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Summary

In living cells, reversible protein phosphorylation events propagate signals caused by ex-

ternal stimuli from the plasma membrane to their intracellular destinations. Aberrations

in these signaling cascades can lead to diseases such as cancer. To identify and quan-

tify phosphorylation events on a large scale, mass spectrometry (MS) has become the

predominant technology. The large amount of data generated by MS requires efficient,

tailor-made computational tools in order to draw meaningful biological conclusions.

In this work, four new methods for analyzing MS-based phosphoproteomic data are

presented. The first method, called SubExtractor, combines phosphoproteomic data with

protein network information to identify differentially regulated subnetworks. The method

is based on a Bayesian probabilistic model that accounts for information about both dif-

ferential regulation and network topology, combined with a genetic algorithm and rigorous

significance testing.

The second method, called MeanRank test, is a global one-sample location test, which

is based on the mean ranks across replicates, and internally estimates and controls the

false discovery rate. The test successfully deals with small numbers of replicates, missing

values without the need of imputation, non-normally distributed expression levels, and

non-identical distribution of up- and down-regulated features, while its statistical power

scales well with the number of replicates.

The third method is a biomarker discovery workflow that aims at identifying a multi-

variate response prediction biomarker for treatment of non-small cell lung cancer cell lines

with the kinase inhibitor dasatinib from phosphoproteomic data (referred to as NSCLC

biomarker). An elaborate biomarker workflow based on robust feature selection in com-

bination with a support vector machine (SVM) was designed in order to find a phospho-

rylation signature that accurately predicts the response to dasatanib.
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Summary

The fourth method, called Pareto biomarker, extends the previous NSCLC biomarker

workflow by optimizing not only one single objective (i.e. best possible separation of re-

sponders and non-responders), but also the objectives signature size and relevance (i.e.

association of signature proteins with dasatinib’s main target). This is achieved by employ-

ing a multiobjective optimization algorithm based on the principle of Pareto optimality,

which allows for a simultaneous optimization of all three objectives.

These novel data analysis methods were thoroughly validated using experimental data

and compared to existing methods. They can be used on their own, or they can be

combined into a joint workflow in order to efficiently answer complex biological questions

in the field of large-scale omics in general and phosphoproteomics in particular.
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Zusammenfassung

In lebenden Zellen sind reversible Proteinphosphorylierungen für die Weiterleitung von

Signalen externer Stimuli zu deren intrazellulären Bestimmungsorten verantwortlich. Ano-

malien in solchen Signaltransduktionswegen können zu Krankheiten wie beispielsweise

Krebs führen. Um Phosphorylierungsstellen in großem Maßstab zu identifizieren und zu

quantifizieren, hat sich die Massenspektrometrie (MS) zur vorherrschenden Technologie

entwickelt. Die große Menge an Daten, die von Massenspektrometern generiert wird, er-

fordert effiziente maßgeschneiderte Computerprogramme, um aussagekräftige biologische

Schlüsse ziehen zu können.

In dieser Arbeit werden vier neue Methoden zur Analyse von MS-basierten phospho-

proteomischen Daten präsentiert. Die erste Methode, genannt SubExtractor, kombiniert

phosphoproteomische Daten mit Proteinnetzwerkinformationen um differentiell regulierte

Subnetzwerke zu identifizieren. Die Methode basiert auf einem Bayesschen Wahrschein-

lichkeitsmodell, das sowohl Information über die differentielle Regulation der Einzelknoten

als auch die Netzwerktopologie berücksichtigt. Das Modell ist kombiniert mit einem

genetischen Algorithmus und stringenter Signifikanzanalyse.

Die zweite Methode, genannt MeanRank-Test, ist ein globaler Einstichproben-Lagetest,

der auf den mittleren Rängen der Replikate beruht, und die False Discovery Rate implizit

abschätzt und kontrolliert. Der Test eignet sich für die Anwendung auf Daten mit weni-

gen Replikate, fehlenden und nicht normalverteilten Werten, sowie nicht gleichverteilter

Hoch- und Runterregulation. Gleichzeitig skaliert die Teststärke gut mit der Anzahl an

Replikaten.

Die dritte Methode ist ein Arbeitsablauf zur Biomarkeridentifizierung und hat zum

Ziel, einen multivariaten Stratifikationsbiomarker aus phosphoproteomischen Daten zu ex-

trahieren, der das Ansprechen von nichtkleinzelligen Bronchialkarzinomzelllinien auf den

xiii



Zusammenfassung

Kinaseinhibitor Dasatinib vorhersagt (bezeichnet als NSCLC-Biomarker). Dazu wurde

ein ausführlicher Biomarkerarbeitsablauf basierend auf einer robusten Feature Selection

in Kombination mit Support Vector Machine-Klassifizierung erstellt, um eine Phosphory-

lierungssignatur zu finden, die das Ansprechen auf Dasatinib richtig vorhersagt.

Die vierte Methode, genannt Pareto-Biomarker, erweitert den vorherigen Biomarker-

arbeitsablauf, indem nicht nur eine Zielfunktion (d.h. die bestmögliche Trennung von Res-

pondern und Nichtrespondern) optimiert wird, sondern zusätzlich noch die Signaturgröße

und Relevanz (d.h. die Verbindung der Signaturproteine mit dem Targetprotein von Dasa-

tinib). Dies wird durch die Verwendung eines multiobjektiven Optimierungsalgorithmus

erreicht, der auf dem Prinzip der Pareto-Optimalität beruht und die gleichzeitige Opti-

mierung aller drei Zielfunktionen ermöglicht.

Die hier präsentierten neuen Datenanalysemethoden wurden gründlich mittels exper-

imenteller Daten validiert und mit bereits bestehenden Methoden verglichen. Sie können

einzeln verwendet werden, oder man kann sie zu einem gemeinsamen Arbeitsablauf zusam-

menfügen, um komplexe biologische Fragestellungen in Omik-Gebieten im Allgemeinen

und Phosphoproteomik im Speziellen zu beantworten.

xiv



Chapter 1

Introduction

1.1 Protein phosphorylation

Protein phosphorylation is one of the most important post-translational modifications in

a living cell. For uncovering its outstanding biological importance, Edmond H. Fisher and

Edwin G. Krebs were awarded the Nobel Prize in Physiology or Medicine “for their discov-

eries concerning reversible protein phosphorylation as a biological regulatory mechanism”

in 1992 1. In chemical terms, phosphorylation is the addition of a phosphate group (PO4
3-)

to a molecule. Added predominantly to specific serine, threonine or tyrosine residues, a

phosphorylation can change the protein’s conformation and/or subcellular localization

and thus alter its function and activity – either positively (activation) or negatively (in-

hibition). The class of enzymes catalyzing phosphorylations is called kinases, or more

specifically protein kinases, when phosphorylating proteins. Protein phosphorylations are

reversible; the process of dephosphorylation is catalyzed by phosphatases. Phosphory-

lations play a pivotal role in signal transduction, where an external stimulus causes the

activation of certain signaling pathways. Such pathways usually start with the stimulation

of receptors on the cell surface and communicate the signal along a cascade of kinases

to its destination (nucleus, ribosome, proteasome, etc.). Aberrations in these signaling

pathways are responsible for many types of diseases, most prominently, cancer.

One of the best studied signaling pathways in cancer is the MAPK (mitogen-activated
1http://www.nobelprize.org/nobel_prizes/medicine/laureates/1992

1
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Figure 1.1: MAPK pathway example displaying the RAS-RAF-MEK-ERK cascade. Blue

arrows indicate protein phosphorylation events (also displayed by red circles), green arrows

other physical protein interactions.

protein kinase) pathway. In healthy cells, the MAPK pathway is responsible for cell dif-

ferentiation, proliferation and apoptosis; however, mutations in this pathway can easily

lead to uncontrolled pathological cell proliferation, that is, cancer. The MAPK pathway

consists of different sub-cascades [1], one of them, the RAS-RAF-MEK-ERK cascade,

which is found mutated in more than 30% of all tumors [2], is displayed as an example in

Figure 1.1. Here, the epidermal growth factor receptor (EGFR; a receptor tyrosine kinase)

homodimer is stimulated by an extracellular ligand (the mitogen EGF), and subsequently

phosphorylates itself on its cytosolic domain [3] (a process called autophosphorylation).

2



1. Introduction

The docking protein GRB2 is then able to bind to this phosphorylated region, and in

turn recruits the guanine nuclear exchange factor SOS to the plasma membrane [4]. Sub-

sequently, SOS activates the membrane bound GTPase RAS by promoting the exchange

of the bound guanosinediphosphate (GDP) for guanosine triphosphate (GTP) [5]. Next,

RAS activates the protein kinase RAF (a MAP3K – MAP kinase kinase kinase) [6], which

phosphorylates and therefore activates MEK1/2 (MAP2K1/2 – MAP kinase kinase 1/2),

which in turn phosphorylate ERK1/2 (MAPK3/1 – MAP kinase 3/1) in an activating

manner [1]. Both ERK1 and ERK2 then translocate to the nucleus where they directly

phosphorylate and activate various transcription factors (e.g. the proto-oncogene protein

MYC [7]), or phosphorylate other kinases, such as ribosomal s6 kinases (RSKs), which in

turn phosphorylate transcription factors (e.g. the cyclic AMP-responsive element-binding

protein 1(CREB1) [8]). The pathway depicted in Figure 1.1 is an exemplified version of

the processes taking place in a living cell. In reality, there are various feedback mechanisms

and crosstalks between different pathways (e.g. between the MAPK and the mammalian

target of rapamycin (mTOR) pathway [9] – another very important pathway in cancer

signaling).

In many types of cancers, genetic mutations render protein kinases constitutively (per-

manently) active. Drugs that specifically target such dysregulated kinases have become

increasingly important in cancer therapy. Most of these drugs are either antibodies (e.g.

trastuzumab (Herceptin®), the first FDA approved kinase inhibitor targeting HER2/neu

[10], a protein of the EGFR family) or small molecules (e.g. dasatinib (Sprycel®), a multi-

kinase inhibitor targeting BCR-ABL, the Src-kinase family, c-Kit, ephrin receptors, and

PDGFRb [11, 12]. Such targeted drugs are less toxic than traditional chemotherapeu-

tic therapies, but they are not effective in all patients. Thus, to effectively apply these

targeted therapies, discrimination between the different patient populations is indispens-

able in order to determine the optimal treatment for each patient. These therapeutic

approaches are referred to as personalized medicine.
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1.2 Mass spectrometry-based proteomics

To identify and quantify proteins and their modifications (e.g. phosphorylation) on a large

scale, mass spectrometry (MS) has become the predominant technology. By applying

latest sample preparation workflows, mass spectrometric equipment and bioinformatics

tools, today up to 10,000 proteins [13] or more than 20,000 phosphorylation sites [14]

can be routinely identified, and their relative abundance can be compared across different

experimental conditions (e.g. drug treated versus untreated cell line samples).

The most widely used proteomics workflow is referred to as bottom-up or shot-gun

proteomics. This approach involves enzymatic digestion of complex protein mixtures into

peptides, followed by fractionation and MS analysis [15]. In the case of phosphoproteomics,

the workflow contains an additional phosphopeptide enrichment step, since phosphory-

lated peptides are underrepresented in the total cell lysate and therefore enrichment is

required to efficiently analyze phosphoproteomes with high coverage by MS-based work-

flows (see Figure 1.2 for a typical phosphoproteomics workflow).

Samples

Enrichment (IMAC)Separation (LC)Mass Spectrometry

© Thermo Fisher Scientific

Proteins Peptides

P

Fractionation (SCX)

Fe3+

O

O

N

O

O
O P

OH

O

O

O

H2

P

Figure 1.2: Phosphoproteomics workflow displaying the steps from sample to mass spec-

trometry analysis. Cells are lysed and their proteins are digested. The resulting peptide

mixture is fractionated and subjected to phosphopeptide enrichment, followed by LC-

MS/MS analysis.
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Samples to be analyzed by an MS-based proteomics experiment can be any kind of

protein source (e.g. cell lines, primary cells, tissues or body fluids). After cell lysis, the

pool of proteins is digested with a protease, usually trypsin. Trypsin has the advantage

to generate peptides with suitable lengths and molecular masses for detection in a mass

spectrometer. In addition, trypsin generates peptides with C-terminal arginine (Arg) and

lysine (Lys) residues (except for the C-terminal peptide, if the protein sequence does not

end with Arg/Lys), which can be easily protonated under acidic conditions and thereby

support mass spectrometric detection in the positive ion mode.

Next, the peptide pool is fractionated, which represents a first step of complexity

reduction. For phosphoproteomics, strong cation exchange (SCX) chromatography has

been the method of choice for many years [15]. SCX separates peptides according to

their charge states and implicitly performs a phosphopeptide pre-enrichment, as peptides

carrying a phosphate have a lower net charge than unmodified peptides. Each of the

generated fractions is then subjected to further phosphopeptide enrichment by employing

immobilized metal affinity chromatography (IMAC). IMAC is based on the high-affinity

binding of phosphates to certain trivalent metal ions (e.g. Fe3+; confer [15] and Figure

1.2) immobilized on solid support beads.

The highly enriched phosphopeptide sample is then subjected to liquid chromatogra-

phy (LC), which is usually directly coupled (on-line) to the mass spectrometer (LC-MS).

In the LC procedure, the sample mixture is forced by a liquid (mobile phase) through

a packed column (stationary phase) containing a hydrophobic surface (reverse-phased),

leading to adsorption of the peptides to the stationary phase under aqueous conditions.

By increasing the concentration of the hydrophobic buffer, a gradient is generated that

leads to a fractionated elution of the bound peptides, while hydrophilic peptides elute

earlier than hydrophobic ones. The eluting peptides are electrosprayed into the mass

spectrometer [16], where they are further analyzed.

Since the nominal masses of peptides are not sufficient for reliable sequence assignment

when comparing them to peptide databases, a two-step MS approach is necessary in order

to reliably identify peptides and the corresponding protein. In the first step, the mass

over charge ratios (m/z) and corresponding intensities of the eluting peptide analytes are

measured in a so-called survey scan (MS or MS1 spectrum). From this scan, the most-
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Figure 1.3: 3D spectra example illustrating the vast amount of data generated in an LC-

MS/MS experiment. The green line on the right represents the gradient of hydrophobic

elution buffer (referred to as buffer B) resulting in the chromatogram painted in red

on the left. Approximately once every second a survey scan (MS spectrum) followed by

10 fragment scans (MS/MS spectra) are performed, leading to the complex pattern of

measured intensities for tens of thousands of m/z over time. With kind permission of

Andreas Tebbe, creator of this picture.

intense peaks (typically 10) are selected, isolated and fragmented as described in detail

below and the resulting fragment spectra are recorded (MS/MS or MS2 spectrum). This

cycle is repeated over the entire length of the LC gradient to analyze and identify as many

peptides as possible. The vast amount of data generated by this procedure is illustrated

as 3D spectral image in Figure 1.3.

To draw meaningful biological conclusions from MS experiments, it is usually not suf-

ficient to only analyze and identify the protein repertoire of the given samples (qualitative

6



1. Introduction

flightf
Arg0/Lys0

controlwtreatmentw

m/z

in
te

ns
ity

fmediumf
Arg6/Lys4

fheavyf
Arg10/Lys8

combinewandwsubjectwtowglobalw
phosphoproteomicswworkflow

m
ed

iu
m

lig
ht

he
av

y

m/z

in
te

ns
ity

m
ed

iu
m

lig
ht

he
av

y

m/z

in
te

ns
ity

m
ed

iu
m

lig
ht

he
av

y

treatmentwA treatmentwB

nowregulationwuponw
treatmentwAworwB

down-regulationwupon
treatmentwA,wnowregulationw

uponwtreatmentwB

up-regulationwupon
treatmentwB,wnowregulationw

uponwtreatmentwA

Figure 1.4: SILAC labeling diagram illustrating a triple-SILAC experiment with three

different treatments. On the bottom, intensities for one peptide are displayed exemplarily.

analysis), but also to quantitatively compare different proteomes under different condi-

tions (quantitative analysis). However, signal intensities generated by a mass spectrometer

are per se not quantitative, that is, they depend on the environment of co-eluting pep-

tides and are thus not directly comparable across different MS runs. In order to accurately

quantify differences in protein expression or phosphorylation levels across different exper-

imental conditions, labeling strategies were developed and are now routinely applied. One

of the most widely used labeling approaches is Stable Isotope Labeling by Amino acids

in Cell culture (SILAC) [17], where growth media of dividing cell lines are supplemented

with either light, medium or heavy isotopes of the amino acids arginine and lysine. After

the labeling process, the three different cell populations can be treated differently and are

subsequently pooled and subjected to the proteomics workflow. Here, another advantage
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of using trypsin as proteolytic enzyme takes effect, i.e. cleaving after Arg/Lys ensures

the presence of at least one SILAC labeled amino acid needed for quantification (again,

with the exception of C-terminal peptides). As the differently labeled peptides from each

SILAC growth condition are physico-chemically identical, they co-elute simultaneously

into the MS. Nevertheless, they are distinguishable due to their defined mass differences

introduced by the metabolically incorporated isotopologues, allowing for a direct and ac-

curate relative quantification between the three treatment conditions. There are various

alternatives to SILAC labeling, which are applied if metabolical labeling is not applica-

ble (e.g. mass differential tags for relative and absolute quantification (mTRAQ) [18] for

tissue samples), or a higher level of multiplicity is desired (e.g. tandem mass tags (TMT)

[19] for time series experiments with up to 10 states). Recent advances in computer algo-

rithms also allow for label-free quantification (e.g. [20]); however quantifications based on

labeled peptides are usually more precise [21] and allow for a higher level of multiplexing

capacity in such experiments.

Depending on the application, different types of mass spectrometers are preferred. For

global proteomics experiments aiming at detecting as many proteins or phosphosites as

possible, Orbitrap instruments are well suited. They provide high resolution and high

accuracy [23], which are both vital for reliable peptide identification and quantification.

The design of a current Orbitrap instrument, the Q Exactive (Thermo Fisher Scientific),

is depicted in Figure 1.5. The Q Exactive is a hybrid mass spectrometer that combines

a quadrupole used for ion selection with an Orbitrap used for ion detection [22]. The

electrospray of ionized peptides from the nanospray source is guided through a set of ion

optics (s-lens, flatapole) to the machine’s quadrupole. A quadrupole consists of four hy-

perbolical rods that are set parallel to each other, enabling the filtering of ionized peptides

of a certain mass over charge ratio (m/z) based on the stability of their trajectories in

the oscillating electric fields that are applied to the rods [24]. In the survey scan (MS1

spectrum), no filtering is applied, thus the spectrum contains information about the entire

effluent of a given time. To perform a fragment spectrum (MS2 spectrum) of a certain

spectral peak, the quadrupole is configured such that only a small mass range around the

desired peak’s m/z has stable trajectories and can pass through. Once the desired ions

have passed the quadrupole, they are guided to the C-trap, where they are collected and
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Figure 1.5: Schematic overview of a Q Exactive mass spectrometer. Ions are guided

through ion optics (s-lens, flatapole) to the quadrupole, which can filter ions within a

specific m/z range. The succeeding C-trap collects ions and injects them to either the

HCD collision cell for fragmentation or the Orbitrap for high-resolution spectra generation.

Picture adapted from Michalski et al. [22].

subsequently injected into the Orbitrap and higher-energy collisional dissociation (HCD)

collision cell, respectively. In survey scan mode (MS1), the total ion population is injected

directly into the Orbitrap that consists of an electrostatic device, into which ions orbit

around a spindle-shaped electrode [22, 25]. The image current of the ions’ axial motion is

detected, and this signal is Fourier-transformed in order to yield high resolution mass spec-

tra. To analyze fragment spectra, the ions of interest are first filtered by the quadrupole

and subsequently injected into the HCD cell, where ions are accelerated by an electrical

potential and collide with neutral molecules such as nitrogen, resulting in a fragmentation

of the peptides [26]. The fragments are then returned to the C-trap, which injects them

into the Orbitrap to perform a fragment spectrum scan (MS2). This is usually repeated

for 10 peptides, until the next survey scan is performed.

To extract qualitative and quantitative information from the vast amount of MS spec-

tra, sophisticated software like MaxQuant [27] is used to process the raw spectral files.
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MaxQuant identifies peptides by comparing fragment spectra to theoretical fragment ion

masses from a sequence database with the peptide search engine Andromeda [28]. An-

dromeda employs a probabilistic score that is based on the probability that the observed

number of matches between the measured and the theoretical fragments occur by chance.

For an accurate quantification, MaxQuant integrates peptide ion peaks, isotope clusters

and labeled peptide tuples as three-dimensional objects in m/z, elution time and signal

intensity space.

1.3 Analysis of phosphoproteomic data

One major interest in the area of phosphoproteomics is to unravel a drug’s mode of action.

In many cases, pharmaceutical investigators observe phenotypic effects when treating their

model organisms with a certain drug; however, they do not know the exact cellular mech-

anism that governs this effect. Unraveling a drug’s mode of action is vital during drug

discovery and development, helping to identify new medical applications, suggesting its

use in combination therapy, and predicting the responsiveness of patients [29–31]. In the

case of phosphoproteomic mode of action analyses, such drugs are mostly small molecules

or antibodies targeting one or several kinases [14, 32, 33]. Once a drug interferes with the-

ses kinases and inhibits their activity, they are unable (or at least reduced in their ability)

to phosphorylate their downstream targets. As a consequence, entire signaling cascades

can be affected by the treatment, eventually resulting in a change of gene transcription,

translation, apoptosis or the like. In the biological reality, however, such direct effects are

often accompanied by secondary effects, like feedback mechanisms, or, if treatment lasts

for hours, even changes in protein expression, which in turn has an influence on phospho-

rylation changes. Moreover, if the downstream effects of a certain inhibition are off known

canonical signaling pathways, customized tools are needed to help uncover the mode of

action. In Chapter 2, a method based on protein-protein interaction networks that reports

significantly regulated subnetworks is presented. The algorithm, called SubExtractor, em-

ploys a Bayesian probabilistic model in combination with a genetic algorithm and rigorous

significance testing.

When conducting mass spectrometry-based phosphoproteomic mode of action anal-
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yses, the limiting factor regarding both time and cost is MS run time. To keep the ex-

periments affordable, the number of biological replicates is often limited to three, which

requires proper statistical methods that are able to deal with data that consist of only

few replicates but thousands of features (phosphosites) at the same time. Moreover, mass

spectrometers regularly produce - more or less randomly - missing data, i.e. even if the

experiments are replicated three times, there is no warranty that every phosphorylation

site is quantified three times. In Chapter 3, a global one-sample location test is presented,

which is based on the mean ranks of the respective features across biological replicates.

The hypothesis test, called MeanRank test, was specifically designed for experiments with

few replicates and thousands of features, implicitly handles missing data, and internally

controls the false discovery rate.

Another area of interest is the discovery of biomarkers in the field of personalized

medicine. In general, there are four different types of biomarkers:

• Response prediction (stratification) markers foretelling the effect of a certain drug

treatment on patients (e.g. HER2/neu over-expression for predicting response to

treatment with trastuzumab (Herceptin®) [34, 35]).

• Diagnostic markers detecting a disease that already exists (e.g. PSA level for diag-

nosis of prostate carcinoma [36]).

• Prognostic markers predicting how a disease may develop (e.g. MammaPrint, the

first omics marker for foretelling the risk that a breast tumor will metastasize [37]).

• Pharmacodynamic markers monitoring pharmacological response (e.g. FDG-PET

imaging for monitoring tumor size [38]).

Chapter 4 deals with the identification of a response prediction biomarker for treatment

of non-small cell lung cancer (NSCLC) with the kinase inhibitor dasatinib from phos-

phoproteomic data. This study was the first global and unbiased approach to develop a

biomarker based on the differences in the basal phosphorylation levels of cancer cell lines.

To this end, an elaborate biomarker workflow based on robust feature selection in combi-

nation with a support vector machine (SVM) was designed in order to find a multivariate

phosphorylation signature that accurately predicts drug response.

Undoubtedly, the primary aim of a stratification biomarker is to accurately predict
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drug response in patients. However, in many cases there are several limitations, for ex-

ample, an effective application of a predictive phosphorylation signature in the clinical

environment may require phosphorylation-specific antibodies, which are not available for

all phosphorylation sites. For similar reasons, multivariate markers should not contain

too many different features (i.e. phosphosites); and ideally, signature proteins should be

meaningful, e.g. by having a connection to the drug’s target or mechanism of action.

Furthermore, it might be desirable to detect more than one signature in parallel. These

requirements are fulfilled by the Pareto biomarker workflow in Chapter 5, where the stan-

dard workflow is extended to optimize not only one single objective (i.e. best possible

separation), but also the objectives size and relevance, simultaneously. This is achieved

by employing the multiobjective optimization algorithm NSGA-II [39] that is based on

the principle of Pareto optimality.
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Chapter 2

SubExtractor

In this chapter, a new method for identifying differentially regulated subnetworks from

phosphoproteomic data is presented. The proposed algorithm, called SubExtractor, com-

bines phosphoproteomic data with protein network information from STRING to identify

significantly regulated subnetworks. The method is based on a Bayesian probabilistic

model combined with a genetic algorithm and rigorous significance testing.

