (-0.74, 3.18)  1.01 (-1.51, 3.53)  1.52 (0.98, 2.35)  1.91 (1.26, 2.91) 

> 50 and ≤ 100 m  214  0.48 (-2.20, 3.16)  -0.68 (-2.13, 0.77)  1.10 (-0.77, 2.96)  1.00 (0.73, 1.38)  1.37 (1.00, 1.88) 

> 100 and ≤ 200 m  359  0.37 (-1.75, 2.48)  -0.06 (-1.20, 1.09)  0.41 (-1.06, 1.88)  1.10 (0.85, 1.41)  1.10 (0.85, 1.42) 

> 200 and ≤ 300 m  380  0.32 (-1.72, 2.36)  0.29 (-0.81, 1.39)  0.05 (-1.37, 1.47)  1.12 (0.88, 1.43)  1.12 (0.88, 1.44) 

> 300 and ≤ 500 m  629  0.31 (-1.33, 1.95)  -0.47 (-1.36, 0.41)  0.82 (-0.32, 1.96)  0.98 (0.81, 1.19)  1.13 (0.93, 1.37) 

Distance to road with high diesel traffic (in categories)       

> 500 m  2,920  Reference  Reference  Reference  Reference  Reference 

≤ 50 m  133  0.93 (-2.51, 4.37)  0.72 (-1.14, 2.58)  0.17 (-2.23, 2.56)  1.10 (0.73, 1.66)  1.41 (0.94, 2.11) 

> 50 and ≤ 100 m  184  -0.25 (-3.12, 2.63)  -1.07 (-2.62, 0.49)  0.81 (-1.19, 2.81)  1.17 (0.83, 1.64)  1.56 (1.12, 2.19) 

> 100 and ≤ 200 m  357  0.24 (-1.87, 2.35)  0.50 (-0.64, 1.64)  -0.25 (-1.72, 1.22)  1.05 (0.82, 1.35)  1.00 (0.78, 1.29) 

> 200 and ≤ 300 m  359  0.78 (-1.31, 2.86)  0.59 (-0.53, 1.72)  0.26 (-1.19, 1.71)  1.15 (0.90, 1.47)  1.09 (0.85, 1.41) 

> 300 and ≤ 500 m  631  -0.46 (-2.10, 1.18)  -0.67 (-1.55, 0.22)  0.26 (-0.88, 1.40)  0.96 (0.79, 1.17)  1.02 (0.84, 1.24) 

Adjusted for time trend, 365-day mean PM2.5, short-term mean PM2.5, Lnight traffic, Lden tram, age, sex, BMI, WHR, blood lipids, smoking 

status, ETS, physical activity, education, and economic activity. 
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Neighborhood-level SES (Table 20) 

I investigated the association of neighborhood-level SES with BP, adjusting for exposure to background air pollution, road traffic noise, distance to 

major road, and relevant confounders. Higher residential density and unemployment rate were associated with lower BP. In addition, unemployment 

rate in the neighborhood was weakly related to elevated OR for BPLM intake. A higher proportion of elderly residents was weakly linked to lower 

PP (Table 20).  

Table 20. The cross-sectional associations of neighborhood-level SES indicators with BP in the study population. 

Area-level factor (increment) 
 BP change, mmHg (95% CI) Hypertension 

OR (95% CI) 

 Medication 

OR (95% CI)  SBP  DBP  PP   

Unemployment rate (per 10%)  -1.6 (-3.3, 0.1)  -0.9 (-1.9,0 .1)  -0.7 (-1.9, 0.5)  1.09 (0.88, 1.33)  1.20 (0.97, 1.48) 

Social welfare rate (per 10%)  -1.7 (-3.8, 0.5)  -0.9 (-2.1, 0.4)  -0.7 (-2.2, 0.8)  1.18 (0.91, 1.53)  1.14 (0.87, 1.49) 

Percentage of elderly residents 

 (per 10%) 

 
-0.7 (-2.4, 1.0)  0.4 (-0.6, 1.3)  -1.2 (-2.3, 0.0)  0.92 (0.75, 1.12)  0.92 (0.74, 1.13) 

Population density  

 (per 1,000 residents/km²) 

 
-0.3 (-0.6, 0.0)  0.0 (-0.2, 0.2)  -0.3 (-0.5, -0.1)  1.01 (0.97, 1.04)  1.00 (0.97, 1.04) 

Residential turnover (per 10%)  -0.1 (-0.2, 0.1)  0.0 (-0.1, 0.1)  -0.1 (-0.1, 0.0)  1.00 (0.99, 1.02)  1.01 (0.99, 1.02) 

N = 4,584. Adjusted for time trend, 365-day mean PM2.5, short-term mean PM2.5, Lnight traffic, Lden tram, distance to major road, age, sex, BMI, 

WHR, blood lipids, smoking status, ETS, physical activity, education, and economic activity. 
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4.1.10. Analysis of effect modification 

The following factors modified the association of certain pollutants with BP: sex, CHD, 

T2DM, active inflammation, alcohol consumption, educational level, the city of residence, 

season, and distance to major road (Figures 16 and 17). In particular, a stronger positive asso-

ciation of PM2.5 with BP was observed in summer (pinteraction < 0.05). No effects of PM2.5 on BP 

were detected for participants living < 100 m from the major road (pinteraction < 0.05), partici-

pants with T2DM (pinteraction < 0.1), and those consuming > 6 drinks per week (pinteraction < 0.1). 

No associations of PM10 with SBP were found for participants living < 100 m from the major 

road (pinteraction < 0.1) and among participants with low education status. Positive associations 

of PN with SBP were detected in women (pinteraction < 0.1), participants with T2DM (pinteraction < 

0.05), participants in Mülheim (pinteraction < 0.1) and among participants living ≥ 100 m from a 

major road (pinteraction < 0.05). In addition, a positive association of PN with DBP was found in 

participants with higher or middle educational status (pinteraction < 0.1). 

The associations of O3 with BP were stronger in women (pinteraction < 0.05) and moderate or no 

alcohol drinkers (pinteraction < 0.05). No associations of NO2 with BP were detected in partici-

pants with T2DM (pinteraction < 0.05), heavy drinkers (pinteraction < 0.05), those with acute in-

flammation (defined as CRP > 3 mg/L, pinteraction < 0.05), and participants residing in Essen 

(pinteraction < 0.05). There were more precise positive associations of SO2 with BP in no or mod-

erate drinkers (p < 0.05) and in participants living in Bochum. Weak inverse relationships of 

CO with BP were observed in participants with T2DM and in those residing in Mülheim (pin-

teraction < 0.05 and < 0.1, respectively). The associations of NH3 with BP were more positive in 

participants with CHD, among those living in Essen and Bochum, and during summer (pinterac-

tion < 0.05, < 0.1, and < 0.05, respectively).  
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Figure 16. Effect modification analysis: the associations of PM2.5, PM10 and PN with SBP 

(mmHg change with 95% CI)  in subgroups, using product terms exposure×effect modifier.  

Legend: N = 4,584. The results are presented per given IQRs of exposure concentrations. Ad-

justed for time trend, short-term mean PM2.5, Lnight traffic, Lden tram, distance to major road, 

age, sex, BMI, WHR, blood lipids, smoking status, ETS, physical activity, education, and eco-

nomic activity. * = pinteraction < 0.05; (*) = pinteraction < 0.1. 
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Figure 17. Effect modification analysis: the associations of gaseous pollutants with SBP 

(mmHg change with 95% CI) in subgroups, using product terms exposure×effect modifi-

er.  

Legend: N = 4,584. The results are presented per given IQRs of exposure concentrations. 

Adjusted for time trend, short-term mean PM2.5, Lnight traffic, Lden tram, distance to major 

road, age, sex, BMI, WHR, blood lipids, smoking status, ETS, physical activity, education, 

and economic activity. * = pinteraction < 0.05; (*) = pinteraction < 0.1.  
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4.1.11. Correction for medication effect (Table 21) 

I employed the following methods to correct for the intake of BPLM among study partici-

pants: (i) adjusted for BPLM in a multivariable regression model; (ii) added a fixed constant 

(5, 10, 15 mmHg) to the BP values of participants taking BPLM; (iii) calculated a right-

censored regression model (censoring on BPLM intake); and (iv) estimated results in medi-

cated and non-medicated participants separately, using an interaction term, and tested for the 

significance of interaction. 

Table 21. The cross-sectional associations of PM2.5, PN, NO2, NH3 with SBP, estimated using 

strategies to correct for BPLM intake. 

Correction method 
Exposure 

PM2.5 (2.4 µg/m³) PN (2.7×10
4
/L) NO2 (5.7 µg/m³) NH3 (0.5 µg/m³) 

No correction 1.1 (0.2, 2.0) 0.4 (-0.4, 1.3) 0.7 (-0.1, 1.5) 1.3 (0.4, 2.2) 

+ BPLM (covari-

ate) 
1.1 (0.2, 2.1) 0.4 (-0.4, 1.3) 0.7 (-0.1, 1.5) 1.3 (0.4, 2.2) 

Fixed addition (only in medicated)    

+ 5 mmHg 1.1 (0.2, 2.0) 0.4 (-0.5, 1.3) 0.7 (-0.1, 1.5) 1.3 (0.4, 2.2) 

+ 10 mmHg 1.0 (0.1, 2.0) 0.4 (-0.5, 1.3) 0.7 (-0.1, 1.6) 1.2 (0.3, 2.2) 

+ 15 mmHg 1.0 (0.0, 2.0) 0.4 (-0.5, 1.4) 0.8 (-0.1, 1.6) 1.2 (0.2, 2.1) 

Censored regression 0.9 (-0.3, 2.0) 0.6 (-0.5, 1.7) 1.0 ( 0.0, 2.0) 0.9 (-0.2, 2.0) 

Estimate in subgroups by BPLM intake    

No BPLM intake 0.9 (-0.2, 2.0) 0.5 (-0.5, 1.6) 0.9 ( 0.0, 1.9) 1.1 (0.1, 2.2) 

BPLM intake 1.6 (0.2, 3.0) 0.3 (-1.1, 1.6) 0.2 (-1.1, 1.5) 1.7 (0.3, 3.1) 

pinteraction  0.373 0.737 0.358 0.507 

N = 4,584. Results are presented as mmHg change in SBP with 95% CI. Adjusted for time 

trend, short-term mean air pollution concentration, Lnight traffic, Lden tram, distance to major 

road, age, sex, BMI, WHR, blood lipids, smoking status, ETS, physical activity, education, and 

economic activity. 

The results with different pollutants and SBP are presented in Table 21. The estimates did not 

change after adding BPLM as a covariate or fixed addition. The estimates with censored re-

gression, compared to no correction, were lower and less precise with PM2.5 and NH3, higher 

with PN, and higher and more precise with NO2.With SO2 and CO, censored regression pro-

duced a higher and more precise effect estimate (not shown). I did not observe any statistical-

ly significant effect modifications with BPLM intake. The effect was stronger in medicated 

participants than in non-medicated participants (with up to 2-fold higher effect estimates) with 

PM2.5, PM10 (not shown), O3 (not shown), SO2 (not shown) and NH3 (Table 21). In contrast, 
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the association of NO2 in non-medicated participants was stronger than in medicated partici-

pants.  

4.2. Cross-sectional and longitudinal analysis with BP and hypertension at follow-up 

4.2.1. Description of the study population at follow-up (Table 22) 

Table 22. Description of the study population at follow-up. 

Variable (unit) statistics Description N missing 

Prevalent binary outcomes   

Hypertension, n (%) 2,157 (66.6%) – 

BPLM intake, n (%) 1,595 (49.2%) – 

Self-reported hypertension
1
, n (%) 1,434 (45.4%) 80 

Self-reported BPLM intake
1
, n (%) 1,391 (43.3%) 25 

Incident binary outcomes
2  

Hypertension, n (%) 520 (36.2%) 1,802 

BPLM intake, n (%) 556 (26.1%) 1,108 

Self-reported hypertension, n (%) 382 (21.3%) 1,449 

Self-reported BPLM intake, n (%) 515 (23.3%) 1,028 

Personal characteristics  

Age (years), Mean ± SD
 

64.6 ± 7.6 – 

Sex (male), n (%) 1,630 (50.3%) – 

CHD, n (%) 263 (8.1%) – 

T2DM, n (%) 614 (19.0%) – 

BMI (kg/m²), Mean ± SD 28.3 ± 4.8 – 

LDL:HDL ratio, Mean ± SD 2.3 ± 0.8 – 

Smoking, n (%)  – 

 Current 552 (17.0%) – 

 Former 1,301 (40.2%) – 

 Never 1,387 (42.8%) – 

ETS exposure, n (%) 799 (24.7%) – 

Alcohol (drinks/week), Mean ± SD 7.1 ± 11.2 – 

No sport, n (%) 1,379 (42.6%) – 

Education, n (%)  – 

 < 10 years 289 (8.9%) – 

 11–17 years 1,817 (56.1%) – 

 ≥ 18 years 1,134 (35.0%) – 

N = 3,240. 
1
Self-reported hypertension and self-reported BPLM intake were included to the sensitivity 

analyses only and therefore had missing values.
 2

For incident outcomes, the prevalent cases 

were set to missing and were excluded from the analysis. 

There were 520 incident cases of hypertension (36.2%) and 556 new cases of BPLM intake 

(26.1%). These values are higher than the estimated 5-year incidence of 20% for men and 
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women aged 65 years (Chobanian et al. 2003). The incidence of self-reported hypertension 

was 21.3%, and the incidence of self-reported BPLM intake was 23.3%. Mean follow-up time 

was 5.1 years (SD 0.4 years). On average, the age at follow-up examination was 5 years high-

er (mean 64.6 years, SD 7.6 years). The gender distribution remained equal to those at the 

baseline. The proportion of subjects with CHD was 8.1%, slightly higher than at baseline. The 

proportion of diabetics increased almost by half (19.1%). The mean BMI increased slightly to 

28.3 kg/m² (SD 4.8 kg/m²). The LDL : HDL ratio decreased at the follow-up (mean 2.3, SD 

0.8). The percentage of current smokers dropped to 17%, whereas the proportion of ex-

smokers increased correspondingly. The mean alcohol consumption decreased to 7.1 drinks 

per week (SD 11.2 drinks per week). The proportion of participants not practicing sport de-

creased to (42.6%). The ratio of subgroups by education level remained very similar to base-

line. 

Table 23. Difference between hypertension and BPLM intake, included as main outcomes ac-

cording to the study definition, and self-reported hypertension and BPLM intake.  

Prevalent outcomes 

Hypertension 

(JNC7 definition) 

Self-reported 

hypertension = No 

Self-reported 

hypertension = Yes 

Self-reported 

hypertension = Missing 

No 971 (89.7%) 72 (6.6%) 40 (3.7%) 

Yes  755 (35.0%) 1,362 (63.1%) 40 (1.9%) 

BPLM intake 

(ATC codes) 

Self-reported BPLM 

intake = No 

Self-reported 

BPLM intake = Yes 

Self-reported BPLM 

intake = Missing 

No 1,555 (94.5%) 86 (5.2%) 4 (0.2%) 

Yes  269 (16.9%) 1,305 (81.8%) 21 (1.3%) 

Incident outcomes 

Hypertension 

(JNC7 definition) 

Self-reported 

hypertension = No 

Self-reported 

hypertension = Yes 

Self-reported 

hypertension = Missing 

No 791 (86.2%) 26 (2.8%) 101 (11.0%) 

Yes  266 (51.2%) 138 (26.5%) 116 (22.3%%) 

BPLM intake 

(ATC codes) 

Self-reported BPLM 

intake = No 

Self-reported 

BPLM intake = Yes 

Self-reported BPLM 

intake = Missing 

No 1,505 (95.5%) 48 (3.0%) 23 (1.5%) 

Yes  114 (20.5%) 386 (69.4%) 56 (10.1%) 

Agreement of prevalent hypertension by study definition and self-report was 73.8%, Cohen’s 

kappa was 0.49, corresponding to fair to good agreement. Agreement of incident hypertension 

by the two definitions was 76.1%, Cohen’s kappa was 0.36 (poor agreement). Agreement of 

prevalent BPLM intake with study definition and self-report was 89.0%, Cohen’s kappa was 
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0.78. Agreement of incident BPLM intake with these definitions was 92.1%, Cohen’s kappa 

was 0.78 (excellent agreement). 

4.2.2. Progression of BP at follow-up 

In the follow-up analysis sample, SBP increased by 0.3 mmHg (SD 3.8 mmHg), DBP de-

creased by 0.4 mmHg (SD 2.1 mmHg), and PP increased by 0.8 mmHg (SD 2.6 mmHg) (Ta-

ble 23). The decrease in DBP could be due to the stiffening of the arteries that progresses with 

age (Chobanian et al. 2003). In the subgroup of participants taking BPLM (N = 1,595), SBP 

decreased by 0.3 mmHg (SD 4.4 mmHg), DBP decreased by 0.8 (SD 2.3 mmHg), and PP 

increased by 0.5 mmHg (SD 2.9 mmHg). Approximately half of the study subjects used 

BPLM. Among non-medicated participants (N = 1,645), SBP increased by 1.0 mmHg (SD 3.0 

mmHg) and DBP did not change (0.0 mmHg, SD 1.8 mmHg). On average, men had higher 

arterial BP at both baseline and follow-up compared to women. The increase in SBP in wom-

en was higher than that in men, and the decrease in DBP was lower in women. 

I stratified the study participants by hypertension status at baseline and follow-up according to 

the JNC7 definition (Chobanian et al. 2003). Approximately half of the analysis sample par-

ticipants were hypertensive at baseline and follow-up (1,637). The SBP and PP values were 

the highest in this group (Table 24). In the group with incident hypertension at follow-up (N = 

520), the increase from baseline to follow-up was the highest. The lowest values of BP were 

observed in the group with normal BP values at baseline and follow-up (N = 918). The small-

est group (N = 165) included subjects who had hypertension at baseline and no hypertension 

at follow-up. Their BP values at baseline were almost as high as in the group with prevalent 

hypertension and at follow-up and were similar to BP values in the normotensive group. 
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Table 24. Progression of BP from baseline to follow-up in the entire analysis sample and in subgroups. 

Group  SBP, mmHg  DBP, mmHg  PP, mmHg 

   BL FU FU-BL
5 

 BL FU FU-BL  BL FU FU-BL 

All (N = 3,240)  132.9 ± 20.2 134.6 ± 19.8 0.3 ± 3.8  81.5 ± 10.6 79.2 ± 10.5 -0.4 ± 2.1  51.4 ± 14.2 55.4 ± 14.7 0.8 ± 2.6 

By BPLM intake             

Yes (N = 1,645)  138.7 ± 20.6 137.2 ± 20.4 -0.3 ± 4.4  83.5 ± 11.0 79.2 ± 11.0 -0.8 ± 2.3  55.2 ± 14.9 58.0 ± 15.5 0.5 ± 2.9 

No (N = 1,595)  126.8 ± 17.8 131.9 ± 18.6 1.0 ± 3.0  79.4 ± 9.7 79.3 ± 9.9 0.0 ± 1.8  47.4 ± 12.3 52.7 ± 13.2 1.0 ± 2.2 

By sex             

Men (N = 1,630)  137.4 ± 19.0 138.2 ± 19.1 0.2 ± 3.8  83.8 ± 10.3 80.9 ± 10.6 -0.6 ± 2.1  53.6 ± 13.8 57.3 ± 14.7 0.7 ± 2.6 

Women (N = 1,610)  128.4 ± 20.4 131.0 ± 19.8 0.5 ± 3.9  79.2 ± 10.5 77.6 ± 10.1 -0.3 ± 2.1  49.3 ± 14.3 53.4 ± 14.5 0.8 ± 2.6 

By hypertension             

BL–, FU–
1
 (N = 918)  117.2 ± 12.0 120.7 ± 11.2 0.7 ± 2.3  75.0 ± 7.3 74.7 ± 7.3 -0.1 ± 1.4  42.2 ± 8.5 46.1 ± 8.4 0.8 ± 1.7 

BL+, FU+
2
 (N = 1,637)  143.1 ± 20.3 141.7 ± 20.6 -0.3 ± 4.3  85.5 ± 11.2 81.2 ± 11.4 -0.8 ± 2.3  57.7 ± 15.1 60.5 ± 15.8 0.5 ± 2.9 

BL–, FU+
3
(N = 520)  126.0 ± 9.8 139.3 ± 17.4 2.6 ± 3.3  78.9 ± 6.4 82.0 ± 10.1 0.6 ± 1.9  47.1 ± 8.6 57.3 ± 12.9 2.0 ± 2.3 

BL+, FU–
4
 (N = 165)  141.5 ± 15.0 127.3 ± 9.9 -2.8 ± 2.8  86.8 ± 10.4 76.3 ± 7.7 -2.0 ± 2.0  54.7 ± 13.0 51.0 ± 9.5 -0.7 ± 2.3 

N = 3,240. BL = baseline; FU = follow-up. 

 
1
No hypertension at baseline and follow-up measurement. 

2
Hypertension both at baseline and follow-up measurements.

 3
No hypertension at base-

line, incident hypertension at follow-up measurement. 
4
Hypertension at baseline, no hypertension at follow-up measurement.

 5
Progression of BP, 

calculated as BP (follow-up measurement) minus BP (baseline measurement) per year of follow-up. 

I stratified participants in 5-year age groups (age at baseline) and calculated the mean SBP and DBP at baseline and follow-up (Figure 18). In the 

entire group, SBP increased from baseline to follow-up in all age groups except for participants aged 65–69 years. Among participants not taking 

BPLM at follow-up, SBP increased in all age groups. In the non-medicated participants aged 65–69 years, this increase was smaller. Among partici-

pants taking BPLM at follow-up, mean SBP decreased in all age groups except for those aged 50–54 years.  
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Figure 18. Changes in BP from baseline to follow-up in groups by age at baseline.  

Legend: N = 3,200 (. Mean BP values per 5-year age group at baseline and follow-up meas-

urements are presented. 

The strongest decrease in BP was observed in the age groups 65–69 and 45–49 years. In 

women (regardless of medication status), SBP increased; in men, SBP increased in all age 

groups but two: 65–69 and 70–75 years. DBP decreased in all age groups in the entire cohort. 

Among participants not taking BPLM, DBP decreased in participants aged 55–59, 60–64, and 

70–75 years and increased in the other age groups. In medicated participants, I observed a 

steep decrease in DBP in all age groups. In women, DBP increased in the 50-54-year age 

group and decreased in the other age groups. In men, DBP decreased in all age groups. 

4.2.3. Description of air pollution exposure at follow-up  

The individual 365-day mean values were quite close to the grid-specific mean during 2006–

2008 (Table 25). During the 365 days before the follow-up examination, the mean concentra-

tions were as follows: PM2.5, 15.6 µg/m³; PM10, 18.1 µg/m³; O3, 37.6 µg/m³; NO2, 38.6 

µg/m³; SO2, 7.4 µg/m³; CO 0.3, µg/m³; and NH3, 2.8 µg/m³. The measured mean values of 

PM10 in 2006 (available from the background stations in Ruhr area) were as follows: BUCH 
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(Duisburg) 26 µg/m³ and STYR (Mülheim) 27 µg/m³ (LANUV 2006a). The measured mean 

concentrations of gaseous pollutants for year 2006 in the Ruhr area were as follows: 31 µg/m³ 

for NO2, 13 µg/m³ for NO, and 40 µg/m³ for O3 (LANUV 2006b). The modeled EURAD val-

ues were higher for NO2 and O3 and lower for NO. 

Table 25. Long-term concentrations of particulate air pollution in the study population at fol-

low-up. 

Exposure (unit) 
 365-day mean  Mean of 2006-2008 

 Mean ± SD Min – Max IQR  Mean ± SD Min – Max IQR 

PM2.5 (µg/m³)  15.6 ± 1.4 12.7 – 19.8 2.1  15.5 ± 1.3 13.3 – 19.1 2.0 

PM10 (µg/m³)  18.1 ± 1.8 14.7 – 23.5 2.7  19.5 ± 2.7 15.8 – 28.2 3.8 

PMcoarse (µg/m³)  2.4 ± 0.5 1.7 – 4.3 0.7  4.0 ± 2.0 1.9 – 12.4 2.0 

PM1  (µg/m³)  11.0 ± 1.1 8.6 – 14.5 1.6  10.9 ± 1.0 9.0 – 13.8 1.6 

PN  (×10
4
/L)  7.7 ± 1.7 4.5 – 15.8 2.4  7.7 ± 1.7 4.6 – 15.9 2.4 

O3 (µg/m³)  37.6 ± 2.0 31.9 – 43.5 2.7  37.0 ± 1.5 32.5 – 40.1 2.1 

NO2 (µg/m³)  38.6 ± 4.7 28.6 – 52.6 7.1  38.4 ± 4.2 26.5 – 48.7 5.4 

NO (µg/m³)  7.7 ± 2.2 3.4 – 18.0 3.2  11.5 ± 5.6 4.5 – 36.5 5.7 

SO2 (µg/m³)  7.4 ± 1.1 5.3 – 14.7 1.6  7.4 ± 1.0 5.6 – 15.5 1.5 

CO (µg/m³)  0.3 ± 0.0 0.2 – 0.4 0.0  0.3 ± 0.0 0.2 – 0.4 0.0 

NH3 (µg/m³)  2.8 ± 0.3 2.0 – 3.9 0.5  2.9 ± 0.3 2.3 – 3.8 0.5 

N = 3,240          

Correlations of exposure concentrations at follow-up 

The correlations of particulate matter of different sizes were higher at follow-up than at base-

line (Table 26). For example, the correlation of PM2.5 with PMcoarse was 0.881 (Pearson’s ρ), 

with PM10 0.993, with PM1 0.994, and with PN 0.733. The correlations between gaseous pol-

lutants were also higher than at baseline. O3 was highly inversely correlated to PM metrics 

and to other gaseous compounds. The correlations of fine particles with long-term gaseous 

pollutants were also moderate to high, except for carbon monoxide with PM1. The short-term 

concentration of PM2.5 did not correlate with long-term exposures.  
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Table 26. Correlation matrix of exposures and environmental variables in the study population at follow-up. 
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 PMcoarse
1
 0.881

*
 0.932

*
 1 

PM1
1
 0.994

*
 0.978

*
 0.842

*
 1 

PN
1
 0.733

*
 0.707

*
 0.564

*
 0.770

*
 1 

O3
1
 -0.787

*
 -0.786

*
 -0.711

*
 -0.770

*
 -0.645

*
 1 

NO2
1
 0.901

*
 0.882

*
 0.744

*
 0.912

*
 0.858

*
 -0.770

*
 1 

NO
1
 0.839

*
 0.804

*
 0.626

*
 0.853

*
 0.842

*
 -0.755

*
 0.965

*
 1 

SO2
1
 0.771

*
 0.719

*
 0.498

*
 0.799

*
 0.793

*
 -0.644

*
 0.828

*
 0.821

*
 1 

CO
1
 0.567

*
 0.496

*
 0.237

*
 0.613

*
 0.777

*
 -0.485

*
 0.752

*
 0.787

*
 0.918

*
 1 

NH3
1
 0.913

*
 0.884

*
 0.717

*
 0.916

*
 0.712

*
 -0.760

*
 0.883

*
 0.852

*
 0.884

*
 0.740

*
 1 

PM2.5 (sh.)
2 

-0.005 -0.008 -0.018 0.002 -0.017 0.008 -0.011 -0.016 -0.021 -0.010 -0.011 1 

Humidity -0.037
*
 -0.049

*
 -0.083

*
 -0.022 0.017 0.150

*
 0.030 0.041

*
 0.035

*
 0.087

*
 -0.035

*
 -0.200

*
 1 

Lden (traf.) 0.103
*
 0.088

*
 0.035

*
 0.114

*
 0.218

*
 -0.073

*
 0.165

*
 0.169

*
 0.140

*
 0.193

*
 0.126

*
 -0.002 0.004 1 

Lnight (traf.) 0.136
*
 0.125

*
 0.080

*
 0.145

*
 0.241

*
 -0.099

*
 0.199

*
 0.198

*
 0.145

*
 0.193

*
 0.152

*
 -0.004 0.002 0.994

*
 1 

Lden (tram) 0.054
*
 0.005 -0.146

*
 0.085

*
 0.251

*
 -0.026 0.102

*
 0.112

*
 0.378

*
 0.435

*
 0.192

*
 -0.008 0.025 0.246

*
 0.209

*
 1 

Road
3 

-0.166
*
 -0.154

*
 -0.104

*
 -0.174

*
 -0.305

*
 0.147

*
 -0.278

*
 -0.275

*
 -0.166

*
 -0.250

*
 -0.185

*
 0.033 -0.011 -0.382

*
 -0.414

*
 -0.083

*
 

BL365×FU365
4 

0.759
*
 0.733

*
 0.309

*
 0.755

*
 0.978

*
 0.634

*
 0.697

*
 0.479

*
 0.662

*
 0.627

*
 0.400

*
 – – – – – 

BLgrid×FUgrid
5 

0.998
*
 0.917

*
 0.845

*
 0.998

*
 0.990

*
 0.964

*
 0.917

*
 0.759

*
 0.966

*
 0.785

*
 0.991

*
 – – – – – 

N = 3,240. 
1
Long-term air pollution = individual 365-day mean.

