
Universität Duisburg-Essen

Fachbereich Mathematik

Multilevel Approach for Bermudan

Option Pricing

Dissertation zur Erlangung des Doktorgrades Dr.rer.nat. der
Fakultät für Mathematik

Betreuer: Prof. Dr. D. Belomestny

Vorgelegt von: Fabian Dickmann aus Bottrop

Eingereicht am: 17. Dezember 2014

Mündliche Prüfung: 24. Juni 2015

Erstgutachter: Prof. Dr. Denis Belomestny

Zweitgutachter: PD Dr. John Schoenmakers

Zweitgutachter: Prof. Dr. Mikhail Urusov

2

Contents

1 Introduction 5
1.1 Dynamic Programming Principle 8
1.2 Continuation Regions of the American Max-Call Option 10
1.3 Quasi-Control Variates . 12

2 Lower Bounds via Fast Approximation Methods 17
2.1 Fast Approximation Methods . 19

2.1.1 Stochastic Mesh Method 22
2.1.2 Global Regression . 27
2.1.3 Local Regression . 33
2.1.4 Nearest-Neighbours Technique 34

2.2 Complexity Analysis . 35
2.3 Proofs . 37

3 Multilevel for Fast Approximation Methods 45
3.1 Complexity Analysis . 49

3.1.1 Mesh Method . 52
3.1.2 Local Regression . 54

3.2 Practical Issues . 56
3.2.1 The Algorithm . 56
3.2.2 Importance Sampling . 61
3.2.3 Quantitative Gain . 62

3.3 Proofs . 64

4 Nested Conditional Monte Carlo 69
4.1 The Algorithm . 70
4.2 Calibrating the Algorithm . 73
4.3 Numerical Experiments . 75

4.3.1 Parameter Uncertainty . 76
4.3.2 Improved Quasi-Control Variates 76
4.3.3 An Improved Multilevel Algorithm 79

4.4 Proofs . 82

5 Upper Bounds via Dual Methods 85
5.1 Dual Formulation . 86
5.2 Nested Methods . 92

5.2.1 Martingales from Continuation Estimates 96
5.2.2 Martingales from Stopping Rules 98

3

4 CONTENTS

5.2.3 Complexity Analysis of Nested Methods 102
5.3 Generalized BSDE Recursion . 105
5.4 Martingales from Convex Optimization 109

5.4.1 Sieves Method . 114
5.5 Proofs . 115

6 Multilevel for Nested Dual Methods 125
6.1 Complexity Analysis . 126
6.2 Alternative Adjustment of Levels 127
6.3 Single-Period Example . 130
6.4 Complexity Analysis of AB Method 131
6.5 Interest Rate Example . 135
6.6 Proofs . 139

7 Implementation 145
7.1 Smooth Minimization of Non-Smooth Functions 145

8 Perspectives 147
8.1 Unbiased Estimators . 147
8.2 Upper Bounds via Semi-Infinite Programming 148

List of Research Papers 159

Acknowledgement 161

Zusammenfassung in deutscher Sprache 163

Selbständigkeitserklärung 167

Chapter 1

Introduction

The pricing of American and Bermudan style financial options has been a chal-
lenge for decades. Put simply, the holder of such an option has the right to
exercise it once within a finite time horizon T . The expression “to exercise”
means that the holder can get the payoff gt(Xt) immediately, where gt is the
“payoff function” and Xt is a given stochastic process modeling the “underly-
ing asset”. The latter could be a stock price, a commodity price, an exchange
rate, etc. In the American case, the time of exercise can be chosen deliberately,
whereas in the Bermudan case only a finite set of exercise dates is available.

The opportunity to freely choose when to exercise the option is what makes
this kind of problem much harder than the pricing of European options. The
latter provide the payoff only at the end of the time horizon, which is called
“maturity” time and there is no mathematical problem to determine the optimal
strategy when to exercise. In the American or Bermudan case, the best strategy
that tells the holder when to exercise in order to maximize the expectation of
the payoff is a stopping rule in the mathematical sense. It is characterized as
the solution of an optimal stopping problem, which is a maximization problem
over the set of all stopping times.

Solving such problems numerically is straightforward in low dimensions.
There are a lot of fast and accurate methods to do so, both stochastic and de-
terministic ones. The binomial tree algorithm of Cox, Ross and Rubinstein [26]
belongs to the class of deterministic algorithms and is widely used in practice.
Other deterministic approaches make use of partial differential equations. In
their books, the authors Bensoussan and Lions [13] and Jaillet, Lamberton and
Lapeyre [50] discuss such approaches that are based on variational inequalities.

However when facing problems in higher dimension, namely the valuation of
options depending on many assets, these methods become practically impossible.
The computational complexity will explode as the number of assets increases,
which is known as the “curse of dimensionality”. One way out is the use of
Monte-Carlo simulations. The advantage of the latter mainly consist of the
fact that the complexity of a simple Monte Carlo estimator is of order ε−2

irrespectively of the dimension, where ε denotes the desired standard deviation
of the estimator. This easy consequence of the central limit theorem motivates
the use of Monte Carlo simulation for high dimensional problems in general.
In many examples, the challenge consists of evaluating the value of an option
at t = 0 only. It is intuitively clear that a deterministic approach cannot be

5

6 CHAPTER 1. INTRODUCTION

competitive if it calculates the value function for all times within a horizon and
for all asset values in a domain.

Of course, this simple consideration does not tell us how to calculate the
price or how to draw Monte Carlo samples from an estimator of it. There are
a lot of ideas about how to use stochastic algorithms to solve optimal stopping
problems with different advantages and drawbacks. The methods presented in
this work will use one of two procedures to do so. Either they will approximate
the optimal stopping rule or they will try to approximate the Snell envelope of
the payoff. Those approaches will produce low biased or high biased estimators
respectively, so buyers and sellers will both be satisfied. The buyer of an option
is typically interested in knowing a lower bound for the option price whereas the
seller is interested in higher bounds, as both want to have information about
their maximal expected loss when signing a contract.

In Chapter 2, the so-called fast approximation methods are used to estimate
lower bounds. They construct stopping times recursively and work backwards
in time. Afterwards, those stopping times have to be tested via Monte Carlo
simulation. Chapter 3 is about the multilevel technique that is used to reduce
the variance of these Monte Carlo simulations. Usually, variance reduction tech-
niques are known for reducing the variance of a Monte Carlo simulation by a
constant factor, e.g. control variates, importance sampling, stratified sampling
or antithetic sampling (systematic sampling). In contrast, the multilevel tech-
nique will lead to a lower order of complexity of the simulation. The complexity
will be reduced from ε−3 to ε−2.5 in the usual case of a mesh approximation
and a good-natured problem, i.e. we have a gain of ε−0.5. Here, ε denotes the
desired precision of the calculation measured in terms of the root-mean-squared
error. Interestingly enough, depending on the fast approximation method in use
the gain of complexity can be up to ε−1 or the multilevel technique can even
become completely useless in some special cases. The qualitative results about
the order of complexity should be complemented by some quantitative results in
Section 3.2. The efficiency in case of a fixed number of levels is examined there
and it turns out that the multilevel version of the fast approximation methods is
not only recommended for very precise calculations because of the better order,
but also leads to much better results in simple settings. Furthermore, it turns
out that the quantity of the gain can be improved significantly by kind of a
conditional nesting procedure called “Nested Conditional Monte Carlo”, which
will be discussed in Chapter 4.

Chapter 5 is about higher biased estimators, namely convex optimization
methods and in particular the well known Andersen Broadie approach that be-
longs to the class of nested dual methods. The convergence behaviour of nested
dual methods will be examined in detail and the complexity will turn out to be
of order ε−4 in general, but can be reduced to ε−3−δ under several assumptions
with arbitrarily small δ > 0 in the good-natured cases. The multilevel approach
in Chapter 6 will reduce this complexity to ε−2 without those assumptions.
Thus, there are two big advantages at the same time. In contrast to the mul-
tilevel approach for fast approximation methods, the multilevel approach will
only be worthwhile here for very precise calculations since the standard dual
methods also work quite well without any enhancement.

To be mathematically precise, suppose a stochastic process Xt, t ∈ [0, T]
defined on (Ω,F ,P) that takes values in RD, which will be used as the “state
space” in the following. It models the price of a couple of financial assets and

7

(Ft)0≤t≤T is a filtration that Xt is adapted to. This means the random variable
Xt is Ft-measurable and Fs ⊂ Ft ⊂ F for all 0 ≤ s ≤ t ≤ T . The usual
benchmark examples are about assets modeled by geometric Brownian motion
under the risk-neutral measure, i.e.

dXd
t = (r − δ)Xd

t dt+ σXd
t dW

d
t , i = 1, . . . , D, (1.1)

where r denotes the “interest rate”, σ the “volatility”, δ the “dividend yield”
and x0 the “spot price”, which is the inital value of the process. In this case, it
is possible to use the Brownian filtration FW generated by the D-dimensional
Brownian motion W . Unless stated differently, a Markov process with transition
density will be assumed in the following.

An “American option” is a financial derivative that gives the holder the right
to receive the (discounted) “payoff” gt(Xt) once in [0, T], where gt : RD → R.
This will be called “exercising” the option and the holder can freely choose
when to do that. Thus, the value of the option depends on the behaviour of the
owner. In order to model the latter, let us recall the definition of an F-stopping
time. It is a mapping Ω→ [0, T], such that

{τ ≤ t} ∈ Ft (1.2)

is fulfilled for all t ∈ [0, T]. A well known result states that the fair price of the
option is now given by

V AM0 = sup
τ∈T

E [gτ (Xτ)|X0 = x0] , (1.3)

which is quite an intuitive representation. Here, T is the set of all F-stopping
times taking values in [0, T]. Using that representation, it seems that in order
to evaluate the true value it is necessary to find the optimal exercise policy
first. Since the set [0, T] in not countable, the set of all stopping times in
question seems to be unmanageable. Thus, several types of discretization will
be necessary for a numerical approach.

As explained before, a so-called “Bermudan option” is an option that can
only be exercised at a finite set of “exercise dates“ 0 = t0 < t1 < . . . < tJ = T .
This work is about that case exclusively. A Bermudan option with a large
number of exercise dates J can be seen as a natural approximation of an Amer-
ican option. Furthermore, Bermudan options are also interesting by themselves,
since they are popular among traders. For the sake of notation, we will write Xj

instead of Xtj , Vj instead of Vtj , and so on except for Section 1.2. Analogously
to the American case, the fair price of a Bermudan option is given by

Vj(x) = sup
τ∈Tj

E [gτ (Xτ)|Xj = x] , (1.4)

where

Tj =
{
τ F-stopping time

∣∣τ(ω) ∈ {j, . . . ,J } for all ω ∈ Ω
}

(1.5)

is the set of stopping times that has to be searched for the supremum in (1.4).

Definition 1. The optimization problem (1.4) is called the “primal representa-
tion” of the optimal stopping problem. The solution Vj(·) will be called the “true
value function” and we also define the “true value process” Vj = Vj(Xj) with a
small abuse of notation.

8 CHAPTER 1. INTRODUCTION

The stopping time that realizes the supremum in (1.4) for Vj will be called
“optimal stopping time” τ∗j . It will be unique almost surely under the as-
sumptions imposed here, see (1.16). We also write τ∗ := τ∗0 , which will fulfill
τ∗0 = τ∗1 > 0 in non-degenerate examples. For some exotic options, discarding
the right to exercise might be optimal due to a negative payoff. Since a non-
negative payoff will also be assumed in the following, we can state that τ∗J = J .
The family of optimal stopping times τ∗0 , . . . , τ

∗
J is a ”consistent family“ in the

sense of the following definition.

Definition 2. A family of F-stopping times τ0, . . . , τJ is called consistent if

j ≤ τj ≤ J , and τj > j =⇒ τj = τj+1. (1.6)

for all j = 0, . . . ,J .

For example a familiy of stopping times

τj = min
{
i ∈ {j, . . . ,J }

∣∣∣(j,Xj) ∈ S
}

(1.7)

will be consistent, where S ⊂ N× RD is some (deterministic) set.
In the following, the discounted payoff will be given by

gj(x) = e−rtj g̃(x), (1.8)

where the undiscounted payoff g̃ : RD → R≥0 will be one of the following
functions. In case of one asset, the payoff function g̃(x) := (x − κ)+ defines a
“call option” and κ denotes the “strike price”. Furthermore, g̃(x) := (κ − x)+

defines the “put option”. The call option is the one-dimensional special case of
the “max-call option” with payoff

g̃(x) =
(
max(x1, . . . , xD)− κ

)+
. (1.9)

The practical interpretation is easy. A max-call option gives the holder the right
to buy the currently most expensive asset for a fixed price of κ that has been
preassigned at time t0. Analogously, the “min-put option” is defined by the
payoff

g̃(x) =
(
κ −min

(
x1, . . . , xD

))+
(1.10)

and gives the holder the right to sell the lowest of all assets. These two payoffs
are common examples for options which are path-independent. In general, the
payoff may depend on all components of (X0, . . . , Xj) up to the current time tj .
The most important of these are arithmetic and geometric Asian options. This
kind of dependence also occurs in case of the LIBOR model that is used as an
example in Section 6.5. Unless stated differently, the payoff is assumed to be
path-independent and non-negative.

1.1 Dynamic Programming Principle

As mentioned before, we restrict ourselves to the Bermudan case, i.e. there is
a finite set of exercise dates 0 = t0 < . . . < tJ = T . It is well known that the
problem

Vj(x) = sup
τ∈Tj

E [gτ (Xτ)|Xj = x] (1.11)

1.1. DYNAMIC PROGRAMMING PRINCIPLE 9

belongs to the class of optimization problems that can be solved via Bellman’s
principle of optimality 1. In case of optimal stopping, this means that the
problem should be solved backwards in time, iteratively from tJ to t0. Since
we assumed the payoff to be path-independent and the underlying to have the
Markov property, we can infer the following dynamic recursion in this form 2.

We reformulate (1.11) and obtain

Vj(x) = max
(
gt(x), sup

τ∈Tj+1

E [gτ (Xτ)|Xj = x]
)

(1.12)

= max
(
gt(x),E[Vj+1(Xj+1)|Xj = x]

)
(1.13)

because Tj+1 \ Tj is the set of all stopping times that equal j with probability
one. This motivates the following definition, which assumes that the payoff is
not path-dependent.

Definition 3. For each time step tj, 0 ≤ j < J − 1, there is a “continuation
value function” Cj : RD → R defined via

Cj(x) = E [Vj+1(Xj+1)|Xj = x] = sup
τ∈Tj+1

E
[
Vτ (Xτ)

∣∣∣Xj = x
]
. (1.14)

It represents the value of the option if the holder decides not to exercise it at
time step tj.

With this definition at hand, we have the following easy expression

Vj(x) = max (gj(x), Cj(x)) , j = 0, . . . ,J − 1. (1.15)

It is clear that holding the option at the last exercise date is useless if the payoff
is non-negative, so we have VJ (x) = gJ (x) and we define CJ ≡ −∞, which is
consistent with (1.15). The optimal stopping time can now be written as

τ∗j = min {i ∈ {j, . . . ,J } : gi(Xi) ≥ Ci(Xi)} . (1.16)

So to say, the optimal stopping time is “induced by” the continuation value
functions, which motivates the following definitions.

Definition 4. The “continuation region” C and the “exercise region” E are
given by

E = {(j, x) : gj(Xj) ≥ Cj(Xj)} , (1.17)

C = {(j, x) : gj(Xj) < Cj(Xj)} , (1.18)

which leads to the easy expression τ∗j = min{i ∈ {j, . . . ,J }|(i,Xi) ∈ E}.

Determining these regions is not easier than solving the original stopping
problem itself. To characterize the solution theoretically, we have the following
definition.

1Richard Bellman, 1957: “An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.”

2For a path-dependent payoff or an underlying that does not have the Markov property,
an enlargement of the state space will be necessary.

10 CHAPTER 1. INTRODUCTION

Definition 5. The “dynamic recursion” that theoretically provides a solution
to the primal problem is given by

CJ (x) = −∞, (1.19)

Cj(x) = E [max (gj+1(Xj+1), Cj+1 (Xj+1)) |Xj = x] , (1.20)

which is just a reformulation of (1.15) in terms of continuation values.

Equation (1.20) is very unlikely to be solvable analytically. Even in case of
j = J − 1, the expectation will have to be evaluated numerically with respect
to the distribution of the underlying process X. The key question is how to
find a function that approximates (1.20) as exact and efficient as possible. It
is also possible to formulate a dynamic recursion in terms of the true value
function instead of the continuation values. But unfortunately, the maximum-
function will lead to a kink in the solution, so the approximation would be more
difficult. Of course, this difference will vanish in the American case because of
the smooth-fit property. The latter is a typical property of American stopping
problems and can be states as

∂V

∂x

∣∣
∂C =

∂g

∂x

∣∣
∂C (1.21)

under the assumption that X is a diffusion and the continuation value has some
Lipschitz property, see Peskir and Shiryaev [62].

1.2 Continuation Regions of the American Max-
Call Option

This is the only section about the continuous case, i.e. the American stopping
problem as given in (1.3). We want to emphasize some basic properties of the
continuation region and the exercise region of the American max-call option,
which is the common benchmark example. It is useful to have a good percep-
tion of the shape of these regions, e.g. for finding suitable basis functions for
regression methods in Section 2.1 or for the convex optimization technique in
Section 5.4. Of course, their shape will be very similar in the Bermundan case.
We mainly follow the description and notation from Broadie and Detemple [17].

Since the max-call payoff

gt(x) = e−rt (max(x1, . . . , xD)− κ)
+

(1.22)

is not path-dependent, we have again the simple representation

τ∗ = inf{t ∈ [0, T] : (t,Xt) ∈ E} (1.23)

provided that Xt is a Markov process. The exercise region is a subset of [0, T]×
RD and we also define the t-sections of these regions simply by

E(t) = {x ∈ RD : (t, x) ∈ E}, C(t) = {x ∈ RD : (t, x) ∈ C}. (1.24)

In case of one single asset, the continuation region is a convex set, as shown in
Figure 1.1. Additionally, the t-sections of the exercise region are also convex

1.2. CONTINUATION REGIONS OF THE AMERICANMAX-CALL OPTION11

0.0 0.5 1.0 1.5 2.0 2.5 3.0

80
90

10
0

11
0

12
0

13
0

14
0

t

X

Figure 1.1: The exercise region of an American call option with strike price 100.

because they are one-dimensional intervals [b(t),∞[. Here, b : R → R is a de-
creasing function, see Peskir and Shiryaev [62]. In the general case of arbitrarily
many assets, we consider the “exercise boundary” ∂E(t) that is defined to be
the boundary of the t-section of the exercise region in RD.

For more than one asset, there are many counterintuitive things to discover.
Firstly, the t-sections of the exercise region E are no longer connected sets. Sec-
ondly, it is no longer clear that exercising becomes optimal as (X1

t , . . . , X
D
t)

grows in all components. The following three propositions are taken from
Broadie and Detemple [17] and are valid for an American max-call option on
two i.i.d. assets of geometric Brownian motion.

Proposition 6. If X1
t = X2

t > 0 and t < T then (t,Xt) /∈ E. That is, prior to
maturity exercise it is not optimal when the prices of the underlying assets are
equal.

As both assets increase equally, the continuation value obviously grows faster
than the payoff. It is clear that not only the line where X1

t = X2
t will then belong

to the continuation region, but also the vicinity of it. In fact, there is even kind
of a divergence of the exercise regions, as stated in the following proposition.

Proposition 7. Fix t < T . There exists λ1 and λ2 with λ2 < 1 < λ1 such that

E(t) ∩R(λ1, λ2) = ∅, (1.25)

where

R(λ1, λ2) = {(X1
t , X

2
t) ∈ R2

+ : λ2X
1
t < X2

t < λ1X
1
t } (1.26)

By symmetry, one can guess that there must be subsets of E(t) called “ex-
ercise subregions”, namely E1(t) ⊂ G1(t) ∩ E(t) and E2(t) ⊂ G2(t) ∩ E(t). Here
we used

Gi(t) = {(t, x)|xi = max(x1, x2)}. (1.27)

These subregions are connected and convex, as the next proposition shows.

Proposition 8. Let (t,Xt), (t, X̃t) ∈ Ei(t). Then it also holds (t,Xt(λ)) ∈ Ei(t)
for all 0 ≤ λ ≤ 1, where Xt(λ) = λXt + (1− λ)X̃t.

In summary, these results give us a rough idea about the shape of the exercise
region as illustrated in Figure 1.2.

12 CHAPTER 1. INTRODUCTION

0 50 100 150 200

0
50

10
0

15
0

20
0

X1

X
2

Figure 1.2: The t-section (grey) of the exercise region of an American max-call
option on two i.i.d. assets of geometric Brownian motion at 0 ≤ t < T .

1.3 Quasi-Control Variates

The usage of control variates is a well known variance reduction technique for
Monte Carlo estimators. Roughly speaking, instead of estimating the expecta-
tion of a random variable via some simple Monte Carlo estimator, one will try
to estimate the expectation of the difference to another random variable that
the expectation is known of. The latter will be called “control variate”, “control
variable” or simply “control”.

This procedure will reduce (or sometimes increase) the variance of the Monte
Carlo estimator by a constant factor. In other words, their use is equal to the use
of a higher number of samples for the Monte Carlo estimator. However, findind
efficient controls is often difficult as their expectation has to be known. In
order to enlarge the class of variates that can be used, we consider quasi-control
variates. This is particularly important with respect to the next chapters, as the
use of quasi-controls can be seen as the precursor to the multilevel technique.

Definition 9. If there is a variate Y that can easily be simulated alongside to
X, then the simple Monte Carlo estimator of E[X]

X̄ =
1

N

N∑
i=1

Xi (1.28)

can be enhanced by using Y as a control variate (CV), so we define a new
“controlled estimator”

X̂ =
1

N

N∑
i=1

(
Xi − b(Y i − E[Y])

)
(1.29)

that depends on a constant b ∈ R.

1.3. QUASI-CONTROL VARIATES 13

It is clear that the variance of the controlled estimator will only be small
if X and Y are highly (positively or negatively) correlated and b is chosen
carefully. When gathering statistics about real objects, e.g. the opinion of
people or the size of animals, Y could be any other dimension of those objects,
e.g. the profession of those people of the weight of those animals. In case of a
Bermudan option it could be the payoff at maturity or the value of the assets
at a fixed time. Another good idea would be the value of the corresponding
European option (or a similar option) at the exercise date. Such a control is
known as “martingale control” since it corresponds to a control variate of the
form X = Mτ where M is a martingale and τ a stopping time.

A simple calculation taken from Glasserman [40] shows that the variance of

the estimator becomes minimal with b∗ = Cov[X,Y]
Var[X] .

Proposition 10. Using the control variate Y with b∗ = Cov[X,Y]
Var[X] provides a

reduction of variance by a factor of

Var[X̂]/Var[X̄] = 1− ρ2
XY , (1.30)

where ρXY is the correlation between X and Y . In particular if the computa-
tional complexity of a sample from Y is the same as of Y and X simultaneously,
then we obtain a speedup by a factor of 1

1−ρ2
XY

.

The slope of the function 1
1−ρ2

XY
tends to infinity for ρXY → 1. Conse-

quently, using a control variate will be very fruitful if ρXY is very near to one
and it will be useless in case of ρXY � 1. Sadly, in many cases it won’t be
possible to determine b∗ analytically, so one should estimated it via

b̂n =

∑n
i=1(Xi − X̄)(Y i − Ȳ)∑n

i=1(Xi − X̄)2
. (1.31)

in a pilot simulation. While n increases, b̂n is converging to b∗ almost surely.
Remarkably, it is also a fruitful idea to estimate b∗ during the Monte Carlo

simulation itself instead of running a pilot simulation. In other words, the
constant b used in (1.29) is estimated from the same replications as X̂. In this

case, there will be a bias of E[−b̂n(Ȳ − E[Y])].

Proposition 11. The sequence of estimators

X̃N =
1

N

N∑
i=1

(
Xi − b̂N (Y i − E[Y])

)
(1.32)

with

b̂N =

∑N
i=1(Xi − X̄)(Y i − Ȳ)∑N

i=1(Xi − X̄)2
.

is asymptotically unbiased, i.e. E[X̃N] → E[X] as N → ∞, but each X̃N is
biased.

Remark 12. Without strict assumptions on the distributions of X and Y ,
finding bounds for this bias is quite difficult. Glasserman [40] states that “...
the bias is typically O(1/n), whereas the standard error is O(1/

√
n)”, so this

aspect can be neglected even for relatively small amounts of samples.

14 CHAPTER 1. INTRODUCTION

Lavenberg, Moeller and Welch [55] and Nelson [60] construct confidence in-
tervals in the case that (X,Y) has a multivariate normal distribution. However,
this will not be fulfilled if Y is the payoff of a financial option and X some re-
lated variate. Nelson [60] proposes the “batching” method to make the problem
attackable for a broader class of variables (X,Y) with different distributions.
He merges samples to batches, so one has n/k samples of batches of size k, in-
stead of n samples. Following the central limit theorem, their distribution will
be nearly normal and thus can be examined further. Nelson [60] and Bauer,
Venkatraman and Wilson [5] also analyze the case that the covariance of the
samples and the controls are analytically known. Unfortunately, they find that
“...it generally produces estimators inferior to the usual method ...”, as Glasser-
man [40] pointed out.

Summing up, Proposition 11 describes the most efficient method to use con-
trols and thus will be used throughout this work. Indeed, no bias from estimat-
ing b∗ becomes noticeable in the numerical examples presented in the following,
so apparently the knowledge of the quantity E[X] is enough information to
make things work out. Equation (1.31) is simply the result of the least squares
problem

(α, β) = arg min
(a,b)∈R2

N∑
i=1

(
aY i + b−Xi

)2
.

After solving this problem, the estimator can be written as X̃ = α+ β E[Y].
Unfortunately, it is very difficult in many cases to find really good control

variates, especially because Proposition 10 tells us that the correlation must be
very high to achieve good results. Ironically, the expectation of Y is unlikely
to be easy to calculate analytically if Y is highly correlated with X and the
expectation of X is the quantity in question. This motivates the idea of quasi-
control variates.

Definition 13. The “quasi-controlled” Monte Carlo estimator is given by

X̂N,M =
1

N

N∑
i=1

(
Xi − b(Y i − Ȳ)

)
(1.33)

where Ȳ = 1
M

∑M
i=1 Y

i has been calculated in a different, independent simula-
tion.

The variance of X̂N,M is given by

Var[X̂N,M] =
1

N
Var[X](1− ρ2

XY) +
1

M
Var[Y]. (1.34)

In order to analyse the efficiency of the quasi-controlled estimator, we compare
this variance to the complexity given by

comp(X̂N,M) = N × comp(X) +M × comp(Y),

where the complexity of Y within the simulation of X is assumed to be negli-
gable. Minimizing (1.34) subject to

comp(X)×N + comp(Y)×M = C

with the help of Lagrange multipliers leads to the following solution.

1.3. QUASI-CONTROL VARIATES 15

Proposition 14. To minimize the variance of X̂N,M given the complexity, it
is optimal to choose M and N such that

N ∼
√

Var[X](1− ρ2
XY)/ comp(X), M ∼

√
Var[Y]/ comp(Y). (1.35)

A dynamic algorithm could estimate ρXY , Var[X], and Var[Y] during the
simulation and decide corresponding to (1.35) whether to add more samples
from (X,Y) or from Y . Which means increasing N or M respectively. Further-
more, the algorithm should be aware of those cases that the quasi-controlled
estimator is inferior to the simple Monte Carlo estimator. These kind of optimi-
sations are analyzed in Emsermann and Simon [34]. They provide examples to
queuing theory, stochastic linear programs and SPDE’s. Thereby, they present
a precursor of the multilevel technique.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Lower Bounds via Fast
Approximation Methods

Many numerical methods that solve optimal stopping problems rely on the
same principle. They estimate continuation values, i.e. they provide functions
Ĉ0, . . . , ĈJ : RD → R that are approximations of the true continuation value
functions C0, . . . , CJ . It is clear that the conditions

Ĉ0, . . . , ĈJ−1 ≥ 0, ĈJ ≡ −∞ (2.1)

will be optimal for a non-degenerate problem and a non-negative payoff.
There are many ideas about how to construct such estimators. One ex-

ample are optimization methods that consider a set of estimators (e.g. linear
combinations of some basis functions) and try to find the best one of those by
simply testing the implied stopping rules, see (2.4). This would lead to simple
discretized optimization problem.

However, most of the well-known methods belong to the class that will be
called “fast approximation methods” in the following. These are easy and effi-
cient methods defined in the next section that rely on the idea to approximate
the dynamic recursion from Definition 5. Given an estimator Ĉj for some time

step tj , they offer a possibility to construct another estimator Ĉj−1 based on

Ĉj . Hence, these methods can proceed backwards in time from tJ−1 to t0 and
we have

ĈJ (x) ≡ 0 (2.2)

Ĉj(x) ≈ E
[
max

(
gj+1 (Xj+1) , Ĉj+1 (Xj+1)

) ∣∣∣Xj = x
]

where “≈” just indicates that some estimator was used.
The main problem about this procedure it that the errors are building up

from step to step, so especially for Bermudan options with few exercise dates
(that are no approximations to American options) these methods will be effi-
cient. Broadie and Glasserman [19] analyse this problem of adding approxima-
tion errors in case of a mesh algorithm.

If all estimators have been constructed like in (2.2), one could use

Ṽ0(x0) = max
(
g0(x0), Ĉ0(x0)

)
(2.3)

17

18CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

as an estimator for the true price V0(x0). Depending on the method that is used,
this estimator could be low or high biased. Every estimate of the continuation
values implies a suboptimal stopping rule given by

τ̂ = min
{
j ∈ {0, . . . ,J }

∣∣∣gj(Xj) ≥ Ĉj(Xj)
}
, (2.4)

compare (1.16). Since any stopping rule cannot be better than the optimal
stopping rule τ∗, one can obtain a low biased estimator for the true price via

V̂ = E
[
gτ̂ (Xτ̂)

∣∣∣X0 = x0

]
. (2.5)

This estimator can be evaluated via Monte Carlo simulation.
To ensure the success of such methods and to make their analysis feasible,

we have to impose several assumptions. Two assumptions will be defined in the
next subsection, namely assumptions (AC) and (AQ) that are demanded from
the algorithms and will be checked for each of the methods presented here.

Additionally, we have to consider an assumption that makes note of some
property of the optimal stopping problem rather than the algorithms, the so-
called “boundary assumption” taken from Belomestny [6]. It describes the be-
haviour of the solution of the optimal stopping problem in the vicinity of the
exercise boundary.

Assumption (AB). There exists constants A > 0, δ0 > 0 and α > 0 such that

P (|Cj(Xj)− gj(Xj)| ≤ δ) ≤ Aδα (2.6)

for all j = 0, . . . ,J , and all δ < δ0.

It turns out that this assumption is the key property of the optimal stopping
problem to make the convergence analysis of the following methods possible. In
the usual case that Cj − gj has a non-vanishing derivative in the vicinity of
the exercise boundary, we have α = 1. This will be called the “usual case” in
Chapter 3 and Chapter 5. In fact, α can take all values from 1 to∞ as Example
15 and Example 16 taken from Belomestny [6] will show.

Example 15. (Bermudan Power-Put Option) Consider a two-period Bermudan
option, i.e. J = 1 with payoff

g0(x) = g1(x) =
(
κ1/α − x1/α

)+

where α > 0 is chosen arbitrarily. Given a Black-Scholes model with volatility
σ and interest rate r = 0, it is possible to show that the continuation value at
t = t0 is given by

C0(x) = κ1/αΦ(−d2)− x1/αe(t1−t0)(α−1−1)(σ2/2α)Φ(−d1), (2.7)

where

d1 =
log(x/κ) + (1

α −
1
2)σ2(t1 − t0)

σ
√
t1 − t0

, (2.8)

2.1. FAST APPROXIMATION METHODS 19

d2 = d1 − σ
√
t1 − t0/α and Φ is the cumulative normal distribution function.

For x→ 0 we have

|C0(x)− g0(x)| � x1/α (2.9)

and C0(x) > g0(x) for all x > 0 if α ≥ 1. So we have

P (0 < |C0(X0)− g0(X0)| ≤ δ) . δα, δ → 0, α ≥ 1 (2.10)

But 1 ≤ α <∞ was chosen arbitrarily.

The next example shows that the case α =∞ may also occur, which is im-
portant to note because the fast approximation methods will work particularly
well in this case.

Example 16. Suppose a two-period Bermudan option with payoff g1 such that
C0(x) = E[g1(X1)|X0 = x] is positive and monotonically increasing in x, e.g. a
simple call option. By setting

g0 :=

{
C0(x0) + δ0, x < x0,

C1(x0)− δ0, x ≥ x0

(2.11)

one achieves that

P0(0 ≤ |C0(X(0))− g0(X(0))| ≤ δ0) = 0, (2.12)

without the exercise region or the continuation region to be degenerate. So to
say, assumption (AB) holds with α =∞ here.

2.1 Fast Approximation Methods

We want to define the so-called “fast approximation methods” to be a class
of algorithms that fulfill certain assumptions given below. In the succeeding
subsections, four examples of such methods are presented, namely “global re-
gression”, “local regression”, the “mesh method” and the “nearest-neighbours
technique”. These are popular in practice and have different advantages and
drawbacks. Furthermore, the approach of Kohler [52] that uses neural networks
to construct continuation estimates is worth mentioning. It can also be seen as
a fast approximation method, but will not be discussed here.

In our understanding, the “fast approximation methods” are methods that
work by approximating the dynamic recursion (2.2), fulfill assumptions (AC)
and (AM) and consist of two steps.

Firstly, the “training step” consists of generating a number of k trajectories,
that are i.i.d. copies of the process X· denoted by

Z
(1)
· , . . . , Z

(k)
· , (2.13)

that will be called “training paths”. The fast approximation methods will use
them as information to construct estimators Ck0 , . . . , C

k
J of the true continu-

ation value functions C0, . . . , CJ . The number k indicates the quality of the
estimation, i.e. the difference between the true continuation value Cj and Ckj is

20CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

supposed to decrease, as k increases. Convergence is assumed, as explained in
assumption (AQ).

Secondly, a “testing step” is performed. With the estimators form the train-
ing step at hand, we have the low biased estimator

V k = E
[
gτk (Xτk)

∣∣X0 = x0

]
, (2.14)

for the true price V0, where

τk = min
{
i ∈ {0, . . . ,J }

∣∣∣Cki (Xi) ≥ gi (Xi)
}

(2.15)

is the stopping time associated with the continuation estimate. It is defined
as a minimum of an (Ω,FJ ,P)-random set, but is an F-stopping time. It is
important to note that so far, the stochasticity of the training paths is omitted.

To replace the expectation with its Monte Carlo counterpart, let us generate
another set of trajectories, called “testing paths” and the associated stopping
times for these paths, i.e.

(X
(1)
· , τ

(1)
k), . . . , (X

(n)
· , τ

(n)
j) (2.16)

are i.i.d. copies of the vector process (X·, τ
k) (of course independent from

Z
(1)
· , . . . , Z

(n)
·). So we finally estimate V0 via

V k,n =
1

n

n∑
r=1

g
τ

(r)
k

(
X

(r)

τ
(r)
k

)
, (2.17)

where

τ
(r)
k = min

{
j ∈ {0, . . . ,J }

∣∣∣gj (X(r)
j

)
≥ Ckj

(
X

(r)
j

)}
(2.18)

and so we have an unbiased estimator for the lower bound

E [gτk (Xτk)] ≤ V0. (2.19)

Remark 17. It is also possible to reuse the training paths in (2.17). However,
the estimator is no longer low biased then. The continuation estimate will be too
well adapted for the set of training paths, so that the estimator (2.17) will use
information about the future with respect to each single path. This effect is called
“overfitting” in statistics. It turns out that in many cases, this effect is much
stronger than the suboptimality of the stopping rule, also compare Theorem 19
for the mesh case.

The first assumption that is imposed here just makes note of the fact that
the estimation of the continuation values is based on a number of k training
paths.

Assumption (AC). For any k ∈ N, the estimates Ck0 (x), . . . , CkJ−1(x) are

defined on some filtered probability space (Ωk,Fk, P k) independent of (Ω,F ,P).

In fact,
(
Z

(1)
· , . . . , Z

(k)
·

)
is a random variable under the product measure P k

that is determined via

P k(A1 × . . .×Ak) = P (A1)× . . .× P (Ak)

2.1. FAST APPROXIMATION METHODS 21

for all Ai, . . . , Ak ∈ F . The complexity of the estimate V k,n is then is given by

C k,n = k1+κ1 + n× kκ2 (2.20)

with some constants κ1, κ2 > 0.

The first summand in (2.20) is due to the training step, the second one due to
the testing step. It will turn out that in all cases discussed here, the complexity
can indeed be written like that. In particular, this assumption emphasizes
that the continuation estimates Ck1 (x), . . . , CkJ (x) are stochastic rather than
deterministic quantities for each x. To be precise, we want to call

V k = E
[
V n,k

∣∣∣σ (Z1
· , . . . , Z

k
·
)]

(2.21)

the “testing value”, which is now a random variable with respect to the σ-
algebra generated by the training paths. The “expected testing value” is denoted
simply be E[V k] then. Of course, a fast approximation method should provide an
expected testing value that is converging to the true value as k →∞. Therefore,
we take the following theorem from Belomestny [6].

Theorem 18. If there is a sequence of positive real numbers γk with γk → 0 as
k →∞ such that

Pk
(

sup
z

∣∣Ckj (z)− Cj(z)
∣∣ > η

√
γk

)
< B1e

−B2η, η > 0 (2.22)

for some constants B1 > 0 and B2 > 0 and if boundary assumption (AB) is
fulfilled with some α, then we have that

0 ≤ V0 − E[V k] ≤ Bγ(1+α)/2
k (2.23)

holds with B depending only on α, B1 and B2.

In other words, Theorem 18 tells us that the convergence of the expected
testing value based on the continuation estimates Ckj is in some sense faster
than the convergence of those continuation estimates themselves: Just compare

γ
(1+α)/2
k to γ

1/2
k if α > 0. This kind of robustness is characteristic for optimal

stopping problems and can be seen as motivation for the testing step and the
technique of policy iteration, see Remark 35.

Furthermore, the convergence of the continuation estimates is not only slower
when considering the order. It is very easy to construct an estimator Ĉj that
implies a stopping rule so that the expected testing value is acceptable, for
example very few percent below the true value in Benchmark Example 48. Even
a primitive guess, let’s say Ĉj ≡ c for all j = 0, . . . ,J will do a rather good job
with a suitable constant c > 0. Hence, both for rather rough estimates and for
very precise calculations, the testing step is worthwile.

To ensure the convergence behaviour as in Theorem 18, we demand from a
fast approximation method to fulfill the following second assumption.

Assumption (AQ). Let the assumptions of Theorem 18 be fulfilled with γk =
k−µ, k ∈ N such that it holds for the bias of the method

V0 − E[V k] ∈ O
(
k−

µ(1+α)
2

)
. (2.24)

22CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

In the convenient case of α = ∞, a stronger statement than Theorem 18
is possible. In Belomestny [6] it is shown that under conditions that are even
milder than (2.22), the bias of the testing value E[V k] decreases exponentially
in the number of training paths k then. Unfortunately, the problems occuring
in practice are unlikey to belong to this class of problems.

2.1.1 Stochastic Mesh Method

●
●

●

1.5 2.0 2.5 3.0 3.5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

x

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.1: Using a stochastic mesh means comparing each node to all nodes of
the succeeding time step.

This section is in particular about the approach described by Broadie and
Glasserman [19]. Essentially, the idea behind the so called “stochastic mesh“ is
to fix nodes throughout the state space RD for all time steps. Then, all nodes
at a time step tj are compared to to all nodes at tj+1 as indicated in Figure 2.1.

Thus, the complexity will depend quadratically on the number of nodes. The
term “comparing” means that the dynamic recursion (2.2) is performed with
some weighted average of the nodes in the succeeding time step

Ckj (x) =

k∑
i=0

w
(i)
j (x) max

(
gj+1

(
N

(i)
j+1

)
, Ckj+1

(
N

(i)
j+1

))
, j = 0, . . . ,J − 1,

(2.25)

where N
(1)
j , . . . , N

(k)
j are the nodes at time tj and w

(i)
j : RD → R are the

so-called “weight functions”.

To implement a recursion, we now work backwards through the mesh by
“glueing“ the values

ζ
(i)
j = max

(
gj

(
N

(i)
j

)
, Ckj

(
N

(i)
j

))
, (2.26)

2.1. FAST APPROXIMATION METHODS 23

(where the index k is omitted) to the nodes N
(i)
j at time tj and then move to

the previous time step with

Ckj (x) =

k∑
i=0

w
(i)
j (x)ζ

(i)
j+1, j = 0, . . . ,J − 1 (2.27)

and so on. Once all the values ζ
(i)
j , i = 0, . . . , k, j = 1, . . . ,J have been

estimated, we can proceed to the testing step by inserting the testing paths into
(2.27) at the position of x. In general, the weights have to be calculated newly
for every such x, but depending on the method there might be some possibilities
to save computational time.

There are many ideas about how to choose nodes and weights. Glasserman
[40] considers a relatively broad class of algorithms by demanding the following
three assumptions. They describe a procedure with Markovian character, where
the nodes are perceived as random variables. This is in the sense of assumption
(AC).

(M1) The distribution of the random vectors N0, . . . ,Nj−1 and Nj+1, . . . ,NJ
are independent given Nj for all j = 1, . . . ,J − 1

(M2) The weight w
(i)
j (x) only depends on x and the vectors Nj and Nj+1. This

includes the case that it is a function of x and N
(i)
j+1 only.

(M3) We demand for each h = 1, . . . , k and j = 0, . . . ,J − 1 that

1

k

k∑
i=1

E
[
w

(i)
j

(
N

(h)
j

)
Vj+1

(
N

(i)
j+1

) ∣∣∣Nj

]
= Cj

(
N

(h)
j

)
, (2.28)

where Cj is the true continuation value function and Vj the true value as
defined in (1.4). In particular this means that at each node the estimator
would be unbiased if the estimation in the succeeding time step j + 1 was
equal to the true value.

Theorem 19. Under assumptions (M1)-(M3) the estimator

Ṽ0 = max
(
Ck0 (x0) , g0 (x0)

)
(2.29)

for V0 is high biased.

In other words, the values ζ
(i)
j are too well adapted to the set of just these

training paths. As explained before, this problem is just the motivation to
perform the testing step.

We will use the most natural idea to generate nodes, namely the “independent-

path construction”, i.e. we simply use the training paths Z
(1)
· , . . . , Z

(k)
· , which

were i.i.d. trajectories of the underlying process X and use them ase nodes, i.e.

N
(i)
j = Z

(i)
j , j = 0, . . . ,J , i = 1, . . . , k. (2.30)

Actually, this procedure is fulfilling assumption (M1) when the training paths
are independent copies of a Markov chain, e.g. when the assets are modeled via
geometric Brownian motion.

24CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

The independent-path construction can be seen as stratified sampling (see
Glasserman [40]) from the density

g(j, x) =
1

k

k∑
i=1

pj−1,j

(
Z

(i)
j−1, x

)
, j = 1, . . . ,J , (2.31)

called the “average density” by Broadie and Glasserman [19]. Here, p is the
transition density of the underlying process X. First of all, the independent-
path construction is a heuristic choice because the distribution coincides with
the marginal distribution of Xt at each time step. Secondly, as analysed in
Broadie Glasserman [19], the exponential growth of variance that takes place
within the mesh as J → ∞, can be avoided by using this density.

Choosing the weights w
(i)
j (·) is a science for itself. There are a lot of ideas,

some of which have strong advantages compared to others as explained in the
following.

Weights from Likelihood Ratios

In this section, we assume the exact transition density from the process X
to be given analytically, i.e. we assume that we can evaluate a function p :
N × N × RD × RD → R such that for all A ∈ B(RD) from the Borel σ-algebra
we have

P(Xj ∈ A|Xi = x) =

∫
A

pij(x, y)dy. (2.32)

Of course, this strong assumption will be fulfilled by geometric Brownian motion
or CIR processes, but for many models this is not the case. We choose weights
according to the likelihood ratio via

w
(i)
j (x) =

pj,j+1

(
x, Z

(i)
j+1

)
p0,j+1

(
x0, Z

(i)
j+1

) . (2.33)

The complexity of this estimator can already be quite high, e.g. in case of
geometric Brownian motion the exponential function has to be evaluated a lot
of times. These weights fulfill (M2) and also (M3), since

1

k

k∑
i=1

w
(i)
j (x)Vj+1

(
N

(i)
j+1

)
→ E

[
w

(1)
j (x)Vj+1

(
N

(1)
j+1

)]
, (2.34)

as k →∞ and by inserting our weights we have

E
[
w

(1)
j (x)Vj+1

(
N

(1)
j+1

)]
,

=

∫
RD

pj,j+1(x, y)

p0,j+1(x0, y)
Vj+1(y)p0,j+1(x0, y)dy

= Cj(x).

If the independent-path construction is not used, one has to insert another
density into the denominator of (2.33) as well as into the expectation and ob-
tains the same result. A first idea to improve these weights is to ensure that

2.1. FAST APPROXIMATION METHODS 25

∑k
i=1 w

(i)
j (x) = 1, so to say the sum of the “outgoing weights“ is normalized to

one. This can easily be achieved by defining

w̃
(i)
j (x) :=

w
(i)
j (x)∑k

l=0 w
(l)
j (x)

, (2.35)

so we just divide by the sum of all outgoing weights from a node located at
x. This simple procedure does not at all increase complexity, but leads to a
reasonable improvement.

However, a much better idea is to ensure that

k∑
l=1

w
(i)
j

(
Z

(l)
j

)
= 1, i = 1, . . . , k, (2.36)

by dividing through the sum of the “incoming weights” at each node, so we
define

w
(i)
j (x) :=

pj,j+1

(
x, Z

(i)
j+1

)
1
k

∑k
l=0 pj,j+1

(
Zlj , Z

(i)
j+1

) . (2.37)

Here, the denominator is quite costly to evaluate as it has to be calculated
separately for every i when evaluating (2.27). Fortunately, it is at least possible
to store its values and reuse it within the testing step. It should be emphasized
that (2.37) is only easy possible in case of the independent-path construction
(that is used in the numerical examples following below), whereas (2.33) is a
convenient choice that can be applied without further restrictions.

Furthermore, we want to use a control variate to improve the estimator as
explained in Section 1.3. It is called “inner control variate” in contrast to “outer
control variates”, because it is used within the mesh rather than to reduce the
variance of the testing step. Applying such a control will have the same or
nearly the same impact as a higher number of mesh nodes k, see Proposition
11.

Finally, the estimator we will use for the numerical examples in this work is
given by the following proposition.

Proposition 20. For each evaluation of Ckj (x), i.e. for each fixed pair x and
j, define

Ckj (x) =

1
k

∑k
i=1 ζ

(i)
j+1w

(i)
j (x)− β

(
1
k

∑k
i=1 v

(i)
j w

(i)
j (x)− vj 1

k

∑k
i=1 w

(i)
j (x)

)
1
k

∑k
i=1 w

(i)
j (x)

(2.38)

where v
(i)
j denotes the control and vj its expectation1. To determine β, we have

to solve the optimization problem

min
α,β∈R

1

k

k∑
i=1

w
(i)
j (Z

(i)
j)

[
ζ

(i)
j+1 −

(
α+ βv(i)

)]2
(2.39)

and its solution leads to the identity Ckj (x) = α+ βv.

1One has to be careful here, since the expectation has to be calculated with respect to the
mesh nodes.

26CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

Hence, we have to look for a control v(i) that is correlated to ζ
(i)
j+1 as strongly

as possible. Broadie and Glasserman [19] recommend three kinds of inner con-

trols in case of a max-call option that only depend on Z
(i)
j+1. Among them, the

expectation of the highest asset at the next time step and the payoff of the
corresponding European option on the highest asset. The latter will be used in
the following chapters, i.e.

v
(i)
j (x) = exp(−rtj+1) max

d=1,...,D
(Z

d,(i)
j+1 − κ)+ (2.40)

such that vj(x) = E (x, tj , tj+1), where

E(x, t, T) := E

[
e−rT max

d=1,...,D

(
Xd
T − κ

)+ ∣∣∣Xt = x

]
. (2.41)

To numerically calculate the estimation of the control (2.41), we recall the fol-
lowing theorem from Belomestny, Bender and Schoenmakers [8].

Theorem 21. The value of a European max-call option with strike κ and ma-
turity time T on D independent assets modeled via geometric Brownian motion
with the same interest rate r, dividend yield δ and volatility σ is given by

D∑
l=1

X l
0

e−δT√
2π

∫
(−∞,dl−]

exp

[
−1

2
z2

]∏
l′ 6=l

Φ

 ln
Xl0
Xl
′

0

σ
√
T
− z + σ

√
T

 dz (2.42)

−κe−rT + κe−rT
D∏
l=1

(1− Φ(dl−)),

where

dl− =
ln

Xl0
κ + (r − δ − σ2

2)T

σ
√
T

, dl+ = dl− + σ
√
T . (2.43)

and Φ : R → R denotes the cumulative distribution function of the standard
normal distribution.

Since this formula only includes a one-dimensional integral, it is easily ap-
proximated numerically. This integration has to be very precise for large values
of k, since otherwise the advantage is spoiled. For D = 1 we have the Black-
Scholes formula, see Remark 50.

Clearly, assumption (AC) is fulfilled with κ1 = κ2 = 1, since every node
has to be compared to all succeeding nodes so that we have a complexity of
k×k+n×k. To check assumption (AQ), we refer to the work of Avramidis and
Matzinger [4] that is exclusively about the convergence of the mesh estimator.
Indeed, the numerical examples in Section 3.1.1 and and Section 3.2.1 will show
that the mesh estimator provides µ = 1, when using nodes and weights as
desribed before.

Nadaraya-Watson Estimator

In contrast to the weights from likelihood ratios, the weights considered in this
section can be used without the transition density of the underlying process.

2.1. FAST APPROXIMATION METHODS 27

Estimator (2.27) is called a Nadaraya-Watson estimator if the weights are given
by

w
(i)
j (x) =

K

(
x−Z(i)

j

δ

)
∑k
i=0K

(
x−Z(i)

j

δ

) (2.44)

with a kernel function K : RD → R and bandwidth δ.
Choosing the kernel function K(x) = 1{|x|≤1} is very similar to the nearest

neighbors technique presented in Section 2.1.4. One advantage of this similar
approach is that sorting is not necessary. A clear drawback lies in the problem
that depending on x, the number of neighbours can vary a lot. One also has to
cope with the unlikely case that the denominator in (2.44) can equal zero when
there are no points in the δ-neighbourhood of x. This method is used in Section
3.1.2, where the whole estimator is set to 0 when the neighbourhood is empty.

Weights from Optimization

Broadie, Glasserman and Ha [20] use an optimization approach to calibrate
the weights. They try to balance a couple of heuristics at the same time. For
example good weights are likely to provide exact results for problems that the
analytical solution is known of. This could simply be the demand that “weights
correctly ’price’ the underlying asset itself at node i”, see [20]. This means one

would require w
(i)
j

(
Z

(r)
j

)
to fulfill

Z
(r)
j =

1

k

k∑
i=1

w
(i)
j

(
Z

(r)
j

)
Z

(i)
j+1, j = 0, . . . ,J − 1. (2.45)

At the same time one could try to maximize entropy given by

L0 = −
N∑
i=1

w
(i)
j log(w

(i)
j). (2.46)

This would result in the most uniform choice of weights that fulfills (2.45). This
approach is very variable as it could be used if the transition density is unknown
or in case of a very inaccurate, fast calculation with small k. In the latter case
the nearest neighbours technique will be almost useless.

2.1.2 Global Regression

This idea was mainly developed by Tsitsiklis and Van Roy [71] [72] and J.
Carriére [23]. The continuation value function Cj : RD → R will by approxi-
mated by regression, usually least squares regression, with some basis functions
ψ1, . . . , ψm : RD → R. We fix a time step tj and drop the dependence of ψ on
j for the sake of notation. Of course, one can use different sets of functions for
each tj . Now, we try to find coefficients β1, . . . , βm ∈ R such that

m∑
h=1

βhψh(x) ≈ E [max (gj+1(Xj+1), Cj+1(Xj+1)) |Xj = x] . (2.47)

28CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

The drawback of this procedure is that the results strongly depend on the choice
of basis functions. Due to the robustness of stopping rules as explained in
Section 2.1, it is easy to find basis functions that provide a relatively small bias
and the testing step will run very fast when compared to other methods like
local regression or the mesh method. However, achieving a really small bias (let’s
say less than 0.1% of the true value in one of the multidimensional benchmark
examples in this work) will be very difficult as a priori knowledge about the true
value function must be considered to find really good such functions. Using the
method of least squares, the approach reads

min
β∈Rm

E

(m∑
h=1

βhψh(Xj)−max
(
gj+1 (Xj+1) , Ckj+1 (Xj+1)

))2 ∣∣∣X0 = x

 .
(2.48)

for each time step. We use again the training paths Z
(1)
· , . . . , Z

(k)
· to approxi-

mate this optimization problem and obtain

β̂ = arginf
β∈Rm

k∑
i=1

[
ζ

(i)
j+1 − β

1ψ1
(
Z

(i)
j

)
− . . .− βmψm

(
Z

(i)
j

)]2
(2.49)

as an estimator for β, where ζ
(i)
j+1 has been calculated one time step before (just

like in the previous subsection). Now we estimate the vector β via β̂ = B̂−1b̂,
where

B̂pq =
1

k

k∑
i=1

ψp
(
Z

(i)
j

)
ψq
(
Z

(i)
j

)
(2.50)

b̂p =
1

k

k∑
i=1

ψp
(
Z

(i)
j

)
ζ

(i)
j+1, (2.51)

for all p, q = 1, . . . ,m. Of course, B̂ and b̂ are Monte Carlo counterparts of some
variables B and p. For B given by

Bpq = E [ψp (Xj)ψ
q (Xj)] (2.52)

it may be possible to calculate the entries analytically.

Remark 22. For some basis functions, the entries of the matrix B are available
without simulation, i.e. E[ψp(Xj)ψq(Xj)] is analytically known for all p, q =
1, . . . ,m. This case, that no Monte Carlo simulation is needed, is called “quasi
regression” by some authors. The Hermite polynomials together with underlyings
of Brownian Motion are a typical example. The Hermite polynomials are defined
as follows, thereby the letter “e” denotes that they are a rescaled version of what
are called the “physicists“ Hermite polynomials.

Definition 23. The “Hermite polynomials” are given by

Hen(x) =

bn/2c∑
i=0

(−1)in!xn−2i

(n− 2i)!i!2i
, n = 0, 1, . . . (2.53)

2.1. FAST APPROXIMATION METHODS 29

and fulfill the orthogonality relation

E
[
Hei(W1)Hej (W1)

]
dx =

{
0, i 6= j

i!, i = j
, (2.54)

where Wt is a standard Brownian motion.

Finally we use

Ckj (x) :=

m∑
h=1

β̂hψh(x) (2.55)

as an estimator for Cj . We then glue the values ζ
(i)
j = Ckj (Z

(i)
j) to all the

training paths i = 1, . . . ,m at time step j and use those in the next time step
according to the dynamic recursion (2.2).

We can fulfill the conditions from the beginning of Chapter 2 and have a
small improvement by using

Ckj (x) :=

(
m∑
h=1

β̂hψh(x)

)+

(2.56)

instead of (2.55), because the continuation value cannot by negative by defini-
tion.

A possibility to improve this method of Tsitsiklis and Van Roy [72] is the

use of some “interleaving estimator”. The idea is to generate a subsample Z̃
(i)
j

from the underlying process starting from Z
(i)
j at tj and evaluate the stopping

time

τ̃ (i) = min
{
l ∈ {j, j + 1, . . . ,J } : gl

(
Z̃

(i)
l

)
≥ Ckl

(
Z̃

(i)
l

)}
(2.57)

in order to use ζ
(i)
j = gτ̃(i)(Z̃

(i)

τ̃(i)). Longstaff and Schwartz [57] use the training

paths themselves in place of Z̃
(i)
j . Actually, both the algorithm of Tsitsiklis and

Van Roy and the method of Longstaff and Schwartz can be seen as special cases
of a “generalized look-ahead” algorithm with parameter w = 0 and w = J −j−1
respectively, see Egloff [32].

The theoretical assumptions to be asked from the basis functions have been
studied intensively in the literature. Usually, the “quality” of the basis func-
tions is measured via the Vapnik-Chervonenkis dimension, see the follwing two
definitions taken from Zanger [77].

Definition 24. The class G is said to shatter a subset {a1, . . . , an} ⊆ Σ if there
exists r = (r1, . . . , rn) ∈ Rn such that for every b = (b1, . . . , bn) ∈ {0, 1}n, there
is a function g ∈ G such that for each i, g(ai) > ri if b1 = 1, and g(ai) ≤ ri if
bi = 0.

Definition 25. The “Vapnik-Chervonenkis dimension” also-called the “VC-
dimension” or “pseudo-dimension”of a class of functions G is defined as

vc(G) = sup
{
|(a1, . . . , an}|

∣∣∣{a1, . . . , an} is a subset of Σ shattered by G
}
,

where the notation | · | denotes the cardinality of a set.

30CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

The idea behind the VC-dimension originates from statistical learning theory
and gives information about the possibility to use a set of functions to approx-
imate a given target function. In case of linear regression, this set of functions
will be the set of all linear combinations of the basis functions, which is a fi-
nite dimensional vector space. It is well known that for a ν-dimensional vector
space H, the Vapnik-Chervonenkis dimension fulfills vc(H) ≤ ν + 1. Polyno-
mial regression uses H = RD(l), where RD(l) is the set of all D-dimensional

polynomials with order less or equal to l and so m = dim (RD(l)) = (l+D)!
l!D! .

Clément, Lamberton and Protter [25] analyze the behaviour of the error of the
Longstaff and Schwartz method if the basis functions stay fixed and the number
of training paths k increases. Tsitsiklis and Van Roy [72] do the same study for
their own method.

However, the more interesting questions arises when the number of basis
functions m and training paths k grow at the same time. Actually, there are
only two types of error. Firstly, the “sample error” that results from the fact that
Monte Carlo estimations rather than exact values are used within calculations.
Secondly, the “approximation error” that will exist since the linear combinations
of basis functions will never fit perfectly for a generic function. The first ones
to investigate such questions were Glasserman and Yu [42]. In order to study
a worst-case scenario, they consider a single-period setting. Even in this case,
the number of training paths k must grow exponentially in the number of basis
functions, if one combines Hermite polynomials with Brownian motion. In a
more realistic setting considering geometric Brownian motion, the number of
training paths is even of order exp(m2). Or vice versa, as the authors point out
the “. . . number of polynomials m(k) for which accurate estimation is possible
from k paths is . . . O(

√
log k).”

Fortunately this result has been improved, in particular by Zanger [77] and
Stentoft [69]. In his work, Stentoft [69] uses Legendre polynomials for the
Longstaff-Schwartz algorithm and chooses m ∼ k1/3. He assumes some smooth-
ness conditions for the continuation values and a compact support of the un-
derlying process. However, the strongest result about this issue is from Zanger
[77]. With a small abuse of notation, he uses the expression A(E[. . .]) to de-
note that an algorithm was used to estimate the expectation of a quantity and
τA denotes the associated estimated stopping time. The following result from
his article [76] is about the L2-error, where L2(ρj) denotes the space of square
integrable random variables with respect to the probability measure induced by
the marginal distribution of Xj .

Lemma 26. For each j = 0, . . . ,J − 1.∥∥∥A(E
[
(gτAj+1

(XτAj+1
))
∣∣∣Xj

])
− E

[
gτj+1

(
Xτj+1

)
|Xj

]∥∥∥
L2(ρj)

≤ 2

J−1∑
i=j

∥∥∥A(E
[
gτAi+1

(
XτAi+1

) ∣∣∣Xi

])
− E

[
gτAj+1

(
XτAj+1

) ∣∣∣Xj

]∥∥∥
L2(ρi)

.

Moreover ∥∥∥E
[
gτAj+1

(
XτAj+1

) ∣∣∣Xj

]
− E

[
gτj+1

(
Xτj+1

)
|Xj

]∥∥∥
L2(ρj)

≤ 2

J−1∑
i=j+1

∥∥∥A(E
[
gτAi+1

(
XτAi+1

)
) ∣∣∣Xi

])
− E

[
gτAi+1

(XτAi+1
)|Xi

]∥∥∥
L2(ρi)

2.1. FAST APPROXIMATION METHODS 31

for all j = 0, . . . ,J − 2.

This lemma gives the possibility to control the sample errors that add up
from one time step to the next one and gives rise to the next result, which is
Zanger’s central theorem about what he calls the “Longstaff-Schwartz” algo-
rithm. The latter includes some truncation procedure and generates a new set
of training paths for each regression at each time step. In his notation, Hk,j
will be the set of all linear combinations of the m basis functions used at time
step j.

Theorem 27. For each j = 1, . . . ,J −1, suppose Hk,j to be an arbitrary subset
of L2(ρj), that satisfies vc(Hk,j) ≤ ν <∞ for some ν ≥ 1. If the bound

L = max
{

1, ‖g1(X1)‖L∞(ρ1), . . . , ‖gJ (XJ)‖L∞(ρJ)

}
(2.58)

exists, then

E

[∥∥∥A(E
[
gτAj+1

(
XτAj+1

) ∣∣∣Xj

])
(Xjk)− E

[
gτj+1

(
Xτj+1

)
|Xj

]∥∥∥
L2(ρj)

]
≤ 5(J−j)

(
2c1√
k

+
ν1/2(2c2+2c3 log1/2(k))√

k
(2.59)

+ maxi=j,...,J−1

(
inff∈Hk,i ‖f − E

[
gτi+1

(
Xτi+1

)
|Xi

]
‖L2(ρi)

))
and in particular for the initial time

E
[∣∣∣A(E

[
gτA0 (XτA0

)
])

(Xk)− E [gτ0(Xτ0)]
∣∣∣]

≤ 5J
(

2c1√
k

+
ν1/2(2c2+2c3 log1/2(k))√

k
(2.60)

+ maxj=1,...,J−1

(
inff∈Hk,j ‖f − E

[
gτj+1

(Xτj+1
)|Xj

]
‖L2(ρj)

))
This is a strong result, since it provides the order of the sample error via

the first two summands in (2.59) and (2.60). The third summand about the
approximation error stays unresolved and strongly depends on the exact choice
of basis functions.

Given a finite dimensional vector space of dimension dim(Hk,j) = ν − 1,
the sample error in (2.59) and (2.60) converges to zero, as long as ν(k) =
o(k log−1(k)). Zanger points out that Glasserman and Yu [42] only obtain
ν(k) = O(log(k)), so their rate is “significantly less favorable”. Furthermore,
Zanger states that this result is also stronger than that from Stentoft [69], who
provides the rate ν(k) ∈ O(k1/3) in his Theorem 1. However, Stentoft has
no strict assumption on the boundedness of the payoff, so the two results are
difficult to compare.

To analyze the case of polynomial regression, Zanger asks the continuation
values to fulfill Cj ∈ Cn (Qd(σ)), where Qd(σ) is some cube with length 2σ. This
assumption is not too strong. Gerhold [38] even shows that the continuation
values will belong to C∞(Qd(σ)) in the Black-Scholes setting. As a result, the
total error of polynomial regression converges to zero at a rate of O(k−

n
2n+D)

as long as the order of polynomials fulfills l(k) = k
1

D+2n . This is the optimal
choice of l and k following Theorem 27, since it leads to the same order both for

32CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

the sample error and the approximation error in (2.60). Thus, the dimension of

the space of polynomials is of order m = dim (Rd (l(k))) ∈ O
(
k

D
D+2n

)
.

To make the complexity analysis feasible, let us note the following simplified
assumption. The complexity will be m × m × k + k × m ∈ O(m2k) within

the training step, since the matrix B̂ in the linear equation system must be

established involving all training paths and reading the new values ζ
(1)
j , . . . , ζ

(k)
j

from the estimation is less complex than that. In the testing step, the complexity
will simply be of order n×m, because one only has to evaluate a polynomial.

Assumption . With a suitable sequence of basis functions ψ1, ψ2, . . ., it is pos-
sible to fulfill assumption (AQ) with γk = k−µ, as long as

m ∈ O(kρ) (2.61)

holds asymptotically with some ρ > 0, so assumption (AC) is fulfilled with
κ1 = 2ρ and κ2 = ρ.

In case of polynomial regression, we thus have ρ = D
D+2n and µ = n

2n+D
which leads to a complexity of

k2ρ+1 + nkρ = k
3D+2n
D+2n + nk

D
D+2n

In practice, simply adding basis functions that could be useful will be fruitful
at the beginning. Especially the payoff function or value of a corresponding
European option should belong to the set of basis functions. However, adding
more such functions because of heuristic arguments will lead to a linear equation
system that is bad conditioned or even singular. This is called the “problem of
multicollinearity” in econometrics. Bouchard and Warin [14] describe ideas how
to avoid this problem. One approach consists of separating the state space into
a number of subregions. Afterwards, on each of these subregions one will use
a set of basis functions that vanish on all other subregions. This will lead to a
sparse equation system that is easy to solve, e.g. with the Cholesky decomposi-
tion technique. Another idea makes use of basis functions that are orthogonal,
whereas orthogonality is defined with respect to the transition density of the
underlying process. Another possibility is regularization. For example, the Ti-
chonov regularization technique just consists of using B̂ + λId instead of B̂,
where Id is the m×m identity matrix, see Hofmann [48]. Nonetheless, it is still
difficult to guarantee convergence because finding a sequence of functions with
increasing Vapnik-Chervonenkis dimension that also leads to reasonable results
in practice at the same time is very complicated. Hence, local regression might
be preferred in theory to ensure convergence without such problems.

Proposition 28. Global regression is a special case of a mesh method with
suitable choice of weights, since

Ckj (x) =

m∑
h=1

β̂hψh(x) = ψ(x)T B̂−1b̂ =
1

k

k∑
i=1

(
ψ(x)B−1ψ(Z

(i)
j)
)

︸ ︷︷ ︸
=:w

(i)
j (x)

ζ
(i)
j+1. (2.62)

2.1. FAST APPROXIMATION METHODS 33

2.1.3 Local Regression

The main idea behind local regression is very similar to that behind global
regression. The only difference is that for each evaluation of Ckj : RD → R at
a point x, regression is performed separately. In doing so, the training paths
are assigned different weights depending on their distance to x at time tj . This
sort of localization of course leads to a tremendous increase of complexity that
is mainly due to setting up the matrix in the equation system (2.51) again and
again.

Fix some time step tj . For each x, we want to use the training paths

Z
(1)
· , . . . , Z

(k)
· to find basis functions ψ1, . . . , ψm such that for every y ∈ RD

m∑
h=1

βmφh(y) ≈ E
[
max (gj+1(Xj+1), Cj+1(Xj+1))

∣∣Xj = x+ y
]

(2.63)

holds especially for y ≈ 0 and then use

Ckj (x) :=

m∑
h=1

βmφh(0) (2.64)

as an estimator in (2.2).
A convenient choice for the basis functions are again polynomials, so we

define the “local polynomial regression estimator” as follows. For some kernel
function K : RD → R+ and bandwidth δ > 0, denote by q the solution of

arg min
p∈RD(l)

k∑
i=1

[
ζ

(i)
j+1 − pz,k

(
Z

(i)
j − x

)]2
K

(
Z

(i)
j − x
δ

)
, (2.65)

where RD(l) is again the space of all polynomials of order l defined on RD. The
local polynomial estimator of order l for Cj(x) is then defined as Ckj (x) = q(0)

if the problem (2.65) is solvable. Use Ckj (x) = 0.001 otherwise 2. Hence, the

complexity of evaluating Ckj (z) is of order k as k →∞, so we note κ1 = κ2 = 1.
This calculation is different from the previous subsection, since an increase of
the number of basis functions is not assumed here.

However, as the number of training paths increases and the weights become
more and more localized, the local estimator converges to a Nadaraya Watson
estimator similar to the nearest neighbours technique in Section 2.1.1, irrespec-
tively of the choice of basis functions. In particular from a theoretical point of
view, this is a big advantage of this method as convergence can be assumed in
each case.

Theorem 29. For given x and time step j, the solution of (2.65) can be cal-
culated with the help of (Γu,v)|u|,|v|≤l and (Su)|u|≤l given by

S =
1

kδd

k∑
i=1

ζ
(i)
j+1

(
Z

(i)
j − x
δ

)u
K

(
Z

(i)
j − x
δ

)
,

2The reason for this choice is as follows. In such a case that x is far away from all the
training paths, it is likely to be very far in-the-money or out-of-the-money. Thus, it is optimal
to exercise immediately if there is some payoff.

34CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

Γ =
1

kδd

k∑
i=1

(
Z

(i)
j − x
δ

)u+v

K

(
Z

(i)
j − x
δ

)
.

If Γ is positive definite, then there is a unique polynomial solving (2.65) with
coefficients Γ−1S.

Corollary 30. The polynomial regression estimator is a special kind of a mesh
method. When we use the coefficients Γ−1S in (2.65), we have

Ckj (x) = MT (0)Γ−1S

=
1

khd

k∑
i=1

ζ
(i)
j+1K

(
Z

(i)
j − x
h

)

×MT (0)Γ−1M

(
Z

(i)
j − x
h

)
, (2.66)

where M(x) = (M(x)u)|u|≤l is the vector of monomials.

Furthermore, we take from Belomestny [6] that under some mild regularity
assumptions on the law of X, there is some result about how to choose the
bandwidth δ.

Theorem 31. If the continuation value functions Cj, j = 0, . . . ,J belong to the
Hölder class Σ(β,H,Rd), then the local polynomial regression estimator fulfills
assumption (AQ) with γk = k−2β/(2β+D) log−1(k) provided that δ = k−1/(2l+D).

2.1.4 Nearest-Neighbours Technique

The easiest way to construct an estimator for Cj at a point x is simply averaging
the payoffs of all training paths in the vicinity. Since no a-priori information
about the underlying or the payoff is used, we can expect this approach to be
relatively inefficient.

Choose a number of neighbours 0 ≤ η � k to compare each path to. Then
the estimator for Cj(x) is given by

Ckj (x) =
1

η

η∑
i=0

ζ
(ι(x,i))
j+1 , (2.67)

where ι(x, ·) : {1, . . . , k} → {1, . . . , k} defines an order such that

‖Zι(x,1)
j − x‖∞ ≤ ‖Zι(x,2)

j − x‖∞ ≤ . . . ≤ ‖Zι(x,k)
j − x‖∞.

Here, we chose the maximum norm in order to reduce complexity. Of course,
other equivalent norms can be used as well. Using the quick sort algorithm would
lead to a complexity of O(log(k)k) for the sort belonging to each evaluation of
Ckj (x). Since it is not necessary to calculate the order of all elements, but
only of the first η ones, a partial sort is sufficient here. Partial sorts based on
quicksorts will simply throw away elements that are too small which is signalized

2.2. COMPLEXITY ANALYSIS 35

by comparison to the according pivot element. In such a way, a complexity of
O(k + η log(η)) is realized, so we have a total complexity of

k + η log(η) + η ∈ O(k) (2.68)

for each evaluation of Ckj (·) because a reasonable choice of η will fulfill η ∈ O(k).
Asymptotically, we now have κ1 = κ2 = 1.

The nearest-neighbours technique shares some advantages with local regres-
sion. Firstly, neither transition densities nor basis functions are needed. Sec-
ondly, convergence as k → 0 can be assumed. Furthermore, an advantage if
compared to the “false nearest-neighbours technique” from Section 2.1.1 is that
the neighbours considered come from a wider neighbourhood if there are only
few trainingpaths in the vicinity of x. In particular, the set of neighbours can-
not be empty. As this method is very similar to local regression, it won’t be
competitive either unless the number of training paths k is very large. The com-
plexity needed to provide good results will explode as the number of exercise
dates increases, see Agarwal and Juneja [1]. Alternatively, a good inner control
must be found to improve (2.67).

2.2 Complexity Analysis

We want to measure the performance of a fast approximation method by com-
paring the root-mean-squared error of its result to its computational complexity.
Of course, there are also other possibilities to measure the performance of an
estimator. For example, another good idea is to consider the sum of the bias
and a multiple of the standard deviation, so to say the lower bound of some
confidence interval.

Let us recall the definition of the complexity from assumption (AC)

C n,k = k1+κ1 + n× kκ2 , (2.69)

which will be a good model for the computational time. The root-mean-squared
error is defined as √

E [V n,k − V0]
2
. (2.70)

How much complexity is necessary to ensure that the root-mean-squared error

is less than a given number ε, namely E
[
V n,k − V0

]2 ≤ ε2 ? Therefore, let us
define the minimal complexity as

C (ε) := min
n,k∈R+

{
C n,k

∣∣∣E [V n,k − V0

]2 ≤ ε2
}
, (2.71)

where integers are treated like reals. It is not difficult to solve this minimization
problem and we have the following solution.

Theorem 32. For a problem fulfilling (AB) with α > 0, the minimal complexity
of a fast approximation method that achieves a root-mean-squared error of ε is
given asymptotically by

C (ε) ∈ O
(
ε−2·max(κ1+1

µ(1+α)
, 1+

κ2
µ(1+α))

)
, (2.72)

36CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

which is realized via the choice

k∗ = ε−
2

µ(1+α) , n∗ = ε−2. (2.73)

This result includes the following fact about the variance that is caused by
the randomness of the training paths.

Theorem 33. The variance of the testing value conditional the training paths
fulfills

Var
[
E
[
V n,k

∣∣∣σ (Z(1)
· , . . . , Z

(k)
·

)]]
. Cγ

2(1+α)
k ,

i.e. the variance of the bias is decreasing at a higher order than the squared
bias, compare Theorem 18.

The order in formula (2.72) is the optimal statement possible and we have
a suitable corollary.

Corollary 34. In case of κ1 = κ2 := κ and α = 1, the complexity of V k,n is
given by

C (ε) ∈ O
(
ε−2 max(1

µ ,1+ 1
2µ)
)
. (2.74)

Thus, the complexity is always larger than ε−3, because µ ≤ 1 for all fast ap-
proximation methods.

This is the main result of this chapter that will be compared to the multilevel
version of the fast approximation methods in Section 3. At the end of this
section, let us make note of another interesting possibility to improve lower
bounds that is quite generic. It is called “policy iteration” and does not belong
to the class of fast approximation methods.

Remark 35. According to Kolodko and Schoenmakers [54], every consistent
family (see Definition 2) of stopping times τ0, . . . , τJ induces an estimator for
the option price via

V̂j = max
j≤i≤min{j+κ,J}

E [gτi(Xτi)|Xj] , (2.75)

where κ ∈ {1, . . . ,J } is called the “window parameter”. Hopefully, the stopping
times based on this estimator

τ̂j = min
{
i ∈ {j, . . . ,J }

∣∣∣V̂i ≤ gi (Xi)
}
, j = 0, . . . ,J (2.76)

will be a better approximation of the optimal stopping time than the family τ .
It is possible to use this technique to define a sequence of (families of) stopping
times τ0, τ1, For example in case of κ = 1, such a sequence is given via the
simple 3 iteration rule

τkj = min
{
i ∈ {j, . . . ,J }

∣∣∣E [gτk−1
i+1

(
Xτk−1

i+1

) ∣∣∣Xi

]
≤ gi (Xi)

}
, (2.77)

3This easy case with κ = 1 was already discussed by several authors before: Howard, Irle
and Puterman.

2.3. PROOFS 37

since

E[gτi+1(Xτi+1)|Xi] < E[gτi(Xτi)|Xi]⇒ τi = i⇒ E[gτi(Xτi)|Xi] = gτi(Xτi)

for a consist family such that V̂j = E[gτk−1
i+1

(Xτk−1
i+1

)
∣∣∣Xi] for j = 0, . . . ,J − 1. A

starting point τ0 could be given by τ0
j ≡ j for all j = 0, . . . ,J . This sequence of

stopping times τ0, τ1, . . . converges to the true value and even

τmi = τ∗i , m ≥ J − i (2.78)

holds. In other words, the number of time steps j that τkj coincides with τ∗j
increases with every iteration at least by one (starting from the last time step).

However, since the expectations in (2.77) have to be estimated, the complex-
ity is very high and (2.78) is merely a theoretical result. Using simple Monte
Carlo estimations to approximate (2.77) would lead to a system of nested sub-
simulations with exponential complexity. Therefore, it is much more efficient to
start with a stopping time τ0 from one of the fast approximation methods from
Section 2.1 and use a one step or two step iteration to improve it. Kolodko and
Schoenmakers state that this will be optimal in usual cases.

2.3 Proofs

Let us first note the following helpful theorem that allows us to find a bound
for the difference of the expectations when following two different stopping rules
expressed in terms of the implied exercise instructions.

Theorem 36. Let Y be a process adapted to the filtration F and let τ1
0 , . . . , τ

1
J

and τ2
0 , . . . , τ

2
J be two consistent families of stopping times. Then

EFj

[
Yτ1

j
− Yτ2

j

]
= EFj

J−1∑
l=j

(
Yl − EFl

[
Yτ1

l+1

])(
1{τ1

l =l,τ2
l >l} − 1{τ1

l >l,τ
2
l =l}

)
1{τ2

l >l}

for any j = 0, . . . ,J − 1.

Proof. We have

Yτ1
j
− Yτ2

j
=

[
Yj − Yτ2

j

]
1{τ1

j =j,τ2
j>j} +

[
Yτ1

j
− Yj

]
1{τ1

j>j,τ
2
j =j}

+
[
Yτ1

j
− Yτ2

j

]
1{τ1

j>j,τ
2
j>j}

=
[
Yj − Yτ1

j+1

]
1{τ1

j =j,τ2
j>j} +

[
Yτ1

j+1
− Yj

]
1{τ1

j>j,τ
2
j =j}

+
[
Yτ1

j+1
− Yτ2

j+1

]
1{τ1

j =j,τ2
j>j} +

[
Yτ1

j+1
− Yτ2

j+1

]
1{τ1

j>j,τ
2
j>j}.

Therefore it holds for ∆j := EFj

[
Yτ1

j
− Yτ2

j

]
∆j =

[
Yj − EFj

[
Yτ1

j+1

]] (
1{τ1

j =j,τ2
j>j} − 1{τ1

j>j,τ
2
j =j}

)
+ EFj

{
∆j+11{τ2

j>j}

}

38CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

with ∆J = 0 and

∆j = EFj

J−1∑
l=j

(
Yl − EFl

[
Yτ1

l+1

])(
1{τ1

l =l,τ2
l >l} − 1{τ1

l >l,τ
2
l =l}

)
1{τ2

l >l}

 .

Furthermore, we need a result about the probability that the stopping rule
obtained from a fast approximation method gives us the wrong advice whether
to exercise.

Theorem 37. The probability of the event that a continuation estimate Ckj
gives us the wrong advice whether to stop at time j

Ek,j = {gj(Xj) > Cj(Xj), gj(Xj) ≤ Ckj (Xj)}
∪ {gj(Xj) ≤ Cj(Xj), gj(Xj) > Ckj (Xj)},

fulfills the asymptotic relation

P (Ek,l) . γ
α/2
k .

Proof. We define

Ak,j,0 =
{

0 < |gj(Xj)− Cj(Xj)| ≤ γ1/2
k

}
,

Ak,j,i =
{

2i−1γ
1/2
k < |gj(Xj)− Cj(Xj)| ≤ 2iγ

1/2
k

}
for j = 0, . . . ,J − 1 and i > 0. Note that

P(Ek,s) =

∞∑
i=0

P(Ek,s ∩ Ak,s,i) (2.79)

and

P(Ek,s ∩ Ak,s,i) ≤ P
(
|gs(Xs)− Cs(Xs)| ≤ γ1/2

kl−1

)
≤ Aγα/2kl−1

if i = 0 and

P(Ek,s ∩ Ak,s,i) ≤ E

[
1{|gs(Xs)−Cs(Xs)|≤2iγ

1/2
k

}Pk
(∣∣Cks (Xs)− Cs(Xs)

∣∣ > 2i−1γ
1/2
k

)]
≤ Aγ

α/2
k 2iαB1 exp(−B22i−1)

for i > 0. Since the exponential decrease of exp(−B22i−1) is stronger than the
growth of 2iα, the sum in (2.79) is finite.

Proof of Theorem 18

Taking into account that

Cl(Xl) = EFl

[
gτl+1

(Xτ∗l+1
)
]
≤ gl(Xl)

2.3. PROOFS 39

on {τ∗l = l} and

Cl(Xl) < gl(Xl)

on {τ∗l > l}, we get from Theorem 36 for R = V n,k − V0 that

|R| =
∣∣E [gτ∗k (Xτ∗k

)− gτk(Xτk)
]∣∣

≤ E

[J−1∑
l=0

|Cl(Xl)− gl(Xl)|
(

1{τ∗k,l=l,τk,l>l} + 1{τ∗k,l>l,τk,l=l}

)]
.

Using the same notation as in Theorem 37, we see that it holds

|R| ≤ E

[J−1∑
l=0

|Cl(Xl)− gl(Xl)| 1{Ek,l}

]

= E

[∞∑
i=0

J−1∑
l=0

|Cl(Xl)− gl(Xl)| 1{Ek,l∩Ak,l,i}

]

= γ
1/2
k

J−1∑
l=0

P
(
|gl(Xl)− Cl(Xl)| ≤ γ1/2

k

)
+E

[∞∑
i=1

J−1∑
l=0

|Cl(Xl)− gl(Xl)| 1{Ek,l∩Ak,l,i}

]
.

Using the fact that |gl(Xl)− Cl(Xl)| ≤ |Cl(Xl)− Cl(Xl)| on Ek,l, we now derive

|R| ≤ γ
1/2
k

J−1∑
l=0

P
(
|gl(Xl)− Cl(Xl)| ≤ γ1/2

k

)
+

∞∑
i=1

2iγ
1/2
k E

[J−1∑
l=0

1{|gj(Xj)−Cj(Xj)|≤2iγ
1/2
k

}Pk
(∣∣Ckl (Xl)− Cl(Xl)

∣∣ > 2i−1γ
1/2
k

)]

≤ γ
1/2
k

(
AJ γα/2k +AJ γα/2k

∞∑
i=1

2iB1 exp(−B22i−1)

)
.

≤ γ
(1+α)/2
k c

similar as in Theorem 37.

Proof of Theorem 19

We show that

E
[
ζ

(h)
j

]
≥ Vj

(
N

(h)
j

)
, h = 1, . . . , k (2.80)

by induction from tJ , . . . , t0, see [40] and [19]. The start of induction is clear,

since ζ
(h)
J = gJ

(
N (h)

)
which is equal to the true value VJ

(
N

(h)
J

)
and in par-

ticular fulfills (2.80). Now fix a time step tj .

E
[
ζ

(h)
j |Nj

]
= E

[
max

{
gj

(
N

(h)
j

)
,

1

k

k∑
i=1

w
(i)
j

(
N

(h)
j

)
ζ

(i)
j+1

}∣∣∣Nj

]

40CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

≥ max

{
gj

(
N

(h)
j

)
,

1

k

k∑
i=1

E
[
w

(i)
j

(
N

(h)
j

)
ζ

(i)
j+1

∣∣∣Nj

]}
(2.81)

The first step is due to Jensen’s inequality and so we have due to (M2) that

E
[
w

(i)
j

(
N

(h)
j

)
ζ

(i)
j+1

∣∣Nj ,Nj+1

]
= w

(i)
j

(
N

(h)
j

)
E
[
ζ

(i)
j+1

∣∣Nj ,Nj+1

]

= w
(i)
j

(
N

(h)
j

)
E
[
ζ

(i)
j+1

∣∣Nj+1

]
, (2.82)

where the second step follows from (M1). Inserting this result into (2.82) we
have

E
[
ζ

(h)
j |Nj

]
≥ max

{
gj

(
N

(h)
j

)
,

1

k

k∑
i=1

E
[
w

(i)
j

(
N (h)

)
ζ

(i)
j+1

∣∣∣Nj+1

]}
.

Applying the induction assumption (2.80) with j + 1 leads to

. . . ≥ max

{
gj

(
N

(h)
j

)
,

1

k

k∑
i=1

E
[
w

(i)
j

(
N (h)

)
V

(i)
j+1

∣∣∣Nj+1

]}

and finally because of (M3)

. . . = max
{
gj

(
N

(h)
j

)
,E
[
Cj+1(N

(h)
j)

]}
= Vj

(
N

(h)
j

)
.

Proof of Theorem 32

Denote by G = σ(Z1
· , . . . , Z

k
·) the σ−algebra generated by the training paths.

Using the bias-variance decomposition, we obtain that

E

[(
V n,k0 − V0

)2
]

= E

[(
V n,k0 − E

[
V n,k0

]
+ E

[
V n,k0

]
− V0

)2
]

= E

[(
V n,k0 − E

[
V n,k0

])2

+
(

E
[
V n,k0

]
− V0

)2
]

+ 2 E
[
V n,k0 − E

[
V n,k0

]] (
E
[
V n,k0

]
− V0

)
︸ ︷︷ ︸

=0

2.3. PROOFS 41

and repeating the procedure yields

. . . = E

[
E

[(
V n,k0 − E

[
V n,k0

])2 ∣∣∣G]]+
(

E
[
V n,k0

]
− V0

)2

= E

[
E

[(
V n,k0 − E

[
V n,k0

∣∣∣G]+ E
[
V n,k0

∣∣∣G]− E
[
V n,k0

])2 ∣∣∣G]]+
(

E
[
V n,k0

]
− V0

)2

= E

[
E

[(
V n,k0 − E

[
V n,k0

∣∣∣G])2

+
(

E
[
V n,k0

∣∣∣G]− E
[
V n,k0

])2 ∣∣∣G]]
+ 2 E

[
E
[
V n,k0 − E

[
V n,k0

∣∣∣G] ∣∣∣G] (E
[
V n,k0

∣∣∣G]− E
[
V n,k0

])]
︸ ︷︷ ︸

=0

+
(

E
[
V n,k0

]
− V0

)2

= E

[
1

n
Var

[
V 1,k

0 |G
]]

+ Var
[
E
[
V n,k0 |G

]]
+ Ck−µ(1+α)

.
1

n
E
[
gτ∗(Xτ∗)

2
]

+ Ck−µ2(1+α) + Ck−µ(1+α).