The content of this chapter was published as:

M. Klammer, K. Godl, A. Tebbe, and C. Schaab. “Identifying differentially regulated

subnetworks from phosphoproteomic data.” In: BMC bioinformatics 11 (2010), p. 351

The author was a key contributor to designing and implementing the algorithm, as

well as writing the paper. The wet laboratory work (cell culture and mass spectrometry)

were performed by his colleagues at Evotec Munich under the supervision of A. Tebbe.

2.1 Background

Global quantification technologies such as microarray, MS-based proteomics and phos-

phoproteomics can measure the expression of thousands to tens of thousands of genes,

proteins and phopshorylation sites, respectively. Often, a few thousand of them are identi-

fied as being significantly differentially regulated, but interpreting these results at a single

gene or protein level is a tedious and frequently unsuccessful task. However, by integrating

these data with protein-protein interaction networks, it is possible to identify significantly

regulated subnetworks that can be interpreted directly in a biological context. Moreover,
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identifying regulated entities from often noisy high throughput data should be supported

by this kind of integration.

One simple approach for detecting regulated subnetworks could involve distinguish-

ing between significantly regulated and non-regulated phosphosites by applying standard

hypothesis testing procedures such as t-statistics or SAM [41] to each phosphosite (the

number of data points corresponds to the number of experimental replicates). To avoid

too many false positives, one must further apply concepts such as the family-wise error

rate (FWER [42]) or the false discovery rate (FDR [43]) for multiple hypothesis test-

ing correction. Subsequently, the resulting list of statistically significant entities can be

mapped on pathways or protein-protein interaction networks, and connected subnetworks

can be determined. While this procedure may point to regulated subnetworks, it is not

an integrated solution, since the significance of each protein solely depends on the data

of its own phosphosites, regardless of its interactions with other proteins.

More sophisticated approaches use statistic-based techniques to score subnetworks. In

these cases proteins are first mapped onto a protein interaction network, and subsequently

high-scoring subnetworks are extracted. Ideker et al. [44] use an aggregated z-score of the

form

𝑧𝐴 = 1√
𝑘

∑︁
𝑖∈𝑆

𝑧𝑖,

where 𝑘 is the number of nodes in the subnetwork and 𝑧𝑖 is the z-score of a single

protein in the subnetwork 𝑆. High-scoring subnetworks are then found with a simulated

annealing approach [45]. Chuang et al. [46] presented a method based on the same idea,

but with a greedy search algorithm that specifies a seed and adds the best nodes in the

neighbourhood until the aggregated score no longer improves. Subsequently, the signifi-

cance of the resulting subnetworks is assessed based on null distributions estimated from

permuted networks. However, neither method accounts for the network topology, i.e. the

degree of interconnections between nodes.

Subsequently, Sanguinetti et al. [47] introduced a Bayesian probabilistic model that

integrates a priori network topology information into the analysis of high throughput

data. The authors used Gibbs sampling [48] to obtain suitable posterior probabilities and
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thus derived subnetworks. A major drawback of this method, however, is the missing

significance assessment for the resulting subnetworks.

All methods described above used either only a subset of known protein-protein in-

teractions or KEGG pathways [49] for their assessment. To obtain the most information

from such investigations, and considering that canonical pathway databases like KEGG

are rather static and contain only a limited number of interactions, it seems natural to

use larger and frequently updated protein-protein interaction network databases such as

STRING [50] or FunCoup [51].

Here, we introduce a Bayesian probabilistic model that combines local as well as topo-

logical information, i.e. information about regulation of a certain node and information

about the connectivity with its neighbours. Identification of subnetworks is carried out

using a genetic algorithm (GA [52]), followed by performing a significance analysis based

on a global rank test [53]. As a special feature, the significance test not only considers

subnetworks, but also single nodes that are not part of any larger subnetwork. This makes

the proposed method a powerful tool to uncover both differentially regulated subnetworks

and differentially regulated single proteins. The performance was assessed on an artificial

data set as well as on a comprehensive phosphoproteomics data set.

2.2 Methods

2.2.1 Data pre-processing and z-score calculation

The input of the proposed method is formed by a table with 𝑛 rows and 𝑚 columns; 𝑛

being the number of detected phosphosites and 𝑚 the number of biological replicates (i.e.

MS measurements of experiments using identical settings but conducted independently).

Several replicates (at least 3–5) are necessary to reliably identify differential phosphory-

lations. Each value in this table represents a ratio between the degree of phosphorylation

under two conditions (e.g. the extend of phosphorylation of a specific site in cells treated

with a drug versus its degree in untreated cells).

Log-transformation is preferred before calculating the z-score, since the distribution of

the transformed ratios is closer to normal. Subsequently, the log-ratios 𝑥𝑖𝑗 of phosphosites
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𝑖 = 1, ..., 𝑛 and replicates 𝑗 = 1, ..., 𝑚 are further transformed to z-scores (referred to as

single z-scores) using the formula:

𝑧𝑖𝑗 = 𝑥𝑖𝑗 − 𝜇0

𝜎̂
, (2.1)

where 𝜇0 = 0, since it is expected that the majority of phosphosites are not differentially

regulated and therefore their log-ratios are 0, and 𝜎̂ the standard deviation across repli-

cates estimated on the entire data set. Further, a combined z-score for each phosphosite

over all replicates is calculated as:

𝑧𝑖 = 1√
𝑚

𝑚∑︁
𝑗=1

𝑧𝑖𝑗. (2.2)

Not all phosphosites are detected in every experimental replicate. The resulting missing

values are simply ignored, so, for example, if three replicates have been conducted and a

given phosphosite was only detected in two of them, 𝑚 is set to 2 for this site and the

combined score is calculated based on the two available z-scores.

2.2.2 Protein network preparation

In this work STRING [50] was chosen as the source for protein-protein interactions.

STRING is a comprehensive resource that combines a vast number of databases derived

in different ways (e.g. experimentally determined interactions, gene neighbourhood data,

or data acquired via text mining) and is able to transfer homology information across

organisms. Obviously the method presented here is not limited to STRING and can also

be used in combination with other protein-protein-interaction databases. Depending on

the context of the study databases like HomoMINT [54], HPRD [55], or FunCoup [51]

may be preferable.

In STRING, all interactions are assigned with a confidence value ranging from 0 to

1. In order to retain only high confidence interactions, a very conservative cut-off value

of 0.995 is used. While this cut-off may seem too high, there is a valid reason for it:

some interactions reach very high confidence values (> 0.99), although the evidence is

only from text mining, which was considered too weak evidence. Furthermore, analysis of

canonical pathways showed that virtually all known interactions pass this high cut-off of
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0.995. Applying this cut-off, an interaction network of approximately 10,000 interactions

between 2,997 proteins is obtained (STRING version 8.1).

Subsequently, the phosphoproteomic data is mapped on the network (see upper part of

Fig. 1). Before doing so, the list of phosphosites has to be aggregated to a list of proteins,

with one z-score per protein and replicate. This is done by simply assigning the values of

the phosphosite with the highest combined z-score among all phosphosites of a protein to

this protein. Then each protein is mapped on the interaction network, where each node

has 𝑚 single z-scores and the combined z-score. Nodes that do not have a corresponding

entry in the phosphoproteomics data set are thought of being not regulated and thus

their z-scores are set to 0. On the other hand, proteins on the list that do not occur in

the network are added but without any connections in order to give them the chance of

being identified as regulated single proteins later on. In the genetic algorithm described

below, only nodes in the interaction network will be considered; the set of unconnected

nodes will be used again when it comes to significance assessment in the final step of the

method.

2.2.3 Bayesian probabilistic model

A probabilistic model that takes into account the above derived z-scores and the network

topology was developed. Let 𝑐𝑖 ∈ {0, 1} be the latent class variable, with 𝑐𝑖 = 1 if node 𝑖

belongs to a differentially regulated subnetwork and 𝑐𝑖 = 0 if not. Note that the approach

can easily be generalized to three classes, if up- and down-regulated subnetworks shall be

distinguished. Given the combined z-scores 𝑧1, . . . , 𝑧𝑛 derived from the observations, the

posterior probability of the subnetwork configuration (𝑐1, . . . , 𝑐𝑛) is

𝑝 (𝑐1, . . . , 𝑐𝑛|𝑧1, . . . , 𝑧𝑛) = 𝑝 (𝑧1, . . . , 𝑧𝑛|𝑐1, . . . , 𝑐𝑛) 𝑝 (𝑐1, . . . , 𝑐𝑛)
𝑝 (𝑧1, . . . , 𝑧𝑛) . (2.3)

where the right-hand side is obtained by applying Bayes’ theorem. The denominator

𝑝 (𝑧1, . . . , 𝑧𝑛) does not depend on the 𝑐𝑖 and can be ignored when maximizing the posterior

probability. Since the observed data of node 𝑖 are mutually conditionally independent

(given the other nodes’ class variables) and depend only on the class variable of the node
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itself, the conditional probability can be written as

𝑝 (𝑧1, . . . , 𝑧𝑛|𝑐1, . . . , 𝑐𝑛) =
𝑛∏︁

𝑖=1

𝑝(𝑧𝑖|𝑐𝑖). (2.4)

Normal distributions 𝒩 (𝜇, 𝜎) with 𝜇 = 0 and 𝜎 = 1 or 𝜎 = 𝜎𝑧 are assumed:

𝑝(𝑧𝑖|𝑐𝑖 = 0) = 𝒩 (𝑧𝑖|0, 1)

𝑝(𝑧𝑖|𝑐𝑖 = 1) = 𝒩 (𝑧𝑖|0, 𝜎2
𝑧).

(2.5)

The prior probability for the subnetwork configuration 𝑝 (𝑐1, . . . , 𝑐𝑛) is derived analogously

to the derivation of the joint probability distribution from conditional probabilities in

Bayesian networks. Let 𝑁𝑖 be the set of parents of node 𝑖. If the protein interaction network

was a directed acyclic graph and the joint distribution fulfilled the Markov condition, the

following equality would hold [56]:

𝑝 (𝑐1, . . . , 𝑐𝑛) =
𝑛∏︁

𝑖=1

𝑝 (𝑐𝑖| (𝑐𝑗, 𝑗 ∈ 𝑁𝑖)). (2.6)

Clearly, protein-protein interaction networks are no directed acyclic graphs. Nevertheless,

the prior can be modelled by applying this theorem, if 𝑁𝑖 is now defined as the set of

neighbours of node 𝑖. The conditional probabilities are modelled similarly to [47]:

𝑝 (𝑐𝑖 = 1| (𝑐𝑗, 𝑗 ∈ 𝑁𝑖)) =
𝛼 + 1

|𝑁𝑖|
∑︀

𝑗∈𝑁𝑖
𝑐𝑗

1 + 2𝛼
and

𝑝 (𝑐𝑖 = 0| (𝑐𝑗, 𝑗 ∈ 𝑁𝑖)) = 1 − 𝑝 (𝑐𝑖 = 1| (𝑐𝑗, 𝑗 ∈ 𝑁𝑖)) or equivalently

𝑝 (𝑐𝑖| (𝑐𝑗, 𝑗 ∈ 𝑁𝑖)) =
𝛼 + 1 − 1

|𝑁𝑖|
∑︀

𝑗∈𝑁𝑖
(𝑐𝑗 − 𝑐𝑖)2

1 + 2𝛼
,

(2.7)

where the parameter 𝛼 determines the weight of the network structure, and |𝑁𝑖| is the

number of neighbours. For very large 𝛼 the posterior probability is not influenced by

the network structure. Taking the logarithm of Eq. (2.3), inserting above equations, and

ignoring the constant summands, the log posterior probability is:

ln 𝑝 (𝑐1, . . . , 𝑐𝑛|𝑧1, . . . , 𝑧𝑛) = const.

+
𝑛∑︁

𝑖=1

ln
(︀
𝒩
(︀
𝑧𝑖|0, (1 − 𝑐𝑖) + 𝑐𝑖𝜎

2
𝑧

)︀)︀
+ ln

(︃
𝛼 + 1 − 1

|𝑁𝑖|
∑︁
𝑗∈𝑁𝑖

(𝑐𝑗 − 𝑐𝑖)2

)︃
.

(2.8)

The model parameters 𝛼 and 𝜎𝑧 are fixed. In principle, they could be handled as

unknown parameters in the Bayesian model, with the effect that the joint posterior prob-

ability would have to be maximized for (𝑐1, . . . , 𝑐𝑛), 𝛼 and 𝜎𝑧. Since the results turned
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out to be rather insensitive to variations in 𝛼 and 𝜎𝑧 (see Results and Discussion), the

model and the optimization were simplified by a priori fixing of these parameters.

2.2.4 Subnetwork extraction

To maximize the posterior probability, the optimal combination of the nodes’ class asso-

ciations (i.e. whether a protein is part of a regulated subnetwork to be extracted or not)

has to be found. Since this problem is NP-hard [44], a heuristic strategy has to be ap-

plied. Genetic algorithms (GAs) are particularly well-suited for this kind of binary-valued

combinatorical problem, since they are able to find close-to-optimum solutions even in

complex scoring landscapes with many local optima (see e.g. [52] for more details). An

overview of a standard GA workflow can be found in Supplementary Information A.

To apply a GA to the subnetwork extraction problem, the network has to be encoded

into a vector (i.e. an individual’s chromosome). Here each node in the network was assigned

a consecutive index value that represents the position of this node in the vector. The values

in the vector are binary: 1 meaning that the corresponding node is part of a regulated

subnetwork, and 0 that it is not (see also Figure 2.1). Initially, values of these binary

vectors are randomly generated, one for each of the 1000 individuals used. According to

the Bayesian scoring function described above, the fitness of each individual is evaluated

and 100 individuals are selected and used for breeding. Selection of these individuals

is performed using the tournament selector (cf. [57]), which randomly draws a subset

of individuals and then determines the fittest within this subset. By repeating these

steps 100 times, the 100 parent individuals are selected. Tournament selection ensures

that average-performing individuals also have some chance to reproduce, which reduces

the risk of premature convergence. Recombination of the selected individuals is carried

out with two-point crossover, that is, the chromosomes of two parents are cut at two

identical, random points 𝑐1 and 𝑐2, and the genes in the range [𝑐1, 𝑐2] are crossed (see

also Figure 2.1). Mutation, which is a simple bit flip, occurs with a probability of 0.05. The

newly created offspring’s fitness is assessed, and the fittest offspring replaces the weakest

individual in the parental generation. Then the algorithm continues with the selection of a

new set of parents. The algorithm is run for 5000 generations, an empirically determined
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Figure 2.1: Workflow of the subnetwork extraction. First, z-scores are calculated from the

phosphoproteomics data and mapped on an interaction network (orange nodes). Proteins

that do not occur in the network are stored in a separate list (violet node). For the genetic

algorithm (GA) procedure the network is encoded into a binary vector. The GA runs for a

defined number of generations and the strongest individual of the final generation encodes

for the globally best achievable solution. Finally, the global rank (GR) significance test is

performed on both extracted subnetworks and single nodes resulting in a set of significantly

regulated subnetworks.
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value, from where on no more appreciable improvement is observed. The best solution

(represented by the individual with the highest fitness value in the final generation) is

then used to extract all subnetworks from the entire network by starting at a given node,

checking all neighbours for their class association, and iteratively adding all neighbours

that belong to a regulated subnetwork. To avoid cycles, every node is flagged after it has

been checked, and if no more neighbours are to be added to the current subnetwork in

a certain iteration step, another as yet unchecked node is used as the starting point for

the next subnetwork. This is repeated until no unchecked nodes are left, and therefore all

subnetworks are detected. The z-score of a subnetwork is then defined as:

𝑧𝑠 = 1√︀
|𝑆𝑠|

∑︁
𝑖∈𝑆𝑠

|𝑧𝑖| , (2.9)

where 𝑧𝑖 is the combined z-score of a protein as described in (2.2), 𝑆𝑠 is the set of proteins

in the subnetwork, and |𝑆𝑠| is its size. The absolute value of 𝑧𝑖 is taken, since it is not

know a priori whether the interaction between two proteins is activating or inhibiting,

and therefore this distinction is not made. Rather only the degree of regulation is taken

into account. When analysing gene or protein expression data, however, the direction of

regulation may be important and should not be ignored. In such cases the signed values

can be used. In some cases a subnetwork may contain only one node, which is not an

issue, since both, significant subnetworks and single nodes shall be determined anyway.

2.2.5 Significance evaluation

Once regulated subnetworks are extracted, one has to determine their statistical signif-

icance. Single nodes (those that could not be mapped on the network but had been

detected in the phosphoproteomics experiment) are regarded as subnetworks with only

one member and are thus added to the list of subnetworks. The significance test is based

on a modified version of the global rank test [53].

The main idea of this method is to identify differentially regulated entities (genes,

proteins or subnetworks) not based on hypothesis tests conducted for each entity inde-

pendently, but rather based on the entire set of entities at once. Under the null hypothesis

that entities are neither up- or down-regulated, the authors state the theorem of random

ordering, i.e. that no entity can rank consistently high or low across all replicates. On
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the contrary, those entities that do consistently rank top or bottom in all replicates are

identified as being significantly regulated. The number of identified significant entities will

then solely depend on the number that determines how many entities are considered top

or bottom ranked (here denoted as 𝑁), e.g. if 𝑁 is chosen to be a small number, only a

few entities or none at all will be among the top-N or bottom-N across all replicates.

Raising 𝑁 not only increases the number of identified significant entities, but also the

expected number of false positives. As described in [53], this number of false positives

can be estimated non-parametrically from the empirical null distribution. The idea for

this procedure is that a non-regulated entity has the same probability of ranking top-N

as ranking bottom-N. In other words, under the null hypothesis an entity has the same

probability of ranking top-N across all replicates (denoted as TTT for three replicates [𝑅 =

3]) as ranking bottom-N across all of them (BBB) or top-N in the first two and bottom-N

in the third (TTB). The same is true for all 2𝑅 = 8 classes of possible combinations of

high and low ranks. Entities in the TTT and BBB classes are differentially regulated,

and those in the remaining 2𝑅 − 2 = 6 classes are not. By dividing the average number

of entities in the 6 non-consistently regulated classes by the number of those in one of

the regulated classes, for each 𝑁 the FDR can be estimated (once for up- and once for

down-regulated entities). Different values of 𝑁 can now be tried until the desired FDR

level is reached (cf. algorithm in Table 1, line 10 – 19).

For the application to subnetworks the method estimating false positives has to be

modified, since the subnetworks’ z-scores have non-negative values only, which means

that bottom-N ranking subnetworks would be the ones with the weakest regulation. To

overcome this problem, one first has to introduce another way of counting entities that fall

under the non-consistently regulated classes, since the bottom ranked no longer represent

differentially regulated entities. In this new counting process, not simply the entities in

the non-regulated classes are counted but rather the signs of the replicates’ z-scores are

alternately changed (cf. algorithm in Table 1, line 5 – 8) and subsequently the number

of entities that consistently rank top across all replicates after this transformation are

counted (cf. algorithm in Table 1, line 14 – 16). In the case of the TTB class, for example,

rather than determining the number of entities ranking top-N in the first two replicates

and bottom-N in the third, the signs of the third replicate’s z-scores are flipped and one
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Algorithm 2.1 The algorithm for significance evaluation in pseudocode.
A = z-transformed phosphoproteomic data (n sites, m replicates)

STRING = STRING interaction data

origSN = list of extract subnetworks from STRING using A

flippedSNs = container for flipped subnetwork lists

for all 𝑠 ∈ Cartesian product {−1, +1}𝑚 without {(−1, . . . , −1), (+1, . . . , +1)} do

flippedA = multiply values in column (1, . . . , 𝑖, . . . , 𝑚) of A with the value at index i

in s

add list of extracted subnetworks from STRING using flippedA to flippedSNs

end for

FDR = 1.0

N = n

while FDR > desired FDR cutoff and N > 0 do

origCount = count subnetworks that are among the N most-regulated ones across all

replicates in origSN

flippedCount = 0

for all flipped lists of subnetworks in flippedSNs do

flippedCount = flippedCount + number of subnetworks from list of flipped subnet-

works that are among the N most-regulated ones across all replicates

end for

FDR = (flippedCount / number of lists in flippedSNs) / origCount

N = 𝑁 − 1

end while

if N > 0 then

return list of subnetworks that are among the 𝑁 + 1 most-regulated ones across all

replicates in origSN

else

return empty list

end if
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determines the number of entities now ranking top-N across all three replicates (those

that are now in the TTT class). Note that both counting methods yield the same results,

since it makes no difference whether one counts the number of bottom-N entities of a

given replicate or the number of sign-flipped top-N ones.

The z-score of a subnetwork is as defined in (2.9), where 𝑧𝑖 is the combined score over

all replicates. To find subnetworks that are top ranked across all replicates z-scores have

to be calculated for each replicate separately:

𝑧𝑠𝑗 = 1√︀
|𝑆𝑠|

∑︁
𝑖∈𝑆𝑠

𝑧𝑖𝑗, (2.10)

where 𝑧𝑖𝑗 is calculated with equation (2.1). The problem here is that two nodes within

a subnetwork – one with a highly positive and one with a highly negative score – would

mutually neutralize each other. This effect is undesirable, since the direction of regulation

does not matter for the application described here. On the other hand, if the absolute

value of 𝑧𝑖𝑗 was taken, the sign-flipping used to calculate the FDR would have no effect.

Thus, a trick is applied: if the sign of a given 𝑧𝑖𝑗 is in accordance with the z-scores of all

replicates (i.e. if it has the same sign as
∑︀

𝑗′ 𝑧𝑖𝑗′), 𝑧𝑖𝑗 will contribute positively to the score

𝑧𝑠𝑗, if not it will contribute negatively:

𝑧𝑠𝑗 = 1√︀
|𝑆𝑠|

∑︁
𝑖∈𝑆𝑠

(︃
𝑧𝑖𝑗 · sgn

∑︁
𝑗′

𝑧𝑖𝑗′

)︃
, (2.11)

where sgn is the sign function. This equation is applied in line 12, 15 and 21 of the

algorithm in Table 1 to find consistently top ranked subnetworks.

Entities that lack data in one replicate are accepted as differentially regulated, if they

rank top in the remaining 𝑚 − 1 replicates. This criterion compensates for missing data,

a particular problem in mass spectrometry experiments.

2.2.6 Implementation

Pre-processing, z-score calculation and generation of the artificial data set was performed

using Matlab. The SubExtractor algorithm is written in Java using the GA library

Jenes (http://jenes.ciselab.org; version 1.2.0) and made available for download online

at http://www.kinaxo.de/SubExtractor. Java version 5.0 or higher is required to run the

program. Network diagrams were created with Cytoscape [58].
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2.3 Results and Discussion

2.3.1 Artificial data

In order to benchmark and assess the proposed method, the algorithm was tested with

artificial data. For this purpose scale free networks based on the algorithm described in

[59] with 1000 nodes and an average connectivity of approximately 3.5 were generated.

Artificial z-scores were produced by sampling values for 969 nodes from a normal distribu-

tion with 𝜇 = 0 and 𝜎 = 1 representing non-regulated proteins (background distribution);

three times for each entity to simulate experimental replicates. The values for the 31 reg-

ulated nodes were determined in a two-step procedure. Firstly, the means 𝑥 were sampled

from a normal distribution with 𝜇 = 0 and 𝜎 = 5. Secondly, the actual replicate values

were generated by drawing three times from a normal distribution with 𝜇 = 𝑥 and 𝜎 = 1.

All 31 regulated nodes are connected with each other forming one regulated subnetwork,

which should be extracted by the algorithm as accurately as possible. This data generation

process was repeated ten times, resulting in ten artificial data sets.

Different 𝜎𝑧 and 𝛼 values were used to assess the subnetwork reconstruction. Values of

the 𝜎𝑧 parameter ranged from 2.0 to 8.0. The parameter 𝛼 that determines the weight of

the network structure on the entire Bayesian score was varied within a range of 0.01 to 10.