 2
PM2.5 short-term (lag 0–6), basic effect (365-day mean) subtracted.

3
Distance to 

major road (upper quartile of diesel vehicle density). 
4
Correlation between individual 365-day mean concentrations at baseline and follow-up. 

5
Correlation of long-term grid cell means at baseline and follow-up. 

6*
 = p < 0.05.
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I observed collinearity in the long-term air pollutant concentrations at follow-up with baseline 

concentrations of the respective pollutants (Table 26). With 365-day mean concentrations, all 

pollutants except PMcoarse and NH3 showed moderate to high (ρ > 0.6) correlation of follow-up 

and baseline concentration. With long-term grid cell means, the correlation of follow-up con-

centration with baseline concentration was high (ρ > 0.7) to very high (ρ > 0.9) for all pollu-

tants. Neither tram nor road traffic noise correlated with PM or PN. I detected weak positive 

correlations between road traffic and tram noise and PN. Distance to major road correlated 

weakly and inversely with air pollutants. Similarly to baseline, tram and traffic noise were 

weakly correlated with each other (ρ 0.246), and road traffic noise correlated moderately and 

inversely with distance to a major road (ρ -0.382). 

Changes in exposure during the follow-up period 

Table 27. Changes in exposure during follow-up, calculated as differences in the long-term 

grid-specific mean concentrations at follow-up (2006–2008) and at baseline (2000–2003) per 

year of follow-up.  

Exposure (unit) 

 
Description 

 Correlation with long-term 

exposure
1 

 

Mean ± SD Min – Max 

 

×
B

L
3
6

5
2
 

×
F

U
3

6
5
 

×
B

L
g

ri
d
 

×
F

U
g

ri
d
 

PM2.5 (µg/m³ per year)  -0.31 ± 0.04 -0.68 – 0.03  -0.85 -0.76 -0.85 -0.82 

PM10 (µg/m³ per year)  -0.30 ± 0.21 -1.11 – 0.86  -0.07 -0.25 -0.06 0.35 

PMcoarse  (µg/m³ per year)  0.00 ± 0.04 -0.10 – 0.25  0.15 -0.22 0.20 0.68 

PM1 (µg/m³ per year)  -0.21 ± 0.03 -0.54 – 0.08  -0.83 -0.74 -0.83 -0.80 

PN  (×10
4
/L per year)  -0.22 ± 0.07 -0.88 – 0.24  -0.72 -0.63 -0.75 -0.65 

O3 (µg/m³ per year)  0.45 ± 0.08 -0.17 – 0.85  0.18 0.28 0.11 0.36 

NO2 (µg/m³ per year)  -0.56 ± 0.33 -1.81 – 1.18  -0.14 0.15 -0.14 0.26 

NO (µg/m³ per year)  -0.31 ± 0.71 -1.70 – 3.10  -0.02 0.01 -0.02 0.64 

SO2 (µg/m³ per year)  -0.33 ± 0.06 -0.76 – 0.00  -0.50 -0.14 -0.45 -0.21 

CO (µg/m³ per year)  -0.01 ± 0.01 -0.05 – 0.00  -0.90 -0.41 -0.90 -0.45 

NH3 (µg/m³ per year)  0.03 ± 0.01 -0.04 – 0.08  0.46 0.58 0.56 0.67 

N = 3,240.  
1
p < 0.05 for all correlation coefficients. 

2
BL = baseline measurement; FU = follow-up meas-

urement; 365 = 365-day mean exposure concentration; grid = long-term grid-specific mean 

exposure concentration (mean of 2000–2003 at baseline and of 2006–2008 at follow-up). 

I calculated the changes in long-term exposure using grid-specific means of the whole base-

line (2000–2003) and follow-up (2006–2008) periods. The average concentrations decreased 
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for all pollutants except for PMcoarse (no change), O3 and NH3 (both increased). The average 

decreases in PM2.5, PM10, NO and SO2 were 0.3 µg/m³ per year (Table 27). The decrease in 

NO2 was 0.6 µg/m³ per year. The concentration of O3 increased by 0.45 µg/m³ per year, and 

the concentration of NH3 increased by 0.03 µg/m³ per year on average. 

I calculated the correlations of change during follow-up with the follow-up and baseline ex-

posure values (Table 27). The changes in PM2.5 were highly inversely correlated with baseline 

and follow-up concentrations (Pearson’s ρ -0.85 to -0.76). In contrast, the changes in PM10 

correlated weakly with follow-up concentrations as follows: inversely with the 365-day mean 

(ρ -0.25) and positively with the long-term grid cell mean (0.35); no correlation was detected 

with the baseline value. The findings with PMcoarse were similar to PM10, except the correla-

tion with the follow-up grid cell mean was higher (ρ 0.68). The correlations of change in PM1 

and PN with their long-term concentrations were similar to PM2.5. The changes in O3 during 

the follow-up period correlated weakly and positively with the baseline and follow-up values. 

NO2 and NO were positively correlated with their follow-up grid-specific mean concentration 

(ρ 0.26 and 0.64, respectively) but not with other long-term concentrations. The changes in 

SO2 and CO were negatively correlated with baseline and follow-up concentrations. The 

change in NH3 was moderately positively correlated with baseline and follow-up concentra-

tions.  

4.2.4. Cross-sectional associations of air pollution at follow-up with the study outcomes 

Air pollution at follow-up and BP (Table 28) 

The observed cross-sectional associations  of air pollution with BP at follow-up were stronger 

and more consistent across pollutants compared to the cross-sectional analysis with baseline 

data (Table 28). The 365-day mean concentrations of PM1 to PM10 at follow-up were positive-

ly associated with SBP and DBP in the cross-sectional analysis; the same pollutants were also 

positively related to PP. When compared per IQR, the estimates were quite similar for differ-

ent PM metrics. For example, per increase in PM2.5 by 2.1 µg/m³, I detected increases in SBP 

of 1.2 mmHg (95% CI: 0.2 to 2.2), in DBP of 0.7 mmHg (95% CI: 0.2 to 1.2), and in PP of 

0.4 mmHg (95% CI: -0.3 to 1.2). The results with PN and BP were inconclusive. Analysis 

with 365-day NH3 as a main exposure yielded results quite similar to those observed with 

PM: positive associations with SBP and DBP and a positive relationship with PP. Follow-up 

concentrations of NO2, NO, SO2, and CO were positively associated with DBP and more 

weakly positively related to SBP.  
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Table 28. The cross-sectional associations of 365-day mean air pollution at follow-up with BP 

at follow-up among participants with no change in address from baseline to follow-up. 

Exposure (IQR) 
 Blood pressure change, mmHg (95% CI) 

 SBP  DBP  PP 

PM2.5 (2.1 µg/m³)  1.2 (0.2, 2.2)  0.7 (0.2, 1.2)  0.4 (-0.3, 1.2) 

PM10 (2.8 µg/m³)  1.2 (0.1, 2.2)  0.7 (0.2, 1.3)  0.4 (-0.3, 1.2) 

PMcoarse (0.7 µg/m³)  1.1 (0.0, 2.1)  0.7 (0.1, 1.3)  0.3 (-0.4, 1.1) 

PM1 (1.6 µg/m³)  1.1 (0.1, 2.0)  0.7 (0.1, 1.2)  0.4 (-0.3, 1.1) 

PN (2.4×10
4
/L)  0.2 (-0.8, 1.2)  0.5 (-0.1, 1.0)  -0.3 (-1.0, 0.5) 

O3 (2.7 µg/m³)  -0.9 (-2.0, 0.1)  -0.8 (-1.4, -0.3)  -0.1 (-0.9, 0.6) 

NO2 (7.1 µg/m³)  1.0 (0.0, 2.1)  0.9 (0.3, 1.4)  0.1 (-0.6, 0.9) 

NO (3.2 µg/m³)  0.9 (-0.1, 2.0)  0.9 (0.3, 1.5)  0.1 (-0.7, 0.8) 

SO2  (1.6 µg/m³)  0.8 (-0.3, 1.8)  0.7 (0.1, 1.2)  0.1 (-0.6, 0.9) 

CO  (0.04 µg/m³)  0.5 (-0.6, 1.5)  0.6 (0.0, 1.2)  -0.1 (-0.9, 0.7) 

NH3  (0.5 µg/m³)  1.4 (0.4, 2.5)  0.8 (0.3, 1.4)  0.6 (-0.2, 1.3) 

N = 3,240. The results are presented per given IQRs of exposure concentrations. Adjusted for 

time trend, short-term exposure, traffic and tram noise, distance to major road, age, sex, BMI, 

WHR, blood lipids, smoking, ETS, physical activity, and educational level. 

Air pollution at follow-up and prevalent hypertension and BPLM intake (Table 29) 

The concentrations of PM10 and PMcoarse were related to lower ORs for prevalent hyperten-

sion, whereas the concentrations of PN, NO2, and CO exhibited positive relationships; how-

ever, neither of the estimates was statistically significant. PM2.5, PM10 and PMcoarse were asso-

ciated with lower ORs for BPLM intake. Weaker inverse relationships with OR for BPLM 

intake were observed for PM1, PN, NO2, NO, and NH3. I also observed inverse associations of 

PM1 to PM10 with self-reported hypertension and BPLM intake. 

Air pollution at follow-up and incident hypertension and BPLM intake (Table 30) 

I detected no significant associations with incidence of hypertension. Exposures to 365-day 

mean concentrations of PM2.5, PM10, PM1, PN, NO2, NO, SO2, and CO at follow-up were 

related to higher relative risk (RR) for incident hypertension, though these estimates were 

imprecise. Relative risk (RR) for BPLM intake was decreased at higher levels of PM, NO2 

and NH3. RRs for incident self-reported hypertension were inversely related to different PM 

metrics and were positively related to O3, NO2, NO and CO concentrations. The results with 

incident self-reported BPLM intake were almost identical to the results with incident BPLM 

intake according to the study definition.   
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Table 29. The cross-sectional associations of 365-day mean air pollution concentrations at follow-up with the prevalent outcomes hypertension and 

BPLM intake. 

Exposure (unit) 

 

IQR 

 Main study outcomes  Self-reported outcomes 

  
Hypertension 

OR (95% CI) 
 

BPLM intake 

OR (95% CI) 
 

Self-reported hyperten-

sion 

OR (95% CI) 

 

Self-reported BPLM 

intake 

OR (95% CI) 

PM2.5 (µg/m³)  2.1  0.98 (0.86, 1.11)  0.89 (0.79, 1.00)  0.88 (0.78, 0.99)  0.85 (0.76, 0.96) 

PM10 (µg/m³)  2.7  0.97 (0.85, 1.10)  0.88 (0.78, 0.99)  0.88 (0.78, 0.99)  0.85 (0.75, 0.96) 

PMcoarse (µg/m³)  0.7  0.94 (0.82, 1.07)  0.85 (0.75, 0.97)  0.88 (0.78, 1.00)  0.85 (0.75, 0.97) 

PM1 (µg/m³)  1.6  0.98 (0.87, 1.11)  0.90 (0.80, 1.01)  0.89 (0.79, 1.00)  0.86 (0.77, 0.97) 

PN (×10
4
/L)  2.4  1.03 (0.91, 1.17)  0.97 (0.86, 1.09)  1.00 (0.89, 1.12)  1.01 (0.90, 1.14) 

O3 (µg/m³)  2.7  1.00 (0.88, 1.14)  1.13 (1.00, 1.27)  1.09 (0.96, 1.23)  1.13 (1.00, 1.28) 

NO2 (µg/m³)  7.1  1.01 (0.89, 1.15)  0.92 (0.82, 1.04)  0.96 (0.85, 1.09)  0.94 (0.83, 1.07) 

NO (µg/m³)  3.2  1.05 (0.92, 1.20)  0.95 (0.84, 1.08)  0.99 (0.88, 1.12)  0.98 (0.86, 1.11) 

SO2 (µg/m³)  1.6  1.02 (0.90, 1.17)  0.98 (0.87, 1.11)  1.00 (0.88, 1.13)  0.99 (0.87, 1.12) 

CO (µg/m³)  0.0  1.04 (0.91, 1.19)  1.01 (0.89, 1.15)  1.03 (0.91, 1.17)  1.05 (0.92, 1.19) 

NH3 (µg/m³)  0.5  1.00 (0.87, 1.14)  0.90 (0.79, 1.02)  0.90 (0.80, 1.02)  0.86 (0.76, 0.97) 

N = 3,240. The results are presented per given IQRs of exposure concentrations. Adjusted for time trend, short-term exposure, traffic and tram noise, 

distance to major road, age, sex, BMI, WHR, blood lipids, smoking, ETS, physical activity, and educational level. 
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Table 30. The cross-sectional associations of 365-day mean air pollution concentrations at follow-up with the incident outcomes hypertension and 

BPLM intake. 

Exposure (unit) 

 

IQR 

 Main study outcomes  Self-reported outcomes 

 
 

Hypertension
1 

RR (95% CI) 
 

BPLM intake
2 

RR (95% CI) 
 

Hypertension
3 

RR (95% CI) 
 

BPLM intake
4 

RR (95% CI) 

PM2.5 (µg/m³)  2.1  1.04 (0.91, 1.19)  0.92 (0.81, 1.05)  0.95 (0.81, 1.11)  0.89 (0.77, 1.02) 

PM10 (µg/m³)  2.7  1.03 (0.89, 1.18)  0.91 (0.79, 1.04)  0.94 (0.79, 1.10)  0.88 (0.76, 1.01) 

PMcoarse  (µg/m³)  0.7  0.99 (0.86, 1.14)  0.86 (0.75, 1.00)  0.91 (0.77, 1.08)  0.86 (0.74, 0.99) 

PM1 (µg/m³)  1.6  1.04 (0.91, 1.19)  0.93 (0.82, 1.06)  0.96 (0.82, 1.12)  0.90 (0.78, 1.03) 

PN (×10
4
/L)  2.4  1.07 (0.93, 1.22)  0.99 (0.87, 1.14)  1.08 (0.92, 1.27)  1.04 (0.91, 1.20) 

O3 (µg/m³)  2.7  0.94 (0.82, 1.08)  1.07 (0.93, 1.24)  1.02 (0.87, 1.21)  1.09 (0.94, 1.25) 

NO2 (µg/m³)  7.1  1.07 (0.93, 1.23)  0.96 (0.83, 1.10)  1.03 (0.87, 1.21)  0.97 (0.84, 1.12) 

NO (µg/m³)  3.2  1.11 (0.96, 1.28)  0.99 (0.86, 1.14)  1.06 (0.89, 1.26)  1.02 (0.88, 1.18) 

SO2 (µg/m³)  1.6  1.06 (0.92, 1.21)  1.02 (0.89, 1.17)  1.12 (0.95, 1.32)  1.01 (0.88, 1.17) 

CO (µg/m³)  0.0  1.09 (0.94, 1.26)  1.06 (0.92, 1.22)  1.16 (0.98, 1.38)  1.07 (0.92, 1.23) 

NH3 (µg/m³)  0.5  1.06 (0.92, 1.23)  0.96 (0.84, 1.11)  0.98 (0.83, 1.16)  0.91 (0.79, 1.05) 

The results are presented per given IQRs of exposure concentrations. Adjusted for time trend, short-term exposure, traffic and tram noise, distance to 

major road, age, sex, BMI, WHR, blood lipids, smoking, ETS, physical activity, and educational level. 
1
Analysis subset (prevalent cases and missing values excluded): N = 1,438. 

2
Analysis subset: N = 2,132. 

3
Analysis subset: N = 1,791. 

4
Analysis subset: 

N = 2,212. 
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Sensitivity analyses 

I adjusted for baseline BP values in the analyses. This resulted in attenuated effect size and 

precision, which was expected because adjustment for such a major predictor as a baseline BP 

value removes most of the outcome variability. In another sensitivity analysis, I used the as-

similated (corrected with measured value) PM10 concentration. Assimilation was not uniform-

ly performed for the air pollutants at follow-up, which is why this value was not included in 

the main analysis. In contrast to a non-assimilated value, the assimilated PM10 concentration 

was not clearly associated with BP, although the effect estimates were generally positive. For 

example, the change in SBP per increase in PM10 by an IQR of 4.1 µg/m³ was 0.5 mmHg 

(95% CI: -0.5, 1.5). 

 

Figure 19. The cross-sectional associations of 365-day mean PM2.5 concentration with BP 

among participants with no change in address since baseline, stratified by BPLM intake at 

follow-up and by hypertension status at baseline and follow-up. 

Legend: N = 3,320. Results are presented per given IQR and are adjusted for time trend, 

short-term exposure, traffic and tram noise, distance to major road, age, sex, BMI, WHR, 

blood lipids, smoking, ETS, physical activity, and educational level. 
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I performed a stratified analysis by BPLM intake at follow-up (Figure 19 with PM2.5; not 

shown with other pollutants). The results in medicated and non-medicated participants were 

very similar for PM2.5, PM10, PN (DBP only) and NH3. The results in medicated participants 

were closer to null or inverse compared to non-medicated participants for PN (SBP only), O3, 

NOx, SO2, and CO. The estimates in medicated and non-medicated participants differed less 

for DBP than for SBP. 

I also stratified participants by hypertension status at baseline and follow-up (results with 

PM2.5 in Figure 19). Among the four groups considered, the most consistent findings were 

among participants with prevalent hypertension at baseline and follow-up. The estimated as-

sociations in this group were higher than in the main model, with higher statistical signifi-

cance. In the group with incident hypertension, the results were similar to the estimate in the 

entire analysis sample but not statistically significant (most likely due to small number of par-

ticipants in this group). In the groups with no hypertension at baseline and follow-up and with 

hypertension only at baseline, the estimates were closer to a null effect compared to the entire 

analysis sample and were less precise. 

4.2.5. Longitudinal associations of air pollution with study outcomes 

BP as outcome 

I investigated the association of exposure at baseline with the progression of hypertension at 

follow-up. To eliminate temporary contrasts, I investigated this association using the long-

term grid-specific mean exposure (2000–2003 at baseline and 2006–2008 at follow-up). I 

used 2 outcomes, the BP at follow-up measurement (2006–2008) and the change in BP (ΔBP) 

during the follow-up period, calculated as: 

∆𝐵𝑃 =
(𝐵𝑃𝑓𝑜𝑙𝑙𝑜𝑤−𝑢𝑝− 𝐵𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑜𝑙𝑙𝑜𝑤−𝑢𝑝 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠
        [16]  

Concentrations of PM2.5, PM10, PM1, NO, and NH3 at baseline were positively associated with 

BP at follow-up. These results were very similar to those obtained with the cross-sectional 

analysis at follow-up (Table 28). For example, an increase in PM2.5 by 1 µg/m³ was associated 

with an increase in SBP by 0.6 mmHg (95% CI: 0.2, 1.1). The baseline concentration of O3 

was inversely associated with BP; per increase in O3 by 1 µg/m³, SBP decreased by 0.4 

mmHg (95% CI: -0.9, 0.0). When I excluded participants who used BPLM at follow-up (leav-

ing 1,645 participants in the analysis), the associations observed in the remaining group did 

not change. In addition, borderline positive associations with SBP were observed with CO and 

NO2. 
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Table 31. The longitudinal associations of long-term grid-specific mean exposures at baseline 

(2000-2003) with progression of BP during follow up in participants not taking BPLM. 

Exposure (unit) 
 

IQR 
 Progression of BP

1
, mmHg per year (95% CI) 

  ΔSBP  ΔDBP  ΔPP 

PM2.5 (µg/m³)  2.5  0.2 (0.0, 0.4)  0.1 (0.0, 0.2)  0.2 (0.0, 0.4) 

PM10 (µg/m³)  4.0  0.1 (-0.1, 0.4)  0.0 (-0.1, 0.2)  0.1 (-0.1, 0.4) 

PMcoarse  (µg/m³)  2.0  0.2 (-0.1, 0.4)  0.1 ( 0.0, 0.2)  0.2 (-0.1, 0.4) 

PM1 (µg/m³)  1.7  -0.1 (-0.2, 0.1)  -0.1 (-0.2, 0.0)  -0.1 (-0.2, 0.1) 

PN (×10
4
/L)  2.8  0.1 (-0.2, 0.3)  0.0 (-0.2, 0.1)  0.1 (-0.2, 0.3) 

O3 (µg/m³)  2.2  0.1 (-0.1, 0.3)  0.1 ( 0.0, 0.2)  0.1 (-0.1, 0.3) 

NO2 (µg/m³)  5.9  0.1 (-0.1, 0.3)  0.1 ( 0.0, 0.2)  0.1 (-0.1, 0.3) 

NO (µg/m³)  5.4  0.1 (-0.1, 0.3)  0.0 (-0.1, 0.1)  0.1 (-0.1, 0.3) 

SO2 (µg/m³)  1.5  0.1 (-0.1, 0.3)  0.1 ( 0.0, 0.2)  0.1 (-0.1, 0.3) 

CO (µg/m³)  0.1  0.1 (-0.1, 0.3)  0.0 (-0.1, 0.1)  0.1 (-0.1, 0.3) 

NH3 (µg/m³)  0.5  0.1 (-0.1, 0.3)  0.1 (-0.1, 0.2)  0.1 (-0.1, 0.3) 

N = 1,625. The results are presented per given IQRs of exposure concentrations. Adjusted for 

Lnight, Lden, distance to major road, age, sex, BMI, WHR, blood lipids, smoking, ETS, physical 

activity, and educational level. For personal risk factors (BMI, blood lipids, smoking, physical 

activity), changes in follow-up were included as separate variables. 
1
Calculated according to the formula [16]. 

I analyzed the longitudinal associations of the long-term grid-specific mean exposures at 

baseline (2000–2003) with progression of BP at follow-up (Table 31) in participants not tak-

ing BPLM at follow-up (N = 1,645). The concentration of PM2.5 at baseline was imprecisely 

positively related to BP: an increase of the mean baseline PM2.5 concentration by 2.5 µg/m³ 

(the IQR of this sample) was associated with an increase in SBP by 0.2 mmHg per year of 

follow-up (95% CI: 0.0, 0.4). A slightly weaker positive relationship was detected with the 

PMcoarse concentration at baseline. Exposures to NO2 and SO2 at baseline were positively re-

lated to DBP. For the rest of the pollutants, no conclusive associations with changes in BP in 

the follow-up period were detected.  

I also calculated the longitudinal associations of changes in exposure with progression of BP 

during the follow-up period (Table 32). Increases in PM2.5, PM10, PN and NH3 were associat-

ed with decreases in BP. For example, per increase in PM2.5 by 0.27 µg/m³ per year, SBP de-

creased by 0.2 mmHg per year (95% CI: -0.4, 0.0). The results with O3 were similar, but not 

statistically significant. The inverse associations of change in PM with change in BP may be 

because air pollution concentrations decreased over the follow-up period. I also detected a 
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strong negative correlation of the changes in PM2.5, PM1, PN concentration during follow-up 

with the concentrations at either baseline or follow-up. Although such a correlation was not 

observed with NH3, the inverse association of changes in NH3 concentration with changes in 

BP may be due to high correlations of NH3 with PM. An increase in SO2 concentration, which 

did not correlate with baseline or follow-up values substantially, was associated with in-

creased DBP: a change of 0.1 mmHg per year (95% CI: 0.0, 0.2) occurred per 0.10 µg/m³ per 

year.  

Table 32. The longitudinal associations of change in long-term grid-specific mean exposures 

during follow-up with change in BP during follow-up among participants no taking BPLM at 

follow-up. 

Exposure (unit) 
 

IQR 
 Progression of BP

1
, mmHg per year (95% CI) 

  ΔSBP  ΔDBP  ΔPP 

PM2.5 (µg/m³ per year)  0.27  -0.2 (-0.4, 0.0)  -0.2 (-0.3, -0.1)  -0.2 (-0.4, 0.0) 

PM10 (µg/m³ per year)  0.49  -0.2 (-0.4, 0.0)  -0.2 (-0.3, -0.1)  -0.2 (-0.4, 0.0) 

PMcoarse  (µg/m³ per year)  0.04  -0.1 (-0.1, 0.0)  0.0 (-0.1, 0.0)  -0.1 (-0.1, 0.0) 

PM1 (µg/m³ per year)  0.05  -0.1 (-0.3, 0.1)  -0.1 (-0.2, 0.0)  -0.1 (-0.3, 0.1) 

PN (×10
4
/L per year)  0.14  -0.1 (-0.2, 0.0)  0.0 (-0.1, 0.0)  -0.1 (-0.2, 0.0) 

O3 (µg/m³ per year)  0.02  -0.1 (-0.1, 0.0)  0.0 (-0.1, 0.0)  -0.1 (-0.1, 0.0) 

NO2 (µg/m³ per year)  0.04  -0.1 (-0.3, 0.1)  -0.1 (-0.2, 0.1)  -0.1 (-0.3, 0.1) 

NO (µg/m³ per year)  0.08  0.0 (-0.2, 0.2)  0.0 (-0.2, 0.1)  0.0 (-0.2, 0.2) 

SO2 (µg/m³ per year)  0.10  0.1 (-0.1, 0.3)  0.1 (0.0, 0.2)  0.1 (-0.1, 0.3) 

CO (µg/m³ per year)  0.35  -0.1 (-0.2, 0.1)  -0.1 (-0.2, 0.0)  -0.1 (-0.2, 0.1) 

NH3 (µg/m³ per year)  0.43  -0.1 (-0.2, 0.0)  0.0 (-0.1, 0.0)  -0.1 (-0.2, 0.0) 

N = 1,625. The results are presented per given IQRs of exposure concentrations. Adjusted for 

Lnight, Lden, distance to major road, age, sex, BMI, WHR, blood lipids, smoking, ETS, physical 

activity, and educational level. For personal risk factors (BMI, blood lipids, smoking, and 

physical activity), changes in follow-up were included as separate variables.
 

1
Calculated according to the formula [16]. 

Incident hypertension and BPLM intake as outcomes 

Using Poisson regression with robust variance estimation, I analyzed the association of air 

pollution exposure at baseline and incident hypertension or BPLM intake (Table 33). PM2.5, 

PN, NO2, NO and CO concentrations were positively related to RR for incident hypertension. 

Concentrations of SO2 and CO at baseline were associated with increased RR for incident 

BPLM intake; for example, per increase in baseline concentration of SO2 by 1.5 µg/m³, the 

estimated RR of incident BPLM intake was 1.13 (95% CI: 1.01, 1.27). PMcoarse, PN, NO2 and 



Observational Study Results 

124 

NO had imprecise positive relationships with incident BPLM intake. Findings for self-

reported incidence of hypertension were discordant from those with the main outcome, hyper-

tension, though not statistically significant; RR was below 1 with PM and above 1 with gase-

ous pollutants. Findings with incident self-reported BPLM intake were very similar to those 

with the main study outcome, BPLM intake; NO2, SO2 and CO were positively associated 

with incident BPLM intake (RRs 1.10, 1.13 and 1.13, respectively), and positive, though not 

statistically significant, effect estimates were observed with most exposures.  

Association of change in exposure from baseline to follow-up with incident outcomes is pre-

sented in Table 34. The change in NO from baseline to follow-up was related to a lower risk 

of incident hypertension: RR 0.88 (95% CI 0.82, 0.95) per 0.08 µg/m³ NO per year. Similar, 

though not precise, inverse relationships were detected with PM10, PM1 and NO2. Incident 

intake of BPLM was inversely associated with NO: RR 0.82 (95% CI: 0.75, 0.90) per 0.08 

µg/m³ per year; a similar inverse relationship was detected with PM2.5. Changes in PN, O3, 

SO2 and NH3 concentrations were associated with elevated RR for BPLM intake. For exam-

ple, a yearly increase in O3 by 0.02 µg/m³ per year was associated with RR for BPLM intake 

1.04 (95% CI: 1.01, 1.08) after 5 years of follow-up. The results with self-reported incidence 

of hypertension and BPLM intake were quite similar to the ones with the main outcome, 

BPLM intake.  
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Table 33. The longitudinal associations of long-term air pollution concentrations at baseline (grid-specific means of 2000-2003) with incident bina-

ry outcomes at follow-up.  