We can neglect the variance of the bias here following Theorem 33 and thus
have

E

[(
V k,n0 − V0

)2
]
.
C

n
+ Ck−µ(1+α),

where the term Ck−µ(1+α) originates from Assumption (AQ). To ensure that
the bias is smaller than ε/

√
2, we have

k−µ(1+α)/2 . ε/
√

2 ⇒ k = cε−
2

µ(1+α) .

The variance will be less or equal to ε2/2 if n = cε−2. Thus, the complexity
will have the same order as

ε
−2(κ1+1)

µ(1+α) + ε−2 · kκ2
2

µ(1+α)

according to assumption (AC).

Proof of Theorem 33

Let us define C := E[V k,n0 |G]− V0, where G is again the σ-algebra generated by
the training paths.

|C| = |E [gτ∗(Xτ∗)− gτk(Xτk)|G]|

≤ E

[J−1∑
l=0

|Cl(Xl)− gl(Xl)|
(

1{τ∗l =l,τk,l>l} + 1{τ∗l >l,τk,l=l}

) ∣∣∣G] .

42CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

It also holds in the conditional case

|C| ≤ E

[J−1∑
l=0

|Cl(Xl)− gl(Xl)| 1{Ek,l}
∣∣∣G]

= γ
1/2
k

J−1∑
l=0

P
(
|gl(Xl)− C∗l (Xl)| ≤ γ1/2

k

)
+E

[∞∑
i=1

J−1∑
l=0

|Cl(Xl)− gl(Xl)| 1{Ek,l∩Ak,l,i}
∣∣∣G] .

Using the fact that |gl(Xl)− Cl(Xl)| ≤
∣∣Ckl (Xl)− Cl(Xl)

∣∣ on Ek,l, we derive

|C| ≤ AJ γ(1+α)/2
k

+

∞∑
i=1

2iγ
1/2
k E

[J−1∑
l=0

1{|gj(Xl)−Cl(Xl)|≤2iγ
1/2
k

}1{|Ckl (Xl)−Cl(Xl)|>2i−1γ
1/2
k

}∣∣G]
≤ AJ γ(1+α)/2

k

+Aγ
(1+α)/2
k

∞∑
i=1

2i(1+α)
J−1∑
l=0

1{|Ckl (Xl)−Cl(Xl)|>2i−1γ
1/2
k

},
where we have made use of the assumptions (AQ) and (AM). Let us define

ι(t) =

log

(
t

AJ γ(1+α)/2
k

− 1

)
(1 + α) log 2

, (2.83)

so we have

F (t) := P (|C| < t)

≥

{
0, t ≤ AJ γ(1+α)/2

k∏J−1
l=0

(
1− P

(∣∣Ckl (Xl)− Cl(Xl)
∣∣ > 2ι(t)−1γ

1/2
k

))
, t > AJ γ(1+α)/2

k

≥

0, t ≤ AJ γ(1+α)/2
k(

1−B1e
−B22ι(t)−1

)J
, t > AJ γ(1+α)/2

k

.

Now, it follows that

Var [C] = Var
[
E[V k,n0 |G]

]
= E

[(
E[V k,n0 |G]− E[V k,n0]

)2
]

≤ E

[(
E[V k,n0 |G]− V0

)2
]

= 2

∫ ∞
0

tP

((
V0 − E[V k,n0 |G]

)2

> t

)
dt

= 2

∫ ∞
0

tP
(
|C| >

√
t
)
dt

= 2

∫ ∞
0

t
(

1− F
(√

t
))

dt,

2.3. PROOFS 43

so when inserting the above result:

Var [C] ≤ 2

∫ A2γ
(1+α)
k

0

tdt+ 2

∫ ∞
A2γ

(1+α)
k

t

(
1−

(
1−B1e

−B22ι(
√
t)−1
)J)

dt

. A4γ
2(1+α)
k +O(γ

2(1+α)
k)

holds, which was to be shown. The last inequality follows because

2ι(
√
t) = e

log

(
√
t

AJγ(1+α)/2
k

−1

)
/(1+α)

=

(√
t

AJ γ(1+α)/2
k

− 1

)1/(1+α)

,

so f(t, γk) = 1−
(

1−B1e
−B22ι(

√
t)−1
)J

is a function that fulfills asymptotically,

f(t, γk) � JB1e
−B22ι(

√
t)−1

f(t, γk) ∈ o(γβk), ∀β > 0

as γk → 0 and t→∞. Thus,
∫∞

0
tf(t)dt will be finite and it holds∫ ∞

A2γ
(1+α)
k

tf(t)dt .
∫ ∞

0

tJB1e
−B22

√
ι(t)−1

dt . γ
2(1+α)
k . (2.84)

44CHAPTER 2. LOWER BOUNDS VIA FAST APPROXIMATIONMETHODS

Chapter 3

Multilevel for Fast
Approximation Methods

Multilevel Monte Carlo methods were introduced into stochastics by Heinrich
[47] and the path-breaking work of Giles [39]. The multilevel technique is an
idea about how to reduce the complexity of Monte Carlo simulations and can
be understood as an extension of the quasi-control variate approach, see Section
1.3.

Assume a stochastic algorithm that yields a random quantity Ak, where
k is a parameter that has influence on the complexity and the accuracy of
the algorithm, howsoever accuracy and complexity are measured. Instead of
estimating its expectation via Monte Carlo simulation, we write at first

E[Ak] = E[AK] + E[Ak −AK] (3.1)

with k 6= K. Then, we replace the two expectations with their Monte Carlo
estimators and run two independent simulations. More precisely, E[AK] is es-
timated with N samples and E[Ak − AK] with n samples. Hopefully, there is
a tuple (k,K, n,N) such that the sum of these two estimators yields a better
relation between complexity and accuracy than the standard Monte Carlo es-
timator. In other words, the same algorithm with lower accuracy is used as
a quasi-control variate for the algorithm itself. This would correspond to a
multilevel estimator with L = 1 higher levels.

One can extend this idea and use a sequence of random variables, where
each element in the sequence serves as a quasi-control variate to its successor
(except for the last one), so we fix a sequence of parameters (k0, . . . , kL) and
write

E[AkL] = E[Ak0] +

L∑
l=1

E[Akl −Akl−1], (3.2)

where L is the number of higher levels. The total variance that arises if each
of the expectations in (3.2) is estimated independently with Nl Monte Carlo
samples is nebulous and therefore has to be studied.

The reason for the gain of complexity will be twofold. Firstly, if Akl and
Akl−1 are drawn simultaneously from a common probability space in a natural

45

46CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

way, there will probably be a strong correlation between them. This will lead
to a small variance for all the higher levels and we will need only few samples to
estimate the summands in (3.2) accurately. So let us choose k0 such that Ak0 is
a fast and inaccurate result and estimate it with many samples. Together, both
effects could give us an estimator that is fast and accurate at the same time.
Secondly, it is typical for the multilevel approach that there might be problem-
depending enhancements that achieve coupling effects between the minuend
variable and subtrahend variable, which could lead to even stronger correlations.
This will be the case for the two applications of the multilevel technique in the
following chapters.

Recently, there has been a lot of research about the multilevel technique, i.e.
it has been applied to quite a variety of problems. First of all, Giles used this
idea to improve the efficiency of sampling from stochastic differential equations.
Suppose a stochastic process X· that is the solution of an SDE with respect
to Brownian motion. Trajectories of this process are simulated via some time
discretization with k time steps and are denoted by XkL

· . We have a function f
of XT , so there is the usual European setting and PL = f(XkL

T) plays the role
of AkL . A quite general version of his main result reads as follows, where the
accuracy is measured in terms of the mean-squared error.

Theorem 38. Let P denote a random variable, and let Pl denote the corre-
sponding level l numerical approximation. If there exist independent estimators
Yl based on Nl Monte Carlo samples, and positive constants α, β, γ, c1, c2, c3
such that α ≥ 1

2 min(β, γ) and

1. E[Pl − P] ≤ c12−αl

2. E[Yl] =

{
E[P0], l = 0

E[Pl − Pl−1], l > 0

3. Var[Yl] ≤ c2N−1
l 2−βl

4. E[Cl] ≤ c3Nl2γl,

(where Cl is the computational complexity of Yl). Then there exists a positive
constant c4, such that for any ε < e−1 there are values L and Nl for which the
multilevel estimator

Y =

L∑
l=0

Yl,

has a mean-square-error with bound

E
[
(Y − E[P])2

]
< ε2

with a computational complexity C with bound

E[C] ≤

c4ε
−2, β > 1

c4ε
−2(log ε)2, β = 1

c4ε
−2−(1−β)/α, 0 < β < 1

47

There are many related results. For example, Dereich and Li [30] reduce
the complexity that originates from sampling paths of a Lévy process. Their
setting is quite similar to that one of Giles. The levels are again based on
different approximation schemes, but each of those schemes depends on two
parameters. Firstly, a parameter h that is “a threshold for the size of the jumps
being considered large and causing immediate updates”. Secondly, a parameter
ε that plays a role similar to the fineness of the time discretization, namely “the
length of the regular update intervals” in their words.

The result of Giles strongly depends on the parameter β. As we will see
below, this parameter typically results from what is called the “strong order
of convergence” of the approximation technique. In many applications of the
multilevel technique, the size of β is a decisive issue to prove. Belomestny,
Nagapetyan and Shiryaev [9] try to broaden the class of problems that are at-
tackable via the multilevel by considering weak approximation schemes without
assuming strong convergence.

In this chapter, we want to use the multilevel technique to enhance what
was called the testing step (3.3) of a fast approximation method in Section 2.1.
Another application of the multilevel technique will be discussed in Chapter 6,
where the complexity of nested dual methods is improved. Recall, for example
the mesh method from Section 2.1.1, which provides an estimator

V k(x0) = E [gτk(Xτk)|X0 = x0] , (3.3)

where k controls the number of mesh paths and thus has influence on the accu-
racy and the complexity of the method.

The multilevel algorithm can be summarized as follows: Fix a number of
levels L, an increasing sequence k0, . . . , kL and a sequence of stopping times
τk0
, . . . , τkL each of them based on kl training paths with the help of some

fast approximation method. Thus, τkL plays the role of τk in (3.3). It is the
best but also the most expensive of these stopping times measured in terms of
computational complexity. It is clear that

E
[
gτkL (XτkL

)
]

= E
[
gτk0

(Xτk0
)
]

+

L∑
l=1

E
[
gτkl (Xτkl

)− gτkl−1
(Xτkl−1

)︸ ︷︷ ︸
=:∆l

]
, (3.4)

where we defined the “increments” ∆l. Now, fix a decreasing sequence n0, . . . , nL
and replace expectations with their Monte Carlo estimators.

Definition 39. We define the multilevel Monte Carlo estimator (MLMC) as

V n,k =
1

n0

n0∑
r=1

g
τ

(r)
k0

(
X

(r)

τ
(r)
k0

)
+

L∑
l=1

1

nl

nl∑
r=1

[
g
τ

(r)
kl

(
X

(r)

τ
(r)
kl

)
− g

τ
(r)
kl−1

(
X

(r)

τ
(r)
kl−1

)]
︸ ︷︷ ︸

=:∆̄
nl
l

(3.5)

based on nl independent realizations
(
X

(r)
· , τ

(r)
kl

)
of (X·, τkl) within each level,

where

τ
(r)
k = inf

{
0 ≤ j ≤ J : gj

(
X

(r)
j

)
≥ Ckj

(
X

(r)
j

)}
, k ∈ N,

if a fast approximation method is used.

48CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

It is eye-catching that the variance can significantly be reduced in case of
a fast approximation method if the complexity in the lower levels is very low
and the “difference” between the stopping times in the higher levels is small
enough. This is very likely to be the case, because for very large k and k′

the estimators Ckj and Ck
′

j will hardly differ, as both of them are very near to
the true continuation value function Cj . At the same time, the difference of
complexities might be large. So to say, it is possible to exploit the robustness
of fast approximation methods explained in Section 2.1.

Unfortunately, we have to be cautious, since this setting does not fit into
the setting described by Giles. The reason is simply the stochastic behaviour of
the training paths, see Theorem 33. The expectation of ∆l is a random variable
with respect to the σ-algebra generated by two sets of training paths: Those
that were in use to generate τkl and those for τkl−1

. That issue will be further
discussed in in Section 3.1, where the complexity of the multilevel estimator
is analyzed in the general case of a fast approximation method, as defined in
Section 2.1. The result will then be compared to the complexity of the standard
Monte Carlo estimator calculated in Section 2.2. Afterwards, two numerical
examples will illustrate the gain of efficiency in case of a mesh method and the
loss of efficiency in case of local regression. The succeeding section is about an
algorithm that determines the number of levels during the runtime, similar to
Giles [39]. Afterwards, some practical issues will be discussed, which will be the
motivation for Chapter 4.

Another interesting enhancement of the multilevel technique should be men-
tioned here. Rhee and Glynn [63] and similarly McLeish [59] introduce related
ideas about how to produce unbiased estimators from a sequence of approxima-
tion schemes that are not unbiased. Colloquially, their method could be called
a “multilevel estimator with randomly many levels”. The number of levels in
use is determined via an independent, positive integer valued random variable
N . Now define

Z̄n =

n∧N∑
k=0

∆k/P(N ≥ k) (3.6)

that obviously is an unbiased estimator for E[Pn], which can be shown using
Walds’s identity. The variable Z̄ that Z̄n is converging to almost surely is then
given by

Z̄ =

N∑
k=0

∆k/P(N ≥ k). (3.7)

In their Theorem 1, Glynn and Rhee state that Z̄ is indeed an unbiased estimator
of E[P] under some “appropriate conditions”. To sample from an unbiased
estimator of course may be a tremendous advantage in some practical situations.
Though the variance, and thus the complexity given the desired accuracy may
increase. McLeish [59] states that “. . . we have purchased unbiasedness of the
estimator at a cost of increasing the MSE by a factor . . . ”, where the factor
depends on the order of decay of the expectations of the levels.

3.1. COMPLEXITY ANALYSIS 49

3.1 Complexity Analysis

Let us consider the multilevel approach for a fast approximation method under
assumptions (AB), (AC) and (AQ). It is clear that for the bias of the multilevel

estimator it holds E[V k,n] = γ
(α+1)/2
kL

, i.e. the bias results from the finest one

of L approximations, see (3.4). The complexity of V k,n is asymptotically given
by

L∑
l=0

(kκ1+1
l + nl · kκ2

l) (3.8)

up to a constant. For the bias-variance decomposition, we need to know the
behaviour of the variances in each level. The following theorem provides some
upper bound.

Theorem 40. If the payoff and the underlying stochastic process X satisfy

Mp := E
[∣∣ max
l=0,...,J

gl(Xl)
∣∣2p] <∞ (3.9)

for some p ≥ 1, then we have for the increment ∆l that

E[|∆l|2] = E
[∣∣gτkl (Xτkl

)
− gτkl−1

(
Xτkl−1

)∣∣2] ≤ CM1/p
p γ

α/(2q)
kl−1

for any l = 1, . . . , L. Here, we have α > 0 from assumption (AB), some absolute
constant C > 0 and q satisfying 1/p+ 1/q = 1.

Remark 41. Let us check whether assumption (3.9) is fulfilled for the max-call
option with strike κ and D assets of geometric Brownian motion. It holds

E

[∣∣∣∣ max
l=0,...,J

gl(Xl)

∣∣∣∣2p
]
≤ E

[J∑
l=0

|gl(Xl)|2p
]

≤ c
J∑
j=0

D∑
d=1

∫ ∞
0

max(xd0e

(
µd− 1

2 (σd)
2
)
tj+σ

dx − κ, 0)2p 1√
2πσdt

e−
x2

2 dx

.
∫ ∞

0

exp(−x
2

2
+ 2pmax

d
σdx)dx <∞

for all p, so to say q = 1. Since the min-put option has a bounded payoff, it is
the same situation.

Remark 42. As mentioned before, the difference to the setting of Giles is ran-
domness of the training paths. To obtain levels that are independent of each
other, we would have to generate two new sets of training paths in each level.
Then, the coarser and the finer approximation would be independent of the other
levels. Unfortunately, the variance of the bias that arises in this manner would
have a large influence of the total root-mean-squared error of the whole algo-
rithm, especially in the lower levels. Thus, we have to reuse the finer approxi-
mation of one level as coarser approximation for the next one. This reuse of the
old training paths will be called a small “trick” in the following, since it leads to
a small dependence of the levels.

50CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

In order to simplify the bias-variance decomposition for the whole multilevel
estimator, let us fix some notation. Let Gl denote the σ−algebra generated by
the kl training paths and define ∆0 = gτ0(Xτ0) and G−1 = {Ω, ∅}.

The variance decomposition formula yields

Var
[
V n,k

]
= Var

[
L∑
l=0

∆̄nl
l

]

= E

[
Var

[
L∑
l=0

∆̄nl
l

∣∣G1 ∧ . . . ∧ GL

]]
+ Var

[
E

[
L∑
l=0

∆̄nl
l

∣∣G1 ∧ . . . ∧ GL

]]
.

The first summand includes the variances within the levels. If Theorem 40
holds, then

E

[
Var

[
L∑
l=0

∆̄nl
l

∣∣G1 ∧ . . . ∧ GL

]]

= E

[
1

nl

L∑
l=0

Var
[
∆l

∣∣Gl ∧ Gl−1

]]

=

L∑
l=0

E

[
1

nl
E
[
|∆l|2

∣∣Gl ∧ Gl−1

]]

≤
L∑
l=0

1

nl
E[|∆l|2] .

E
[(
gτk0

(Xτk0
)
)2]

n0
+

L∑
l=1

1

nl
γ
α/(2q)
kl−1

,

The second summand includes the variance resulting from the randomness of
the training paths. Assuming that Theorem 33 holds, we now have

Var

[
E

[
L∑
l=0

∆̄nl
l

∣∣G0 ∧ . . . ∧ GL

]]

= Var

[
L∑
l=0

E
[
∆l

∣∣Gl ∧ Gl−1

]]

= Var

[
E
[
gτk0

(Xτk0
)|G0

]
+

L∑
l=1

E
[
gτkl (Xτkl

)|Gl
]
− E

[
gτkl−1

(Xτkl−1
)|Gl−1

]]
= Var

[
E
[
gτkL (XτkL

)
∣∣GL]] . γ

2(1+α)
kL

.

Only the variance of the bias of the highest level remains, all other terms cancel
out each other in the telescopic sum due to the trick. If they stayed, the variance
of the estimator would be higher. In particular, the multilevel approach will
become useful if the approximations used in the lower levels are very coarse
when compared to the higher levels. Thus, this additional variance would be
very high if the trick was not used.

Remark 43. Summing up, we can use the bound

Var
[
V n,k

]
.

E
[(
gτk0

(Xτk0
)
)2]

n0
+

L∑
l=1

γ
α/(2q)
kl−1

nl
+ γ

2(1+α)
kL

. (3.10)

3.1. COMPLEXITY ANALYSIS 51

for the total variance of the multilevel algorithm.

This bound will be minimized in the following. As the numerical experiments
will show, this is a tight asymptotic bound.

Definition 44. We denote the minimal complexity of the multilevel estimator,
see Definition 39, by

CL(ε) = min
n,k∈RL+

{
L∑
l=0

kκ1+1
l + nl · kκ2

l

∣∣∣E [(V k,n − V0

)2] ≤ ε2

}
.

and further CML(ε) = minl≥0 Cl(ε).

Theorem 45. Let assumptions of Theorem 18 hold with γkl = k−µl , for some
µ > 0. Then under the choice k∗l = k0 · θl, l = 0, 1, . . . , L, with θ > 1,

L =

⌈
2

µ(1 + α)
logθ

(
ε−1 · k−µ(1+α)/2

0

)⌉
and

n∗l = cε−2

(
L∑
i=1

√
k

(κ2−µα/(2q))
i

)
·
√
k

(−κ2−µα/(2q))
l

the complexity of the estimate (3.5) is bounded, up to a constant, from above by

CML(ε) .

ε−2·max(κ1+1

µ(1+α)
,1), 2 · q · κ2 < µα

ε−2· κ1+1

µ(1+α) , 2 · q · κ2 = µα and κ1+1
µ(1+α) > 1

ε−2 · (log ε)
2
, 2 · q · κ2 = µα and κ1+1

µ(1+α) ≤ 1

ε
−2·max

(
κ1+1

µ(1+α)
,1+

κ2−µα/(2q)
µ(1+α)

)
, 2 · q · κ2 > µα

(3.11)

We want to compare this result to the complexity C (ε) of the standard MC
estimator. Since we remember that (2.72) was optimal, we know that in case of
κ1 = κ2 := κ̄, the computational gain C (ε)/CML(ε) is asymptotically bounded
by

R(ε) :=

ε−2·min(κ̄

µ(1+α)
,1− 1

µ(1+α)), 2 · q · κ̄ < µα

ε−2·(1− 1
µ(1+α)), 2 · q · κ̄ = µα and κ̄+1

µ(1+α) > 1

ε−2· κ̄
µ(1+α) , 2 · q · κ̄ = µα and κ̄+1

µ(1+α) ≤ 1

ε−2·min(1− 1
µ(1+α)

,
µα/(2q)
µ(1+α)), 2 · q · κ̄ > µα

(3.12)

up to a logarithmic factor. We have the following easy rule of thumb.

Proposition 46. In case of κ1 = κ2 (for example local regression or mesh
method) and a good-natured problem, i.e. α = 1, using the multilevel technique
is recommended if

µ > 1/(2q). (3.13)

In other words, the multilevel extension will further improve good algorithms
and worsen bad algorithms. The last line of (3.12) will be particularly important
as it is relevant for the “usual mesh case” as below.

52CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

Remark 47. Let us define the “usual mesh case” to be the situation that κ1 =
κ2 = α = µ = 1 and the payoff is bounded, i.e. Theorem 40 holds for all q > 1.
In this case, we have

C (ε) ∈ O(ε−3), CML(ε) ∈ O(ε−2.5), (3.14)

so the complexity gain is of order ε−0.5.

In the best case, the gain can be of order ε−1, see the third line of (3.12). To
validate Theorem 32 in Section 2.2 and Theorem 45, two numerical examples are
presented in the following. We also want to show that our results are efficient, in
particular that Proposition 46 holds. We choose the mesh method that fulfills
µ = 1 and local regression with µ ≈ 1/6. Indeed, the numerical results will
show that the orders of complexity that were calculated in the above theorems
are achieved in practice.

3.1.1 Mesh Method

We consider a well-known benchmark example from Glasserman [40] and Broadie
and Glasserman [19] considering a max-call option. A desired accuracy ε will
be fixed and k∗ and n∗ are chosen for the standard MC algorithm according to
(2.73). Since we only know the optimal order of these parameters, we have to
find suitable constants. The root-mean-squared error is then measured based
on many cycles of training and testing. The numerical result show that indeed
the desired accuracy is achieved for different given ε. Afterwards, the same
procedure is applied for the multilevel algorithm, where n, k and L are chosen
according to Theorem 45.

Benchmark Example 48. (Bermudan max-call option) Suppose D underlying
assets Xt = (X1

t , . . . , X
D
t), modeled by geometric Brownian motion under the

risk-neutral measure, i.e.,

dXi
t = (r − δ)Xi

tdt+ σXi
tdW

i
t , i = 1, . . . , D (3.15)

where r = 0.05 is the risk-free interest rate, δ = 0.1 the dividend yield, σ = 0.2
the volatility, X0 = (90, . . . , 90) the spot price and Wt = (W 1

t , . . . ,W
D
t) is a

vector of D independent standard Brownian motions. At one of the J + 1
equally distributed exercise dates 0 = t0, . . . , tJ = T , the holder of the option
may receive the payoff

gt(Xt) = e−rt(max(X1
t , ..., X

D
t)− κ)+,

where κ = 100 is the strike price and T = 3 the time horizon. This example
fulfills assumption (AB) with α = 1.

In this section, that example will be used with D = 5 assets and J =
3 exercise dates. For the true value, we have the 95% confidence interval
[15.995, 16.016], see Broadie and Glasserman [58]. To generate trajectories, we
use the exact solution of the SDE

X
(i)
j = X

(i)
j−1 exp

([
r − δ − 1

2
σ2

]
(tj − tj−1) + σ

√
(tj − tj−1) · ξij

)

3.1. COMPLEXITY ANALYSIS 53

j = 1, . . . ,J , where ξij , are i.i.d. standard normal random variables. The
weights inside the mesh are generated as explained in Proposition 20. The
transition density of geometric Brownian motion is given by

pj(x, y) =

D∏
i=1

pj(xi, yi), x = (x1, . . . , xD), y = (y1, . . . , yD),

where

pj(xi, yi) =
xi

yiσ
√

2π(tj − tj−1)
×

× exp

−
(

log
(
yi
xi

)
−
(
r − δ − 1

2σ
2
)

(tj − tj−1)
)2

2σ2(tj − tj−1)

 .

As explained in Proposition 20, we use the European max-call payoff of the next
time step as an inner control. Additionally, the European value is used as outer
control (martingale control) in level 0, i.e. we use Proposition 11 with

Xi = gτ0(X(i)
τ0), Y i = E(X(i)

τ0 , τ0, T) (3.16)

and E is taken from (2.41).

The standard Monte Carlo estimator is tested seven times with

ε ∈ {0.64, 0.32, 0.16, 0.08, 0.04, 0.02, 0.01},

k∗ = (ε/2.4)−1, n∗ = (ε/2.4)−2,

according to Theorem 32. We estimate the root-mean square error of V n
∗,k∗

with 100 repetitions of training and testing and denote the result as
√

mse. The
plot of the estimated quotient

√
mse/ε is shown in the left of Figure 3.1.

Similarly, we calculate the quotient
√

mse/ε for the multilevel estimator
V n∗,k∗ where n∗ = (n∗1, . . . , n

∗
l) and k∗ = (k∗1 , . . . , k

∗
l) are defined as

ε = (0.8, 0.4, 0.2, 0.1, 0.05, 0.025)

k∗l = k0 · θl, n∗l =
1

(ε/8)2

(
L∑
i=1

√
(k∗i)1/f2

)√
(k∗l)−3/2, l = 0, . . . , L

with k0 = 5, θ = 2 and

L =

⌈
logθ

(
8 · k0

ε

)⌉
.

according to Theorem 45. Remark 41 motivates q = 1. Following the “trick” as
explained in Section 3.1, we need to construct the sequence of estimates

Ckl0 (·), . . . , CklJ (·), l = L, . . . , 0.

Each of them uses kl training paths and serves as coarser approximation in level
l and finer approximation in level l − 1.

54CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

●

●

● ●
● ●

●

ε

m
se

ε

0.64 0.32 0.16 0.08 0.04 0.02 0.01

L=0

0.
0

0.
5

1.
0

1.
5

2.
0

●
● ● ●

● ●

ε

m
se

ε

1 2 3 4 5 6
L

0.8 0.4 0.2 0.1 0.05 0.025

0.
0

0.
5

1.
0

1.
5

2.
0

−9 −8 −7 −6 −5 −4 −3

10
20

30
40

50

log(ε)

co
m

pM
L/

co
m

p

Figure 3.1: Root-mean-squared errors of the standard Monte Carlo estimator
V n
∗,k∗ (left) and the multilevel estimator V n∗,k∗ (middle) measured in units of

the expected error ε and the comparison of their complexities (right).

Remark 49. Once the training step is completed for the best approximation in

the highest level, i.e. the numbers ζ
(i)
j are glued to all the kL paths at each time

step, it is not necessary to accomplish the same procedure for kL−1, . . . , k0. It
is better to use a subset of the training paths of the best approximation within

the estimator (2.38) and also reuse the values ζ
(i)
j from that best approximation.

This would reduce both the variance and the complexity of V n,k and should be
done in practice. However, it is not clear if the orders assumed in Theorem 38
would change, so in particular the results in Sections 3.2.1 and 3.2.1 are only
valid without this reuse.

Figure 3.1 suggests that the rates given in Theorem 18 and Theorem 45 do
hold. In the two plots on the left, we see that the achieved accuracy is indeed a
little below the given accuracy ε. For the multilevel case, the values of given ε
are chosen in a way such that a new level has to be introduced for each of them.
The small value of θ = 2 allows us to obtain results for L = 1, . . . , 8. Of course,
larger values of θ are recommended in practice for the multilevel technique to
be efficient.

Let us consider the right hand side plot. It is clearly visible that introducing
a new level at first increases the variance and then becomes fruitful as ε is
further decreasing. This is why we recognize the plot as a so-called “sawtooth
function”. It also shows that the variance of the multilevel estimator becomes
smaller compared to the variance of the standard MC estimator, as ε → 0.
However, the absolute value of the ratio is very high, because θ = 2 is not at all
optimal. In contrast ot the other two plots, this curve is based on the predicted
behavior of the algorithms as in Theorem 45, instead of numerical simulation.

3.1.2 Local Regression

We want to perform the same test on the same example as in the previous
section for the local regression technique in order to present a counterexample
for the strength of the multilevel approach. The method used here is similar to
the nearest-neighbours technique and can be seen as local polynomial regression

3.1. COMPLEXITY ANALYSIS 55

●

●
●

●
●

●

●

ε

m
se

ε

0.9 0.8 0.7 0.6 0.5 0.4 0.3

L=0

0.
0

0.
5

1.
0

1.
5

2.
0

● ● ● ● ●
● ● ●

ε

m
se

ε

1 2 3 4 5 6 7 8
L

1.242 0.987 0.783 0.621

0.
0

0.
5

1.
0

1.
5

2.
0

−3.5 −2.5 −1.5 −0.5

50
0

10
00

20
00

30
00

log(ε)

co
m

pM
L/

co
m

p

Figure 3.2: The same plots as in the mesh case in Figure 3.1.

with order zero, see Section 2.1.1. We want to use the simple kernel of the form

K(x) = 1{|x|≤1}, x ∈ RD (3.17)

(which corresponds to the Nadaraya-Watson type “false nearest neighbours tech-
nique”) and have

Ckj (x) =

k∑
i=1

w
(i)
j (x)ζ

(i)
j+1, j = 0, . . . ,J − 1 (3.18)

where

w
(i)
j (x) = 1{

|x−Z(i)
j |≤δk

}/(k∑
l=1

1{
|x−Z(l)

j |≤δk
}) (3.19)

with some bandwidth δk that decreases as the number of paths k grows. We find
experimentally that a bias of order k−1/6 can be achieved if δk = 100·k−1/(D+2),
at least in this example. For any ε ∈ {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3} we set

k∗ = (ε/1.2)−6, n∗ = (ε/1.2)−2,

corresponding to the choice γk = k−1/6 and estimate the root-mean squared
error of the estimate V n

∗,k∗ based on 100 repetitions of training and testing
cycles, see left hand side of Figure 3.2. For the multilevel algorithm we take
θ = 2, k0 = 100,

L =

⌈
6 · logθ

(
1

(ε/3) · k1/6
0

)⌉
,

and

k∗l = k0θ
l, n∗l =

10

(ε/3)2

(
L∑
i=1

√
(k∗i)11/12

)√
(k∗l)−13/12, l = 0, . . . , L.

The plot of the estimated quotient
√

mse/ε is shown in the middle of Figure 3.2.
Furthermore, one can see on the right hand side that the ratio of complexities
CML(ε)/C (ε) is not at all converging to zero. This is no surprise as µ = 1

6 �
1
2 ,

see Proposition 46.

56CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

3.2 Practical Issues

The results so far are mostly of theoretical interest, as they are about the order
of convergence and show that the multilevel algorithm is working. However, the
numerical experiments from the previous section are hardly usable in practice.
For example, the constants in Theorem 45 will not be known when attacking a
new problem.

At first, we want to present an algorithm in Section 3.2.1 that determines
the number of levels during the runtime. Furthermore, such a procedure could
be improved by importance sampling, see Section 3.2.2. However, it is not at all
clear that many levels will really be necessary. The choice θ = 2 alone indicates
the theoretical purpose. Much higher values of θ will be recommended instead
of more levels to render the multilevel approach efficient. Therefore, we want
to note some remarks about the gain of efficiency that can be obtained when
using a finite number of levels in Section 3.2.3.

3.2.1 The Algorithm

In contrast to the examples that verify the complexity analysis, we now want to
present an algorithm that can be used in practice. The algorithm below calcu-
lates the optimal “investment” of the computational complexity into the levels
as well as the number of levels during the runtime. Roughly speaking, every

Algorithm 1 Multilevel Algorithm

Set L = 2.
for For l = 0, . . . , L, do

Generate kl training paths.
Estimate continuation values Ckl1 , . . . , C

kl
J .

Generate 104 testing paths and estimate the variance Var ∆l.
Calculate nl, l = 0, . . . , L, according to

nl =

⌈
3 · ε−2 ·

(
L∑
i=1

√
kκ2
i ·Var ∆i

)
·
√
k−κ2

l ·Var ∆l

⌉
(3.20)

Estimate/update ∆̄n0
0 , . . . , ∆̄nL

L .
if

max(∆̄
nL−1

L−1 /2, ∆̄
nL
L) ≤ ε/

√
3, (3.21)

then
Set L = L+ 1.

end if
end for
Return

∑L
l=0 ∆̄nl

l .

time that a new level is introduced, the algorithm updates the number of testing
paths in the different levels to optimize the variance with least computational
complexity. Then, the error criterion (3.21) tells us whether to introduce a new
level and so on.

3.2. PRACTICAL ISSUES 57

This method is similar to that of Giles [39]. However, there is still the
difference caused by the randomness of the training paths. Despite our “trick”
that only affects the variance of the whole algorithm, the values ∆̄nl

l will still
include variance due to the randomness of the training paths. To cope with this
problem, we used the constant 3 instead of 2 for the criterion that determines
whether to add another level. As before, we want to analyze the complexity of
the multilevel estimator given the desired root-mean-squared error ε. While the
exact cost of this multilevel algorithm is given by

L∑
l=0

kκ1+1
l + nl · (kκ2

l + kκ2

l−1), (3.22)

we have that the cost of the standard MC algorithm is of order

kκ1+1
L + 3 · kκ2

L · ε
−2 ·

L∑
l=0

Var ∆l. (3.23)

Here, the variances of all levels are added to estimate the variance of a stan-
dard MC that only uses the finest approximation of the multilevel. These two
complexities will be compared in the following two examples.

Mesh Method

The first numerical example is again about Benchmark Example 48 in the two-
dimensional case with J = 9. The true value is 8.08, see Glasserman [40]. We
use the mesh method as before, but this time b = 1.2 is fixed for the control,
see Remark 12. Thus, the estimator now reads

Ckj (x) =

k∑
i=1

w
(i)
j (x) ·max

(
gj+1

(
Z

(i)
j+1

)
, Ckj+1

(
Z

(i)
j+1

))
−b ·

(
exp (−rtj+1) max

k=1,...,d

(
Z

(i)
j+1 − κ

)+

− E(x, tj , tj+1)

)
,

where E is the value of the European option as before, see (2.41). The control is
also used as outer control, but this time for all the levels. Hence, we also have
to change

∆̄nl
l =

1

nl

nl∑
r=1

[
g
τ

(r)
kl

(
X

(r)

τ
(r)
kl

)
− b ·

(
exp

(
−rt

τ
(r)
kl

)
max

k=1,...,d

(
Xk

τ
(r)
kl

− κ
)+

− E (x0, 0, T)

)

−g
τ

(r)
kl−1

(
X

(r)

τ
(r)
kl−1

)
+ b ·

(
exp

(
−rt

τ
(r)
kl−1

)
max

k=1,...,d

(
Xk

τ
(r)
kl−1

− κ
)+

− E (x0, 0, T)

)]
when comparing to (3.5). We choose kl = 20× 2l and generate paths from the
exact solution of the SDE of geometric Brownian motion as in Section 3.1.1.

In the upper left corner of Figure 3.3, the logarithms of the “increments”
∆l are plotted against the logarithms of the number of training paths. In
the right upper corner, the same is done for the variances of ∆l. Those data
are mean values with respect to many cycles of training and testing, as the

58CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

●

●

●

●
●

●

3.5 4.5 5.5 6.5

−
8

−
6

−
4

−
2

0
2

4

Increments

log(k_l)

lo
g(

in
cr

em
en

ts
) ● ● ● ● ● ●

●

●

●

●
●

●

3.5 4.5 5.5 6.5

−
4

−
2

0
1

2
3

Variances

log(k_l)

lo
g(

va
ria

nc
e) ● ● ● ● ● ●

●
●

● ●

2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

Algorithm

log(1 ε)

rm
se

ε

●

●●

●

●

2.8 3.0 3.2 3.4 3.6 3.8

0.
6

0.
8

1.
0

1.
2

1.
4

Complexities

log(1 ε)

co
m

p(
M

C
)/

co
m

p(
M

L)

Figure 3.3: Mesh method: The red regression lines indicate an estimated decay
rate of increments of -0.6054 and an estimated decay rate of variances of -1.0941.

variance of the training paths causes the increments and variances to be random
variables. It turns out that the corresponding fitted regression lines are given
by −0.6054 · l + 0.0596 and −1.0941 · l − 2.9253. Thus, they are in agreement
with our theoretical analysis that provides the rates −1 and −0.5.

The algorithm from Section 3.2.1 is tested for

ε = 0.2, 0.1, 0.05, 0.025.

Indeed, the results stay below the desired accuracy, see lower left corner of Figure
3.3. Furthermore, as ε decreases the complexity of this algorithm becomes better
and better better when compared to the complexity of the suitable standard
Monte Carlo algorithm via (3.23). This is indicated in the right lower corner
for

ε = 0.02, 0.03, 0.04, 0.05, 0.06.

This choice of ε is now different, because the corresponding average number of
levels in use are

4.60, 4.33, 4.01, 4.05, 3.55,

3.2. PRACTICAL ISSUES 59

so this is the interesting region, where the number of levels is exploding.

Global Regression

●

●
●

●
●

●

10.5 11.5 12.5 13.5

−
8

−
6

−
4

−
2

0
2

4

Increments

log(k_l)

lo
g(

in
cr

em
en

ts
) ● ● ● ● ● ●

●

●
●

●
●

●

10.5 11.5 12.5 13.5

−
4

−
2

0
1

2
3

Variances

log(k_l)

lo
g(

va
ria

nc
e)

● ● ● ● ● ●

●
●

●

●●
●

4.0 4.5 5.0 5.5

0.
0

0.
5

1.
0

1.
5

2.
0

Algorithm

1 ε

rm
se

ε

●

●

●
●

●

●

4.0 4.5 5.0 5.5

0.
6

0.
8

1.
0

1.
2

1.
4

Complexities

1 ε

co
m

p(
M

C
)/

co
m

p(
M

L)

Figure 3.4: Global regression. The red regression lines indicate an estimated
decay rate of increments of -0.4592 and an estimated decay rate of variances of
-0.9230.

The second experiment is about the same example as before, but with J = 9
and D = 1. In one dimension, the corresponding European option can be
evaluated analytically by means of the well-known Black-Scholes formula.

Remark 50. (Discounted Black-Scholes Formula) For an asset X modeled via

dXt = (r − δ)Xtdt+ σXtdWt,

i.e. geometric Brownian motion with drift r−δ and volatility σ, the value of the
European call option with spot price x at initial time t, strike κ and maturity T
is given by

E(x, t, T) = e−δT−t(r−δ)
(
x0Φ(d1)− κe(r−δ)(T−t)Φ(d2)

)

60CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

in time-0 dollars, where

d1 =
log(x0/κ) + (r − δ + σ2/2)(T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t.

We perform regression on piecewise constant basis functions. Fix a number
of basis functions m, set ∆ = 100/m and define

ψi(x) =

0, x− 50 > (i− 1)∆,

1, otherwise,

0, x− 50 ≤ i∆

for all i = 1, . . . ,m. Given a sequence of natural numbers m(k), k ∈ N, the
continuation values estimates are

Ckj (x) =

E(x, j,J), x < 50,
m(k)∑
i=1

αiψi(x), otherwise

E(x, j, j + 1), x > 150,

, (3.24)

Truncation at x = 150 is allowed, as it is clear that this region will belong to
the exercise region. Thus, it is optimal to exercise as soon as possible and the
continuation value is equal to the corresponding European payoff with maturity
at the next exercise date. Similarly, for x < 50 the option is very unlikely to
provide any money again. It will be exercised at T if at all.

This truncation procedure is very important. Especially for very high values
of x, there will only be very few training paths in the vicinity, so the sample error
will be very high. This will have influence on the next regression in the previous
time step and will thus spoil the results. Furthermore, we will randomize the
initial value of the training paths which now start at x̃0 = x0 exp(0.4 × ξ) to
ensure a dense distribution in all areas of interest, where ξ is an independent
standard normal variable. Thus, we can be sure that only the sample error and
the approximation error and no other effects will be decisive. Zanger [77] also
uses some similar truncation procedure, see Section 2.1.2. The same control
E as before is used both as outer and inner control and is very strong in the
one-dimensional case. The results provide lower bounds that differ less than
0.01% from the true value.

To test the multilevel, the number of training paths in each level is chosen
to be

kl = 31250× 2l, l = 1, . . . , L,

while the sequence m(k) is given by m(k) = d7 · kρe with ρ = 0.5.
Figure 3.4 contains the same results as the plot before. Now, the red regres-

sion lines indicate µ = −0.923 and the dacay of variance is approximately one
half of this. This time, the algorithm is tested for

ε = 0.004, 0.008, 0.012, 0.016, 0.020, 0.024

for both lower plots. Whereas we used θ = 4 for the right hand plot to make
the multilevel efficient. The corresponding average number of levels in use are

5.00, 4.42, 4.1, 3.94, 3.67, 3.30.

3.2. PRACTICAL ISSUES 61

3.2.2 Importance Sampling

∆l

D
en

si
ty

−60 −40 −20 0 20 40 60

0.
0

0.
1

0.
2

0.
3

Figure 3.5: Histogram of the r.v. ∆l based on 10000 realisations. An atom in 0
is clearly visible.

When looking at the the density of the random variable

∆l = gτkl (Xτkl
)− gτkl−1

(Xτkl−1
),

one will immediately notice that ∆l vanishes for 80%-90% of the testing paths,
as shown in the histogram in Figure 3.5. Thus, it is convenient to improve the
efficiency of the multilevel algorithm by importance sampling, i.e. generating
only testing paths that lead to ∆l 6= 0. Let us fix some l > 0 and define

Il := {τkl−1
6= τkl},

such that {∆l 6= 0} ⊂ Il. These two sets will almost be equal in a non-
degenerate setting. Generating only paths that cause different stopping times,
which means sampling conditional Il, would mean a change of measure from P
to Q via

dQ

dP
(ω) =

{
1/P(Il), ω ∈ Il,
0, ω ∈ Ω \ Il,

.