Figure 2.2 shows the mean prediction accuracies over all ten artificial data sets at an FDR

level of 0.05 (with 100 GA individuals and 3000 GA generations). Not surprisingly, a 𝜎𝑧

value of 5.0 delivers the best results (see Figures 2.2a and 2.2b), which is the same value

as used for sampling the regulated nodes. At the same time the graphs show a rather weak

dependence on its exact value. Only very small values (e.g. 𝜎𝑧 = 2.0) lead to a considerable

increase of false positive predictions (see Figure 2.2a), which was also expected since

such values are already very close to the 𝜎 value of the background distribution. For 𝛼

the best results could be obtained by setting its value between 0.5 and 2.5 (see Figures

2.2c and 2.2d). Lower values cause the model to put too much weight on the network

structure, which causes especially weakly regulated nodes that are only connected to

strongly regulated ones to be spuriously incorporate into the regulated subnetwork. Higher

values, on the other hand, result in under-weighting of the network structure, which in

turn causes an incorporation of moderately regulated nodes even if the majority of their
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Figure 2.2: SubExtracor’s performance on artificial data. Ten artificial data sets were

generated to assess the prediction quality of SubExtractor. The top figures (2a and 2b)

show the performance for varying 𝜎𝑧 values and a fixed 𝛼 of 1.0. The figures at the

bottom (2c and 2d) depict the mean accuracy for varying 𝛼 values ranging from 0.01 to

10 and a fixed 𝜎𝑧 of 5.0. Nodes sampled with the background distribution (𝜎 = 1) are the

negatives, those coming from the distribution with 𝜎 = 5 are the positives. The FN rate

is defined as false negatives
actual positives , the FP rate as false positives

actual negatives . The overall prediction accuracy

is 1 − false negatives+false positives
actual negatives+actual positives . Error bars display the standard error of the mean over

the ten generated data sets.

neighbours are not regulated at all. Furthermore, one can clearly see that the results are

not sensitive to the exact values of the parameters 𝛼 and 𝜎𝑧, which supports the decision

to fix them a priori. However, the overall prediction accuracy steeply increases between

𝛼-values of 0.25 and 0.5 (see Figure 2.2d). This is due to the effect that if a non-regulated
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node has only one connection to a well-regulated node (and no other connections) and 𝛼 is

smaller than a critical value 𝛼𝑐, it will be added to the differentially regulated subnetwork,

just because of this special connectivity property. To avoid this undesired effect, 𝛼 has to

be chosen

𝛼 > 𝛼𝑐 = 𝒩 (0|0, 𝜎2
𝑧)

𝒩 (0|0, 1) − 𝒩 (0|0, 𝜎2
𝑧) (2.12)

(the derivation of this formula and further explanation can be found in Supplementary

Information A). For 𝜎𝑧 = 5.0 this leads to valid 𝛼 values of 𝛼 > 0.25, which explains the

large number of false positives for values ≤ 0.25 (as depicted in Figure 2.2c).

A detailed graphical view of the 𝛼 parameter’s impact on the prediction results can

be seen in Figure 2.3, where the originally regulated network and three examples of

networks reconstructed by the method (for a fixed 𝜎𝑧 of 5.0 and alpha set to 0.3, 1

and 5) are depicted. A small value of 𝛼 just above 𝛼𝑐(Figure 2.3 top right) causes an

acquisition of some low regulated nodes (the bright ones within the green circles), since

the Bayesian score is mainly influenced by the network structure. On the other hand,

one node is lost since it has many connections to non-regulated nodes but only a few to

regulated ones (7 and 3, respectively) causing the network to break apart (upper right

empty circle). For 𝛼 = 0.3 the algorithm extracts 4 false positive nodes while missing 3

true positives. On the contrary, a high value of 𝛼 = 5 (Figure 2.3 bottom right) causes the

algorithm to almost entirely ignore topology information, and thus nodes are incorporated

mostly according to their level of regulation. This leads to false positive classification of

5 nodes, of which 4 are fairly well-regulated (i.e. although they were sampled from the

background distribution they received a high score by chance), and the fifth one–although

not regulated itself–acts as a link to one of the well-regulated false positives. Only one of

the true positives was missed. The results for 𝛼 = 1 (Figure 2.3 bottom left) form a good

compromise between the previous two settings, as neither of the two score components is

over-weighted. This reconstructed network has a lower number of false predictions (3 false

positives and 1 false negative), which is a very satisfying result given that many nodes

classified as regulated show very moderate regulation (weaker than some nodes from the

background distribution).

To demonstrate the advantage of SubExtractor over a method that does not take

network information into account, the original global rank test [53] was applied to the

27



2. SubExtractor

original α=0.3

α=1.0 α=5.0

Figure 2.3: Example of subnetwork extraction for one artificial data set. The top left area

shows the network of 31 nodes that have been sampled from the normal distribution with

𝜇 = 0 and 𝜎 = 5, thus being the regulated ones in the artificial data set containing 1000

nodes in total. The remaining three areas show networks reconstructed by the proposed

algorithm using different values of the parameter 𝛼. The colouring represents the level of

regulation, where down-regulated nodes are coloured blue, up-regulated ones red and non-

regulated nodes white (the darker the colour the stronger the regulation). The differences

between the original and the reconstructed subnetworks are highlighted by green ellipses.

artificial data sets. The average false negative rate of this method at an FDR level of

0.05 was 29.0%, the average false positive rate was 0.2% (the best results of SubExtractor

with 𝛼 = 1.0 and 𝜎𝑧 = 5.0 were 11.3% and 0.7%, respectively). Although SubExtractor
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produces slightly more false positives, the superior capability to detect true positives even

if they are only moderately regulated is obvious.

2.3.2 Sorafenib mode of action study

Subsequently the algorithm was applied to a real phosphoproteomics experiment, in

which triply SILAC-labeled PC3 cells were incubated with the small molecule kinase

inhibitor sorafenib (Nexavar®, Bayer HealthCare) for 30 and 90 minutes, including a

control. Proteins were extracted and digested, and phosphopeptides were enriched using

SCX-IMAC/TiO2. High resolution LC-MS/MS data of three biological replicates were

processed using MaxQuant [27].

A total of 15, 800 class-1 sites (i.e. highly confident phosphosites) on 3, 900 unique

proteins were detected. Since two time points are not sufficient to perform any sensible

time-course analysis, the more time point with the more extreme absolute value of its

average log ratios (either log 30min
ctrl or log 90min

ctrl ) over the three replicates is taken for each

phosphosite. Phosphorylation sites were then pre-processed as described in the Methods

section. Interaction data was taken from STRING version 8.1 [50] and pre-processed

as described in Methods. The 𝛼 parameter was set to 1.0, based on the observations

made from artificial data. 𝜎𝑧 was estimated by applying the original global rank method

[53] to the list of phosphosites and calculating the standard deviation of the resulting

differentially regulated sites’ combined z-scores, which led to a value of 𝜎𝑧 = 5.5. Other

parameter values were also tested, resulting in very similar networks (data not shown).

This supported the findings from the artificial data study, where it has been shown that

results are rather insensitive to the exact parameter values.

At an FDR level of 0.05 the proposed algorithm was able to reconstruct 21 significantly

regulated subnetworks with 168 nodes in total. Additionally, 225 individual proteins were

identified as significantly regulated. A selection of the results are depicted in Figure 2.4.

Besides parts of the MAPK pathway, which is known to be affected by sorafenib, the

largest network contains a substantial fraction of proteins from the mTOR pathway, which

was previously not known to be affected. Subsequent enrichment analyses of the mTOR

KEGG pathway confirmed the results of SubExtractor (p-value < 0.005 using Fisher’s
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exact test; data not shown). In particular, a substantial number of translation initiation

factors (eIF’s) show regulation of phosphorylation upon sorafenib treatment.
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Figure 2.4: Subnetwork extraction for sorafenib mode of action study. The largest two

resulting subnetworks are shown (blue nodes are down-regulated, red ones up-regulated).

Proteins in the orange circles belong to the MAPK pathway, which is known to be affected

by sorafenib. The green rectangle depicts the part of the largest subnetwork that belongs

to the mTOR pathway, which has not previously been reported to be affected by sorafenib.

The network on the right hand side shows an important strength of the algorithm, i.e.

that subnetworks are also reconstructed if the centre node (i.e. the hub) is not detected

to be regulated.

Another example in Figure 2.4 depicts a subnetwork centring the tumour suppressor

p53. This example shows the strength of the method to reconstruct networks, even if
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the hub of the subnetwork is not phosphorylated, not detected, or not regulated. Greedy

search methods that grow subnetworks by selecting a seed and iteratively expand it by

adding regulated neighbours cannot identify such subnetworks.

The complete result in Cytoscape session file format is provided as Additional File 2,

and in Excel format as Additional File 3.

2.3.3 Normal distribution assumption

Both regulated and non-regulated phosphosites were assumed to be normally distributed

with different variances (1 and 𝜎𝑧, respectively). Hence, a mixture model of these two

distributions should well describe the experimental data. To further investigate this as-

sumption we created a probability plot, which is used to assess whether data comes from

a given distribution. However, the plot (see Supplementary Figure A.2) indicates that a

mixture model of standard normal and t location scale distribution (essentially a normal

distribution with heavier tails) fits the data better than the mixture of the two normals.

Next, the impact of the different distributions on the SubExtractor results was assessed

by modelling the regulated data (cf. Equation 2.5) with a t location scale distribution with

the mean parameter set to 0, a variance of 𝜎2
𝑧 and 6 degrees of freedom (estimated based

on the fit above). However, the results of the t-normal mixture model were strikingly

similar to those of the normal-normal mixture, suggesting that the slightly better fit of

the former does not increase the prediction accuracy (compare Additional Files 2 and

4). Given the simplicity of normal distributions (i.e. in comparison to t distributions no

degrees of freedom have to be estimated) and the comparable results, the normal-normal

mixture model was considered preferable.

2.3.4 Alternative STRING network preparation

Instead of applying a very conservative cut-off of 0.995 to the combined STRING interac-

tion score, an alternative version was created where the score was re-computed omitting

text mining evidence. The computation was performed according to [60], and should avoid

very high confidence values that are only due to sometimes doubtable text mining evi-

dences. For the re-computed score the cut-off was set to 0.95, which is still conservative
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but increases the number of interactions by 80% and the number of involved proteins by

20%. SubExtractor was then run with this version of network information and the so-

rafenib data (all parameters were left unchanged). While the general tendency of affected

pathways and groups of proteins is very similar, the nodes of the largest network have

roughly doubled making it rather complex (see Additional File 5). The decision on which

network data file to use is left to the user, as it may depend on the application whether he

prefers rather complex but comprehensive networks or smaller networks that are easier to

interpret. Both files are available for download at http://www.kinaxo.de/SubExtractor.

2.4 Conclusion

Here, we propose a novel method, SubExtractor, for extracting differentially regulated

subnetworks from protein-protein interaction networks based on data from global quan-

tification technologies. The core of the method is formed by a Bayesian probabilistic model

that accounts for the regulation of proteins as well as for the network structure. A genetic

algorithm was implemented to find the subnetworks that maximize the Bayesian score.

Furthermore, a global rank significance test was used to distinguish between significantly

regulated subnetworks and those formed by chance.

Although some parts of the method have already been presented elsewhere (cf. In-

troduction), the main advantage of the proposed method is the combination of the three

main parts: Bayesian probabilistic model, powerful heuristics in the form of GA and

rigorous significance testing. To our knowledge none of the existing methods offer this

combination. Additionally, the significances of single nodes (i.e. either proteins that could

not be mapped on the interaction network or extracted single-node networks) are also as-

sessed, which makes separate statistics on a protein scope redundant. Using data from the

comprehensive STRING database guarantees high reliability of the detected interaction

subnetworks.

The method was tested with artificial data sets and showed a high level of recon-

struction accuracy. Knowledge from this study was transferred to a mode of action study,

where SubExtractor revealed differentially regulated subnetworks from known and novel

sorafenib-affected pathways, e.g. the MAPK- and mTOR-pathway, respectively. These reg-
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ulated subnetworks led to creating new hypotheses about the mode of action of sorafenib

in prostate cancer PC3 cells. Furthermore, the subnetworks may also play an important

role in discovering biomarkers. It has been shown [46] that identified markers for class pre-

diction are more reproducible if their identification is based on subnetworks rather than

single genes. Generalization of the proposed method for identifying subnetwork markers

used for class prediction will be the focus of future work.
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Chapter 3

MeanRank test

In this chapter, a new hypothesis test specifically designed for experiments with few repli-

cates and thousands of features is presented. The proposed test, called MeanRank test,

is a global one-sample location test, which is based on the mean ranks across replicates.

The MeanRank test internally estimates and controls the false discovery rate, and handles

missing data without the need of imputation.

The content of this chapter was published as:

M. Klammer, J.N. Dybowski, D. Hoffmann, and C. Schaab. “Identification of significant

features by the Global Mean Rank test.” In: PloS one 9.8 (2014), e104504

The author was a key contributor to designing and implementing the algorithm, as

well as writing the paper. The figures in this chapter were created by J.N. Dybowski, the

co-first author of this publication.

3.1 Background

Today, omics-technologies are capable of generating vast amounts of data. Typical mi-

croarray experiments measure the abundance of thousands of features. With recent ad-

vances in the field of mass spectrometry (MS), over 10,000 proteins can currently be

measured in cell systems [62], while recent studies identified even more phosphorylation

sites through quantitative phosphoproteomics [63–65].

Many of these microarray and proteomics studies include the detection of differentially

regulated features as core step in the data analysis. For data with thousands of features,
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the false discovery rate (FDR), defined as the expected number of false positive features

among those reported as significant, has to be controlled [66]. However, strong control

of the FDR reduces the rate of true positive features (TPR) discovered. The problem is

often aggravated by experimental designs with small numbers of replicates. Further com-

plications arise from missing data, especially common in MS-based shot-gun proteomics

experiments. Microarray technologies often produce non-normally distributed expression

levels and non-identical distributions between genes [67].

In principle, single-feature hypothesis tests like Student’s 𝑡-test or the Wilcoxon rank-

sum test can be applied to assess the significance of each feature, if results are corrected

for multiple testing, e.g. by Benjamini-Hochberg (BH) [43] or the family-wise error rate

(FWER) [68] procedures. However, when applied to data with only few replicates, these

approaches are lacking statistical power, due to difficulties in estimating variance. Tusher

et al. developed the Significance Analysis of Microarrays (SAM) [41], a more sophisti-

cated method based on a modification of the 𝑡-statistic. The FDR is controlled by a

permutation-based approach and adjusted using an estimate of the fraction of truly un-

regulated features. Moreover, SAM employs k-nearest-neighbor (k-NN) imputation to

replace missing data. A similar approach is taken by empirical Bayes methods. Linear

Models of Microarrays (LIMMA), for example, uses a moderated 𝑡-statistics, in which the

estimated sample variance is shrunk towards a pooled estimate across all features [67].

Recently, methods applying a global approach, rather than determining significance

on a feature-by-feature basis, were proposed. These methods take into account the entire

dataset at once and thus avoid the difficult task of estimating the variance of each feature.

Zhou et al. proposed a rank-based, global one-sample location test, which performs very

well for small numbers of replicates and internally controls the FDR [53]. However, this

global rank test requires features to consistently rank high or low across all replicates. The

RankProducts test [69] is based on a similar global approach, but the ranks of each feature

are multiplied. The FDR is then estimated numerically using random rank matrices.

The MeanRank test presented here borrows concepts of the GlobalRank and RankProd-

ucts tests, but uses a different test statistics and a different method for estimating the

null-distribution. In the following, we describe the concept of MeanRank, including its

handling of missing data. While we focus on the one-sample case in the main text, exten-
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sions to the two-sample case are discussed in Appendix B. The one-sample location test

problem is equivalent to the paired-difference test problem for dependent samples. Paired

samples are very common in proteomics experiments, which often apply labeling methods

such as SILAC or iTRAQ, but also in transcriptomics (e.g. two-color microarray). We then

present an extensive simulation study, in which the performance of MeanRank is compared

to the previously mentioned tests, the t-test, and the Wilcoxon signed-rank test. In order

to demonstrate the value of MeanRank, it is compared to SAM and LIMMA on the ’Ag-

Spike’ two-color microarray spike-in data set recently published by Zhu et al. [70]. Finally,

MeanRank and SAM are applied to datasets of two published phosphoproteomics-studies.

3.2 Methods

3.2.1 MeanRank test

Given a matrix 𝑀 of 𝑅 columns (replicates) and 𝑁 rows (features, e.g. genes, proteins,

phosphorylation sites). Let 𝑀𝑖𝑓 be the value of feature 𝑓 (with 𝑓 = 1, ..., 𝑁) in replicate

i (with 𝑖 = 1, ..., 𝑅). Based on this matrix 𝑀 , for each replicate 𝑖 the ranks 𝑟𝑖𝑓 of each

feature 𝑓 within this replicate and across all features can be determined by sorting the

values in each replicate. This is in contrast to the Wilcoxon signed-rank test, for which

the ranks are calculated across the replicates. Then the mean rank is calculated for each

feature across all replicates. Similar to the approach of Zhou et al., [53], the mean rank

statistic is motivated by the random ordering theorem, i.e. under the null hypothesis 𝐻0

that no feature is either up- or down-regulated, it is very unlikely that a feature ranks

consistently high or low across all replicates. Therefore no extreme (very large or very

small) mean rank values can be expected. In contrast to Zhou et al., who require features

to rank top or bottom consistently across all replicates, the mean rank statistic may

tolerate some moderate outliers.

For simplicity, we will focus on the detection of significantly down-regulated features

in the following, but the same approach is applicable for up-regulated features by simply

switching the signs of all values. The mean rank test proceeds in these steps:

1. Sort features ascendingly by their values within each replicate
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2. Calculate mean rank as

𝑟𝑓 =
∑︀𝑅

𝑖=1 𝑟𝑖𝑓

𝑅
(3.1)

3. Sort values 𝑟𝑓 ascendingly (𝑟*
𝑓 ) and identify the top 𝑛 as significantly down-regulated

In case of tied ranks, the values are left in the original order, receiving ascending ranks.

The list of significantly regulated features depends on the value of 𝑛, which has to be

chosen to meet the specified FDR. The FDR is defined as the expected fraction of false

positives among the reported positives. Following the approach of Zhou et al. [53], we

denote 𝛼0(𝑛) the expected number of false positives among the top 𝑛 features. The FDR

is thus

FDR(𝑛) = 𝛼0(𝑛)
𝑛

. (3.2)

As the true form of the null distribution is not known, we have to estimate a null distri-

bution either parametrically or non-parametrically. For a parametric estimate, we assume

that the mean ranks of the null distribution follow a Bates distribution, i.e. the distribu-

tion of the mean of statistically independent uniformly distributed random variables. The

cumulative distribution function is defined as:

FBates(𝑚, 𝑥) = 1
2𝑚!

𝑚∑︁
𝑘=0

(−1)𝑘

(︂
𝑚

𝑘

)︂
(𝑚𝑥 − 𝑘)𝑚sgn(𝑚𝑥 − 𝑘) (3.3)

where 𝑚 is the number of random variables and 𝑥 is the mean of the random variables

scaled to the interval (0, 1), and sgn(𝑎) is −1 for 𝑎 < 0, 0 for 𝑎 = 0, and 1 for 𝑎 > 0. The

expected number of false positives is then calculated as:

𝛼0(𝑛) = FBates

(︂
𝑅,

𝑟*
𝑛

𝑁

)︂
· 𝑁 (3.4)

Non-parametric estimation of 𝛼0(𝑛) follows Zhou et al., assuming a non-regulated

feature has the same probability of ranking top or bottom [53]. Thus, the null distribution

is independent of whether the features are sorted in ascending or descending order, or –

analogously – whether the features values have a positive or negative sign. Consequently,

𝛼0(𝑛) can be estimated by alternately flipping the signs of the ratios of the replicates,

calculating the flipped mean ranks 𝑟𝑓𝑙𝑖𝑝𝑝𝑒𝑑 on this flipped data, and counting the number

of values in 𝑟𝑓𝑙𝑖𝑝𝑝𝑒𝑑 < 𝑟*
𝑛 (see pseudo-code in Appendix B).
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Missing data

To account for missing data values, which are especially common in MS-based proteomics

experiments, the equation in step (3.2) of the algorithm has to be modified to

𝑟𝑓 =
∑︀𝑅

𝑖=1 𝑟𝑖𝑓

𝑅̂𝑓

, (3.5)

where 𝑅̂𝑓 is the number of present data values of the respective feature and 𝑟𝑖𝑓 = 0

if the value is missing. It has to be ensured that missing values are not considered in the

ranking process and consequently do not receive a rank (they are ignored completely).

The FDR estimation has to be modified as well, as there are now features with different

numbers of data values in the dataset. Thus, the parametric estimation of false positives

has to be modified to

𝛼0(𝑛) =
𝑅∑︁

𝑖=1

FBates

(︂
𝑖,

𝑟*
𝑛

𝑁

)︂
· 𝑁𝑖 (3.6)

where 𝑁𝑖 is the number of features with 𝑖 data values present. The non-parametric

estimation of 𝛼0(𝑛) remains largely unchanged, however, one has to ensure that features

unaffected by sign-flipping are excluded. This occurs when sign-flipping is by chance

applied only to values that are missing. The resulting feature would be unchanged and

receive the same ranks and subsequently mean rank, after flipping.

3.2.2 Simulations

Artificial data was generated by sampling from various distributions. The background

distribution (unregulated data) containing 3600 features was drawn from a normal dis-

tribution with zero mean (𝜇 = 0) and standard deviation 𝜎 = 0.1; 400 regulated features

(80 up- and 320 down-regulated) were sampled from normal distributions with shifted

means (shift Δ = 0.2). We investigated the performance with an increasing number of

replicates (3 to 15). The described settings were then altered to simulate variable variance

by drawing 𝜎 from a uniform distribution 𝜎 ∼ 𝒰(0.05, 0.25))in combination with constant

regulation strength between features (Δ = 0.3) and variable regulation Δ ∼ 𝒰(0.2, 0.4).

Missing data were introduced by randomly discarding 20% of data points while ensuring
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that at least two thirds of the data points were present for each feature. In simulations of

non-normal data we sampled features from a 𝑡-distribution with two degrees of freedom.

Whenever imputation of missing values was applied, the k-nearest neighbor (𝑘 = 10)

method was used.

Significance analyses by RankProducts, SAM and LIMMA were performed using the

RankProd [71], samr, and limma packages of Bionconductor [72] for R [73], respectively.

The global rank method by Zhou et al [53] was implemented by the authors. 𝑡-test and

Wilcoxon signed-rank test 𝑝-values were BH corrected for multiple hypothesis testing [43].

3.3 Results and Discussion

3.3.1 Simulated data

In order to evaluate the performance of the MeanRank test and to compared it with

various other tests, we performed an extensive simulation study extending the range of

scenarios found in comparable publications [53, 74, 75] by including more parameters and

wider ranges of replicates and methods. The advantage of simulations is that underlying

statistical properties are known and, thus, the performance of different hypothesis tests

can be compared under various conditions. In the first set of simulations we assessed

the performance of the one-sample location tests for different sampling distribution pa-

rameters. Simulation parameters were strength of regulation (Δ), within-feature variance

(𝜎2) – both of which were either held constant or chosen to be variable – and the pres-

ence of missing values. These parameters were combined to generate different simulation

scenarios. We calculated the performance for an increasing number of replicates for the

respective scenarios. The parameters were deliberately chosen to simulate experiments

with hard-to-identify regulated features to investigate the added power over a wide range

of additional replicates. With the chosen settings, a true positive rate (TPR) of 1.0 should

not be achieved easily.

The simplest simulation setting assumes a constant variance and strength of regula-

tion. Figure 3.1A shows TPR and FDR achieved by the tests when 3,600 unregulated

features were sampled with constant 𝜎2 = 0.01 and 400 regulated features were sampled
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Figure 3.1: Performance on simulated data. Performance plot of one-sample significance

tests under different simulation settings. Traces show the true positive rate (TPR) of the

respective tests for a given number of replicates. Bars at bottom denote the false discovery

rate (FDR). TPR and FDR are averaged over ten independent simulations. All tests were

set to control the FDR at 0.05.

with a constant shift Δ = 0.2. The leading method in this setting is LIMMA, followed

closely by SAM, and then the non-parametric MeanRank (MR). This top-group clearly
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outperforms the other methods. The parametric MeanRank test (MR.par) has a some-

what lower power for data with less than five replicates in this specific simulation setting.

The power of the GlobalRank tests (GR and GR.par) does not scale with the number

of replicates, but reaches its maximum performance at nine replicates. Additional repli-

cates will even lead to a loss in power. This behavior is expected, because with a growing

number of replicates it becomes less likely for a regulated feature to consistently rank top

or bottom. Similar to the parametric MeankRank (MR.par), the parametric GlobalRank

(GR.par) is less powerful than its non-parametric counterpart for less than five replicates.

In contrast to the GlobalRank, the power of the RankProducts (RP) scales well with the

number of replicates, but it is less powerful for experiments with small number of repli-

cates. The TPR curves of GlobalRank and RankProducts underline the initial motivation

of developing the MeanRank test, i.e. combining the strengths of both tests without in-

heriting their shortcomings. The 𝑡-test shows significant lower TPR, most likely due to

variance estimation issues, especially evident at very small number of replicates. As an

example of a non-parametric, rank-based test that does not belong to the class of global

approaches, we included the Wilcoxon signed-rank test. Because of the discreteness of the

test statistics, it is not surprising that a minimum of nine replicates is required to identify

any significantly regulated feature after multiple hypothesis testing correction. For eleven

or more replicates the TPR approaches the TPR of the other tests beside the GlobalRank

tests. All tests correctly control the FDR at the pre-specified level of 0.05.

Next, we investigated the scenario with feature dependent variable variance, which is

frequently observed in omics data due to the dependence of the variance on the signal

intensity [76]. Overall the tests display a similar behavior as in simulations with constant

variance (Figure 3.1B). However, while the overall TPR is slightly lower for most tests

with variable 𝜎2, the parametric MeanRank and GlobalRank tests seem to be largely

unaffected. Thus, the discrepancy between the parametric and non-parametric versions,

which was observed for small number of replicates, disappears. Furthermore, MeanRank

has a slightly higher overall TPR than SAM or LIMMA under these simulation conditions.