Exposure 

 

IQR 

 Main study outcomes  Self-reported outcomes 

 
 

Hypertension
1 

RR (95% CI) 
 

BPLM intake
2 

RR (95% CI) 
 

Hypertension
3 

RR (95% CI) 
 

BPLM intake
4 

RR (95% CI) 

PM2.5 (µg/m³)  2.5  1.03 (0.93, 1.14)  1.01 (0.88, 1.16)  0.91 (0.82, 1.02)  1.02 (0.91, 1.15) 

PM10 (µg/m³)  4.0  1.02 (0.91, 1.15)  1.02 (0.88, 1.18)  0.91 (0.80, 1.02)  0.98 (0.86, 1.11) 

PMcoarse (µg/m³)  2.0  1.02 (0.92, 1.14)  1.04 (0.90, 1.19)  0.93 (0.83, 1.04)  1.05 (0.93, 1.17) 

PM1 (µg/m³)  1.7  1.00 (0.92, 1.09)  1.01 (0.92, 1.12)  0.96 (0.88, 1.05)  0.95 (0.87, 1.04) 

PN (×10
4
/L)  2.8  1.10 (0.99, 1.22)  1.12 (0.97, 1.28)  1.01 (0.90, 1.14)  1.07 (0.95, 1.21) 

O3 (µg/m³)  2.2  0.98 (0.89, 1.07)  0.99 (0.87, 1.12)  1.05 (0.95, 1.16)  1.06 (0.96, 1.19) 

NO2 (µg/m³)  5.9  1.06 (0.97, 1.17)  1.10 (0.97, 1.25)  1.00 (0.90, 1.11)  1.11 (0.99, 1.23) 

NO (µg/m³)  5.4  1.08 (0.98, 1.19)  1.12 (0.99, 1.27)  1.02 (0.92, 1.14)  1.09 (0.97, 1.21) 

SO2 (µg/m³)  1.5  1.02 (0.93, 1.11)  1.13 (1.01, 1.27)  1.01 (0.92, 1.11)  1.12 (1.01, 1.23) 

CO (µg/m³)  0.1  1.03 (0.94, 1.12)  1.13 (1.02, 1.25)  1.04 (0.95, 1.13)  1.08 (0.99, 1.19) 

NH3 (µg/m³)  0.5  1.02 (0.92, 1.13)  1.02 (0.89, 1.16)  0.93 (0.83, 1.03)  1.06 (0.95, 1.19) 

The results are presented per given IQRs of exposure concentrations. Adjusted for Lnight, Lden, distance to major road, age, sex, BMI, WHR, blood 

lipids, smoking, ETS, physical activity, and educational level. For personal risk factors (BMI, blood lipids, smoking, and physical activity), change 

in follow-up was included as a separate variable.  
1
Analysis subset (prevalent cases and missing values excluded): N = 1,438. 

2
Analysis subset: N = 2,132. 

3
Analysis subset: N = 1,791. 

4
Analysis sub-

set: N = 2,212. 
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Table 34. The longitudinal associations of changes in exposure from baseline to follow-up with incident binary outcomes at follow-up.  

Exposure (unit) 
 

IQR 
 Main study outcomes  Self-reported outcomes 

  Hypertension
1
 

RR (95% CI) 

 BPLM intake
2
 

RR (95% CI) 

 Hypertension
3 

RR (95% CI)
 

 BPLM intake
4 

RR (95% CI)
 

PM2.5 (µg/m³ per year)  0.27  0.99 (0.91, 1.08)  0.91 (0.82, 1.02)  1.02 (0.94, 1.11)  0.83 (0.76, 0.91) 

PM10 (µg/m³ per year)  0.49  0.96 (0.88, 1.05)  1.01 (0.91, 1.12)  1.03 (0.95, 1.12)  0.93 (0.85, 1.02) 

PMcoarse (µg/m³ per year)  0.04  0.98 (0.94, 1.02)  1.03 (0.99, 1.07)  1.01 (0.97, 1.05)  1.01 (0.97, 1.05) 

PM1 (µg/m³ per year)  0.05  0.95 (0.87, 1.05)  0.96 (0.84, 1.08)  1.06 (0.95, 1.18)  0.99 (0.90, 1.09) 

PN (×10
4
/L per year)  0.14  1.00 (0.95, 1.04)  1.06 (1.01, 1.12)  1.05 (1.01, 1.09)  1.05 (1.00, 1.10) 

O3 (µg/m³ per year)  0.02  1.00 (0.97, 1.03)  1.04 (1.01, 1.08)  1.03 (1.00, 1.06)  1.03 (1.00, 1.07) 

NO2 (µg/m³ per year)  0.04  0.94 (0.86, 1.04)  0.92 (0.81, 1.05)  1.03 (0.92, 1.15)  0.96 (0.87, 1.06) 

NO (µg/m³ per year)  0.08  0.88 (0.82, 0.95)  0.82 (0.75, 0.90)  0.87 (0.80, 0.94)  0.84 (0.77, 0.91) 

SO2 (µg/m³ per year)  0.10  1.04 (0.95, 1.13)  1.20 (1.08, 1.33)  1.12 (1.03, 1.22)  1.17 (1.07, 1.28) 

CO (µg/m³ per year)  0.35  1.00 (0.93, 1.08)  1.02 (0.92, 1.12)  0.97 (0.89, 1.05)  0.98 (0.90, 1.06) 

NH3 (µg/m³ per year)  0.43  1.01 (0.97, 1.05)  1.06 (1.01, 1.11)  1.03 (0.99, 1.08)  1.05 (1.01, 1.09) 

The results are presented per given IQRs of exposure concentrations. Adjusted for Lnight, Lden, distance to major road, age, sex, BMI, WHR, blood 

lipids, smoking, ETS, physical activity, and educational level. For personal risk factors (BMI, blood lipids, smoking, and physical activity), change 

in follow-up was included as a separate variable. 
 1

Analysis subset (prevalent cases and missing values excluded): N = 1,438. 
2
Analysis subset: N = 2,132. 

3
Analysis subset: N = 1,791. 

4
Analysis 

subset: N = 2,212. 
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5. EXPERIMENTAL STUDY RESULTS 

5.1. Expression of housekeeping genes 

 

 

 

Figure 20. The expression of beta-actin, measured at three time points.  

Legend: results are presented as Tukey box plots. Solid horizontal line represents a group-

specific mean. Ends of the whiskers are within 1.5 IQR of the lower and upper quartile. 

Beta-actin. I performed 3 PCR runs with beta-actin (17.02.2012, 08.05.2012, 15.05.2012). 

Results are presented in Figure 20. Ct stands for threshold cycle, a relative measure of beta-
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actin concentration: higher Ct indicates lower concentration. The run from 08.05 demonstrat-

ed much lower expression and much higher variability than other two runs and was not used 

in the analyses.  

 

Figure 21. The measured expression of GAPDH.  

Legend: results are presented as Tukey box plots. Solid horizontal line represents a group-

specific mean. Ends of the whiskers are within 1.5 IQR of the lower and upper quartile. N= 

number of samples included. 

GAPDH (Figure 21). Measured expression of GAPDH demonstrated high variability in dif-

ferent groups. I observed much lower expression in the group DEE + NO2 (high), compared to 

other groups. Therefore it was decided that the results would not be normalized for GAPDH.  

 

Figure 22. The measured expression of HPRT.  

Legend: results are presented as Tukey box plots. Solid horizontal line represents a group-

specific mean. Ends of the whiskers are within 1.5 IQR of the lower and upper quartile. N= 

number of samples included. 
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HPRT. Expression of HPRT is depicted at Figure 22. I observed more homogeneity between 

exposed groups and control, than with expression of GAPDH. However, I found slightly low-

er expression levels in groups DEE (filtered) + NO2 (low) and NO2 (high), than in other 

groups. 

5.2. The relative expression levels of the studied genes 

I measured the expression levels of the following genes in lung tissue: CYP1A1, iNOS, 

ICAM1, NQO1, and TNFα. Expression in exposed groups was compared with control group. 

Results were expressed as fold change in expression compared to control. I presented results 

with measured expression, not normalizing for housekeeping genes, and also normalized for 

beta-actin and HPRT concentration.  

 

Figure 23. The relative expression of CYP1A1, presented as fold change in an average ex-

pression per group, compared to the average expression in control group.  

Legend: Corrected = gene expression normalized for the given housekeeping gene; N = num-

ber of animals in the group, included to the analysis.  

The relative expression of CYP1A1 is presented at Figure 23. I observed significantly lower 

expression levels in the group NO2 (high). Fold change was about 0.5 in this group, which 

corresponds to an expression lower by 50% compared to the control group. In addition to this 
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finding, CYP1A1 expression in all groups with NO2 tended to be lower, than in the control 

group. Expression in the DEE group was higher than in the control group. However, these 

results were not statistically significant.  

 

Figure 24. The relative expression of ICAM, presented as fold change in an average expres-

sion per group, compared to the average expression in control group..  

Legend: Corrected = gene expression normalized for the given housekeeping gene; N = num-

ber of animals in the group, included to the analysis. 

Measured The relative expression of ICAM1 is shown at Figure 24. In all exposed groups, 

gene expression was 2- to 7-fold higher than in the control group. In groups with higher NO2 

concentrations, the expression levels tended to be elevated as well. The estimated fold change 

did not differ substantially, when calculated with or without correction for housekeeping 

genes. However, statistical significance of results in some groups (e.g., DEE + NO2 (low), 

NO2 (high) differed by correction method or housekeeping gene choice. 

Measured The relative expression of iNOS (Figure 25). I observed lower iNOS expression 

levels in the following groups: DEE (filtered) + NO2 (high) and NO2 (high). In the group DEE 

(filtered) + NO2 (high) expression was about twice lower than in the control group. In the 

group NO2 (high) iNOS expression was close to null, with low variation in results, possibly 
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indicating a measurement error (although no obvious problem was detected). In the group 

DEE + NO2 (high) crude expression of iNOS was about two times higher, than in the control 

group. However, after correction for a housekeeping gene the expression attenuated towards 

one. In other exposure groups, iNOS expression of iNOS was not different from the control 

group. 

 

Figure 25. The relative expression of iNOS, presented as fold change in an average expres-

sion per group, compared to the average expression in control group. 

Legend: Corrected = gene expression normalized for the given housekeeping gene; N = num-

ber of animals in the group, included to the analysis. 

Measured The relative expression of NQO1 is presented at Figure 26. Groups with higher 

concentrations of NO2 (with or without DEE and filtered DEE) showed 2- to 3-fold higher 

expression levels than the control group. The estimated expression in these groups was higher 

when presented as crude or corrected for beta-actin as housekeeping gene, than when correct-

ed for HPRT. Expression of NQO1 in the groups DEE and DEE + NO2 (low) was 1.5 to 2 

times higher than in the control group.   
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Figure 26. The relative expression of NQO1, presented as fold change in an average expres-

sion per group, compared to the average expression in control group. 

Legend: Corrected = gene expression normalized for the given housekeeping gene; N = num-

ber of animals in the group, included to the analysis. 

Measured The relative expression of TNFα (Figure 27). The width of CIs, including 1, did not 

allow to reject the null hypothesis of no difference with the control group. However, expres-

sion of TNFα in the group DEE (filtered)+NO2 (low), as well as in groups with higher concen-

trations of NO2 was lower than the control group. Estimated The relative expression of TNFα 

was mostly homogenous when corrected for housekeeping genes and crude, except for one 

group (DEE + NO2 (low)), where the estimates differed. 
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Figure 27. The relative expression of TNFα, presented as fold change in an average expres-

sion per group, compared to the average expression in control group. 

Legend: Corrected = gene expression normalized for the given housekeeping gene; N = num-

ber of animals in the group, included to the analysis. 

5.3. Sensitivity analyses 

Dose-response analysis with NO2 concentration 

Table 35. The association of NO2 concentration with gene expression in all exposure groups 

combined, normalized for beta-actin. 

Gene Fold increase per 1 ppm NO2 (95% CI) 

CYP1A1 0.94 (0.92, 0.98) 

ICAM-1 1.09 (1.04, 1.14) 

iNOS 0.91 (0.87, 0.96) 

NQO1 1.05 (1.03, 1.07) 

TNF 0.97 (0.95, 1.00) 

I included the concentration of NO2 in the exposure group as a continuous predictor to check 

whether a linear exposure-response relationship could be detected (Table 35). Linear trends 
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were significant for CYP1A, ICAM-1, iNOS and NQO1. The expression levels of CYP1A1 

and iNOS were inversely associated with NO2 concentration, and the expression levels of 

ICAM-1 and NQO1 were positively associated with NO2 concentration. 
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6. DISCUSSION 

6.1. Summary of findings 

This study was conducted to investigate the effects of long-term air pollution and its specific 

components on BP and hypertension in humans and to investigate possible pathophysiologic 

mechanisms in an animal model. Using an observational study setting, I investigated the long-

term effects of fine particulate matter urban background air pollution on arterial BP in a popu-

lation-based cohort. I also studied the effects of different components of an air pollution mix-

ture – e.g., smaller and bigger particles, and gases – and tested the independence of the effects 

in multi-pollutant models. I detected consistent positive associations of long-term urban resi-

dential concentrations of PM2.5 and PM1 with BP in a cross-sectional analysis with baseline 

and follow-up data, independent of co-exposures and relevant confounders. The associations 

with other PM sizes were positive, but less consistent compared to PM2.5 and PM1. Among 

gaseous compounds, long-term NH3 concentration was positively associated with BP, inde-

pendent of co-exposure PM and relevant confounders. The results with binary outcomes were 

less conclusive than with BP. I observed no associations with prevalent or incident hyperten-

sion (defined with BP value and BPLM intake). BPLM intake was inversely associated with 

PM2.5–10 in the cross-sectional analysis with follow-up data. In the longitudinal analysis, inci-

dent BPLM intake was positively associated with traffic-related gaseous pollutants (O3, NO, 

CO). Self-reported hypertension and BPLM intake were inversely related to PM exposure 

levels at baseline in cross-sectional analysis and in longitudinal analysis, though less consist-

ently.  

Under the experimental conditions, long-term (13 weeks) exposure to traffic-related particles 

and nitrogen oxides modulated the activity levels of five genes, the products of which are in-

volved in xenobiotic metabolism, inflammation, oxidative stress and vascular tone regulation: 

CYP1A1, NQO1, iCAM, iNOS, and TNFα. I observed dose-response relationships between 

NO2 concentration and expression of CYP1A1, NQO1, iCAM, and iNOS. 

In summary, with the observational study results I was able to confirm the first part of hy-

pothesis 1: that long-term residential exposure to fine PM is linearly associated with an in-

crease in arterial BP, independently of co-exposures and potential confounders. However, I 

could not confirm the second part: that long-term exposure to fine PM is positively associated 

with the risk of hypertension in the general population. Using the experimental data, I provid-

ed some supportive evidence for hypothesis 2: that traffic-related air pollution can alter ex-

pression of genes related to elevated BP and hypertension. 
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6.2. PM2.5 as a responsible pollutant 

The observed positive association between urban background air pollution and arterial BP in 

the population-based cohort should likely be attributed to PM2.5. Findings with PM2.5 were 

more consistent than with other PM fractions (PM10, PMcoarse, PM1 and PN, representing ul-

trafine particles). These findings were robust to adjustment for co-exposure to noise, short-

term exposure and various confounders. Additionally, the association of PM2.5 with BP was 

independent of long-term exposure to other traffic- and industry-related emissions, represent-

ed with NO2, NO, SO2, CO, and O3. As expected, in the experimental study design, DEE 

(both particulate and gaseous components) with NO2 was associated with increased expres-

sion of NQO1, an enzyme involved in the production of ROS.  

There are certain parameters of PM2.5 toxicity that support these findings. Particles in PM2.5 

belong to the inhalable fraction and can be deposited in the lungs after inhalation. PM2.5 con-

sists of primary combustion particles and secondary particles (Kelly and Fussell 2012). The 

fine and ultrafine primary particles, directly emitted from combustion processes (such as traf-

fic), can trigger redox reactions, leading to oxidative stress and inflammation (Li et al. 2002, 

2009). I found that at high levels of NO or CO, no association of PM2.5 with BP was observed 

(and vice versa – no association with the gas was found at high levels of PM2.5). These results 

indicate that at high concentrations of PM2.5 or traffic-related gases (NO and CO), which like-

ly represent traffic ―hot spots‖ with direct emissions of fresh combustion particles, the effects 

of the background air pollution mixture cannot be disentangled from the local ―hot spot‖. The 

results of this study indicate a major role of the secondary particles in the PM mixture. No 

consistent association with PN, representing primary ultrafine particles, was detected in the 

observational study part; thus, it is likely that the larger particles in the PM2.5 mixture were 

associated with BP. The secondary particles within PM2.5 may be more toxic due their longer 

life span compared to primary particles (Kelly and Fussell 2012). The chemical composition 

of air pollution is also important. The major sources of PM in the study area were traffic and 

industry; therefore, the particles can contain many redox-active compounds, such as PAH, 

transition metals, and others.  

The presented results with PM2.5 are well in line with the existing evidence (Tables 36, 37). 

The association of long-term exposure to PM2.5 with SBP was investigated in two studies 

(Auchincloss et al. 2008; Chuang et al. 2011). The 365-day mean concentration of PM2.5 in 

this study was identical to the 60-day mean concentration reported by Auchincloss et al. 

(2008) and was 2-fold lower than the 365-day mean in the study by Chuang et al. (2011). 

When presented per 1 µg/m³, the estimate in the study by Chuang et al. (2011) was the high-
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est: a 1.57 mmHg increase in SBP, compared to the estimated changes of 0.31 mmHg in the 

study by Auchincloss et al., and 0.47 mmHg in the current study. The association of PM10 

with SBP was also investigated in two other studies (Chuang et al. 2011; Dong et al. 2013). 

The levels of PM10 were the highest in the study by Dong et al. (2013), approximately 6 times 

higher than in the current study. The estimated changes of SBP per 1 µg/m³ of PM10 were 0.23 

In this study 0.34 in the study by Chuang et al., and 0.05 in the study by Dong et al. Similarly 

to DBP, the highest changes of DBP to PM2.5 or PM10 were observed in the study by Chuang 

et al. (2011) and the lowest in the study by Dong et al. (2013). In addition, a relatively high 

increase in BP per 1 µg/m³ increase in black carbon (a marker of traffic-related air pollution) 

was reported in a U.S. cohort of 853 elderly men (Schwartz et al. 2012). 

I detected no association of PM2.5 or PM10 with the prevalence of hypertension (OR = 1.000 

per 1 µg/m³) and a weak positive relationship with the incidence of hypertension (RR = 1.012 

per 1 µg/m³). The prevalence of self-reported hypertension was positively associated with 

annual PM2.5 exposure in a study with 132,224 participants: OR 1.005 per 1 µg/m³ (Johnson 

and Parker 2009). Thus far, the only two studies that used incidence of hypertension as an 

outcome reported elevated risk. In one of those studies, the estimate was larger than in the 

current study (RR = 1.040 per 1 µg/m³), but it was also imprecise (Coogan et al. 2012). In 

another study, the risk estimate was similar (hazard ratio (HR) = 1.014) but was much more 

precise than in the current study, reaching statistical significance (Chen et al. 2013). Both 

studies reporting significant associations of PM2.5 with prevalent or incident hypertension ana-

lyzed much larger populations than the one used in this observational study: 132,224 and 

35,303 compared to 4,584 participants in the analysis with prevalent hypertension and 1,471 

participants in the analysis with incident hypertension. 

6.3. Findings with gaseous compounds (except ammonia) 

With the observational study design, I did not find any independent associations of long-term 

exposure to gaseous compounds (O3, NO2, NO, SO2, and CO) with BP; the weak associations 

observed in one-pollutant models became null after adjustment for PM2.5 or PM10.  

With the experimental design, the expression of the studied genes was most affected by the 

animals’ exposure to NO2, with or without diesel exhaust; in addition, linear relationships of 

NO2 concentration with gene expression were detected for most of the studied genes.  

I compared the results of one-pollutant models with gaseous compounds of this study with the 

existing evidence (Tables 36, 37). Three other studies from Taiwan, China and Denmark have 

investigated the effects of long-term exposure to gaseous compounds on BP or hypertension 
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(Chuang et al. 2011; Dong et al. 2013; Sørensen et al. 2012). In the Danish study, nitrogen 

oxides were assessed as NOx; their concentration was much lower than the concentrations of 

NO2 and NO in the current observational study. The concentrations of all gaseous pollutants 

were higher in the Asian studies. In the Chinese cohort, the concentration of SO2 was more 

than 4 times higher than in the Taiwanese study and was approximately 7 times higher than in 

the current study. Results with gaseous pollutants were more divergent across studies than the 

results with PM. For example, O3 was inversely related to BP in my study (a change of -0.30 

mmHg SBP per 1 µg/m³), whereas in the Taiwanese cohort, O3 showed a strong positive asso-

ciation with BP (1.57 mmHg SBP); a similar, but weaker, positive association was observed 

in the Chinese cohort (0.03 mmHg SBP). NO2 was positively associated with BP in the Tai-

wanese study (0.55 mmHg SBP per 1 µg/m³) and was weakly related to BP in the current 

study (0.12 mmHg SBP); however, it was not associated with BP in the Chinese cohort (0.03 

mmHg). In the Danish study, the NOx concentration was inversely associated with BP. The 

results with SO2 indicated weak positive relationships in this study and in the Taiwanese co-

hort, but not in the Chinese study.  
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Table 36. The associations of long-term air pollution with systolic and DBP in the current study and in published studies, presented per increase in 

a pollutant concentration by 1 µg/m³. 

Results 

Current study Auchincloss et al. 

2008 

Chuang et al. 

2011 

Dong et al. 2013 Sørensen et al. 

2012 

Schwartz et al. 

2012 

N = 4,584 N = 5,112 N = 1,023 N = 24,845 N = 44,436 N = 853 

Exposure characteristics       

Averaging period (days) 365 days 60 days 365 days 3 years 365 days 365 days 

Daily mean (hours) 24-hour 24-hour 8–24 hours
1 

8-hour 24-hour 24-hour 

Mean exposure levels (µg/m³)      

BC – – – – – 0.61 

PM10 20.70 – 67.84 123.06 – – 

PM2.5 16.70 16.70 35.31 – – – 

O3 35.40 – 48.50 49.40 – – 

NOx – – – – 19.60 – 

NO2 40.10 – 49.69 35.28 – – 

SO2 8.70 – 13.90 54.42 – – 

Association with SBP: change, mmHg (95% CI) (per 1 µg/m³)     

BC – – – – – 8.25 (4.59, 11.88) 

PM10 0.23 (0.00, 0.46) – 0.34 (0.26, 0.43) 0.05 (0.03, 0.07) – – 

PM2.5 0.47 (0.09, 0.86) 0.31 (-0.05, 0.22) 1.57 (1.06, 2.09) – – – 

O3 -0.30 (-0.67, 0.07) – 1.14 (0.89, 1.38) 0.03 (0.02, 0.05) – – 

NOx
1 

– – – – -0.50 (-0.84, -0.16) – 
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Results 

Current study Auchincloss et al. 

2008 

Chuang et al. 

2011 

Dong et al. 2013 Sørensen et al. 

2012 

Schwartz et al. 

2012 

N = 4,584 N = 5,112 N = 1,023 N = 24,845 N = 44,436 N = 853 

NO2 0.12 (-0.02, 0.26) – 0.55 (0.42, 0.69) 0.03 (-0.02, 0.08) – – 

SO2 0.28 (-0.27, 0.84) – 0.11 (-0.58, 0.80) 0.02 (0.01, 0.03) –  

Association with DBP: change, mmHg (95% CI) (per 1 µg/m³)     

BC – – – – – 7.53 (5.53, 9.53) 

PM10 0.18 (0.05, 0.30) – 0.31 (0.27, 0.35) 0.02 (0.00, 0.03) – – 

PM2.5 0.31 (0.10, 0.52) – 1.53 (1.25, 1.82) – – – 

O3 -0.16 (-0.36, 0.04) – 1.09 (0.96, 1.22) 0.02 (0.01, 0.03) – – 

NOx
1
 – – – – -0.24 (-0.42, -0.07) – 

NO2 0.05 (-0.02, 0.13) – 0.48 (0.41, 0.55) 0.02 (-0.01, 0.05) – – 

SO2 0.13 (-0.17, 0.43) – 0.06 (-0.30, 0.43) 0.02 (0.01, 0.03) – – 

1
Estimate is calculated per doubling of exposure concentration. 

Table 37. The associations of long-term air pollution with prevalent and incident hypertension in the current study and in published studies, pre-

sented per increase in a pollutant concentration by 1 µg/m³. 

Exposure 

Current study Current study Dong et al. 

2013 

Johnson and 

Parker 2009 

Coogan et al. 

2012 

Sørensen et al. 2012 Chen et al. 

2013 

N = 4,584 N = 1,471 N = 24,845 N = 132,224 N = 3,236 N = 50,721 N = 33,275 N = 35,303 

Mean exposure levels (µg/m³)   

PM10 20.70 19.80 123.06 – – – –  

PM2.5 16.70 15.60 – Not presented 20.70 – – 10.70 

O3 35.40 37.60 49.40 – – – –  
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Exposure 

Current study Current study Dong et al. 

2013 

Johnson and 

Parker 2009 

Coogan et al. 

2012 

Sørensen et al. 2012 Chen et al. 

2013 

N = 4,584 N = 1,471 N = 24,845 N = 132,224 N = 3,236 N = 50,721 N = 33,275 N = 35,303 

NOx – – – – 43.30 19.60 19.60  

NO2 40.10 38.60 35.28 – – – –  

SO2 8.70 7.40 54.42 – – – –  

Outcome 

(%) 

Prevalence 

57.0% 

Incidence 

36.2% 

Prevalence 

40.6% 

Prevalence 

25.0% 

Incidence 

16.4% 

Prevalence 

16.2% 

Incidence 

9.6% 

Incidence 

24.5% 

Estimated association
      

PM10 
OR 1.000 

(0.900, 1.123) 

RR 1.005 

(0.912, 1.166) 

1.006 

(1.004, 1.008) 
– –    

PM2.5 
OR 1.000 

(0.900, 1.123) 

RR 1.012 

(0.932, 1.151) 
– 

OR 1.005 

(1.000, 1.010) 

RR 1.040 

(0.995, 1.087) 
  

HR 1.014 

(1.007, 1.022) 

O3 
OR 1.000 

(0.910, 1.110) 

RR 0.991 

(0.888, 1.079) 

1.006 

(1.003, 1.008) 
– –    

NOx
1 

– – – – 
RR 1.005 

(1.001, 1.009) 

OR 0.96 

(0.91, 1.00) 

RR 1.01 

(0.95, 1.08) 
 

NO2 
OR 1.010 

(0.962, 1.167) 

RR 1.006 

(0.990, 1.022) 

1.010 

(1.000, 1.020) 
– –    

SO2 
OR 1.007 

(0.921, 1.120) 

RR1.013 

(0.931, 1.119) 

1.005 

(1.002, 1.008) 
– –    

1
Estimate is calculated per doubling of exposure concentration. 
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6.4. Findings with ammonia 

In the current study the long-term exposure to NH3 was positively associated with BP and 

positively related to hypertension. PM and NH3 were highly correlated, which is why it was 

not possible to completely disentangle their effects. The results with NH3 were robust to ad-

justment with PM, whereas the association of PM with BP diminished to null after adjustment 

with NH3. Ammonia is an important component of secondary particles in PM2.5 (such as am-

monium nitrate or sulfate). Therefore, the positive association of ammonia with BP may be 

indicative of the health effect of secondary particles.  

Ammonia is a toxic component of air pollution. The acute health effects of NH4 in animals 

include respiratory and eye irritation, deeper and slower breathing, lung inflammation, re-

duced smelling capacity, lethargy, immune response, and increased bacterial susceptibility in 

the respiratory tract (WBK and Associates Inc. 2004). Chronic exposure to NH3 results in af-

fected lung function, coughing, phlegm, wheezing, and dyspnea (WBK and Associates Inc. 

2004).  

However, it is not clear whether NH3 can increase BP or whether the observed association is 

due to collinearity of exposures. To date, there are no studies on the association of NH3 with 

BP. Nevertheless, it is biologically not implausible that NH3 can increase BP. Atmospheric 

NH3 is an odorant chemical. Malodors such as NH3, hydrogen sulfide (H2S), and VOC, can 

potentially affect BP through a stress-related mechanism (Wing et al. 2013). In a panel study 

with healthy nonsmoking adults, self-perceived and measured (as H2S) malodor from the in-

dustrial swine operations was strongly and positively associated with SBP and DBP (Wing et 

al. 2013). More studies on the biological plausibility of the association of ammonia with BP 

are needed. 

6.5. Potential biological mechanisms: analyzing experimental results  

I found some indication that long-term exposure to diesel exhaust and NO2 affects the activity 

levels of genes involved in inflammatory and immune responses, cell signaling, and cardio-

vascular pathology in mouse lung tissue. The results with these genes were summarized and 

compared with other studies.  