For a set of testing paths X̃
(1)
· , . . . , X̃

(r)
· generated under Q , the unbiased

Monte-Carlo estimator for E[∆l] = EP[∆l] is

∆̃nl
l =

1

nl

nl∑
r=1

P(Il)
{
g
τ

(r)
l

(
X̃

(r)

τ
(r)
l

)
− g

τ
(r)
l−1

(
X̃

(r)

τ
(r)
l−1

)}
(3.25)

Moreover, it holds

VarQ[∆l] = EQ[∆2
l]− E2

Q[∆l] = EP

[
∆2
l

dQ

dP

]
− E2

P

[
∆l
dQ

dP

]

62CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

=
1

P (Il)
· EP[∆2

l]−
(

1

P (Il)
· EP[∆l]

)2

=
1

P (Il)
(
VarP[∆l] + E2

P[∆l]
)
−
(

1

P (Il)
EP[∆l]

)2

=
1

P (Il)
VarP[∆l] + E2

P[∆l]

(
1

P (Il)
− 1

P (Il)2

)
︸ ︷︷ ︸

≤0

(3.26)

and as a consequence

VarQ[∆l] ≤
1

P (Il)
VarP[∆l].

The last inequality is quite tight, as E2
P[∆l] in (3.26) will be very small and will

converge to zero at a higher order. As a result we have

VarQ[∆̃n
l] ≤ P(Il) Var[∆̄nl

l], (3.27)

meaning that importance sampling reduces the variance by a factor of at least
P(Il).

Proposition 51. Asymptotically, we have P(Il) . γ
α/2
kl

, which implies P (I) ∈
O(k

−1/2
l−1) in case of µ = 1 and α = 1.

Inserting this result into Theorem 45 could even lead to a reduction of the
order of complexity of V k,n. In the usual mesh case, see Remark 47, it could
lead to CML(ε) . ε−2. Unfortunately, sampling directly from Q is not possible.
Determining whether ω belongs to Il requires generating a path and evaluating
the corresponding stopping time. Hence, collecting a set of trajectories and pick
the interesting ones would take 1/P(Il) times longer and there is no benefit.
Another problem is that the factor P (Il) is not known analytically, so samples
drawn from Ω \ Il will be needed anyway to estimate it. Though this idea is
practically unprofitable, it motivates the NCMC presented in Chapter 4.

3.2.3 Quantitative Gain

We will note that many levels will only be optimal for extremely precise calcu-
lations, since the introduction of a new level always adds new variance to the
estimator. This will only become worthwhile, if a lot of testing paths are used in
the new level. The right hand side in Figure 3.1 illustrates this effect. Corollary
52 says that using more than 2 oder 3 levels is unlikely to be advantageous with
respect to the order of convergence, because the latter will already be very near
to 2.5 then. The corollary can be inferred from Theorem 99 in Section 6.2 by
inserting γ = 1 and β = 1/2. It uses Definition 44 and it is relevant in the
particularly important case of the mesh estimator, see Remark 47.

Theorem 52. In case of a finite number of levels L > 0 and µ = α = κ1 =
κ2 = 1, the complexity of the multilevel estimator is given by

CL(ε) = ε
− 5×2L−2

2L+1−1 (3.28)

3.2. PRACTICAL ISSUES 63

and the optimal choice of training and testing paths is given asymptotically up
to a constant by

kl = ε
− 0.5l−2

0.5L−2 , nl = ε
2−2×0.5L+1+0.5l+1−0.5

0.5L+1−1 . (3.29)

Table 3.1 shows the results from Theorem 52 in case of L = 0, . . . , 3 and we
see that in case of L = 2, we have

k0 = ε−2/3, k1 = ε−1, n0 = ε−2, n1 = ε−5/3. (3.30)

and CL(ε) ∈ O(ε−2.571). The difference to an order of 2.5 will already be very
difficult to measure.

L k0 k1 k2 k3 n0 n1 n2 n3 − log(CL(ε))

0 -1 -2 3

1 -2/3 -1 -2 -5/3 8
3 = 2.667

2 -4/7 -6/7 -1 -2 -12/7 -11/7 18
7 = 2.571

3 -8/15 -4/5 -14/15 -1 -2 -26/15 -8/5 -23/15 38
15 = 2.533

Table 3.1: The optimal asymptotic setting for the multilevel technique given in
powers of ε. The next values of − log(CL(ε)) are 2.516, 2.508, 2.504.

Not only the order of complexity, but also the absolute gain of complexity
can be very pleasant for small L. This is a big difference to the multilevel ap-
proach for nested dual methods in Chapter 6. The reason is just that increasing
the number of subsimulations in case of a dual nested method as presented in
Chapter 5 not only improves the bias but also reduces the variance at the same
time if a good martingale is used. In case of fast approximation methods for
lower bounds, improving the bias will not lead to variance reduction. Hence,
the multilevel technique is a convenient tool to achieve the latter.

As stated before, Table 3.1 tells us to use less levels and higher θ. We want
to analyze the absolute gain of efficiency by considering the variance given the
desired bias for L = 1. The multilevel estimator V k,n is compared to a standard
Monte Carlo estimator V K,N , where k1, k2, n1, n2,K,N are chosen such that
both estimators will have approximately the same complexity and kL = K,
which ensures the same bias. A stochastic mesh for Benchmark Example 48
will illustrate this. The mesh method is used according to Table 3.2, so to say
θ = 100. In Figure 3.6, we see the clear improvement due to the multilevel
technique and the reason is simple: The stopping rule hardly becomes better
when changing from k0 = 100 to k1 = 10000, but the complexity changes
tremendously.

By assuming that the variances in higher levels l > 0 are nearly zero, we
obtain an upper bound for the gain of variance in such a setting. It is bounded
from above by (kLk0

)κ2 . This would mean a maximal gain of variance by a factor
of 100 in our example. Indeed, 2.56% is quite near to this optimal result.

64CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

Level MC ML ML ∆l

l = 0 training k0 10,000 100 Var[∆0] ≈ 0.01658

testing n0 10,000 500,000

l = 1 training k1 10,000 Var[∆1] = 0.00356

testing n1 5,000

Table 3.2: Setting of the multilevel algorithm. About 50% of the complexity is
invested in each of the two levels.

MC ML ML IS(R=50) ML IS(R=250)

Computational time 25 Minutes

va
ria

nc
e

0.
00

0
0.

00
5

0.
01

0
0.

01
5

100%

17.73%

2.56% 3.00%

Figure 3.6: Comparing Monte Carlo to multilevel Monte Carlo according to
Table 3.2. “ML IS” denotes importance sampling, but those results were based
on NCMC with different parameters R, see Chapter 4.

3.3 Proofs

Proof of Theorem 40

We have

E
[
gτkl

(
Xτkl

)
− gτkl−1

(
Xτkl−1

)]2
≤ 2 E

[
gτ∗
(
Xτ∗

)
− gτkl−1

(
Xτkl−1

)]2
+2 E

[
gτkl

(
Xτkl

)
− gτ∗

(
Xτ∗

)]2
.

It follows from Lemma 36 that

E
[
gτ∗
(
Xτ∗

)
− gτkl−1

(
Xτkl−1

)]2
≤

E

{J−1∑
s=0

2sξs

(
1{τ∗s=s,τkl−1,s

>s} + 1{τ∗s>s,τkl−1,s
>s}

)}

3.3. PROOFS 65

with ξs = EFs

[∣∣gs(Xs)− Vs+1(Xs+1)
∣∣2] . We use the same notation as in the

proof section of the previous chapter and with the Hölder inequality we get

E
[
ξs

(
1{τ∗s=s,τkl−1,s

>s} + 1{τ∗s>s,τkl−1,s
>s}

)]
≤ 4M1/p

p

[
P
(
τ∗s = s, τkl−1,s > s

)
+ P

(
τ∗s > s, τkl−1,s = s

)]1/q
= 4M1/p

p

[
P(Ekl−1,s)

]1/q
with 1/p+ 1/q = 1, since

E [|ξs|p] ≤ E
[∣∣gs(Xs)− Vs+1(Xs+1)

∣∣2p]
≤ 22p−1E

[∣∣gs(Xs)
∣∣2p]+ 22p−1E

[∣∣Vs+1(Xs+1)
∣∣2p]

≤ 22p−1E
[∣∣gs(Xs)

∣∣2p]+ 22p−1E

[∣∣ max
k=s+1,...,J

gk(Xk)
∣∣2p]

≤ 22pMp.

We now have

E
[
gτ∗
(
Xτ∗

)
− gτkl−1

(
Xτkl−1

)]2
≤ C1/p

p E

[∞∑
i=0

J−1∑
s=0

2s
[
P(Ekl−1,s ∩ Akl−1,s,i)

]1/q]
and because of the bounds for

P(Ekl−1,s ∩ Akl−1,s,i)

from the proof of Theorem 37, we have as a result

E
[
gτ∗
(
Xτ∗

)
− gτkl−1

(
Xτkl−1

)]2
≤ Cγα/(2q)kl−1

for some C > 0.

Proof of Theorem 45

At first we want to determine L via

γ
(1+α)/2
kL

= k
−µ(1+α)/2
L =

(
k0 · θL

)−µ(1+α)/2
. ε (3.31)

to ensure that the bias is small enough, so we choose

L =
2

µ(1 + α)
logθ

(
ε−1 · k−µ(1+α)/2

0

)
.

That also ensures that
γ

2(1+α)
kL

= k
−µ2(1+α)
L . ε

which is part of the variance we have to consider. To minimize the computational
cost given the rest of ε2, we solve the following optimization problem:

L∑
l=0

kκ1+1
l + nl · kκ2

l → min (3.32)

L∑
l=1

γ
α/(2q)
kl−1

nl
� k−µα/20 ·

L∑
l=1

θ−lµα/(2q)

nl
� ε2. (3.33)

n0 � ε−2 (3.34)

66CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

Now the Lagrange multiplier method with respect to nl gives us

kκ2

l = −λ
k
−µα/(2q)
l

n2
l

⇒ nl =

√
(−λ) · k(−κ2−µα/(2q))

l .

Now one can put the value of nl in (3.33):

L∑
l=1

γ
α/(2q)
kl−1

nl
�

L∑
l=1

k
−µα/(2q)
l√

(−λ) · k(−κ2−µα/(2q))
l

� ε2 ⇒

√
(−λ) = ε−2 ·

L∑
l=1

√
k

(κ2−µα/(2q))
l ⇒

nl = ε−2

(
L∑
i=1

√
k

(κ2−µα/(2q))
i

)
·
√
k

(−κ2−µα/(2q))
l .

Now we can rewrite (3.32) as

L∑
l=0

kκ1+1
l + nl · kκ2

l � k
κ1+1
L + ε−2 ·

(
L∑
l=1

√
k

(κ2−µα/(2q))
l

)2

+ ε−2 · kκ2
0 ,

so we will have three cases.

Case 1. 2 · q · κ2 = µα.

kκ1+1
L +

L∑
l=0

nl · kκ2

l . kκ1+1
L + ε−2 · L2

. ε−
2·(κ1+1)

µ(1+α) + ε−2 · L2

Case 2. 2 · q · κ2 < µα.

kκ1+1
L +

L∑
l=0

nl · kκ2

l . kκ1+1
L + ε−2

. ε−
2·(κ1+1)

µ(1+α) + ε−2

Case 3. 2 · q · κ2 > µα.

kκ1+1
L + kκ1+1

L +

L∑
l=0

nl · kκ2

l . kκ1+1
L + ε−2 · kκ2−µα/(2q)

L

≥ ε−
2·(κ1+1)

µ(1+α) + ε−2− 2κ2−µα/q
µ(1+α)

Proof of Proposition 51

We define

dj(C
k′

j (Xj), C
k
j (Xj)) = {Ckj (Xj) < gj(Xj), C

k′

j (Xj) ≥ gj(Xj)}

∪ {Ckj (Xj) ≥ gj(Xj), C
k′

j (Xj) < gj(Xj)}

3.3. PROOFS 67

to be the event that the stopping times give us different advices whether to stop

at time step j. Since dj

(
Ck
′

j (Xj), C
k
j (Xj)

)
⊂ Ek,j ∪ Ek′,j , see Theorem 37, it

follows that

P (τk′ 6= τk) = 1−
J∏
j=1

(
1− dj(Ck

′

j (Xj), C
k
j (Xj))

)
≤ 1−

J∏
j=1

(1− P (Ek′,j ∪ Ek,j))

≤ 1−

1−
J∑
j=1

P (Ek,j) + P (Ek′,j)

J .
J∑
j=1

P (Ek,j) + P (Ek′,j)

. γ
α/2
k J + γ

α/2
k′ J . γ

α/2
min(k,k′)J .

68CHAPTER 3. MULTILEVEL FOR FAST APPROXIMATION METHODS

Chapter 4

Nested Conditional Monte
Carlo

In this chapter, we want to present a method for efficiently “comparing” two
stopping times. Here, comparing means that we are interested in estimating

∆ = E[YτA]− E[YτB],

where Yj is a stochastic process in discrete time and τA and τB are two stopping
times. This task is motivated, inter alia, by the multilevel technique in Chapter
3, where Yj = gj(Xj) is the payoff of an underlying asset Xj and τA and τB

are stopping times of different accuracy.
A simple Monte Carlo algorithm for this problem consists of simulating n

trajectories of Yj until both stopping times have occurred and then averaging
over the resulting realizations of YτA − YτB , that is using

1

n

n∑
i=1

Y
(i)

τA(i) − Y
(i)

τB(i) (4.1)

as an estimate for ∆. However, many of the samples of Yj might contribute
zero to the sum in this Monte Carlo estimator, especially in all the cases that
τA and τB happen to be the same (see Section 3.2.2). Since it would be more
efficient to generate more samples that induce different τA and τB , we write

∆ = E [E [YτA − YτB |Fτ∧]] , where τ∧ = min(τA, τB), (4.2)

where Fτ∧ denotes the the σ−algebra generated by the information until the first
of the stopping times. Now, simulate n trajectories of Y until the first stopping
time occurs, i.e., until τ∧. Then simulate R conditionally independent copies
of each of the n trajectories until the second stopping time τ∨ = max(τA, τB)
occurs and estimate ∆ by the mean of the R · n realizations of YτA − YτB . The
resulting estimator can be interpreted as estimating first for each of the n initial
trajectories the inner conditional expectation in (4.2) by the mean over the R
replications of that trajectory, and then averaging over the n initial trajectories
to estimate the outer expectation.

In the algorithm, we use the same number of replications on each path. Yet,
as demonstrated in a different type of application in Broadie, Du and Moallemi

69

70 CHAPTER 4. NESTED CONDITIONAL MONTE CARLO

[18], numerical efficiency can be improved by allocating more replications to
“critical” trajectories. An extension of the method which achieves this – while
retaining unbiasedness – splits the trajectories at every time point between τ∧

and τ∨. In this way, trajectories with a large value of τ∨−τ∧ are automatically
investigated more intensively. Alternatively – if one is not concerned about a
small bias – combinations of the method with importance sampling might be
fruitful. We leave these and further extensions and applications of the method
to future research.

The idea of using subsimulations to estimate an inner conditional expectation
relates the approach to the literature on Nested Simulation, namely Gordy and
Juneja [45] and Broadie, Du, and Moallemi[18]. In the applications considered
there, there is a non-linear dependence on the inner conditional expectation so
that the inner simulations are indispensable – and are generally regarded as an
unavoidable burden. From this perspective, it is interesting to see that in the
numerical examples, where inner simulations are introduced deliberately as a
variance reduction technique, the estimated optimal numbers of inner paths do
not differ much from what is typically used in these applications, e.g. R = 100.

Variance reduction by deliberately inserting a conditional expectation is a
common technique if these conditional expectations are available in closed form.
This classical method is known as Rao-Blackwellization or Conditional Monte
Carlo, see Boyle, Broadie and Glasserman [15] and Asmussen and Binswanger
[3]. It is usually not applicable in our setting since closed-form expressions for
expectations of stopped processes are rare or at least very costly to evaluate.
Since the method mimics Conditional Monte Carlo by Nested Simulation, we
refer to it as “Nested Conditional Monte Carlo”.

In a sense, the algorithm closely resembles the splitting algorithms for rare
event simulation studied, e.g., in Villén-Altamirano and Villén-Altamiranoe [74]
and Glasserman, Heidelberger and Shahabuddin [41]. In the applications consid-
ered in this literature (e.g. barrier option pricing or estimating the probability
of large losses), the rare event typically consists of Y taking exceptionally large
or small values. Thus, the trigger events for replicating a trajectory are chosen
as the hitting times of some threshold value of Y . In this way, computational
effort can be allocated efficiently to the regions where it is needed the most.

A particular advantage of splitting methods such as ours is that they do not
change the expectation of the estimator. This will not be the case for related
algorithms such as importance sampling or particle methods, see the survey
of Carmona, Del Moral, Hu and Oudjane [22]. Unbiasedness is of particular
importance in option pricing applications, as one needs unbiased estimators for
lower and upper bounds to construct confidence intervals.

4.1 The Algorithm

Let Yj , j = {0, 1, . . . ,J } be a square-integrable, real-valued stochastic process
adapted to a complete filtered probability space (Ω,F , P). We want to estimate

∆ = E[YτA − YτB],

where τA and τB are stopping times on (Ω,F , P). Therefore, we define the stop-
ping times τ∧ = min(τA, τB) and τ∨ = max(τA, τB) and the random variable

4.1. THE ALGORITHM 71

0.0 0.5 1.0 1.5 2.0 2.5 3.0

50
10

0
15

0
20

0

t

X

Figure 4.1: Simulated trajectories are stopped and replicated as soon as they
enter the symmetric difference of the two exercise regions.

S = sign(τA − τB) and note that

τA − τB = S(τ∨ − τ∧), that YτA − YτB = S(Yτ∨ − Yτ∧)

and that S is observable at time τ∧. We assume that (conditionally) indepen-
dent copies of random variables are available as needed on our probability space
and propose the following two-stage simulation algorithm which is determined
by two integer-valued, positive integer parameters n and R:

A1. Simulate independent copies Y
(i)
0 , . . . , Y

(i)

τ∧,(i)
of Y0, . . . , Yτ∧ for i = 1, . . . n.

Denote by Fτ∧,(i) the information generated along the ith trajectory and
by S(i) the associated copy of S.

A2. Conditionally on Fτ∧,(i) simulate for each i with S(i) 6= 0 and for r =

1, . . . , R copies Y
(i,r)

τ∧,(i)+1
, . . . , Y

(i,r)

τ∨,(i,r)
of Yτ∧+1, . . . , Yτ∨ which are indepen-

dent across the i and conditionally independent across the r. If S(i) = 0

and thus τ∨,(i,r) = τ∧,(i) set Y
(i,r)

τ∨,(i,r)
= Y

(i)

τ∧,(i)
.

A3. Estimate ∆ by

∆(n,R) =
1

n

n∑
i=1

1

R

R∑
r=1

S(i)
(
Y

(i,r)

τ∨,(i,r)
− Y (i)

τ∧,(i)

)
(4.3)

Figure 4.1 illustrates the simulation procedure for an example where the two
stopping times are given in the form of exercise boundaries, the blue and red
curves in the figure. Whenever the process Y crosses one of the two boundaries,
one of the stopping times occurs. Note that it can also happen that both
boundaries are crossed simultaneously. Again, we will have another zero in the

72 CHAPTER 4. NESTED CONDITIONAL MONTE CARLO

Monte Carlo estimator. From the small amounts of red and blue in the picture,
we observe that the subsampling in Step A2 only has to be carried out rarely.

The following proposition shows that ∆(n,R) is unbiased and gives an ex-
pression for its variance.

Proposition 53. We have E[∆(n,R)] = ∆ and

Var[∆(n,R)] =
v1

n
+

v2

Rn

where

v1 = Var [E [YτA − YτB |Fτ∧]] and v2 = E [Var [YτA − YτB |Fτ∧]] .

The basic motivation for the algorithm is as follows: If τA and τB are not far
apart, Step A2 of the algorithm is much cheaper computationally than Step A1.
If they happen to coincide, Step A2 is for free. Therefore, large values of R are
comparatively cheap. Moreover, if circumstances are favorable, namely, if the
bulk of the variance in YτA − YτB actually comes from what happens between
τA and τB , i.e., if v1 � v2, the estimator will behave like an estimator with
R · n rather than n samples.

We close this section by pointing out that ∆(n,R) can be understood as an
interpolation between two well-known Monte Carlo algorithms: R = 1 corre-
sponds to a simple Monte Carlo estimator and R = ∞ corresponds to Condi-
tional Monte Carlo. For R = 1, the algorithm collapses to a simple Monte Carlo
estimator ∆MC = ∆(n,1) of YτA−YτB along n sample trajectories of Y0, . . . , Yτ∨ .
Moreover, we have

Var[∆MC] =
Var[YτA − YτB]

n
=
v1 + v2

n
.

The final equality is the well-known conditional variance decomposition formula.
The inner sum in the estimator ∆(n,R),

1

R

R∑
r=1

S(i)
(
Y

(i,r)

τ∨,(i,r)
− Y (i)

τ∧,(i)

)
,

can be interpreted as a Monte Carlo estimator for

D(i) = E
[
S(i)

(
Y

(i,1)

τ∨,(i,1) − Y
(i)

τ∧,(i)

) ∣∣∣Fτ∧,(i)] .
which is exact in the limit R→∞. The limiting Monte Carlo estimator

∆CMC =
1

n

n∑
i=1

D(i)

is the so-called Conditional Monte Carlo (CMC) estimator for ∆. In the ap-
plications we consider, the conditional expectation in D(i) typically cannot be
computed explicitly and thus the estimator ∆CMC = ∆(n,∞) is purely of theo-
retical interest. The variance of ∆CMC is given by

Var
[
∆CMC

]
=
v1

n
,

thus reducing the variance by a factor v1/(v1 + v2) compared to ∆MC . By
employing nested simulation (R > 1) to approximate the conditional expecta-
tions, we construct implementable estimators which achieve at least part of this
variance reduction.

4.2. CALIBRATING THE ALGORITHM 73

4.2 Calibrating the Algorithm

In the previous section, we saw that the variance of ∆(n,R) is of course smaller
than the variance of the simple Monte Carlo estimator ∆(n,1). However, the use
of R replications leads to higher computational costs. These additional costs
depend on the complexity of simulating Yτ∧ , . . . , Yτ∨ , which includes simulating
Y as well as evaluating a stopping time τA or τB whichever has not been stopped
first.

The main issue of this section is the optimal choice of R, which will be
denoted by R∗. This includes the question whether it is beneficial to use the
nested Conditional Monte Carlo technique instead of the simple Monte Carlo
estimator (R∗ > 1?).

It turns out that the answer depends on two natural questions considering
the problem:

1. Would the theoretical Conditional Monte Carlo estimator ∆CMC lead to
a substantial variance reduction?

2. Is generating samples of Yτ∨ − Yτ∧ conditionally on Yτ∧ (on average)
cheaper than sampling copies of Yτ∧?

The computational cost of implementing the estimator for fixed n and R is again
random as it was before in the setting of Giles in Theorem 38. Denote by ρ1

the expected computational cost of simulating a realization of Yτ∧ in step A1
of the algorithm. ρ1 takes into account the expected length E[τ∧] of a path and
the costs of evaluating both stopping times along that path. Denote by ρ2 the
expected computational cost of simulating a realization of Yτ∨ − Yτ∧ for given
Yτ∧ in step A2 of the algorithm. ρ2 takes into account the expected length
E[τ∨− τ∧] of such a path and the costs of evaluating either of the two stopping
times along that path. The expected computational cost of implementing the
estimator with parameters n and R is thus given by

c(n,R) = nρ1 + nRρ2.

For simplicity, we assume that v1, v2, ρ1 and ρ2 are strictly positive.
The next proposition characterizes how to optimally choose n and R for a

given computational budget C. In particular, we derive an expression for the
optimizer R∗ which is independent of the overall budget, showing that in relative
terms the optimal allocation of computational costs between Steps A1 and A2
is independent of C. For this reason, the question of calibrating the algorithm is
basically reduced to finding a good choice of R. For the moment, we ignore the
integer-constraints on n and R. We do however take into account that in order
to obtain an implementable algorithm we must have R ≥ 1. By identifying the
situations where R∗ > 1, we identify those cases where the Nested Conditional
Monte Carlo algorithm is more efficient than simple Monte Carlo.

Proposition 54. For any C > 0, the solution (n∗, R∗) to

min
n,R

Var
[
∆(n,R)

]
s.t. c(n,R) ≤ C, R ≥ 1, n ≥ 0

is given as follows: If
ρ1

ρ2

v2

v1
> 1 (4.4)

74 CHAPTER 4. NESTED CONDITIONAL MONTE CARLO

then

R∗ =

√
ρ1

ρ2

v2

v1
and n∗ =

C

ρ1 + ρ2R∗
.

If condition (4.4) is violated, the optimal choice is

R∗ = 1 and n∗ =
C

ρ1 + ρ2
.

From condition (4.4) we can characterize the cases where the algorithm with
R > 1 is preferable to simple Monte Carlo as follows: (4.4) is fulfilled if the
cost of a single sample is smaller in Step A2 than in Step A1, ρ2 < ρ1, and if a
perfect CMC estimator would reduce the variance by at least a factor 2, v1 < v2.
If either of these conditions fails, (4.4) can only hold if the other condition is
satisfied sufficiently strongly. If n and R are such that the budget constraint
c(n,R) = C holds with equality then the variance of ∆(n,R) can be written as

Var
[
∆(n,R)

]
=
V (R)

C
where V (R) = (ρ1 + ρ2R)

(
v1 +

v2

R

)
.

Therefore, in order to compare the resulting variance across different values of
R it suffices to compare the values V (R). The next proposition quantifies the
gain from using the algorithm with R∗ subsamples rather than a simple Monte
Carlo estimator:

Proposition 55. If condition (4.4) holds, the relative gain (variance reduc-
tion) from using Nested Conditional Monte Carlo with R∗ subsamples instead
of simple Monte Carlo is given by

γ∗ =
V (R∗)

V (1)
=

(√
v1

v2
+
√

ρ2

ρ1

)2

(1 + v1

v2
)(1 + ρ2

ρ1
)
.

Moreover,

max

(
ρ2

ρ1 + ρ2
,

v1

v1 + v2

)
≤ γ∗ ≤ 4 max

(
ρ2

ρ1 + ρ2
,

v1

v1 + v2

)
.

The lower bound on γ∗ shows that the variance parameters vi and the cost
parameters ρi independently place a bound on the variance reduction we can
hope to achieve: We can reduce the variance at most by a factor v1/(v1 + v2),
no matter how small ρ2 is compared to ρ1. The intuitive reason for this is that
∆(N,R) can never beat the theoretical CMC estimator ∆CMC . Likewise, no
matter how small the CMC-variance v1 is compared to v2, we can never gain
more than the speed-up from concentrating our simulations on the interval from
τ∧ and τ∨ instead of the whole interval from 0 to τ∨. This speed-up is captured
by the ratio between ρ2 and ρ1 + ρ2. Since our upper bound on γ∗ is four times
the lower bound, we see that the lower bound is never too far off. To sum up,
we can expect drastic variance reductions if (and only if) v1 � v2 and ρ2 � ρ1.

In practical implementations, we will not be able to work with exactly R∗

subsamples for at least two reasons: Since we will not know the parameters v1,
v2, ρ1 and ρ2, these have to be estimated in pilot simulations. Moreover, R
has to be set to an integer value. Thus, it is important to make sure that the

4.3. NUMERICAL EXPERIMENTS 75

performance of the algorithm is not too sensitive to the choice of R. The next
proposition shows that this is indeed the case, giving an upper bound on the
loss in variance reduction if we can only guarantee that R lies in an interval
around R∗.

Proposition 56. Suppose that R∗ > 1 and α−1R∗ ≤ R ≤ αR∗ for some α > 1.
Then we have the following bound on the loss in variance reduction:

V (R)

V (R∗)
≤ 1

2
+
α+ α−1

4
, and thus

V (R)

V (1)
≤
(

1

2
+
α+ α−1

4

)
γ∗.

This bound is fairly tight for realistic values of α. For α = 1.2, implying
that R is misspecified by about 20%, we are still within 1% of the optimal
variance reduction. For α = 2, almost 90 % of the optimal variance reduction
are achieved. We thus conclude that even a crude attempt at optimizing the
number of subsamples R should lead to near-optimal results.

A key observation in the proof of Proposition 56 is the identity V (αR∗) =
V (α−1R∗). The next corollary collects some of its practical implications for the
choice of R: If R∗ is significantly larger than 1, then there is a wide interval of
values for R which give an improvement over simple Monte Carlo: Any value
of R which is smaller than the square of the optimum R∗ is better than R = 1.
Moreover, given a fixed computational budget it is always better to overestimate
R∗ by a fixed amount, than to underestimate it by the same amount. Finally,
rounding R∗ to the nearest integer can never produce an algorithm which is
worse than simple Monte Carlo.

Corollary 57. Suppose condition (4.4) holds, i.e., R∗ > 1. Then the following
assertion are true:

(i) For every R with 1 < R < R∗2 we have an improvement over simple
Monte Carlo, V (R) < V (1).

(ii) Let r > 0 be such that R∗ − r ≥ 1. Then V (R∗ + r) < V (R∗ − r).

(iii) Let R# be the integer nearest to R∗. If R# > 1, then V (R#) < V (1).

4.3 Numerical Experiments

In the following sections we want to present some numerical examples illustrat-
ing the benefit provided by the Nested CMC in practice. We restrict ourselves
to examples related to Bermudan option pricing, but many other fields of appli-
cation are also conceivable. An example is credit risk modelling, where events
of default and distress are often modelled by stopping times. Another potential
application can be found in revenue management, see Talluri and van Ryzin
[70]. One of the classical problems arising there is the decision when to start
the end-of-season sales. In the easiest setting, two possible prices for a product
are given and the demand function depending on time and prices is supposed to
be known from marketing research. In order to find the optimal stopping time
when to change prices Gallego and van Ryzin developed a heuristic approach
that can be found in Feng and Gallego [35]. These calculations are normally
less complex than the problem of Bermudan option pricing considered in the
following. On the other hand, the decisions taken in revenue management have

76 CHAPTER 4. NESTED CONDITIONAL MONTE CARLO

to be very precise, since millions of dollars or euros could be lost due to subopti-
mal strategies. This is why stopping rules arising in this field have to be tested
very accurately, which could be achieved by the NCMC and/or the multilevel
technique.

4.3.1 Parameter Uncertainty

In this example we have to compare two stopping times, because we are inter-
ested in the sensitivity of the option pricing problem to parameter misspecifi-
cations. More precisely, we use a wrong value for the volatility σ within the
training step of a fast approximation method and measure the impact of this
error to the estimated payoff.

We use again Benchmark Example 48 with J = 10 and D = 2 assets. Denote
by τσ a stopping time calculated via global regression, namely the Tsitsiklis-Van
Roy method from Section 2.1.2, using k = 100, 000 training paths which have
the correct volatility σ:

Z
d,(i)
j = Z

d,(i)
j−1 exp

((
r − δ − σ

2

)
(tj − tj−1) + σ

(
W

d,(i)
j −W d,(i)

j−1

))
.

Here, W
(i)
j , i = 1, . . . , k are trajectories of D-dimensional Brownian motion.

In contrast, the stopping rule τ σ̂ is calculated via the same method using
training paths with volatility σ̂ 6= σ:

Z̃
d,(i)
j = Z̃

d,(i)
j−1 exp

((
r − δ − σ̃

2

)
(tj − tj−1) + σ̃(W

d,(i)
j −W d,(i)

j−1)

)
.

To decrease variance the same set of Brownian paths is used again.
Having calculated the two stopping times we now want to estimate the costs

that arise from exercising the option based on such a misspecified calculation,
which means to estimate

∆(σ̂) = E[Yτσ − Yτ σ̂], (4.5)

where Yt = gt(Xt). The expectation in (4.5) is, of course, taken with respect to
the correct model with volatility σ. Table 4.1 reports estimates of the parameters
ρi and vi for different values of the misspecified volatility σ̂.

The first thing to observe from the table is that in all four cases Nested
CMC leads to a substantial variance reduction, varying between a factor of
about 60 and about 20, with the largest gains if σ and σ̂ are most similar. The
ratio between v1 and v2 is fairly constant and (much) smaller than the ratio
between ρ2 and ρ1 which is thus decisive for the achieved variance reduction.
We also report the probability that the two stopping times differ – so that the
subsimulations actually have to be carried out – and find that it lies between
2% and 8%. These numbers are one key reason for the small values of ρ2 and
the high optimal numbers of subsamples R∗, between 103 and 272. The units
in which we report the ρi are irrelevant, only the ratios matter.

4.3.2 Improved Quasi-Control Variates

In this section and the next, we turn to the more classical problem of calculating
E[YτA] for a given stopping time τA. To reduce the variance, the technique

4.3. NUMERICAL EXPERIMENTS 77

σ̂ − σ 0.005 0.01 0.015 0.02

∆(σ̂) 0.011 0.026 0.043 0.066

E [Yτσ] 8.042 8.042 8.042 8.042

E [Yτ σ̂] 8.031 8.016 7.999 7.976

P (τσ 6= τ σ̂) 0.022 0.043 0.062 0.081

ρ1 7.975 7.974 7.972 7.972

ρ2 0.053 0.104 0.154 0.199

v1 0.008 0.020 0.037 0.061

v2 4.023 8.016 12.053 16.066

R∗ 271.8 176.0 129.4 103.3

γ∗ 0.016 0.026 0.037 0.047

speed-up 62.5 38.5 27.0 21.3

Table 4.1: Estimated simulation parameters for different values of σ̂. The speed-
up 1/γ∗ from using Nested CMC is given in the last row.

of quasi-control variates from Section 1.3 is applied, which is in the sense of
Emsermann and Simon [34]. Therefore we introduce a second stopping time τB

and write

E[YτA] = E[YτB] + E[YτA − YτB]. (4.6)

In a classical control variate approach, one would choose τB such that the first
expected value on the right hand side can be calculated explicitly and would
then estimate only the second one by Monte Carlo, for example τB = J , which
is the European price, see Theorem 21. Of course this choice would lead to
a situation that the two stopping times are equal in many cases, since it is a
characteristic property of max-call examples like ours that many trajectories
are stopped quite late. However that does not mean that it is a very fruitful
control, because even in case of τ∨ − τ∧ = 1 the correlation may be quite small
due to fluctuations of the process that take place within one time step.

A superior choice for the control is E[YJ |FτA]. This can be understood
as a conditional Monte Carlo estimator with R = ∞ and the same stopping
time τB = J , but European prices are not always available in closed form.
This is why we want to estimate both expectations in (4.6) by Monte Carlo
simulations, which is a rewarding procedure if YτB is significantly cheaper to
simulate than YτA . In that case, the first summand could be estimated with
many (cheap) simulations of YτB . For the second summand, only a small number
of (expensive) paths would be necessary due to the variance reduction effect.

We retain Benchmark Example 48 including the GBM asset Xj and increase
the dimension to D = 3 with J = 10 time steps. Again, Yj = gj(Xj) and
we choose τA as an approximate optimal stopping time calculated by the mesh
method with 2500 training paths, see Proposition 20. As τB we choose a stop-
ping time obtained by global regression with 100, 000 training paths, namely
by the Tsitsiklis-Van Roy approach, see Section 2.1.2. In Table 4.2 we state
estimates of the expected values of µA = E[YτA], the variance vA = Var [YτA]

78 CHAPTER 4. NESTED CONDITIONAL MONTE CARLO

µA vA ρA µB vB ρB v1 ρ1 v2 ρ2

11.276 182 37.92 11.224 206 0.0124 0.044 36.23 19.536 1.728

Table 4.2: Estimated simulation parameters.

and the cost ρA for generating a sample of YτA , as well as the corresponding
quantities for τB . As expected, vA and vB are similar, but ρA is by a factor
three thousand larger than ρB . Note also that µA is considerably larger than
µB . Since both estimates have a downward bias, this reflects the greater ac-
curacy of the mesh method. In particular, µA lies within the 95% confidence
interval [11.265, 11.308] for E [Yτ∗] from Andersen and Broadie [2].

Denote by ρ(R) and v(R) the computational costs and the variance per
testing path when estimating E[YτA−YτB] by Nested CMC with R replications,
such that

ρ(R) = ρ1 +Rρ2 and v(R) = v1 +
v2

R
,

where the ρi and vi are defined exactly as in Section 4.1. Let nB be the number
of paths used to estimate µB and let n be, as before, the number of paths used
in the estimation of µA − µB . For a given computational budget C and fixed
R, the optimal choice of nB and n is given as the solution of

min
nB , n

vB

nB
+
v(R)

n
s.t. ρB nB + ρ(R)n ≤ C.

It follows from Proposition 54 that the optimal ratio between n and nB is given
by

nB

n
=

√
vB

v(R)

ρ(R)

ρB
(4.7)

regardless of the size of the computational budget C. Finally, observe that
the optimal value R∗ of R is the same as in Section 4.2 regardless of how we
allocate computational effort between the estimations of µB and µA−µB . From
the values of the vi and ρi we note that R∗ = 97.037 and the estimated gain
γ∗ in the simulation of µA − µB is given by γ∗ = 0.067, corresponding to a
speed-up of almost fifteen times in this part of the estimation.

Table 4.3 compares the performance of three Monte Carlo estimators for µA

which have (approximately) the same computational costs and with parameters
guided by the above considerations. The first line gives the variance of a direct
Monte Carlo estimator of µA with 3, 150 sample paths. The second line shows
the variance of a simple quasi-control variate estimator (R = 1) with nB =
536, 178 paths in the estimation of µB and n = 2, 989 paths in the estimation of
µA−µB . The third line shows the variance of a quasi-control variate estimator
with R = 100 replications in each of the n = 468 paths in the estimation of
µA − µB and nB = 1, 784, 813 paths in the estimation of µB . We thus see an
improvement of more than a factor 100, which comes in equal parts from the
quasi-control variate and from including nested simulations.

In the present example, the ratio between v1 and v2 is far more favorable than
the ratio between ρ1 and ρ2, implying that the latter ratio governs the variance

4.3. NUMERICAL EXPERIMENTS 79

Method Variance Running time

Simple Monte Carlo 60.4× 10−3 125s

Quasi-Control Variate 6.77× 10−3 121s

Quasi-Control Variate with Nested CMC 0.514× 10−3 105s

Table 4.3: Comparison of the three methods with similar running times. This
table reports averages over hundred runs of the simulation implemented in C++
on a standard system with a 2.6 GHz AMD processor.

reduction we achieve. This is due to the relatively high value of ρ1 which arises
since in about 60% of cases it is the cheap Tsitsiklis-Van Roy stopping time
which stops first. One can construct an even more efficient quasi-control variate
by modifying the Tsitsiklis-Van Roy stopping time to be slightly biased towards
late stopping, thus increasing the variance v1 but decreasing ρ2. This can be
achieved, e.g., by adding a small constant to the estimated continuation values.

4.3.3 An Improved Multilevel Algorithm

In Section 3.2.2, we noticed that importance sampling could lead to a better
order of convergence of the multilevel approach, if it was possible to apply it in
practice. For our nesting technique that tries to imitate this kind of importance
sampling, we want to pursue this idea under some mild assumptions.

If the two stopping times τA and τB are converging to the optimal stopping
time τ∗ of a stopping problem, it is clear that ρ1 → E[τ∗], which can be assumed
to be non-zero. Simultaneously, τ∨ − τ∧ will in each case be less than J and
will be zero if τA = τB . Let us define p = P (τA 6= τB). Because of ρ2 ≤ J p,
we now have ρ2/ρ1 . p.

For the ratio of variances v1/v2, things are more difficult. In case of a
good-natured stopping problem and under some assumptions on the payoff, the
underlying asset and the two stopping times, we could postulate that

inf
x∈RD,j∈{0,...,J−1}

h(x, j)

exists and is different from zero, where

h(x, j) =
{

Var
[
YτA − YτB

∣∣τ∧ = j 6= τ∨ ∧Xj = x
]}
.

In other words, h gives us the variance that arises when one of the stopping
times stops at x at time j and the other stopping time is still running for at
least one additional time step. The quantity v2 will then be bounded from below
by the product of p and a constant, so v2 & p. To analyze the behaviour of
v1, let H denote the σ-algebra generated by the event {τA 6= τB} and use the
formula of total variance with respect to it.

v1 = Var
[
E
[
E
[
YτA − YτB

∣∣Fτ∧]H]]+ E
[
Var

[
E
[
YτA − YτB

∣∣Fτ∧] ∣∣H]]
= Var

[
E
[
YτA − YτB

∣∣H]]+ pVar
[
E
[
YτA − YτB

∣∣Fτ∧] ∣∣τA 6= τB
]

80 CHAPTER 4. NESTED CONDITIONAL MONTE CARLO

It is clear that

Var
[
E
[
YτA − YτB

∣∣H]] = p(1− p)
(

E[YτA − YτB]

p

)2

so we have

v1

v2
.

1− p
p2

(E[YτA − YτB])2 + Var
[
E
[
YτA − YτB

∣∣Fτ∧] ∣∣τA 6= τB
]

(4.8)

Inserting notation and the results from Chapter 3, we have for two stopping
times based on kl and kl−1 training paths that

1− p
p2

(E[YτA − YτB])
2

'

(
1

k
−µα/2
l−1

)2

(E[gτkl]− E[gτkl−1
])2

= kµαl−1

(
k
−µ(1+α)/2
l − k−µ(1+α)/2

l−1

)2

= k0θ
(l−1)µαk0

(
θ−lµ(1+α)/2 − θ−(l−1)µ(1+α)/2

)2

= k0θ
(l−1)µαk0

(
(θ−lµ(1+α)/2)(1− θµ(1+α)/2)

)2

' k0θ
−µαθlµαk0

(
θ−lµ(1+α)/2

)2

= (k2
0θ
−µα)θ−lµ . θ−lµ,

where we assumed Theorem 37 to be efficient and kl = k0 × θl like in the
multilevel setting in Theorem 45. Hence, the first summand in (4.8) converges
to zero, as l → ∞. The second term turns out to be hard to analyze. Though
one might argue that

Var
[
E
[
YτA − YτB

∣∣Fτ∧] ∣∣τA 6= τB
]

also converges to zero, the order will be very difficult to calculate. Detailed
knowledge about the approximation procedure in the vicinity of the exercise
boundary will be necessary. However, we now have from Proposition 55 that

γ∗ =

(√
v1

v2
+
√

ρ2

ρ1

)2

(1 + v1

v2
)(1 + ρ2

ρ1
)
→ 0 (4.9)

and a reduction of order could be possible, which is made note of in Chapter 8.
For a numerical example, we look again at Benchmark Example 48 with

D = 5 assets and J = 10 time steps. We work with two levels, L = 2, and
(k0, k1, k2) = (100, 1000, 10000) training paths. The three stopping times τkl
are calculated again by means of the mesh method as in Proposition 20 with
European control variate. Besides the number of training paths kl, we also
increase the approximation quality of the numerical integration in the Euro-
pean control variate across levels, choosing precision parameters (u0, u1, u2) =
(0.5, 0.05, 0.005). In light of (3.4), we can apply our Nested CMC twice, and
obtain two sets of parameters ρl and vl which are summarized in Table 4.4.