The small gain in power for the 𝑡-test results from features with small variance caused by

the variable 𝜎2 setting.

We then combined the variable variance 𝜎2 with a variable regulation strength Δ,
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reflecting the complex response of systems to perturbations, e.g. of cells to drug treatment.

There is a further loss in power across all tests, since some of the regulated features are

hidden in the background noise (Figure 3.1C). The parametric MeanRank performs best

across all replicate numbers. The non-parametric MeanRank, SAM and LIMMA, exhibit

comparable but slightly reduced power. In general, the behavior of all tests is similar to

the previous simulation (Figure 3.1B).

When using heavy-tailed distributions, such as a 𝑡-distribution, SAM and MeanRank

exhibit similar power until up to seven replicates. However, while MeanRank progresses

to a TPR of 1.0 for 15 replicates, SAM has by then just reached TPR 0.8 and almost

levels off. (Figure 3.1D). The power of LIMMA is considerably reduced compared to the

previous scenarios and is comparable to the power of the 𝑡-test. The GlobalRank shows

particular problems with this setting, achieving a TPR of merely 0.4, before starting to

drop. The RankProducts even falls behind the 𝑡-test for less than nine replicates.

Missing data are common in technologies such as MS-based shotgun proteomics, thus in

the next set of simulations we introduced missing values combined with variable variance

𝜎2 (Figure 3.1E). It should be noted, that SAM is the only method used that does not

handle missing data intrinsically. Instead, it employs a k-NN imputation prior to the

actual significance analysis. In terms of power, parametric and non-parametric MeanRank

together with SAM and LIMMA delivered the best results. For small numbers of replicates,

the power of GlobalRank was comparable to that of MeanRank and SAM. However, SAM

and the parametric GlobalRank systematically underestimated the FDR.

We additionally simulated the effect of missing values on data with both variable vari-

ance 𝜎2 and shift Δ (Figure 3.1F). Here, the parametric and non-parametric MeanRank,

SAM and LIMMA perform best with respect to the TPR. As in the previous scenario,

SAM always underestimated the FDR considerably. In order to investigate whether the

violations of FDR threshold observed for SAM were due to imputation, we also applied

the other tests to the imputed data (see Supplementary Figure B.2). This resulted in sim-

ilar behavior: a general violation of the FDR threshold, accompanied by a slightly higher

TPR. Although it can be argued, that this is not a problem of SAM per se, the inability

of handling missing data makes imputation inevitable.

Zhou et al. [53] stated that, in contrast to single-feature analysis methods, large num-
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bers of features are advantageous for global methods and will lead to increased statistical

power. We tested whether this applies to MeanRank, by altering the proportion of regu-

lated and background features for a constant number of six replicates (see Supplementary

Figure B.3). The hypothesis was confirmed, revealing that the rank-based tests (Mean-

Rank, GlobalRank, and RankProducts) possess more power when the proportion of reg-

ulated to background features is small. The opposite is true for the single-feature-based

tests, such as 𝑡-test, SAM and LIMMA. Despite experiencing a loss of power over an in-

creasing fraction of regulated features, MeanRank always met the desired FDR threshold,

while GlobalRank increasingly violated this threshold.

The simulations show that the parametric MeanRank generally had a higher power

than the non-parametric version. Thus, we only used the parametric test in the follow-

ing real data experiments. In the following, we applied parametric MeanRank, SAM and

LIMMA, i.e. the tests showing the best performance in the above simulations, to mi-

croarray spike-in data and finally to real experimental datasets, for which, of course, the

identity of truly regulated features is not known. However, since we showed that all tests

with exception of SAM meet the pre-specified FDR in a series of different simulation sce-

narios, we can judge the performance of the test by evaluating the number of regulated

features identified.

3.3.2 Microarray spike-in data

Spike-in datasets are well-suited for the comparison of significance analysis methods,

since the identity of truly regulated features is known before-hand. Here, we used the

Agilent two-color microarray spike-in dataset (’Ag-Spike’) consisting of 1300 differentially

expressed and 2500 background cRNAs across 12 replicates [70]. In their study the authors

explored different combinations of preprocessing methods (background correction, within-

, between-array normalization) in order to identify optimal preprocessing routes for the

detection of differentially expressed genes using LIMMA.

We used the published preprocessed data to compare performance of the parametric

MeanRank test with that of SAM and LIMMA. Figure 3.2 shows the true positive and

false discovery rates of the three methods on the differently preprocessed spike-in data.
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Figure 3.2: Performance on spike-in data. Performance comparison of MeanRank (red),

SAM (brown), and LIMMA (cyan) on the ’Ag-Spike’ microarray dataset [70]. TPR and

FDR shown by lines and bars, respectively. Different combinations of preprocessing inves-

tigated by the authors of the original study are shown on the x-axis.

Most notably, the rank-based approach of MeanRank is very robust against changes in

preprocessing: 𝐶𝑉TPR = 0.04% and 𝐶𝑉FDR = 0.75% compared to SAM (𝐶𝑉TPR = 0.21%,

𝐶𝑉FDR = 5.02%) or LIMMA (𝐶𝑉TPR = 0.54% and 𝐶𝑉FDR = 6.02%). Slight variation is

still introduced by methods applying local corrections, thus causing rank alterations (e.g.

normalization loess). MeanRank on average identifies 2691 positives, 2354 (87%) of which

are identified in all twelve preprocessing scenarios. The number of positives identified

by SAM (4119) and LIMMA (3246) are higher on average, but clearly more dependent

on the preprocessing protocol, with the number of constantly identified features being

2413 (59%) and 1989 (61%), respectively. This behavior is in line with the observations

44



3. MeanRank test

of Zhu et al., who in a prior study found that the preprocessing protocol has a great

impact on the performance of methods for detection of differentially expressed features

[77]. The power of MeanRank is comparable to that of SAM and LIMMA, when none or

only minimal efforts of normalization are made. Additional preprocessing steps result in

greater power for SAM and LIMMA, however at the cost of an under estimated FDR. Zhu

et al. found that a combination of background correction by normexp and within-array

normalization using loess yields the best result. This measure looks at the true positive

and corresponding false positive rates given the absolute value of the test statistic. Hence,

the correct estimation of the FDR is not taken into account. Figure 3.3 shows volcano plots

of the normexp-corrected and loess-normalized spike-in data and highlights differentially

expressed features as identified by the different tests. The column-like structure of data

points on the x-axis reflects the levels of spike-in (see Supplementary Figure B.4). The

largest column centered at zero contains features not regulated. SAM and LIMMA, in

contrast to the MeanRank test, tend to produce more false positives as the feature variance

decreases.

3.3.3 Phosphoproteomics data of erlotinib-treated AML cells

We applied MeanRank, SAM and LIMMA to phosphoproteomics data published by We-

ber et al. [78]. The authors of that study performed SILAC-based, large-scale, quantitative

mass spectrometry analyses of KG1 acute myeloid leukemia cells treated with the small

molecule tyrosine-kinase inhibitor erlotinib, which mainly targets the epidermal growth

factor receptor (EGFR). In their subsequent significance analysis of ratios of erlotinib

versus control treatment the authors applied the RankProducts test to identify 33 signif-

icantly (FDR 0.05) regulated class-I sites (i.e. phosphorylation sites identified with high

confidence). Prior to testing, ratios of class-I sites were log10-transformed and subjected

to sample-wise median normalization (cf. [32]).

The MeanRank test yielded 57 significantly regulated phosphorylation sites at FDR

0.05, including 24 of the 33 sites published by Weber et al (Figure 3.4, Additional File

2). Of the remaining 9 sites, 8 had a local FDR smaller than 0.07, thus missing the sig-

nificance criterion only marginally. 27 of the additional 33 sites identified by MeanRank
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Figure 3.3: Volcano plot of spike-in data. Volcano plot of the ’Ag-Spike’ data, background

corrected by normexp and normalized with loess. This combination of preprocessing steps

was found to deliver the best performance by the authors of the original study [70]. Genes

are represented as points. Non-differentially expressed genes are scattered around Mean=0

on the x-axis. Differentially expressed genes, as identified by the respective methods are

colored.

had a missing ratio, emphasizing the tolerance of the test towards incomplete data. SAM

identified only 5 sites as significantly regulated, while LIMMA did not identify any signifi-

cantly regulated phosphorylation sites at all. The sites newly identified by MeanRank are

located on 29 different proteins. Most of these proteins are annotated as being involved in

the cell surface receptor signaling pathway (GO:0007166). Weber et al. further found that

most site-specific repression of phosphoserines by erlotinib occurred on proteins involved

in mRNA translation control. Supporting this finding, the MeanRank test also identified

several transcription factors (GTF2B, GTF2F1, GTF3C1, DEAF1, and TCF12) to be

significantly regulated upon treatment. In addition, we identified 6 additional phospho-

tyrosines sites. As the primary targets of erlotinib are tyrosine kinases, this significant

relative enrichment (Fisher’s exact test 𝑝 < 9.5 · 10−6) compared to the proportion of

phosphotyrosins in the full dataset supports the findings of MeanRank. One of the sites

that has not been identified as significantly regulated in the original paper is Tyr427 on
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Figure 3.4: Volcano plot of AML data. Volcano plot of the phosphoproteomic data pub-

lished by Weber et al. [78]. Significantly regulated phosphorylation sites are shown by

colored circles as identified by SAM (left), the MeanRank test (right center), and in the

original study (right).

the SHC-transforming protein 1 (Shc1). Tyr427 is phosphorylated in-vitro by Src kinase

and in-vivo in EGF-stimulated cells [79]. Phosphorylated Shc1 forms a complex with Grb2

which in turn activates Ras signaling [80]. By down-regulation of Tyr427 on Shc1, erlotinib

treatment inhibits the transmission of growth signals to the Ras signaling cascade.

3.3.4 Phosphoproteomics data upon reactivation of Plk1

We investigated the behavior of MeanRank and SAM on data from a second phospho-

proteomics study. Here, telomerase-expressing human retinal pigment epithelial (hTERT-

RPE) cells expressing an analog-sensitive Plk1 mutant (Plk1as) were treated with the

bulky kinase inhibitor 3-MB-PP1 [81]. 3-MB-PP1 inhibits the mutant kinase Plk1as har-

boring an enlarged catalytic pocket, but not wild-type Plk1. This allowed the investigation

of downstream effects upon Plk1 reactivation by inhibitor wash-out. The dataset contained

four biological replicates with a total of around 20,000 identified phosphorylation sites. In

this analysis, we considered only sites with values present in all four replicates in order

to avoid having to impute data for SAM analysis. This left around 5,200 phosphosites to
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be tested for significant regulation upon inhibitor wash-out. Since SAM requires proper

pre-processing, the data were log10-transformed and median normalized (cf. [32]).
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Figure 3.5: Volcano plot of Plk1-kinase-inhibited cells data. Volcano plot of the phos-

phoproteomic data of cells treated with an Plk1 tyrosine kinase inhibitor versus control

[81]. Significantly regulated phosphorylation sites shown in colored circles as identified by

MeanRank test, SAM, LIMMA (from left). The two rightmost volcano plots shows differ-

ences in detected phosphorylation sites by MeanRank/SAM and MeanRank/LIMMA.

While MeanRank identified 313 significantly regulated phosphorylation sites (FDR

0.05), SAM reported a slightly higher number of 359 significant sites for the same FDR

level (Additional File 3). The overlap of the reported significant features was 249. SAM

identified more significantly up-regulated features than MeanRank, most of which exhibit

low variance and low mean regulation (Figure 3.5). SAM found 152 sites that were less

than 1.5-fold up-regulated on a linear scale; MeanRank only 45. In contrast, SAM found

only 8 sites that were less than 1.5-fold down-regulated (linear scale), while MeanRank

reported 61. MeanRank draws a more consistent threshold between significantly up-, and

down-regulated features than SAM.

LIMMA reports 229 significantly regulated phosphorylation sites, 225 are also identi-

fied by MeanRank. Similar to MeanRank, LIMMA mainly reports sites with mean reg-

ulation stronger than ±1.5-fold on a linear scale. Only 23 sites with down-regulation of
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less than 1.5-fold and 18 with an up-regulation of larger than 1.5-fold are reported.

Generally, it appears that SAM puts more emphasis on variance and MeanRank more

emphasis on the level of regulation. This is reflected in the shape of the region within

the volcanoplot, in which the significant features are located (Figure 3.5): While the

significantly regulated features identified by MeanRank can be separated from the back-

ground features almost by a straight line, those identified by SAM exhibit a rather curved

threshold line. LIMMA behaved similar to MeanRank, however identifying slightly less

significantly regulated sites. Since the simulation study suggests that both tests comply

with the pre-specified FDR level when applied to four-replicate experiments, it can be

argued that at least 95% of the phosphosites reported as being significantly regulated by

either test are in fact true positives. While all three tests perform well and have a high

overlap, either might be more suitable depending on the application.

3.3.5 Two-sample test

Established methods such as SAM and LIMMA support two-sample comparison exper-

iments. The MeanRank test can be extended to accommodate two-sample comparisons

by basically transforming the two-sample into a one-sample problem. To do so, we create

a difference matrix by calculating the difference of each possible pair from both groups.

Here we assume that the data is log-transformed. The calculations of the mean ranks

is then performed on the difference matrix in the same way as for the one-sample test.

Since the columns of the difference matrix are not independent anymore, the dependency

structure has to be taken into account when estimating the null distribution. We found

that although the test generally performs well in terms of power compared to SAM for

most cases in our simulations and spike-in microarray data [77] while reliably controlling

the FDR, it is very conservative when applied to data with missing values. This can be

explained by the way the difference matrix approach exaggerates the relative amount of

missing values. The method and simulation setup is described in detail in Appendix B

(see also Supplementary Figure B.1).
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3.4 Conclusion

The simulations showed that borrowing traits from both the GlobalRank and RankProd-

ucts methods strongly improved the power over either of the two tests in all simulated sce-

narios, while reliably estimating the FDR. All three tests are rank-based and use a global

approach rather than testing feature-by-feature. The main differences of the MeankRank

test compared to the other two tests are the test statistics and the methods for estimating

the distribution under the null-hypothesis. We showed that this improves the power of

the test with respect to the RankProducts test for low number of replicates and avoids a

drop in power with increasing number of replicates in the case of the GlobalRank test.

While single-feature-based non-parametric tests, such as the Wilcoxon rank-sum or

signed-rank tests, require nine or more replicates in order to identify any significant reg-

ulated feature at all, this is not the case for global rank-based tests. The fixed 𝜎2 simu-

lations showed, that the non-parametric MeanRank test identifies more than 60% of the

true positives for three replicates.

The parametric and non-parametric MeanRank tests performed comparably to SAM

and LIMMA in most simulation scenarios. While SAM and LIMMA performed slightly

better in the case of fixed 𝜎2 simulations, MeanRank had a slightly higher power in the

cases with variable 𝜎2 and both variable 𝜎2 and Δ.

When introducing missing data, our simulations suggest that SAM tends to underes-

timate the FDR, since missing values have to be imputed. This naturally raises concerns

when applying SAM – and thus imputation – to data resulting from technologies like

MS-based shotgun proteomics, regularly producing missing values. The matter is further

complicated by the fact that different imputation methods (k-nearest-neighbor, singular

value decomposition, multiple imputation, etc.) can deliver deviating results [82]. These

aspects have to be considered, when applying SAM to data with missing values, while the

MeanRank test offers a convenient way to entirely avoid imputation. However if, under

certain conditions, imputation delivered results close to the ground truth, the power of

any test would increase. A distinct advantage of the MeanRank test lies in the decoupling

of significance testing and imputation procedures, leaving the freedom of choice with the

researcher. If the data were not normally distributed but followed a heavy-tailed distri-
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bution such as the 𝑡-distribution with few degrees of freedom, the one-sample MeanRank

test showed a better performance than SAM and in particular LIMMA, especially for

experiments with many replicates.

The global nature of the MeanRank test leads to a loss in power when a very large

fraction of features is truly regulated. However, several studies suggest that the fraction

of differentially regulated features is often lower than 10% [78, 81]. In fact, given such

experiments, our simulations show that the MeanRank test has an advantage over single-

feature-based tests like SAM and LIMMA. A notable practical advantage of MeanRank

over other methods such as SAM is that normalization of samples is not necessary due to

its rank-based nature. This is advantageous because normalization can have a direct influ-

ence on the results, as was demonstrated by our comparison based in the ’Ag-Spike’ data.

Here, MeanRank, in contrast to SAM or LIMMA, produced very stable results, indepen-

dent of the preprocessing steps applied. SAM attempts to determine the proportion 𝜋0 of

true null hypotheses in the dataset in order to adjust the false discovery rate [66]. This

usually leads to more positive calls; however, the estimation of 𝜋0 is not robust against

small variations in the data and depends strongly on the preprocessing applied. Since

the FDR estimation of the MeanRank test is rather conservative, an implementation of a

similar estimation could help to further improve the test with respect to statistical power.

However, we deliberately omitted 𝜋0 estimation because of the described inconsistent

behavior also seen in other studies [83].

In summary, the key advantages of the MeanRank test compared to other tests are: a

comparable or even superior power in detecting regulated features without underestima-

tion of the FDR, the possibility to analyze data with missing values without the necessity

for imputation; the robustness with respect to preprocessing. Although we focused on

the one-sample test in the main text, a two-sample version of the test is also available

and described in Appendix B. One-sample location tests are particular important for the

analysis of proteomics data which often uses labeling methods such as SILAC or iTRAQ,

but also for the analysis of two-color microarrays. Furthermore, they can be applied to

paired two-sample test problems emerging, for example, if matched tumor and normal

tissues are measured across many patients. The MeanRank test is not limited to testing

the significance of gene- or protein regulation. As no strong assumptions about the un-
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derlying distributions are made for the non-parametric test, inference about statistically

significant differences between groups could, in principle, be made for any kind of ordinal

features. Furthermore, MeanRank is freely available and can be used by anyone without

any restrictions, whereas SAM is patented and requires proper licensing. For most ex-

periments, running the MeanRank test is a matter of seconds, and can be performed on

standard computers (see Supplementary Table B.1).

Finally, we would like to emphasize the intuitiveness of our test. MeanRank is easy to

understand, easy to implement, does not require any parameter optimization and yields

results that are easy to interpret.
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Chapter 4

NSCLC biomarker

In this chapter, a phosphorylation signature that predicts the response to treatment with

the kinase inhibitor dasatinib in non-small cell lung cancer (NSCLC) cell lines is presented.

Quantitative mass spectrometry was used to globally profile the basal phosphoproteome of

NSCLC cell lines; the effect of dasatinib on cellular growth was tested against the same cell

line panel. An elaborate cross-validation workflow including robust feature selection and

support vector classification was developed in order to detect a phosphorylation signature

that accurately predicts sensitivity to dasatinib.

The content of this chapter was published as:

M. Klammer, M. Kaminski, A. Zedler, F.S. Oppermann, S. Blencke, S. Marx, S. Müller,

A. Tebbe, K. Godl, and C. Schaab. “Phosphosignature Predicts Dasatinib Response in

Non-small Cell Lung Cancer.” In: Mol Cell Proteomics 11.9 (2012), pp. 651–668

The author was a key contributor to designing and implementing the algorithms, as

well as writing the paper. The wet laboratory work were performed by his colleagues

at Evotec Munich: A. Zedler, S. Blencke and S. Marx performed the cell culture work

under the supervision of S. Müller; M. Kaminsky and F.S. Oppermann performed the MS

analyses under the supervision of A. Tebbe.

4.1 Background

The introduction of targeted drugs for treating cancer is a major biomedical achievement

of the past decade [84, 85] . Since these drugs selectively block molecular pathways that
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are typically over-activated in tumor cells, they are more precise and less toxic than tra-

ditional chemotherapeutics. However, while many cancer patients benefit from a specific

targeted therapy, many others do not. Therefore, predictive molecular markers are needed

to confidently predict the patient’s response to a specific therapy. Such markers would

facilitate therapy personalization, where the selected therapy is based on the molecular

profile of the patient.

Predictive tests currently used in the clinic are frequently based on one particular

marker that is often linked to the drug’s target. A well-known example for a predictive test

is assessing HER2/neu overexpression using immunohistochemistry or fluorescent in situ

hybridization to predict the response to therapy with trastuzumab (Herceptin®, Roche)

(see [34, 35] ). However, in some cases the expression or mutational status of the target or

other singleton markers might not be sufficient to predict a therapeutic response. Recently,

several studies tried to identify molecular signatures comprising multiple markers for

response predictions, usually based on gene expression profiling (e.g. [86, 87]. To our

knowledge, no study successfully identified a signature from global phosphoproteomic

profiles so far.

Recent advances in mass spectrometry, methods for enriching phosphorylated proteins

or peptides, and computer algorithms for analysing proteomics data have enabled the

application of mass spectrometry-based proteomics to monitor phosphorylation events

in a global and unbiased manner. These methods have become sufficiently sensitive and

robust to localize and quantify the phosphorylation sites within a peptide sequence [15,

32, 63]. Phosphorylation events are important in signal transduction, where signals caused

by external stimuli are transmitted from the cell membrane to the nucleus. Aberrations

in these signal transduction pathways are particularly important for understanding the

mechanisms of certain diseases, such as cancer, inflammation and diabetes [88, 89].

Approximately 391,000 incidences and 342,000 deaths from lung cancer were estimated

in Europe in 2008 [90], accounting for nearly 20% of all cancer deaths in Europe. Approx-

imately 85% of all lung cancer incidences are non-small cell lung cancer (NSCLC) [91].

Dasatinib (Sprycel®, Bristol-Myers Squibb) is a multi-kinase inhibitor targeting BCR-

ABL, the Src-kinase family, c-Kit, ephrin receptors, and PDGFRb [11, 12]. It is currently

approved for chronic myelogenous leukaemia and Philadelphia chromosome-positive acute
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lymphoblastic leukaemia. Recently, dasatinib was clinically evaluated in patients with ad-

vanced NSCLC. Dasatinib had modest clinical activity, with only one partial response

and twelve stable diseases among thirty patients. Neither Src family kinase activation nor

EGFR and Kras mutations could predict the response to dasatinib [92].

In this study we wanted to identify a signature of protein phosphorylation that pre-

dicts the response to dasatinib in NSCLC cell lines. In total, 26 NSCLC cell lines were

tested for their response to dasatinib. The identical cell lines were profiled in a global,

unbiased, phosphoproteomics study and the obtained phosphoproteome profiles were used

to assemble a biomarker signature of 12 phosphorylation sites. We evaluated the perfor-

mance of this signature in a cross-validation set-up and investigated the robustness of the

selected predictive features. Finally, we confirmed the predictive power of the signature

in an independent set of breast cancer cell lines.

In a recent study, Andersen et al. identified phosphorylation sites predicting response

to phosphatidy-linositol 3-kinase (PI3K) inhibitors [93]. Their study differs in two aspects

from the study presented here. First, the authors focused on the PI3K and MAPK path-

ways by immunoprecipitating phosphorylated peptides with antibodies directed against

corresponding phospho-motifs. In contrast, we followed an unbiased approach, where no

hypothesis about the involved signalling pathways has to be made. Second, the authors

first investigated the regulation of phosphorylation sites upon drug treatment in one sen-

sitive cell line, and subsequently confirmed the applicability of one site to response pre-

diction by evaluating its basal phosphorylation in a panel of cell lines. Here, we started

directly by investigating the basal phosphoproteome of a panel of sensitive and resistant

cell lines.

4.2 Methods

4.2.1 Cell culture

Based on the half-maximum growth inhibitory concentrations (GI50) of dasatinib on a

panel of 84 NSCLC cell lines reported in Supplemental Table 5 of Sos et al.[94], 13

cell lines with low and 13 with high GI50 values were selected (cf. Supplementary Table
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C.1). These 26 cell lines were obtained from the LGC Standards (Wesel, Germany), from

the DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig,

Germany), and Roman Thomas’ group at the Max Planck Institute for Neurological

Research (Cologne, Germany). The six breast cancer cell lines were obtained from the

LGC Standards (see Supplementary Table C.1).

All cell lines were cultivated in RPMI1640, 10% foetal bovine serum, 2 mM glu-

tamine, 1 mM sodium pyruvate and penicillin/streptomycin (PAA, Cölbe, Germany).

Cells were routinely monitored for mycoplasma infection using the MycoAlert reagents

(Lonza, Cologne, Germany). Metabolic labelling of the cell lines was performed using

SILAC (stable isotope labelling with amino acids in cell culture [17]). Cells were culti-

vated in media containing SILAC-RPMI (PAA) and dialysed FBS (Invitrogen, Darm-

stadt, Germany). L-lysine and L-arginine were replaced by normal L-lysine (Lys-0) and

L-arginine (Arg-0), or medium isotope- labelled L-D4
14N2-lysine (Lys-4) and L-13C6

14N4-

arginine (Arg-6), or heavy isotope-labelled L-13C6
15N2-lysine (Lys-8) and L-13C6

15N4-

arginine (Arg-10). Isotope-labelled amino acids were purchased from Cambridge Isotope

Laboratories (Andover, MA, USA). Cells were cultivated for a minimum of six doubling

times to obtain an incorporation efficiency for the labelled amino acids of at least 95%.