CYP1A1 

In the controlled exposure study, I observed decreased expression of CYP1A1 in the murine 

lung at higher levels of NO2. The effect of diesel exhaust was inconclusive. The product of 

CYP1A1, cytochrome P450, takes part in the metabolism of xenobiotics and in the synthesis 
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of cholesterol, steroids and other lipids (National Center for Biotechnology Information 

2014a). CYP1A1 takes part in the production of arachidonic acid-derived vasoactive sub-

stances. Some of these substances influence renal function, peripheral vascular tone and BP 

(Newton-Cheh et al. 2009). The products of the metabolism of omega-3 polyunsaturated fatty 

acids with cytochrome P450, such as 17,18-epoxyeicosatetraenoic acid and 19,20-

epoxydocosapentaenoic acid, are strong vasodilators, and the loss of these vasodilators result-

ed in increased BP in CYP1A1 knockout mice (Agbor et al. 2012). The decreased activity of 

CYP1A1 may also result in increased BP.  

Some studies link CYP1A1 activity to BP. In a genome-wide association study with up to 

84,114 individuals of European and Indian Asian ancestry, few loci were associated with SBP 

and DBP, including genes coding the cytochrome P450 proteins (Newton-Cheh et al. 2009). 

Another study showed that CYP1A1 mediates endothelial dysfunction and hypertension after 

exposure to xenobiotics, such as dioxin-like halogenated aromatic hydrocarbons (Kopf et al. 

2010). Therefore, the alteration of CYP1A1 activity may change cardiovascular risk. In a 

case-control study with Turkish participants, different genetic variants of CYP1A1 contribut-

ed to inter-individual variability in smoking- and hypertension-induced ischemic stroke risk 

(Demirdöğen et al. 2013). CYP1A1 activity was positively associated with the incidence of 

stroke in patients with essential hypertension (Lança et al. 2004).  

The organic component in the diesel exhaust and the PM mixture can activate CYP1A1 

(Dieme et al. 2012; Ma and Ma 2002). Other studies showed that combustion-derived parti-

cles stimulated the expression of CYP1A1 through the activation of the aryl hydrocarbon re-

ceptor and increased binding to xenobiotic response elements (Chan et al. 2013; Matsumoto et 

al. 2007; Rouse et al. 2008; Wenger et al. 2009). In an in vitro model with human cells, short-

term exposure to PM2.5 from a highly industrialized area induced significant increases in the 

mRNA expression levels of CYP1A1 and other related enzymes (Billet et al. 2007). Chan et 

al. showed that combustion-derived ultrafine particles were capable of a rather weak increase 

in AhR activity and altered CYP1A1 expression differently according to age, lung compart-

ment, and recovery time after exposure (Chan et al. 2013). Expression of CYP1A1 in rat lung 

rapidly increased after exposure to diesel exhaust particles (Van Berlo et al. 2010). 

The downregulation of CYP1A1 may be a result of the activation of host defense mecha-

nisms. The administration of inflammatory cytokines, such as TNFα, inhibited CYP1A1 ac-

tivity in vitro (Gharavi and El-Kadi 2007; Paton and Renton 1998). Another possible explana-

tion of the reduced activity of CYP1A1 following NO2 inhalation may be that NO (assuming 

that NO2 also contains some quantity of NO), also a potent vasodilator, competes with 
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CYP1A1 metabolites, the vasoactive substances, and downregulates its activity. The inhibi-

tion of CYP1A1 by NO was demonstrated in vitro (Gharavi and El-Kadi 2007; Stadler et al. 

1994; Vuppugalla and Mehvar 2004).  

The potential health impact of cytochrome P450 activity inhibition is not clear. The process of 

metabolizing the foreign chemical, CYP1A1, may lead to the formation of highly toxic me-

tabolites, such as dihydroxyl epoxide, a potential carcinogen emerging during the transfor-

mation of VOCs, in particular, benzo(a)pyrene. The finding that NO2 decreased CYP1A1 ex-

pression could indirectly also mean that the capacity of the lung to address the metabolism of 

such xenobiotics could be affected during co-exposure to NO2 in addition to diesel exhaust. 

This finding might be specific to long-term exposure because short-term exposure with diesel 

exhaust upregulated CYP1A1 in a rat lung (Van Berlo et al. 2010) 

ICAM-1 

I observed elevated expression of ICAM-1 with diesel engine exhaust and NO2. The product 

of this gene is involved in leukocyte adhesion and trans-migration to the endothelium; it is 

also involved in vascular inflammation and signal transduction. Expression of this gene corre-

lates with systemic inflammation and cardiovascular risk, rheumatoid arthritis, hypertension, 

and growth of atherosclerotic lesions (Lawson and Wolf 2009; Witkowska and Borawska 

2004). Immune cell recruitment, activated by ICAM-1, is an important event in atherosclero-

sis development (Wang et al. 2013). 

The activity of ICAM-1 is related to both the inflammatory process and endothelial function. 

It has been suggested that hydrogen peroxide (H2O2) can activate ICAM-1 gene transcription 

(Zadeh et al. 2000). H2O2 is produced by leukocytes during vascular response to injury; its 

production is increased by cytokines such as TNFα (Zadeh et al. 2000). Correspondingly, 

TNFα upregulates ICAM-1 expression (Wang et al. 2013). At the same time, induction of  

iNOS expression can inhibit ICAM-1 expression to protect the vascular endothelium (Zadeh 

et al. 2000).  

ICAM-1 activity is affected by smoking, antioxidant intake and vasoconstriction agents, such 

as angiotensin (Witkowska and Borawska 2004). Air pollution exposure can increase ICAM-1 

production. For example, in a cohort study with 704 elderly men, traffic and secondary parti-

cles were associated with ICAM-1 and vascular cellular adhesion molecule (VCAM-1) con-

centrations (Bind et al. 2012b). In the same cohort, exposures to O3 and sulfate were associat-

ed with changes in ICAM-1 gene methylation (Bind et al. 2014). In diabetic patients, outdoor 

exposures to PM2.5, black carbon and sulfate were positively related to ICAM-1 expression; 
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stronger associations were observed for PM2.5 and black carbon with VCAM-1 (O’Neill et al. 

2007).  

Similar findings have been reported in animal and in vitro studies. In an ischemic stroke mod-

el in rats, the inhalation of SO2 activated gene expression in a dose-dependent manner com-

pared to the control for ICAM-1 and other genes, such as iNOS, cyclooxygenase 2, and ET-1 

(Sang et al. 2010). In an animal model with hyperlipidemic rats, exposure to PM10 induced 

ICAM-1 and VCAM-1 expression in the aorta endothelium and caused the progression of 

atherosclerosis (Yatera et al. 2008). Elevated ICAM-1 levels were reported in lung tissue in 

rats exposed to O3 (Bhalla and Gupta 2000). NO2 was positively associated with ICAM-1 

expression in human bronchial cells in vitro (Ayyagari et al. 2007; Pathmanathan et al. 2003). 

Diesel exhaust particles increased the production of inflammatory mediators, including 

ICAM-1, in human respiratory epithelial cells in vitro (Bayram et al. 1998; Yang et al. 2009).  

INOS 

INOS expression was somewhat increased in the DEE+NO2(high) group, but this increase was 

not statistically significant. I detected strong decreases of iNOS activity in two groups: 

DEE(filtered) + NO2(high) and NO2(high). In the latter group, the gene expression was almost 

null, and the variances were very low compared to other groups. Therefore, these observations 

might be a chance finding and should await confirmation in further studies. There was a linear 

trend in the association of NO2 concentration with gene activity: higher concentration of NO2 

was associated with lower expression of iNOS.  

iNOS is involved in the immune defense response but also plays a role in vascular pathology, 

such as hypertension (Lee and Yen 2008). This dual role is provided by NO: a potent oxidant 

on the one hand, protecting against infectious organisms, and a vasodilatory agent on the oth-

er hand, triggering smooth muscle relaxation (Wang et al. 2013). Under normal conditions, 

iNOS is not expressed or is expressed at a minimal level. Inflammatory cytokines can activate 

iNOS expression in vascular cells (Lee and Yen 2008). INOS upregulation might play a role 

in vascular dysfunction and atherogenesis (Bai et al. 2011). 

Thus far, two studies have investigated the effect of nitrogen oxides (only NO) on iNOS activ-

ity, with different results. In one study, NO downregulated iNOS gene transcription in vitro; 

the authors hypothesized that this inhibition might be a regulatory mechanism to limit NO 

overproduction during the inflammatory response (Taylor et al. 1997). In another study, gase-

ous NO activated iNOS in a mouse model of lung cancer and promoted lung cancer develop-

ment (Chen et al. 2008). It is possible that duration of exposure additionally modifies iNOS 
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activity: acute exposure results in an inflammatory response, characterized by iNOS upregula-

tion, similar to the study by Chen et al. (2008), whereas during long-term exposure, a com-

pensatory protective mechanism is activated, and iNOS activity is inhibited, as suggested by 

Taylor et al. (1997). 

Other air pollutants have also shown heterogeneous effects on iNOS activity. In a controlled 

exposure study with healthy volunteers, exposure to fine and coarse concentrated ambient 

particles (CAPs) was related to the decreased methylation of Alu, TLR4, and iNOS (for the 

latter, not statistically significant) (Bellavia et al. 2013). Increased iNOS expression after ex-

posure to CAPs and O3 was observed in an animal study (Sun et al. 2013). In an ApoE knock-

out mouse model, exposure to diesel exhaust increased iNOS expression (Bai et al. 2011). In 

an animal study in which murine lung tissues were investigated after long-term exposure to 

diesel exhaust, the expression levels of iNOS in the lung and of TNFα and some interleukins 

in lung macrophages were suppressed after low- and high-dose diesel exhaust exposure; be-

cause iNOS, TNFα and IL play important roles in defense against infections, the authors hy-

pothesized that exposure to diesel exhaust may cause increased infectivity (Saito et al. 2002). 

In a rat model of with O3-induced lung inflammation, short-term exposure to particles resulted 

in increased iNOS expression; the authors hypothesized that the free radical NO may have 

caused the observed endothelial damage (Ulrich et al. 2002). Chauhan et al. (2004) detected in 

vitro modulation of iNOS activity according to differences in the PM mixture: urban particles 

(SRM-1648, SRM-1649, EHC-93) downregulated iNOS activity, whereas PM2.5 or cristobal-

ite (SRM-1879) were associated with higher iNOS activity levels. 

NQO1 

In the experimental part of the current study, high NO2 concentrations (alone or combined 

with DEE) were associated with elevated NQO1 expression compared to the control. The re-

lationship of NO2 concentration to gene expression was linear. NQO is involved in redox re-

actions: it catalyzes the reduction of endogenous (vitamin E) or environmental (benzene) qui-

nones (Nebert et al. 2002). Polymorphisms in NQO1 and other genes involved in oxidative 

stress genes increase respiratory symptoms, which affects lung function (Yang et al. 2009).  

Elevations of NQO-1 expression may work to both protect and exacerbate vascular injury. 

The inhibition of NQO1 activity increases the risk of toxicity or cancer (Nebert et al. 2002). 

At the same time, NQO1 is a potent protecting factor against adverse cardiovascular condi-

tions, such as cardiovascular injury, atherogenesis, and others. (Zhu and Li 2012). The gene 

NQO1 is under control of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription 
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factor pathway, and this transcription factor is emerging as a potentially important player in 

particle-induced lung diseases (Araujo and Nel 2009). 

To date, there are no studies on the association of ambient NO2 with NQO1 expression. How-

ever, it is possible that NO2 increases NQO1 activity, similarly to other air pollutants. For ex-

ample, organic chemicals in the PM2.5 mixture (such as PAH) induced the expression of 

CYP1A11 and NQO1 in vitro (Dergham et al. 2012). The organic component of the PM2.5 

mixture activated NQO1 expression and, to a greater extent, the cytochrome P450 genes in 

vitro (Dieme et al. 2012). The activity of the NQO-1 gene may be mediated through antioxi-

dant responses (Li 1992) and can interact with smoking status and benzene exposure (Kim et 

al. 2007). 

TNFα 

TNFα encodes an acute-phase cytokine that regulates multiple processes: apoptosis, inflam-

mation, proliferation, lipid metabolism, and coagulation (National Center for Biotechnology 

Information 2014b). Similarly to NQO1, it has a dual role; both adverse and protective effects 

have been reported for its activity (Tracey and Cerami 1993). I did not detect statistically sig-

nificant differences in TNFα activity in exposed groups compared to the control. However, 

the expression of TNFα tended to be inhibited in some groups with NO2. This is in line with 

at least one study, where PM2.5 and PMcoarse inhibited TNFα activity, whereas diesel exhaust 

did not alter it in vitro (Becker et al. 2005). 

However, most studies report activation of TNFα induced by air pollution exposure. For ex-

ample, in a panel study with healthy individuals, TNFα activity was positively associated with 

zinc in urban air pollution (Wu et al. 2012). In a case-control study on myocardial infarction, 

Panasevich et al. (2013) found that different genetic variants of TNFα modified the effects of 

short-and long-term exposure of air pollution on inflammatory marker levels and the risk of 

infarction. In an in vitro model with human cells, short-term exposure to PM2.5 induced apop-

tosis, which involved TNFα activation and cytochrome c release from the mitochondria 

(Dagher et al. 2006); these results were preceded by an inflammatory response involving 

changes in iNOS activity and NO release (Garçon et al. 2006). In another in vitro model, traf-

fic-related particles induced IL-6, TNFα and NO (Lindbom et al. 2007). Future research could 

shed more light on the role of TNFα in adverse cardiovascular effects of air pollution. 

6.6. Clinical relevance of the observed BP change 

The estimated change in BP following exposure to air pollution is rather small. However, 
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even small changes of arterial BP are of high public health importance. The increase of BP by 

only a few mmHg is not substantial at the individual level; however, it implies that larger pro-

portions of individuals in the population are hypertensive. The rates of hypertension are in-

creasing worldwide in all countries where economic growth is accompanied by epidemiologi-

cal transition (with non-communicable diseases becoming a more urgent issue than communi-

cable), increasing life expectancy, and population aging. Unhealthy diet, low physical activity 

level, overweight and psychosocial stress also contribute to the increasing prevalence of hy-

pertension worldwide (WHO 2013). Hypertension is a major risk factor for CVD, stroke, kid-

ney failure, premature mortality and disability (WHO 2013). According to the Global Burden 

of Disease Study in 2010, high BP was the leading risk factor for mortality (Lim et al. 2013).  

The prevention of hypertension is a crucially important issue for public health. A reduction in 

SBP of only 2 mm leads to reductions in stroke mortality by 5%, in CHD mortality by 4%, 

and in total mortality by 3% (Whelton et al. 2002). A reduction of DBP of 2 mmHg has been 

linked to a 6% lower risk of CHD and a 15% lower risk of stroke and transient ischemic at-

tack (Cook et al. 1995). It has been estimated that a 2.2 mm Hg lower SBP (resulting from, 

e.g., a lower habitual population sodium intake of 100 mmol/day) corresponds to a 4% lower 

risk of coronary death and a 6% lower risk of stroke death among the middle aged in the US 

and UK populations (Stamler et al. 1989). 

The current levels of urban background air pollution can be seen, with regards to the results of 

this study, as a target for population-based preventive strategies (Rose 1985). Since a mono-

tonic linear relationship of PM with BP was observed, reduction of PM at any levels is im-

portant. Prevention of air pollution-related increases in BP is especially important because 

hypertension may be a linking mechanism between air pollution exposure and cardiovascular 

events. Exposure to air pollution may affect vasomotor tone and cause a pro-hypertensive 

response, which, in turn, could trigger ischemic cardiac events and, thus, could increase the 

risk for heart failure and stroke (Brook et al. 2009; Tofler and Muller 2006). High BP and hy-

pertension are important intermediates in atherosclerosis progression, an underlying condition 

for many cardiac events. Air pollution-related increase in BP could be one of the mechanisms 

by which PM air pollution may lead to atherosclerosis, as shown in recent studies (Bauer et al. 

2010; Hoffmann et al. 2007; Künzli et al. 2010). 

6.7. The impact of different definitions of hypertension 

Availability of measured BP data defines the definitions of hypertension, used in different 

studies: if no BP data are not accessible, self-reported hypertension status or hospital records 
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could be used. However, using different definitions limits the studies’ comparability. Of 5 

studies on air pollution and hypertension, the JNC7 definition, based on both BP values and 

medication (used as the main outcome definition in this work), was used in one study (Dong 

et al. 2013). One study used the hospital registry with physician-defined hypertension (Chen 

et al. 2013). Three studies used self-reported diagnosis of hypertension (Coogan et al. 2012; 

Johnson and Parker 2009; Sørensen et al. 2012). Coogan et al., who used a self-report of doc-

tor-diagnosed hypertension and the concurrent use of BPLM as an outcome definition, ascer-

tained this definition in the subset of hypertensive participants (139 cases) with the help of 

medical records or physician checklists; 99% of the cases were confirmed (Coogan et al. 

2012). 

I compared two outcomes in this study: the ―measured‖ hypertension (included as main study 

outcome and defined with BP values and BPLM intake status) and the self-reported hyperten-

sion. Both outcomes were obtained in most of HNR participants, which provided a unique 

possibility of comparison. The definitions overlapped quite well: 73% to 76% of participants 

with information on both outcomes were characterized equally. However, Cohen’s kappa, a 

measure of agreement, was somewhat worse for the incident hypertension, than for prevalent 

hypertension at baseline or follow-up. Results of the analysis with air pollution were some-

what different with ―measured‖, than with self-reported hypertension. Although not statistical-

ly significant, the relationship of exposures with ―measured‖ hypertension was mostly posi-

tive, similar to the observed associations with BP, whereas the relationship of exposures with 

self-reported hypertension was null to slightly negative, similar to the results observed with 

BPLM intake as an outcome. 

The observed difference between results with ―measured‖ and self-reported hypertension 

might indicate a group of subjects with variable BP, which increased during the measurement 

and, correspondingly, the overestimation of hypertension prevalence when using the JNC7 

definition in the current study. Indeed, there were 5% of participants classified as hyperten-

sive at baseline and as normotensive at follow-up. Benetos et al. (2003) have shown that a 

single BP measurement could overestimate the proportion of subjects receiving BPLM and 

yet having high BP values. Possibly, the definition of hypertension based on a single meas-

urement (although standardized and repeated 3 subsequent times) is insensitive towards short-

term elevation of BP, which does not indicate an underlying vascular pathology. Indeed, in the 

group of participants with prevalent hypertension at baseline and follow-up, which constituted 

approximately half of the follow-up sample, the association of air pollution with BP was 

stronger than in the entire sample.  
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An alternative explanation to the observed phenomenon would be a relatively low overlap of 

known and ―measured‖ hypertension may imply inadequate coverage of hypertensive patients 

by medical services. Therefore, it is not recommended to favor self-reported hypertension 

over the information provided by BP values and medication. However, it is advisable to repeat 

measurements of BP over some period of time for more validity of the ―measured‖ hyperten-

sion definition, and to check the ―measured‖ outcome using the self-reported information. 

6.8. The role of BPLM intake 

I employed a few strategies to assess the potential bias because of the BPLM intake. No cor-

rection and adjustment for BPLM intake as a covariate, labeled as ―fundamentally flawed‖ in 

a methods article on correction for medication (Tobin et al. 2005), delivered very similar re-

sults. Moreover, the results remained unchanged when one of the methods recommended by 

Tobin et al. (Tobin et al. 2005) was employed, namely the addition of a fixed value to the BP 

of medicated subjects. Right-censored regression, another recommended strategy, yielded 

slightly different results: some estimates were higher, others were lower, and the precision of 

the estimates differed somewhat. Estimates with right-censored regression mimicked the ef-

fect in non-medicated participants. 

In addition to the aforementioned methods, I assessed the association with BP separately in 

medicated and non-medicated individuals. To avoid power loss, I calculated the effects in the 

model with interaction terms. In addition, BPLM intake was also included as an outcome. 

This method has the advantage of implying no assumptions regarding, for example, the treat-

ment effect. Despite the BP-lowering effect of medication, the BP values in medicated indi-

viduals were substantially higher than in non-medicated individuals. This observation, togeth-

er with the finding that known hypertension status has only a 66.4% overlap with the JNC7 

definition, possibly hints at the fact that the medication was not effective in some participants. 

With regard to this finding, it is advisable to assess the effectiveness of medication when mak-

ing the decision on the strategy to correct for the BPLM intake in the analysis of BP.  

I observed the most consistent association of PM with BP in the group of medicated individu-

als, at both baseline and follow-up. In non-medicated individuals, the effect estimate was 

slightly lower and less precise than in medicated individuals. The results with NH3 were very 

similar, with the only difference being that the association with BP was statistically significant 

in medicated and non-medicated individuals. The concentrations of PM and NH3 were also 

related to lower risk for BPLM intake in the study participants (the estimated associations 

were statistically significant with the follow-up subcohort only). The hypothesis that air pollu-
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tion-induced BP increase leads to BPLM intake and that one would see a positive association 

of PM with BPLM intake and a negative association of PM with BP was not confirmed with 

the results with PM and NH3. Therefore, the mediation of the effect of background PM2.5 by 

BPLM is less likely than confounding with noise. More likely, BPLM intake could be seen as 

a susceptibility factor in these subjects. 

The situation with traffic-related pollutants, such as NO2, CO, was slightly different. In con-

trast, the association of NO2 with BP was robust only in non-medicated individuals. NO2, O3 

and CO were imprecisely positively related to an elevated risk for BPLM intake. In agreement 

with this finding, I also observed a positive association of living close to traffic and in disad-

vantaged neighborhoods with BPLM intake. Traffic noise was imprecisely positively linked to 

BPLM intake. All exposures associated with higher BPLM intake are traffic-related. There-

fore, it is possible that noise annoyance and low socio-economic status (personal or neighbor-

hood-level) contribute to this association and confound the association of air pollution with 

BP. In this case, one should use BPLM as a covariate in the adjustment set. The exposure to 

noise, different from air pollution, can be perceived personally and can lead to elevated BP 

through the stressor response mechanism (Babisch et al. 2014). 

Self-reported BPLM intake had a very good overlap with the BPLM intake according to the 

study definition, and showed similar relationship with the studied exposures. This gives the 

reason to consider that self-report is quite valid source of information regarding BPLM intake. 

It is, however, not to forget, that some drugs, prescribed for conditions other than hyperten-

sion, may decrease BP was well (diuretics, for example). Therefore, if BPLM intake is used in 

the analysis to correct for BP values in medicated subjects, self-report may not be sufficient.  

6.9. Confounding of long-term associations with temporal variation 

Both the exposure and the outcome in the observational study are subject to temporal varia-

tion. The individual 365-day mean was used as a main exposure definition, representing long-

term air pollution concentration. Over the three years of baseline or follow-up, the 365-day 

mean demonstrated temporal variation in addition to spatial variation. For example, the 365-

day mean concentrations of two participants who lived close to each other but were scheduled 

for BP measurements on different dates would most likely differ. Such temporal changes 

might bias the analysis of long-term spatial differences in exposure, which was the primary 

interest in this study. Therefore, to overcome this problem, the time trend (a count of days 

from the first baseline or follow-up measurement date to the last, entered as a linear and 

squared term) was used in this analysis to adjust for confounding from temporal variation. 
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The results of this analysis, with and without adjustment for time trend, differed dramatically; 

without time trend, no association of exposure with outcome was observed. Therefore, time 

trend was always included as a covariate. In addition, season was an effect modifier: the asso-

ciation of PM2.5 with BP was stronger in the summer than in other seasons. BP values are also 

variable over time: BP tends to be higher in cold periods and lower in warm periods (Alpé-

rovitch et al. 2009; Rose 1961). In our data, seasonality was also observed and was more 

prominent for SBP than for DBP (Appendix Figure 29). 

To verify whether temporal variation biased the analysis, an additional exposure definition 

was used: the grid-specific mean over the entire baseline or follow-up period. This definition 

did not contain the temporal variation component and did not require adjustment for time 

trend. The concentrations of grid-specific mean exposure were similar, but not identical, to the 

individual 365-day mean (for example, there was a correlation of 0.875 for PM2.5 at baseline). 

I also observed a positive relationship of PM2.5 with SBP that was close to, though slightly 

less precise than, the estimate with the 365-day mean, adjusted for time trend. A weaker asso-

ciation may be detected because the grid-specific mean is averaged over a longer time period; 

therefore, the variation in exposure concentration is smaller. The association of the grid-

specific mean was more precise with DBP, possibly because DBP did not vary much over 

time and, in contrast to SBP, was not confounded by time trend.  

6.10. Application of the longitudinal analysis in the study setting 

I performed longitudinal analysis with BP in addition to cross-sectional one to test the causal 

inference. This analysis was done with three different strategies: analysis with baseline expo-

sure and BP at the follow-up measurement, analysis with baseline exposure and change in BP 

from baseline to follow-up, and analysis with change in exposure and change in BP from 

baseline to follow-up.  

It is shown that SBP increases with life span (Whelton 1994). I observed different rates of 

increase or even a decrease in certain subgroups of the study population. For example, SBP 

increased most rapidly among participants not taking BPLM, especially in the older age 

groups. I observed mostly a decrease in SBP from baseline to follow-up among participants 

taking BPLM. To take the different rates of progression into account, I performed the longitu-

dinal analysis in the group of participants not taking BPLM.  

DBP, opposite to SBP, decreases after certain age due to growing arterial stiffness (Whelton 

1994). I observed a decrease in DBP in the study population, regardless of medication status. 

Therefore, the analysis with change in DBP might be particularly challenging in this study: 
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the decrease in air pollution from baseline to follow-up, possibly resulting in better cardiovas-

cular health and lower BP, coincides with age-related decrease in DBP, also observed in the 

follow-up period.  

Considering this, I used PP as an additional outcome. It reflects increase in SBP and decrease 

in DBP simultaneously, and have been shown an independent risk factor for cardiovascular 

disease, possibly more important than SBP or DBP, in older subjects (Franklin et al. 2001). 

Results with PP were generally very similar to the results with SBP and are in line with a re-

ported positive association of long-term residential traffic exposure with PP (Rioux et al. 

2010). 

Longitudinal analysis with exposure at baseline and BP at follow-up has shown quite similar 

results to the cross-sectional analysis. This finding strengthens the hypothesis of causal asso-

ciation of air pollution with hypertension and BP related cardiovascular system pathology. 

However, it is necessary to consider an alternative explanation for this finding. I observed a 

high positive correlation between air pollution concentrations at baseline and after 5 years of 

follow-up, especially with grid cell means, representing the spatial contrasts in exposure. BP 

at follow-up is expectedly positively correlated with BP at baseline, especially among partici-

pants who underwent no intervention, such as BPLM intake or weight loss. It is therefore to 

expect that the analysis with baseline exposure and follow-up BP would produce results quite 

similar to cross-sectional analyses with baseline or follow-up data, which was observed in this 

study. 

I have employed two other strategies, both of which included change in BP from baseline to 

follow-up as an outcome. I observed different results with these strategies: whereas exposure 

at baseline was mostly positively related to change in BP at follow-up, change in exposure 

from baseline to follow-up was negatively associated with change in BP. I also observed a 

high negative correlation of exposure at baseline with change in exposure during follow-up 

period for PM2.5, PM1, PN, and CO. Taken together, these results may reflect decreases in 

exposure, possibly a result of focused actions in the zones with especially high concentra-

tions. The contra-intuitive findings of negative associations may also point out the fact that 

under these specific study conditions – when air quality improved but cardiovascular health of 

population with aging worsened – analysis of change with blood pressure is not an optimal 

analysis method. 

It is recommended to use categorical outcomes, such as hypertension (possibly also divided to 

stages 1, 2, and isolated systolic hypertension) in the longitudinal analysis with BP. These 
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outcomes would possibly better reflect chronic deterioration in cardiovascular health, than 

change in BP as outcome. However, using categorical outcomes implies less power to detect 

significant associations, which was also observed in the current analysis as wider confidence 

intervals, not allowing to reject the null hypothesis of no association. 

6.11. Different BP measures as outcomes 

Apart from different progression with aging, discussed in 7.10, SBP and DBP also differ in 

terms of clinical meaning. SBP represents the heart function, whereas DBP can be seen a 

marker of arterial aging. For almost three quarters of the twentieth century – starting from the 

first measurements in early 1900s and until 1970s – DBP was considered a more important 

measure of risk then SBP (Franklin et al. 2001). In 1971, results of Framingham Heart Study 

follow-up assessment showed the ―declining relative importance of diastolic and a corre-

sponding increase in the importance of systolic pressure with advancing age‖ (Kannel et al. 