4.3. NUMERICAL EXPERIMENTS 81

Level l 1 2

E
[
Yτ(kl) − Yτ(kl−1)

]
0.886 0.026

ρ1 9.8 111.3

ρ2 1.4 1.8

v1 2.292 0.037

v2 55.429 14.485

γ∗ 0.28 0.031

R∗ 13.018 158.707

Table 4.4: Simulation parameters at the two levels.

Method Variance

n

Simple Monte Carlo 1790 0.13

n∗0 n∗1 n∗2

Multilevel 38760 5550 880 0.033

Multilevel with Nested CMC 86780 2650 100 0.0067

Table 4.5: Overall expected variances of the three methods with identical ex-
pected computational costs.

We thus see, that Nested CMC leads to drastic speed-up of about a factor
32 at the high-precision level i = 2, and to a still decent one of about 3.5
at the intermediate level i = 1. At the “base level”, i.e., the calculation of
E
[
Yτk0

]
= 15.698 we have a variance of Var [Yτk0

] = 251.3 and a cost per
sample which we normalize to 1. Following (3.4), the expected value we are
calculating is thus

E
[
YτkL

]
= 15.698 + 0.886 + 0.026 = 16.610

which is well within the confidence interval [16.60, 16.66] for E [Yτ∗] from Ander-
sen Broadie [2] for this example. To determine the optimal number of testing
paths for each level, we use Proposition 14: For a fixed computational bud-
get, the number of paths n∗i in the estimation of each summand should be
proportional to the square root of variance divided by the square root of the
computational cost per sample..

Table 4.5 compares Multilevel Monte Carlo with and without nesting for
a fixed expected computational budget of 200000 time units. As suggested
by Table 4.4, we use R = 13 and R = 159 replications in the Nested CMC
algorithms at the two levels. We also present results for a simple Monte Carlo
estimator of the same expected value, E[Yτk2

], under the same budget. Simple
Monte Carlo has a cost per sample of 112.9 and Var[Yτk2

] = 234.1. There is a
variance reduction by a factor 19.6 between simple Monte Carlo and Multilevel
Monte Carlo with Nested CMC, the larger part of which (a factor 5) comes from

82 CHAPTER 4. NESTED CONDITIONAL MONTE CARLO

incorporating the nested simulations.

4.4 Proofs

Proof of Proposition 53

To see the unbiasedness, note that

E[∆(n,R)] =
1

n

n∑
i=1

1

R

R∑
r=1

E
[
S(i)(Y

(i,r)

τ∨,(i,r)
− Y (i)

τ∧,(i)
)
]

=
1

n

n∑
i=1

1

R

R∑
r=1

E [YτA − YτB] = ∆,

where the second equality simply used that the term inside the expectation is
an independent copy of YτA − YτB . For the variance, note first that the outer
sum over i is a sum of independent, identically distributed random variables
and thus

Var
[
∆(n,R)

]
=

1

n
Var

[
1

R

R∑
r=1

S(1)(Y
(1,r)

τ∨,(1,r)
− Y (1)

τ∧,(1))

]
.

Applying the conditional variance decomposition formula yields

Var
[
∆(n,R)

]
=
v1

n
+

v2

Rn

with

v1 = Var

[
E

[
1

R

R∑
r=1

S(1)(Y
(1,r)

τ∨,(1,r)
− Y (1)

τ∧,(1))

∣∣∣∣∣Fτ∧,(1)

]]
and

v2 = R · E

[
Var

[
1

R

R∑
r=1

S(1)(Y
(1,r)

τ∨,(1,r)
− Y (1)

τ∧,(1))

∣∣∣∣∣Fτ∧,(1)

]]
and it remains to see that these values of v1 and v2 coincide with those in
the proposition. Note that the summands are independent and identically dis-

tributed conditionally on Fτ∧,(1)

. For v1 this implies that

E
[
S(1)(Y

(1,r)

τ∨,(1,r)
− Y (1)

τ∧,(1))
∣∣∣Fτ∧,(1)

]
does not depend on r and thus

v1 = Var
[
E
[
S(1)(Y

(1,1)

τ∨,(1,1) − Y
(1)

τ∧,(1))
∣∣∣Fτ∧,(1)

]]
.

A similar argument for v2 now yields

v2 = E
[
Var

[
S(1)(Y

(1,1)

τ∨,(1,1) − Y
(1)

τ∧,(1))
∣∣∣Fτ∧,(1)

]]
.

Noting that S(1)(Y
(1,1)

τ∨,(1,1) −Y
(1)

τ∧,(1)) and Fτ∧,(1)

are copies of YτA −YτB and Fτ∧
allows to conclude the proof. Finally, let us emphasize that the above argument
does take into account the fact that on some trajectories, those where τA and
τB coincide, YτA − YτB is Fτ∧ measurable.

4.4. PROOFS 83

Proof of Proposition 54

Since the objective function decreases in both R and n, it is clear that the
budget constraint holds with equality at the optimum, c(n,R) = C. Solving the
constraint for n and substituting the result into the objective yields

min
R

1

C

(
v1(ρ1 + ρ2R) + v2

ρ1 + ρ2R

R

)
s.t. R ≥ 1.

Using that the minimization problem is invariant to monotone transformations,
we can write this as

min
R

v1ρ2

v2ρ1
R+

1

R
s.t. R ≥ 1.

Clearly, the solution to this convex minimization problem is R∗ = max(1, R′)
where R′ is the solution of the associated unconstrained minimization problem

which is given by R′ =
√

v2ρ1

v1ρ2
.

Proof of Proposition 55

The formula for γ∗ follows with a few algebraic manipulations after substituting

R∗ =
√

v2ρ1

v1ρ2
into V . We turn to the lower bound. By symmetry, it suffices to

prove that for all positive real numbers a and b with ab ≤ 1

(a+ b)2

(1 + a2)(1 + b2)
≥ a2

1 + a2
.

To see this, note that we can bound the numerator as follows

(a+ b)2 ≥ a2 + ab ≥ a2 + a2b2 = a2(1 + b2).

For the upper bound it suffices to observe that

(a+ b)2

(1 + a2)(1 + b2)
≤ 2a2

(1 + a2)(1 + b2)
+

2b2

(1 + a2)(1 + b2)

≤ 2a2

1 + a2
+

2b2

1 + b2

≤ 4 max

(
a2

1 + a2
,

b2

1 + b2

)
,

where we used in the first step that (a+ b)2 ≤ 2(a2 + b2).

Proof of Proposition 56

Observe first that we can write

V (R) = ρ1v1 + ρ2v2 + ρ2v1

(
R+

R∗2

R

)
and

V (αR∗) = ρ1v1 + ρ2v2 + ρ2v1(α+ α−1)R∗.

84 CHAPTER 4. NESTED CONDITIONAL MONTE CARLO

Therefore we have V (αR∗) = V (α−1R∗) and by convexity V (R) ≤ V (αR∗) for
all R in the interval. It thus suffices to prove the upper bound for

V (αR∗)

V (R∗)
=

Γ + α+ α−1

Γ + 2
where Γ =

ρ1v1 + ρ2v2

ρ2v1R∗
.

Since α + α−1 ≥ 2, we can bound this expression from above by replacing Γ
with a smaller number. In particular, Γ ≥ 2 yields the desired inequality

V (αR∗)

V (R∗)
≤ 2 + α+ α−1

4
.

To see that we indeed have Γ ≥ 2, note that by inserting the expression for R∗

we can write

Γ =

√
ρ2v2

ρ1v1
+

√
ρ1v1

ρ2v2
.

Γ ≥ 2 now follows from the fact that x+ x−1 ≥ 2 for all x ≥ 0.

Proof of Corollary 57

In the proof of Proposition 56, we saw that V (αR∗) = V (α−1R∗). For α = R∗

this gives V (R∗2) = V (1). Thus, (i) follows from the convexity of V . The
argument for (ii) is similar. For (iii) note first that if R∗ < 1.5 we have R# = 1
and nothing is to prove. By (i) it thus suffices to show R# < R∗2 for R∗ ≥ 1.5.
To see this, note that R# ≤ R∗ + 1

2 < R∗2 where the last inequality holds for

all R∗ > 1+
√

3
2 ≈ 1.37.

Chapter 5

Upper Bounds via Dual
Methods

The dual approach provides a possibility to simulate upper bounds for the fair
price of an American oder Bermudan option via Monte Carlo simulation. It
was introduced by Haugh and Kogan [46] and also independently by Rogers
[64]. The work of Haugh and Kogan is based on earlier results of Davis and
Karatzas [29]. In particular, upper bounds are useful to assess the quality of
lower bounds. Together, lower and upper bounds provide a confidence interval
for the true option price and a small distance between those two bounds will
then guarantee a small bias for both of them.

Essentially, the dual approach says that each martingale provides an upper
bound for the price of a Bermudan option when inserted into an expression that
can be evaluated via Monte Carlo. This expression reads

V0 ≤ E

[
max
j

(gj(Xj)−Mj)

]
, (5.1)

where M is a martingale with initial value 0 and the maximum has to be evalu-
ated with respect to all exercise dates, both in the American and the Bermudan
case. In other words, the dual approach requires a suitable martingale instead
of a profitable stopping time. This hunt for a good martingale has led to a
variety of ideas and results.

The first observation is that the Doob martingale part M∗j , see Theorem 63,
of the true value process Vj will not only lead to the best upper bound, but will
also lead to equality in (5.1). Furthermore, the equation will hold almost surely,
i.e.

V0 = max
j

(
gj(Xj)−M∗j

)
a.s.. (5.2)

Surprisingly, the Doob martingale part of the true value process is not the
only martingale fulfilling (5.2). Martingales fulfilling this equation will be called
“surely optimal martingales”. Thus, if it was possible to draw samples from such
a surely optimal martingale, only one single trajectory would be necessary to
obtain the exact result V0.

Since all those surely optimal martingales can in general not be assumed to
be given analytically, the big question arising is how to construct martingales

85

86 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

similar to M∗j . For example, it is convenient to use an approximation of the
continuation value provided by a method mentioned in Chapter 2. There are
two ways to use such continuation estimates to create martingales via nested
simulation. Those will be presented in Subsection 5.2.1 and Subsection 5.2.2.
The former will use one-step subsimulations to estimate conditional expectations
that can be used to extract a process that has the martingale property. The
latter uses multi-step subsimulations to determine a lower bound via what is
called the “testing step” in Chapter 2. Of course, this leads to a tremendous
increase of complexity, especially in case of options with many exercise dates.

Another approach was introduced by Belomestny, Bender and Schoenmak-
ers [8]. They use a regression estimator for the Doob martingale part of a
given approximation and thus do not need nested simulations to construct a
martingale.

Desai, Farias and Moallemi [31] also developed a non-nested method. They
fix a finite set of martingales and use optimization techniques to find the best
of all linear combinations of them to minimize the bias. This approached will
be summarized at the beginning of Section 5.4.

Finding a good martingale is considered to be “more art than science” by
Rogers [64]. He uses the value of the European counterpart of the Bermudan op-
tion in question together with some heuristic arguments and Proposition 70. His
results are surprisingly good, especially in the one-dimensional case. However,
in higher dimensions or when considering options that are more complicated,
such an approach will be difficult.

Another idea, similar to the dual approach was developed by Jamshidian [51].
He uses the multiplicative Doob decomposition, see Theorem 67, to formulate a
“multiplicative dual approach”. In contrast, the dual approach (5.1) will then be
called “additive dual approach”. Unfortunately, his approach is clearly inferior
to the additive dual because the variance of the resulting Monte Carlo estimator
is higher. An interplay of the two dual approaches is discussed by Chen and
Glasserman [24]. They show that “... any multiplicative dual can be improved
by an additive dual and vice versa.”

This chapter is organized as follows. In the next section, the most important
results and definitions concerning the dual approach are given. In Subsection
5.2, general assumptions will be imposed to analyze what will be called “nested
methods” in the following. This includes the well-known method of Andersen
and Broadie. Based on these assumptions, the complexity of such nested meth-
ods can be calculated, see Section 5.2.3. Section 5.3 is about the generalization
of the dual approach for the BSDE setting. Finally in Section 5.4, martingales
are found by convex optimization algorithms and the sieves method.

In the succeeding chapter, the multilevel technique will be used to improve
the efficiency of nested methods. The resulting complexity will then be com-
pared to Subsection 5.2.3.

5.1 Dual Formulation

We recall the definition of the optimal stopping problem

Vj(x) := max
τ∈Tj

E
[
gτ (Xτ)

∣∣Xj = x
]
, j = 0, . . . ,J , (5.3)

5.1. DUAL FORMULATION 87

from Chapter 1, which will be called “primal representation” in the following.
It is clear that this true value process V has the supermartingale property

E[Vj+1|Fj] ≤ Vj a.s. j = 0, . . . ,J − 1,

since

E[Vj+1|Fj] = sup
τ∈Tj+1

E[gτ (Xτ)|Fj]

≤ sup
τ∈Tj

E[gτ (Xτ)|Fj] = Vj . a.s.

Additional to the primal representation (5.3), we can now characterize V as the
“Snell envelope” of the payoff process. In the following, we will fix the notation

Zj = gj(Xj), j = 0, . . . ,J . (5.4)

Definition 58. We say that a process Y “dominates” the process Ỹ , if Yj ≥ Ỹj
almost surely for all j = 0, . . . ,J .

Definition 59. A “supersolution” is an F-supermartingale that dominates the
payoff process Zj.

Definition 60. We define the “Snell envelope” Y of the payoff process Z to be
the smallest supersolution. More precisely,

Yj ≤ Ỹj , a.s., j = 0, . . . ,J ,

must hold for all other supersolutions Ỹ .

In line with denomination (5.4), we define

Z(M) = max
j=0,...,J

(Zj −Mj) , and Y (M) = E [Z(M)]

for M ∈M0, where M is the set of all F-martingales and M0 the set of all F-
martingales with initial value zero. Since Z(M) depends on the whole trajectory
of (Z,M)j we have that it is a random variable with respect to the probability
space (Ω,FJ , P). The two main results of Rogers [64] and Haugh and Kogan
[46] are summarized in the next two Theorems.

Theorem 61. For each M ∈M0 it holds Y (M) ≥ V0.

It suggests itself that this theorem can be used to derive upper bounds for
the option price. It is just sufficient to pick a martingale M and estimate
Y (M) = E[Z(M)] via Monte Carlo simulation to obtain an unbiased estimate
of an upper bound. For such an estimator

Y N :=
1

N

N∑
n=1

max
j=0,...,J

(Z
(n)
j −M (n)

j). (5.5)

it is necessary to generate N i.i.d. samples
(
Z

(n)
· ,M

(n)
·

)
, n = 1, . . . , N , from

the vector process (Z·,M·).

88 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

Theorem 62. If the martingale part M∗ of the true value process V is used in
Theorem 61, then the upper bound becomes minimal and and it even holds that

V0 = Z(M∗) = max
j=0,...,J

(
gj(Xj)−M∗j

)
a.s., (5.6)

which is called the “surely optimal” property of M∗ that in particular leads to

Var[Z(M∗)] = 0. (5.7)

It is important to point out that this statement is not formulated in terms of
expectations like Theorem 61 and uses the following definition, see for example
Föllmer and Schied [37].

Theorem 63. (Doob Decomposition) Suppose that Y is an F−adapted stochas-
tic process that fulfills E[|Yj |] <∞ for all j = 0, . . . ,J . Then there exists a mar-
tingale M starting at M0 = 0 and an integrable, predictable process A starting
at A0 = 0 such that

Yj = Y0 +Mj −Aj , j = 0, . . . ,J . (5.8)

This decomposition is a.s. unique and the process A will be non-decreasing if Y
is a supermartingale.

Since the true value process V is a supermartingale we have that

Vj = V0 +M∗j −Aj , j = 0, . . . ,J , (5.9)

with a non-decreasing process A, where

Aj :=

j∑
n=1

Vn−1 − E [Vn|Fn−1] , M∗j =

j∑
n=1

Vn − E [Vn|Fn−1] (5.10)

for all j = 1, . . . ,J . Obviously, M∗ fulfills the martingale property and A is
a non-decreasing process. Approximating the true value process V is just the
problem in optimal stopping theory. Since it must be known to construct a
martingale according to (5.10), Theorem 62 seems to be almost useless. How-
ever, it could give us a hint about which martingale to use for the Monte Carlo
simulation (5.5). Every information about the true value process also provides
an information about the optimal martingale via (5.10). This could be infor-
mation about its asymptotic behaviour, its boundedness, its smoothness, or the
relation to the payoff due to the existence of the exercise region, see Section 1.2.

With these two results at hand, it is possible to reformulate the pricing of a
Bermudan option as the following minimization problem, which will be called
“dual representation” in the following.

Proposition 64. The “dual representation” is given by the minimization prob-
lem

V0 = inf
M∈M0

E

[
max

j=0,...,J
(Zj −Mj)

]
(5.11)

and has the same solution as the primal problem.

5.1. DUAL FORMULATION 89

We say that a martingale M “is surely optimal” if it fulfills (5.6) and thus
is a solution to (5.11). Against intuition, there are infinitely many martingales
substantial different from each other that possess this surely optimal property.
The exact characterization of those is given below and was taken from Schoen-
makers, Zhang and Huang [66].

Theorem 65. A martingale M ∈ M0 has the surely optimal property if and
only if there exists a sequence of F-adapted random variables (ζi)0≤i≤J fulfilling
E[ζi|Fi−1] = 1 and ζi ≥ 0 for all 0 < i ≤ J such that

Mj = M∗j −Aj +

j∑
l=1

ζj(Al −Al−1), j = 0, . . . ,J ,

where M∗ and A result from the decomposition (5.10).

Theorem 65 includes the statement that all surely optimal martingales are
somehow related to M∗. Apparently, there is no loophole to find a good mar-
tingale without approximating M∗ at the same time.

Furthermore, it is also clear that there are not only infinitely many mar-
tingales with the surely optimal property, but also infinitely many other ones
that realize the infimum in (5.11) without being surely optimal. On the other
hand, martingales that lead to zero variance without minimizing (5.11) are
hard to imagine. In general, one will expect the martingales to become “better”
as the variance of Z(M) decreases. And indeed, there is another result from
Schoenmakers, Zhang and Huang [66] about that issue that uses the following
definition.

θi(M) = max
i≤j≤J

(Zj −Mj +Mi). (5.12)

Theorem 66. Let i ∈ {0, . . . ,J }. If Var[θi(M
k)|Fi]

P−→ 0 and if in addition
the sequence M1,M2, . . . is uniformly integrable, then it holds that

E[θi(M
k)|Fi]

L1

−→ Vi

as k →∞.

Since θ0(Mk) = Y (Mk), we know now that in particular Y (Mk) will con-
verge to the true value, as long as the variances Var[Z(Mk)] converge to zero.
This statement allows us to look for good martingales only by considering their
variances, as it does not imply the convergence of the martingales themselves.
This relation will be exploited in Section 5.4 and by Belomestny [7]. This
variance-minimizing effect is actually the big advantage of the (additive) dual
approach when compared to the primal approach. Even when considering an
approximation of M∗ that is very time-consuming to evaluate, it might be an
efficient idea to use (5.11). If it is really close to M∗, only very few paths will
have to be simulated, see also Remark 92.

There is another dual approach, called “the multiplicative dual” introduced
by Farshid Jamshidian [51]. The following Proposition summarizes his result
and uses the multiplicative Doob decomposition, see for example Jacod and
Shiryaev [49].

90 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

Theorem 67. (Multiplicative Doob Decomposition) Let Y be an F−adapted
supermartingale starting at Y0 = 1 taking values in (0,∞). Then there is an
a.s. unique decomposition

Yj = BjLj , j = 0, . . . ,J
in which B is a positive local martingale with B0 = 1 and L is a nonincreasing,
predictable process with L0 = 1.

Proposition 68. Let B0 be the class of all positive F-adapted martingales with
initial value 1. Then we have

Vj = inf
B∈B0

EB
[
max
i≥j

Zi
Bi

∣∣∣Fj]Bj (5.13)

:= inf
B∈B0

E

[
max
i≥j

Zi
Bi
BJ

∣∣∣Fj]Bj
and in particular

V0(x) = inf
B∈B0

E

[
max

j=0,...,J

gj(Xj)

Bj
BJ

∣∣∣X0 = x

]
. (5.14)

It is impossible to find a martingale B that has the surely optimal property
here. Analoguously to the additive dual, the infimum in equation (5.14) is at-
tained when inserting the martingale B∗, which is the multiplicative martingale
part of the true value process V , see Theorem 67. But even then, the variance
is not zero. Chen and Glasserman [24] point out that

V0 = max
j

(Zj −M∗j) = max
j

Zj
B∗j

, a.s. (5.15)

holds, where the additive dual can be found in the middle. But the expression
on the right hand side is not the multiplicative dual. The factor B∗J is missing.
It would lead to a positive variance that could only be avoided via a change of
measure, which in general won’t be feasible analytically.

It is not only true that approximations of the true value V can lead to good
dual upper bounds, but also vice versa. Because of the representation of the
true value process V as Snell envelope of the payoff process, it is clear that
every supersolution W dominates V , see Definition 60. On the one hand, we
can define the martingale part of a supersolution W via

MW
j =

j∑
i=1

Wi − E[Wi|Fi−1], j = 0, . . . ,J (5.16)

and the multiplicative martingale part via

BWj =

j∏
i=1

Wi

E[Wi|Fi−1]
, j = 0, . . . ,J (5.17)

if W is assumed to be strictly positive almost surely.1 On the other hand it is
possible to derive supersolutions from (multiplicative) martingale parts, via

WM
j = E

[
max
j≤i≤J

(Zi −Mi −M0)
∣∣∣Fj]+Mj , j = 0, . . . ,J (5.18)

1In usual cases like a max-call or a min-put option, there are supersolutions that are not
strictly positive. Chen and Glasserman [24] point out that one could avoid this technical
problem by setting g̃j(x) := gj(x) + ε with an extra ε, which can be arbitrarily small.

5.1. DUAL FORMULATION 91

and

WB
j = EB

[
max
j≤i≤J

Zi
Bi

∣∣∣Fj]Bj , j = 0, . . . ,J . (5.19)

These four formulas could be used to construct a sequence of supersolutions
V 1, V 2, . . . by applying (5.16) or (5.17) and then (5.18) or (5.19) alternately.
It is not clear that such a sequence would be decreasing and approach the
true value V . However, this is the case as the next theorem from Chen and
Glasserman [24] says.

Theorem 69. Suppose that a supersolution W has the additive and multiplica-
tive Doob decompositions

W = M +A, or W = BL.

Let WM and WB be as in (5.18) and (5.19). Then for j = 0, . . . ,J

Vj ≤WM
j ≤Wj (5.20)

and

Vj ≤WB
j ≤Wj . (5.21)

Furthermore, Chen and Glasserman prove that the weak inequalities in
(5.20) and (5.21) are strict, as long as the supersolution WM

j is different from

the true value. This means that the iteration V 1, V 2, . . . cannot stop at a sub-
optimal point. This procedure can be seen as an analogon of policy iteration
used for lower bounds, see Remark 35.

It is possible to improve the efficiency of the Monte Carlo simulation (5.11).
Therefore, let us note an easy proposition about the behaviour of the optimal
martingale with respect to the exercise region.

Proposition 70. If Zi ≤ Vi for l ≤ i < k, i.e. the path doesn’t enter the
exercise region, then

M∗k = M∗l − Vl + Vk. (5.22)

In particular, if Zi ≤ Vi for 0 ≤ i < k, then M∗k = Vk − V0.

Theorem 71. Let us define the set of all optimal exercise dates with respect to
the adapted family of optimal stopping times, see Definition 2, by

O =
{
j ∈ {0, . . . ,J }

∣∣∣τ∗j = j
}
, (5.23)

which is a random set on (Ω,FJ , P). For every superset N ⊇ O, we now have
that

YN(M) = E

[
max
j∈N

(Zj −Mj)

]
(5.24)

is also an upper bound of V0. For M∗ it even holds that

max
j∈N

(
Zj −M∗j

)
= max
j=0,...,J

(
Zj −M∗j

)
= V0. (5.25)

92 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

We recall that τ∗J = J by definition. To find a random set N that does surely
include all time steps where τ∗j = j, it suffices to know a deterministic lower
bound for the continuation value Cj . For example, the European counterpart
of the option can be used here. In case of a Bermudan max-call on D assets of
GBM, we know that

max
d=1,...D

E(Xd
j , tj , tJ) ≤ Cj(Xj), (5.26)

where E denotes the Black-Scholes formula of the one-dimensional European
call option, see Remark 50. We can choose

N = {J } ∪
{
j ∈ {0, . . . ,J − 1}

∣∣∣gj(Xj) ≥ max
d=1,...,D

E
(
Xd
j , tj , tJ

)}
and also some European exchange option might be inserted here. If the Eu-
ropean price is not available analytically, it is still an improvement to know
that

N = {J } ∪
{
j ∈ {0, . . . ,J − 1}

∣∣∣gj(Xj) > 0
}

is a superset of O. This may still lead to a significant speed up for options that
are far out-of-the-money.

5.2 Nested Methods

The term “nested methods” will be used for a class of algorithms that try to
approximate the Doob martingale part of the true value process V via subsim-
ulations. In most cases, they will construct a martingale that will be close to
the martingale part of an approximation of the true value process. A quite
general setting will be described and two examples for such algorithms will be
presented in the following two subsections. Actually, this is motivated by the
work of Andersen and Broadie [2], who developed a very well-known approach
that will be analyzed in Section 5.2.2.

The use of subsimulations motivates the introduction of an enlarged proba-
bility space. Furthermore, we will suppose that those algorithms can generate
martingales with varying precision, so a sequence of martingales will be exam-
ined. Therefore, let us define a probability space (Ω, (F ′j)j≥0,P), where Fj ⊂ F ′j
for each j. In other words, F ′ is a finer filtration than F and includes more infor-
mation, namely the information generated by the subsimulations. We assume
(Mk)k∈N to be a sequence of F ′-martingales with initial value 0, which con-
verges in some sense to a martingale M adapted to F . The latter will be called
“target martingale” in the following and the kind of convergence of Mk will be
made precise below.

We are now interested in the convergence behavior of Y (Mk) to Y (M) as
k →∞. Therefore, some assumptions about the algorithm in use are necessary.
They are called (AC), (AR), (AR’), (AL) and (AQ). Afterwards, we will give
some results about those assumptions, especially how to satisfy them. The
main results are given in Theorem 75 and Theorem 76 and with their help, the
complexity analysis becomes feasible.

(AC) The numerical complexity of obtaining a single realization of Mk
j is of

order O(k) for each j = 1, . . . ,J .

5.2. NESTED METHODS 93

Note that a re-parametrization could lead to another complexity in (AC). How-
ever, it fixes the use of the term “complexity” and is thus necessarry. The next
two assumptions (AR) and (AR’) make note of the rate of convergence of the
sequence of martingales and also the kind of convergence that may be assumed.
In particular, the second part of assumption (AR’) is stronger than (AR).

(AR) There exists an F-adapted martingale M such that

E

[
max

j=0,...,J
(Mk

j −Mj)
2

]
≤ Bk−β , k ∈ N,

for some β > 0 and B > 0.

(AR’) There exists an F-adapted martingale M such that

max
j=0,...,J

∣∣EFJ [Mk
j −Mj

]∣∣ ≤ Ak−α, EFJ

[
max

j=0,...,J
(Mk

j −Mj)
2

]
≤ Bk−β ,

FJ -almost surely, for all k ∈ N, some β > 0, α ≥ β/2, A > 0 and B > 0.

The last two assumptions make use of the following definition.

Definition 72. Denote by Q and Qk the (Ω,FJ ,P)-random sets

Q := {j : Zj −Mj = Z(M)} , Qk :=
{
j : Zj −Mk

j = Z(Mk)
}
, k ∈ N,

and the FJ -measurable random variable

Λ := min
j /∈Q

(Z(M)− Zj +Mj) , (5.27)

with Λ := +∞ in case of Q = {0, ...,J }.

(AL) Λ satisfies E [Λ−a] <∞, for some a > 0.

(AQ) #Q = 1 a.s.

Let us check how to satisfy (AQ) and (AL). One can state that (AQ) will be
satisfied quite obviously in non-degenerate examples. Especially if there is a
density for Mj , j = 1, . . . ,J , it won’t be violated. Assumption (AL) is more
difficult.

Corollary 73. Assumption (AL) is fulfilled for all 0 ≤ a < q + 1 when Λ > 0
has a density g in a neighborhood of zero such that g(z) = O(|z|q) for some
q ≥ 0 as |z| → 0.

The reason for this corollary is simply that the definition of the Landau
symbol provides the existence of a number ε such that

E[Λ−a] ≤
∫ ε

0

zq−adz +

∫ ∞
ε

z−ag(z)dz ≤ c+ ε−a
∫ ∞
ε

g(z)dz <∞

where the first integral is finite since q − a > −1. We can deduce another good
result about how to fulfill assumption (AL).

94 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

Corollary 74. If the boundary condition (AB) from Chapter 2

P (0 < Cj(Xj)− gj(Xj) ≤ δ) ≤ Bδα, δ > 0

is fulfilled for all j = 0, . . . ,J and M = M∗, then assumption (AL) is fulfilled
for all a < α.

In Chapter 2, we showed that for good-natured problems we can assume that
α = 1. Because of Corollary 74, we can thus assume that (AL) will be fulfilled
with 0 < a < 1 when the target martingale is the Doob martingale part M∗ of
V .

Depending on the different assumptions spelled out above, we now have the
following central theorem.

Theorem 75. Under assumption (AR) alone it holds that

|E[Z(Mk)−Z(M)]| ≤ Ck−β/2, E
[(
Z(Mk)−Z(M)

)2] ≤ Bk−β (5.28)

with some constants C,B > 0.

One should emphasize that Theorem 75 only uses the mild assumption (AR)
which will be fulfilled quite easily, see Corollary 83 and Corollary 85. The first
inequality in (5.28) provides the order of the bias and is an easy consequence of
Jensen’s inequality. In case of a nested method as in Section 5.2.1 this would
lead to a bias of order k1/2, which is not a tight bound, as we will see later in
Table 5.1. Improving this inequality is the main purpose of the next theorem
and of the other assumptions from the beginning of this section.

Theorem 76. If assumptions (AR’), (AL) and (AQ) are satisfied, then

|E[Z(Mk)−Z(M)]| ≤ Ck−γ , E
[(
Z(Mk)−Z(M)

)2] ≤ Bk−β (5.29)

with γ = min {α, βmin {1, (a+ 1)/2}} and some constants C,B > 0.

Remark 77. Theorem 76 proves that the bias will be of order O(k−1+δ) for
arbitrary small δ > 0, if (AL) is fulfilled with 0 < a < 1 and β = 1. This leads
to the expectation that the Andersen Broadie estimator from Subsection 5.2.2
(and also the method from Subsection 5.2.1) will have a bias of order O(1/k) in
practice for a usual, good-natured example. This will be verified with the example
in Subsection 5.2.2 and was also observed before in Kolodko and Schoenmakers
[53].

To show that these results are really efficient, we look at the following ex-
ample. It shows that without assumptions (AL) and (AQ) to be fulfilled, it can
really be the case that Theorem 75 gives the strongest statement possible. Since
it is based on the use of subsamples, it is strongly related to the applications in
the following sections.

Example 78. Consider the simple situation where J = 1, Z0 = Z1 = 0, Y ∗0 = 0
and M∗0 = M∗1 = 0. Define a target martingale via M0 = 0, M1 = Y1 − EY1 =
ξ − E[ξ] with a r.v. ξ given by

ξ =

3b/2 with probability 1/4

b with probability 1/2

b/2 with probability 1/4

5.2. NESTED METHODS 95

for some b > 0 and the approximation by

Mk
0 = 0, Mk

1 = ξ − 1

k

k∑
l=1

ξ(l), (5.30)

where ξ(l) are i.i.d. copies of ξ. For the target martingale we thus have M1 =
ξ − E[ξ].

This example fulfills Theorem 75, since for the approximation (5.30), we
have

Z(Mk) = max
j

(Zj −Mk
j)

= max
(
0,−Mk

1

)
=

(
1

k

k∑
l=1

ξ(l) − ξ

)+

.

The first inequality in Theorem 75 cannot hold with β/2 better than 1/2, be-
cause

E[Z(Mk)−Z(M)] = E

(1

k

k∑
l=1

ξ(l) − ξ

)+

− (E ξ − ξ)+

≥ 1

2
E

(1

k

k∑
l=1

ξ(l) − b

)+
 =

b/
√

8

2
√
k

E

(1√
k

k∑
l=1

ξ(l) − b
b/
√

8

)+
 � b

8
√
πk

as k → ∞. Note that E[ξ] = b, Var[ξ] = b2/8 and E[η+] = 1√
2π

for a standard

normal random variable η. Considering the second inequality in Theorem 75,
we notice that for this example it holds

E
[(
Z(Mk)−Z(M)

)2] ≥ (E [(Z(Mk)−Z(M)
)])2

≥ cVar

(1√
k

k∑
l=1

ξ(l) − b
b/
√

8

)+
 ∈ O(1/k),

so the second inequality cannot hold with β better than 1 either. Simultaneously,
assumption (AR) is fulfilled with β = 1 in this example, because of

E

[
max
j=0,1

(
Mk
j −Mj

)2]
= E

[(
Mk

1 −M1

)2]
= E

(1

k

k∑
l=1

ξ(l) − E[ξ]

)2

and the central limit theorem. Therefore, this example shows that Theorem 75
is indeed the strongest statement possible in the sense that under assumption
(AR) only, the case γ = β/2 can occur.

Remark 79. In Example 78, the assumptions (AQ) and (AL) for all a > 0 are
violated.

96 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

The purpose of Remark 79 is just to show that Example 78 illustrates the
efficiency of Theorem 75 and Theorem 76.

The sequence of approximative martingales (Mk)k∈N will induce a sequence
of upper bounds (Y (Mk))k∈N. The latter ones can be approximated via a Monte
Carlo estimator like in (5.5)

Y N,k :=
1

N

N∑
n=1

max
j=0,...,J

(Z
(n)
j −Mk,(n)

j). (5.31)

that is now also depending on k. So we have an unbiased estimator of an upper
bound. To see the high bias, i.e. Y (Mk) ≥ V0 for all k, we have to consider
some simple technical reasons. We know from the previous section that every
F-martingale M ∈ M0 induces an upper bound via Y (M). However, Mk will
be an F ′-martingale.

Remark 80. We define

M̃k
j := EFJ [Mk

j], j = 0, . . . ,J , (5.32)

and expect M̃k to be an F-martingale (one could expect the target martingale

M to coincide with M̃). We then have that

Y (Mk) = E[Z(Mk)]

= E EFJ [max
j

(Zj −Mk
j)]

≥ E[max
j

(Zj − EFJ [Mk
j])]

= E[Z(M̃k)] = Y (M̃k)

holds, since Jensen’s inequality can be applied with respect to the σ−algebra FJ
and obtain

Y (Mk) ≥ Y (M̃k) ≥ V0. (5.33)

However, without assuming that M̃k is an F-martingale, it is still possible
to show that at least Y (Mk) ≥ V0. This is just a generalization of Theorem 61,
which uses that every F-stopping time is an F ′-stopping time.

5.2.1 Martingales from Continuation Estimates

The easiest method to generate martingales via nesting is using some approxi-
mation

V̂j : RD → R, j = 0, . . .J (5.34)

of the true value function and approximate the martingale part of it. For ex-
ample, one could use the estimate Ĉj(x) := Ck

′

j (x) from one of the fast approx-
imation methods in Section 2.1, where the parameter k′ remains fixed in the
following. A suitable estimate of the true value process is then given by

V̂j(x) = max
(
Ĉj(x), gj(x)

)
(5.35)

and the martingale part of this process will be the target martingale M .

5.2. NESTED METHODS 97

Remark 81. To extract a martingale M̂ from this approximation, one could
try to use

∆̂j = V̂j(Xj)− Ĉj−1 (Xj−1) , j = 1, . . . ,J (5.36)

and M̂j =
∑j
i=1 ∆̂i. However, it is not clear that this choice fulfills the martin-

gale property. Thus, inserting M̂ into Proposition 61 could give an estimator
Y (M̂) that is no longer high biased, which will yield misleading results.

In other words, one should take care that

Ĉj−1(x) = E
[
V̂j(Xj)

∣∣∣Xj−1 = x
]

(5.37)

is fulfilled, as it is in case of the true value function and the true continuation
value.

Remark 82. In order to ensure that condition (5.37) is fulfilled one could

use an estimator Ĉj that is a linear combination of basis functions that allow
to calculate the conditional expectation explicitly (according to the underlying
process). This is the main idea of Glasserman and Yu [43]. More precisely,
they use a set of H basis functions φhj : RD → R, such that

E
[
φhj+1(Xj+1)|Xj

]
= φhj (Xj), h = 1, . . . ,H (5.38)

where j = 0, . . . ,J − 1 indicates the time step as before. Now one can find
coefficients βhi by regression so that writing the estimators like

Ĉj(x) =

H∑
h=1

βhi φ
h
j (x), h = 1, . . . ,H (5.39)

and

V̂j+1(x) =

H∑
h=1

βhj φ
h
j+1(x), h = 1, . . . ,H (5.40)

is possible and the martingale based on increments

∆̂j =

H∑
h=1

βhj
(
φhj+1(Xj+1)− φhj (Xj)

)
(5.41)

obviously fulfills (5.37) due to (5.38).

However, in higher dimensions and for underlyings that the transition density
in not known of this approach of Glasserman and Yu may fail to be feasible.
Subsimulations are the way out to ensure (5.37). In effect, one has to compute

∆̂k
j = V̂j(Xj)−

1

k

k∑
i=i

V̂j

(
X

(i)
j

)
, j = 0, . . . ,J (5.42)

where X
(1)
j , . . . , X

(k)
j are random variables with distribution of Xj drawn condi-

tionally Fj−1. Those can be called “one step subsimulations” starting at Xj−1

at time step tj−1. The martingale corresponding to those increments ∆̂k
j based

98 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

on k subsimulations is then Mk
j =

∑j
i=1 ∆̂k

i . It is a martingale adapted to the
filtration

F ′j = Fj ∨ σ
{
X(i)
p , p = 0, . . . , j, i = 1, . . . , k

}
. (5.43)

and it is easy to show that this procedure yields an upper bound Y (Mk) of
Y (M) like in Remark 80, since obviously

EFJ [Mk
j] = Mj , j = 0, . . . ,J , (5.44)

since the target martingale was given by

Mj =

j∑
i=1

V̂j(Xj)− E[V̂j(Xj)|Fj−1]. (5.45)

With some assumptions depending on the underlying process and the payoff,
some more calculations show that (AR) and (AR’) can indeed be fulfilled by
this method.

Corollary 83. If E[V̂ 2
j (Xj)] < ∞ for j = 0, . . . ,J , then assumption (AR)

holds with β = 1.

Corollary 84. If V̂j(Xj) < c almost surely for j = 0, . . . ,J , then assumption
(AR’) holds with arbitrary large α and β = 1.

The assumption V̂ 2
j (Xj) < c that can be used in both of these two corol-

laries is likely to be fulfilled in case of a bounded payoff. To achieve bound-
edness, one could simply truncate the payoff function. One could use g′j(x) =
min (gj(x),M), where M is the amount of all the money in the world. It will

not be difficult then to implement an estimator fulfilling V̂j(Xj) < c.

5.2.2 Martingales from Stopping Rules

What is presented in the following is the approach that was originally introduced
by Leif Andersen and Mark Broadie2 in their article [2] . Essentially, they
present a method that tries to approximate the martingale part of the true value
process V0 via what is called “testing step” in Chapter 2. Correspondingly, we
will fix a (in general suboptimal) stopping time τ . More precisely, the method
demands a consistent family of stopping times

τ ≡ τ0, . . . , τj , . . . , τJ ≡ J (5.46)

and consistency is defined in definition 2. For example, these could be stopping
times

τs = inf
{
j ∈ {s, . . . ,J } : Ck

′

j (Xj) ≤ gj (Xj)
}
, (5.47)

based on some estimate Ck
′

j of the continuation value issued by some fast ap-
proximation method with a fixed parameter k′. Of course, stopping times from
other methods can be plugged in here as well.

2There is some confusion about the denomination. Quite frequently, the expression “Ander-
sen Broadie method” will be used to refer to the approach using martingales from continuation
estimates as given in the previous Subsection.

5.2. NESTED METHODS 99

Because of Theorem 62, we know that the optimal martingale M∗ is given
by

M∗j =

j∑
i=0

E
[
hτ∗i (Xτ∗i

)
∣∣Fj]− E

[
hτ∗i (Xτ∗i

)
∣∣Fi−1

]
, j = 0, . . . ,J . (5.48)

Here, we denote by τ∗j the optimal stopping time for an option issued newly at
time step tj at price Xj . Those stopping times τ∗0 , . . . , τ

∗
J fulfill the definition

of consistency.
Analogously, when using a suboptimal family of stopping times τ0, . . . , τJ ,

it suggests itself to define

Mj =

j∑
i=0

E
[
hτi(Xτi)

∣∣Fi]− E
[
hτi(Xτi)

∣∣Fi−1

]
, (5.49)

which will be the target martingale of the sequence (Mk)k∈N. The consistency
of stopping times allows us to write

E[gτi(Xτi)|Fi] =

{
gi(Xi) if τi = i

E
[
gτi+1

(Xτi+1
)|Fi

]
if τj 6= j

, (5.50)

so by defining

Fi := E
[
gτi+1(Xτi+1)|Fi

]
, i = 1, . . . ,J (5.51)

the following simple representation is possible because of a telescopic effect in
(5.49).

Mj = Fj − F0 +

j∑
i=0

(gi(Xi)− Fi) 1τi=i. (5.52)

The main idea of Andersen and Broadie is to generate a set of k subsamples
in each time step tj to estimate the conditional expectations 3. More precisely,
this means that in each time step, we calculate a quantity F kj based on k sub-

simulations to estimate E
[
gτi+1(Xτi+1)|Fi

]
and obtain

Mk
j = F kj − F k0 +

j∑
i=0

(
gj(Xj)− F ki

)
1τi=i, (5.53)

In addition, to use the idea of Theorem 71 for this approach, one should notice
that the term (5.53) is independent of F ki if i < j and i /∈ O. In summary, we
have the following procedure.

1. Draw a sample X from the underlying process.

2. For each time step tj , j = 0, . . . ,J run the following three steps to estimate
Fj .

3Andersen and Broadie recommend to use subsimulations. In Belomestny, Schoenmakers
and Dickmann [10] the approach is quite general and includes cases that these expectations
are estimated by Monte Carlo simulations that use other techniques than testing the stopping
rule on subsamples.

100 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

(a) If j > 0 and τj 6= j and j /∈ N, the calculations in b) and c) are not
necessary, set F kj = 0.

(b) Generate k subsamples
(
X̃
j,(1)
· , τ̃

(1)
j+1

)
, . . . ,

(
X̃
j,(k)
· , τ̃

(k)
j+1

)
starting from

Xj at time step tj .