16 NSCLC cell lines were selected as a reference pool: A549, Calu6, H1395, H1437,

H1755, H2030, H2052, H2172, H28, H460, HCC827 (obtained from LGC Standards),

LCLC103H, LouNH91 (obtained from DSMZ), H322M, HCC2279, HCC2429 (obtained

from MPI for Neurological Research). The selected cell lines were grown in SILAC media

supplemented with the natural ’light’ forms of arginine and lysine. The labelled cells of

each cell line were lysed, pooled, aliquoted, and stored at -80°C. In total, 40 aliquots with

12 mg of protein each were generated.

4.2.2 Determination of cellular growth inhibition

Sensitivity of the cell lines for dasatinib was determined by measuring the cellular ATP

content after 96 hours of treatment using the CellTiter Glo chemiluminescent viability

assay (Promega, Mannheim, Germany). Cells were cultivated in 96-well plates (Greiner,

Frickenhausen, Germany) in the presence of dasatinib (LC Laboratories, Woburn, MA,
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USA) within a concentration range between 3 nM and 30 µM.

The raw data from the chemiluminometer (FLUOstar OPTIMA, BMG Labtech, Of-

fenburg, Germany) was used to determine the GI50 value. First, the background was

determined by calculating the median value of the plate’s border wells, which contained

only growth media. This value was then subtracted from each inner well. Since two ex-

periments were conducted on one 96-well plate with 10 compound concentrations each

(0(DMSO), 3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1µM, 3 µM, 10 µM, 30 µM), three

data points per concentration and experiment were available. Ratios representing the per-

centage of growth inhibition were calculated by dividing each data point coming from a

concentration >0 by the median of the DMSO values. A logistic regression was performed

to fit a curve to those ratios and compute the GI50 value.

4.2.3 Classification into sensitive/resistant

The calculated GI50 values of the 26 selected cell lines were compared with the values

reported in [94]. Although the correlation between the two sets was strong (Pearson cor-

relation = 0.50, p = 0.009 on logged GI50s), a few cell lines showed inconsistent behaviour.

By setting the threshold to discriminate between sensitive and resistant cells to a GI50

value of 1 µM, seven cell lines were classified inconsistently (5 were resistant in the refer-

ence paper, but sensitive in this study, 2 vice versa). Consequently, these cell lines were

excluded from the workflow that aims at finding a predictive phospho-signature.

4.2.4 Phosphoproteomics workflow

Responsive and non-responsive cell lines were grown in medium or heavy SILAC media

and after washing twice with ice-cold PBS the cells were lysed directly on the plates by

the addition of ice-cold lysis buffer (8 M urea, 50 mM Tris pH 8.2, 5 mM EDTA, 5 mM

EGTA, SIGMA HALT Phosphatase Inhibitor Mix, ROCHE Complete Protease Inhibitor

Mix). After sonication cell debris was sedimented by centrifugation and the protein con-

centration was determined by Bradford assays. Equal protein amounts of the reference

cell culture mix and a medium and heavy labelled cell line (7 mg protein each) were

mixed as depicted in Supplementary Figure C.2 and subsequently subjected to reduction

57



4. NSCLC biomarker

(20 mM DTT, 30 min 37°C) and alkylation (50 mM iodoacetamide, 30 min RT) prior to

proteolytic cleavage. Then 80 µg of LysC (Wako) was added for 4 h followed by a 4-times

dilution with 50 mM Tris pH 8.2. Proteolytic cleavage was continued by the addition of

120 µg of trypsin (Promega) overnight. The peptide mixtures were acidified by addition

of TFA to a final concentration of 0.5% and subsequently desalted via C18 SephPack

columns (Waters). Peptides were eluted with 50% ACN and dried under vacuum. For a

first separation of phosphorylated and non-phosphorylated peptides, the dried peptide

powder was reconstituted in 1 ml SCX buffer A (5 mM K2HPO4, pH 2.7, 30% ACN) and

loaded onto a polysulphoethyl column (9.4 x 250 mm, PolyLC) using an ÄKTA Purifier

chromatography system equipped with a fraction collector. The peptides were separated

by a linear gradient to 25% SCX buffer B (buffer A supplemented with 500 mM KCl)

over 40 min at flow rate of 3 ml/min. Twenty fractions (12 ml each) were collected across

the gradient.

Prior to IMAC enrichment the solvent of the SCX-fractions was removed by lyophili-

sation. Dried peptides were reconstituted in 1 ml of 0.1% TFA and desalted by using C18

reversed phase cartridges (Waters). The bound peptides were eluted with 50% ACN, 0.5%

HOAc and the peptides were lyophilized again. Dried peptides were reconstituted in 40%

ACN, 25 mM formic acid and phosphopeptides were captured using PhosSelect (Sigma)

according to the manufacturer’s instructions. Eluted phosphopeptides were subjected to

mass spectrometric analysis.

4.2.5 LC-MS/MS Analysis

Mass spectrometric analysis was carried out by on-line nanoLC-MS/MS. The sample

was loaded directly by an Agilent 1200 nanoflow system (Agilent Technologies) on a 15

cm fused silica emitter (New Objective) packed in-house with reversed phase material

(Reprusil-Pur C18-AQ, 3 µm, Dr. Maisch GmbH) at a flow of 500 nl/min. The bound

peptides were eluted by a gradient from 2% to 40% of solvent B (80% ACN, 0.5% HOAc)

at a flow of 200 nl/min and sprayed directly into a LTQ-Orbitrap XL or LTQ-Orbitrap

Discovery mass spectrometer (Thermo Fischer Scientific) at a spray voltage of 2 kV ap-

plying a nanoelectrospray ion source (ProxeonBiosystems). The mass spectrometer was
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operated in the positive ion mode and a data dependent switch between MS and MS/MS

acquisition. To improve mass accuracy in the MS mode, the lock-mass option was en-

abled. Full scans were acquired in the orbitrap at a resolution R = 60,000 (Orbitrap XL)

or 30,000 (Orbitrap Discovery) and a target value of 1,000,000 ions. The five most intense

ions detected in the MS were selected for collision induced dissociation in the LTQ at a

target value of 5000. The resulting fragmentation spectra were also recorded in the linear

ion trap. To improve complete dissociation of phophopeptides, the multi-stage activation

option was enabled applying additional dissociation energy on potential neutral loss frag-

ments (precursor minus 98, 49 and 32.7 Thompson). Ions that were once selected for data

dependent acquisition were 90 sec dynamically excluded for further fragmentation.

4.2.6 MaxQuant analysis

The raw mass spectral data was processed using the MaxQuant software (version 1.1.1.25)

[27] applying the Andromeda search engine for peptide and protein identification. The hu-

man UNIPROT database (version: 57.12) was used comprising 110,595 database entries

including the UNIPROT splice variants database. The minimal peptide length was set to 6

amino acids, trypsin was selected as proteolytic enzyme and maximally 3 missed cleavage

sites were allowed. Carbamidomethylation of cysteines was selected as fixed modifica-

tion, whereas methionine oxidation, N-terminal protein acetylation and phosphorylation

of serine, threonine and tyrosine residues were considered as variable modifications. As

MaxQuant automatically extracts isotopic SILAC peptide triplets, the corresponding iso-

topic forms of lysine and arginine were automatically selected. The maximal mass devi-

ation of precursor and fragment masses was set to 20 ppm and 0.5 Da before internal

mass recalibration by MaxQuant. A false discovery rate (FDR) of 0.01 was selected for

proteins and peptides and a posterior error probability (PEP) below or equal to 0.1 for

each MS/MS spectrum was required. The MaxQuant results were uploaded to the MaxQB

database [95] for further analysis.

59



4. NSCLC biomarker

4.2.7 Data pre-processing

Data from MaxQuant’s PhosphoSTY table were the data source for identifying a predic-

tive phospho-signature. Each entry in this table describes one specific phosphosite along

with information about its localisation, confidence and regulation. The regulation of a

phosphosite is provided as ratio of the site’s abundance between each cell line and the

super-SILAC standard. MaxQuant already provides normalized ratios, which were used

in this study. There are two coefficients that account for the reliability of identification

and localization of a phosphosite, i.e. Localization Probability and Score Diff. Sites that

satisfy the constraints Localization Probability ≥ 0.75 and Score Diff ≥ 5 were consid-

ered to be sufficiently reliable (class-I sites). Furthermore, sites that are flagged as Reverse

or Contaminant hits were also excluded. All phosphosites that fulfill both requirements

(class-I, no contaminant/reverse) were subjected to further analysis. The identification

and quantification data on the class-I sites, as well as the fragment spectra of the best

localization evidence are accessible in Additional Files 2-5 (Appendix C).

4.2.8 Analysis of differential phosphorylation sites

Significance analysis

After preprocessing the data, a Wilcoxon rank-sum test was applied to find differentially

abundant phosphorylation sites between sensitive and resistant cell lines. For this analysis

only phosphosites with values in at least two thirds of the experiments in each group were

considered (i.e. at least 8 of 11 sensitive and 6 of 8 resistant data points had to be present).

Subsequently, the p-values reported by the Wilcoxon rank-sum test were corrected for

multiple hypotheses testing by applying Benjamini-Hochberg FDR correction [43].

Enrichment analysis

To analyze whether proteins harboring differentially abundant phosphorylation sites are

enriched in certain GO terms [96] or KEGG pathways [49], FatiScan enrichment analysis

[97] was applied. In brief, FatiScan performs a segmentation test, which checks for asym-

metrical distribution of biological labels (e.g. GO terms, KEGG pathways) associated with

proteins in a ranked list. For this purpose, the phosphorylation sites were sorted according
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to their q-values and the algorithm was set-up to search for a possible enrichment in the

low-q-value area of this ranked list. The analysis was performed via the Babelomics web

interface (http://babelomics.bioinfo.cipf.es/, version 4.2).

Detection of significantly different subnetworks

In order to visualize and interpret the data in a network context, the SubExtractor al-

gorithm was applied [40] (see also Chapter 2. In brief, SubExtractor combines phospho-

proteomic data with protein-protein interaction data via a Bayesian probabilistic model.

Regulated subnetworks are found with a genetic algorithm and subsequent significance

evaluation based on the global rank test [53]. The STRING database version 8.3 [50] was

used as source for protein-protein interactions. It was preprocessed to contain only hu-

man interactions with a confidence score larger than 0.9 without considering text mining

evidences. The algorithm’s parameters were set to 𝛼 = 0.5 and 𝜎 = 5.0, and subnetworks

with an FDR smaller than 0.1 were reported.

To calculate z-scores required as input for the algorithm, pair-wise phosphorylation

abundance differences between sensitive and resistant cell lines had to be computed first.

Since the number of experiments in the two groups are not balanced (11 and 8, respec-

tively), sampling with replacement was applied to the smaller group (i.e. it was sampled

11 times from the 8 experiments ensuring that each experiment was chosen at least once).

Subsequently, the pair-wise differences could be computed along with the estimated global

standard deviation as suggested in [40]; and finally the z-scores were calculated.

4.2.9 Identification and evaluation of phospho-signature

Cross validation

The data set containing 𝑁 = 19 objects was split into two parts, one containing data of

one cell line, and the other containing the data of the remaining 𝑁 − 1 cell lines. The

larger part was then used for training a predictor (training set) and the smaller one for

testing this predictor (test set). By alternating the cell lines that made up the training

set, each cell line was used once for testing. Each of the N cross validation steps included

missing data imputation, feature selection, predictor training and predictor testing (see
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also Supplementary Figure C.3). A phosphosite was only considered as a potential feature

if it had training data values in at least two thirds of the experiments in each class (e.g.

if the training set contained data from 10 sensitive and 8 insensitive cell lines, at least 7

and 6 training data points had to be present, respectively). Since this criterion uses the

class-labels, the features have to be filtered within the cv-loop. This further means, that

the filtered features may be different in each cv-step.

Data imputation

For each phosphosite and class the mean and standard deviation was computed and

the missing values were filled by sampling from the resulting normal distribution. This

procedure was only applied to the training data, since the test data should be handled

as if the class association was unknown. Nevertheless, test data can also contain missing

values. If so, the mean of the corresponding two group means was imputed, which is an

unbiased way of replacing the missing value that does not involve information about the

test sample’s class association. Geometrically speaking, the imputed test sample value is

located exactly halfway between the two class means, which should minimize its influence

on the prediction process.

Feature selection

In this study, a simple Wilcoxon rank-sum test in combination with the ensemble feature

selection method [98] was used. Since the Wilcoxon test often delivers identical p-values

due to its rank-based nature, ties were broken by preferring features that have a larger

difference in their two classes’ medians. The core idea of the ensemble method is that

robust features should still rank among the best if the dataset is slightly modified. For

this purpose, different samplings of the training data were generated by drawing (with

replacement) 50 different bootstrap samples (i.e. if the training set consists of 10 sensitive

and 8 resistant cell lines, one randomly draws 10 and 8 times with replacement from the

respective set to get one bootstrap sample). The Wilcoxon rank-sum test is applied to each

sample, and thus a diverse set of feature rankings is generated. The ranks of each feature

were then averaged across all bootstrap runs and sorted in descending order according

to this meta-ranking. Subsequently, the k best features were used to train and test the
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predictor. By varying 𝑘 = 1 . . . 200 and assessing the prediction accuracy and area under

the receiver operator curve (AUROC), one can find the optimal number of features.

Support Vector Machine training

Once a set of features has been selected, and the training and test data have been modified

to include only those features (i.e. ’reduced’ sets), a SVM with linear kernel (see e.g.

[99]) can be trained. Besides the kernel function, an SVM has a parameter C, which

controls the trade-off between margin maximization and training error minimization, if

the hyper plane cannot perfectly separate the two classes. The default value of C=1

was used throughout the analysis. First, the SVM was trained with the training data.

Subsequently, the class association of the test data was predicted with the trained SVM.

The result of this prediction is the probability of the test sample belonging to either of

the two classes (the closer the test data is to the decision boundary, the less confident

the prediction is). The class prediction with the larger probability was then taken and

compared to the actual class association. In this way, correct predictions were counted

across all cross validation steps.

Area under the receiver operating characteristic curve

To calculate the area under the receiver operating characteristic curve (AUROC), the

separating hyper-plane of a trained SVM was shifted by introducing cost matrices. For

example, by shifting the hyperplane towards the group of sensitive training samples, it

becomes more likely for a test sample to be classified as resistant. Ultimately, this shifting

leads to the extreme that every test sample is classified as resistant, which means that

all resistant test samples have been classified correctly (true negative rate = 1 and false

positive rate = 0, given that the resistant ones are the negatives) and all sensitive test

samples wrongly (true positive rate = 0). The exact opposite is true if the separating

hyperplane is shifted towards the resistant group. Thus, by applying different cost values,

one can control the degree of shifting, calculate the respective true positive rates and false

positive rates, and compute the resulting area under the curve by means of the trapezoidal

rule (see Appendix C for an example).
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Random seeds

For the imputation of missing values, a random number generator is needed to sample

values from a normal distribution. Different seeds of the random generator will produce

different imputation data. To avoid a bias of the data towards the seeding, the entire cross

validation procedure was repeated five times using different random number generator

seeds. The prediction accuracies, AUROC values and global feature rankings for different

numbers of selected features (k) were averaged over the five CV runs and used for the

final selection of the phospho-signature.

Data Normalization

Among the fraction of non-phosphorylated peptides, 15 peptides had values in at least two

thirds of the experiments and a standard deviation < 0.1 (log10 scale). Eight of them were

from ribosomal proteins, which are expected to be constantly expressed. Thus, for each

experiment the median of the corresponding eight ratios was computed and used as an

alternative normalization approach (by subtracting the median from each phosphosite’s

non-MaxQuant-normalized logarithmic ratio).

Final predictor construction

When selecting the final set of phosphosites (phospho-signature) to be used for the pre-

diction of future samples, the optimal number of features was determined in a CV loop.

This is essentially the same as the inner loop in the quality assessment process (see also

Supplementary Figure C.4 ). Therefore, after running the cross validation process five

times with different random number generator seeds, we obtained the following results: A

200x5 prediction result matrix (200 being the rows, 5 the columns) containing the num-

ber of correct CV predictions for 𝑘 = 1 . . . 200 selected features (i.e. k best ranking in

each CV step) across the 5 random seeds; a 200x5 AUROC matrix containing the corre-

sponding area under the ROC curve values; and a 25,020x19x5 rank matrix holding the

rank of each feature in each CV step across the 5 random seed runs (features that were

not subjected to imputation/feature selection due to too many missing values received

the rank maxRank+1, where maxRank is the number of features that were subjected to
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imputation/feature selection).

The primary criterion for selecting the best subset of features was the number of

correct predictions. For this purpose the values in the prediction matrix and AUROC

matrix were row-averaged, leading to a vector of 200 average correct predictions and area

under the curve values. Within this vector the indices (numbers of features) that lead to

the best number of correct predictions were determined. Among those the one index that

had the highest AUROC value was selected as best performing feature number, which

was twelve. Next, the final feature rank was determined by averaging first over the third

and subsequently over the second dimension of the rank matrix. The resulting vector of

length 25,020 containing the average rank of each feature was sorted in ascending order

and the 12 top-ranked were selected. These were the phosphosites described in Table 4.2.

The twelve selected final features were then used to train the final predictor. However,

since these features also contained missing values, imputation had to be performed first.

The original sampling should reflect the variance within each feature and class, which

is crucial for the quality of a feature. Since the best features had already been selected

at this stage, sampling can influence the feature weights in the final predictor only. We

used the mean of each feature and class for replacing missing values in the dataset for

the final predictor. Alternatively, we could use the same sampling approach as above, and

then aggregate the resulting predictors by, for example, averaging the classification score.

The differences in these two alternatives are only marginal (Supplementary Figure C.9

). Finally, a SVM based on the predictive 12-site phospho-signature (again with linear

kernel and C=1) was trained and can now be applied to the classification of new samples.

4.2.10 Quantitative Western-Blot Analysis

For protein detection in human lung cancer cell lines, exponentially growing cells from 15

cm dishes were used. After cell lysis 80 µg of total protein was separated on 4−12% Bis-Tris

NuPAGE gels (Invitrogen) for the detection of integrin β4 or on 7.5% Tris-Glycine gels

(Biorad Mini PROTEAN) for the detection of tankyrase 1-binding protein (TNKS1BP1).

Proteins were transferred overnight to 0.2 µm nitrocellulose membranes and probed with

the appropriate antibodies in LI-COR Odyssey blocking buffer. All primary antibod-
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ies were used in 1:1000 dilutions: anti-integrin β4 antibody [M126] (ab29042, Abcam);

anti-TNKS1BP1 (SAB4503414; Sigma Aldrich); anti-actin (I-19) (sc-1616-R, Santa Cruz

Biotech). Actin served as a loading control. Following primary antibody incubation, mem-

branes were probed with IRDye 800CW conjugated goat anti-mouse IgG (H+L9 (LI-COR

#926-32210), dilution 1:15000 for the detection of integrin β4; or IRDye 800 conjugated

affinity purified anti-rabbit IgG, (611-732-127; Rockland), dilution 1:20000, for the detec-

tion of TNKS1BP1 and actin; or DyLight 800 conjugated affinity purified anti-rabbit IgG

(H+L) (611-145-122; Rockland), dilution 1:50000 for the detection of actin. Signals were

detected at 800 nm using the LI-COR Odyssey infrared system.

4.3 Results and Discussion

4.3.1 Confirmation of dasatinib sensitivity

Based on the half-maximum growth inhibitory concentration (GI50) of dasatinib reported

previously [94], 13 sensitive and 13 resistant NSCLC cell lines were pre-selected. For these

26 cell lines we repeated viability assays to verify the reported GI50 values. We chose

the median GI50 as classification threshold, so that depending on the GI50 the cell lines

were assigned to sensitive (GI50 <1 µM) and resistant (GI50 >1 µM) classes. For 19 out

of 26 cell lines the assignment was consistent. For 7 cell lines the assignment based on

the sensitivity determined here differed from that reported previously [94]. By using only

the cell lines, for which the sensitivity could be reproduced in two different labs, we

maximize the reproducibility of the cell line assignment and therewith the robustness of

the predictive signature. The other cell lines were therefore excluded from the training set

(see Supplementary Table C.1 for GI50 values). The remaining 19 cell lines (11 sensitive

and 8 resistant) were used to identify a predictive phospho-signature. The peak dasatinib

plasma concentration (Cmax) obtained in a phase II trial in patients with advanced NSCLC

is 124 ± 59 ng/mL [92]. The corresponding molarity is below the classification threshold

chosen above. However, only the GI50 values of two cell lines, HCC4006 and H322M, are

marginally higher than the average peak plasma concentration.
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4.3.2 Identification of differentially phosphorylated proteins

To quantitatively compare the cell lines to be analyzed, we isotopically labelled sensitive

and resistant NSCLC cell lines using stable isotope labelling by amino acid in cell culture

(SILAC; [17]). The sensitive cell lines were grown in SILAC media supplemented with the

medium forms of arginine and lysine (Arg6/Lys4), whereas the resistant cell lines were

grown in heavy media (Arg10/Lys8, see Supplementary Table C.2 for experimental pair-

ing scheme). A Super-SILAC reference [100] was generated by mixing protein lysates of

16 randomly selected cell lines in unlabelled (light, Arg0/Lys0) media. The Super-SILAC

reference serves as a spike-in standard, enabling accurate cross-sample comparison (see

Supplementary Figure C.2 ). Equal protein amounts of the Super-SILAC reference, a

sensitive, and a resistant cell line were mixed and subsequently subjected to a global,

quantitative phosphoproteomics workflow using strong cation exchange chromatography

(SCX) and immobilised metal ion affinity chromatography (IMAC) followed by liquid

chromatography-tandem mass spectrometry (LC-MS/MS) analysis (see Methods for de-

tails). In total, 37,747 phosphosites were identified in the 26 profiled cell lines. 88% of

all quantified phosphorylation sites had a cell line to Super-SILAC ratio <4-fold, which

allowed for accurate quantification of phosphorylation changes between the analyzed cell

lines. From the 37,747 identified phosphorylation sites, 25,020 were rated as class-I sites,

i.e. sites that could be identified with high localization confidence [63]. Only these sites

were used in the following analyses. The frequency distribution of the phosphorylated

residues (serine: 83.2%, threonine: 15.3%, tyrosine: 1.5%) is similar to the frequency dis-

tribution observed by Olsen et al. [63].

We first tried to identify proteins that are differentially phosphorylated between the

sensitive and resistant cell lines. To this end, the Wilcoxon rank sum-test was applied to

the set of phosphosites with data values in at least two thirds of the experiments (leading

to 4457 valid sites with approximately 11% missing values on average). Indeed, 58 phos-

phosites were significantly regulated between the group of 11 sensitive and 8 resistant cell

lines at a false discovery rate (FDR) of 10% (see Table 4.1). The regulated sites reside on

41 unique proteins. Most of the regulated sites (53 or 91%) are stronger phosphorylated

in sensitive cell lines. Only 5 (9%) sites are stronger phosphorylated in resistant cell lines.
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Table 4.1: Significantly different phosphorylation sites. Median diff: median difference

of log10 ratios between sensitive and resistant classes; q-value: FDR-corrected Wilxocon

rank-sum p-value.

Accession Gene Name Site Median diff q-value

A8K556 GPCR5A S345 0.872 0.047

Q6ZSZ5 ARHGEF18 S1101 0.419 0.047

Q13177 PAK2 S141 0.315 0.047

Q15149-2 PLEC1 S42 0.334 0.047

Q9C0C2 TNKS1BP1 S429 0.968 0.047

P16144-2 ITGB4 S1424 1.406 0.055

P16144-2 ITGB4 S1387 0.992 0.055

Q6ZSZ5 ARHGEF18 S1103 0.345 0.055

Q3KQU3 MAP7D1 S116 0.514 0.055

Q86SQ0 LL5B S212 0.721 0.055

Q8IVF2 AHNAK2 S2657 0.909 0.055

Q92614 KIAA0216 S1970 0.657 0.055

Q9Y2U5 MAP3K2 S153 0.494 0.055

P49792 RGP3 T799 -0.261 0.055

B2R5W6 MAPRE3 T164 0.447 0.055

B8QGS6 PKP2 S151 0.742 0.079

B4DIK2 NUP153 S338 -0.317 0.079

Q13177 PAK2 S2 0.234 0.079

O15231-3 ZNF185 S469 1.662 0.080

O43399-2 TPD52L2 S141 0.563 0.080

Q14573 ITPR3 S916 0.782 0.080

Q676U5 APG16L S269 0.725 0.080

Q86SQ0 LL5B S513 0.606 0.080

B8QGS6 PKP2 S154 0.688 0.082

P16144-2 ITGB4 S1445 1.473 0.082

P16144-2 ITGB4 S1448 1.544 0.082

P16144-2 ITGB4 S1069 1.236 0.082

A6NDI6 FNBP1L S490 0.239 0.082
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Table 4.1: Significantly different phosphorylation sites (continued).