1971). It has been shown that SBP better predicts cardiovascular risk in elderly, and DBP – in 

younger individuals (Franklin et al. 2001). PP has been shown an independent risk predictor 

for CHD, especially in subjects aged 60 and older (Franklin et al. 2001). 

Systolic BP is increased if cardiac output increases (Pal and Pal 2005) or if early pulse wave 

reflections during systole affect left ventricular contraction, ejecting blood into the aorta and 

creating a pressure pulse (Benetos et al. 2003). Increasing arterial stiffness results in elevated 

SBP and decreased DBP (Benetos et al. 2003). As a result, PP will also increase with arterial 

aging. In addition, DBP levels can increase with increasing peripheral vascular resistance 

(Benetos et al. 2003). Therefore, depending on the mechanism of influence of air pollution on 

BP, long-term exposure to air pollution can theoretically result in increased SBP and PP and 

decreased DBP, or in increased DBP. 

In the current study, I observed a similar direction of association – mostly positive – of air 

pollution with SBP, DBP, and PP. This finding is coherent with the current evidence. Some 

studies have reported a positive long-term association of air pollution with SBP only (e.g., 

Foraster et al. 2014), but most with both SBP and DBP (e.g., Chuang et al. 2011; Dong et al. 

2013; Schwartz et al. 2012). Sørensen et al. (2012), who showed an inverse association of 

long-term exposure to NOx with BP, reported similar results with SBP and DBP. A positive 

association of air pollution with both SBP and DBP could indirectly prove that two physiolog-

ical pathways, namely, increasing peripheral vascular resistance and increasing arterial stiff-

ness could be involved. This finding should be confirmed in further studies, 

6.12. Association of road traffic noise with BP 
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The observational cohort allowed an analysis with air pollution and noise as simultaneous 

exposures in order to test for the independence of effects. In the results presented in this work, 

road traffic noise was associated with SBP and PP, independent of air pollution, but did not 

show associations with hypertension or BPLM intake. The association of PM2.5 with BP was 

robust to adjustment for road traffic and tram noise. Therefore, the effects of noise and air 

pollution in the study population are likely independent of each other. 

To date, there are only a few studies investigating noise and air pollution simultaneously. 

Most studies report a similar finding: the independence of air pollution and noise effects. For 

example, a positive association of road traffic noise with BP, independent of air pollution, was 

observed in a large Danish cohort (Sørensen et al. 2011); in the same cohort, the inverse asso-

ciation of NO2 with BP was independent of road traffic noise (Sørensen et al. 2012). In a 

Dutch study, road traffic noise ≥ 55 dB was positively associated with hypertension in sub-

jects aged 45 to 55 years, though not in the entire cohort; this association was independent of 

PM10 levels (de Kluizenaar et al. 2007). In a Swiss cohort, railway noise was positively asso-

ciated with BP, independent of NO2, whereas road traffic noise was associated with BP only 

in a subgroup of diabetic subjects (Dratva et al. 2012). In a part of the German KORA cohort 

(city of Augsburg), road traffic noise was positively associated with isolated systolic hyper-

tension, whereas in the other part of the same cohort (greater Augsburg), noise was inversely 

related to hypertension; both findings were independent of PM2.5 (Babisch et al. 2014). In the 

same cohort, PM2.5 was positively linked to hypertension, independent of road traffic noise, 

although this relationship was not statistically significant (Babisch et al. 2014). The evidence 

of the association of road traffic noise as a single exposure with BP is inconsistent (Babisch 

2010), although a positive association with hypertension has been reported in a recent meta-

analysis of 24 studies (van Kempen and Babisch 2012).  

It is possible that air pollution and noise affect different pathophysiologic pathways, or at least 

not completely overlapping ones. Whereas the adverse effect of air pollution on BP is likely 

dominated by an oxidative stress downstream cascade, road traffic noise is a stressor affecting 

the endocrine system and the ANS (Babisch et al. 2014).  

6.13. Lessons learned from the analysis with different housekeeping genes 

I found some variability in the expression of housekeeping genes in different exposure 

groups, especially noticeable for GAPDH. The activity levels of GAPDH (the product of this 

gene takes part in energy metabolism) were lower in groups with high concentrations of NO2. 

GAPDH is a multifunctional protein that is involved in microtubule bundling modification, 
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membrane fusion, calcium flux modification, gene transcription, DNA repair and replication, 

nuclear RNA export, and cell death (Hara et al. 2006). It is highly speculative whether this 

could be a real and not a chance finding. However, at least one study has showed that 

GAPDH can react with peroxynitrite, a product of NO2 (Mohr al. 1994). NO can also trigger 

posttranslational modification of GAPDH, which may mediate neuronal cell death (Hara et al. 

2006). 

It is recommended to check the expression of housekeeping genes in the study groups, which 

will allow detecting any inconsistencies. It is also necessary to present the crude expression of 

the genes that are studied, in addition to the one corrected for the housekeeping genes activity, 

and study the differences thoroughly. A careful consideration for the choice of the housekeep-

ing gene for the measurement is advisable. 

6.14. Strengths and limitations of the analysis 

There are some limitations of the observational study. First, measurement of BP was per-

formed once at baseline and at follow-up, which has implications for the analysis with both 

BP and hypertension. BP is highly variable parameter, and individual variation may conceal 

relatively small changes caused by air pollution. Defining hypertension based on a single 

measurement may also lead to misclassification in those individuals whose BPs get unexpect-

edly low or high at the time of measurement (for example, ―white coat hypertension‖ or cold-

induced hypertension). Few repeated measurements, preferably in different seasons, are desir-

able for the correct identification of hypertension. Second, a longitudinal analysis of the air 

pollution effect in the HNR cohort is challenging: the exposure concentrations decreased over 

the follow-up time whereas the outcome naturally increased with age. At the same time, the 

cross-sectional analysis precludes a causal interpretation of the complex interplay between 

environmental factors, related confounders and individual susceptibility. Third, no infor-

mation on actual exposure dose (e.g., how many hours the participant spends at home each 

day) was included in the air pollution assessment. Finally, despite the significant effort made 

to produce unbiased estimations, there is always a chance for residual confounding due to 

some unmeasured factors in the observational study. 

At the same time, the observational study had multiple strengths. A well-characterized, large 

population-based cohort was used. The measurements were performed by certified personnel 

using standardized protocols. All data were checked for plausibility. The outcome measure-

ments were performed according to the WHO recommendations three times with each partici-

pant, and the mean of the second and the third measurements was used in the analysis, mini-
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mizing the white coat effect. BPLM intake was assessed with WHO Anatomical Therapeutic 

Chemical classification categories, checking the working substance and the dose for each 

medication. Hypertension was defined according to the JNC7 definition (Chobanian et al. 

2003). Self-reported hypertension and medication use were used as additional outcomes. The 

thorough and integrative exposure assessment employed and an assessment that accounted for 

different components of the air pollution mixture along with other residence-related environ-

mental and social factors is the strength of this study. It was possible to investigate multiple 

environmental factors at once and their possible interactions. The availability of two time 

points in the HNR study allowed for the analysis to be repeated and for the baseline findings 

to be compared and confirmed at follow-up. Careful model specification and model checks 

enhanced the validity of the regression findings. As an additional strength for the data analy-

sis, the effect of BPLM was investigated using multiple correction strategies.  

The major limitation of the experimental study was the low number of animals (5 per group), 

which limits the power to identify the significant effects. To overcome this limitation, I aimed 

to increase the data quality using a standardized procedure for gene expression measurement. 

Using various analysis methods (correction with at least two housekeeping genes, sensitivity 

analyses, etc.), I attempted to test the robustness of the findings. Another limitation is that the 

results of an animal study may not be extrapolated to humans. However, only genes with 

identical functions in mice and men were chosen; therefore, this limitation is a minor one in 

this study. Finally, the experimental study is limited because only two exposures – diesel and 

NO2 – were investigated. An additional difficulty was that, according to a predefined experi-

mental design, exposure to diesel was only investigated in combination with NO2; thus, it was 

not possible to assess the effect of DEE alone. Further studies with more exposure variants in 

groups could shed more light on the biologic pathways underlying the cardiovascular effects 

of air pollution. 
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7. SUMMARY AND OUTLOOK 

The results of this study on the effect of long-term air pollution and its specific components 

on blood pressure and hypertension and on possible underlying pathophysiologic mechanisms 

can be summarized as follows:  

 Long-term exposure to ambient urban background PM2.5 was associated with elevated 

BP in a population-based cohort, independent of relevant confounders and co-

exposure to gaseous O3, NO2, NO, and CO in addition to other residential exposures 

(e.g., traffic volume, ambient noise, and neighborhood social deprivation). 

 The association of PM2.5 with BP was linear (i.e., dose-dependent) without a threshold. 

 Subjects medicated with BPLM showed a higher increase in BP related to air pollu-

tion. It is necessary to account for BPLM intake in the analyses with population-based 

cohorts, where a large proportion of individuals are taking BPLM. 

 No statistically significant association of air pollution with hypertension was ob-

served, which is possibly due to a relatively small effect size and insufficient power. 

Further studies, employing longitudinal analysis techniques, could provide more clear 

results. 

 An unexpected and thus far not investigated association between atmospheric ammo-

nia and BP was identified. It is a goal of future studies to clarify whether this associa-

tion is real and what the underlying biological pathways are. 

 In the experimental study I found some confirmations that long-term exposure to traf-

fic-related air pollution affects the activities of the genes involved in the immune re-

sponse, the oxidative stress response and xenobiotic metabolism; at the same time, the 

activity of these genes is relevant for vascular pathology and elevated BP.  

Blood pressure is a major modifiable risk factor for morbidity and mortality in the developed 

world. The proportion of hypertensive subjects in the population continues to grow. Small but 

persistent elevation in blood pressure due to exposure to air pollution could, on a population 

level, result in a substantially higher burden of CVD. Reductions of air pollution concentra-

tions will therefore result in a noticeable decrease of rates of cardiovascular events and mor-

tality in the population. 

The findings on air-pollution–induced chronic BP elevation in this study were based on rela-

tively low air pollution concentrations, quite common for Germany and other European coun-
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tries, and below the current regulatory standards. Therefore, results of this study provide sup-

portive evidence that efforts aimed at reducing air pollution levels below the current regulato-

ry standards will result in substantial population health benefits. 

The findings of this study show, on one hand, a consistent association of fine particulate mat-

ter with elevated BP in a population-based cohort, and, on the other hand, supportive evidence 

that traffic-related air pollution can induce inflammation, oxidative stress and vascular reac-

tions, which might favor hypertension in the long run. These findings support the hypothesis 

that air-pollution–induced increases in BP could be one possible biological pathway of how 

long-term PM exposure may promote atherosclerosis, a common underlying pathology for 

cardiovascular morbidity and mortality. 

 

 

 



References 

160 

REFERENCES  

(5 PRIME 2007) 5 PRIME Manual Rnase-Free Dnase Set. 2007. Available: 

http://www.5prime.com/media/3461/rnase-

free%20dnase%20set%20manual_5prime_1044723_032007.pdf (accessed 21 July 2014). 

(Ackermann 2004) Ackermann U. 2004. Regulation of arterial blood pressure. Surg. 22:120a–

120f; doi:10.1383/surg.22.5.120a.33383. 

(Agbor et al. 2012) Agbor LN, Walsh MT, Boberg JR, Walker MK. 2012. Elevated blood 

pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to 

omega-3 polyunsaturated fatty acids. Toxicol. Appl. Pharmacol. 264:351–60; 

doi:10.1016/j.taap.2012.09.007. 

(Alexander 1995) Alexander RW. 1995. Theodore Cooper Memorial Lecture. Hypertension 

and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflam-

matory response: a new perspective. Hypertension 25: 155–61. 

(Alpérovitch et al. 2009) Alpérovitch A, Lacombe J-M, Hanon O, Dartigues J-F, Ritchie K, 

Ducimetière P, et al. 2009. Relationship between blood pressure and outdoor temperature in a 

large sample of elderly individuals: the Three-City study. Arch. Intern. Med. 169:75–80; 

doi:10.1001/archinternmed.2008.512. 

(Araujo and Nel 2009) Araujo JA, Nel AE. 2009. Particulate matter and atherosclerosis: role 

of particle size, composition and oxidative stress. Part. Fibre Toxicol. 6:24; doi:10.1186/1743-

8977-6-24. 

(Ashton 2007) Ashton N. Neurological and humoral control of blood pressure. Anaesth. In-

tensive Care Med. 2007;8:221–226.  

(Auchincloss et al. 2008) Auchincloss AH, Diez Roux A V, Dvonch JT, Brown PL, Barr RG, 

Daviglus ML, et al. 2008. The associations between recent exposure to ambient fine particu-

late matter and blood pressure in the Multi-ethnic Study of Atherosclerosis (MESA). Environ. 

Health Perspect. 116:486–91; doi:10.1289/ehp.10899. 

(Ayyagari et al. 2007) Ayyagari VN, Januszkiewicz A, Nath J. 2007. Effects of nitrogen diox-

ide on the expression of intercellular adhesion molecule-1, neutrophil adhesion, and cytotoxi-

city: studies in human bronchial epithelial cells. Inhal. Toxicol. 19:181–94; 

doi:10.1080/08958370601052121. 

(Babisch 2008) Babisch W. 2008. Road traffic noise and cardiovascular risk. Noise Health 

http://www.5prime.com/media/3461/rnase-free%20dnase%20set%20manual_5prime_1044723_032007.pdf
http://www.5prime.com/media/3461/rnase-free%20dnase%20set%20manual_5prime_1044723_032007.pdf


References 

161 

10:27–33; doi:10.4103/1463-1741.39005. 

(Babisch 2010) Babisch W. 2010. Transportation noise and cardiovascular risk: updated re-

view and synthesis of epidemiological studies indicate that the evidence has increased. Noise 

Health 8: 1–29. 

(Babisch and Kamp 2009) Babisch W, van Kamp I. 2009. Exposure-response relationship of 

the association between aircraft noise and the risk of hypertension. Noise Health 11:161–8; 

doi:10.4103/1463-1741.53363. 

(Babisch et al. 2014) Babisch W, Wolf K, Petz M, Heinrich J, Cyrys J, Peters A. 2014. The 

associations between Traffic Noise, Particulate Air Pollution, Hypertension, and Isolated Sys-

tolic Hypertension in Adults: The KORA Study. Environ. Health Perspect.; 

doi:10.1289/ehp.1306981. 

(Bai et al. 2011) Bai N, Kido T, Kavanagh TJ, Kaufman JD, Rosenfeld ME, Breemen C van, 

et al. 2011. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice. 

Toxicol. Appl. Pharmacol. 255:184–92; doi:10.1016/j.taap.2011.06.013. 

(Bauer et al. 2010) Bauer M, Moebus S, Möhlenkamp S, Dragano N, Nonnemacher M, 

Fuchsluger M, et al. 2010. Urban particulate matter air pollution is associated with subclinical 

atherosclerosis: results from the HNR (Heinz Nixdorf Recall) study. J. Am. Coll. Cardiol. 

56:1803–8; doi:10.1016/j.jacc.2010.04.065. 

(Bayram et al. 1998) Bayram H, Devalia JL, Sapsford RJ, Ohtoshi T, Miyabara Y, Sagai M, et 

al. 1998. The effect of diesel exhaust particles on cell function and release of inflammatory 

mediators from human bronchial epithelial cells in vitro. Am. J. Respir. Cell Mol. Biol. 18: 

441–8. 

(Becker et al. 2005) Becker S, Mundandhara S, Devlin RB, Madden M. 2005. Regulation of 

cytokine production in human alveolar macrophages and airway epithelial cells in response to 

ambient air pollution particles: further mechanistic studies. Toxicol. Appl. Pharmacol. 

207:269–75; doi:10.1016/j.taap.2005.01.023. 

(Beelen et al. 2009) Beelen R, Hoek G, Houthuijs D, Brandt P a van den, Goldbohm R a, 

Fischer P, et al. 2009. The joint association of air pollution and noise from road traffic with 

cardiovascular mortality in a cohort study. Occup. Environ. Med. 66:243–50; 

doi:10.1136/oem.2008.042358. 

(Behera et al. 2013) Behera SN, Sharma M, Aneja VP, Balasubramanian R. 2013. Ammonia 



References 

162 

in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on 

terrestrial bodies. Environ. Sci. Pollut. Res. Int. 20:8092–131; doi:10.1007/s11356-013-2051-

9. 

(Bellavia et al. 2013) Bellavia A, Urch B, Speck M, Brook RD, Scott J a, Albetti B, et al. 

2013. DNA hypomethylation, ambient particulate matter, and increased blood pressure: find-

ings from controlled human exposure experiments. J. Am. Heart Assoc. 2:e000212; 

doi:10.1161/JAHA.113.000212. 

(Benetos et al. 2003) Benetos A, Thomas F, Bean K, Gautier S, Smulyan H, Guize L. 2003. 

Prognostic value of systolic and diastolic blood pressure in treated hypertensive men: clarifi-

cation. Arch. Intern. Med. 163: 121. 

(Bhalla and Gupta 2000) Bhalla DK, Gupta SK. 2000. Lung injury, inflammation, and in-

flammatory stimuli in rats exposed to ozone. J. Toxicol. Environ. Health. A 59:211–28; 

doi:10.1080/009841000156899. 

(Billet et al. 2007) Billet S, Garçon G, Dagher Z, Verdin A, Ledoux F, Cazier F, et al. 2007. 

Ambient particulate matter (PM2.5): physicochemical characterization and metabolic activa-

tion of the organic fraction in human lung epithelial cells (A549). Environ. Res. 105:212–23; 

doi:10.1016/j.envres.2007.03.001. 

(Bind et al. 2012) Bind M-A, Baccarelli A, Zanobetti A, Tarantini L, Suh H, Vokonas P, et al. 

2012. Air pollution and markers of coagulation, inflammation, and endothelial function: asso-

ciations and epigene-environment interactions in an elderly cohort. Epidemiology 23:332–40; 

doi:10.1097/EDE.0b013e31824523f0. 

(Bind et al. 2014) Bind M-A, Lepeule J, Zanobetti A, Gasparrini A, Baccarelli A, Coull BA, et 

al. 2014. Air pollution and gene-specific methylation in the Normative Aging Study: Associa-

tion, effect modification, and mediation analysis. Epigenetics 9. 

(Blake and Blake 2003) Blake, N. J. and D. R. Blake, TROPOSPHERIC CHEMISTRY AND 

COMPOSITION: VOCs: Overview in Encyclopedia of Atmospheric Sciences Edited by 

James R. Holton, John A. Pyle, and Judith A. Curry, Academic Press, London, UK, pages 

2438-2445, 2002. 

(Brönnimann and Neu 1997) Brönnimann S, Neu U. 1997. Weekend-weekday differences of 

near-surface ozone concentrations in Switzerland for different meteorological conditions. At-

mos. Environ. 31: 1127–1135. 



References 

163 

(Brook 2007) Brook RD. 2007. Why physicians who treat hypertension should know more 

about air pollution. J. Clin. Hypertens. (Greenwich). 9: 629–35. 

(Brook 2008) Brook RD. 2008. Cardiovascular effects of air pollution. Clin. Sci. (Lond). 

115:175–87; doi:10.1042/CS20070444. 

(Brook et al. 2004) Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, et al. 

2004. Air pollution and cardiovascular disease: a statement for healthcare professionals from 

the Expert Panel on Population and Prevention Science of the American Heart Association. 

Circulation 109:2655–71; doi:10.1161/01.CIR.0000128587.30041.C8. 

(Brook et al. 2009) Brook RD, Urch B, Dvonch JT, Bard RL, Speck M, Keeler G, et al. 2009. 

Insights into the mechanisms and mediators of the effects of air pollution exposure on blood 

pressure and vascular function in healthy humans. Hypertension 54:659–67; 

doi:10.1161/HYPERTENSIONAHA.109.130237. 

(Brook et al. 2010) Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux 

A V, et al. 2010. Particulate matter air pollution and cardiovascular disease: An update to the 

scientific statement from the American Heart Association. Circulation 121:2331–78; 

doi:10.1161/CIR.0b013e3181dbece1. 

(Brook et al. 2011) Brook RD, Bard RL, Burnett RT, Shin HH, Vette A, Croghan C, et al. 

2011. Differences in blood pressure and vascular responses associated with ambient fine par-

ticulate matter exposures measured at the personal versus community level. Occup. Environ. 

Med. 68:224–30; doi:10.1136/oem.2009.053991. 

(Brunekreef and Holgate 2002) Brunekreef B, Holgate ST. 2002. Air pollution and health. 

Lancet 360:1233–42; doi:10.1016/S0140-6736(02)11274-8. 

(Brunekreef et al. 2009) Brunekreef B, Beelen R, Hoek G, Schouten L, Bausch-Goldbohm S, 

Fischer P, et al. 2009. Effects of long-term exposure to traffic-related air pollution on respira-

tory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. Res. Rep. Health. 

Eff. Inst. 5–71; discussion 73–89. 

(Carretero and Oparil 2000) Carretero OA, Oparil S. 2000. Essential Hypertension?: Part I: 

Definition and Etiology. Circulation 101:329–335; doi:10.1161/01.CIR.101.3.329. 

(Cesaroni et al. 2014) Cesaroni G, Forastiere F, Stafoggia M, Andersen ZJ, Badaloni C, 

Beelen R, et al. 2014. Long term exposure to ambient air pollution and incidence of acute 

coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the 



References 

164 

ESCAPE Project. BMJ 348:f7412; doi:10.1136/bmj.f7412. 

(Chan et al. 2013) Chan JKW, Vogel CF, Baek J, Kodani SD, Uppal RS, Bein KJ, et al. 2013. 

Combustion derived ultrafine particles induce cytochrome P-450 expression in specific lung 

compartments in the developing neonatal and adult rat. Am. J. Physiol. Lung Cell. Mol. Phys-

iol. 304:L665–77; doi:10.1152/ajplung.00370.2012. 

(Chauhan et al. 2004) Chauhan V, Breznan D, Goegan P, Nadeau D, Karthikeyan S, Brook JR, 

et al. 2004. Effects of ambient air particles on nitric oxide production in macrophage cell 

lines. Cell Biol. Toxicol. 20: 221–39. 

(Chen et al. 2008) Chen J-H, Lin H-H, Chiang T-A, Hsu J-D, Ho H-H, Lee Y-C, et al. 2008. 

Gaseous nitrogen oxide promotes human lung cancer cell line A549 migration, invasion, and 

metastasis via iNOS-mediated MMP-2 production. Toxicol. Sci. 106:364–75; 

doi:10.1093/toxsci/kfn195. 

(Chen et al. 2012) Chen S, Su T, Lin Y, Chan C-C. 2012. Short-term effects of air pollution on 

pulse pressure among nonsmoking adults. Epidemiology 23:341–8; 

doi:10.1097/EDE.0b013e3182452f1d. 

(Chen et al. 2013) Chen H, Burnett RT, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, 

et al. 2013a. Spatial Association between Ambient Fine Particulate Matter and Incident Hy-

pertension. Circulation 1–25; doi:10.1161/CIRCULATIONAHA.113.003532. 

(Ching and Beevers 1991) Ching GW, Beevers DG. 1991. Hypertension. Postgrad. Med. J. 

67: 230–46. 

(Chobanian et al. 2003) Chobanian A V, Bakris GL, Black HR, Cushman WC, Green LA, Izzo 

JL, et al. 2003. Seventh report of the Joint National Committee on Prevention, Detection, 

Evaluation, and Treatment of High Blood Pressure. Hypertension 42:1206–52; 

doi:10.1161/01.HYP.0000107251.49515.c2. 

(Chow 1995) Chow JC. 1995. Measurement methods to determine compliance with ambient 

air quality standards for suspended particles. J. Air Waste Manag. Assoc. 45: 320–82. 

(Chuang et al. 2007) Chuang K-J, Chan C-C, Su T-C, Lee C-T, Tang C-S. 2007. The effect of 

urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction 

in young adults. Am. J. Respir. Crit. Care Med. 176:370–6; doi:10.1164/rccm.200611-

1627OC. 

(Chuang et al. 2010) Chuang K-J, Yan Y-H, Cheng T-J. 2010. Effect of air pollution on blood 



References 

165 

pressure, blood lipids, and blood sugar: a population-based approach. J. Occup. Environ. 

Med. 52:258–62; doi:10.1097/JOM.0b013e3181ceff7a. 

(Chuang et al. 2011) Chuang K-J, Yan Y-H, Chiu S-Y, Cheng T-J. 2011. Long-term air pollu-

tion exposure and risk factors for cardiovascular diseases among the elderly in Taiwan. Oc-

cup. Environ. Med. 68:64–8; doi:10.1136/oem.2009.052704. 

(Coogan et al. 2012) Coogan PF, White LF, Jerrett M, Brook RD, Su JG, Seto E, et al. 2012. 

Air pollution and incidence of hypertension and diabetes mellitus in black women living in 

Los Angeles. Circulation 125:767–72; doi:10.1161/CIRCULATIONAHA.111.052753. 

(Cook et al. 1995) Cook NR, Cohen J, Hebert PR, Taylor JO, Hennekens CH. 1995. Implica-

tions of small reductions in diastolic blood pressure for primary prevention. Arch. Intern. 

Med. 155:701–9; doi:10.1001/archinte.1995.00430070053006. 

(Dagher et al. 2006) Dagher Z, Garçon G, Billet S, Gosset P, Ledoux F, Courcot D, et al. 

2006. Activation of different pathways of apoptosis by air pollution particulate matter 

(PM2.5) in human epithelial lung cells (L132) in culture. Toxicology 225:12–24; 

doi:10.1016/j.tox.2006.04.038. 

(DataKustik GmbH 2014) CadnaA - State-of-the-art Noise Prediction Software. 2014. Availa-

ble: http://www.datakustik.com/en/products/cadnaa (Accessed 14 July 2014) 

(De Kluizenaar et al. 2007) De Kluizenaar Y, Gansevoort RT, Miedema HME, de Jong PE. 

2007. Hypertension and road traffic noise exposure. J. Occup. Environ. Med. 49:484–92; 

doi:10.1097/JOM.0b013e318058a9ff. 

(Delfino et al. 2008) Delfino RJ, Staimer N, Tjoa T, Polidori A, Arhami M, Gillen DL, et al. 

2008. Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are 

associated with primary combustion aerosols in subjects with coronary artery disease. Envi-

ron. Health Perspect. 116:898–906; doi:10.1289/ehp.11189. 

(Delfino et al. 2010) Delfino RJ, Tjoa T, Gillen DL, Staimer N, Polidori A, Arhami M, et al. 

2010. Traffic-related air pollution and blood pressure in elderly subjects with coronary artery 

disease. Epidemiology 21:396–404; doi:10.1097/EDE.0b013e3181d5e19b. 

(Demirdögen et al. 2013) Demirdögen BC, Adali a Ç, Bek S, Demirkaya S, Adali O. 2013. 

Cytochrome P4501A1 genotypes and smoking- and hypertension-related ischemic stroke risk. 

Hum. Exp. Toxicol. 32:483–91; doi:10.1177/0960327112464667. 

(Dergham et al. 2012) Dergham M, Lepers C, Verdin A, Billet S, Cazier F, Courcot D, et al. 

http://www.datakustik.com/en/products/cadnaa
http://www.datakustik.com/en/products/cadnaa


References 

166 

2012. Prooxidant and proinflammatory potency of air pollution particulate matter (PM2.5–0.3) 

produced in rural, urban, or industrial surroundings in human bronchial epithelial cells 

(BEAS-2B). Chem. Res. Toxicol. 25:904–19; doi:10.1021/tx200529v. 

(Dieme et al. 2012) Dieme D, Cabral-Ndior M, Garçon G, Verdin A, Billet S, Cazier F, et al. 

2012. Relationship between physicochemical characterization and toxicity of fine particulate 

matter (PM2.5) collected in Dakar city (Senegal). Environ. Res. 113:1–13; 

doi:10.1016/j.envres.2011.11.009. 

(Diez Roux 2003) Diez Roux AV. 2003. Residential environments and cardiovascular risk. J. 

Urban Health 80:569–89; doi:10.1093/jurban/jtg065. 

(Diez Roux et al. 2006) Diez Roux AV, Auchincloss a H, Astor B, Barr RG, Cushman M, 

Dvonch T, et al. 2006. Recent exposure to particulate matter and C-reactive protein concentra-

tion in the multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 164:437–48; 

doi:10.1093/aje/kwj186. 

(Diez Roux et al. 2008) Diez Roux AV, Auchincloss AH, Franklin TG, Raghunathan T, Barr 

RG, Kaufman J, et al. 2008. Long-term exposure to ambient particulate matter and prevalence 

of subclinical atherosclerosis in the Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 

167:667–75; doi:10.1093/aje/kwm359. 