(c) Estimate Fj via

F kj =
1

k

k∑
r=1

g
τ̃

(r)
j+1

(
X̃
j,(r)

τ̃
(r)
j+1

)
. (5.54)

3. Calculate the martingale via

Mk
j = F kj − F k0 +

j∑
i=0

(
gj(Xj)− F ki

)
1τi=1 (5.55)

4. Obtain a realization of Z(Mk) via

max
j∈N

(
gj(Xj)−Mk

j

)
(5.56)

We can obtain an estimator like in (5.5) by repeating this procedure N times.
The suitable filtration is now

F ′j = Fj ∨ σ
{
X̃i,(r)
p , i = 0, . . . , j, r = 1, . . . , k, p = j, . . . ,J

}
, (5.57)

since the stopping times τ
(r)
j+1 are adapted to the filtration generated by the

subsimulations. It will then also be fulfilled that

EFJ [Mk
j] = Mj , j = 0, . . . ,J (5.58)

holds, which is in sense of Remark 80.
To make the complexity analysis of this method feasible, we have again two

results in order to check the relevance of Theorem 75 and Theorem 76. Both
of them include that the bias of the method can be expected to be O(1/k), see
Remark 77.

Corollary 85. If E[gj(Xj)
2] < ∞ for j = 0, . . . ,J , assumption (AR) holds

with β = 1.

Corollary 86. If gj(Xj) < c almost surely for j = 0, . . . ,J , assumption (AR’)
holds with arbitrary large α and β = 1.

Once again, the bounded payoff function is not a crucial assumption. When
compared to the method in the previous subsection, it is obvious that the com-
plexity is much higher here, because the subsimulations have to run for more
than one time step. Especially in case of many exercise dates, this will become
essential. On the other hand, Theorem 18 in Section 2.1 states that finding a
good estimate of the continuation value is much more difficult than finding a
good stopping time4, at least when using a fast approximation method. Thus,

4The advantage of this approach when compared to the previous subsection is similar to
policy iteration. Compare Remark 35 with a stopping time τ0 implied by some continuation
estimates. Then, the usage of the expectation of the payoff under τ1j in (5.42) is the suitable
idea.

5.2. NESTED METHODS 101

when the desired precision is very high, the Andersen Broadie approach will be
the better choice.

In order to test the estimator (5.31), we retain Benchmark Example 48 and
get a stopping rule based on continuation estimates from global regression. This
leads to very good upper bounds near to the true value 8.08, which can be seen
in Table 5.1. This table is based on 1000 repetitions of the algorithm where the
trajectories (not the subsimulations) have been generated using the antithetic
variates technique, which reduces the variance by a constant factor.

●

●

●

●

●

●

●

4 5 6 7 8

−
7

−
5

−
3

log(k)

lo
g(

bi
as

)

●

●

●

●

●

●

●

4 5 6 7 8

−
9

−
8

−
7

−
6

log(k)

lo
g(

va
ria

nc
e)

Figure 5.1: The results of Table 5.1 are shown in a log-log plot. The slope of
the two red regression lines is about −1.1.

k 100 200 400 800 1600 3200

E[Z(Mk)] 8.20706 8.14471 8.11085 8.09348 8.08537 8.08107

Var[Z(Mk)] 1.78 0.92 0.49 0.24 0.15 0.10

E[Z(Mk)]− V0 0.12706 0.06471 0.03085 0.01348 0.00537 0.00107

Table 5.1: Results of the Andersen Broadie algorithm.

We find experimentally that the bias and the variance decrease at an order
1/k. The bias is indicated in the table as E[Z(Mk)]− V0. Actually, we should
use E[Z(Mk)] − E[Z(M)], but the stopping time used here is so close to the
optimal stopping time τ∗, so that M is very close to M∗. It is also clearly visible
that for very small ε, the order of variance decreases, since M is only nearly
optimal.

Remark 87. Many authors, for example Andersen and Broadie [2], use the

102 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

formulation

∆0 = inf
M∈M

E

[
max
j

(gj(Xj)−Mj)

]
, (5.59)

where M is the set of all F-adapted martingales not necessarily starting at M0 =
0. An upper bound for the option price is then given by ∆0 + M0. Obviously,
this approach is equivalent to Proposition 64 with M ′ = M − M0. The first
step of the algorithm above is to estimate F0. This is nothing else but testing
the stopping time τ(= τ0), because τ0 ≡ τ1 in a non-degenerate example and
exercising at t0 is suboptimal.

Thus, we could set F̂ k0 = 0 and the result of the algorithm would be an

estimator of ∆N,k
0 , which should be added to the lower estimator that can be

calculated separately. The advantage is that different numbers of trajectories
can be used for the two procedures. The quantity ∆0 will be zero for many
trajectories.

Furthermore, Broadie and Cao [16] suggest other methods to improve the
efficiency of the Andersen Broadie technique and of lower bound estimators.
One of those is called “boundary distance grouping”. For each path, one has
to check if it approaches the vicinity of the exercise region. If this is the case,
then subsamples are created to estimate the value of ∆0. If not, the procedure
is skipped.

Another one of their ideas is called “local policy enhancement”. If the tra-
jectory is likely to enter the exercise region, the decision whether to exercise is
not based on the given stopping time τ . Instead, the stopping time τ is tested
on a large number of subsimulations and the result is compared to the current
payoff. This procedure can be seen as a one-step policy iteration, see Remark
35, in the vicinity of the exercise boundary.

They also introduce “sub-optimality checking”, which is an improvement of
policy fixing. With all those methods at hand, they state that the “computa-
tional time is reduced by a factor of several hundred”.

5.2.3 Complexity Analysis of Nested Methods

In this section we want to examine the complexity of the Monte Carlo estimator
as given in Section 5.2 with a martingale MK under (AC). Therefore, we recall
the definition 5of Y N,K

Y N,K =
1

N

N∑
n=1

max
j=0,...,J

(
gj(X

(n)
j)−MK,(n)

j

)
, (5.60)

that is based on a set of trajectories(
X

(n)
· ,M

K,(n)
·

)
, n = 1, ..., N,

which are i.i.d. samples of the vector (X·,M
K
·). We want to determine the

order of complexity that is needed for a desired accuracy ε. The latter is again
measured in terms of the root-mean-squared error with respect to the dual upper

5An upper-case K is used for Y N,K to distinguish it from the multilevel estimator.

5.2. NESTED METHODS 103

bound of the target martingale (not the true option price). That is, we want to
achieve √

E
[
(Y N,K − Y (M))

2
]
≤ ε

with minimal cost, where the cost (or complexity) is measured in terms of the
number of simulated subsamples

C = NK.

When the integer numbers N and K are treated as reals, we have the minimiza-
tion problem

C (ε) := inf
N,K>0

{
NK : E

[(
Y N,K − Y (M)

)2] ≤ ε2
}
,

The solution will be easy, since the bias-variance decomposition says that

E
[(
Y N,K − Y (M)

)2]
= E

[(
Y N,K − E[Z(MK)] + E[Z(MK)]− E[Z(M)]

)2]
= E

[
(Y N,K − E[Z(MK)])2

]
+ (E[Z(MK)]− E[Z(M)])2

= Var
[
Z(MK)

]
/N + |E[Z(MK)−Z(M)]|2.

We will call vK = Var[Z(MK)] and distinguish two cases. Firstly, the case of a
surely optimal martingale M and its approximation MK . Secondly, the usual
case that the target martingale M is not surely optimal and we assume the
convergence vK → v∞ 6= 0. The following corollary is about the second case.

Corollary 88. Assuming that vK is non-increasing, under (AR) alone we have
that

C (ε) ∈ O

v⌈ (2C)1/β

ε2/β

⌉
ε2+2/β

 (5.61)

and in particular, if vK → v∞

C (ε) ∈ O
(
ε−2−2/β

)
.

Hence C (ε) ∈ O(ε−4) for the Andersen-Broadie algorithm. To see that ε−4

can be realized and is not just an upper bound for the complexity, we look again
at Example 78 in Section 5.2. We saw that in this case, Theorem 75 provides
the best result possible and in the proof of Corollary 88, the choice for K∗ and
N∗ is optimal. Furthermore we have that

vK = Var

[
max

(
0,

1

K

K∑
l=1

ξ(l) − ξ

)]
−→ Var[ξ+] =: v∞,

which is equal to 1
2−

1
2π and thus different from zero. Using Theorem 76 instead

of Theorem 75 for the complexity analysis of course yield better results, so we
have the following corollary.

104 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

Corollary 89. Assuming that vK is non-increasing, under the more restrictive
assumptions (AR’), (AL) and (AQ), we have

C (ε) ∈ O

v⌈ (2C)1/2γ

ε1/γ

⌉
ε2+1/γ

 (5.62)

and in particular, when α =∞, β = 1 and vK → v∞ 6= 0,

C (ε) ∈ O
(

1

ε2+ 2
a+1

)
.

When referring to the situation of Remark 77, we now know that in case
of the Andersen Broadie algorithm and assumption (AL) with 0 < a < 1, the
complexity will be of order C (ε) ∈ O(ε−3−δ) for arbitrary small δ > 0.

For the first case that the target martingale is surely optimal, we have the
following results.

Corollary 90. When using a surely optimal target martingale M , we have
under assumption (AR) alone that

C (ε) = O

(
1

ε2/β

)
. (5.63)

In particular, if (AR) is fulfilled with β > 1 then the complexity is less
than ε−2, which is often considered plainly “the complexity of Monte Carlo
algorithms”.

Corollary 91. When using a surely optimal target martingale M , under the
more restrictive assumptions (AR’), (AL) and (AQ), we have

C (ε) ∈ O
(

1

ε2+(1−β)/γ

)
. (5.64)

The complexity (5.64) is not better than (5.63) in case of β = 1, so if
the target martingale is M∗, nothing is won when using the Andersen Broadie
algorithm.

Remark 92. In the proof of Corollary 91, we see that the optimal choice for
N∗ and K∗ to achieve the optimal complexity implies N∗ ∼ εβ/γ−2 which is
constant in the case of (AR), i.e. γ = β/2. This is illustrated at the points
where γ ≤ β/2 in Figure 5.2. The figure shows the complexity depending on γ
and β and is thus a summary of Corollary 90 and Corollary 91.

So counterintuitively, if the target martingale is surely optimal and β = 1,
it is efficient only to increase the number of subsimulations, but not the number
of trajectories. In the general case of a suboptimal martingale, the situation will
be similar. Provided that the martingale is not too bad, one should use a high
number of subsimulations and a rather small number of trajectories.

In summary, we can state that for the Andersen Broadie method, assump-
tions (AR’), (AL) and (AQ) allow us to reduce the order of complexity by a
factor of nearly ε−1 from O(ε−4) down to O(ε−3−δ). This is also the true order
and not just an upper bound, since the assumptions of Theorems 75 and 76 are
efficient as shown by Example 78 and Figure 5.2.2. This result will be compared
to the multilevel version of the Andersen Broadie estimator in Section 6.1.

5.3. GENERALIZED BSDE RECURSION 105

γ

β

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

ga
m

m
a

beta

com
p

Figure 5.2: The order of complexity following Corollary 91 and Corollary 90
depending on γ and β. If β = 1, the complexity is constant in γ and equal to
ε−2.

5.3 Generalized BSDE Recursion

The optimal stopping problem as defined in Chapter 1 can be seen as a special
case of a more general class of stochastic dynamic programming problems. Those
problems arise for example when discretizing BSDEs 6 with convex generator
or in case of fully nonlinear second order parabolic PDEs 7.

The generalized formulation reads as follows. We are interested in finding
an estimator for Y0 and we are given the recursion

Yj = Fj (E [βj+1Yj+1]) , j = 0, . . . ,J − 1, (5.65)

with terminal condition

YJ = FJ (0). (5.66)

In particular, the solution of the problem may be multi dimensional, i.e. we
have

F : {0, . . . ,J } × Ω× RD+1 → R,
β : {0, . . . ,J } × Ω→ RD+1,

such that D denotes the dimension of the solution, no longer of the underlying.
The assumptions on the generator F and β that we ask to obtain a class of
problems that are treatable with our techniques will be specified in detail below.

First of all, this formulation obviously includes optimal stopping problems.
Therefore, insert Fj(z) = max(gj(Xj), z), β ≡ 1 and FJ = gj(XJ) with some
payoff function gj(Xj). Here, we have D = 0 irrespectively of the possibly
multi-dimensional underlying X.

6Backwards Stochastic Differential Equations
7Partial Differential Equations

106 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

Since the main purpose of (5.65) is the treatment of BSDEs that typically
lead to recursions of this type, let us mention a typical finance related example
about funding cost. It is well known that the problem of finding a replicative
strategy for the (max-) call option requires borrowing money. The amount
of money to borrow increases or decreases form time step to time step. In
contrast, when considering a (min-) put option or the negative of a (max-)call
option, lending more or less money will be necessary. Thus, in both cases there
will be one process modeling the bond with one interest rate. However, when
constructing the replicating strategy for the sum of several different options,
lending and borrowing can both be necessary. For example, consider the payoff

(max
d

Xd
T − κ1)+ − 2(max

d
Xd
T − κ2)+, (5.67)

i.e. the sum of a positive and a negative call option. There will be two interest
rates, Rb for borrowing and Rl for lending money, which are now decisive for
the solution of the corresponding recursion and thus for the fair price. Sup-
pose D risky assets modeled via Geometric Brownian Motion and the following
dependence structure

dXd
t = Xd

t

(
µdt dt+

D∑
k=1

σd,kt dW k
t

)
, (5.68)

where σ is assumed to be almost surely invertible with bounded inverse. From
El Karoui [33] we learn that the solution of this problem can be represented via
a BSDE of the form

dYt = −f(t,Yt,Zt)dt+ Z T
t dWt (5.69)

with f given by

f(t, y, z) = −Rlty − zTσ−1
t

(
µt −Rlt1̄

)
+ (Rbt −Rlt)

(
y − zTσ−1

t 1̄
)−

(5.70)

and terminal condition

YT = (max
d

Xd
T − κ1)+ − 2(max

d
Xd
T − κ2)+. (5.71)

When discretizing this BSDE, we get

Yj = E[Yj+1|Fj] + (tj+1 − tj)f (tj ,E [Yj+1|Fj] , Zi) (5.72)

where Zi is given by

Zi = E

[
Wti+1

−Wti

ti+1 − ti
Yi+1

∣∣Fi

]
. (5.73)

At each time step, the amount of money that is invested into the stocks is then
given by ZTt σ

−1
t . There are other typical finance related examples that lead to

a recursion (5.65), like option pricing under model uncertainty or credit value
adjustment, for the latter see [27].

Analogously to optimal stopping theory, there are now primal and dual meth-
ods that provider lower and upper bounds. Let us note the following three
assumptions to make the calculation of dual upper bounds possible.

5.3. GENERALIZED BSDE RECURSION 107

(R) The process β = (β0, . . . , βD) is bounded, adapted and D+ 1 dimensional
and fulfills β0 ≡ 1. The mapping F is Lipschitz continuous in z ∈ RD+1

uniformly in (j, ω) and satisfies E[|Fj(0)|2] <∞ for every j = 0, . . . ,J .

(Comp) For every j and any two Fj+1-measurable, integrable real-valued ran-
dom variables V, V̄ such that V ≥ V̄ a.s., it holds that

Fj
(
E
[
βj+1V

∣∣Fj]) ≥ Fj (E [βj+1V̄
∣∣Fj]) . (5.74)

(Conv) The map z → Fj(ω, z) is convex for every j and almost every ω.

Assumption (R) ensures that the solution of (5.65) stays square integrable for
all time steps. The other ones will be used below. A generalized version of the
dual approach makes use of the following definition.

Definition 93. Let us define θup : {0, . . . ,J } × MD+1 → R recursively via
θupJ (M) = FJ (0) and

θupj (M) = Fj(βj+1θ
up
j+1(M)− (Mj+1 −Mj)), j = 0, . . . ,J − 1.

Here,MD denotes the set of all D-dimensional martingales. This definition
is analogue to the expression Z(M) from Chapter 5, because we have for optimal
stopping that

θupj (M) = max(hj(Xj), θ
up
j+1(M)− (Mj+1 −Mj)) (5.75)

which leads to

E [θup0 (M)] = E

[
max

j=0,...,J
(gj(Xj)−Mj)

]
, (5.76)

if we restricted ourselves to the use of martingales starting at M0 = 0.

Theorem 94. Under (R), (Comp) and (Conv), we have that

Y0 = inf
M∈MD+1

E [θup0 (M)] (5.77)

and even

Y0 = θup0 (M∗) a.s. (5.78)

for the martingale part M∗ of the D + 1 dimensional process βY .

As Bender, Schweizer and Zhuo in [11] express it: “Roughly speaking, the
idea is to remove all conditional expectations from equation and substact mar-
tingale increments, wherever conditional expectations were removed.” In par-
ticular, Theorem 94 says that each D + 1-dimensional martingale M ∈ MD+1

provides an upper bound via

Y0 ≤ E[θup0 (M)], (5.79)

which can again be exploited with a Monte Carlo estimator.

108 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

In order to realize a nested estimator again, we fix some approximation Ỹ
of Y and estimate the martingale part of βỸ via

MK
j =

j∑
i=1

(
βiỸi −

1

K

K∑
ν=1

ξ
(ν)
j

)
, (5.80)

where ξ
(ν)
j are subsamples fulfilling Law(ξ

(ν)
j) = Law(βj Ỹj |Fj−1) for all j =

0, . . . ,J . The Monte Carlo estimator is now

Y N,K0 =
1

N

N∑
n=1

θ
up,(n)
0

(
MK,(n)

)
(5.81)

based on i.i.d. replications{(
F

(n)
j , β

(n)
j ,MK,(n)

)
, j = 0, . . . ,J , n = 1, . . . , N

}
.

and the corresponding multilevel estimator (see Chapter 6) based on N0, . . . , NL
paths and K0, . . . ,KL subsamples is given by

Y N,K
0 =

1

N0

N0∑
n=1

θup,(n)(MK0,(n)) (5.82)

+

L∑
l=1

1

Nl

Nl∑
n=1

[
θ
up,(n)
0 (MKl,(n))− θup,(n)

0 (MKl−1,(n))
]
, (5.83)

where {
(F

(n)
j , β

(n)
j ,M

Kl−1,(n)
j ,M

Kl,(n)
j), n = 1, . . . , Nl, j = 0, . . . ,J

}
are i.i.d. replications, coupled as much as possible. Since assumptions like (AL)
are much more difficult to derive in the general setting, we have at least that it
holds again

E
[
|MK

j −Mj |2
]

= E

∣∣∣∣∣∣
j∑
j=1

EFi−1
[βiỸi]−

1

K

K∑
l=1

ξ
(l)
i

∣∣∣∣∣∣
2
 ≤ 1

K

J∑
i=1

E |βiỸi|2],

(5.84)

which belongs to O(K−1) if E[|βiỸi|2] <∞, i = 1 . . . ,J ,
We can thus perform the same complexity analysis as it will be done for

the optimal stopping case. The standard Monte Carlo estimator (5.81) in gen-
eral leads to a complexity of ε−4, whereas the multilevel technique reduces the
order to ε−2. In practice, we can observe that such problems might have less
complexity. We have a bias given asymptotically by K−0.7 in the funding cost
example, which leads to a complexity of about ε−3.4 for the standard Monte
Carlo estimator, see proof of Corollary 89. However, proving such results in the
general BSDE case will be very difficult.

Of course, there is not only a dual but also a primal approach available
for BSDE recursions like (5.65). Karoui, Peng, Quenez [33] present a primal
representation using the convex conjugate of the generator F .

5.4. MARTINGALES FROM CONVEX OPTIMIZATION 109

The most popular approach to construct lower bounds are again regression
methods, see for example Lemor, Gobet and Warin [56]. Thereby, it is recom-
mended to use martingale basis functions, so that the conditional expectations
can be calculated explicitly. As explained before in Remark 82, Glasserman and
Yu [42] use such functions for optimal stopping problems. Bender and Steiner
[12] use the same idea for the BSDE case.

5.4 Martingales from Convex Optimization

Instead of approximating M∗ better and better in order to get an upper bound
Y (M) that becomes smaller and smaller, we now want to discuss a procedure
that works the other way around. Let us look for some martingale M that
minimizes Y (M) irrespectively of its relation to M∗.

Since the set M0 of all F-martingales with initial value zero is too large and
contains M∗, the idea is senseless when formulated like that. Let us fix a set
of martingales that are easy to simulate from. Therefore let (Ψ, ρ) denote a,
possibly infinitely dimensional, metric space that will be used as a parameter
space for the martingales and define

M = {M·(ψ) : ψ ∈ Ψ}, (5.85)

where the function M(·) yields the martingale depending on some parameter.
Now we have an upper bound for the true option price V0 via

inf
M∈M

E [Z(M)] , (5.86)

see Theorem 61 and Monte Carlo simulation can be used to evaluate this ex-
pression by “training” and “testing” again. Therefore, look at the empirical
formulation of the optimization problem

MN := arg inf
M∈M

1

N

N∑
i=1

Z(i)(M), (5.87)

where Z(i)(M) := maxj=0,...,J (Z
(i)
j − M

(i)
j) are based on the i.i.d. samples

(Z
(1)
· ,M

(1)
·), . . . , (Z

(N)
· ,M

(N)
·) of the vector process (Z·,M·). Then, simulate R

i.i.d. copies of the minimizing martingale and we have

1

R

R∑
r=1

Z(r)(MN), (5.88)

which is a high biased Monte Carlo estimator for V0. The testing step (5.88) is
necessary to avoid overfitting that could occur in (5.87). Roughly speaking, the

minimum in (5.87) could be to well adapted to the N realizations (Z
(i)
· ,M

(i)
·).

However, numerically realizing this procedure is quite complicated. The first
question is how to parametrize martingales, so we recall the martingale repre-
sentation theorem taken from Steele[68]. It is about the continuous American
case, but will be helpful. We will turn to the discrete Bermudan case again
later.

110 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

Theorem 95. Suppose that Xt is an Ft-martingale, where Ft is the standard
Brownian filtration. If there is a T > 0 such that E[X2

T] ≤ ∞, then there is a
ϕ(ω, s) ∈ L2

a[0, T] such that 8

Xt =

∫ t

0

ϕ(ω, s)dWs for all 0 ≤ t ≤ T. (5.89)

Moreover, the representation in this equation is unique up to a set of dP × dt
measure zero.

Applying this theorem to the martingale part of the true price process M∗

proofs the possibility to work with basis functions in the one dimensional case.
It is not hard to see that in our Markovian setting, it will even hold

M∗t =

∫ t

0

ϕ∗(Xs, s)dWs, (5.90)

with some ϕ∗, which is stronger than (5.89) because ϕ∗ is no longer directly
depending on ω. It is a self-suggesting idea to fix a set of functions ϕ1, . . . , ϕK

and try to find a linear combination of them such that β1ϕ
2 + . . .+βKϕ

K ≈ ϕ∗.
To get an idea how the basis functions should look like in practice, we consider
the next result taken from Wang and Caflisch [75].

Theorem 96. Suppose the price of an American option V AMt based on a couple
of assets X1

· , . . . , X
D
· given by the stochastic differential equations

dXd
t = µd(t,Xt)dt+ σd(t,Xt)dW

d
t , d = 1, . . . , D. (5.91)

The martingale part M∗ of it is then given by

M∗t =

∫ t

0

D∑
d=1

∂V AM (u,Xu)

∂xd
σd(u,Xu)dW d

u , (5.92)

which depends on the true value V AMt .

As before, the integrand in (5.92) is square integrable, i.e. we have a vector-
valued function ϕ∗ : R× RD → RD, such that

M∗t =

∫ t

0

ϕ∗(s,Xs)dWs, (5.93)

written in vector notation and
∫ t

0
E[|ϕ∗(s,Xs)|2]ds < ∞. In practice, we now

have to find some heuristic ideas to define functions ϕ1, . . . , ϕK : R×RD → RD,
so that

∑D
d=1

∂V
∂xd

σd is included in their span. When defining

M(ψ) =

∫ ·
0

D∑
d=1

K∑
k=1

ψkϕ
k
d(s,Xs)dW

d
s (5.94)

in accordance with (5.85), the set of martingales becomes

M =

{
K∑
k=1

D∑
d=1

ψk

∫ ·
0

ϕkd(s,Xs)dW
d
s , ψ ∈ RK

}
, (5.95)

8L2
a[0, T] is the set of all adapted processes Xt with

∫ T
0 E[X2

t]dt <∞.

5.4. MARTINGALES FROM CONVEX OPTIMIZATION 111

so we have Φ = RK as a parameter space. It is possible to reformulate M as a
linear span of martingales

M =
{
β1M

1 + . . .+ βKM
K , β1, . . . , βK ∈ R

}
, (5.96)

by setting

Mk
t =

D∑
d=1

∫ t

0

ϕkd(s,Xs)dW
d
s . (5.97)

The optimization problem infM∈M E [Z(M)] is now finite dimensional and the
empirical counterpart (training step)

MN = arg inf
M∈M

1

N

N∑
n=1

Z(n)(M) (5.98)

can be reformulated in terms of the coefficients. Therefore, fix N i.i.d. copies

(Z
(1)
· ,W

(1)
· , X

(1)
·), . . . , (Z

(N)
· ,W

(N)
· , X

(N)
·) (5.99)

of the vector process (Z·,W·, X·) and for each n = 1, . . . , N base the corre-
sponding trajectories of the martingales M1,(n), . . . ,MK,(n) on those copies via
(5.97). Now we have MN = M(β∗), where

β∗ = arg inf
β∈RK

1

N

N∑
r=1

[
max
j

(
gj

(
X

(r)
j

)
−

K∑
k=1

βk M
k,(r)
j

)]
. (5.100)

The optimization problem (5.100) is called “pathwise optimization problem” by
Desai, Farras and Moallemi [31]. It is convex, since it is a “nonnegative linear
combination of a set of pointwise suprema of affine functions of β”, as they point
out. These mappings preserve convexity. In their article, they state that in the
Bermudan case it is possible to reformulate the problem as

min
β∈RK ,u∈RN

1

N

N∑
n=1

un (5.101)

subject to ui +

j∑
i=1

K∑
k=1

βk
(
M

k,(r)
i −Mk,(r)

i−1

)
≥ gj

(
X

(r)
j

)
, (5.102)

where the constraint (5.102) must hold for all n = 1, . . . , N and j = 0, . . . ,J .
This is a linear program that can be solved with standard methods, for example
“GLPK”. For a numerical experiment, we retain Benchmark Example 48 with
D = 5 assets. Let us recall the properties of the exercise region from Section 1.2.
With some inspiration we define the following three classes of basis functions.
Denote

trigk(x) =

{
cos(k2x), k even,

sin(k+1
2 x), k odd

as an abbreviation for trigonometric functions. Let ιt : [0, T]→ {1, . . . , D} be a
random ordering at time t, where ιt(1) is the index of the highest asset at time
t, ιt(2) is the index of the second highest and so on, such that

X
ιt(D)
t ≤ Xιt(D−1)

t ≤ . . . ≤ Xιt(1)
t .

112 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

Set yd(x) = log(xd)/
√
T − t, d = 1, . . . , D, where the dependence on t is omitted

for the sake of notation. For k = 0, . . . , 24, choose

ϕkd(x, t) = xd

{
trigk(yιt(1)(x)), d = ιt(1)

0, otherwise

to approximate (5.92). Here, xd corresponds to the volatility function σ up to
a constant, since the assets are modeled via geometric Brownian motion and
the bracket approximates ∂V

∂xd
via trigonometric functions that depend on the

maximum of all assets. In case of a max-call option, the derivative of the true
value indeed strongly depends on this maximum, especially in the vicinity of
the exercise region (and completely within the exercise region).

For k = 25, . . . , 49, define the functions

ϕkd(x, t) = xd

trigk−25(y(x)ιt(1) − y(x)ιt(2)), d = ιt(1)

−trigk−25(y(x)ιt(1) − y(x)ιt(2)), d = ιt(2)

0, otherwise,

that are motivated by the properties of the “push”, which is the difference
between the highest and second highest asset. The higher the push, the more
likely exercising is optimal, see Section 1.2. Thus, the true value and so its
derivative might depend on the push.

For k = 50, . . . , 74, we set

ϕkd(x, t) = xdtrigk−50(y(x)d)

to model dependence from each single asset and finally have 75 martingales
defined by

Mk
t =

D∑
d=1

∫ t

0

ϕkd(Xd
s , s)dW

d
s .

Let us return to the Bermudan setting. It is convenient to use a discretization
according to the exercise dates and obtain

M̂k
j =

D∑
d=1

j−1∑
i=0

ϕkd(Xd
i , ti)(W

d
i+1 −W d

i), (5.103)

which are still martingales in the discrete setting. Unfortunately, for a small
number of exercise dates the approximation (5.103) is not a good choice. The
martingale representation theorem holds for the continuous case, so the finite
sum must be close to the integral to provide the existence of a suitable integrand
ϕ∗. Thus, it is convenient to add more time steps to the sum approximating
the integral without changing the number of exercise dates. In this example,
we used 300 such time steps and obtain martingales M̃ . We finally have a
discretized family

M =
{
β1M̃

1
· + . . .+ β75M̃

75
· , β1, . . . , β75 ∈ R

}
.

Many numerical optimization methods prefer smooth functions. However, our
problem is not that smooth, since the maximum function

arg max
j=0,...,J

(Zj −Mj(ψ)) (5.104)

5.4. MARTINGALES FROM CONVEX OPTIMIZATION 113

may ”jump“ for small changes of the parameter ψ, so it will be difficult for the
gradient methods to find the right direction to look for the minimum. For a
vector (x0, . . . , xJ), we define a smoothed version of the maximum function via

p
maxx =

1

p
log

 J∑
j=0

exp(pxj)

 (5.105)

with some parameter p > 0 so that

p
maxx→ maxx, as p→∞. (5.106)

The reason is that

p
maxx−maxx

=
1

p
log

 J∑
j=0

exp(pxj)

− 1/p log(exp(pmaxx))

= 1/p log

 J∑
j=0

exp(px)/ exp(pmaxx)

≤ 1/p log(J + 1)→ 0, as p→∞.

The results based on 5000 paths for estimating the coefficients β1, . . . , β75 and
5000 testing paths are presented in Table 5.2. For comparison, we also give the
confidence intervals from Andersen Broadie [2] based on 10000 inner simulations
and the estimates from Rogers [64] who makes use of the Black-Scholes formula
and Remark 50. In parenthesis the deviations from the corresponding upper
confidence intervals of Andersen and Broadie are given. The computation time
is of order of 5 minutes on 2.1Gz processor.

Xd
0 A&B Interval Rogers Dual Sieve Dual Standard deviation

90 [16.602, 16.655] 16.98 (1.95%) 17.02 (2.19%) 0.03142

100 [26.109, 26.292] 26.75 (1.74%) 26.60 (1.17%) 0.03997

110 [36.704, 36.832] 37.61 (2.11%) 37.27 (1.19%) 0.04734

Table 5.2: Convex optimization in case of a 5-dimensional max-call Bermudan
option.

It is very unlikely that the true value can be reached when the martingales
are constructed in such a way. However, in case of some simple options it
might be the case that there are martingales inM that have the surely optimal
property. Let Ψ∗ ⊂ Ψ denote the subset of all parameters ψ such that M(ψ) is
a martingale with this surely optimal property.

Belomestny [7] suggests to introduce a penalization term motivated by the
statement of Theorem 66, which leads to the optimization problem

inf
M∈M

E [Z(M)] + λ
√

Var [Z(M)], (5.107)

114 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

where λ > 0 determines the degree of penalization by the variance. For a
good set of martingales, the penalization will have hardly any disadvantages.
Especially for small λ, it will only prefer a solution with small variance from
all solutions that are nearly optimal in (5.86). If Ψ∗ is nonempty, there is no
disavdantage, since every martingale associated with Ψ∗ is also a solution of
(5.107) for all λ > 0. However, their are some advantages.

We recall that the number of martingales fulfilling the surely optimal prop-
erty might be large, and additionally there may be infinitely many martingales
that minimize E[Z(M)] without having the surely optimal property, see Theo-
rem 65 and the following remarks.

Thus, the approach (5.107) is advantageous compared to (5.86) irrespectively
whether Ψ∗ 6= ∅ holds or not because it provides a martingale with smaller
variance for the testing step anyway, so that less samples will be needed. The
variance can be seen as a regularization term with regularization parameter λ,
see for example Hofmann [48]. Now consider the empirical version of (5.107)

MN := arg inf
M∈M

(
1

N

N∑
n=1

Z(n)(M) + λ
√
VN (M)

)
, λ > 0, (5.108)

where

VN (M) :=
1

N(N − 1)

∑
1≤n<m≤N

(Z(n)(M)−Z(m)(M))2.

is a well known unbiased estimator for the variance. Again, in case of a linear
span of martingales as in (5.100), the problem is numerically feasible by opti-
mizing over the coefficients. This problem can no longer be solved via linear
programming. Methods for convex optimization are necessary here, see Chapter
7.

If Ψ is infinite-dimensional, minimizing (5.108) over ψ ∈ Ψ may not be
well-defined. Even if a minimizer exists, it is generally difficult to compute or
has a very slow rate of convergence. Therefore, the introduction of “sieves” is
motivated as explained in the next subsection.

5.4.1 Sieves Method

In case of an infinitely dimensional parameter space Ψ, difficulties may arise
because the problem of optimization over an infinite-dimensional noncompact
space may no longer be well-posed. Thus, it is convenient to look for an approx-
imating sequence of non-decreasing parameter subspaces Ψ1 ⊆ Ψ2 ⊆ . . . ⊆ Ψ,
called “sieves” in the following. Then we have suitable sequence of families of
martingales M1,M2, . . ., where Mν = {M(ψ), ψ ∈ Ψν}.

We consider compact sieves that provide the existence of some projection
mapping πν : Ψ → Ψν , which maps each parameter from Ψ to some point in
Ψν such that ρ(ψ, πνψ) → 0 as ν → ∞. In the following, this role is played
by the functions that are used as integrands in the martingale representation
in Theorem 96. More precisely, we now use Ψ = L2

P ([0, T] × RD) instead of
Ψ = RD, but we retain linear sieves of the form

ΨΛ := {α1ϕ
1 + . . .+ αΛϕ

Λ : α1, . . . , αΛ ∈ R}, (5.109)

5.5. PROOFS 115

as before. As the choice λ = 0 is senseless for all grades of approximation, we
look at the martingales that are solutions to the slightly modified problem

MN := arg inf
M∈MΛN

(
1

N

N∑
n=1

Z(n)(M) + (1 + λN)
√
VN (M)

)
, (5.110)

where ΛN →∞ and λN → 0 as N →∞. It was shown by Belomestny [7] that
under a proper choice of λN and ΛN

max
{
E[Z(MN)]− V0,

√
Var[Z(MN)]

}
= OP

(
δN + ΛD+1

N log(ΛN)/
√
N
)
,

where δN = infψ∈ΨΛN
, ψ∗∈Ψ∗ ρ(ψ,ψ∗). In other words, the bias and the variance

are converging to zero, where the convergence rate mainly depends on the den-
sity of the sieves measured by δn. Without the penalization it is not possible
to achieve this bound. The sequence (MN)N∈N could get stack at a martingale
which is minimizing (5.86) without having the optimal surely property. The
notation OP (f) is called the stochastic Landau symbol and is defined following
van der Vaart [73].

Definition 97. The stochastic Landau symbol OP is defined as follows.

Xn ∈ OP (Rn) means Xn = YnRn and Yn ∈ OP (1),

where OP (1) denotes a sequence that is bounded in probability.

5.5 Proofs

Proof of Theorem 62

From the Doob decomposition, i.e. Theorem 63, we know that there is a mar-
tingale M∗ such that

Vj = V0 −Aj +M∗j

with A0 = M∗0 = 0 and A is an increasing process since the true value process
V is a supermartingale. Inserting M∗ into (5.1) leads to

Z(M∗) = max
j

(
Zj −M∗j

)
(5.111)

= max
j

(Zj − Vj + V0 −Aj)

= V0 + max
j

(Zj − Vj −Aj)︸ ︷︷ ︸
≤0

≤ V0.

The underbraced term is less or equal to zero since the true value is always
greater or equal to the current payoff by definition and Aj is an increasing
process starting at initial value 0. At the same time, equation (5.1) tells us that
the expectation of Z(M∗) is greater or equal to V0, so equality

V0 = max
j

(Zj −M∗j)

must hold almost surely.

116 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

Proof of Theorem 69

The left hand sides of the two inequalities are implied by Theorems 61 and 68.
To prove the right hand sides of the inequalities, check that

WM
j = E

[
max
j≤i≤J

(Zi −Mi)|Fj
]

+Mj (5.112)

≤ E

[
max
j≤i≤J

(Wi −Mi)|Fj
]

+Mj (5.113)

= E

[
max
j≤i≤J

Ai|Fj
]

+Mj = Aj +Mj = Wj , (5.114)

which is basically the same argument as in the proof of Theorem 62. The first
equality in (5.114) follows since A is nonincreasing. The multiplicative case
follows analogous:

WB
j = EB

[
max
j≤i≤J

gi(Xi)

Bi

∣∣∣Fj]Bj
≤ EB

[
max
j≤i≤J

Wi

Bi

∣∣∣Fj]Bj
= EB

[
max
j≤i≤J

Li

∣∣∣Fj]Bj = LjBj = Wj ,

because L is nonincreasing.

Proof of Theorem 71

There are two possibilities for the proof, we will use one for the two statements
either.

We define an “equivalent payoff” with the help of the true continuation value
function Cj via

g′j(x) =

{
−∞ , Cj(x) > gj(x)

gj(x) , otherwise
.

In particular, g′J ≡ gJ , because CJ ≡ −∞ by definition. Now, since τ∗ = J in
case of gi(Xi) = 0 for all i = 0, . . . ,J − 1, we have

sup
τ∈T

E [g′τ (Xτ)|X0 = x0] = sup
τ∈T

E [gτ (Xτ)|X0 = x0] .

This can be interpreted as two options with the same true value. So we have

E[max
N

gj(Xj)−Mj] ≥ E[max
O

gj(Xj)−Mj] = E[max
j
g′j(Xj)−Mj]

= sup
τ∈T

E [g′τ (Xτ)|X0 = x0] = sup
τ∈T

E [gτ (Xτ)|X0 = x0] = V0

which proves (5.24).
The following idea is taken from Caflisch and Wang [75]. In case of the Doob

martingale M∗, let t be a time step such that (t,Xt) ∈ C is a continuation point
and let s∗ be the next optimal exercise time, i.e. s∗ = min{s > t : (s,Xs) ∈ E}

5.5. PROOFS 117

and exercising at the last time step is optimal per definition. We know from
Proposition 70 that M∗s∗ = M∗s − Vs − Vs∗ , since the path is contained in the
continuation region. Thus

Zt −M∗t < Vt −M∗t = Vs∗ −M∗s∗ = Zs∗ −M∗s∗ , (5.115)

so the maximum of Zt−M∗t cannot be attained at a time steps t where exercising
is suboptimal.

Proof of Corollary 74

Because of the Doob decomposition Vj = V0 +M∗j −Aj , we note at first that

Λ = min
j /∈Q

(
V0 − Zj +M∗j

)
= min

j /∈Q

(
Vj − Zj +A∗j

)
≥ min

j /∈Q
(Vj − Zj) ≥ min

{j:Vj>Zj}
(Vj − Zj) ,

where the last inequality follows because we know from Theorem 71 that the
maximum of Zt −M∗t cannot be attained at a point where exercising is subop-
timal. In other words j /∈ Q leads to Vj > Zj . We now have up to a constant
(for the sake of notation, fix j to be the “worst time step”) that

P (Λ−a ≤ x) ≥ P ((Vj − Zj)−a ≤ x|Vj > Zj)

= P ((Vj − Zj) ≥ x−1/a|Vj > Zj),

which is the conditional probability of the event that the asset stays in the
vicinity of the exercise boundary.

Since we may assume the boundary assumption (AB)

P(|Cj − Zj | ≤ δ) ≤ Aδα, δ → 0, (5.116)

even for all time steps, we can bound P (Vj − Zj ≥ δ|Vj > Zj) with the help of
the law of total probability

P (|Cj − Zj | ≤ δ) =P (Cj − Zj ≤ δ|Cj > Zj)P (Cj > Zj)

+P (Zj − Cj ≤ δ ∧ Cj ≤ Zj).

Notice that Cj = Vj if Cj > Zj , so we have

P (Vj − Zj ≤ δ|Vj > Zj) =
P (|Cj − Zj |) ≤ δ)− P (Zj − Cj ≤ δ ∧ Cj ≤ Zj)

P (Vj > Zj)

≤ Aδα − P (Zj − Cj ≤ δ ∧ Cj ≤ Zj)
P (Vj > Zj)

,

which is smaller than Aδα if P (Vj > Zj) is greater than zero. This can be

118 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

assumed for a nondegenerate example. So using δ = x−1/a yields

E[Λ−a] =

∫ ∞
0

(1− P (Λ−a ≤ x))dx

≤
∫ ∞

0

(1− P (Vj − Zj ≥ x−1/a|Vj > Zj))dx

=

∫ ∞
0

P (Vj − Zj < x−1/a|Vj > Zj)dx

≤
∫ ∞

0

Ax−α/adx,

which is finite if a < α and so (AL) is fulfilled.

Proof of Theorem 75

On the one hand, it holds for each k ∈ N and jmax
k := minQk that

Z(Mk)−Z(M) = max
j=0,...,J

(Zj −Mk
j)− max

j=0,...,J
(Zj −Mj)

≤Mjmax
k
−Mk

jmax
k

, a.s., (5.117)

and on the other hand, we get for each k ∈ N and Q =: {jmax},

Z(Mk)−Z(M) ≥Mjmax −Mk
jmax . (5.118)

By (5.117) and (5.118) we thus have

E
[(
Z(Mk)−Z(M)

)2] ≤ E

[
max

j=1,...,J

(
Mj −Mk

j

)2] ≤ Bk−β .
Further, by the Cauchy-Schwarz inequality we so have immediately,

|E[Z(Mk)−Z(M)]| ≤
{

E

[
max

j=1,...,J

(
Mj −Mk

j

)2]}1/2

≤
√
B · k−β/2.

Proof of Theorem 76

Let us now turn to the case where in addition assumptions (AR’), (AL) and
(AQ) are fulfilled. From (5.117) we obtain for k ∈ N,

EFJ [Z(Mk)−Z(M)] ≤ EFJ

[
Mjmax

k
−Mk

jmax
k

]
= EFJ

[(
Mjmax

k
−Mk

jmax
k

+Mk
jmax −Mjmax

)
1jmax
k 6=jmax

]
︸ ︷︷ ︸

(I)

+ EFJ
[
Mjmax −Mk

jmax

]︸ ︷︷ ︸
(II)

Note that Zjmax
k
−Mk

jmax
k
≥ Zjmax −Mk

jmax and hence

{jmax
k 6= jmax} ⊂

{
max

j=1,...,J
(Mj −Mk

j +Mk
jmax −Mjmax) ≥ Λ

}
.