Accession Gene Name Site Median diff q-value

A8K1D2 LASP1 S146 0.366 0.082

A8K7M3 SEPT10 S451 1.015 0.082

A9UF02 BCR/ABL S459 0.270 0.082

B3KSZ4 GATAD2B S129 -0.181 0.082

D6W4Y8 ASAP2 S701 0.430 0.082

O60303 KIAA0556 S691 0.618 0.082

Q52LW3 ARHGAP29 S1019 1.340 0.082

Q8WUF5 IASPP S102 0.528 0.082

Q9UQB8-5 BAIAP2 S509 1.197 0.082

P16144-2 ITGB4 T1385 0.937 0.082

B8QGS6 PKP2 S155 0.854 0.083

O15231-3 ZNF185 S466 1.560 0.083

P23528 CFL S156 0.445 0.083

Q13439 GOLGA4 S78 0.468 0.083

Q8N4C8 MINK S699 0.486 0.083

Q14573 ITPR3 S934 0.788 0.086

Q9BY89 KIAA1671 S1800 0.422 0.086

B8QGS6 PKP2 S251 0.655 0.096

B2RBM8 ADNP S769 0.793 0.096

Q8NEY8 HSPC206 S133 -0.213 0.096

D3DXE9 BAZ1B S1468 -0.217 0.096

P28066 PSMA5 S16 0.430 0.096

Q53EP0 FAD104 S208 0.391 0.096

Q6ZRV2 FAM83H S870 1.049 0.096

Q6ZRV2 FAM83H S936 1.026 0.096

Q6ZRV2 FAM83H S785 0.795 0.096

Q86SQ0 LL5B S415 0.631 0.096

Q86YV5 SGK223 S696 0.716 0.096

Q8TDM6 DLG5 S264 0.518 0.096

Q3KQU3 MAP7D1 T118 0.396 0.096
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For three known dasatinib targets, Bcr-Abl, EphA2, and Lyn [11, 12], we could detect

phosphosites that were quantified in at least two thirds of the experiments. The phos-

phorylations of EphA2 and Lyn cannot differentiate between the sensitive and resistant

groups (see Supplementary Figure C.6). Only the site S459 on the breakpoint cluster

region protein (Bcr) is differentially phosphorylated (see Table 4.1 and Supplementary

Figure C.6).

We next investigated whether any KEGG pathway or Gene Ontology term is en-

riched in the set of proteins with differential phosphosites. The list of proteins ordered

by the Wilcoxon rank sum-test statistic of their most significant phosphosite were anal-

ysed with FatiScan [97]. Only the KEGG pathway ’Regulation of actin cytoskeleton’

(hsa04810) is significantly enriched at an FDR of 5%. Many of the significantly regu-

lated phosphosites are located on proteins involved in this pathway. A similar analysis

revealed that 40 terms of the biological process and the molecular function gene ontolo-

gies are significantly enriched (see Supplementary Table C.6). Many of them relate to very

generic and not surprising terms, like ’kinase activity’ (GO:0016301) or ’signal transduc-

tion’ (GO:0007165). However, a few of them are more specific, like ’Ras protein signal

transduction’ (GO:0007265) and ’Rho protein signal transduction’ (GO:0007266) in the

biological process ontology, and ’cytoskeletal protein binding’ (GO:0008092) and ’actin

binding’ (GO:0003779) in the molecular function ontology.

As a next step, we applied the SubExtractor algorithm [40] to the phosphoproteomic

data. SubExtractor detects significantly regulated sub-networks in the STRING protein-

protein interaction network [50]. The tool combines local as well as topological informa-

tion, i.e. information about the regulation of a certain node (represented by the protein’s

strongest regulated phosphorylation site) and information about the connectivity with its

neighbours. The largest sub-network that has been identified by SubExtractor (Figure

4.1) clustered around the EGF receptor, with most of the proteins again being stronger

phosphorylated in the sensitive cells. The largest subnetwork comprises many proteins in-

volved in cell-adhesion and actin cytoskeleton organization, such as ajuba (JUB), catenin

α1 (CTNNA1) and δ1 (CTNND1), ephrin type-A receptor 2 (EPHA2), brain-specific an-

giogenesis inhibitor 1-associated protein 2 (BAIAP2), integrin β4 (ITGB4), and plectin

(PLEC1).
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Figure 4.1: Protein-protein interaction subnetwork showing differential phosphorylation

in sensitive and resistant cells. The subnetworks were identified using the SubExtractor

algorithm. Only the largest network is shown. Red (blue) nodes are stronger (weaker)

phosphorylated in sensitive than in resistant cells.

4.3.3 Identification of a predictive phospho-signature

Following the general workflow for detecting phospho-signatures (Figure 4.2), a predictive

phospho-signature was identified and its accuracy was estimated by cross validation (CV)

based on the cell line dataset (19 valid cell lines). Feature selection was applied within

each CV loop to reduce dimensionality of the data and thus avoid overfitting the resulting

predictor. We used a Wilcoxon rank-sum test combined with the ensemble method [98]

for selecting the phosphosites used for the signatures. The number of phosphosites is opti-

mized in an inner leave-one-out cross-validation loop. The phosphosites were used to train
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Figure 4.2: The general workflow of phospho-biomarker classification. First, a predictive

phospho-signature is identified based on phospho-profiles of sensitive and resistant cell lines

using the cross validation approach (described in detail in the text). Once this signature

has been identified, it can be applied to new samples to predict the response of the donor

to the respective drug.

a support-vector machine (SVM) with linear kernel, which was chosen as the predictor,

since it offers state-of-the-art prediction quality and has been successfully applied several

times to biological data (e.g. see [29, 101, 102]). SVMs separate two classes by a hyper

plane, such that the margin between the classes becomes as wide as possible (e.g. [99]).

The final phospho-signature comprises twelve phosphosites (Table 4.2) located on nine

different proteins. The phosphorylation degrees of the twelve identified sites strongly sep-

arate the class of sensitive and resistant cell lines (Figure 4.3). All of them are stronger

phosphorylated in the sensitive cell lines. The five highest ranked phosphosites show ap-

proximately 10-fold differences in their medians. The differences between the 25th and

75th percentiles are still approximately 5-fold. Interestingly four of the highest ranked

phosphosites are located on the same protein, integrin β4 (ITGB4 or CD104). The sec-

ond highest ranked phosphosite is located on the brain-specific angiogenesis inhibitor

1-associated protein 2 (BAIAP2). Further we identified phosphosites that are located

on the G-protein coupled receptor family C group 5 member A (GPCRC5A), the inosi-
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Table 4.2: Phosphorylation sites of the final phospho-signature. Avg rank: the average

rank of the feature across all cross validation steps; Median diff: median difference of log10

ratios between sensitive and resistant classes; #Rank ≤ 12: the number of times the feature

was among the 12 best across all CV steps; SV weight: the importance of the feature in

the SVM predictor (the larger the absolute weight, the more important).

Accession Gene name Site Avg rank Median diff #Rank SV
≤12 weight

P16144-2 ITGB4 S1448 2.716 1.544 18 -0.386

Q9UQB8-5 BAIAP2 S509 3.611 1.197 18 -0.311

P16144-2 ITGB4 S1387 4.337 0.992 19 -0.155

P16144-2 ITGB4 T1385 5.716 0.937 18 -0.275

P16144-2 ITGB4 S1069 7.937 1.236 13 -0.076

A8K556 GPCR5A S345 9.632 0.872 16 -0.174

Q14573 ITPR3 S916 14.168 0.782 8 -0.205

Q9C0C2 TNKS1BP1 S429 15.032 0.968 1 -0.159

Q6ZSZ5 ARHGEF18 S1101 16.874 0.419 0 -0.188

Q8WUF5 IASPP S102 17.516 0.528 7 -0.145

Q676U5 APG16L S269 18.190 0.725 13 -0.240

O43399-2 TPD52L2 S141 18.274 0.563 8 -0.155

tol 1,4,5-triphosphate receptor type 3 (ITPR3), the 192kDa tankyrase-1-binding protein

(TNKS1BP1), the Rho guanine nucleotide exchange factor 18 (ARHGEF8), the RelA-

associated inhibitor (IASPP), the autophagy-related protein 16-1 (APG16L), and the

tumor protein D54 (TPD52L2).

4.3.4 Sensitivity and specificity of the phospho-signature

To determine the prediction performance, leave-one-out cross validation (LOOCV) was

applied. It has been shown that CV, including LOOCV, estimates the true prediction

performance accurately and shows a low bias [103]. Since not all phosphosites discriminate

well between sensitive and resistant cell lines, feature selection is applied in each CV step,

which selects a defined subset of predictive phosphosites. First the features are ranked
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Figure 4.3: Final phospho-signature consisting of 12 phosphosites. Each pair of boxes

corresponds to one phosphosite. The blue (red) box represents the sensitive (resistant)

cell lines. On each box, the central mark is the median, the edges of the box are the 25th

and 75th percentiles, the whiskers extend to the most extreme data points not considered

outliers, and outliers are marked individually with crosses.

according to their discriminative power, and then the optimal number of top-ranking

features is determined by an inner parameter optimization cross validation. In this inner

CV procedure, different numbers of top-ranking features (𝑘 = 1 . . . 200) are used, and

their respective performance is assessed. The smallest number of features leading to the

best prediction quality in the inner CV loop is then applied to the feature selection in the

outer cross validation loop (see also Supplementary Figure C.3). Subsequently, a SVM

predictor is trained on the reduced training data (reduced in the sense of containing only
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features that passed the feature selection criteria) and tested with the reduced test data.

It is important to note that the test sample is used neither for optimising the number

of features nor for selecting the features within cross validation. Furthermore, the pre-

processing steps and classification workflow were fixed before acquiring the NSCLC data.

Otherwise, the prediction accuracy would be overestimated.

Missing data are a common phenomenon in shotgun proteomics. Although the quan-

titative information (i.e. SILAC peaks) of a peptide may be present in the MS spectrum,

at least one of the SILAC peaks has to be selected for fragmentation. In this case, the

resulting fragment spectrum is used to identify the corresponding peptide. Since the se-

lection of peptides for fragmentation is data-dependent, a certain peptide may be selected

in some MS runs but not in others. Therefore, a missing value does not necessarily mean

that the corresponding phospho-peptide was not present. This is particularly true when

applying the Super-SILAC approach like in this study.

Since many machine learning techniques (SVMs among them) cannot handle missing

values, they were replaced by estimated values that were randomly sampled from the

respective empirical distribution. As a consequence, the entire assessment was carried out

five times with different seeds for the random number generator used for imputation,

leading to five distinct prediction results. The five results were strikingly similar, as can

be expected from a robust set of features, i.e. four times only one cell line was misclassified

(HCC78), and once two were falsely classified (HCC78 and HCC827), which leads to a

prediction accuracy of 94% and an area under the receiver operating characteristic curve

(AUROC) of 0.92 (Figure 4.4A). Each circle in Figure 4.4A shows the averaged predicted

outcome of this cell line when all other cell lines were used as training data. A sensitive

cell line is predicted correctly if the SVM predictor assigns a negative value; vice versa for

a resistant cell line. The larger the distance to the separating hyperplane (i.e. the distance

from 0 in the plot), the more confident the prediction is. It can be clearly seen that 18 of

19 cell lines were predicted correctly by cross validation.

For the final predictor, the workflow was carried out with only one CV loop, cor-

responding to the inner loop during the prediction quality assessment (see Supplemen-

tary Figure C.4 ). This resulted in identifying a predictive phospho-signature contain-

ing 12 phosphosites. Interestingly, the average number of selected features within the
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Figure 4.4: Classification results represented by distance to the respective SVM’s sepa-

rating hyperplane. The cell lines in A, B and C are: 1 LouNH91, 2 H1648, 3 HCC827, 4

H322M, 5 H2030, 6 HCC2279, 7 HCC366, 8 HCC4006, 9 H1666, 10 PC9, 11 H2009, 12

H460, 13 Calu6, 14 H2077, 15 H1395, 16 H2172, 17 HCC78, 18 H157, 19 H520; in D: 1

BT-20, 2 MDA-MB-231, 3 HCC1937, 4 MDA-MB-468, 5 BT-549, 6 MCF7. Sensitive cell

lines (blue) are predicted correctly if they get a negative value; resistant ones (red) if they

are positive. (A) The results of the prediction quality assessment. (B) Prediction results

of the final predictor when applied to the same date as used for training (circles) along

with the results for the label switch experiments (crosses). (C) Prediction results of the

final predictor when applied to the same data as used for training (circles), along with the

results for the same data when normalized by the selected set of ribosomal proteins (dots).

(D) Prediction results of the final predictor when applied to the breast cancer samples.
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Figure 4.5: Heat map of the final 12 selected phosphorylation sites. Rows are the 19

cell lines that were used to identify the phospho-signature (the upper 11 are sensitive, the

lower 8 resistant), columns are the phosphosites ordered by their importance ranks (left

is the best). Red indicates up-, blue down-regulation, grey no regulation. Missing values

are coloured white.

inner parameter optimization loop during the prediction quality assessment was also ap-

proximately 12, which further supported the robustness of the selected set of phosphosites.

The sites are listed in Table 4.2) sorted by their global feature ranks, and depicted as a

heat map in Figure 4.5 (see also Supplementary Table C.3 for more details and Sup-

plementary Table C.4 for observed ratios). With an increasing number of features the

prediction accuracy also increased, until it saturated at 12 features (see Supplementary

Figure C.5). Additional features did not improve the prediction accuracy.

These results show that a predictive phospho-signature can be identified from phos-

phoproteomics data. However the question remains, whether the identified signature is

specific to dasatinib or whether it also works for other substances not related to dasa-
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tinib. As a first step to answer this question, we applied the prediction quality assessment

workflow to randomized class labels. Strikingly, the prediction accuracy was only 51%

(AUROC=0.53), which is almost exactly what one would expect if predicting the classes

by chance. Thus, a predictive signature cannot be found for arbitrary class associations.

As a next step, we investigated whether the classification scores of the final predictor

correlate with the cell doubling times of untreated cell lines. The classification score cor-

responds to the distance from the SVM classification hyperplane and can be interpreted as

the confidence in correct classification. In particular, the score is negative (positive) if the

sample is predicted as being sensitive (resistant). The cell doubling times range from 25

to 55 hours (confer Supplementary Table C.1). A Pearson correlation coefficient of -0.08

(p-value 0.79) indicates that the doubling times are not associated with the classification.

In contrast, the correlation between classification scores and GI50 values of dasatinib is

significant (0.81, 𝑝 = 2.6e-6 ). Finally, we sought to show whether the dasatinib signature

is predictive for other substances. The small molecule sorafenib (Nexavar®, Bayer) is a

multi-kinase inhibitor targeting the Raf/Mek/Erk and the VEGFR pathway. The corre-

lation between the doubling times and GI50 values of sorafenib [94] is -0.05 (p-value 0.83).

Taking these results together, we could demonstrate that the identified phospho-signature

is specific for predicting response to treatment with dasatinib.

4.3.5 Robustness of the phospho-signature

A good feature and consequently a good set of features should be robust to small varia-

tions in the data. Only when slight changes in the data composition still lead to correct

predictions, is the biomarker reliably applicable to samples not used for training. There-

fore, robustness already plays a crucial role in the process of feature selection. First, a

robust feature is chosen frequently by the feature selection method across all cross vali-

dation steps. Second, within each cross validation step, slight variations in the training

data should also result in the constant selection of robust features.

To identify such robust phosphosites, we applied the Wilcoxon rank-sum test in com-

bination with the ensemble feature selection method [98] to get a feature ranking in each

CV step. The average of these ranks across all CV iterations for the signature’s 12 fea-
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tures along with the number of times each of them was ranked under the first 12 positions

are listed in Table 4.2). The best features turned out to be very stable, e.g. the top four

have an average rank smaller than 6 and were among the 12 best more than 90% of all

iterations. The importance of these features is also indicated by their high weight in the

SVM. Overall, 7 features are among the 12 best in more than two thirds of the iterations,

and only 2 in less than one third.

To ensure that the SILAC labelling procedure of cell lines has no effect on the results,

label switch experiments were performed, where originally medium-labelled cell lines were

now labelled with heavy amino acids and vice versa. The classification results of the final

predictor applied to these experiments are depicted in Figure 4.4B. For two of the three

label switched samples, the prediction is virtually identical to the original data (circles

and crosses on position 11 and 14; Figure 4.4B). In the case of the position 4 (H322M), the

difference is somewhat larger, but the corresponding label switch experiment still classifies

it correctly.

Since phosphosites in this study are detected in a global and unbiased way, we applied

global normalization strategy during the discovery phase. However, when the phospho-

signature is applied in the clinic, a method that specifically measures the phosphosites

of the signature in a robust and cheap way is more likely to be used (see Appendix C

for how SVM predictor can be adapted to use data from other methods). Such targeted

methods could be either based on phospho-specific antibodies (e.g. immunohistochem-

istry or ELISA based assays) or targeted mass spectrometry methods such as multiple

reaction monitoring (MRM [104, 105]). Since a global normalisation strategy is not ap-

plicable to targeted methods, it is necessary to develop an alternative. We focused on

non-phosphorylated peptides that showed a very low variance across all cell lines’ reg-

ulation data regardless of whether the cell line was sensitive or resistant. Although the

phosphoproteomic workflow is designed to specifically enrich for phosphorylated peptides,

a significant fraction of non-phosphorylated peptides is still present. In this study, a nor-

malization factor based on a set of non-phosphorylated ribosomal proteins exhibiting low

variance across all cell lines proved useful (see Supplementary Table C.5 for normalization

data). The classification results of the ribosomal protein normalized data are depicted in

Figure 4.4C, which shows that the prediction quality is essentially as good as for the
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globally normalized data the predictor was trained on.

4.3.6 Signature validation in breast cancer cells

To test whether the phospho-signature is also applicable to other cancer types, we se-

lected 3 sensitive and 3 resistant breast cancer cell lines. Again, GI50 values were also

determined in-house and compared to the previously reported values [86]. This time, all

data were consistent (confer Supplementary Table C.1) and the 6 breast cancer cell lines

were subjected to our global phosphoproteomics workflow (see Supplementary Table C.4

for data).

Subsequently, the cell lines were classified with the SVM predictor trained on the set of

NCSLC cell lines. Strikingly, 5 of the 6 breast cancer cell lines could be classified correctly

(Figure 4.4D); only one resistant sample was wrongly predicted to be sensitive (MDA-

MB-468). These findings indicate that the proposed phospho-signature is also predictive

for dasatinib sensitivity in other cancer types.

4.3.7 Integrin β4 expression as a surrogate marker

Four of the highest ranked predictive phosphosites reside on the protein Integrin β4

(ITGB4, see Table 4.2)). Since we did enrich for phosphorylated peptides and did not

measure the abundance of the non-phosphorylated peptides or the total protein, it is

principally impossible to distinguish between differences in the phosphorylation degree and

differences in the expression of the corresponding protein. However, in case of ITGB4 it is

likely that the differences in the phosphorylation of the four sites are caused by differences

in the abundance of the protein itself. To prove that the expression of this protein is

indeed different in the two classes of the NSCLC cell lines, we performed quantitative

western blots using antibodies against the total protein of ITGB4 and 182 kDa tankyrase-

1-binding protein (TNKS1BP1). We selected TNKS1BP1 as one of the eight proteins, for

which only one phosphosite was identified as predictive feature. Whereas TNKS1BP1 is

present in almost all cell lines and its expression shows no correlation with the sensitivity

of the cell line to dasatinib, ITGB4 can be detected in 8 sensitive cell lines, but only

in 2 resistant cell lines (see Figure 4.6A). This is confirmed by quantitative analysis of
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three replicate experiments (see Figure 4.6B and 4.6C). The background-corrected signals

of ITGB4 correlate with the phosphorylation degree measured by mass spectrometry

(Pearson correlation 0.88, 𝑝 = 2e-6). The signals of most resistant cell lines are low,

while strong signals can be determined in the sensitive cell lines. This clearly shows

that expression of ITGB4 is also predictive and that it can be used as surrogate marker

instead of its phosphorylation. Indeed, if choosing the average of the median signals in

each group as classification threshold, all resistant and 8 sensitive cell lines would be

correctly classified, whereas 3 sensitive cell lines would be falsely classified as resistant.

Nevertheless, the prediction accuracy of ITGB4 expression (84%) is not as high as the

accuracy of the full phospho-signature (94%). In contrast, the signals for total TNKS1BP1

do not correlate with sensitivity, although its phosphorylation is predictive.

4.3.8 Expression of integrin β4 in lung and breast cancer tissues

We demonstrated that the signature consisting of 12 phosphorylation sites and the expres-

sion of ITGB4 is predictive in NSCLC and breast cancer cell lines. To explore, whether

ITGB4 is also expressed in cancer tissues, we examined immunohistochemistry images of

several cancer tissue slices. The Human Protein Atlas [106] systematically analyses the

human proteome in cell lines, normal tissues and cancer tissues using antibodies. In par-

ticular, it contains a number of immunohistochemistry images of cancer tissues stained

with an antibody (CAB005258) against total protein of ITGB4. Five lung cancer samples

(42%) are negative, whereas seven samples show weak to strong expression of ITGB4

(see Supplementary Figure C.7). Similarly, six breast cancer samples (50%) are negative,

whereas six samples show weak expression (see Supplementary Figure C.8). In summary,

we could show that the expression of ITGB4 can be used as surrogate marker for its

phosphorylation. The marker is measurable by immunohistochemistry in clinical tissue

samples and it is present in a sub-population of approximately 50% of the investigated

cancer tissues.
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Figure 4.6: Western blots of ITGB 4 and TNKS1BP1 in NSCLC cell lines. A: Western

blot images for one replicate. The sensitivity to dasatinib treatment is indicated by +/-.

B: Quantitative readout for ITGB4 in resistant (red) and sensitive (blue) cell lines. The

error bars represent the standard error across three replicates; the green line is the average

of the class medians. C: Quantitative readout for TNKS1BP1.
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4.4 Conclusion

This study shows that the identification of response prediction markers from global and

unbiased quantitative phosphoproteomics experiments in a preclinical setting is possible.

Detection of a few ten thousands of phosphorylation sites across a panel of cancer cell

lines is feasible. The use of a pool of cell lines as a common reference enabled the accurate

quantification of the detected sites. The accuracy and reproducibility of the phosphopro-

teomic workflow was demonstrated in label switch experiments. Measuring protein phos-

phorylation levels allowed us to monitor over-activation and repression of disease-specific

signalling pathways. Since kinase inhibitors, such as small molecules and monoclonal an-

tibodies interfere with signal transduction pathways, we hypothesised that determining

the basal activity of these pathways will allow predicting a response to therapy with such

an inhibitor.

We identified 58 phosphosites that are differentially abundant between sensitive and

resistant cell lines. Enrichment analysis of gene ontology terms and KEGG pathways as

well as subnetwork analysis show that many of the differentially phosphorylated proteins

are involved in cell adhesion and cytoskeleton organization, where most phosphorylations

are higher in the sensitive group. Interestingly, it has been shown that dasatinib inhibits

migration and invasion of various solid tumors through inhibition of the Src-kinase [107–

109], which is one of the main targets of dasatinib [11, 12]. We thus hypothesize that

cells, in which pathways related to cell adhesion and cytoskeleton organization are over-

activated, respond to a treatment with dasatinib. Src is a non-receptor tyrosine-protein

kinase. That none of the differentially phosphorylated residues is a tyrosine, does not

contradict the hypothesis, since we studied the basal phosphoproteome of untreated cells.

Proteins that are causal for resistance to Src-inhibition may be located down- or up-stream

of the direct Src-kinase substrates in the signalling cascades.

We showed that a phospho-signature consisting of only 12 phosphorylation sites it

sufficient to predict the response from the basal phosphoproteome of a cultured cell. The

predictor model was based on a support vector machine with linear kernel. We validated

the accuracy of the prediction in a leave-one-out cross-validation procedure. 18 out of 19

cell lines could be classified correctly. The obtained prediction accuracy was 94%, the area
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under the curve was 92%.
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Figure 4.7: Protein-protein interaction network that shows the relationship between six of

nine predictive signature proteins (marked with green border). The network was obtained

using STRING.

The 12 phosphorylation sites were located on 9 different proteins (see Table 4.2) and

Figure 4.7). Four of the phosphorylation sites are located on Integrin β4 (ITGB4 or

CD104). In general, integrins mediate cell-matrix or cell-cell adhesion and are involved in

transducing signals to regulate transcription and cell growth. The subunit β4 associates

with α6 and the resulting integrin α6β4 is a receptor for the laminin family of extracellular

matrix proteins. Integrin β4 is linked to various signalling pathways such as the MAPK,

PI3K-Akt, and Src-Fak pathways [110–112]. Furthermore, expression of α6β4 is associated

with poor patient prognosis in various cancers [113–115]. According to the PhosphoSite

database [116] the sites S1457 and S1518 were detected in previous mass spectrometry
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based proteomics experiments, but to our knowledge the functions for none of the four

sites have been described so far. All four sites are stronger phosphorylated in sensitive

cells than in resistant cells.