(Directive 2002/49/EC) European Commission. 2002. Directive of the European Parliament 

and of the Council of 25 June 2002 relating to the assessment and management of environ-

mental noise. Directive 2002/49/EC. Official Journal of the European Communities L189:12–

25.  

(Directive 2008/50/EC) Directive 2008/50/EC of the European Parliament and of the Council 

on ambient air quality and cleaner air for Europe. 21 May 2008. Official Journal of the Euro-

pean Union L 152:1–44. 

(Dockery 2009) Dockery DW. 2009. Health effects of particulate air pollution. Ann. Epidemi-

ol. 19:257–263; doi:10.1016/j.annepidem.2009.01.018. 

(Domínguez-Rodríguez et al. 2011) Domínguez-Rodríguez A, Abreu-Afonso J, Rodríguez S, 

Juárez-Prera RA, Arroyo-Ucar E, Jiménez-Sosa A, et al. 2011. Comparative study of ambient 

air particles in patients hospitalized for heart failure and acute coronary syndrome. Rev. espa-

ñola Cardiol. 64:661–6; doi:10.1016/j.recesp.2010.12.017. 

(Dong et al. 2013) Dong G-H, Qian ZM, Xaverius PK, Trevathan E, Maalouf S, Parker J, et 



References 

167 

al. 2013. Association between long-term air pollution and increased blood pressure and hyper-

tension in China. Hypertension 61:578–84; doi:10.1161/HYPERTENSIONAHA.111.00003. 

(Dragano et al. 2009a) Dragano N, Hoffmann B, Moebus S, Möhlenkamp S, Stang A, Verde 

PE, et al. 2009a. Traffic exposure and subclinical cardiovascular disease: is the association 

modified by socioeconomic characteristics of individuals and neighbourhoods? Results from a 

multilevel study in an urban region. Occup. Environ. Med. 66:628–35; 

doi:10.1136/oem.2008.044032. 

(Dragano et al. 2009b) Dragano N, Hoffmann B, Stang A, Moebus S, Verde PE, Weyers S, et 

al. 2009b. Subclinical coronary atherosclerosis and neighbourhood deprivation in an urban 

region. Eur. J. Epidemiol. 24:25–35; doi:10.1007/s10654-008-9292-9. 

(Dratva et al. 2012) Dratva J, Phuleria HC, Foraster M, Gaspoz J-M, Keidel D, Künzli N, et 

al. 2012. Transportation noise and blood pressure in a population-based sample of adults. En-

viron. Health Perspect. 120:50–5; doi:10.1289/ehp.1103448. 

(Drøyvold et al. 2005) Drøyvold WB, Midthjell K, Nilsen TIL, Holmen J. 2005. Change in 

body mass index and its impact on blood pressure: a prospective population study. Int. J. 

Obes. (Lond). 29:650–5; doi:10.1038/sj.ijo.0802944. 

(Dvonch et al. 2009) Dvonch JT, Kannan S, Schulz AJ, Keeler GJ, Mentz G, House J, et al. 

2009. Acute effects of ambient particulate matter on blood pressure: differential effects across 

urban communities. Hypertension 53:853–9; 

doi:10.1161/HYPERTENSIONAHA.108.123877. 

(Ebel et al. 2007) Ebel A, Memmesheimer M, Jakobs HJ, Feldmann H. 2007. Advanced air 

pollution models and their application to risk and impact assessment. In: Air, Water and Soil 

Quality Modelling for Risk and Impact Assessment (Ebel A, Davitashvili T, eds). Amster-

dam:IOS Press/Dordrect, the Netherlands:Springer, 83–92. 

(Elder et al. 2007) Elder A, Couderc J-P, Gelein R, Eberly S, Cox C, Xia X, et al. 2007. Ef-

fects of on-road highway aerosol exposures on autonomic responses in aged, spontaneously 

hypertensive rats. Inhal. Toxicol. 19:1–12; doi:10.1080/08958370701490262. 

(Environmental Protection Agency 2012) United States Environmental Protection Agency. 

Particulate Matter Regulatory Actions. Available: 

http://www.epa.gov/airquality/particlepollution/actions.html#dec12 (accessed 9 June 2014). 

(Environmental Protection Agency 2013) United States Environmental Protection Agency. 

http://www.epa.gov/airquality/particlepollution/actions.html#dec12


References 

168 

Sulfur Dioxide. Available: http://www.epa.gov/airtrends/sulfur.html (accessed 9 June 2014). 

(Erbel et al. 2010) Erbel R, Möhlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, 

et al. 2010. Coronary risk stratification, discrimination, and reclassification improvement 

based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall 

study. J. Am. Coll. Cardiol. 56:1397–406; doi:10.1016/j.jacc.2010.06.030. 

(Erbel et al. 2012) Erbel R, Lehmann N, Möhlenkamp S, Churzidse S, Bauer M, Kälsch H, et 

al. 2012. Subclinical coronary atherosclerosis predicts cardiovascular risk in different stages 

of hypertension: result of the Heinz Nixdorf Recall Study. Hypertension 59:44–53; 

doi:10.1161/HYPERTENSIONAHA.111.180489. 

(Erlinger et al. 2003) Erlinger TP, Vollmer WM, Svetkey LP, Appel LJ. 2003. The potential 

impact of nonpharmacologic population-wide blood pressure reduction on CHD events: pro-

nounced benefits in African-Americans and hypertensives. Prev. Med. (Baltim). 37: 327–33. 

(European Commission Air Quality Standards) European Commision. Air Quality Standards. 

Available: http://ec.europa.eu/environment/air/quality/standards.htm (accessed June 9 2014). 

(European Environment Agency 2012) Air quality in Europe — 2012 report. European Envi-

ronment Agency. 2012. Report No 4/2012. Available: 

http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf?ua=1 (accessed 

August 14 2014). 

(European health for all database 2014) European health for all database (HFA-DB). World 

Health Organization Regional Office for Europe. Updated: April 2014. Available: 

http://data.euro.who.int/hfadb/ (accessed 21 July 2014) 

(Everett et al. 2008) Everett BM, Glynn RJ, Danielson E, Ridker PM. 2008. Combination 

therapy versus monotherapy as initial treatment for stage 2 hypertension: a prespecified sub-

group analysis of a community-based, randomized, open-label trial. Clin. Ther. 30: 661–72. 

(Ezzati et al. 2002) Ezzati M, Lopez AD, Rodgers A, Hoorn S Vander, Murray CJL. 2002. 

Selected major risk factors and global and regional burden of disease. Lancet 360:1347–60; 

doi:10.1016/S0140-6736(02)11403-6. 

(Foraster et al. 2014) Foraster M, Basagaña X, Aguilera I, Rivera M, Agis D, Bouso L, et al. 

2014. Association of long-term exposure to traffic-related air pollution with blood pressure 

and hypertension in an adult population-based cohort in Spain (the REGICOR study). Envi-

ron. Health Perspect. 122:404–11; doi:10.1289/ehp.1306497. 

http://www.epa.gov/airtrends/sulfur.html
http://ec.europa.eu/environment/air/quality/standards.htm
http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf?ua=1
http://data.euro.who.int/hfadb/


References 

169 

(Franklin et al. 2001). Franklin SS, Larson MG, Khan S a., Wong ND, Leip EP, Kannel WB, 

et al. 2001. Does the Relation of Blood Pressure to CHD Risk Change With Aging? : The 

Framingham Heart Study. Circulation 103:1245–1249; doi:10.1161/01.CIR.103.9.1245. 

(Fujita 2001) Fujita T. 2001. Symposium on the etiology of hypertension--summarizing stud-

ies in 20th century. 5. Renin-angiotensin system and hypertension. Intern. Med. 40: 156–8. 

 (Garçon et al. 2006) Garçon G, Dagher Z, Zerimech F, Ledoux F, Courcot D, Aboukais A, et 

al. 2006. Dunkerque City air pollution particulate matter-induced cytotoxicity , oxidative 

stress and in X ammation in human epithelial lung cells ( L132 ) in culture. 20:519–528; 

doi:10.1016/j.tiv.2005.09.012. 

(Gelenijse et al. 2005) Geleijnse JM, Grobbee DE, Kok FJ. 2005. Impact of dietary and life-

style factors on the prevalence of hypertension in Western populations. J. Hum. Hypertens. 19 

Suppl 3:S1–4; doi:10.1038/sj.jhh.1001953. 

(Gerber et al. 2011) Gerber Y, Koton S, Goldbourt U, Myers V, Benyamini Y, Tanne D, et al. 

2011. Poor neighborhood socioeconomic status and risk of ischemic stroke after myocardial 

infarction. Epidemiology 22:162–9; doi:10.1097/EDE.0b013e31820463a3. 

(Gerlofs-Nijland 2012) Gerlofs-Nijland ME, Hullmann M, Boere AJF, Fokkens PHB, Fuks K, 

Albrecht C, et al. 2012. The Influence Of NO2 On Pulmonary Toxicity In Mice Sub-

Chronically Exposed To Diluted Diesel Engine Exhaust. Poster presented at the yearly con-

ference of American Thoracic Society. Available: 

http://www.atsjournals.org/doi/abs/10.1164/ajrccm-

conference.2012.185.1_MeetingAbstracts.A4679 (accessed 26 July 2014) 

(Gharavi and El-Kadi 2007) Gharavi N, El-Kadi AOS. 2007. Role of nitric oxide in downreg-

ulation of cytochrome P450 1a1 and NADPH: Quinone oxidoreductase 1 by tumor necrosis 

factor-alpha and lipopolysaccharide. J. Pharm. Sci. 96:2795–807; doi:10.1002/jps.20910. 

(Glymour and Greenland 2008) Glymour MM, Greenland S. 2008. Causal diagrams. In: 

Modern Epidemiology (Rothman KJ, Greenland S, Lash TL, eds). 3rd ed. Philadelph-

ia:Lippincott-Raven, 183–209. 

(Gongora et al. 2006) Gongora MC, Qin Z, Laude K, Kim HW, McCann L, Folz JR, et al. 

2006. Role of extracellular superoxide dismutase in hypertension. Hypertension 48:473–81; 

doi:10.1161/01.HYP.0000235682.47673.ab. 

(Guenther 2003) Guenther AB. 2003. Tropospheric chemistry and composition: Biogenic hy-

http://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4679
http://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4679


References 

170 

drocarbons (inc. isoprene). Encyclopedia of Atmospheric Sciences, Academic Press, 2385-

2389; doi:10.1016/B0-12-227090-8/00425-5. 

(Hampel et al. 2011) Hampel R, Lepeule J, Schneider A, Bottagisi S, Charles M-A, Duci-

metière P, et al. 2011. Short-term Impact of Ambient Air Pollution and Air Temperature on 

Blood Pressure Among Pregnant Women. Epidemiology 22; 

doi:10.1097/EDE.0b013e318226e8d6. 

(Hara et al. 2006) Hara MR, Cascio MB, Sawa A. 2006. GAPDH as a sensor of NO stress. 

Biochim. Biophys. Acta 1762:502–9; doi:10.1016/j.bbadis.2006.01.012. 

(Harrison et al. 2011) Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, 

et al. 2011. Inflammation, immunity, and hypertension. Hypertension 57:132–40; 

doi:10.1161/HYPERTENSIONAHA.110.163576. 

(Hastie and Tibishirani 2007) Hastie TJ, Tibshirani RJ. 2007. Generalized Additive Models. 

London: Chapman and Hall. 

(Hayashi 2001) Hayashi K. 2001. Symposium on the etiology of hypertension--summarizing 

studies in 20th century. 4. Pathogenesis of hypertension--kidney as a pathogenetic organ of 

hypertension. Intern. Med. 40: 153–6. 

(Heagerty et al. 2010) Heagerty AM, Heerkens EH, Izzard AS. Small artery structure and 

function in hypertension. J. Cell. Mol. Med. 2010;14:1037–43.  

(Hennig et al. 2014) Hennig F, Fuks K, Moebus S, Weinmayr G, Memmesheimer M, Jakobs 

H, et al. 2014. Association between Source-Specific Particulate Matter Air Pollution and hs-

CRP: Local Traffic and Industrial Emissions. Environ. Health Perspect.; 

doi:10.1289/ehp.1307081. 

(Hense et al. 1995) Hense HW, Koivisto AM, Kuulasmaa K, Zaborskis A, Kupsc W, 

Tuomilehto J. 1995. Assessment of blood pressure measurement quality in the baseline sur-

veys of the WHO MONICA project. J. Hum. Hypertens. 9: 935–46. 

(Hertel et al. 2010) Hertel S, Viehmann A, Moebus S, Mann K, Bröcker-Preuss M, Möhlen-

kamp S, et al. 2010. Influence of short-term exposure to ultrafine and fine particles on system-

ic inflammation. Eur. J. Epidemiol.; doi:10.1007/s10654-010-9477-x. 

(Hoek et al. 2013) Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, et al. 

2013. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ. 

Health 12:43; doi:10.1186/1476-069X-12-43. 



References 

171 

(Hoffmann et al. 2007) Hoffmann B, Moebus S, Möhlenkamp S, Stang a, Lehmann N, Dra-

gano N, et al. 2007. Residential exposure to traffic is associated with coronary atherosclerosis. 

Circulation 116:489–96; doi:10.1161/CIRCULATIONAHA.107.693622. 

(Hoffmann et al. 2009) Hoffmann B, Moebus S, Dragano N, Stang A, Möhlenkamp S, 

Schmermund A, et al. 2009. Chronic residential exposure to particulate matter air pollution 

and systemic inflammatory markers. Environ. Health Perspect. 117:1302–8; 

doi:10.1289/ehp.0800362. 

(Hoffmann et al. 2012) Hoffmann B, Luttmann-Gibson H, Cohen A, Zanobetti A, Souza C de, 

Foley C, et al. 2012. Opposing effects of particle pollution, ozone, and ambient temperature 

on arterial blood pressure. Environ. Health Perspect. 120:241–6; doi:10.1289/ehp.1103647. 

 (Intergovernmental Panel on Climate Change 2007) The Intergovernmental Panel on Climate 

Change. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working 

Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 

(Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. 

Miller (eds.)). Cambridge University Press, Cambridge, United Kingdom and New York, NY, 

USA, 996 pp. Available: http://www.ipcc.ch/pdf/assessment-

report/ar4/wg1/ar4_wg1_full_report.pdf  (accessed 14 August 2014). 

(ISO 9001:2000) International Organization for Standardization. ISO 9001:2000. Availa-

ble:http://www.iso.org. Accessed 01. February 2014 

(Jennrich and Robinson 1969) Jennrich RI, Robinson SM. 1969. A Newton-Raphson algo-

rithm for maximum likelihood factor analysis. Psychometrika. Volume 34, Issue 1, pp 111-

123 

(Jöckel et al. 2010) Jöckel K-H, Dragano N, Riedel N, Fuks K, Hoffmann B. 2010. Einflüsse 

der sozialen und physikalisch-chemischen Umwelt auf die Gesundheit älterer Menschen. Eine 

interdisziplinäre Studie zum Zusammenhang zwischen kontextuellen Risikofaktoren und in-

dividueller Gesundheit bei einer bevölkerungsbezogenen Stichprobe aus drei Städten des 

Ruhrgebiets. Analysen zur Umweltgerechtigkeit in der Heinz Nixdorf Recall Studie. Ein Pro-

jekt im Rahmen der Förderinitiative „Zukunftsfragen der Gesellschaft: Individuelle und ge-

sellschaftliche Perspektiven des Alterns― der gemeinnützigen VolkswagenStiftung. Ab-

schlussbericht (unveröffentlicht). DFG Project (Si 236/9-1). 

(Johnson and Johnson 2003) Johnson FK, Johnson RA. 2003. Carbon monoxide promotes 

endothelium-dependent constriction of isolated gracilis muscle arterioles. Am. J. Physiol. 



References 

172 

Regul. Integr. Comp. Physiol. 285:R536–41; doi:10.1152/ajpregu.00624.2002. 

(Johnson and Parker 2009) Johnson D, Parker JD. 2009. Air pollution exposure and self-

reported cardiovascular disease. Environ. Res. 109:582–9; doi:10.1016/j.envres.2009.01.001. 

(Kannel et al. 1971) Kannel WB, Gordon T, Schwartz MJ. 1971. Systolic versus diastolic 

blood pressure and risk of CHD. The Framingham study. Am. J. Cardiol. 27: 335–46. 

(Kelly and Fussell 2012) Kelly FJ, Fussell JC. 2012. Size, source and chemical composition 

as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60:504–

526; doi:10.1016/j.atmosenv.2012.06.039. 

(Khullar et al. 2003) Khullar M, Relan V, Sherawat BS, Redon J, Tormos MC, Chaves FJ, et 

al. 2003. Letter: Antioxidant Activities and Oxidative Stress Byproducts in Human Hyperten-

sion. Hypertension 43:e7–e7; doi:10.1161/01.HYP.0000111210.34843.b6. 

(Kim et al. 2007) Kim S, Lan Q, Waidyanatha S, Chanock S, Johnson BA, Vermeulen R, et al. 

2007. Genetic polymorphisms and benzene metabolism in humans exposed to a wide range of 

air concentrations. Pharmacogenet. Genomics 17:789–801; 

doi:10.1097/FPC.0b013e3280128f77. 

(Kopf et al. 2010) Kopf PG, Scott JA, Agbor LN, Boberg JR, Elased KM, Huwe JK, et al. 

2010. Cytochrome P4501A1 is required for vascular dysfunction and hypertension induced by 

2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 117:537–46; doi:10.1093/toxsci/kfq218. 

(Krishnan et al. 2012) Krishnan RM, Adar SD, Szpiro AA, Jorgensen NW, Hee VC Van, Barr 

RG, et al. 2012. Vascular responses to long- and short-term exposure to fine particulate mat-

ter: MESA Air (Multi-Ethnic Study of Atherosclerosis and Air Pollution). J. Am. Coll. Cardi-

ol. 60:2158–66; doi:10.1016/j.jacc.2012.08.973. 

(Krupa 2003) Krupa SV. 2003. Effects of atmospheric ammonia (NH3) on terrestrial vegeta-

tion: a review. Environ. Pollut. 124: 179–221. 

(Kumar et al. 2004) Kumar R, Gupta A, Kumari K, Srivastava S. 2004. Simultaneous meas-

urements of SO2, NO2, HNO3 and NH3: seasonal and spatial variations. Curr. Sci. 87: 1108–

1115. 

(Künzli et al. 2004) Künzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, Gilliland F, et al. 

2004. Ambient Air Pollution and Atherosclerosis in Los Angeles. Environ. Health Perspect. 

113:201–206; doi:10.1289/ehp.7523. 



References 

173 

(Künzli et al. 2010) Künzli N, Jerrett M, Garcia-Esteban R, Basagaña X, Beckermann B, Gil-

liland F, et al. 2010. Ambient air pollution and the progression of atherosclerosis in adults. 

PLoS One 5:e9096; doi:10.1371/journal.pone.0009096. 

(Künzli et al. 2011) Künzli N, Perez L, Klot S von, Baldassarre D, Bauer M, Basagana X, et 

al. 2011. Investigating air pollution and atherosclerosis in humans: concepts and outlook. 

Prog. Cardiovasc. Dis. 53:334–43; doi:10.1016/j.pcad.2010.12.006. 

(Kuulasmaa et al. 1998) WHO MONICA Project e-publications, No. 9. Quality Assessment of 

Data on Blood Pressure in the WHO MONICA Project. May 1998. Kuulasmaa K, Hense H-W 

and Tolonen H for the WHO MONICA Project3. Available: 

http://www.thl.fi/publications/monica/bp/bpqa.htm (accessed 14 August 2014). 

(Laden et al. 2006) Laden F, Schwartz J, Speizer FE, Dockery DW. 2006. Reduction in fine 

particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. 

Am. J. Respir. Crit. Care Med. 173:667–72; doi:10.1164/rccm.200503-443OC. 

(Lamon et al. 2009) Lamon BD, Zhang FF, Puri N, Brodsky S V, Goligorsky MS, Nasjletti A. 

2009. Dual pathways of carbon monoxide-mediated vasoregulation: modulation by redox 

mechanisms. Circ. Res. 105:775–83; doi:10.1161/CIRCRESAHA.109.197434. 

(Lança et al. 2004) Lança V, Alcântara P, Braz-Nogueira J, Bicho MP. 2004. Cytochrome 

P450 1A1 (CYP1A1) T6325C polymorphism might modulate essential hypertension-

associated stroke risk. Rev. Port. Cardiol. 23: 343–55. 

(LANUV 2000a) The North Rhine-Westphalia State Agency for Nature, Environment and 

Consumer Protection(LANUV). Jahreskenngrößen der Luftqualität in Nordrhein-Westfalen 

PM10 und Inhaltsstoffe 2000. Available: 

http://www.lanuv.nrw.de/luft/immissionen/ber_trend/PMx-Kur1.pdf (accessed 9 June 2014). 

(LANUV 2000b) The North Rhine-Westphalia State Agency for Nature, Environment and 

Consumer Protection LANUV). Jahreskenngrößen der Luftqualität in Nordrhein-Westfalen 

(kontinuierliche Messungen). 2000Available: 

http://www.lanuv.nrw.de/luft/immissionen/ber_trend/jk2000konti.pdf (accessed 9 June 2014). 

(LANUV 2006a) The North Rhine-Westphalia State Agency for Nature, Environment and 

Consumer Protection(LANUV). Jahreskenngrößen der Luftqualität in Nordrhein-Westfalen 

PM10 und Inhaltsstoffe / PM2,5 Jahresmittelwerte und Überschreitungshäufigkeiten 

01.01.2006 bis 31.12.2006. Available:http://www.lanuv.nrw.de/luft/immissionen/Disko-

Immissionen-2006-Feinstaub.pdf (accessed 9 June 2014). 

http://www.thl.fi/publications/monica/bp/bpqa.htm
http://www.lanuv.nrw.de/luft/immissionen/ber_trend/PMx-Kur1.pdf
http://www.lanuv.nrw.de/luft/immissionen/ber_trend/jk2000konti.pdf


References 

174 

(LANUV 2006b) The North Rhine-Westphalia State Agency for Nature, Environment and 

Consumer Protection (LANUV). Kurzfassung der Jahreskenngrößen 2006 kontinuierlich ge-

messener Immissionskonzentrationen in NRW. Available: 

http://www.lanuv.nrw.de/luft/immissionen/ber_trend/jk2006.pdf (accessed 9 June 2014). 

(Last and Warren 1987) Last J a, Warren DL. 1987. Synergistic interaction between nitrogen 

dioxide and respirable aerosols of sulfuric acid or sodium chloride on rat lungs. Toxicol. Appl. 

Pharmacol. 90: 34–42. 

(Last et al. 1994) Last J a, Sun WM, Witschi H. 1994. Ozone, NO, and NO2: oxidant air pol-

lutants and more. Environ. Health Perspect. 102 Suppl : 179–84. 

(Lawson and Wolf 2009) Lawson C, Wolf S. 2009. ICAM-1 signaling in endothelial cells. 

Pharmacol. Rep. 61: 22–32. 

(Lee and Yen 2008) Lee C, Yen M. 2008. Nitric oxide and carbon monoxide, collaborative 

and competitive regulators of hypertension. Chang Gung Med. J. 32: 12–21. 

(Lehmann et al. 2014) Lehmann N, Möhlenkamp S, Mahabadi A a, Schmermund A, Roggen-

buck U, Seibel R, et al. 2014. Effect of smoking and other traditional risk factors on the onset 

of coronary artery calcification: Results of the Heinz Nixdorf recall study. Atherosclerosis 

232:339–45; doi:10.1016/j.atherosclerosis.2013.11.045. 

(Lewington et al. 2002) Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. 2002. Age-

specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual 

data for one million adults in 61 prospective studies. Lancet 360: 1903–13. 

(Li 1992) Li Y. 1992. Regulation of Human NAD ( P ) H?: Quinone Oxidoreductase Gene. 

267: 15097–15104. 

(Li et al. 2002) Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. 2002. Ultrafine 

Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage. Environ. Health 

Perspect. 111:455–460; doi:10.1289/ehp.6000. 

(Li et al. 2009) Li R, Ning Z, Cui J, Khalsa B, Ai L, Takabe W, et al. 2009. Ultrafine particles 

from diesel engines induce vascular oxidative stress via JNK activation. Free Radic. Biol. 

Med. 46:775–82; doi:10.1016/j.freeradbiomed.2008.11.025. 

(Lim et al. 2013) Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. 

2013. A comparative risk assessment of burden of disease and injury attributable to 67 risk 

factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global 

http://www.lanuv.nrw.de/luft/immissionen/ber_trend/jk2006.pdf


References 

175 

Burden of Disease Study 2010. Lancet 380:2224–60; doi:10.1016/S0140-6736(12)61766-8. 

(Lin et al. 2013) Lin C-P, Lin F, Huang P-H, Chen Y-L, Chen W-C, Chen H-Y, et al. 2013. 

Endothelial progenitor cell dysfunction in cardiovascular diseases: role of reactive oxygen 

species and inflammation. Biomed Res. Int. 2013:845037; doi:10.1155/2013/845037. 

(Lindbom et al. 2007) Lindbom J, Gustafsson M, Blomqvist G, Dahl A, Gudmundsson A, 

Swietlicki E, et al. 2007. Wear particles generated from studded tires and pavement induces 

inflammatory reactions in mouse macrophage cells. Chem. Res. Toxicol. 20:937–46; 

doi:10.1021/tx700018z. 

(Linn et al. 1999) Linn WS, Gong H, Clark KW, Anderson KR. 1999. Day-to-day particulate 

exposures and health changes in Los Angeles area residents with severe lung disease. J. Air 

Waste Manag. Assoc. 49: 108–15. 

(Lipfert et al. 2003) Lipfert FW, Perry HM, Miller JP, Baty JD, Wyzga RE, Carmody SE. 

2003. Air pollution, blood pressure, and their long-term associations with mortality. Inhal. 

Toxicol. 15:493–512; doi:10.1080/08958370304463. 

(Livak and Schmittgen 2001) Livak KJ, Schmittgen TD. 2001. Analysis of relative gene ex-

pression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 

25:402–8; doi:10.1006/meth.2001.1262. 

(Lob et al. 2010) Lob HE, Marvar PJ, Guzik TJ, Sharma S, McCann LA, Weyand C, et al. 

2010. Induction of hypertension and peripheral inflammation by reduction of extracellular 

superoxide dismutase in the central nervous system. Hypertension 55:277–83, 6p following 

283; doi:10.1161/HYPERTENSIONAHA.109.142646. 

(Lodovici and Bigagli 2011) Lodovici M, Bigagli E. 2011. Oxidative stress and air pollution 

exposure. J. Toxicol. 2011:487074; doi:10.1155/2011/487074. 

(Lokaj et al. 2011) Lokaj P, Parenica J, Goldbergova MP, et al. Pulse Pressure in Clinical 

Practice. Eur. J. Cardiovasc. Med. 2012;II:66–68. DOI: 10.5083/ejcm.20424884.72 

(Lu et al. 2000) Lu Z, Streets DG, Zhang Q, Wang S, Carmichael GR, Cheng YF, et al. 2010. 

Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos. Chem. 

Phys. 10:6311–6331; doi:10.5194/acp-10-6311-2010. 

(Lucking et al. 2008) Lucking AJ, Lundback M, Mills NL, Faratian D, Barath SL, Pourazar J, 

et al. 2008. Diesel exhaust inhalation increases thrombus formation in man. Eur. Heart J. 

29:3043–51; doi:10.1093/eurheartj/ehn464. 



References 

176 

(Ma and Ma 2002) Ma JYC, Ma JKH. 2002. The dual effect of the particulate and organic 

components of diesel exhaust particles on the alteration of pulmonary immune/inflammatory 

responses and metabolic enzymes. J. Environ. Sci. Health. C. Environ. Carcinog. Ecotoxicol. 

Rev. 20:117–47; doi:10.1081/GNC-120016202. 

(Matsumoto et al. 2007) Matsumoto Y, Ide F, Kishi R, Akutagawa T, Sakai S, Nakamura M, et 

al. 2007. Aryl hydrocarbon receptor plays a significant role in mediating airborne particulate-

induced carcinogenesis in mice. Environ. Sci. Technol. 41: 3775–80. 

(McArdle and Whitcomb 2009) McArdle PF, Whitcomb BW. 2009. Improper adjustment for 

baseline in genetic association studies of change in phenotype. Hum. Hered. 67:176–82; 

doi:10.1159/000181156. 

(McClelland et al. 2008) McClelland RL, Kronmal RA, Haessler J, Blumenthal RS, Goff DC. 

2008. Estimation of risk factor associations when the response is influenced by medication 

use: an imputation approach. Stat. Med. 27:5039–53; doi:10.1002/sim.3341. 