5.5. PROOFS 119

We thus have

PFJ (jmax
k 6= jmax) ≤ PFJ

(
max

j=1,...,J
(Mj −Mk

j +Mk
jmax −Mjmax) ≥ Λ

)
≤ PFJ

(
max

j=1,...,J
(Mj −Mk

j) ≥ Λ/2

)
+ PFJ

(
Mk
jmax −Mjmax ≥ Λ/2

)
≤ PFJ

(
max

j=1,...,J
(Mj −Mk

j) ≥ Λ/2

)
+ PFJ

(
max

j=1,...,J
(Mk

j −Mj) ≥ Λ/2

)
.

By (AR’) and the conditional Markov inequality it follows that

PFJ

(
max

j=1,...,J
(Mj −Mk

j) ≥ Λ/2

)
≤ 4B

Λ2
k−β , PFJ

(
max

j=1,...,J
(Mk

j −Mj) ≥ Λ/2

)
≤ 4B

Λ2
k−β .

Hence

PFJ (jmax
k 6= jmax) ≤ 8B

Λ2
k−β

for all k. Furthermore, due to (AR’) and a conditional version of the generalized
Hölder inequality

E |XY | ≤ ‖X‖p ‖Y ‖q
for 1

p + 1
q ≤ 1 and p, q ≥ 1, we obtain by taking q = 2 and p = max{2, 2/a},

(I) ≤ [PFJ (jmax
k 6= jmax)]

1/p

√
4 EFJ

[
max

j=1,...,J

(
Mj −Mk

j

)2]

≤ 2 (8B)
1/p

Λ2/p
k−β/pBk−β/2 =:

B1

Λ2/p
k−β(1/p+1/2).

Combining (5.117) with (5.118) and using assumption (AR’) again for the term
(II), we arrive at the inequality

−Ak−α ≤ E[Z(Mk)−Z(M)] ≤ B1k
−β(1/p+1/2) E

[
1

Λ2/p

]
+Ak−α ≤ Ck−γ

with γ = min {α, βmin {1, (a+ 1)/2}} and some C > 0.

Proof of Remark 79

In Example 78, there are three values possible for M1, so

1. ξ = 3/2b ⇒ M1 = 1/2b, Z(M) = 0, Q = {0}, Λ = 1/2b

2. ξ = b ⇒ M1 = 0, Z(M) = 0, Q = {0, 1}, Λ =∞ per definition

3. ξ = 1/2b ⇒ M1 = 1/2b, Z(M) = 1/2b, Q = {1}, Λ = 0,

so we have

E[Λ−a] = P(ξ = 3b/2)× (1/2b)−a + P(ξ = b)×∞−a + P(ξ = b/2)× 0−a.

Hence, E[Λ−a] <∞ is not fulfilled for a > 0.
Furthermore, with positive probability we have that ξ = E[ξ] in the second

case and we have the vector Z−M = (0, E[ξ]−ξ) = (0, 0), which violates (AQ).

120 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

Proof of Corollary 83

We check that

EFJ [max
j

(Mk
j −Mj)

2]

≤ EFJ

 J∑
j=0

{
Mk
j −Mj

}2

= EFJ

 J∑
j=0

{
j∑
i=1

(
EFi−1

[
V̂i(Xi)

]
− 1

k

k∑
l=1

V̂i

(
X

(l)
i

))}2

= EFJ

 J∑
j=0

j∑
i=1

EFi−1

(
EFi−1

[
V̂i(Xi)

]
− 1

k

k∑
l=1

V̂i

(
X

(l)
i

))2

holds and because of the law of the subsamples we thus have

EFJ [max
j

(Mk
j −Mj)

2]

≤
J∑
j=0

j∑
i=1

EFJ
1

k

[
VarFi−1

[V̂i(Xi)]
]

=
J
k

j∑
i=1

EFJ

[
VarFi−1 [V̂i(Xi)]

]
≤ J

k

J∑
i=1

EFJ

[(
EFi−1

[
V̂i(Xi)

])2
]

≤ J
k

J∑
i=1

EFJ

[
V̂ 2
i (Xi)

]
.

For the unconditional expectation, it thus follows

E EFJ

[
max
j

(Mk
j −Mj)

2

]
≤ J

k

J∑
i=1

E EFJ

[
V̂ 2
i (Xi)

]
J
k

J∑
i=1

E
[
V̂ 2
i (Xi)

]
≤ cJ

k
=: k−1B,

since we may assume that E[V̂ 2
j (Xj)] <∞, j = 0, . . . ,J .

Proof of Corollary 84

We know from the proof of Corollary 83 that

EFJ

[
max
j

(Mk
j −Mj)

2

]
≤ J

k

J∑
i=1

EFJ

[
V̂ 2
i (Xi)

]
,

which is smaller than J c2

k if V̂j(Xj) < c almost surely and β = 1 is shown.
Furthermore, (5.44) can be expressed by writing α =∞.

5.5. PROOFS 121

Proof of Corollary 85 and 86

It holds

EFJ

[
max
j

(Mk
j −Mj)

2

]

≤ EFJ

 J∑
j=0

(Mk
j −Mj)

2

=

J∑
j=0

EFJ

{F kj − Fj + F k0 − F0 +

j∑
i=0

(
Fi − F ki

)
1τi=i

}2

=

J∑
j=0

EFJ

[{
F kj − Fj

}2
1τj 6=j +

{
F k0 − F0

}2
+

j−1∑
i=0

{
Fi − F ki

}2
1τi=i

]

=

J∑
j=0

EFJ

[J∑
i=0

{
Fi − F ki

}2

]

≤ J
k

J∑
i=0

EFJ [VarFi [Fi]] ≤
J
k

J∑
i=0

EFi
[
F 2
i

]
.

We have for Corollary 85 that

E

[
J
k

J∑
i=0

EFi
[
F 2
i

]]
≤ J

k

J∑
i=0

E[(gτi+1
(Xi+1))2] =: k−1B, (5.119)

since we may assume E[gi(Xi)
2] <∞ for i = 0, . . . ,J and

Fj = EFj [gτj+1(Xτj+1)]. (5.120)

For Corollary 86 it suffices to note that

Fj = EFj [gτj+1
(Xτj+1

)] ≤ max
i>j

(gi(Xi)) ≤ c. (5.121)

for some in general suboptimal rule τ , so β = 1 and α =∞ again.

Proof of Corollary 88 and 90

See proofs of Corollary 89 and Corollary 91 with γ = β/2.

Proof of Corollary 89

By Theorem 75 it is clear that

E
[(
Y N,K − Y (M)

)2]
. N−1vK + CK−2γ (5.122)

as K → ∞ and to ensure that E
[(
Y N,K − Y (M)

)2]
. ε2, it is obviously

optimal to choose K and N as small as possible such that N−1vK ≤ ε2/2 and
K−2γ ≤ ε2/2 are fulfilled. So we have

K∗(ε) =
(2C)

1/2γ

ε1/γ
, N∗(ε) =

2vK
ε2

, (5.123)

122 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

yielding a complexity of

N∗(ε)×K∗(ε) ∈ O

v⌈ (2C)1/2γ

ε1/γ

⌉
ε2+1/γ

 , (5.124)

which is optimal since vK is non-increasing.

Proof of Corollary 91

In case of a surely optimal target martingale M , it holds

vK = Var
[
Z(MK)

]
≤ E

[
(Z(MK)−Z(M))2

]
≤ BK−β .

From Corollary 89 we know that

C (ε) ∈ O

v⌈ (2C)1/2γ

ε1/γ

⌉
ε2+1/γ

 , (5.125)

so with vK ≤ K−β , we have

C (ε) ∈ O

(
(1
ε1/γ

)−β

ε2+1/γ

)
= O

(
1

ε2+1/γ−β/γ

)
(5.126)

since vK is non-increasing.

Proof of Theorem 94

Let us define Y upj = E[θupj |Fj], where the dependence on M is omitted. As-
sumption (Conv) allows us to apply Jensen’s inequality such that

Y upj ≥ Fj
(
E[βj+1θ

up
j+1|Fj]

)
= Fj

(
E[βj+1Y

up
j+1|Fj]

)
. (5.127)

Since it is clear that YJ = FJ (0) = Y upJ , we can show inductively that Y upj ≥ Yj
for all j using (Comp) and in particular E [θup0] ≥ Y0.

When inserting M∗, equality holds in (5.78). This can be checked inductively
with M∗j −M∗j−1 = βjYj − E

[
βjYj

∣∣Fj−1

]
.

Proof of Theorem 96

At first we calculate the differential of Vt according to Itô’s formula:

dVt =
∂Vt
∂t

dt+

D∑
d=1

∂Vt
∂xd

dXd
t +

1

2

D∑
d=1

D∑
e=1

∂2Vt
∂xd∂xe

dXd
t dX

e
t

Then, by using the rules of box calculus, see e.g. Steele [68], we obtain

dVt =

(
∂V

∂t
+

D∑
d=1

µd
∂V

∂xd
+

1

2

D∑
d=1

D∑
e=1

∂2V

∂xd∂xd
σdσeρde

)
dt+

D∑
d=1

∂V

∂xd
σddW d

t

5.5. PROOFS 123

= L̃BSVtdt+

D∑
d=1

∂Vt
∂xd

σddW d
t ,

where L̃BS is the discounted Black-Scholes operator defined by

L̃BS =
∂

∂t
+

D∑
d=1

µd
∂

∂xd
+

1

2

D∑
d=1

D∑
e=1

σdσeρde
∂2

∂xd∂xe
.

Integration provides

Vt − V0 =

∫ t

0

L̃BSVtdu+

∫ t

0

D∑
d=1

∂Vt
∂xd

σddW d
u . (5.128)

By comparison with the Doob decomposition and its uniqueness, see Theorem
63, it is clear that

M∗t =

∫ t

0

D∑
d=1

∂Vu
∂xdu

σd(u,Xu)dW d
u .

124 CHAPTER 5. UPPER BOUNDS VIA DUAL METHODS

Chapter 6

Multilevel for Nested Dual
Methods

It is not only possible to use the multilevel technique to reduce the complexity
of lower biased estimators as in Chapter 3, but also to reduce the complexity of
nested dual methods. Therefore, we consider the standard Monte Carlo estima-
tor Y N,K introduced in Section 5.2 and compare it to its multilevel counterpart
Y n,k. The complexity CML(ε) of the latter will then be compared to C (ε) from
Section 5.2.3. It turns out that if only (AR) is fulfilled with β = 1, it holds that
CML(ε) ∈ O(ε−2 ln2(ε)), regardless of the assumptions (AR’), (AL), and (AQ).

The complexity analysis will take place in the next section. Afterwards, in
Section 6.2, we want to analyse the complexity of the multilevel estimator given
a fixed number of levels. The results are then tested in case of a “worst-case
example”, see Section 6.3.

Section 6.4 is exclusively about the complexity of the Andersen Broadie
method. That complexity analysis will be more precise and the asymptotic
behavior of the computational gain will be analysed more exactly under some
mild heuristics. Finally, in Section 6.5 the two estimators have to compete and
their efficiency will be judged by some variance criterion. In a numerical example
modeling LIBOR rates, it is shown as expected that the multilevel estimator
becomes better and better as the available computational budget increases.

Let us recall the standard Monte Carlo estimator

Y N,K =
1

N

N∑
n=1

max
j=0,...,J

(
Z

(n)
j −MK,(n)

j

)
(6.1)

from Section 5.2. Now, fix some natural number L > 0. Let k = (k0, . . . , kL) be
a sequence of natural numbers satisfying 1 ≤ k0 < k1 < . . . < kL and write

Y (MkL) = Y (Mk0) +

L∑
l=1

[Y (Mkl)− Y (Mkl−1)] (6.2)

= E[Z(Mk0)] +

L∑
l=1

E[Z(Mkl)−Z(Mkl−1)].

125

126 CHAPTER 6. MULTILEVEL FOR NESTED DUAL METHODS

For a given sequence n = (n0, . . . , nL) with n0 > . . . > nL ≥ 1, we first simulate
the initial set of trajectories{(

Z
(i)
j ,M

k0,(i)
j

)
, i = 1, ..., n0, j = 0, . . . ,J

}
of the vector process (Z·,M

k0
·) and then for each level l = 1, . . . , L independently

a set of trajectories{(
Z

(i)
j ,M

kl−1,(i)
j ,M

kl,(i)
j

)
, i = 1, ..., nl, j = 0, . . . ,J

}
of the vector process (Z·,M

kl−1
· ,Mkl

·). As in Chapter 3, it is not strictly pre-
scribed how to sample Mkl−1 and Mkl at the same time. For each application
of the multilevel technique, there might be possibilities to sample in a way such
that Mkl−1 and Mkl are particularly correlated to further increase the efficiency.
Only the marginal distributions of the two martingales must not be changed.
It is clear that both of the martingale realizations will be based on the same
trajectory of the payoff, i.e. Z(i). In case of nested methods, it is convenient
to reuse the subsamples from Mkl when generating Mkl−1 , which will be done
in the following numerical examples. This turns out to be a very worthwile
enhancement.

Based on these simulations, we define the multilevel estimator

Y n,k :=
1

n0

n0∑
i=1

Z(i)(M k0) +

L∑
l=1

1

nl

nl∑
i=1

[
Z(i)(Mkl)−Z(i)(Mkl−1)

]
, (6.3)

where Z(i)(Mk) := maxj=0,...,J

(
Z

(i)
j −M

k,(i)
j

)
.

6.1 Complexity Analysis

We obtain the bias of the multilevel algorithm by taking expectations in (6.2)
which leads to a telescopic sum, such that∣∣E [Y n,k

]
− Y (M)

∣∣ =
∣∣E [Z(MkL)

]
− E [Z(M)]

∣∣ ≤ Ck−γL (6.4)

if Theorem 76 is fulfilled or with γ = β/2 in case of Theorem 75. Since the
samples used in the different levels are independent and thus uncorrelated, we
have for the variance that

Var
[
Y n,k

]
= n−1

0 Var[Z(Mk0)] +

L∑
l=1

1

nl
Var

[
Z(Mkl)−Z(Mkl−1)

]
. (6.5)

We note that for l > 0 it holds

Var
[
Z(Mkl)−Z(Mkl−1)

]
≤ E

[(
Z(Mkl)−Z(Mkl−1)

)2]
≤ 2 E

[(
Z(Mkl)−Z(M)

)2]
+ 2 E

[(
Z(Mkl−1)−Z(M)

)2]
≤ 2(Bk−βl +Bk−βl−1) ≤ 4Bk−βl−1 ≤ B̃k

−β
l−1,

by Theorem 75. For notational convenience, we assume that B̃ is such that also
Var[Z(Mk0)] ≤ B̃k−β0 . We now arrive at the following complexity theorem.

6.2. ALTERNATIVE ADJUSTMENT OF LEVELS 127

Theorem 98. Suppose that kl = k0κ
l for some integer k0, κ > 1, and l =

0, . . . , L. Assume that the inequalities (5.29) hold with γ ≥ 1/2. Fix some 0 <
ε < 1 and set

L =

− ln

kγ0 ε

C
√

2

γ lnκ

 . (6.6)

Let

nl =

⌈
2ε−2B̃k−β0 κL(1−β)/2(1− κ−(1−β)/2)−1κ−l(1+β)/2

⌉
, β < 1,⌈

2ε−2B̃(L+ 1)k−1
0 κ−l

⌉
, β = 1,⌈

2ε−2B̃k−β0 (1− κ−(β−1)/2)−1κ−l(1+β)/2
⌉
, β > 1.

and the complexity of the estimator Y n,k is given by

CML(ε) :=

L∑
l=0

klnl ∈

O(ε−2−(1−β)/γ), β < 1,

O(ε−2 ln2 ε), β = 1,

O(ε−2), β > 1.

(6.7)

This result should be compared to the complexity of the standard dual nested
method

C (ε) ∈ O
(

1

ε2+1/γ

)
(6.8)

in case of vk → v∞ 6= 0 from Theorem 89. It is eye-catching that (6.7) is
independent of γ, while (6.8) is not.

When comparing Theorem 75 and Theorem 76, it is clear that particularly
in cases that (AR’), (AQ) or (AL) are not fulfilled the order of complexity can
be reduced tremendously by the multilevel technique. If β = 1 and (AR) only
holds with a bias rate of γ = 1/2, we have CML(ε) ∈ O(ε−2 ln2 ε) compared to
C (ε) ∈ ε−4 of the standard Monte Carlo estimator.

In the better case that γ = 1 also holds, the gain will still be of order ε−1.
This Andersen Broadie case will be examined more precisely in Section 6.4.

6.2 Alternative Adjustment of Levels

In the approach of Giles it is assumed that kl = k0κ
l for all levels l = 1, . . . , L

and some positive natural number κ. This choice makes the complexity analysis
a little easier. However, a priori it is not clear if this choice for k is optimal.
In particular, the order of complexity that can be achieved with the multilevel
technique might be higher with another choice. Another disadvantage is that it
is difficult to measure the order of the multilevel estimator numerically. As the
desired precision ε becomes smaller, more and more levels have to be introduced.
This typically leads to a saw tooth function as shown in Section 3.1.1.

In this section, we want to fix the number of Levels L and calculate the
optimal rate of complexity that can be achieved with the optimal choice of kl
and nl depending on ε. We will denote the resulting complexity by χ(L). It turns
out that asymptotically for L→∞, there will be no improvement compared to
Giles’ result. However, our result makes it possible to achieve nearly optimal

128 CHAPTER 6. MULTILEVEL FOR NESTED DUAL METHODS

complexity rates with a finite number of levels, which makes implementation
and numerical analysis easier.

Let us recall the bias-variance decomposition of a multilevel estimator

k−2γ
L︸ ︷︷ ︸

squared bias

+
1

n0
+

L∑
l=1

k−βl−1

nl︸ ︷︷ ︸
variance

. ε2 (6.9)

to ensure a root-mean-squared error less than ε. Suppose the complexity of the
multilevel estimator to fulfill

L∑
l=0

klnl . ε−χ(L), (6.10)

asymptotically for L → ∞, i.e. we already assume the existence of an order of
complexity given by a number χ(L) > 0. The task is now to find maximal nl
and kl in the sense that (6.10) is fulfilled with minimal χ(L) subject to (6.9).
First of all, we know from (6.9) that kL = ε−1/γ must hold to ensure that the
bias is decreasing quickly enough as ε→ 0. In order to fulfill (6.10) we can now
decide that the largest choice of nL allowed is given by

nL = ε−χ/kL = ε−χ+1/γ .

This result can in turn be inserted into (6.9) and we know about the optimal
choice for kL−1 to ensure that each of the summands in (6.9) is asymptotically
smaller than ε2. Thus, it is possible to use (6.9) and (6.10) alternately which
leads to the following result:

kL = ε−1/γ

⇒ nL = ε1/γ−χ

kL−1 =
(
ε2+1/γ−χ

)−1/β

= ε−2/β− 1
βγ+χ/β

⇒ nL−1 = ε−χ/ε−2/β− 1
βγ+χ/β = ε−χ+2/β+ 1

βγ−χ/β

kL−2 =
(
ε2−χ+2/β+ 1

γβ−χ/β
)−1/β

= ε
−2/β+χ/β−2/β2− 1

γβ2 +χ/β2

⇒ nL−2 = ε
−χ+ 1

γβ2 +2/β+2/β2−χ/β−χ/β2

kL−3 = ε
−2/β+χ/β− 1

γβ3−2/β2−2/β3+χ/β2+χ/β3

⇒ nL−3 = ε
−χ+2/β−χ/β+ 1

γβ3 +2/β2+2/β3−χβ2−χ/β3

It is quite obvious that this iterative procedure yields the formulas

log(kL−i) = − 1

γβi
+ (χ− 2)

i∑
k=1

1

βk
(6.11)

⇒ log(nL−i) = −χ+
1

γβi
+ (2− χ)

i∑
k=1

1

βk
(6.12)

In order to further analyze these quite general expressions for nl and kl, we have
to distinguish two different cases.

6.2. ALTERNATIVE ADJUSTMENT OF LEVELS 129

1. In case of β = 1 we have

log(kL−i) = − 1
γ + i(χ− 2) log(nL−i) = −χ+

1

γ
+ i(2− χ).

Now, from 1
n0

= ε2 we infer that

−2 = −χ+ 1/γ + i(2− χ)

⇔ χ =
2 + 1/γ + 2L

L+ 1

must be the order of complexity. We have that χ→ 2 as L→ 0, which is
in agreement with Theorem 98.

2. In case of β 6= 1 we have a geometric series and so

log(kL−i) = − 1
γβi + (χ− 2) βi−1

βi+1−βi log(nL−i) = −χ+
1

γβi
+ (2− χ)

βi − 1

βi+1 − βi

and from 1
n0

= ε2 we infer that now

−2 = −χ+
1

γβL
+ (2− χ)

βL − 1

βL+1 − βL

⇔ χ =
2γβL+1 + β − 2γ − 1

γ(βL+1 − 1)
.

It thus holds that for β < 1

χ→ 2 + (1− β)/γ, as L→ 0 (6.13)

and for β > 1

χ→ 2, as L→ 0, (6.14)

which is also in agreement with Theorem 98.

When inserting the optimal χ, we can also reformulate nl and kl independently
and arrive at the following theorem.

Theorem 99. When using a fixed number of levels L, the complexity of the
multilevel estimator CL(ε) as in (6.9) and (6.10) and the optimal choice of nl
and kl are given in the following:

• In case of β = 1:

CL(ε) = ε−
2+1/γ+2L

L+1

kl(ε) = ε−
l+1

γ(L+1) , nl(ε) = ε
l

γ(L+1)
−2

• In case of β 6= 1:

CL(ε) = ε
− 2γβL+1+β−2γ−1

γ(βL+1−1)

kl(ε) = ε
− β1+l−1

γ(βL+1−1) , nl(ε) = ε
(2−2βL+1)γ+βl+1−β

γ(βL+1−1)

130 CHAPTER 6. MULTILEVEL FOR NESTED DUAL METHODS

As the results from Theorem 99 converge to the result of Giles 1, it is now
clear that it is no hard restriction to assume kl = k0κ

l.
When inserting γ and β for dual nested methods, we have at first the good

natured case that (AL), (AR) and (AR’) are fulfilled. Following Corollary 89,
it may happen that γ = 1 and β = 1 and so

CL(ε) = ε−
2L+3
L+1

kl(ε) = ε−
l+1
L+1 , nl(ε) = ε

l
L+1−2,

which implies CL(ε)→ 2, as l→∞. Those numbers are shown in Table 6.1.

L k0 k1 k2 k3 n0 n1 n2 n3 χ(L)

0 -1 -2 3

1 -1/2 -1 -2 -3/2 2.5

2 -1/3 -2/3 -1 -2 -5/3 -4/3 7
3 = 2.6̄

3 -1/4 -2/4 -3/4 -1 -2 -7/4 -6/4 -5/4 9
4 = 2.5

4 . 11
5

Table 6.1: The optimal adjustment of the multilevel estimator given in powers
of ε.

Secondly, in the worst case of a dual nested method that those assumptions
are not fulfilled, we only have γ = 1/2 and β = 1, so

CL(ε) = ε−
4+2L
L+1

kl(ε) = ε−
2l+2
L+1 , nl(ε) = ε

2l
L+1−2,

which is used in Section 6.3. The theorem is also used for the table about lower
bounds in Section 3.2.3 with γ = 1 and β = 1/2.

6.3 Single-Period Example

To numerically illustrate the results of the previous section, let us consider a
“worst case scenario”, i.e. let us assume that only Theorem 75 is fulfilled and
76 is not. We take again the single-period Example 78 with b = 10 and recall
from Remark 79 that (AL) and (AQ) are violated, so β = 1, γ = 1/2 and we
cannot expect an order of ε−3 for the standard MC, but ε−4.

Since measuring the order of complexity when using Theorem 45 will be
difficult, we use a fixed number of levels L as in Section 6.2 and we choose some
suitable constants for nl and kl by experience.

CL(ε) = ε−
4+2L
L+1

1Note that our approach (6.9) includes the result of Giles [39], as kl−1 = kl/κ in his setting.

6.4. COMPLEXITY ANALYSIS OF AB METHOD 131

kL = 100× ε−2, kl(ε) = 10× ε−
2l+2
L+1 , l = 0, . . . , L− 1 (6.15)

n0 = 1000× ε−2, nl(ε) = ε
2l
L+1−2, l = 1, . . . , L

L k0 k1 k2 k3 n0 n1 n2 n3 − log(CL(ε))

0 -2 -2 4

1 -1 -2 -2 -1 3

2 -2/3 -4/3 -2 -2 -4/3 -2/3 8
3 = 2.6̄

3 -1/2 -1 -3/2 -2 -2 -3/2 -1 -1/2 10
4 = 2.5

4 . 2.4

Table 6.2: Level adjustment for β = 1 and γ = 1/2 given in powers of ε.

Table 6.2 shows which orders to expect. The results are presented in Figure
6.1. First of all, the two log-log plots on the top measure the order of the bias
depending on the number of subsimulations k and the order of variance of the
levels. The latter is measured for some levels kl = 10× 2l, l = 0, . . . , 5. The red
regression lines indicate an order of ε−0.53 and ε−1.007 respectively. Furthermore,
we measure via very exact calculations that Y [M] = 1.255 and v∞ = 4.65. Thus,
we can infer that given the desired complexity comp, the standard Monte Carlo
is optimal with K =

√
comp/v∞ × 0.74 and N = comp/K following Corollary

88.
On the bottom, there are two plots comparing the standard Monte Carlo

algorithm indicated by the dashed line to the multilevel Monte Carlo with dif-
ferent numbers of levels L. The latter is indicated by the coloured lines which
are blue except for L = 2. For this case of L = 2 as well as for the standard
Monte Carlo, we test the algorithm three hundred times in order to check the
root-mean-squared error. The results are indicated as points in the lower right
plot. It is visible that they prove the order of complexity as calculated before.
For a complexity of greater than 20 million, the multilevel with L = 2 is bet-
ter than the standard MC. This corresponds to approximately 1 minute on a
modern computer.

The slopes of the blue lines are very accurately conform to the values in
Table 6.2. In the log-log plot, we can see that their orders are converging to
ε−2.

6.4 Complexity Analysis of AB Method

The complexity analysis in Section 6.1 is not only asymptotic in the sense that
it analyses the complexity for L→∞, but it is also quite general as it considers
arbitrary γ > β/2 and β > 0. As explained in the previous section, Theorem 89
tells us that under (AR’), (AL) and (AQ) the Andersen Broadie method may
lead to the good natured case of β = 1 and γ = 1. Under these circumstances,
a better complexity analysis is possible.

132 CHAPTER 6. MULTILEVEL FOR NESTED DUAL METHODS

●

●

●

●

●

●

2.5 3.0 3.5 4.0 4.5 5.0 5.5

−
3.

0
−

2.
5

−
2.

0
−

1.
5

Bias

log(k)

lo
g(

bi
as

)
●

●

●

●

●

●

2.5 3.0 3.5 4.0 4.5 5.0 5.5

−
4

−
3

−
2

−
1

0
1

Variances

log(k_{l−1})

lo
g(

va
ria

nc
es

)

12 14 16 18 20 22

−
5

−
4

−
3

−
2

−
1

0

log−log Comparison

log(complexity)

lo
g(

rm
se

)

L=0 (SMC)
L=1
L=2
L>2

0e+00 2e+07 4e+07 6e+07

0.
00

0.
02

0.
04

0.
06

Comparison

complexity

rm
se

Figure 6.1: Results with parameters according to (6.15).

We assume CAB(ε) = ε−3 (omitting δ) because of Remark 77. Furthermore,
Theorem 98 provides the result CML(ε) = ε−2 ln2 ε, so one hopes to have a
reduction of complexity by a factor of

R(ε) :=
CAB(ε)

CML(ε)
= ε−1. (6.16)

Additionally, we are not only interested in the order, but also the quantity of
the complexity improvement. Therefore, we want to optimize the asymptotic
behavior of the the quantities kl, nl and the resulting complexity under some
mild heuristics, which in general are indeed suboptimal.

Since the role of n0 in (6.3) it totally different from n1, . . . , nL, it will be
fruitful to optimize n0 separately. As a heuristic model, the relation of n1, . . . , nl
among each other is assumed to be inverse to kl, so the approach reads

kl = k0κ
l for 0 ≤ l ≤ L, and nl = n1κ

1−l for 1 ≤ l ≤ L. (6.17)

It is now clear that in our setting, the bias E
[
Y n,k

]
− Y (M) is asymptotically

converging to µ∞
k0κL

, which is the definition of some constant µ∞ > 0.

6.4. COMPLEXITY ANALYSIS OF AB METHOD 133

Our model leads to the simple advantage that the complexity is the same in
all levels, since nlkl = k0n1κ for all l ≥ 1.

CML = n0k0 +

L∑
l=1

nlkl

= n0k0 + n1k0κL. (6.18)

Our model also allows us to find an easy expression for the variance:

Var[Y n,k] = n−1
0 Var[Z(Mk0)] +

L∑
l=1

n−1
l Var

[
Z(Mkl)−Z(Mkl−1)

]
= n−1

0 σ2
∞ +

L∑
l=1

n−1
l k−1

l V∞

= n−1
0 σ2

∞ + n−1
1 k−1

0 V∞κ
−1L,

where σ2
∞ and V∞ are constants greater than zero. From the variance-bias

decomposition we know that in order to achieve a mean-squared error smaller
than ε2, first of all the bias has to be smaller than ε. Thus, from µ∞k

−1
0 κ−L < ε

it follows that

L >
ln ε−1 + ln (µ∞/k0)

lnκ
. (6.19)

The second part that is necessary to achieve such a mean-squared error less
than ε2 is to achieve a variance less than ε2−µ2

∞k
−2
0 κ−2L. To achieve this with

minimal effort, we optimize the number of trajectories as in proof of Theorem
45.

n∗0 =
σ2
∞ + σ∞L

√
k−1

0 V∞

ε2 − µ2
∞k
−2
0 κ−2L

,

n∗1 =
σ∞κ

−1
√
k−1

0 V∞ + κ−1Lk−1
0 V∞

ε2 − µ2
∞k
−2
0 κ−2L

= n∗0κ
−1σ−1

∞

√
k−1

0 V∞,

This choice leads to a complexity of

C ∗ML(k0, L, ε) = k0 n
∗
0(k0, L, ε) + k0κLn

∗
1(k0, L, ε)

=

(
L
√
V∞ + σ∞

√
k0

)2
ε2 − µ2

∞k
−2
0 κ−2L

, (6.20)

which is optimal considering the number of trajectories, but the number of
levels is not necessarily optimal yet. To optimize L, we differentiate (6.20) as a
function of L and obtain:

κ2Lε2 = σ∞µ
2
∞V−1/2

∞ k
−3/2
0 lnκ+ µ2

∞k
−2
0︸ ︷︷ ︸

p

+L µ2
∞k
−2
0 lnκ︸ ︷︷ ︸
q

(6.21)

134 CHAPTER 6. MULTILEVEL FOR NESTED DUAL METHODS

As expected, L → ∞ as ε ↓ 0. Taking logarithms on both sides of (6.21) leads
to

2L ln(κ) + 2 ln ε = ln(p+ qL)

⇒ L =
ln ε−1

lnκ
+

1

2 lnκ
ln(p+ qL) (6.22)

=
ln ε−1

lnκ
+

ln(qL)

2 lnκ
+O(L−1), ε ↓ 0,

since ln(a + b) = ln(b) + ln(a/b + 1) and the logarithmus naturalis has slope 1
at x = 1. Further we have

L =
ln ε−1

lnκ +O(L−1)

1− ln(qL)
2L lnκ

,

where O(L−1) and ln(qL)
2L lnκ tend to zero. Hence we have L = O(ln ε−1), as ε ↓ 0.

This implies by (6.22)

L =
ln ε−1

lnκ
+O

(
ln ln ε−1

)
(6.23)

and by iterating (6.22) once again we obtain

L =
ln ε−1

lnκ
+

ln(qL)

2 lnκ
+O(L−1)

=
(6.23)

ln ε−1

lnκ
+

ln(q)

2 lnκ
+

ln
(

ln(ε−1)
lnκ +O(ln ln ε−1)

)
2 lnκ

+O(L−1).

By inserting q = µ2
∞k
−2
0 lnκ this becomes

L =
ln ε−1

lnκ
+

ln(µ∞/k0

√
lnκ)

lnκ
+

ln ln ε−1 − ln lnκ

2 lnκ
+O

(
ln ln ε−1

ln ε−1

)
+O(L−1),

where we used again the logarithm rule as above and the terms containing ln lnκ

cancel out each other. It holds O
(
L−1

)
∈ O

(
ln ln ε−1

ln ε−1

)
and we finally define

L∗(k0, ε) :=
ln ε−1

lnκ
+

ln ln ε−1

2 lnκ
+

ln (µ∞/k0)

lnκ
+O

(
ln ln ε−1

ln ε−1

)
, ε ↓ 0. (6.24)

To check whether relation (6.19) is fulfilled, note that ln ln ε−1

ln ε−1 → 0 as ε → 0.
Thus, L∗ →∞ and (6.19) will not lead to problems for ε small enough. Inserting
the optimal number of levels from (6.24) yields

C∗ML(k0, L, ε) =V∞ε
−2

(
ln ε−1

lnκ
+

ln ln ε−1

2 lnκ
+

ln (µ∞/k0)

lnκ
+
σ∞
√
k0√

V∞

)2

×
(

1 +O

(
ln ln ε−1

ln ε−1

))
. (6.25)

The final step to find the minimal complexity under the heuristics (6.17) is the

choice of k0. The expression ln(µ∞/k0)
lnκ + σ∞

√
k0√

V∞
, which is the part of (6.25)

containing k0 becomes minimal at

k∗0 =
4V∞

σ2
∞ ln2 κ

.

6.5. INTEREST RATE EXAMPLE 135

Of course, this is not the global minimum, since equation (6.25) includes terms
of higher order that are not respected in this consideration. Anyway, since we
are interested in the coefficients of the asymptotic complexity, we collect the
term of highest order in (6.25) and obtain

C ∗ML(k0, L, ε) � V∞ε
−2

(
ln ε−1

lnκ

)2

.

From the proof of Corollary 89, we know that

C ∗AB(ε) =
2
√

2

ε3
µ∞σ

2
∞,

For the ratio R(ε) :=
C∗AB(ε)
C∗ML(ε) it thus holds that

R(ε) �

(
2
√

2

ε3
µ∞σ

2
∞

)
/

(
V∞ε

−2

(
ln ε−1

lnκ

)2
)

=
2
√

2 ln2 κ

ε ln2 ε−1
µ∞σ

2
∞/V∞,

which is sound with the expectation (6.16).

6.5 Interest Rate Example

In the previous section, the standard Andersen Broadie estimator Y N,K was
compared to its multilevel counterpart Y n,k by considering the minimal com-
plexity necessary to realize the accuracy ε. One could ask the inverse question
and look for the maximal accuracy ε∗ under a given complexity C. We would
expect the ratio of accuracies to behave according to

ε∗ML(C)

ε∗AB(C)
∈ O(C−1/6), (6.26)

where the logarithm and δ were again omitted. However, this comparison is
not appropriate for a numerical example, since the complexities are calculated
conditional that the number of trajectories and subsimulations are chosen op-
timally and estimation of the order is very sensitive, especially for a complex
numerical example like the following.

Therefore, the two estimators will be compared following the same criterion
as in Section 3.2.3: The complexity is fixed and the number of inner paths must
ensure the same bias for both methods in order to compare their variances under
equal circumstances. Thereby, we continue the previous section and assume

kl = k0κ
l for 0 ≤ l ≤ L, and nl = n1κ

1−l for 1 ≤ l ≤ L. (6.27)

Additionally, we now demand

NK = n0k0 + n1k0κL (6.28)

to fix the same complexity for both methods and

kL = k0κ
L = K, (6.29)

136 CHAPTER 6. MULTILEVEL FOR NESTED DUAL METHODS

which determines the bias. So we have

k0 = Kκ−L, n1 = NL−1κL−1 − n0κ
−1L−1.

The variances of Y k,n and Y K,N are now

Var
[
Y K,N

]
=
v(0,K)

N
, Var

[
Y k,n

]
=
v(0, k0)

n0
+

L∑
l=1

n−1
l v(kl−1, kl), (6.30)

where
v(kl−1, kl) := Var

[
Z(r)(Mkl)−Z(r)(Mkl−1)

]
denotes the variance wthin each level and V∞ and σ∞ as before. So we have
the total variance

Var
[
Y k,n

]
=
σ2
∞
n0

+

L∑
l=1

n−1
1 κl−1 V∞

k0κl
=
σ2
∞
n0

+
k−1

0 V∞L
2

NκL − n0
,

that becomes minimal for

n∗0 =
NκL

1 + L
√

V∞κL

σ2
∞K

=
NκL

1 + L
√
v(kL−1,K)κL/σ2

∞

n∗1 = n∗0

√
v(kL−1,K)κL−2

σ2
∞

(6.31)

which, if inserted yields

Var
[
Y k,n∗

]
=

1

NκL

(
σ∞ + L

√
v(kL−1,K)κL

)2

=:
Θ2
K,L

N
. (6.32)

So we have for the ratios of the two variances

R(K,L) :=
Var

[
Y k,n∗

]
Var [Y K,N]

=

(
κ−L/2 +

Lv(kL−1,K)

σ∞

)2

, (6.33)

which is only depending on K and L now.
Suppose the Andersen Broadie algorithm is run with optimal K and N , such

that the root-mean-squared error ε is minimized given a complexity C. We then
have an estimator Y K

∗(C),N∗(C). Since any choice ofK will be the optimal choice
for some number of trajectories N(K), analysing the convergence

R(K,L)→ 0 (6.34)

is indeed sufficient to show that

ε∗ML

ε∗AB
≤ εML

ε∗AB
→ 0.

This is possible, as (6.33) is independent of N and C.
The following example is about a Bermudan swaption. It is considered in Sec.

7 of Kolodko and Schoenmakers [54] in the context of the well known LIBOR
Market Model. Since the complexity analysis was done under the assumption

6.5. INTEREST RATE EXAMPLE 137

that vk → v∞ 6= 0, it is natural to choose an example where the optimal
martingale is unknown and very difficult to approximate. Benchmark Example
48 is therefore not appropriate here. Because of the very complex structure
of the interest rates, it is not easy to find a good stopping rule. We will use
the simple rule (6.38) that is implied by the maximum of all European values.
This corresponds to a policy iteration, see Remark 35 with window parameter
κ = ∞ and τ0

j ≡ j for all j = 0, . . . ,J . The first iterated stopping rule τ1

is then equal to (6.38). We will thus have a target martingale that is clearly
suboptimal, which is necessary for the multilevel technique to be advantageous,
compare Corollary 90.

The upper bounds obtained in the following are definitely higher than the
true value and the variance is clearly non-zero. Thus, it should be possible to
reach a complexity, such that the multilevel algorithm becomes faster than the
standard MC algorithm. This will indeed be visible.

Benchmark Example 100. The dynamics of the LIBOR Market Model with
respect to a tenor structure 0 < T1 < . . . < Tn in the spot LIBOR measure P ∗.
are given by the following system of SDE’s

dLi =

i∑
j=κ(t)

δjLiLj γi · γj
1 + δjLj

dt+Li γi·dW ∗ 0 ≤ t ≤ Ti, 1 ≤ i < n, (6.35)

with δi := Ti+1 − Ti, t → γi(t) = (γi,1(t), . . . , γi,d(t)) being deterministic factor
loadings, and κ(t) := min{m : Tm ≥ t} being the next LIBOR fixing date after
t. In (6.35), (W ∗(t) | 0 ≤ t ≤ Tn−1) is a d-dimensional standard Brownian
motion under the measure P ∗ induced by the numeraire

B∗(t) :=
Bκ(t)(t)

B1(0)

κ(t)−1∏
i=1

(1 + δiLi(Ti))

with Bi(t), t ≤ Ti, being zero coupon bonds with face value $1 at their respective
maturities Ti, 1 ≤ i ≤ n.

A Bermudan swaption issued at t = 0 gives the holder the right to exercise
once a cash-flow

S(Ti) :=

n−1∑
j=i

Bj+1(Ti)δj (Lj(Ti)− θ)

+

,

that is the positive part of the value of a swap contract with settlement dates
Ti+1, ..., Tn and strike θ, at an exercise date out of the set {T1, . . . , TJ } ⊂
{T1, . . . , Tn} specified in the option contract. The discounted cashflow process
reads

Zj := STj/B∗(Tj), j = 1, ...,J .

The problem data is also the same as in Kolodko and Schoenmakers [54].
There are forty-one tenor dates, so n = 41 which implies that the dimension of
the stochastic process is also 41. The maturity time is Tn = 10.25, so δi = 0.25,
for all i = 1, . . . , n. The exercise dates are equally distributed, i.e. Ti = T4i,
i = 1, . . . , 10. The initial value is 10% all over the tenor structure and the strike

138 CHAPTER 6. MULTILEVEL FOR NESTED DUAL METHODS

price is also θ = 10%, so this is an at-the-money example. The underlying
process modeled by the differential equation (6.35) is simulated via a log-Euler
scheme using a discretization with fineness ∆t = δ/5. The LIBOR volatility
structure is determined by

γi(t) = cg(Ti − t)ei, g(s) = g∞ + (1− g∞ + as)e−bs (6.36)

with c = 0.2, a = 1.5, b = 3.5, g∞ = 0.5. Here, the vectors ei are unit vectors,
such that

ρij := e>i ej = exp(−ϕ|i− j|), (6.37)

for all i, j = 1, . . . , n−1 and ϕ = 0.0413. In other words, a Cholesky-decomposition
is necessary to obtain the coefficients of the stochastic differential equation.

In the simulation, we use martingales from stopping rules, see Section 5.2.2,
with the stopping time

τi = inf

{
j : i ≤ j ≤ J , max

p: j≤p≤J
Ej Zp ≤ Zj

}
, i = 0, . . . ,J . (6.38)

Here, Ej Zp is the discounted price of the corresponding European option. They
are computed via the formula in [65] that has “accuracy better than than 0.3%
relative for this example” according to Schoenmakers. The exact numbers are

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

K (determining bias)

es
t.

st
an

da
rd

 d
ev

ia
tio

n

● AB
AB ML L=1
AB ML L=2
AB ML L=3

0 500 1000 1500 2000

0.
6

0.
8

1.
0

1.
2

1.
4

K (determining bias)

ra
tio

● AB
AB ML L=1
AB ML L=2
AB ML L=3

Figure 6.2: The plot on the right hand side shows the variance ratio function
R(K,L) for L = 1, 2, 3 from the numerical experiment. It is based on the
results for εML and εAB given in the left hand plot. It is clearly visible that the
introduction of higher levels becomes fruitful as the demanded bias is getting
smaller.

given in the next two tables. Therein, we use the abbreviations

ξ0,k0(r) = Z(r)(Mk0), ξkl−1,kl(r) = Z(r)(Mkl)−Z(r)(Mkl−1). (6.39)

6.6. PROOFS 139

In the first step, we only estimate the variances of the levels. We use n0 = 10000,
trajectories, k0 = 50, subsamples in level 0, κ = 2, nl = n0κ

−l, kl = k0κ
l, l =

0, ..., L, and compute for L = 3 levels the following quantities

v̂(kl−1, kl) =
1

nl − 1

nl∑
r=1

(ξkl−1,kl(r)− ξ̄kl−1,kl)
2, Θ̂K,L =

σ̂∞
κL/2

+ Lv̂(kL−1,K).