Besides the integrin β4 phosphorylations, the signature comprised eight additional

phospho sites on eight other proteins. Like integrin β4, the brain-specific angiogenesis in-

hibitor 1-associated protein 2 (BAIAP2) and the Rho guanine nucleotide exchange factor

18 (ARHGEF18) are involved in regulating the actin cytoskeleton. BAIAP2 (also called

insulin receptor substrate p53, IRSp53) serves as an adaptor link-ing a Ras-related protein

Rac1 with a Wiskott-Aldrich syndrome protein family member 2 (WAVE2). The recruit-

ment of WAVE2 induces Cdc42 and the formation of filopodia [117, 118]. ARGHEF18

acts a guanine nucleotide exchange factor for the GTPases RhoA and Rac1 [119, 120].

Activation of RhoA induces actin stress fibres and cell rounding.

The RelA-associated inhibitor (PPP1R13L, also called inhibitor of ASPP protein,

IASPP) and the G-protein coupled receptor family C group 5 member A (GPRC5A,

also called retinoic acid-induced protein 3, RAI3) are functionally connected to the tumor

suppressor p53. PPP1R13L binds to p53 and inhibits its activation by ASPP1 and ASPP2

[121]. On the other hand, p53 was demonstrated to bind to the promoter of GPRC5A and

thereby negatively regulates its expression [122].

The tumor suppressor p53 is associated with at least two signature proteins. At the

same time, p53 is inactivated by mutations in a large proportion of tumor cell lines.

We therefore investigated whether the p53-status alone is predictive of a response to

dasatinib. According to the IARC TP53 database [123], 6 out of 7 sensitive and 3 out of 5

non-sensitive cell lines have a mutation in the p53 protein (7 cell lines were not listed, see

also Supplementary Table C.1). Since the functional effect is not known for all mutations,

we assumed that any mutation, apart from neutral or silent mutations, is functionally

relevant. The null-hypothesis that sensitivity to treatment with dasatinib does not differ

between p53-mutated and p53-wildtype cell lines cannot be rejected (Fisher’s exact test

p-value is 0.52). Therefore, the mutation status of p53 is not a good predictor of dasatinib

sensitivity.

Although, based on the current literature, a direct link cannot be made between

the other four proteins inositol 1,4,5-triphosphate receptor type 3 (ITPR3), 182 kDa
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tankyrase-1-binding protein (TNKS1BP1), autophagy-related protein 16-1 (APG16L),

tumor protein D54 (TPD52L2), and the main dasatinib targets, the fact that their phos-

phorylation correlates with the treatment response supports their use in the predictive

model.

From the discussion above it is clear, that many of the signature proteins are related

to each other. Indeed, when mapping the nine proteins to the STRING protein-protein

interaction network [50], we revealed one network involving six signature and few addi-

tional proteins (Figure 4.7). Phosphorylation sites for most of the proteins in this network

are less abundant in the resistant cell lines than in the sensitive cell lines.

The difference in phosphorylation of a specific site between two cell lines may be

due to a difference in either expression of the corresponding protein, or the degree of

phosphorylation of this site, or a combination of both. Since we did not investigate the

protein expression, we cannot distinguish between the three possibilities. However, as long

as the abundance of a certain phosphorylated peptide consistently differs between sensitive

and resistant cell lines, the cause for its difference is not important for its use as a predictive

biomarker. In case of ITGB4, we could indeed show that its protein expression is also

predictive. Contrary, the protein expression of TNKS1BP1 does not differentiate between

sensitive and resistant cell lines. The study also showed that the predictor identified from

a panel of NSCLC-cell lines can be used in other cancer cell lines. 5 out of 6 breast cancer

cell lines were correctly predicted (prediction accuracy 83%). Only one resistant cell line

(MDA-MB-468) was predicted to be sensitive.

A few markers for dasatinib have been suggested in the literature or are already applied

in the clinic. For example, Huang et al. [86] identified a predictive six-gene model from

gene expression profiles. Obviously, the phosphorylation grade may be largely independent

of the mRNA expression level. Nevertheless, we investigated whether the phosphorylation

sites on the corresponding proteins are also predictive. We detected phosphorylation sites

on five of the six proteins: EPHA2, CAV1, CAV2, ANXA1, and PTRF. Although, the

phosphorylation tends to be high in sensitive cell lines and low in resistant cell lines,

the relationship is not as sound as for the markers identified in this study. All sites

are not significantly different between the two classes. As an example, Supplementary

Figure C.6 shows three sites on the Ephrin type-A receptor (EPHA2). Additionally the

86



4. NSCLC biomarker

tyrosin phosphorylations p-Src(Y418), p-BCR-ABL(Y412), p-Crkl(Y207), p-Pax(Y31),

p-Fak(Y576) have been described as pharmacodynamic markers for dasatinib in mouse

experiments and in clinical trials [124–126]. These markers are modulated after treatment

with dasatinib and their basal levels do not necessarily differentiate between sensitive and

resistant subjects. Nevertheless, we were interested in their behaviour across the untreated

cell lines. We could detect the phosphorylation site Y418 of Src in five cell lines, but could

not identify any relationship to the sensitivity of these cell lines. The site ABL(Y412) on

the fusion protein BCR-ABL was not detected. However, a different site BCR(S459) was

detected in almost all cell lines and is significantly modulated between the sensitive and

resistant group (see Table 4.1 and Supplementary Figure C.6).

We demonstrated our method for the identification of a predictive phospho-signature

in a set of NSCLC and breast cancer cell lines. The application to cultured cells has

a number of advantages: the cell population is very homogenous; sample amounts from

cell lines are not limited; experiments are easily reproducible; and the drug’s efficacy

can be experimentally determined. However, whether the signature or parts of the sig-

nature are also predictive in clinical samples has to be shown in future studies with

clinical samples. Instead of applying shotgun phosphoproteomics, it is possible to apply

targeted detection methods, such as immunological methods, or the mass-spectrometry-

based multiple-reaction-monitoring method [127]. These methods allow the quantification

of marker phosphosites of relatively low sample amounts and can be applied to large num-

ber of samples. Since fresh-frozen tissues are rare, the translation of our results to the

clinic requires the analysis of formalin-fixed and paraffin-embedded (FFPE) tissues. It has

been assumed, that the cross-linking of proteins prevents a proteomic analysis. Recently,

it could be shown that proteins can be effectively extracted from FFPE samples and that

the proteins and phosphorylations are quantitatively preserved compared to fresh-frozen

tissues [128–130].

As an alternative, we demonstrated that the expression of ITGB4 can be used as surro-

gate marker for its phosphorylation. The marker is measurable by immunohistochemistry

in clinical tissue samples and it is present in a sub-population of approximately 50% of

the investigated cancer tissues.

In this study, the phosphorylation data were globally normalized, assuming that the
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overall phosphoproteome is fairly well conserved between the different cell lines. However,

this strategy is no longer applicable to targeted detection of the selected phosphosites,

since all measured phosphosites will be regulated. We proposed an alternative normaliza-

tion strategy using the expression of eight non-regulated ribosomal proteins. It could be

demonstrated that the prediction of sensitivity using the phospho-signature is stable for

the application of the alternative normalization strategy.

In summary, the identified phospho-signature consisting of twelve phosphorylation

sites is highly predictive for the sensitivity to treatment with dasatinib in NSCLC cell lines

as well as breast cancer cell lines. The results suggest that the phosphorylations of integrin

β4 as well as eight further proteins are candidate biomarkers for predicting response in

solid tumors to dasatinib and potentially to other Src family kinase inhibitors. That many

of the signature proteins have related function and are connected in a protein-protein

interaction network, further supports the generalizability of the predictive signature.

In this study we proposed a general method for identifying response prediction biomark-

ers based on a phosphorylation signature. The method is hypothesis-free insofar as the

investigated phosphorylation sites do not have to be preselected, and no assumptions

about the mechanism of action of the therapeutic drug have to be made. The basis of the

method is the global quantitative phosphoproteomic analysis of baseline samples. While

we demonstrated that the method permits identifying a highly predictive phosphorylation

signature for response to dasatinib treatment in NSCLC cell lines, it can be assumed that

the method can also be applied to other drugs, particularly other kinase inhibitors, and

to other tumor types.
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Chapter 5

Pareto biomarker

In this chapter, the biomarker workflow presented in Chapter 4 is extended to optimize not

only one single objective (i.e. best possible separation of responder and non-responder),

but also the objectives signature size and relevance (i.e. association of signature proteins

with dasatinib’s main target). This is achieved by employing a multiobjective optimization

algorithm based on the principle of Pareto optimality, which allows for an optimization

of all three objectives in parallel.

The content of this chapter was submitted for publication as:

M. Klammer, J.N. Dybowski, D. Hoffmann, and C. Schaab. “Pareto Optimization Iden-

tifies Diverse Set of Phosphorylation Signatures Predicting Response to Treatment with

Dasatinib”. In: PLoS one 10.6 (2015), e0128542

The author was a key contributor to designing and implementing the algorithm, as

well as writing the paper.

5.1 Background

Targeted drugs, such as kinase inhibitors, are extensively studied as promising agents

either alone or in combination with other agents for treating cancer. Unfortunately, only

subsets of patients usually respond to targeted therapeutic interventions. Tests that can

predict whether patients will benefit from these therapies are therefore desired companions

of targeted drugs. Many, if not all response prediction tests currently used in clinical

practice are based on markers directly linked to the disease-relevant drug target. However,
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singleton markers measuring the expression or mutation status of a drug target may often

not be sufficient to predict response. For example, it has recently been shown that the

success of predicting how melanomas respond to targeted therapies by genotyping alone

may be limited [132].

Therefore, several studies have focussed on identifying molecular signatures comprising

multiple markers for response prediction. Predominantely, these signatures were identified

using transcriptomics data (for example [86, 87]). In recent years, advances in sample pro-

cessing, mass spectrometry, and computer algorithms for the analyses of proteomics data

have enabled the application of mass spectrometry-based proteomics in order to monitor

phosphorylation events in a global and unbiased manner [15, 32, 63]. These methods have

become sufficiently sensitive and robust to identify and quantify thousands of phospho-

rylation sites in a single experiment. Multivariate markers based on the phosphorylation

status of certain sets of proteins – here referred to as phospho-signature – can predict the

clinical response, as they link therapy outcome to the most predictive phosphorylation

events in the context of signal transduction therapy. This has been demonstrated in two

recent studies, where phosphoproteomics data was used to identify predictive multivariate

markers for the multi-kinase inhibitor dasatinib [65] and the FLT3 inhibitor quizartinib

[133].

Previous studies have focused on the identification of one single multivariate marker

signature that was optimized for prediction accuracy. Here, we investigate a method that

allows for the incorporation of additional objectives that are optimized simultaneously, and

enables the identification of several predictive markers. Such objectives can, for instance,

be related to the annotations of protein markers (e.g. localization, function), to technical

properties (e.g. size of the signature), or to network information (e.g. proximity of markers

to drug target). It has been shown recently that the inclusion of annotated biological

information, but not the method category (e.g. support vector machine, random forest,

etc.) or handling of missing data, significantly improved prediction accuracy in a study

analyzing 44 drug sensitivity prediction algorithms [134]. More specifically, it has also been

demonstrated that adding network information can improve prediction accuracy or at least

improve the robustness of feature selection (e.g. [135]). These methods have in common

that the network information is factored in by modifying the objective function (e.g.
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network-based support vector machines [136]) or the rank order for filter-based feature

selection (e.g. NetRank [137, 138]). However, instead of optimizing a combined objective

function, we choose to optimize multiple objectives in parallel using principles of multi-

objective or, specifically, Pareto optimization [139]. Multi-objective optimization methods

return a set of optima, the so-called Pareto front, instead of a single optimum solution.

In case of selection of predictive biomarkers, these solutions differ in their composition of

selected features and in the degree to which different objectives are optimized. If necessary

to limit the number of marker candidates, the researcher can apply post hoc weighting of

objectives.

In biomedical research, Pareto optimization has been mainly applied to design of small

molecules [140] and peptide sequences [141]. More recently however, it has also been

applied to selection of features. For example, Rajapakse and Mundra optimized features

for multi-class classification by decomposing the over-all objective to multiple objectives

for each pair of classes [142]. Xue et al. complemented the objective of classification

accuracy with minimizing the size of the signature [143]. In this study, we generalize

the idea of applying Pareto optimization to the problem of selecting predictive marker

signatures by optimizing not only the prediction accuracy and the size of the signature,

but also the biological relevance of the selected features. Here, the biological relevance

is defined by the proximity of features to the respective drug target as derived from

protein-protein interaction networks. In principle, all obtained solutions on the Pareto

front can be evaluated and tested in validation experiments. However, since in practice the

Pareto front consists of several dozens of solutions, we propose to cluster these solutions

in feature space and investigate a much smaller number of cluster centroids. We apply

the proposed method to the identification of multivariate phosphorylation signatures that

predict response to dasatinib in non-small cell lung cancer and breast cancer cell lines

using the phosphoproteomic data generated by Klammer et al. [65].
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5.2 Methods

5.2.1 Data

The training data comprising the class-I phoshorylation site ratios of 19 NSCLC cell lines

relative to a SuperSILAC spike-in were obtained from Supplemental Table 3 of Klammer

et al. [65]. The validation data for 6 breast cancer cell lines were taken from Supplemental

Table 4 of the same source. Detailed information about the generation of both datasets

is provided in the main article of Klammer et al. [65]. In brief, the dataset contains more

than 25,000 class-I phosphorylation sites (i.e. sites with high localization confidence),

contaminant and reverse database hits were removed, and the normalized ratios (cell line

versus SuperSILAC) were log10-transformed.

5.2.2 Pareto objective functions

Three objectives were considered: signature size, separation and relevance.

Signature size: This objective score is defined by the number of phosphosites in a given

signature. The score is to be minimized.

Separation: This objective focuses on the generalization of the marker. Not only should

a good marker separate the training data, but also unseen data. Thus, an inner leave-

one-out cross validation was performed by employing a support vector machine with

linear kernel and cost parameter 𝐶 = 1. For each test sample, its distance of to the

SVM hyperplane was computed and the posterior class probability was calculated from a

sigmoid model 𝑝𝑖 = 1
1+exp(𝐴𝑓𝑖+𝐵) , where 𝑝𝑖 is the probability of the sample being resistant

and 𝑓𝑖 the SVM output of the respective training data [144]. Parameter 𝐴 was determined

by optimizing a regularized maximum likelihood problem (see [144] for details); parameter

𝐵 was fixed to 0, so that points on the separating hyperplane are assigned a probability

of 0.5. The separation objective corresponds to minimization of the negative minimal

probability distance −min𝑖(𝑐𝑖(1
2 − 𝑝𝑖) + 1

2), where 𝑐𝑖 is the actual class of the cell line

(sensitive = 1, resistant = −1).
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Relevance: This objective deals with the relevance of a signature with respect to the

drug target. Here, the mean distance of the signature’s proteins to the target of the inves-

tigated drug in a protein-protein interaction network (STRING) was calculated. To this

end, we calculated an adjacency matrix using all interactions with a interaction confi-

dence larger than 0.9 (STRING version 9.05 [145]). The remaining edges with interaction

confidence scores 𝑠 ranging from 0.9 to 0.999 were transformed into a penalty score using

the equation 𝜌𝑖 = 1
−log10(1−𝑠𝑖) , ranging from 0.33 to 1. The function was chosen to get

more pronounced differences between higher and lower confidence scores. Subsequently,

the shortest path between each protein in the signature and the drug target based on the

penalties 𝜌 was calculated with the Dijkstra algorithm [146] and the mean distance of all

signature proteins was used as objective score.

5.2.3 Pareto optimization

For the detection of the Pareto front, we applied the NSGA-II algorithm. NSGA-II is

a fast, elitist multi-objective genetic algorithm [39] that employs the principle of Pareto

optimality. In brief, the algorithm works as follows: First, a random parent population

𝑃0 was generated that consists of 𝑁 = 200 chromosomes. The representation of the

chromosome is binary, i.e. a feature that is part of the signature is represented by 1, a

feature that is not part of the signature by 0. The chromosomes were randomly initialized

with 10% of features set to 1. Next, a fitness value was assigned to each chromosome,

which represents the Pareto front the individual was located on. A fitness value of 1

stands for a solution on the first Pareto front, 2 for a solution on the second Parteo front,

and so forth.

Subsequently, 5-way-tournament selection, single-point crossover (𝑝 = 0.8) and bit

flip mutation (𝑝 = 0.02) were performed to generate the first offspring generation 𝑄0

(𝑁 = 200). To compile the next parent generation 𝑃1, the individuals of 𝑃0 and 𝑄0 were

combined and the individuals were sorted according to non-domination (Pareto front

1 . . . 𝐹 ) and within each front according to the crowding distance (favors individuals that

have a large distance to their neighbors, see [39] for details). Finally, the top N individuals

were chosen to become 𝑃1, which ensured elitism.
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This procedure was repeated for 𝐺 generations, where 𝐺 is a number determined at

runtime, at which the solutions on the first Pareto front do not change for 200 generations

in feature space.

5.2.4 Biomarker discovery workflow

In order to detect multiple signatures based on the 19 NSCLC samples, the phospho-

rylation sites were first pre-filtered for missing data, i.e. only class-I sites with at least

2/3 of ratios present in each group (responder and non-responder) were considered for

further analyses. Next, the 100 sites that discriminated best between responders and

non-responders according to the MeanRank [61] test were selected, while ensuring that

the mean difference of the features between the two groups was at least 4-fold and only

one phosphosite per protein was included. This pre-selection is necessary to reduce the

complexity of the subsequent Pareto optimization. The 100 top-ranking features were

subjected to the NSGA-II algorithm, which aims at detecting Pareto-optimal solutions

based on the three objective functions (size, separation, relevance).

After convergence, the results were filtered for solutions that were located on the first

Pareto front. Since many of them were very similar and only differ in very few features,

hierarchical clustering with Ward’s method was applied on the binary solution vectors

to detect clusters of similar features. Subsequently, the solutions that had the smallest

Euclidean distance to the cluster centroids were taken as final Pareto signatures. If more

than one solution had the smallest distance, the one with the better separation score was

preferred.

5.2.5 Biomarker validation

For each Pareto signature, a support vector machine with linear kernel and cost parameter

𝐶 = 1 was trained. These SVMs are the final predictors and can be used to predict new

samples. To validate the signatures, we used phosphorylation site data of the six breast

cancer samples. Prior to prediction, missing values were imputed by the mean of the

training data class means (for details see [65]). Subsequently, the responsiveness of the six

samples was predicted with each of the final predictors.
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5.3 Results and Discussion

The main goal of response prediction biomarker studies is the identification of molecular

signatures that separate the group of responders from the group of non-responders well

and thus enable an accurate prediction of drug response. However, there are further qual-

ities that characterize a successful biomarker. For example, a marker should consist of a

manageable number of features (i.e. genes or proteins) in order to allow testing through

methods applied in clinical routine such as quantitative PCR or ELISA. Furthermore, the

features should be biologically relevant, for instance, by being connected to the drug’s

target or mechanism of action. In the proposed Pareto biomarker workflow, these three

objectives - separation, signature size and relevance - are optimized in parallel (for defi-

nitions of objectives see section Pareto objective functions in Materials and Methods).

Generation (50 bins) 

Figure 5.1: Evolution of the number of individuals (solutions) on the Pareto front and

for the three objectives (separation, size and relevance), as generated by the NSGA-II

algorithm [39]. The objectives are averaged across the solutions on the Pareto front. The

number of generations is binned and the average of each bin is displayed on the y-axis.
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5.3.1 Pareto biomarker workflow

To this end, a multiobjective optimization algorithm (MOA) was incorporated into our

established biomarker discovery workflow [65], allowing the simultaneous optimization of

all three objectives. Most MOAs employ the principle of Pareto optimality, which aims at

detecting solutions that are not dominated by other solutions. At any given iteration, non-

dominated solutions are defined such that there exist no other solutions that have a better

or equal score in all objectives and a strictly better score in at least one objective. All

non-dominated solutions (Pareto points) together form the Pareto front (see also Figure

D.1), which is optimized during each iteration. Of the many MOA algorithms available

(e.g. PAES [147], PESA [148], SPEA2 [149], NSGA-II [39] or SMS-EMOA [150]), we found

the NSGA-II algorithm [39] most suitable for our Pareto biomarker workflow, as it shows

fast convergence, is efficient and well tested [151, 152].

In a previous study, we used quantitative mass-spectrometry to globally profile the

basal phosphoproteome of a panel of 19 non-small cell lung cancer (NSCLC) cell lines

[65]. The effect of the kinase inhibitor dasatinb on cellular growth was tested against the

same panel. Using the phosphoproteome data, we identified a phosphorylation signature

consisting of 12 phosphorylation sites on 9 different proteins (referred to as original sig-

nature). The signature accurately predicted response to treatment with dasatinib in the

NSCLC cell lines used for training and in an independent validation panel of breast cancer

cell lines.

Here, we investigated whether the Pareto biomarker workflow could confirm the orig-

inal signature and/or identify additional multivariate predictive phosphorylation signa-

tures when applied to the same data set. In particular, these signatures should not only

maximize class separation, but also the two additional objectives signature size and rel-

evance. We hypothesize that a marker protein is more relevant if it is closely related to

the drug target (e.g. through interaction). Although this might not always be the case,

we think that this is a good assumption on average. Since this is only one out of three

objectives to be optimized, signatures that are not connected to the drug’s target may

still be identified and are not discarded. More specifically, we define the relevance score

of a signature as the average distance of the signature’s proteins to dasatinib’s main tar-
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get in solid tumors, the Src kinase (SRC), as it has been shown that dasatinib inhibits

migration and invasion of various solid tumors through inhibition of SRC [107–109]. All

three scores are defined such that smaller values are better. Thus, all three objectives are

to be minimized (see Materials and Methods for details).

From the 4,457 phosphorylation sites quantified in at least 2/3 of the samples in

each class (responders and non-responders), we selected the 100 sites that discriminated

best between responders and non-responders according to the MeanRank test [61], while

ensuring that the mean difference between the two groups was at least 4-fold and only

one phosphosite per protein was taken. This pre-selection was performed to reduce the

complexity of the subsequent Pareto optimization. The algorithm terminated after 1353

generations, at which point the results on the first Pareto front had not changed for 200

generations (Figure 5.1). While the number of solutions on the Pareto front constantly

increased, the three objectives (i.e. separation, size and relevance) were minimized with

respect to Pareto optimality. As can be deduced from the graphs of the three objectives,

the size and relevance criteria are rather easy to optimize, as they exhibit a steep decline

at the beginning of the optimization process and reach the global minimum early on.

Optimization of the separation criterion took longer and its decrease in the later stages

was accompanied with an increase of the size objective, while the relevance criterion

remained stable. In essence, small signatures that have a short distance to the drug target

in the STRING protein-protein interaction (PPI) are readily discovered. It is, however,

harder to find those that additionally separate the groups well and, essentially, good

separation comes at the cost of larger signatures.

After termination, 77 solutions were located on the Pareto front. Solutions with a

separation score ≥ −0.6 were removed (𝑁 = 24), as the Pareto approach also found very

small and biologically relevant solutions with poor separation. This is an inherent feature

of Pareto optimization, and removing undesired solutions is common practice (see e.g.

[153]). The remaining 53 solutions contained 35 different phosphorylation sites. One site,

S1148 on integrin β4 (ITGB4), was part of all but three solutions.

Figure 5.2A shows a series of three-dimensional plots of the Pareto front. The front

has the shape of a stretched canvas attracted by the origin, which represents an ideal but

infeasible point. Figure 5.2B depicts 2D projections of the 53 Pareto front solutions in
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Figure 5.2: 3D plots of the Pareto front (A) and 2D projections (B). (A) The different

panels are views of the Pareto front when rotated around the relevance-axis (with two

different viewing angles in each column). Coloring indicates relevance score, from blue

(low) to red (high). Since better solutions are smaller in all three dimensions, the optimal

point is the origin in the lower background, i.e. the only hidden vertex in the plots. (B)

2D projections of the solutions on the Pareto front. Solutions are colored according to

their assignment to four clusters. Stars mark the solutions closest to the respective cluster

centroid that were selected as final Pareto signatures.

objective space. The top panel, relating size and separation, shows that smaller signatures

lead to less pronounced separation and illustrates our initial motivation for identifying

multivariate markers. Therefore, the lower left corner in the plot, where ideal solutions

for the two respective objectives are expected, is not populated. However, there are also

no large signatures in the area of the best-separating solutions (< −0.68). This is due

to the third objective, the relevance criterion, as it becomes harder to identify features
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1
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3
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Figure 5.3: Hierarchical clustering of the 53 accepted solutions on the Pareto front in

feature space. In each row, red areas represent features (phosphosites) that are part of the

corresponding solution. The solutions were subdivided into four clusters according to the

row dendogram on the left. Cluster numbers are indicated on the right.

that all interact directly or indirectly with the target. As mentioned before, the task

of finding small and biologically relevant solutions is achieved more easily, as can be

seen in the center panel of Figure 5.2B. Solutions are found in the lower left area, but

not in the lower right. The bottom panel of Figure 5.2B depicts the relationship between

separation and relevance. This projection of the Pareto front has a curved shape, revealing

the compromise between good separation and biologically meaningful features, as not all

well-discriminating phosphosites are also related to the drug target.