(Melkonyan and Kuttler 2012) Melkonyan A, Kuttler W. 2012. Long-term analysis of NO, 

NO2 and O3 concentrations in North Rhine-Westphalia, Germany. Atmos. Environ. 60:316–

326; doi:10.1016/j.atmosenv.2012.06.048. 

(Melkonyan and Wagner 2013) Melkonyan A, Wagner P. 2013. Ozone and its projection in 

regard to climate change. Atmos. Environ. 67:287–295; doi:10.1016/j.atmosenv.2012.10.023. 

(Memmesheimer et al. 2004) Memmesheimer M, Friese E, Ebel A, Jakobs HJ, Feldmann H, 

Kessler C, et al. 2004. Long-term simulations of particulate matter in Europe on different 

scales using sequential nesting of a regional model. Int J Environ Pollut 22:108–132. 

(Miller and Siskovick 2007) Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, 

Anderson GL, et al. 2007. Long-term exposure to air pollu- tion and incidence of cardiovas-

cular events in women. N Engl J Med 356:447–458. 

(Miller et al. 2012) Miller MR, Shaw CA, Langrish JP. 2012. From particles to patients: oxi-

dative stress and the cardiovascular effects of air pollution. Future Cardiol. 8:577–602; 

doi:10.2217/fca.12.43. 

(Mills et al. 2005) Mills NL, Törnqvist H, Robinson SD, Gonzalez M, Darnley K, MacNee W, 

et al. 2005. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous 

fibrinolysis. Circulation 112:3930–6; doi:10.1161/CIRCULATIONAHA.105.588962. 

(Mills et al. 2009) Mills NL, Donaldson K, Hadoke PW, Boon N a, MacNee W, Cassee FR, et 



References 

177 

al. 2009. Adverse cardiovascular effects of air pollution. Nat. Clin. Pract. Cardiovasc. Med. 

6:36–44; doi:10.1038/ncpcardio1399. 

(Ministry of the Environment 2009). Ministry of the Environment. Government of Japan. En-

vironmental Quality Standards in Japan - Air Quality. Available: 

http://www.env.go.jp/en/air/aq/aq.html (accessed 9 June 2014). 

(Miyata et al. 2013) Miyata R, Hiraiwa K, Cheng JC, Bai N, Vincent R, Francis G a, et al. 

2013. Statins attenuate the development of atherosclerosis and endothelial dysfunction in-

duced by exposure to urban particulate matter (PM10). Toxicol. Appl. Pharmacol.; 

doi:10.1016/j.taap.2013.05.033. 

(Mohr et al. 1994). Mohr S, Stamler JS, Brüne B. 1994. Mechanism of covalent modification 

of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxyni-

trite and related nitrosating agents. FEBS Lett. 348: 223–7. 

(Mordukhovich et al. 2009) Mordukhovich I, Wilker E, Suh H, Wright R, Sparrow D, 

Vokonas PS, et al. 2009. Black carbon exposure, oxidative stress genes, and blood pressure in 

a repeated-measures study. Environ. Health Perspect. 117:1767–72; 

doi:10.1289/ehp.0900591. 

(Mourad et al. 2007) Mourad J-J, Nguyen V, Lopez-Sublet M, Waeber B. 2007. Blood pres-

sure normalization in a large population of hypertensive patients treated with perin-

dopril/indapamide combination: results of the OPTIMAX trial. Vasc. Health Risk Manag. 3: 

173–80. 

(Mulvany 2002) Mulvany MJ. 2002. Small artery remodeling and significance in the devel-

opment of hypertension. News Physiol. Sci. 17: 105–9. 

(National Center for Biotechnology Information 2014a) CYP1A1 cytochrome P450, family 1, 

subfamily A, polypeptide 1 [ Homo sapiens (human)]. Available: 

http://www.ncbi.nlm.nih.gov/gene/1543 (accessed 23 July 2014) 

 (National Center for Biotechnology Information 2014b) TNF tumor necrosis factor [ Homo 

sapiens (human)]. Available: http://www.ncbi.nlm.nih.gov/gene/7124 (accessed 23 July 2014) 

(Nebert et al. 2002) Nebert DW, Roe AL, Vandale SE, Bingham E, Oakley GG. 2002. 

NAD(P)H:quinone oxidoreductase (NQO1) polymorphism, exposure to benzene, and predis-

position to disease: a HuGE review. Genet. Med. 4:62–70; doi:10.109700125817-200203000-

00003. 

http://www.env.go.jp/en/air/aq/aq.html
http://www.ncbi.nlm.nih.gov/gene/1543
http://www.ncbi.nlm.nih.gov/gene/7124


References 

178 

(Newton-Cheh et al. 2009) Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, 

Coin L, et al. 2009. Genome-wide association study identifies eight loci associated with blood 

pressure. Nat. Genet. 41:666–76; doi:10.1038/ng.361. 

(O’Neill et al. 2007) O’Neill MS, Veves A, Sarnat JA, Zanobetti A, Gold DR, Economides 

PA, et al. 2007. Air pollution and inflammation in type 2 diabetes: a mechanism for suscepti-

bility. Occup. Environ. Med. 64: 373–379. 

(Pal and Pal 2005) Pal GK, Pal P. 2005. Textbook Of Practical Physiology. 2nd ed. Orient 

Longman Private Limited, Hyderabad, India. 

(Pal et al. 2013) Pal GK, Adithan C, Ananthanarayanan PH, Pal P, Nanda N, Durgadevi T, et 

al. 2013. Sympathovagal imbalance contributes to prehypertension status and cardiovascular 

risks attributed by insulin resistance, inflammation, dyslipidemia and oxidative stress in first 

degree relatives of type 2 diabetics. PLoS One 8:e78072; doi:10.1371/journal.pone.0078072. 

(Panasevich et al. 2013) Panasevich S, Leander K, Ljungman P, Bellander T, Faire U de, Per-

shagen G, et al. 2013. Interaction between air pollution exposure and genes in relation to lev-

els of inflammatory markers and risk of myocardial infarction. BMJ Open 3:e003058; 

doi:10.1136/bmjopen-2013-003058. 

(Pappano and Wier 2013) Pappano AJ, Wier WG. 2013. Cardiovascular Physiology. 10th Ed. 

Elsevier Mosby, Phila. PA 

(Paravicini and Touyouz 2006) Paravicini TM, Touyz RM. 2006. Redox signaling in hyper-

tension. Cardiovasc. Res. 71:247–58; doi:10.1016/j.cardiores.2006.05.001. 

(Pathmanathan et al. 2003) Pathmanathan S, Krishna MT, Blomberg A, Helleday R, Kelly FJ, 

Sandström T, et al. 2003. Repeated daily exposure to 2 ppm nitrogen dioxide upregulates the 

expression of IL-5, IL-10, IL-13, and ICAM-1 in the bronchial epithelium of healthy human 

airways. Occup. Environ. Med. 60: 892–6. 

(Paton and Renton 1998) Paton TE, Renton KW. 1998. Cytokine-mediated down-regulation 

of CYP1A1 in Hepa1 cells. Biochem. Pharmacol. 55: 1791–6. 

(Pekkanen et al. 2000) Pekkanen J, Brunner EJ, Anderson HR, Tiittanen P, Atkinson RW. 

2000. Daily concentrations of air pollution and plasma fibrinogen in London. Occup. Environ. 

Med. 57: 818–22. 

(Perrino 2010) Perrino C. 2010. Atmospheric particulate matter. Proceedings of a C.I.S.B. 

Minisymposium; Rome, Italy, March 2010.  



References 

179 

(Pickering et al. 2005) Pickering TG, Hall JE, Appel LJ, et al. Recommendations for blood 

pressure measurements in humans and experimental animals. Part 1: blood pressure meas-

urement in humans. Hypertension 2005;45:142–61 

(Pope and Dockery 2006) Pope CA, Dockery DW. 2006. Health effects of fine particulate air 

pollution: lines that connect. J. Air Waste Manag. Assoc. 56: 709–42. 

(Pope et al. 2004) Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, et al. 

2004. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemio-

logical evidence of general pathophysiological pathways of disease. Circulation 109:71–7; 

doi:10.1161/01.CIR.0000108927.80044.7F. 

(Putaud et al. 2004) Putaud J-P, Raes F, Dingenen R Van, Brüggemann E, Facchini M-C, De-

cesari S, et al. 2004. A European aerosol phenomenology—2: chemical characteristics of par-

ticulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 

38:2579–2595; doi:10.1016/j.atmosenv.2004.01.041. 

(Qiagen 2012) RNeasy® Mini Handbook. Fourth Edition. June 2012. Available: 

file:///C:/Users/Wei/Downloads/1072935_HB_RNeasy_Mini_0612.pdf (accessed 21 July 

2014). 

(Quass et al. 2004) Quass U., T. Kuhlbusch, M. Koch: 2004. Identifizierung von Quellgrup-

pen fur Feinstaub, Bericht des LANUV NRW, Deutschland, IUTA-Report LP15/2004. Avail-

able: www.lanuv.nrw.de/luft/berichte/feinstaub_2004_abschl.pdf (accessed 9 June 2014). 

(R Core Team 2013) R Core Team (2013). R: A language and environment for statistical com-

puting. R Foundation for Statistical Computing, Vienna, Austria. Available: http://www.R-

project.org/ (Accessed 27 July 2014). 

(Redón et al. 2003) Redón J, Oliva MR, Tormos C, Giner V, Chaves J, Iradi A, et al. 2003. 

Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension 

41:1096–101; doi:10.1161/01.HYP.0000068370.21009.38. 

(Rhenish Institute for Environmental Research). The Rhenish Institute for Environmental Re-

search at the University of Cologne. The EURAD Project. Available: http://www.eurad.uni-

koeln.de /index_e.html?/modell/eurad_descr_e.html (accessed 9 June 2014). 

(Rioux et al. 2010). Rioux CL, Tucker KL, Mwamburi M, Gute DM, Cohen SA, Brugge D. 

2010. Residential traffic exposure, pulse pressure, and C-reactive protein: consistency and 

contrast among exposure characterization methods. Environ. Health Perspect. 118:803–11; 

file:///C:/Users/Wei/Downloads/1072935_HB_RNeasy_Mini_0612.pdf
http://www.r-project.org/
http://www.r-project.org/


References 

180 

doi:10.1289/ehp.0901182. 

(RLS 90) RLS 90. Richtlinien für den Lärmschutz an Straßen. Federal Ministry of 

Transport,Building and Urban Affairs, 1990, Bonn 1990. 

(Rose 1961) Rose G. 1961. Seasonal variation in blood pressure in man. Nature 189: 235. 

(Rose 1985) Rose G. 1985. Sick individuals and sick populations. Int J Epidemiol 14:32–38. 

(Rouse et al. 2008) Rouse RL, Murphy G, Boudreaux MJ, Paulsen DB, Penn AL. 2008. Soot 

nanoparticles promote biotransformation, oxidative stress, and inflammation in murine lungs. 

Am. J. Respir. Cell Mol. Biol. 39:198–207; doi:10.1165/rcmb.2008-0057OC. 

(Rückerl et al. 2011) Rückerl R, Schneider A, Breitner S, Cyrys J, Peters A. 2011. Health ef-

fects of particulate air pollution: A review of epidemiological evidence. Inhal. Toxicol. 

23:555–92; doi:10.3109/08958378.2011.593587. 

(Saito et al. 2002) Saito Y, Azuma A, Kudo S, Takizawa H, Sugawara I. 2002. Long-term in-

halation of diesel exhaust affects cytokine expression in murine lung tissues: comparison be-

tween low- and high-dose diesel exhaust exposure. Exp. Lung Res. 28:493–506; 

doi:10.1080/01902140290096764. 

(Samoli et al. 2004) Samoli E, Analitis A, Touloumi G, Schwartz J, Anderson HR, Sunyer J, et 

al. 2004. Estimating the Exposure–Response Relationships between Particulate Matter and 

Mortality within the APHEA Multicity Project. Environ. Health Perspect. 113:88–95; 

doi:10.1289/ehp.7387. 

(Samoli et al. 2008) Samoli E, Peng R, Ramsay T, Pipikou M, Touloumi G, Dominici F, et al. 

2008. Acute effects of ambient particulate matter on mortality in Europe and North America: 

results from the APHENA study. Environ. Health Perspect. 116:1480–6; 

doi:10.1289/ehp.11345. 

(Sang et al. 2010) Sang N, Yun Y, Li H, Hou L, Han M, Li G. 2010. SO2 inhalation contrib-

utes to the development and progression of ischemic stroke in the brain. Toxicol. Sci. 

114:226–36; doi:10.1093/toxsci/kfq010. 

(Schmermund et al. 2002) Schmermund A, Möhlenkamp S, Stang A, Grönemeyer D, Seibel 

R, Hirche H, et al. 2002. Assessment of clinically silent atherosclerotic disease and estab-

lished and novel risk factors for predicting myocardial infarction and cardiac death in healthy 

middle-aged subjects: Rationale and design of the Heinz Nixdorf RECALL Study. Am. Heart 

J. 144:212–218; doi:10.1067/mhj.2002.123579. 



References 

181 

(Schmidt et al. 2007) Schmidt, A. C., Graf, C., Brixius, K., & Scholze, J. 2007. Blood pres-

sure-lowering effect of nebivolol in hypertensive patients with type 2 diabetes mellitus: the 

YESTONO study. Clinical Drug Investigation, 27(12), 841–9.  

(Schmidt et al. 2011) Schmidt, Robert F., Lang, Florian, Heckmann, Manfred (Hrsg.). Physio-

logie des Menschen mit Patophysiologie. 31. Auflage. 2011, XXII, 979 S. Springer. ISBN 

978-3-642-01651-6 

(Schwartz et al. 2012) Schwartz J, Alexeeff SE, Mordukhovich I, Gryparis A, Vokonas P, Suh 

H, et al. 2012. Association between long-term exposure to traffic particles and blood pressure 

in the Veterans Administration Normative Aging Study. Occup. Environ. Med. 69:422–7; 

doi:10.1136/oemed-2011-100268. 

(Sears and Casadei 2002) Sears CE, Casadei B. 2002. Mechanisms Controlling Blood Flow 

and Arterial Pressure. Surg. 20:i–v; doi:10.1383/surg.20.3.0.14617. 

(Shah et al. 2013) Shah AS, Langrish JP, Nair H, McAllister D a, Hunter AL, Donaldson K, et 

al. 2013. Global association of air pollution and heart failure: a systematic review and meta-

analysis. Lancet 6736:1–10; doi:10.1016/S0140-6736(13)60898-3. 

(Shannahan et al. 2012) Shannahan JH, Kodavanti UP, Brown JM. 2012. Manufactured and 

airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible 

contribution of mast cells. Inhal. Toxicol. 24:320–39; doi:10.3109/08958378.2012.668229. 

(Shimbo et al. 2010) Shimbo D, Muntner P, Mann D, Viera AJ, Homma S, Polak JF, et al. 

2010. Endothelial dysfunction and the risk of hypertension: the multi-ethnic study of athero-

sclerosis. Hypertension 55:1210–6; doi:10.1161/HYPERTENSIONAHA.109.143123. 

(Silldorff et al. 1995) Silldorff EP, Yang S, Pallone TL. Prostaglandin E2 abrogates endo-

thelin-induced vasoconstriction in renal outer medullary descending vasa recta of the rat. J. 

Clin. Invest. 1995;95:2734–40. 

(Sitia et al. 2010) Sitia S, Tomasoni L, Atzeni F, Ambrosio G, Cordiano C, Catapano A, et al. 

2010. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 9:830–4; 

doi:10.1016/j.autrev.2010.07.016. 

(Sørensen et al. 2011) Sørensen M, Hvidberg M, Hoffmann B, Andersen ZJ, Nordsborg RB, 

Lillelund KG, et al. 2011. Exposure to road traffic and railway noise and associations with 

blood pressure and self-reported hypertension: a cohort study. Environ. Health 10:92; 

doi:10.1186/1476-069X-10-92. 



References 

182 

(Sørensen et al. 2012) Sørensen M, Hoffmann B, Hvidberg M, Ketzel M, Jensen SS, Andersen 

ZJ, et al. 2012. Long-term exposure to traffic-related air pollution associated with blood pres-

sure and self-reported hypertension in a Danish cohort. Environ. Health Perspect. 120:418–

24; doi:10.1289/ehp.1103631. 

(Stadler et al. 1994) Stadler J, Trockfeld J, Schmalix W a, Brill T, Siewert JR, Greim H, et al. 

1994. Inhibition of cytochromes P4501A by nitric oxide. Proc. Natl. Acad. Sci. U. S. A. 91: 

3559–63. 

(Stamler et al. 1989) Stamler J, Rose G, Stamler R, Elliott P, Dyer A, Marmot M. 1989. IN-

TERSALT study findings. Public health and medical care implications. Hypertension 14:570–

577; doi:10.1161/01.HYP.14.5.570. 

(Stang et al. 2006) Stang A, Moebus S, Möhlenkamp S, Dragano N, Schmermund A, Beck E-

M, et al. 2006. Algorithms for converting random-zero to automated oscillometric blood pres-

sure values, and vice versa. Am. J. Epidemiol. 164:85–94; doi:10.1093/aje/kwj160. 

(Steffel and Lüscher 2011) Steffel J, Lüscher TF. 2011. Herz-Kreislauf. Springer Medizin Ver-

lag Heidelberg, Heidelberg. 

(Stockerbaum and Carmeliet 2011) Storkebaum E, Carmeliet P. Paracrine control of vascular 

innervation in health and disease. Acta Physiol. (Oxf). 2011;203:61–86. 

(Sun et al. 2013) Sun L, Liu C, Xu X, Ying Z, Maiseyeu A, Wang A, et al. 2013. Ambient fine 

particulate matter and ozone exposures induce inflammation in epicardial and perirenal adi-

pose tissues in rats fed a high fructose diet. Part. Fibre Toxicol. 10:43; doi:10.1186/1743-

8977-10-43. 

(Sutton et al. 2013) Sutton MA, Reis S, Riddick SN, Dragosits U, Nemitz E, Theobald MR, et 

al. 2013. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. 

Trans. R. Soc. Lond. B. Biol. Sci. 368:20130166; doi:10.1098/rstb.2013.0166. 

(Suzuki and Saruta 2004) Suzuki H, Saruta T (eds): Kidney and Blood Pressure Regulation. 

Contrib Nephrol. Basel, Karger, 2004, vol 143, pp 1–15 

(Takenaka et sl. 2004) Takenaka T, Hayashi K, Ikenaga H. 2004. Blood Pressure Regulation 

and Renal Microcirculation. Vol. 143 of, pp. 46–64. In: Suzuki H, Saruta T (eds): Kidney and 

Blood Pressure Regulation. Contrib. Nephrol. Basel, Karger, 2004. 

(Taylor et al. 1997) Taylor BS, Kim YM, Wang Q, Shapiro RA, Billiar TR, Geller DA. 1997. 

Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression. 



References 

183 

Arch. Surg. 132: 1177–83. 

(Textor et al. 2011) Johannes Textor, Juliane Hardt, Sven Knüppel. 2011. DAGitty: A Graph-

ical Tool for Analyzing Causal Diagrams. Epidemiology, 5(22):745. Available: 

www.dagitty.net (acessed 21 July 2014). 

(Thayer et al. 2010) Thayer JF, Yamamoto SS, Brosschot JF. 2010. The relationship of auto-

nomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 

141:122–31; doi:10.1016/j.ijcard.2009.09.543. 

(The German Federal Environment Agency 2013). Available: 

http://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen/quellen-der-

luftschadstoffe (Accessed 9 June 2014). 

(Timpson et al. 2009) Timpson NJ, Harbord R, Davey Smith G, Zacho J, Tybjaerg-Hansen A, 

Nordestgaard BG. 2009. Does greater adiposity increase blood pressure and hypertension 

risk?: Mendelian randomization using the FTO/MC4R genotype. Hypertension 54:84–90; 

doi:10.1161/HYPERTENSIONAHA.109.130005. 

(Tobin et al. 2005) Tobin MD, Sheehan N a, Scurrah KJ, Burton PR. 2005. Adjusting for 

treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood 

pressure. Stat. Med. 24:2911–35; doi:10.1002/sim.2165. 

(Tobin et al. 2008) Tobin MD, Tomaszewski M, Braund PS, Hajat C, Raleigh SM, Palmer 

TM, et al. 2008. Common variants in genes underlying monogenic hypertension and hypoten-

sion and blood pressure in the general population. Hypertension 51:1658–64; 

doi:10.1161/HYPERTENSIONAHA.108.112664. 

(Tofler and Muller 2006) Tofler GH, Muller JE. 2006. Triggering of acute cardiovascular dis-

ease and potential preventive strategies. Circulation 114:1863–72; 

doi:10.1161/CIRCULATIONAHA.105.596189. 

(Tousoulis et al. 2008) Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C. 

2008. Role of inflammation and oxidative stress in endothelial progenitor cell function and 

mobilization: therapeutic implications for cardiovascular diseases. Atherosclerosis 201:236–

47; doi:10.1016/j.atherosclerosis.2008.05.034. 

(Touyz and Schiffrin) Touyz RM, Schiffrin EL. Chapter 4. Oxidative stress and Hypertension. 

51–78. In: Holtzman JL (ed.). Atherosclerosis and Oxidant stress: A New Perspective. Spring-

er 2007. 

http://journals.lww.com/epidem/Fulltext/2011/09000/DAGitty__A_Graphical_Tool_for_Analyzing_Causal.22.aspx
http://journals.lww.com/epidem/Fulltext/2011/09000/DAGitty__A_Graphical_Tool_for_Analyzing_Causal.22.aspx
http://www.dagitty.net/
file:///C:/Users/barbara.hoffmann/Documents/24_Qualifizierungsarbeiten/Fuks/http
file:///C:/Users/barbara.hoffmann/Documents/24_Qualifizierungsarbeiten/Fuks/http
http://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen/quellen-der-luftschadstoffe


References 

184 

(Tracey and Cerami 1993) Tracey KJ, Cerami A. 1993. Tumor necrosis factor: an updated 

review of its biology. Crit. Care Med. 21: S415–22. 

(Turnbull 2003) Turnbull F. 2003. Effects of different blood-pressure-lowering regimens on 

major cardiovascular events: results of prospectively-designed overviews of randomised tri-

als. Lancet 362: 1527–35. 

(Ulrich et al. 2002) Ulrich MMW, Alink GM, Kumarathasan P, Vincent R, Boere AJF, Cassee 

FR. 2002. Health effects and time course of particulate matter on the cardiopulmonary system 

in rats with lung inflammation. J. Toxicol. Environ. Health. A 65:1571–95; 

doi:10.1080/00984100290071676. 

(UNEP/WHO 1994) UNEP/WHO 1994 GEMS/AIR Methodology Review Handbook Series. 

Volume 3. Measurement of suspended particulate matter in ambient air. WHO/EOS/94.3, 

UNEP/GEMS/94.A.4. UNEP Nairobi. 

(United Nations Educational, Scientific, and Cultural Organization 1997) United Nations Ed-

ucational, Scientific, and Cultural Organization. 1997. International Standard Classification of 

Education. Paris:United Nations Educational, Scientific, and Cultural Organization. 

(Van Berlo et al. 2010) Berlo D van, Albrecht C, Knaapen AM, Cassee FR, Gerlofs-Nijland 

ME, Kooter IM, et al. 2010. Comparative evaluation of the effects of short-term inhalation 

exposure to diesel engine exhaust on rat lung and brain. Arch. Toxicol. 84:553–62; 

doi:10.1007/s00204-010-0551-7. 

(Van den Hooven et al. 2011) Hooven EH van den, Kluizenaar Y de, Pierik FH, Hofman A, 

Ratingen SW van, Zandveld PYJ, et al. 2011. Air pollution, blood pressure, and the risk of 

hypertensive complications during pregnancy: the generation R study. Hypertension 57:406–

12; doi:10.1161/HYPERTENSIONAHA.110.164087. 

(Van Kempen and Babisch 2012) Kempen E van, Babisch W. 2012. The quantitative relation-

ship between road traffic noise and hypertension: a meta-analysis. J. Hypertens. 30:1075–86; 

doi:10.1097/HJH.0b013e328352ac54. 

(Vasan 2002) Vasan RS. 2002. Residual Lifetime Risk for Developing Hypertension in Mid-

dle-aged Women and Men: The Framingham Heart Study. JAMA J. Am. Med. Assoc. 

287:1003–1010; doi:10.1001/jama.287.8.1003. 

(VBUS 2006) VBUS. Vorläufige Berechnungsmethode für den Umgebungslärm an Straßen 

(Preliminary calculaton method for road traffic noise). Bundesanzeiger Nr. 154 17 August 



References 

185 

2006 

(Victor and Kaplan 2008) Victor RG and Kaplan NM. Systemic hypertension: mechanisms 

and diagnosis. Chapter 40 p. 1027-1048. in: Braunwald's heart disease : a textbook of cardio-

vascular medicine. Libby, Peter (Hrsg.) ; Braunwald, Eugene (Begr.) ; Achenbach, Stephan 

(Mitarb.) 8. ed. , 2008. Philadelphia, Pa. : Saunders Elsevier. 2183 S. 

(Viehmann et al. 2010) Viehmann A, Moebus S, Möhlenkamp S, Nonnemacher M, Dragano 

N, Jakobs H, et al. 2010. Does traffic noise explain the association of residential proximity to 

traffic with coronary artery calcification? Das Gesundheitswes. 72; doi:10.1055/s-0030-

1266411. 

(Vuppugalla and Mehvar 2004) Vuppugalla R, Mehvar R. 2004. Short-term inhibitory effects 

of nitric oxide on cytochrome P450-mediated drug metabolism: time dependency and reversi-

bility profiles in isolated perfused rat livers. Drug Metab. Dispos. 32:1446–1454; 

doi:10.1124/dmd.104.001487.also. 

(Wang et al. 2013) Wang G, Zhao J, Jiang R, Song W. 2013. Rat Lung Response to Ozone and 

Fine Particulate Matter (PM2.5) Exposures. 5:1–14; doi:10.1002/tox. 

(WBK and Associates Inc. 2004) WBK and Associates Inc. 2004. Assessment Report on 

Ammonia for Developing Ambient Air Quality Objectives – Vol. I. ISBN No. 0-7785-3156-2. 

Available: http://environment.gov.ab.ca/info/library/6655.pdf 

(Wenger et al. 2009) Wenger D, Gerecke AC, Heeb N V., Hueglin C, Seiler C, Haag R, et al. 

2009. Aryl hydrocarbon receptor-mediated activity of atmospheric particulate matter from an 

urban and a rural site in Switzerland. Atmos. Environ. 43:3556–3562; 

doi:10.1016/j.atmosenv.2009.04.012. 

(Whelton 1994) Whelton PK. 1994. Epidemiology of hypertension. Lancet 344:101–106; 

doi:10.1016/S0140-6736(94)91285-8. 

(Whelton et al. 2002) Whelton PK, He J, Appel LJ, Cutler JA, Havas S, Kotchen TA, et al. 

2002. Primary prevention of hypertension: clinical and public health advisory from The Na-

tional High Blood Pressure Education Program. JAMA 288: 1882–8. 

(WHO 1999) Monitoring ambient air quality for health impact assessment. WHO regional 

publications. European series. 1999. No. 85. ISBN 92 890 1351 6  

(WHO 2003) World Health Organization. Health aspects of air pollution with particulate mat-

ter, ozone and nitrogen dioxide. Ginebra: World Health Organization; 2003.  



References 

186 

(WHO 2013) World Health Organization 2013. A global brief on hypertension. Available: 

http://apps.who.int/iris/bitstream/10665/79059/1/WHO_DCO_WHD_2013.2_eng.pdf?ua=1 

(WHO 2014) World Health Organization 2014. Mortality from ambient air pollution. Availa-

ble: http://www.who.int/gho/phe/outdoor_air_pollution/burden/en/index.html (accessed 9 

June 2014) 

(WHO Air Quality Guidelines 2005) World Health Organization. 2005. Air Quality Guide-

lines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. 

Available: http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf?ua=1 (ac-

cessed 14 August 2014). 

(WHO Air Quality Guidelines for Europe 2000) World Health Organization Air Quality 

Guidelines for Europe, 2nd ed. World Health Organization Regional Office for Europe, Co-

penhagen, Denmark. 

(WHO Collaborating Centre for Drug Statistics Methodology) World Health Organization 

Collaborating Centre for Drug Statistics Methodology. Available: 

http://www.whocc.no/atc_ddd_methodology/who_collaborating_centre/ (accessed 13 August 

2014).  

(Widlanski et al. 2003) Widlansky ME, Gokce N, Keaney JF, Vita JA. 2003. The clinical im-

plications of endothelial dysfunction. J. Am. Coll. Cardiol. 42:1149–1160; 

doi:10.1016/S0735-1097(03)00994-X. 