Here, σ̂∞ =
√
v̂(0, 300) denotes the estimator of σ∞ and Θ̂K,L estimates ΘK,L

from (6.32).

To reduce variance, the same subsimulations that were used for Z(r)(Mkl−1)
are reused in Z(r)(Mkl) in each level. The following table gives information
about the estimates of v(kl−1, kl) and ΘK,L and also gives advice how to invest
the computational time into the different levels. The latter is done by listing
n∗0/N and n∗1/N based on (6.31).

Afterwards, we fix a complexity of NK = 106 and predict how the multilevel
algorithm would perform compared to the standard MC algorithm in such a case.
Those results are given in the second table and are illustrated in Figure 6.2.

6.6 Proofs

Proof of Theorem 98

The number of levels is chosen in (6.6) such that it holds

∣∣E [Y n,k
]
− Y (M)

∣∣ ≤ C(k0κ
L)−γ = ε/

√
2. (6.40)

So the squared bias is exactly half of the accuracy ε2. For the three cases of
β, we keep that in mind and show that the allocation of the trajectories nl as
given in the theorem lead to a total mean-squared error of ε2.

1. Case β < 1 : By (6.5), we obtain for the total variance of the multilevel
estimator

Var
[
Y n,k

]
≤ B̃

L∑
l=0

B̃−12−1ε2kβ0κ
−L(1−β)/2(1− κ−(1−β)/2)κl(1+β)/2k−β0 κ−βl

= 2−1ε2κ−L(1−β)/2(1− κ−(1−β)/2)
κ(L+1)(1−β)/2 − 1

κ(1−β)/2 − 1

κ−(1−β)/2

κ−(1−β)/2

= 2−1ε2κ−L(1−β)/2
(
κ(L+1)(1−β)/2 − 1

)
κ−(1−β)/2

= 2−1ε2
(

1− κ−(L+1)(1−β)/2
)
≤ ε2/2,

which is sufficient because of the variance-bias decomposition. The order

140 CHAPTER 6. MULTILEVEL FOR NESTED DUAL METHODS

of CML(ε) follows from the estimate

L∑
l=0

klnl ≤
L∑
l=0

k0κ
l
(

2ε−2B̃k−β0 κL(1−β)/2(1− κ−(1−β)/2)−1κ−l(1+β)/2 + 1
)

=

L∑
l=0

κl
(

2ε−2B̃k1−β
0 κL(1−β)/2(1− κ−(1−β)/2)−1κ−l(1+β)/2 + k0

)
= k1−β

0

(
2ε−2B̃κL(1−β)/2

(
κL(1−β)/2 − κ−(1−β)/2

)
+ k0

κL+1 − 1

κ− 1

)
≤ 2ε−2B̃k1−β

0 κL(1−β) + k0κ
L+1

≤ 2ε−2B̃k1−β
0 κ

− ln
k
γ
0 ε

C
√

2
γ lnκ +1

(1−β)

+ k0κ
− ln

k
γ
0 ε

C
√

2
γ lnκ +2

= 2B̃

(
C
√

2
)(1−β)/γ

ε2+(1−β)/γ
κ(1−β) +

(
C
√

2
)1/γ

ε1/γ
κ2

= O(ε−2−(1−β)/γ), ε→ 0,

where one should note that γ ≥ 1/2.

2. Case β = 1 : We calculate that it holds

Var
[
Y n,k

]
≤ B̃

L∑
l=0

2−1ε2B̃−1(L+ 1)−1k0κ
lk−1

0 κ−l

= 2−1ε2
L∑
l=0

(L+ 1)−1 = ε2/2.

For CML(ε) we now have

CML(ε) ≤
L∑
l=0

k0κ
l
(

2ε−2B̃(L+ 1)k−1
0 κ−l + 1

)
=

L∑
l=0

(
2ε−2B̃(L+ 1) + k0κ

l
)

= 2ε−2B̃(L+ 1)2 + k0
κL+1 − 1

κ− 1

≤ 2ε−2B̃(L+ 1)2 + k0κ
L+1

≤ 2ε−2B̃

− ln
kγ0 ε

C
√

2

γ lnκ
+ 2

2

+

(
C
√

2
)1/γ

ε1/γ
κ2

= O(ε−2 ln2 ε), ε→ 0

since γ ≥ 1/2.

6.6. PROOFS 141

3. Case β > 1 : The variance fulfills again

Var
[
Y n,k

]
≤ B̃

L∑
l=0

2−1ε2B̃−1kβ0 (1− κ−(β−1)/2)κl(1−β)/2k−β0

= 2−1ε2(1− κ−(β−1)/2)
1− κ(L+1)(1−β)/2

1− κ(1−β)/2

= 2−1ε2
(

1− κ(L+1)(1−β)/2
)
≤ ε2/2

and for the complexity we have in this case

CML(ε) ≤
L∑
l=0

k0κ
l
(

2ε−2B̃k−β0 (1− κ−(β−1)/2)−1κ−l(1+β)/2 + 1
)

≤ 2ε−2B̃k1−β
0

L∑
l=0

(1− κ−(β−1)/2)−1κl(1−β)/2 + k0κ
L+1

= 2ε−2B̃k1−β
0

(
1− κ(L+1)(1−β)/2

)
+ k0κ

L+1

≤ 2ε−2B̃k1−β
0 +

(
C
√

2
)1/γ

ε1/γ
κ2

= O(ε−2), ε→ 0, since γ ≥ 1/2.

142 CHAPTER 6. MULTILEVEL FOR NESTED DUAL METHODS

l (kl−1, kl)
√
v̂(kl−1, kl) n∗l /N

0 (0,50) 0.006928 0.006803

1 (50,100) 0.002918 0.002199

2 (100,200) 0.002048 0.001100

3 (200,400) 0.001386 0.000550

K = 400 Θ̂K = 0.006300

0 (0,100) 0.006055 0.003993

1 (100,200) 0.002044 0.001001

2 (200,400) 0.001521 0.000501

3 (400,800) 0.001075 0.000250

K = 800 Θ̂K = 0.005366

0 (0,150) 0.006083 0.003127

1 (150,300) 0.001581 0.000590

2 (300,600) 0.001118 0.000295

3 (600,1200) 0.000809 0.000148

K = 1200 Θ̂K = 0.004569

0 (0,200) 0.005986 0.002416

1 (200,400) 0.001443 0.000431

2 (400,800) 0.001040 0.000215

3 (800,1600) 0.000764 0.000108

K = 1600 Θ̂K = 0.004435

0 (0,250) 0.005918 0.001995

1 (250,500) 0.001360 0.000334

2 (500,1000) 0.000971 0.000167

3 (1000,2000) 0.000718 0.000084

K = 2000 Θ̂K = 0.004297

0 (0,300) 0.005954 0.001809

1 (300,600) 0.001198 0.000254

2 (600,1200) 0.000822 0.000127

3 (1200,2400) 0.000602 0.000064

K = 2400 Θ̂K = 0.003949

Table 6.3: Estimates for v(kl−1, kl), n
∗
l and ΘK , l = 1, . . . , 3

6.6. PROOFS 143

l n∗l kl
1
nl

∑nl
r=1 ξkl−1,kl(r)

√
v̂(kl−1, kl)

0 6600 50 0.0341611 0.00686113

1 2230 100 1.12787e-05 0.00288741

2 1110 200 2.45243e-05 0.00193951

3 550 400 2.74035e-05 0.00140730

Y n∗,k = 0.0340843 sd(Y n∗,k) = 0.0001336

AB N = 2500 K = 400 Y N,K = 0.0341167 sd(Y N,K) = 0.0001111

l n∗l kl
1
nl

∑nl
r=1 ξkl−1,kl(r)

√
v̂(kl−1, kl)

0 3880 100 0.0341174 0.00630161

1 1010 200 6.64818e-06 0.00208278

2 500 400 4.17533e-05 0.00144304

3 250 800 6.16153e-05 0.00101637

Y n∗,k = 0.0340224 sd(Y n∗,k) = 0.0001510

AB N = 1250 K = 800 Y N,K = 0.0341235 sd(Y N,K) = 0.0001676

l n∗l kl
1
nl

∑nl
r=1 ξkl−1,kl(r)

√
v̂(kl−1, kl)

0 3050 150 0.034024 0.00613309

1 600 300 5.96397e-06 0.00167245

2 300 600 -1.46135e-05 0.00114155

3 150 1200 1.42701e-05 0.00078627

Y n∗,k = 0.0340522 sd(Y n∗,k) = 0.0001595

AB N = 850 K = 1200 Y N,K = 0.0340616 sd(Y N,K) = 0.0001903

l n∗l kl
1
nl

∑nl
r=1 ξkl−1,kl(r)

√
v̂(kl−1, kl)

0 2360 200 0.0340537 0.00593753

1 430 400 4.03549e-05 0.00157739

2 210 800 -7.94923e-06 0.00095657

3 100 1600 -7.50145e-05 0.00090936

Y n∗,k = 0.0340111 sd(Y n∗,k) = 0.0001826

AB N = 625 K = 1600 Y N,K = 0.0340312 sd(Y N,K) = 0.0002326

Table 6.4: The performance of ML estimates with the optimal choice of n∗l ,
l = 0, . . . , 3, compared to the performance of the standard AB estimate with
NK = 106 and K = kL.

144 CHAPTER 6. MULTILEVEL FOR NESTED DUAL METHODS

Chapter 7

Implementation

The numerical examples that appear in this work have been implemented in
C++. The source code can be found on on the webpage

www.uni-due.de/mathematik/dickmann/

or directly on the github account

https://github.com/cfdickmann

Many of the algorithms that can be found there make use of the library ALGLIB,
which is an open source, cross-platform library for numerical algorithms. It was
designed by Sergey Bochkanov and is available at

http://www.alglib.net/

The random numbers are generated by a Mersenne Twister, which is a popular
type of pseudorandom number generator. In the experiments, the implementa-
tion of Makoto Matsumoto and Takuji Nishimura was used, which can be found
on

http : //www.math.sci.hiroshima− u.ac.jp/ ∼ m−mat/MT/emt.html

Another interesting implementation related issue is the solution of convex opti-
mization problems which is discussed in the following section.

7.1 Smooth Minimization of Non-Smooth Func-
tions

In Section 5.4 a algorithm for convex optimization problems of the type (5.108)
was necessary. A variety of methods is available for this task, in particular
gradient methods. The so-called BFGS algorithm belongs to the class of quasi-
Newton methods because it approximates the Hessian matrix to find the best
direction of descent. It was developed by four researchers at the same time,
namely Broyden [21], Fletcher [36], Goldfarb [44] and Shanno [67] in 1970. An
implementation of it can be found in ALGLIB as well as in the library of the
scripting language R.

145

146 CHAPTER 7. IMPLEMENTATION

Another interesting method can be found in Nesterov [61]. In his article, he
describes a method to solve the minimization problem

min
x
{f(x) : x ∈ Q} (7.1)

for a function f ∈ C1,1
L (Q), which is a convex real valued function defined on a

closed convex set Q ⊂ E. The gradient is Lipschitz continuous such that

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, ∀x, y,∈ Q.

To describe the minimization algorithm, let us define the quantity

TQ(x) = arg min
y∈Q

{
〈∇f(x), y − x〉+

1

2
L‖y − x‖2 : y ∈ Q

}
,

which is an unambiguous definition in case of a convex norm ‖ · ‖. Secondly, let
d(x) be a prox-function of Q that is strongly convex with convexity parameter
σ > 0. Nesterov proposes the following algorithm.

Algorithm 2 Smooth minimization of a non-smooth function

for k ≥ 0 do
1. Compute f(xk) and ∇f(xk)
2. Find yk = TQ(xk).

3. Find zk = arg minx

{
L
σ d(x) +

∑k
i=0

i+1
2 [f(xi) + 〈∇f(xi), x− xi〉] : x ∈ Q

}
4. Set xk+1 = 2

k+3zk + k+1
k+3yk

end for

Theorem 101. For any k ≥ 0, we have that

f(yk)− f(x∗) ≤ 4Ld(x∗)

σ(k + 1)(k + 2)
(7.2)

where x∗ is the optimal solution to the problem (7.1).

It turns out that the BFGS, as well as Nesterov’s methods are appropriate
for the solution of the problem (5.108). An implementation of both of them can
be found on github in the project “AmericanOptionsBFGS”. However, rather
high values for L will be recommended and its choice is quite difficult, which is
in favor of the BFGS.

Chapter 8

Perspectives

At the end of this work, some perspectives for future research are mentioned.
The first one originates from Section 4.3.3. If it was possible to further examine
the term

Var
[
E
[
YτA − YτB

∣∣Fτ∧] ∣∣τA 6= τB
]

(8.1)

one might achieve an order of complexity even less than ε−2.5, which was the
multilevel complexity in the usual mesh case. Two other ideas are listed below.

8.1 Unbiased Estimators

As explained in the introduction of Chapter 3, Rhee and Glynn [63] suggest an
algorithm that can be seen as an extension for the multilevel technique. Roughly
speaking, they randomize the number of levels and thus construct an unbiased
estimator.

Let us apply this idea for the high biased estimator E[θup0 (M)] for a BSDE
recursion problem as given in Section 5.3. We could include the idea of Rhee and
Glynn in our multilevel technique by fixing L ∈ N+ and an increasing sequence
of positive integers

k0, k1, . . . , kL−1, kL, kL+1, (8.2)

Now, let η be a random variable taking all the numbers L,L+1, . . . with positive
probability. Denote by

pi = P (η ≥ i), i = L,L+ 1,

and introduce the new estimator

Ŷ N,K0 =
1

n0

n0∑
n=1

θ
up,(n)
0 (Mk0,(n)) (8.3)

+

L−1∑
l=1

{
1

nl

nl∑
n=1

θ
up,(n)
0 (Mkl,(n))− θup,(n)

0 (Mkl−1,(n))

}

+
1

nL

nL∑
n=1

η(n)∑
i=L

1

pi

(
θ
up,(n)
0 (Mki,(n))− θup,(n)

0 (Mki−1,(n))
)

147

148 CHAPTER 8. PERSPECTIVES

where η(1), . . . , η(nL) are i.i.d. copies of η. It is clear that the expectation of our
estimator fulfills

E[Ŷ N,K0] = E[θup0 (MkL−1)] + EL,

where EL denotes the expectation of the highest level, i.e.

EL := E

η(n)∑
i=L

1

pi

(
θ
up,(n)
0 (Mki,(n))− θup,(n)

0 (Mki−1,(n))
)

= E[θup0 (M)]− E[θup0 (MkL−1)]

because of the telescopic sum, so E[Ỹ N,K0] = E[θup0 (M)] under some assump-
tions on the sequence (Mk)k∈N.

Secondly, the variance is clear for the lower levels but must be analysed for
the highest level. Rhee and Glynn [63] can show that for approximation schemes
fulfilling

E
[(
θup0 (Mk)− θup0 (M)

)2] ≤ Ck2r (8.4)

with some r > 1/2 the variance of the highest level of our approach will be be
finite if a suitable choice for kL, kL+1 and a suitable distribution of η is used.
However, as we take from (5.84) we only have (8.4) fulfilled with r = 1/2.

Perhaps it is possible to find a little change in (8.3) or to improve the result
of Rhee and Glynn. Perhaps it is possible to randomize the number of levels in
a different way to somehow avoid this problem. Another loophole could be the
use Quasi Monte Carlo techniques that could improve (5.84).

8.2 Upper Bounds via Semi-Infinite Program-
ming

In this section, a quite new idea to construct upper bounds is introduced. Like
all other methods, it is working well in case of D = 1. Unfortunately, it turns
out that it is very unreliable in higher dimensions. It is still a challenge to get
it working at least for D = 3, 4, 5.

The basic idea exploits the characterization of the true solution Vj as the
smallest supermartingale dominating the payoff process gj(Xj), see Remark 60.
With some effort, one can show that

V0 = E

 J∑
j=0

(gj(Xj)− Cj(Xj))
+

 (8.5)

and given a lower bound lj(x) for the continuation value Cj(x) for all x ∈ RD,
we have an upper bound via

V0 ≤ E

 J∑
j=0

(gj(Xj)− l(Xj))
+

 . (8.6)

8.2. UPPER BOUNDS VIA SEMI-INFINITE PROGRAMMING 149

When constructing such a bound backwards from tJ to t0, we have the following
recursive problem for each time step: Try to find a function lj : RD → R such
that for each x ∈ RD, lj(x) is a lower biased estimator for oj(x), where

oj(x) := E

 J∑
i=j+1

(gj(Xj)− lj(Xj))
+
∣∣∣Xj = x

 . (8.7)

We have the following convenient effect: If there is a small error at time step
j such that lj(x) is too high in some region, then (8.7) will cause that lj−1(y)
will be a little higher than expected for all y that have a high transition density
to x at j. This will lead to some numerical ease, i.e. the ith summand in (8.7)
will contribute a little less and the jth summand a little more.

The following algorithm works with a set of basis functions φj : RD → R,
j = 1, . . . , J and supporting points xp ∈ RD, p = 1, . . . , p that must be fixed
before. For each exercise date ti beginning from tJ−1 to t0, carry out the
following three steps:

1. For each xp, generateM independent subsimulationsX
(1)
· , . . . , X

(M)
· start-

ing from xp at time i and estimate

Ep =
1

M

M∑
m=1

 ∑
i<k≤J

gi (X(m)
i

)
−

J∑
j=1

βji φ
j
i

(
X

(m)
i

)+ , (8.8)

where βN ≡ 0 per definition.

2. Solve the linear optimization problem

α := arginf
β∈A

P∑
p=1

Ep − J∑
j=1

βjφji (xp)

where

A =

β ∈ RJ :

J∑
j=1

βjφji (xp) ≤ Ep, p = 1, . . . , P

 .

3. Repeat steps 1 and 2 five times with different subsimulations to obtain
α1, . . . , α5 and define βi as their arithmetic mean.

Afterwards, we generate again H testing paths Y
(1)
· , . . . , Y

(H)
· and obtain

1

H

H∑
h=1

 ∑
0≤i≤J

gi (Y (h)
i

)
−

J∑
j=1

βiφ
j
i

(
Y

(h)
i

)+ (8.9)

as a high biased estimator of the option price. To solve the linear optimization
problems, we use the simplex algorithm of GLPK (GNU Linear Programming
Kit).

In case of one asset, choosing basis functions and the number of supporting
points must be done very carefully, as too many basis functions will cause the
linear optimization problem to become ill-conditioned, so little errors can cause

150 CHAPTER 8. PERSPECTIVES

X0 low σ(low) high σ(high)

80 21.5110 0.012 21.6188 0.009

90 14.8359 0.012 14.9351 0.012

100 9.8836 0.013 9.9460 0.009

110 6.3762 0.012 6.4340 0.005

120 4.0245 0.011 4.0489 0.005

Table 8.1: We used J = 16 basis functions, P = 25 supporting points, M = 5000
subsimulations and H = 10 million testing paths. The algorithm needs about 6
seconds and about 3 minutes are needed for testing on an Intel Dual Core (2.3
GHz).

large problems. In case of a big number of basis functions, 90 − 98% the coef-
ficients calculated by the GLPK turn out to be zero and summing in (8.8) and
(8.9) will be faster when saving only those coefficients different from zero and
their positions.

To treat a one-dimensional Bermudan put option with Strike price κ on
a set of J exercise dates, we choose uniformly distributed supporting points
according to

xp = κ
(

0.1 +
p

P

)
, p = 1, . . . , P,

which in case of a call option would have been xp = κ(0.9+ p
P). When choosing

basis functions {φj}j=1,...,J a first idea are polynomials and the payoff function

1, Xt, X
2
t , X

3
t , X

4
t , gt(Xt).

Furthermore, we additionally use the functions(
4
j − 6

J − 6
K − x

)+

, j = 6, . . . ,J

for the put option, where 4 has been considered optimal by experience. In this
example, there are J = 9 uniformly distributed exercise dates and maturity
time T = 0.5. There is one asset of GMB with interest rate r = 0.06, dividend
yield of δ = 0.4, and Strike κ = 100. The results are presented in Table 8.1
and Table 8.2, where the lower bounds were calculated by global regression, see
Section 2.1.2.

8.2. UPPER BOUNDS VIA SEMI-INFINITE PROGRAMMING 151

X0 low σ(low) high σ(high)

80 21.5110 0.012 21.5576 0.007

90 14.8359 0.012 14.8814 0.012

100 9.8836 0.013 9.9154 0.007

110 6.3762 0.012 6.4095 0.011

120 4.0245 0.011 4.0436 0.009

Table 8.2: Investing more time, i.e. one minute for the algorithm and 4 minutes
for testing, using J = 56 basis functions, P = 80 supporting points and M =
10000 subsimulations yields better results.

152 CHAPTER 8. PERSPECTIVES

Bibliography

[1] A. Agarwal and S. Juneja. Nearest neighbor based estimation technique
for pricing Bermudan options.

[2] L. Andersen and M. Broadie. A primal-dual simulation algorithm for pric-
ing multidimensional American options. Management Sciences, 50(9):1222–
1234, 2004.

[3] S. Asmussen and K. Binswanger. Simulation of ruin probabilities for subex-
ponential claims. Astin Bulletin, 27(2):297–318, 1997.

[4] A. N. Avramidis and H. Matzinger. Convergence of the stochastic mesh
estimator for pricing bermudan options. Journal of Computational Finance,
7:73–91, 2004.

[5] K. W. Bauer Jr, S. Venkatraman, and J. R. Wilson. Estimation procedures
based on control variates with known covariance matrix. In Proceedings of
the 19th conference on Winter simulation, pages 334–341. ACM, 1987.

[6] D. Belomestny. Pricing Bermudan options using nonparametric regression:
optimal rates of convergence for lower estimates. Finance and Stochastics,
15(4):655–683, 2011.

[7] D. Belomestny. Solving optimal stopping problems via empirical dual op-
timization. The Annals of Applied Probability, 23(5):1988–2019, 10 2013.

[8] D. Belomestny, C. Bender, and J. Schoenmakers. True upper bounds for
Bermudan products via non-nested Monte Carlo. Math. Financ., 19(1):53–
71, 2009.

[9] D. Belomestny, T. Nagapetyan, and V. Shiryaev. Multilevel path simu-
lation for weak approximation schemes: myth or reality. arXiv preprint
arXiv:1406.2581, 2014.

[10] D. Belomestny, J. Schoenmakers, and F. Dickmann. Multilevel dual ap-
proach for pricing american style derivatives. Finance and Stochastics,
17(4):717–742, 2013.

[11] C. Bender, N. Schweizer, and J. Zhuo. A primal-dual algorithm for bsdes.
arXiv preprint arXiv:1310.3694, 2013.

[12] C. Bender and J. Steiner. Least-squares monte carlo for backward sdes. In
Numerical methods in finance, pages 257–289. Springer, 2012.

153

154 BIBLIOGRAPHY

[13] A. Bensoussan and J.-L. Lions. Applications of variational inequalities in
stochastic control. Elsevier, 2011.

[14] B. Bouchard and X. Warin. Monte-Carlo valuation of American options:
facts and new algorithms to improve existing methods. Numerical Methods
in Finance, pages 215–255, 2012.

[15] P. Boyle, M. Broadie, and P. Glasserman. Monte Carlo methods for security
pricing. Journal of Economic Dynamics and Control, 21(8):1267–1321,
1997.

[16] M. Broadie and M. Cao. Improved Lower and Upper Bound Algorithms for
Pricing American Options by Simulation. Quantitative Finance, 8(8):845–
861, 2008.

[17] M. Broadie and J. Detemple. The valuation of American options on mul-
tiple assets. Mathematical Finance, 7(3):241–286, 1997.

[18] M. Broadie, Y. Du, and C. C. Moallemi. Efficient risk estimation via nested
sequential simulation. Management Science, 57(6):1172–1194, 2011.

[19] M. Broadie and P. Glasserman. A stochastic mesh method for pricing
high-dimensional American options. Journal of Computational Finance,
7(4):35–72, 2004.

[20] M. Broadie, P. Glasserman, and Z. Ha. Pricing american options by sim-
ulation using a stochastic mesh with optimized weights. In Probabilistic
Constrained Optimization, pages 26–44. Springer, 2000.

[21] C. G. Broyden. The convergence of a class of double-rank minimization
algorithms 1. general considerations. IMA Journal of Applied Mathematics,
6(1):76–90, 1970.

[22] R. Carmona, P. Del Moral, P. Hu, and N. Oudjane. An Introduction to
Particle Methods with Financial Applications. In R. A. Carmona, P. Del
Moral, P. Hu, and N. Oudjane, editors, Numerical Methods in Finance,
volume 12 of Springer Proceedings in Mathematics, pages 3–49. Springer
Berlin Heidelberg, 2012.

[23] J. Carriére. Valuation of early-exercise price of options using simulations
and nonparametric regression. Insur. Math.Econ., 19, 1996.

[24] N. Chen and P. Glasserman. Additive and multiplicative duals for american
option pricing. Finance and Stochastics, 11(2):153–179, 2007.

[25] E. Clément, D. Lamberton, and P. Protter. An analysis of a least squares
regression method for american option pricing. Finance and Stochastics,
6(4):449–471, 2002.

[26] J. C. Cox, S. A. Ross, and M. Rubinstein. Option pricing: A simplified
approach. Journal of financial Economics, 7(3):229–263, 1979.

[27] S. Crépey. Bilateral counterparty risk under funding constraintspart ii:
Cva. Mathematical Finance, 2012.

BIBLIOGRAPHY 155

[28] S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider,
C. Schwab, and H. Yserentant. Extraction of quantifiable information from
complex systems.

[29] M. Davis and I. Karatzas. A deterministic approach to optimal stopping.
Probability, Statistics and Optimisation (ed. FP Kelly). NewYork Chich-
ester: John Wiley & Sons Ltd, pages 455–466, 1994.

[30] S. Dereich and S. Li. Multilevel monte carlo for lévy-driven sdes: central
limit theorems for adaptive euler schemes. Preprint, 161.

[31] V. V. Desai, V. F. Farias, and C. C. Moallemi. Pathwise optimization for
optimal stopping problems. Management Science, 58(12):2292–2308, 2012.

[32] D. Egloff. Monte Carlo algorithms for optimal stopping and statistical
learning. Ann. Appl. Probab., 15:1396–1432, 2005.

[33] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential
equations in finance. Mathematical finance, 7(1):1–71, 1997.

[34] M. Emsermann and B. Simon. Improving Simulation Efficiency with Quasi
Control Variates. Stochastic Models, 18, 2002.

[35] Y. Feng and G. Gallego. Optimal starting times for end-of-season sales
and optimal stopping times for promotional fares. Management Science,
41(8):1371–1391, 1995.

[36] R. Fletcher. A new approach to variable metric algorithms. The computer
journal, 13(3):317–322, 1970.

[37] H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete
Time. De Gruyter studies in mathematics, 2002.

[38] S. Gerhold et al. The longstaff–schwartz algorithm for lévy models: results
on fast and slow convergence. The Annals of Applied Probability, 21(2):589–
608, 2011.

[39] M. B. Giles. Multilevel Monte Carlo path simulation. Operations Research,
56(3):607–617, 2008.

[40] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer,
2004.

[41] P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic. Multi-
level splitting for estimating rare event probabilities. Operations Research,
47(4):585–600, 1999.

[42] P. Glasserman and B. Yu. Number of paths versus number of basis functions
in american option pricing. The Annals of Applied Probability, 14(4):2090–
2119, 2004.

[43] P. Glasserman and B. Yu. Simulation for american options: Regression
now or regression later? In Monte Carlo and Quasi-Monte Carlo Methods
2002, pages 213–226. Springer, 2004.

156 BIBLIOGRAPHY

[44] D. Goldfarb. A family of variable-metric methods derived by variational
means. Mathematics of computation, 24(109):23–26, 1970.

[45] M. B. Gordy and S. Juneja. Nested simulation in portfolio risk measure-
ment. Management Science, 56(10):1833–1848, 2010.

[46] M. Haugh and L. Kogan. Pricing American options: a duality approach.
Operations Research, 52(2):258–270, 2004.

[47] S. Heinrich. Multilevel Monte Carlo methods. In Large-scale scientific
computing. 3rd international conference, LSSC 2001, Sozopol, Bulgaria,
June 6–10, 2001., pages 58–67. Springer, 2001.

[48] B. Hofmann. Mathematik inverser Probleme. Teubner Stuttgart, 1999.

[49] J. Jacod and A. Shiryaev. Limit Theorems for Stochastic Processes.
Springer, 2003.

[50] P. Jaillet, D. Lamberton, and B. Lapeyre. Variational inequalities and the
pricing of american options. Acta Applicandae Mathematica, 21(3):263–289,
1990.

[51] F. Jamshidian. Numeraire-invariant option pricing & american, bermudan,
and trigger stream rollover. 2004.

[52] M. Kohler, A. Krzyżak, and N. Todorovic. Pricing of high-dimensional
american options by neural networks. Mathematical Finance, 20(3):383–
410, 2010.

[53] A. Kolodko and J. Schoenmakers. Upper bounds for Bermudan style deriva-
tives. Monte Carlo Methods and Appl. 10(3-4):331–343, 2004.

[54] A. Kolodko and J. Schoenmakers. Iterative construction of the optimal
bermudan stopping time. Finance and Stochastics, 10(1):27–49, 2006.

[55] S. S. Lavenberg, T. L. Moeller, and P. D. Welch. Statistical results on con-
trol variables with application to queueing network simulation. Operations
Research, 30(1):182–202, 1982.

[56] J.-P. Lemor, E. Gobet, X. Warin, et al. Rate of convergence of an empirical
regression method for solving generalized backward stochastic differential
equations. Bernoulli, 12(5):889–916, 2006.

[57] F. Longstaff and E. Schwartz. Valuing American options by simulation: a
simple least-squares approach. Rev. Financ. Stud., 14:113–147, 2001.

[58] P. G. M. Broadie. A stochastic mesh method for pricing high-dimensional
American options. Journal of Computational Fincance, 7(4):35–72, 2004.

[59] D. McLeish. A general method for debiasing a monte carlo estimator. arXiv
preprint arXiv:1005.2228, 2010.

[60] B. L. Nelson. Control variate remedies. Operations Research, 38(6):974–
992, 1990.

BIBLIOGRAPHY 157

[61] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical
programming, 103(1):127–152, 2005.

[62] G. Peskir and A. Shiryaev. Optimal stopping and free-boundary problems.
Springer, 2006.

[63] C.-h. Rhee and P. W. Glynn. A new approach to unbiased estimation for
sde’s. In Proceedings of the Winter Simulation Conference, page 17. Winter
Simulation Conference, 2012.

[64] L. C. G. Rogers. Monte Carlo Valuation of American Options. Mathemat-
ical Finance, 12(3):271–286, July 2002.

[65] J. Schoenmakers. Robust Libor Modelling and Pricing of Derivative Prod-
ucts. BocaRaton London NewYork Singapore: Chapman & Hall – CRC
Press 2005, 2005.

[66] J. Schoenmakers, J. Zhang, and J. Huang. Optimal dual martingales, their
analysis, and application to new algorithms for bermudan products. SIAM
Journal on Financial Mathematics, 4(1):86–116, 2013.

[67] D. F. Shanno. Conditioning of quasi-newton methods for function mini-
mization. Mathematics of computation, 24(111):647–656, 1970.

[68] J. M. Steele. Stochastic calculus and financial applications. Springer, New
York, 2001.

[69] L. Stentoft. Assessing the least squares monte-carlo approach to american
option valuation. Review of Derivatives research, 7(2):129–168, 2004.

[70] K. T. Talluri and G. J. van Ryzin. The theory and practice of revenue
management. Springer, New York, 2005.

[71] J. Tsitsiklis and B. V. Roy. Optimal stopping of Markov processes: Hilbert
Space Theory, approximation algorithms, and an application to pricing
high-dimensional derivatives. IEEE Transactions on Automatic Control,
44:1840–1851, 1999.

[72] J. Tsitsiklis and B. V. Roy. Regression methods for pricing Amirican-style
options. IEEE Transactions on Neural Networks, 12:694–703, 2001.

[73] A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge univer-
sity press, 2000.

[74] M. Villén-Altamirano and J. Villén-Altamirano. Analysis of RESTART
simulation: Theoretical basis and sensitivity study. European Transactions
on Telecommunications, 13(4):373–385, 2002.

[75] Y. Wang and R. Caflisch. Fast computation of upper bounds for american-
style options without nested simulation. 2010.

[76] D. Z. Zanger. Convergence of a least-squares monte carlo algorithm for
bounded approximating sets. Applied Mathematical Finance, 16(2):123–
150, 2009.

158 BIBLIOGRAPHY

[77] D. Z. Zanger. Quantitative error estimates for a least-squares monte carlo
algorithm for american option pricing. Finance and Stochastics, 17(3):503–
534, 2013.

List of Research Papers

1. Chapter 6 is partly based on:
D. Belomestny, J. Schoenmakers, and F. Dickmann. Multilevel dual ap-
proach for pricing American style derivatives. Finance and Stochastics,
17(4):717-742, 2013

2. Chapter 3 is mainly based on:
D. Belomestny, F. Dickmann, and T. Nagapetyan. Pricing American op-
tions via multi-level approximation methods. arXiv preprint arXiv:1303.1334,
2013.

3. Chapter 4 is based on:
F. Dickmann and N. Schweizer. Faster comparison of stopping times by
nested conditional monte carlo. arXiv preprint arXiv:1402.0243, 2014.

4. Chapters 5 and 2 are partly based on:
D. Belomestny, C. Bender, F. Dickmann and N. Schweizer. Solving Stochas-
tic Dynamic Programs by Convex Optimization and Simulation, first chap-
ter of Extraction of Quantifiable Information from Complex Systems, Springer
2014 [28].

159

160 LIST OF RESEARCH PAPERS

Acknowledgement

First of all, I want to thank my advisor Prof. Denis Belomestny for his sup-
port and patience during the last three years. He made it possible for me to
participate in the Priority Program 1324 “Mathematical methods for extracting
quantifiable information from complex systems” of Deutsche Forschungsgemein-
schaft.

This offered to me the great opportunity to become a part of the scientific
research community and get in contact with other young researchers. With
more than 170 preprints and the book [28] published at Springer, it was really
a successful program. I would also like to thank all the authors of our articles
listed one page before. In alphabetical order, they are Prof. Christian Bender,
PD John Schoenmakers, Nikolaus Schweizer and Tigran Nagapetyan.

Another very positive thing I encountered was the friendly and motivating
working atmosphere in our group of Applied Statistics at the University of
Duisburg-Essen. Thus, I want to thank my working colleagues Anna N., Anna
S., Mikhail, Nicole, Nikolaus, Vladimir and Volker. It was really a great time.

The most important thank goes to my parents who deserve my gratitude for
all the years of caring and understanding. There would not have been so many
opportunities for me without them.

161

162 ACKNOWLEDGEMENT

Zusammenfassung in
deutscher Sprache

Der Multilevel Ansatz wurde vor allem durch die Arbeiten von Giles [39] und
Heinrich [47] in der Stochastik populär. Dabei handelt es sich um eine Idee, die
dazu genutzt werden kann, die Komplexität von Monte-Carlo Simulationen zu
reduzieren. Genauer gesagt geht es darum, dass ein stochastischer Algorithmus
gegeben ist, welcher ein nicht-deterministisches, vom Zufall abhängiges Ergeb-
nis Ak ausgibt 1. Dabei ist k ein Parameter, welcher sowohl Einfluss auf die
Rechenzeit als auch auf die Genauigkeit des Algorithmus hat. Nun kann wie
gewöhnlich E[Ak] durch einen Monte Carlo Schätzer

1

n

n∑
i=1

A
(i)
k

geschätzt werden, wobei A
(1)
k , . . . , A

(n)
k unabhängige, identische verteilte Ergeb-

nisse des Algorithmus sind. Für einen Vektor von Parametern k0, . . . kL stellt
man fest, dass

E[AkL] = E[Ak0] +

L∑
l=1

E
[
Akl −Akl−1

]
und versucht dann, jede der Erwartungen auf der rechten Seite durch eine eigene,
unabhängige Monte Carlo Simulation zu schätzen. So erhält man einen Schätzer
für E[AkL], welcher im Folgenden als “Multilevel Schätzer” bezeichnet wird. Im
Falle L = 1 kann man dies so ausdrücken: Der Algorithmus wird mit geringerer
Genauigkeit als quasi-Kontrollvariate für sich selbst benutzt. Der Sinn dieses
Vorgehens besteht in der Reduktion der Komplexität des Problems. Dieses wird
möglich sein, wenn für kleine Parameter k die Genauigkeit des Algorithmus
etwas, die Komplexität aber sehr viel geringer ist als für große k.

Der Multilevel Ansatz wird in dieser Arbeit auf folgende Problemstellung
angewendet: Es sei ein stochastischer Prozess X· gegeben, der zu J + 1 ver-
schiedenen Zeitpunkten t0, . . . ,J gestoppt werden kann. Findet diese Stop-
pentscheidung zum Zeitpunkt mit Index j statt, so erhält der Besitzer der
Option eine Auszahlung in Höhe von gj(Xj), wobei die Abzinsung gemäß des
Zinssatzes r bereits in der Funktion gj enthalten ist. Diese Problemstellung

1Die Zufälligkeit wird durch die Benutzung von Pseudo-Zufallszahlen realisiert. Diese
können im Rechner zum Beispiel durch lineare-Kongruenz Generatoren oder einen Mersenne-
Twister generiert werden.

163

164 ZUSAMMENFASSUNG IN DEUTSCHER SPRACHE

entspricht der Bestimmung des fairen Preises einer so genannten “Bermuda”
Option. Dieser ergibt sich aus dem No-Arbitrage Prinzip und kann als

V0(x) = sup
τ∈T

E [gτ (Xτ)|Xj = x] (8.10)

ausgedrückt werden. Hier bezeichnet T die Menge aller adaptierten Stoppzeiten
mit Werten in 0, . . . ,J . Um die optimale Stoppzeit zu approximieren und (8.10)
auswerten zu können, betrachten wir die Klasse der so genannten “fast approx-
imation methods”. Diese arbeiten mit Hilfe von Regressionsmethoden rekursiv
vom letzten bis zum ersten Zeitschritt und induzieren eine Stoppregel. Dieses
Vorgehen ist charakteristisch für die grundlegende Problematik bei der Lösung
von BSDEs 2 und zugehörige Rekursionen: Die numerische Lösung schreitet in
der Zeit rückwärts, die Prozesse jedoch vorwärts voran.

Anschließend kann eine untere Schranke für den fairen Preis der Options per
Monte Carlo Simulation approximiert werden, indem diese Stoppregel “getestet”
wird. Man erhält nun als Schätzer

V N0 =
1

N

N∑
i=1

gτ(i)

(
X

(i)

τ(i)

)
,

wobei
(
X

(i)
· , τ (i)

)
, i = 1, . . . , N unabhängige Realisierungen von X und den

dazugehörigen Stoppzeiten sind. Bewertet man die Qualität einer solchen Meth-
ode mit Hilfe des mittleren quadratischen Fehlers ε, so ergibt sich für das Grund-
problem eine Komplexität von ε−3 im gewöhnlichen Fall, siehe Kapitel 2. Hier
ist unter dem gewöhnlichen Fall ein gutgestelltes Problem und die Verwendung
eines stochastischen Netzes zu verstehen. Mit Hilfe des Multilevel Ansatzes lässt
sich in diesem Fall eine Komplexität von ε−2.5 erreichen, siehe Kapitel 3. Die
Verbesserung ist im gewöhnlichen Fall also von Ordnung ε−0.5, kann jedoch in
anderen Fällen bis zu ε−1 betragen.

Zwei Stoppzeiten, welche beide nahe dem Optimum sind, werden in fast
allen Fällen gleich ausfallen. D.h. für viele Realisierungen des Prozesses X·
wird der Beitrag zum Monte Carlo Schätzer 0 sein. Wäre es möglich, nur solche
Realisierungen zu simulieren, die zu verschiedenen Stoppzeiten führen, könnte
sich die Komplexität weiter reduzieren lassen. In Kapitel 4 wird daher eine
Methode “NCMC” 3 vorgestellt, die durch eine Art von Gabelungen künstlich
mehr Pfade solcher Art erzeugt. Es stellt sich heraus, dass dadurch eine klare
Verringerung der Komplexität, jedoch keine geringere Ordnung erreicht werden
kann.

Um obere Schranken für den Wert einer Bermuda Option zu berechnen, kann
die duale Formulierung des Problems genutzt werden:

V0 = inf
M∈M0

E

[
max

j=0,...,J
(gj(Xj)−Mj)

]
(8.11)

Hierbei ist M0 die Menge aller adaptierten Martingale mit Startwert 0. Es
geht also nun darum, ein Martingal zu wählen, welches die rechte Seite von
(8.11) möglichst klein werden lässt. Es stellt sich heraus, dass der Martingalteil
M∗ des Prozesses V die optimale Wahl ist. Dabei ist V der so genannte “true

2Backwards Stochastic Differential Equations
3Nested Conditional Monte Carlo

165

value process”, der zu jedem Zeitpunkt dem fairen Preis der Option entspricht.
Obwohl letzterer gerade das gewünschte Ergebnis ist und damit als unbekannt
vorausgesetzt werden muss, gibt diese Erkenntnis verschiedene Anhaltspunkte,
wie nach einem geeigneten Martingal gesucht werden sollte.

Andersen und Broadie [2] nutzen in ihrer sehr bekannten Arbeit diesen
Ansatz, indem sie das optimale Martingal mit Hilfe von geschachtelten Sim-
lationen, so genannten “Subsimulations” approximieren. Hierbei sind zwei sehr
ähnliche Vorgehensweisen möglich. Diese Subsimulations führen jedoch zu ho-
hem Rechenaufwand, welcher erneut durch den Multilevel Ansatz reduziert wer-
den kann. Je nach Problemstellung kann das Grundproblem eine Komplexität
von Ordnung ε−3 oder sogar ε−4 besitzen, siehe Kapitel 5. Der Multilevel
Ansatz senkt die Komplexität in jedem Fall (bis auf einen logarithmischen Fak-
tor) auf ε−2, wie in Kapitel 6 dargelegt wird.

Da in der Praxis nicht nur die Ordnung der Komplexität, sondern auch deren
absolute Größe entscheidend sind, ist der Multilevel Ansatz bei der Berechnung
unterer Schranken immer empfehlenswert, bei der oberer Schranken nur bei
großer Komplexität, das heißt bei sehr genauen Berechnungen.

166 ZUSAMMENFASSUNG IN DEUTSCHER SPRACHE

Selbständigkeitserklärung

Hiermit erkläre ich, gem. §7 Abs. (2) c)+ e) der Promotionsordnung der
Fakultäten für Biologie, Chemie und Mathematik zur Erlangung des Dr. rer.
nat., dass ich vorliegende Dissertation selbständig verfasst und mich keiner an-
deren als der angegebenen Hilfsmittel bedient habe.

167