(Wilker et al. 2010) Wilker EH, Baccarelli A, Suh H, Vokonas P, Wright RO, Schwartz J. 

2010. Black carbon exposures, blood pressure, and interactions with single nucleotide poly-

morphisms in MicroRNA processing genes. Environ. Health Perspect. 118:943–8; 

doi:10.1289/ehp.0901440. 

(Wills et al. 2012) Wills AK, Lawlor D a, Muniz-Terrera G, Matthews F, Cooper R, Ghosh 

AK, et al. 2012. Population Heterogeneity in Trajectories of Midlife Blood Pressure. Epide-

miology 23:203–211; doi:10.1097/EDE.0b013e3182456567. 

(Wilson and Lerman 2001) Wilson SH, Lerman A. 2001. Function of Vascular Endothelium. 

In Heart Physiology and Pathophysiology (Fourth Edition). Nick Sperelakis., Mayo Clinic 

and Foundation, Rochester, Minnesoty 55905. 

(Wing et al. 2013) Wing S, Horton RA, Rose KM. 2013. Air pollution from industrial swine 

operations and blood pressure of neighboring residents. Environ. Health Perspect. 121:92–6; 

http://apps.who.int/iris/bitstream/10665/79059/1/WHO_DCO_WHD_2013.2_eng.pdf?ua=1
http://www.who.int/gho/phe/outdoor_air_pollution/burden/en/index.html
http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf?ua=1
http://www.whocc.no/atc_ddd_methodology/who_collaborating_centre/


References 

187 

doi:10.1289/ehp.1205109. 

(Witkowska and Borawska 2004) Witkowska AM, Borawska MH. 2004. Soluble intercellular 

adhesion molecule-1 (sICAM-1): an overview. Eur. Cytokine Netw. 15: 91–8. 

(Wolf-Mailer et al. 2003) Wolf-Maier K, Cooper RS, Banegas JR, Giampaoli S, Hense HW, 

Joffres M, et al. 2003. Hypertension prevalence and blood pressure levels in 6 European coun-

tries, Canada, and the United States. JAMA 289:2363–2369; doi:10.2165/00003495-

199957050-00003. 

(World Medical Association 1964) World Medical Association. 1964. Declaration of Helsinki 

- Ethical principles for medical research involving human subjects. 

(Wu et al. 2012) Wu S, Deng F, Wei H, Huang J, Wang H, Shima M, et al. 2012. Chemical 

constituents of ambient particulate air pollution and biomarkers of inflammation, coagulation 

and homocysteine in healthy adults: a prospective panel study. Part. Fibre Toxicol. 9:49; 

doi:10.1186/1743-8977-9-49. 

(Yang and Omaye 2009) Yang W, Omaye ST. 2009. Air pollutants, oxidative stress and human 

health. Mutat. Res. 674:45–54; doi:10.1016/j.mrgentox.2008.10.005. 

(Yang et al. 2009) Yang I a, Fong KM, Zimmerman P V, Holgate ST, Holloway JW. 2009. 

Genetic susceptibility to the respiratory effects of air pollution. Postgrad. Med. J. 85:428–36; 

doi:10.1136/thx.2007.079426. 

(Yatera et al. 2008) Yatera K, Hsieh J, Hogg JC, Tranfield E, Suzuki H, Shih C, et al. 2008. 

Particulate matter air pollution exposure promotes recruitment of monocytes into atheroscle-

rotic plaques. 6:944–953; doi:10.1152/ajpheart.00406.2007. 

(Yu 2005) Yu M-H. 2005. Environmental Toxicology. Second Edition. Biological and Health 

Effects of Pollutants. CRC Press LLC. 

(Yu et al. 2008) Yu J, Weïwer M, Linhardt RJ, Dordick JS. 2008. The role of the methoxyphe-

nol apocynin, a vascular NADPH oxidase inhibitor, as a chemopreventative agent in the po-

tential treatment of cardiovascular diseases. Curr. Vasc. Pharmacol. 6: 204–17. 

(Yu et al. 2013) Yu IT, Qiu H, Wang X, Tian L, Tse LA. 2013. Synergy between particles and 

nitrogen dioxide on emergency hospital admissions for cardiac diseases in Hong Kong. Int. J. 

Cardiol. 168:2831–6; doi:10.1016/j.ijcard.2013.03.082. 

(Zadeh et al. 2000) Zadeh MS, Kolb JP, Geromin D, D’Anna R, Boulmerka A, Marconi A, et 



References 

188 

al. 2000. Regulation of ICAM-1/CD54 expression on human endothelial cells by hydrogen 

peroxide involves inducible NO synthase. J. Leukoc. Biol. 67: 327–34.  

(Zanobetti et al. 2004) Zanobetti A, Canner MJ, Stone PH, Schwartz J, Sher D, Eagan-

Bengston E, et al. 2004. Ambient pollution and blood pressure in cardiac rehabilitation pa-

tients. Circulation 110:2184–9; doi:10.1161/01.CIR.0000143831.33243.D8. 

(Zhu and Li 2012) Zhu H, Li Y. 2012. NAD(P)H: quinone oxidoreductase 1 and its potential 

protective role in cardiovascular diseases and related conditions. Cardiovasc. Toxicol. 12:39–

45; doi:10.1007/s12012-011-9136-9. 

(Zhu et al. 2002) Zhu Y, Hinds WC, Kim S, Sioutas C. 2002. Concentration and size distribu-

tion of ultrafine particles near a major highway. J. Air Waste Manag. Assoc. 52: 1032–42. 



Appendix 

XVII 

APPENDIX 

Table 38. Estimates for the covariates in the main model with SBP at baseline. 

Variable (increment) Change, mmHg (95%-CI) p-value 

Intercept 53.008 (40.382, 65.633) 0.000 

PM2.5 (365-day mean) (1 µg/m³) 0.471 ( 0.087, 0.855) 0.016 

Time trend (centered) (100 days) -0.367 (-0.603, -0.132) 0.002 

Time trend squared (centered) (100 days²) 0.003 (0.002, 0.004) 0.000 

PM2.5 (7-day mean) (1 µg/m³) 0.083 (-0.009, 0.175) 0.076 

Lnight (traffic) (5 dB) 0.327 (-0.008, 0.662) 0.056 

Lden (tram) (5 dB) 0.002 (-0.039, 0.043) 0.928 

Distance to road (1 km) 0.048 (-0.741, 0.837) 0.905 

Age (1 year) 0.618 ( 0.517, 0.719) 0.000 

Sex (male) 8.182 ( 6.405, 9.958) 0.000 

BMI (centered) (1 kg/m²) 0.617 ( 0.459, 0.774) 0.000 

BMI squared (centered) (1 (kg/m²)²) -0.022 (-0.037, -0.007) 0.004 

WHR 13.915 ( 4.411, 23.420) 0.004 

LDL/HDL ratio 1.097 ( 0.438, 1.756) 0.001 

HDL (mg/dL) 0.134 ( 0.086, 0.182) 0.000 

Triglycerides (mg/dL) 0.024 ( 0.018, 0.030) 0.000 

Smoking (current) (reference)  

Smoking (former) 2.528 ( 0.913, 4.143) 0.002 

Smoking (never) 2.946 ( 1.337, 4.555) 0.000 

ETS 0.894 (-0.419, 2.206) 0.182 

Physical activity (<1 time/week) (reference)  

Physical activity (1 time/week) -2.309 (-4.129, -0.489) 0.013 

Physical activity (2-3 times/week) -1.597 (-3.260, 0.066) 0.060 

Physical activity (>3 times/week) -2.463 (-3.857, -1.069) 0.001 

Education (low) (reference)  

Education (medium) -0.053 (-1.877, 1.771) 0.954 

Education (high) -0.943 (-3.001, 1.115) 0.369 

Economic activity (employed) (reference)  

Economic activity (unemployed) -1.095 (-3.450, 1.261) 0.362 

Economic activity (homemaker) 1.409 (-0.550, 3.368) 0.159 

Economic activity (retired) 0.721 (-1.011, 2.452) 0.415 

N=4,584.   

 



Appendix 

XVIII 

Table 39. Estimates for the covariates in the main model with DBP at baseline. 

Variable (increment) Change, mmHg (95%-CI) p-value 

Intercept 59.785 (53.360, 66.209) 0.000 

PM2.5 (365-day mean) (1 µg/m³) 0.313 ( 0.105, 0.521) 0.003 

Time trend (centered) (100 days) -0.409 (-0.536, -0.281) 0.000 

Time trend squared (centered) (100 days²) 0.001 (0.000, 0.001) 0.000 

PM2.5 (7-day mean) (1 µg/m³) 0.022 (-0.028, 0.071) 0.392 

Lnight (traffic) (5 dB) 0.098 (-0.084, 0.279) 0.291 

Lden (tram) (5 dB) 0.003 (-0.019, 0.026) 0.760 

Distance to road (1 km) -0.013 (-0.440, 0.414) 0.953 

Age (centered) (1 year) -0.104 (-0.159, -0.049) 0.000 

Age squared (centered) (1 year²) -0.011 (-0.016, -0.006) 0.000 

Sex (male) 4.189 ( 3.227, 5.150) 0.000 

BMI (centered) (1 kg/m²) 0.400 ( 0.315, 0.486) 0.000 

BMI squared (centered) (1 (kg/m²)²) -0.020 (-0.028, -0.012) 0.000 

WHR 7.157 ( 2.003, 12.311) 0.007 

LDL/HDL ratio 0.682 ( 0.322, 1.042) 0.000 

HDL (mg/dL) 0.080 ( 0.054, 0.106) 0.000 

Triglycerides (centered) (mg/dL) 0.017 ( 0.013, 0.022) 0.000 

Triglycerides squared (centered) ((mg/dL)²) 0.000 ( 0.000, 0.000) 0.037 

Smoking (current) (reference)  

Smoking (former) 1.499 ( 0.625, 2.372) 0.001 

Smoking (never) 2.165 ( 1.294, 3.037) 0.000 

ETS 0.474 (-0.235, 1.184) 0.190 

Physical activity (<1 time/week) (reference)  

Physical activity (1 time/week) -0.555 (-1.540, 0.429) 0.269 

Physical activity (2-3 times/week) -0.587 (-1.488, 0.313) 0.201 

Physical activity (>3 times/week) -0.892 (-1.647, -0.138) 0.020 

Education (low) (reference)  

Education (medium) 0.146 (-0.842, 1.134) 0.772 

Education (high) -0.200 (-1.315, 0.914) 0.725 

Economic activity (employed) (reference)  

Economic activity (unemployed) -0.352 (-1.631, 0.926) 0.589 

Economic activity (homemaker) 0.712 (-0.352, 1.776) 0.190 

Economic activity (retired) 0.324 (-0.613, 1.261) 0.498 

N=4,584.   
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Table 40. Estimates for the covariates in the main model with PP at baseline. 

Variable (increment) Change, mmHg (95%-CI) p-value 

Intercept -9.277 (-18.061, -0.494) 0.038 

PM2.5 (365-day mean) (1 µg/m³) 0.172 ( -0.096, 0.439) 0.208 

Time trend (centered) (100 days) 0.039 (-0.125, 0.203) 0.638 

Time trend squared (centered) (100 days²) 0.002 (0.002, 0.003) 0.000 

PM2.5 (7-day mean) (1 µg/m³) 0.060 ( -0.004, 0.124) 0.065 

Lnight (traffic) (5 dB) 0.231 ( -0.002, 0.465) 0.052 

Lden (tram) (5 dB) -0.003 ( -0.031, 0.026) 0.850 

Distance to road (1 km) 0.050 (-0.499, 0.599) 0.859 

Age (1 year) 0.724 ( 0.653, 0.794) 0.000 

Sex (male) 4.026 ( 2.790, 5.261) 0.000 

BMI (centered) (1 kg/m²) 0.211 ( 0.101, 0.321) 0.000 

BMI squared (centered) (1 (kg/m²)²) -0.002 ( -0.012, 0.009) 0.745 

WHR 5.893 ( -0.719, 12.506) 0.081 

LDL/HDL ratio 0.357 ( -0.102, 0.815) 0.128 

HDL (mg/dL) 0.053 ( 0.020, 0.087) 0.002 

Triglycerides (mg/dL) 0.010 ( 0.006, 0.014) 0.000 

Smoking (current) (reference)  

Smoking (former) 0.987 ( -0.137, 2.111) 0.085 

Smoking (never) 0.711 ( -0.409, 1.830) 0.214 

ETS 0.398 ( -0.515, 1.311) 0.393 

Physical activity (<1 time/week) (reference)  

Physical activity (1 time/week) -1.759 ( -3.025, -0.493) 0.007 

Physical activity (2-3 times/week) -1.041 ( -2.198, 0.116) 0.078 

Physical activity (>3 times/week) -1.559 ( -2.529, -0.589) 0.002 

Education (low) (reference)  

Education (medium) -0.300 ( -1.569, 0.970) 0.644 

Education (high) -0.835 ( -2.267, 0.597) 0.253 

Economic activity (employed) (reference)  

Economic activity (unemployed) -0.997 ( -2.636, 0.642) 0.233 

Economic activity (homemaker) 0.457 ( -0.906, 1.820) 0.511 

Economic activity (retired) 0.365 ( -0.840, 1.569) 0.553 

N=4,584.   
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Table 41. Estimates for the covariates in the main model with prevalent hypertension at base-

line. 

Variable (increment) OR (95%-CI) p-value 

Intercept 0.003 (0.001, 0.012) 0.000 

PM2.5 (365-day mean) (1 µg/m³) 1.000 (0.955, 1.046) 0.994 

Time trend (centered) (100 days) 0.989 (0.962, 1.018) 0.454 

Time trend squared (centered) (100 days²) 1.000 (1.000, 1.000) 0.009 

PM2.5 (7-day mean) (1 µg/m³) 1.006 (0.995, 1.017) 0.312 

Lnight (traffic) (5 dB) 1.021 (0.981, 1.063) 0.307 

Lden (tram) (5 dB) 0.999 (0.994, 1.004) 0.749 

Distance to road (1 km) 0.978 (0.890, 1.074) 0.637 

Age (1 year) 1.072 (1.059, 1.085) 0.000 

Sex (male) 1.249 (1.012, 1.541) 0.038 

BMI (centered) (1 kg/m²) 1.096 (1.076, 1.117) 0.000 

BMI squared (centered) (1 (kg/m²)²) 1.001 (0.999, 1.004) 0.318 

WHR 5.830 (1.872, 18.157) 0.002 

LDL/HDL ratio 0.946 (0.869, 1.030) 0.203 

HDL (mg/dL) 0.999 (0.993, 1.005) 0.699 

Triglycerides (mg/dL) 1.003 (1.002, 1.004) 0.000 

Smoking (current) (reference)  

Smoking (former) 1.378 (1.139, 1.668) 0.001 

Smoking (never) 1.252 (1.036, 1.512) 0.020 

ETS 1.108 (0.949, 1.295) 0.195 

Physical activity (<1 time/week) (reference)  

Physical activity (1 time/week) 0.886 (0.715, 1.098) 0.268 

Physical activity (2-3 times/week) 0.788 (0.649, 0.957) 0.016 

Physical activity (>3 times/week) 0.750 (0.636, 0.884) 0.001 

Education (low) (reference)  

Education (medium) 0.850 (0.682, 1.060) 0.149 

Education (high) 0.854 (0.667, 1.095) 0.213 

Economic activity (employed) (reference)  

Economic activity (unemployed) 1.024 (0.779, 1.345) 0.866 

Economic activity (homemaker) 1.083 (0.861, 1.362) 0.497 

Economic activity (retired) 1.167 (0.953, 1.430) 0.136 

N=4,584.   
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Table 42. Estimates for the covariates in the main model with BPLM use at baseline. 

Variable (increment) OR (95%-CI) p-value 

Intercept 0.013 (0.003, 0.063) 0.000 

PM2.5 (365-day mean) (1 µg/m³) 0.982 (0.937, 1.028) 0.434 

Time trend (centered) (100 days) 1.031 (1.003, 1.061) 0.032 

Time trend squared (centered) (100 days²) 1.000 (1.000, 1.000) 0.612 

PM2.5 (7-day mean) (1 µg/m³) 1.001 (0.990, 1.012) 0.866 

Lnight (traffic) (5 dB) 1.007 (0.968, 1.049) 0.719 

Lden (tram) (5 dB) 0.999 (0.994, 1.004) 0.759 

Distance to road (1 km) 0.952 (0.866, 1.048) 0.316 

Age (1 year) 1.065 (1.052, 1.078) 0.000 

Sex (male) 0.700 (0.564, 0.868) 0.001 

BMI (centered) (1 kg/m²) 1.075 (1.054, 1.096) 0.000 

BMI squared (centered) (1 (kg/m²)²) 1.002 (0.999, 1.004) 0.146 

WHR 7.261 (2.294, 22.983) 0.001 

LDL/HDL ratio 0.789 (0.720, 0.866) 0.000 

HDL (mg/dL) 0.980 (0.974, 0.986) 0.000 

Triglycerides (mg/dL) 1.001 (1.001, 1.002) 0.000 

Smoking (current) (reference)  

Smoking (former) 1.336 (1.095, 1.631) 0.004 

Smoking (never) 1.281 (1.050, 1.563) 0.015 

ETS 1.095 (0.933, 1.284) 0.266 

Physical activity (<1 time/week) (reference)  

Physical activity (1 time/week) 0.866 (0.696, 1.078) 0.198 

Physical activity (2-3 times/week) 0.841 (0.688, 1.028) 0.091 

Physical activity (>3 times/week) 0.755 (0.637, 0.895) 0.001 

Education (low) (reference)  

Education (medium) 0.911 (0.736, 1.128) 0.393 

Education (high) 1.030 (0.807, 1.313) 0.814 

Economic activity (employed) (reference)  

Economic activity (unemployed) 1.023 (0.759, 1.378) 0.882 

Economic activity (homemaker) 1.161 (0.912, 1.477) 0.226 

Economic activity (retired) 1.204 (0.980, 1.478) 0.076 

N=4,584.   
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Table 43. The distribution of exposure, outcome and most characteristics in the baseline anal-

ysis subset and among participants excluded from the analyses at baseline. 

Variable (unit), statistics 
Analysis subset (N=4,584) Excluded (N=230) 

Description N missing Description N missing 

PM2.5 (µg/m³), Mean ± SD 16.7 ± 1.6 0 16.4 ± 1.6 5 

PM10 (µg/m³), Mean ± SD 20.7 ± 2.6 0 20.5 ± 2.6 5 

PMcoarse (µg/m³), Mean ± SD 4.0 ± 1.6 0 4.2 ± 1.8 5 

PM1 (µg/m³), Mean ± SD 11.6 ± 1.3 0 11.4 ± 1.3 5 

PN (×10^4/L), Mean ± SD 8.8 ± 1.9 0 8.7 ± 1.9 5 

O3 (µg/m³), Mean ± SD 35.4 ± 1.6 0 35.4 ± 1.6 5 

NO2 (µg/m³), Mean ± SD 40.1 ± 4.2 0 39.5 ± 4.3 5 

NO (µg/m³), Mean ± SD 12.7 ± 4.5 0 12.2 ± 4.2 5 

SO2 (µg/m³), Mean ± SD 8.7 ± 1.1 0 8.6 ± 1.1 5 

CO (µg/m³), Mean ± SD 0.3 ± 0.1 0 0.3 ± 0.1 5 

NH3 (µg/m³), Mean ± SD 2.6 ± 0.4 0 2.5 ± 0.3 5 

SBP (mmHg), Mean ± SD 133.2 ± 20.8 0 132.8 ± 21.6 15 

DBP (mmHg), Mean ± SD 81.4 ± 10.9 0 81.5 ± 11.0 14 

PP (mmHg), Mean ± SD 51.7 ± 14.7 0 51.4 ± 15.6 15 

Hypertension, n (%) 2611 (57.0%) 0 151 (65.7%) 31 

BPLM use, n (%) 1628 (35.5%) 0 87 (37.8%) 16 

Self-reported hypertension, n (%) 1955 (42.7%) 10 100 (43.7%) 1 

Self-reported BPLM use, n (%) 1432 (31.2%) 1 65 (28.5%) 2 

Age (years), Mean ± SD 59.6 ± 7.8 0 59.9 ± 8.1 0 

Sex (male), n (%) 2274 (49.6%) 0 121 (52.6%) 0 

CHD, n (%) 296 (6.5%) 0 46 (20.0%) 15 

T2DM, n (%) 623 (13.6%) 0 29 (12.6%) 0 

BMI (kg/m²), Mean ± SD 27.9 ± 4.6 0 28.1 ± 5.5 29 

LDL:HDL ratio, Mean ± SD 2.7 ± 1.1 0 2.8 ± 1.1 38 

Smoking, n (%) 
 

0 
 

10 

  Current 1064 (23.2%) 
 

74 (32.2%) 
 

  Former 1585 (34.6%) 
 

87 (37.8%) 
 

  Never 1935 (42.2%) 
 

89 (38.7%) 
 

  Pack-years, Mean ± SD 16.1 ± 24.6 112 17.8 ± 25.8 19 

ETS exposure, n (%) 1658 (36.2%) 0 104 (45.2%) 17 

Alcohol (drinks/week), Mean ± SD 5.3 ± 10.2 107 5.1 ± 10.7 16 

No sport, n (%) 2100 (45.8%) 0 127 (55.2%) 1 
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Variable (unit), statistics 
Analysis subset (N=4,584) Excluded (N=230) 

Description N missing Description N missing 

Education, n (%) 
 

0 
 

16 

  <10 years 517 (11.3%) 
 

46 (20.0%) 
 

  11–17 years 2558 (55.8%) 
 

134 (58.3%) 
 

  >=18 years 1509 (32.9%) 
 

82 (35.7%) 
 

Economic activity, n (%) 
 

0 
 

15 

Employed 1847 (40.3%) 
 

96 (41.7%) 
 

Unemployed 290 (6.3%) 
 

30 (13.0%) 
 

Homemakers 642 (14.0%) 
 

36 (15.7%) 
 

Retired 1805 (39.4%) 
 

113 (49.1%) 
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Table 44. The distribution of exposure, outcome and most characteristics in the follow-up 

analysis subset and among participants excluded from the analyses at follow-up. 

Variable (unit), statistics 
Analysis subset (N=3,240) Excluded (N=232) 

Description N missing Description N missing 

PM2.5 (µg/m³), Mean ± SD 15.6 ± 1.4 0 15.7 ± 1.3 0 

PM10 (µg/m³), Mean ± SD 19.8 ± 3.1 0 20.2 ± 3.3 0 

PMcoarse (µg/m³), Mean ± SD 4.2 ± 2.4 0 4.5 ± 2.7 0 

PM1 (µg/m³), Mean ± SD 11.0 ± 1.1 0 11.1 ± 1.1 24 

PN (×10^4/L), Mean ± SD 7.7 ± 1.7 0 7.7 ± 1.5 24 

O3 (µg/m³), Mean ± SD 37.6 ± 2.0 0 37.4 ± 2.0 24 

NO2 (µg/m³), Mean ± SD 38.6 ± 4.7 0 39.3 ± 4.8 24 

NO (µg/m³), Mean ± SD 7.7 ± 2.2 0 8.1 ± 2.3 24 

SO2 (µg/m³), Mean ± SD 7.4 ± 1.1 0 7.6 ± 1.1 24 

CO (µg/m³), Mean ± SD 0.3 ± 0.0 0 0.3 ± 0.0 24 

NH3 (µg/m³), Mean ± SD 2.8 ± 0.3 0 2.8 ± 0.3 24 

SBP (mmHg), Mean ± SD 134.6 ± 19.8 0 132.6 ± 19.5 11 

DBP (mmHg), Mean ± SD 79.2 ± 10.5 0 77.3 ± 10.3 11 

PP (mmHg), Mean ± SD 55.4 ± 14.7 0 55.3 ± 14.8 11 

Hypertension, n (%) 2157 (66.6%) 0 158 (68.1%) 11 

BPLM use, n (%) 1595 (49.2%) 0 117 (50.4%) 0 

Self-reported hypertension, n (%) 1434 (45.4%) 80 107 (48.0%) 9 

Self-reported BPLM use, n (%) 1391 (43.3%) 25 102 (44.5%) 3 

Age (years), Mean ± SD 64.6 ± 7.6 0 66.3 ± 7.8 0 

Sex (male), n (%) 1630 (50.3%) 0 101 (43.5%) 0 

CHD, n (%) 263 (8.1%) 0 38 (16.4%) 7 

T2DM, n (%) 614 (19.0%) 0 49 (21.1%) 0 

BMI (kg/m²), Mean ± SD 28.3 ± 4.8 0 29.1 ± 5.9 11 

LDL:HDL ratio, Mean ± SD 2.3 ± 0.8 0 2.3 ± 0.9 25 

Smoking, n (%) 
 

0 
 

7 

Current 552 (17.0%) 
 

35 (15.1%) 
 

Former 1301 (40.2%) 
 

88 (37.9%) 
 

Never 1387 (42.8%) 
 

123 (53.0%) 
 

ETS exposure, n (%) 799 (24.7%) 0 49 (21.1%) 8 

Alcohol (drinks/week), Mean ± SD 7.1 ± 11.2 0 5.6 ± 10.5 61 

No sport, n (%) 1379 (42.6%) 0 123 (53.0%) 6 

Education, n (%) 
 

0 
 

4 
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Variable (unit), statistics 
Analysis subset (N=3,240) Excluded (N=232) 

Description N missing Description N missing 

<10 years 289 (8.9%) 
 

55 (23.7%) 
 

11–17 years 1817 (56.1%) 
 

122 (52.6%) 
 

>=18 years 1134 (35.0%) 
 

63 (27.2%) 
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Table 45. Stratified description of study population at baseline by BPLM intake.  

Variable No BPLM intake 

(N=2,956) 

BPLM intake 

(N=1,628) 

p 

(T-test,χ²-test) 

PM2.5 [µg/m³], Mean ± SD 16.6 ± 1.6 16.7 ± 1.6 0.243 

PM10 [µg/m³], Mean ± SD 20.7 ± 2.6 20.7 ± 2.7 0.467 

PMcoarse [µg/m³], Mean ± SD 4.0 ± 1.6 4.0 ± 1.6 0.994 

PM1 [µg/m³], Mean ± SD 11.6 ± 1.3 11.6 ± 1.3 0.138 

PN [×10^4/L], Mean ± SD 8.8 ± 1.9 8.9 ± 1.9 0.202 

O3 [µg/m³], Mean ± SD 35.4 ± 1.6 35.5 ± 1.6 0.554 

NO2 [µg/m³], Mean ± SD 40.1 ± 4.2 40.3 ± 4.1 0.069 

NO [µg/m³], Mean ± SD 12.6 ± 4.5 12.8 ± 4.5 0.130 

SO2 [µg/m³], Mean ± SD 8.7 ± 1.1 8.8 ± 1.1 0.033 

CO [µg/m³], Mean ± SD 0.3 ± 0.1 0.3 ± 0.1 0.226 

NH3 [µg/m³], Mean ± SD 2.6 ± 0.4 2.6 ± 0.4 0.530 

Lden (traffic) [dB], Mean ± SD 53.8 ± 9.6 54.2 ± 9.7 0.253 

Lden (tram) [dB], Mean ± SD 12.1 ± 13.6 12.4 ± 13.6 0.433 

Proximity to road [km], Mean ± SD 920.1 ± 781.9 868.3 ± 780.7 0.032 

Area-level unemployment rate [%], 

Mean ± SD 
12.4 ± 3.4 12.7 ± 3.5 0.003 

SBP [mmHg], Mean ± SD 130.6 ± 20.3 137.8 ± 21.0 0.000 

DBP [mmHg], Mean ± SD 81.1 ± 10.7 82.1 ± 11.1 0.002 

PP [mmHg], Mean ± SD 49.5 ± 13.8 55.7 ± 15.6 0.000 

Hypertension , % 33.3% 100.0% 0.000 

Age [years] 58.1 ± 7.5 62.4 ± 7.5 0.000 

Sex [male], % 48.8% 51.1% 0.140 

CHD, % 1.5% 15.4% 0.000 

T2DM, % 8.5% 22.9% 0.000 

BMI [kg/m²] 27.1 ± 4.1 29.4 ± 5.0 0.000 

Current smoker, % 26.1% 18.0% 0.000 

Former smoker, % 33.1% 37.3% 
 

Never smoker, % 40.8% 44.7% 
 

ETS exposure, % 38.5% 31.9% 0.000 

No sport, % 42.6% 51.7% 0.000 

Education <10 years, % 9.6% 14.3% 0.000 

N=4,584.    
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Figure 28. The mean BP values at baseline by the month of measurement. 

Legend: N=4,584. 
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