5.3.2 Pareto signatures

Each of the identified solutions on the Pareto front is optimal in the sense that none of

them are dominated by any other solution. Therefore, each solution could be evaluated

individually. Here we took another approach and investigated whether solutions can be
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reduced by clustering according to their similarity while retaining discriminatory power.

To this end, we hierarchically clustered the solution in features space using the Ward

method and obtained four major clusters (see Figure 5.3). For each of these clusters, the

feature with the smallest Euclidean distance to the respective cluster centroid was selected

as so-called Pareto signature for further analysis (see Figure 5.2B).

In order to compare the original 12-phosphosite signature with the Pareto signatures,

we calculated its objective values: 𝑠𝑖𝑧𝑒 = 12, separation = −0.60, relevance = 1.63

(see also Table 5.1). Note, that the original signature was optimized with respect to

prediction accuracy only, and the feature selection method did not explicitly optimize

the separation criterion as defined here (see Materials and Methods). Figure 5.4A shows

the PPI network of the original marker, where solid lines indicate the shortest path from

each signature phosphoprotein (blue) to SRC (red), which is dasatinib’s main target in

solid tumors. The phosphorylation sites of the signature are listed in Table 5.2. Some

of the signature proteins ITGB4, ARHGEF18 and BAIAP2 are closely related to SRC,

while others (e.g. ATG16L1 and TNK1SBP1) have larger distances in the PPI network.

TPD52L2 and GPRC5A have no connection to SRC at all. In the original publication

[65], the selected features were used to train a support vector machine (SVM) with linear

kernel. The signature and the corresponding predictor were then validated by application

to six independent breast cancer cell lines, which had not been used for feature selection or

SVM training. In the case of the original signature, five out of six cell lines were predicted

correctly with an average probability distance to the hyperplane of 0.13 (calculated as
1
𝑁

∑︀𝑁
𝑖=1(0.5−𝑝𝑖)𝑐𝑖, where 𝑁 is the number of tested cell lines, 𝑝𝑖 the prediction probability

for the cell line to be resistant, and 𝑐𝑖 the actual class of the cell line (sensitive = 1,

resistant = −1)).

The first Pareto signature (Pareto1, Figure 5.4B) contains only three phosphopro-

teins - ITGB4 (integrin β4) S1448, EGFR (epidermal growth factor receptor) S1064 and

KIAA0556 (uncharacterized protein KIAA0556) S691 – for details see Table 5.2. While

the separation and size objective scores are better than those of the original signature

(see Table 5.1), the relevance score is slightly worse, which is due to the uncharacterized

protein KIAA0556 that lacks functional annotation and therefore has no connection with

SRC. The prediction accuracy on the validation set is comparable to that of the original
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Figure 5.4: Network of the original (A) and the four Pareto signatures (B-E) are shown in

the left column along with the prediction results for the breast cancer validation set (right

column). Blue nodes in the network are signature proteins, solid lines represent the shortest

path to SRC, dashed lines indicate additional high-confidence interactions. Sensitive (1–3)

and resistant (4–6) breast cancer cell lines were considered to be predicted correctly if

they received a probability (y-axis) of less than 0.5 and more than 0.5, respectively.
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signature, however, the average probability distance to the SVM hyperplane is slightly

higher and thus better. Phosphorylation site S1448 on ITGB4 is one of the best separators

in the data set and is also part of the original signature. ITGB4 is linked to the Src-Fak

pathway [112] and is associated with poor patient prognosis [113–115]. The EGF receptor

can be phosphorylated by the Src kinase [154], and is therefore directly linked to SRC in

the protein-protein interaction network (STRING confidence score of 0.999).

The signature Pareto2 (Figure 5.4C), contains the same phosphosites on ITGB4 and

EGFR, and additionally TANK (TRAF family member-associated NF-kappa-B activator)

S225, TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) S231 and JUP

(Junction plakoglobin) S665 – see also Table 5.2. This signature has a particularly good

relevance score (cf. Table 5.1), which is also visible in the PPI network, where 4 out

of 5 proteins are closely connected to SRC. The performance on the validation data is

comparable to that of Pareto1.

The third Pareto signature (Pareto3, Figure 5.4D) is another small signature contain-

ing sites S1448 on ITGB4, S20 on PLEC1 (Plectin) and S429 on TNKS1BP1 (182 kDa

tankyrase-1-binding protein). S429 on TNKS1BP1 is also part of the original signature,

together with S1448 on ITGB4. TNKS1BP1 has a rather large distance to SRC, leading to

a mediocre relevance score. The other scores are identical to those of Pareto1, the second

3-phosphosite signature (cf. Table 5.1).

Finally, the largest Pareto signature (Pareto4, Figure 5.4E), contains ITGB4 S1448,

TNK1SBP1 S429, TJP2 (Tight junction protein ZO-2) S174, CGN (Cingulin) S137,

SEPT9 (Septin-9) S30, TIAM1 S231 and ITPR3 (Inositol 1,4,5-trisphosphate receptor

type 3) S934. Again, the sites on ITGB4 and TNKS1BP1 are those that are part of the

original signature. ITPR3 appears in the original signature with a different phopshosite

(S916).

Taken together, Pareto markers are consistently smaller than the original marker, while

three of four also have better separation and relevance scores. The prediction accuracy

on the validation set is identical for all investigated signatures, however, the average

probability distance to the separating SVM hyperplane is slightly higher for the Pareto

signatures, suggesting that the Pareto signatures are more robust when being applied to

other classes of related tumor cell lines.
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Table 5.1: Objective scores (smaller are better), prediction accuracy and average proba-

bility distance for the validation data (larger are better).

Signature Size Separation Relevance Validation Validation
accuracy distance

Original 12 -0.60 1.63 5/6 0.13

Pareto1 3 -0.65 1.88 5/6 0.19

Pareto2 5 -0.63 0.72 5/6 0.22

Pareto3 3 -0.65 1.55 5/6 0.19

Pareto4 7 -0.67 1.26 5/6 0.15

5.4 Conclusion

We and others have previously shown that the identification of response prediction mark-

ers from phosphoproteomics experiments in pre-clinical or clinical settings is possible [65,

93, 133]. These studies sought to identify single signatures of phosphorylation sites max-

imizing the separation on the data used for training. Here, we investigated the idea of

integrating additional objectives, such as the relevance with respect to the drug target or

the size of a signature, into the feature selection process. We applied the multi-objective

genetic algorithm NSGA-II [39] to the identification of Pareto-optimal solutions for the

prediction of response of NSCLC cell lines to treatment with dasatinib. Beside separabil-

ity, we used the proximity of markers to the main drug target – the Src kinase – and the

size of the signature as objectives for optimization.

In total, the algorithm identifies 77 Pareto-optimal solutions, i.e. solutions that are

not dominated by any other solution. Each solution corresponds to a phosphorylation

signature that can be used for response prediction. 53 of them had a sufficiently good

separation score and were considered in the following analysis. Clustering of these solutions

in feature-space revealed four groups of solutions with similar sets of phosphorylation sites.

We used the solution closest to the centroid of each cluster as representatives of the four

Pareto signatures. All four signatures predicted the response of six breast cancer cell lines

that were not used for training with good accuracy (83%). The same accuracy was also

reached by the original 12-marker signature identified in Klammer et al. [65].
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Table 5.2: Phosphorylation sites of the final signatures. Sites/proteins in bold are part

of the original signature [65].

Signature Accession Gene name Site

Original

P16144-2 ITGB4 S1448

Q9UQB8-5 BAIAP2 S509

P16144-2 TGB4 S1387

P16144-2 TGB4 T1385

P16144-2 TGB4 S1069

A8K556 GPCR5A S345

Q14573 ITPR3 S916

Q9C0C2 TNKS1BP1 S429

Q6ZSZ5 ARHGEF18 S1101

Q8WUF5 PPP1R13L S102

Q676U5 APG16L S269

O43399-2 TPD52L2 S141

Pareto1

P16144-2 ITGB4 S1448

A9CB80 EGFR S1064

O60303 KIAA0556 S691

Pareto2

B2R7S3 TANK S225

P16144-2 ITGB4 S1448

A9CB80 EGFR S1064

Q13009 TIAM1 S231

P14923 JUP S665

Pareto3

P16144-2 ITGB4 S1448

Q15149-4 PLEC1 S20

Q9C0C2 TNKS1BP1 S429

Pareto4

P16144-2 ITGB4 S1448

Q9C0C2 TNKS1BP1 S429

Q9UDY2 TJP2 S174

B9EK46 CGN S137

Q9UHD8 SEPT9 S30

Q13009 TIAM1 S231

Q14573 ITPR3 S934

104



5. Pareto biomarker

The phosphorylation site S1448 on ITGB4 (Uniprot accession: P16144-2; or, equiva-

lently, S1518 in the canonical sequence P16144-1) is the central feature in all four Pareto

signatures. This is in accordance with the results from Klammer et al. [65], where the

same site was ranked first in the robust feature selection approach. Furthermore, ITGB4

is closely linked to dasatinib’s main target SRC via the adapter protein GRB2. Thus, the

Pareto marker approach is consistent with the outstanding role of ITGB4 in predicting

dasatinib response in cancer cells.

The four Pareto signatures are characterized by properties that correspond to the

objectives used for optimization. Signature 1 and 3 are relatively small with only three

phosphorylation sites each. On the other hand, signature 4 is larger (7 sites), but has

the best separation. Finally, signature 2 shows the best relevance score, meaning that its

marker proteins are interacting with the drug target SRC either directly or through inter-

mediate proteins. Surprisingly, while its separation on the training data is the smallest of

all four signatures, it yields the highest separation on the breast cancer cell lines that were

used for validation. This hints at the importance of incorporating network information in

general and the relationship to the drug target in particular for the selection of predictive

features.

Here, we optimized the selected features with respect to the objectives separation,

size, and relevance. Naturally, the proposed method can be applied to other objectives.

For example, it may be sensible to include the detectability of marker phosphorylations

in immunoassays, the localization of the marker proteins (e.g. cell membrane, nucleus,

or cytosol), or the extend of knowledge about the proteins (e.g. number of PubMed ab-

stracts).

Aside from the possibility of incorporating multiple objectives into the selection of the

biomarker signatures, an even more important advantage of the approach presented here

is the identification of several independent signatures instead of only one. These signatures

can be evaluated post-hoc using additional criteria before a final signature or a set of a

few signatures is selected for further validation experiments.

In summary, we presented a general method for identifying a set of biomarker signa-

tures from high-dimensional data such as proteomics, phosphoproteomics, or transcrip-

tomics data. Besides optimizing the separation between two classes, the method allows
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the consideration of additional objectives. In particular, we showed that the relation of the

marker proteins to the drug target in a protein-protein interaction network can improve

the robustness of the prediction when applied to new samples.
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Chapter 6

Conclusions and Outlook

In this thesis, four new methods for analyzing mass spectrometry-based phosphopro-

teomic data were presented. The first two methods (SubExtractor and MeanRank test)

were designed to help uncovering a drug’s mode of action, but are also applicable to target

identification or biomarker discovery projects. The SubExtractor algorithm (Chapter 2)

aims at discovering significantly regulated subnetworks from protein-protein interaction

databases by employing a Bayesian probabilistic model in combination with a genetic

algorithm and stringent significance evaluation. SubExtractor has been part of Evotec

Munich’s phosphoproteome analysis platform from the beginning, and has aided the inter-

pretation of numerous mode-of-action studies (e.g. [33], [14]) as well as biomarker projects

(e.g. [65], Chapter 4). Since the first development and publication of the algorithm, some

enhancements and modifications have been made. The hypothesis test to determine the

significance of the resulting subnetworks was changed from the global rank test [53] to the

MeanRank test, as the latter shows superior performance under virtually all conditions

(confer Chapter 3). Furthermore, the inclusion of the MeanRank test now allows for a

comparison between two groups (2-sample test), which is useful when a SuperSILAC or

label-free approach is used for quantification of phosphosite abundances.The repertoire of

interaction databases has been expanded from the protein-protein interaction database

STRING to more specific kinase-substrate interaction databases like PhosphoSitePlus

[116], PhosphELM [155] and NetPhos [156].

The MeanRank test (Chapter 3) focuses on detecting significantly regulated feature

from noisy and sparse high-throughput data with only few replicates. Its big advantages
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are the rank-based nature that does not require any a priori distribution assumptions, its

tolerance regarding missing values, and its high statistical power that scales well with the

number of available replicates. The test is especially valuable when only few replicates

are available and the fraction of truly regulated features is around or below 10%, which is

usually the case, when samples are treated with a kinase inhibitor. In such scenarios, the

MeanRank test outperforms well-established methods such as SAM and LIMMA. The

test has been incorporated into the standard proteome and phosphoproteome analysis

workflow at Evotec Munich, where it is now routinely applied to analyze customer projects

as well as research projects (e.g. [21]).

The latter two chapters of this thesis (NSCLC biomarker and Pareto biomarker) aim

at finding multivariate phosphorylation signatures for predicting the response of non-

small cell lung cancer (NSCLC) cell lines to the kinase inhibitor dasatinib. The earlier

method described in Chapter 4 (NSCLC biomarker) was the first published global and

unbiased approach to develop a biomarker based on the differences in the basal phos-

phorylation levels of cancer cell lines. The presented algorithm employs a robust feature

selection method in combination with support vector machine (SVM) classification in or-

der to identify a predictive set of phosphorylation sites. Applying the fully cross-validated

workflow led to a correct prediction of 18 out of 19 samples. The final signature consists

of 12 phosphorylation sites, and was able to correctly predict dasatinib sensitivity of 5

out of 6 samples from an independent breast cancer validation set. In a later study, a

similar workflow was applied to uncover a phosphorylation signature for predicting the

response of acute myeloid leukemia (AML) patient samples to the FLT3 inhibitor quizar-

tinib (AC220) [133]. Here, 11 out of 12 bone marrow samples could be correctly predicted

in the cross-validation procedure. By applying the final signature of 5 phosphorylation

sites to an independent validation set, 7 out of 9 predictions were correct.

The biomarker workflow described in Chapter 4 focuses on the identification of a sig-

nature that separates the two groups (responders and non-responders) well. While this

was the only objective in this study, the Pareto marker workflow presented in Chapter 5

adds additional objectives to the feature selection process, i.e. feature relevance and sig-

nature size. To this end, the multiobjective Pareto optimization algorithm NSGA-II was

incorporated into the biomarker workflow, resulting in a set of four Pareto signatures after
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filtering and clustering of the Pareto-optimal solutions. All of these four signatures were

smaller than the original signature reported in Chapter 4 (ranging from 3 to 7; originally

12) and three of them were on average closer related to the main target of dasatinib, the

SRC kinase. At the same time, the prediction performances of all Pareto signatures on

the validation set were as good before, and the key protein of the original signature –

integrin beta 4 (ITGB4) – was also present in all of them.

Concluding, the novel methods described in this thesis help to better understand the

processes underlying drug treatment and support the development of response prediction

biomarkers in the field of large-scale omics in general and phosphoproteomics in particular.
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Appendix A

Supplementary Information to

Chapter 2

A.1 Introduction to Genetic Algorithms (GAs)

GAs mimic the process of biological evolution. The primary component of the GA is the

individual, which contains exactly one chromosome and one fitness value. A chromosome

in GA language is a vector of values (in the simplest way in binary form) representing one

distinct solution for the optimization problem. The fitness value determines the quality

of the corresponding solution encoded by the chromosome. Depending on the underlying

fitness function it is desirable to either maximize or minimize the fitness value.

A typical GA has at least tens or hundreds of different individuals with different

chromosomes. As the algorithm evolves, individuals are selected according to their fitness

value and bred using crossover and mutation operators to create new offspring and thus

new solutions to the problem. Subsequently, some weak individuals (i.e. individuals with

low fitness value) from the parental generation are replaced by strong offspring individuals

and the process starts over again. According to the building block hypothesis, small areas

with superior fitness on different chromosomes are thus iteratively combined into longer

ones, leading to a steady increase in fitness (not necessarily for each individual but at the

level of the entire population). Random mutations reduce the risk of getting trapped in a

local optimum. The general workflow for a GA is depicted in Supplementary Figure A.1.
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Figure A.1: Schematic GA workflow. First, the individuals’ chromosomes are initialized.

Then, their fitnesses are evaluated and parents for the first reproduction are selected.

Subsequently, variation, i.e. recombination of the parents’ chromosomes and mutation,

takes place. This is followed by the fitness evaluation of the newly created individuals

and subsequent survival selection. In this step low-performing individuals of the parental

generation are replaced by high-performing offspring. Steps 3 to 6 are repeated until a

certain termination condition (e.g. number of generations or satisfying solution) is fulfilled.

A.2 Lower bound for parameter 𝛼

As described in the Artificial data subsection of the main article, a too small value for 𝛼 will

lead to incorporation of unregulated nodes if their only connection is to a well-regulated

one. To avoid this, the 𝛼 value should be chosen such that an unregulated node with only

one well-regulated neighbour always gets a higher score when it is flagged as inactive, i.e.

not part of an differentially regulated subnetwork. More formally, this requirement can

be expressed based on Equation 2.8 in the main article with the equation

ln (𝒩 (0|0, 1)) + ln (𝛼 + 0) > ln
(︀
𝒩 (0|0, 𝜎2

𝑧)
)︀

+ ln (𝛼 + 1). (A.1)

Solving for 𝛼 leads to

𝛼 > 𝛼𝑐 = 1
𝒩 (0|0,1)

𝒩 (0|0,𝜎2
𝑧) − 1

, (A.2)

or equivalently

𝛼𝑐 = 𝒩 (0|0, 𝜎2
𝑧)

𝒩 (0|0, 1) − 𝒩 (0|0, 𝜎2
𝑧) . (A.3)
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Equation A.3 is then used to calculate the lower bound of reasonable values for 𝛼. Some

examples for varying 𝜎𝑧 values are:

𝜎𝑧 = 3: 𝛼𝑐 = 0.5

𝜎𝑧 = 5: 𝛼𝑐 = 0.25

𝜎𝑧 = 10: 𝛼𝑐 = 0.11
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A.3 Supplementary Figures
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Figure A.2: Different distributions and their fit to the sorafenib data. Normal-mixed is a

mixture model of two normal distributions; t-mixed is a mixture of a normal and t location

scale distribution.

A.4 Additional Files

Additional Files 2-5 can be found at:

http://www.biomedcentral.com/1471-2105/11/351/additional
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B.1 Pseudocode of one-sample MeanRank algorithm

Algorithm B.1 Calculation of 𝛼0, the expected number of false discoveries.
𝑀 = matrix holding features and replicates

𝑟𝑠𝑜𝑟𝑡𝑒𝑑 = vector of sorted mean ranks

𝛼0
𝑠𝑢𝑚 = vector of length 𝑁

for all 𝑠 ∈ Cartesian product {−1, +1}𝑅 without{(−1, . . . , −1), (+1, . . . , +1)} do

𝑀𝑓𝑙𝑖𝑝𝑝𝑒𝑑 = multiply values in columns (𝑖 = 1, . . . , 𝑅) of 𝑀 with values of 𝑠𝑖

𝑟 = mean ranks of𝑀𝑓𝑙𝑖𝑝𝑝𝑒𝑑

for 𝑖 = 1, . . . , 𝑁 do

𝛼0
𝑠𝑢𝑚(𝑖)+ = count 𝑟𝑓𝑙𝑖𝑝𝑝𝑒𝑑 < 𝑟𝑖,𝑠𝑜𝑟𝑡𝑒𝑑

end for

end for

𝛼0 = 𝛼0
𝑠𝑢𝑚 / number of flips
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B.2 Two-sample Mean Rank test

The two-sample version of the proposed test is similar to the one-sample case, with only

a few modifications. For the two-sample case, the two input matrices, 𝑀1 and 𝑀2, hold

the data from two different groups, e.g. treated and untreated. Both must have the same

number of features 𝑁 , but the number of replicates may be different (𝑅1 and 𝑅2, respec-

tively). As the aim of two-sample tests is to find differentially regulated features between

two groups, we create a difference matrix prior to step 1. in Equation 3.1 in the main ar-

ticle. This difference matrix contains all possible 𝑅1 · 𝑅2 pair-wise differences between the

two data matrices. Note, that often values should be log-transformed to achieve a sym-

metric distribution of differences. The ranks are then calculated on the difference matrix

and steps 2. and 3. of Equation 3.1 are performed using this 𝑅1 · 𝑅2 matrix of difference

ranks.

The Bates distribution cannot be used for the parametric estimation of 𝛼0, as the 𝑅1·𝑅2

columns of the difference rank matrix are not independent. Thus, the null distribution

has to be determined numerically. This is done by generating two random data matrices

(sampled from a standard normal distribution) with 𝑅1 and 𝑅2 columns, respectively,

and very large 𝑁 (≥ 100, 000). The difference rank matrix is then calculated as described

above, and the empirical distribution of the resulting mean rank values is determined,

which can then be used instead of FBates function to estimate 𝛼0.

The non-parametric estimation of 𝛼0 has to be modified for the two-sample test, as

well. Instead of performing sign flipping to estimate false positives, we now randomize the

group association and calculate 𝛼0 accordingly.

Additional simulations were carried out to assess the performance of the two-sample

MeanRank, and compare it to the two-sample versions of SAM, LIMMA, RankProducts

and the 𝑡-test. A two-sample version of GlobalRank does not exist. In line with the

results of the previous one-sample simulations, MeanRank and SAM performed better

than RankProducts and the 𝑡-test. In simulations with normally distributed data and no

missing values MeanRank and SAM showed comparable power and met the FDR level;

however, both were outperformed by LIMMA (see Supplementary Figure B.1A-C). In

the case of simulation data sampled from a non-normal (Student’s-𝑡) distribution, the

115



B. Supplementary Information to Chapter 3

T
P
R
/F
D
R

Replicates

Figure B.1: Performance of two-sample tests on simulated data. Performance plot of two-

sample significance tests under different simulation settings. Traces show the true positive

rate (TPR) of the respective tests for a given number of replicates. Bars denote the false

discovery rate (FDR). TPR and FDR are averaged over ten independent simulations. All

tests were set to control the FDR at 0.05.

TPR of the parametric MeanRank test drops below the non-parametric version, as the

parametric FDR estimation involves the assumption of normal distributions. Both MRs
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performed better than RankProducts and the 𝑡-test, but worse than SAM and LIMMA.

The introduction of missing values also led to a drop in power for MeanRank. This can

be explained by the way the difference-rank matrix is calculated. Since each subtraction

involving a missing value again produces a missing value, the proportion of missings in

the difference-rank matrix is larger than in the initial data matrices 𝑀1 and 𝑀2.

B.3 Supplementary Figures

T
P
R
/F
D
R

Replicates

Figure B.2: Performance on simulated data using imputation. Performance plot of tests

for one-sample simulation data with missing data imputed by k-nearest-neighbor (k-NN)

with 𝑘 = 10.
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Figure B.3: Performance for different fractions of regulated and unregulated features.

Performance with fixed number of replicates (𝑅 = 6), over a varying fraction of regulated

features to background features.
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Figure B.4: Volcano plot highlighting spike-in concentrations. Volcano plot of the ’Ag-

Spike’ data, colored by fold-change of spike-in.
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B.4 Supplementary Tables

R replicates

R=5 R=30

N features Parametric Non-parametric Parametric Non-parametric

𝑁 = 1.000 < 1s / < 1MB < 1s / < 1MB 3s / < 1MB 2s / < 1MB

𝑁 = 10.000 8s / < 1MB 20s / 1MB 45s / 2MB 184s / 18MB

Table B.1: Computational performance of the MeanRank test. Computation time and

memory usage shown in seconds and megabytes, respectively. Measurements were per-

formed on a single core of an Intel i5 2400, with 3.1 GHz.

B.5 Additional Files

Additional Files 2-3 can be found at:

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0104504
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C.1 Cost matrix example

The example in Figure C.1A shows how the introduction of cost matrices influences the

support vector classification. The figure shows a classification example that aims at sepa-

rating red stars from blue crosses. Each class contains 10 samples with two features. The

values of both features were sampled from normal distributions (N(1,1) and N(-1,1) for

crosses and stars, respectively). The black line represents the separating hyperplane of

the SVM classification with linear kernel (parameter C=1), when no explicit cost matrix

is applied (i.e. the cost of misclassifying a star is the same as the cost for misclassifying

a cross). One can clearly see that the data is not linearly separable, which leads to one

misclassified cross and one misclassified star. The red line shows the hyperplane when the

cost for the false classification of stars is twice as high as the cost for star misclassification.

As a result, the separating hyperplane is shifted towards the cloud of red stars, but the

classification result is still the same. By increasing the cost factor of cross misclassification

to ten times the cost of star misclassification, the hyperplane (blue line) is shifted further

and all crosses are classified correctly. However, instead of one falsely predicted star there

are now four. Finally, when using a cost factor of 200 (see purple line), all samples would

be classified as crosses leading to ten wrongly predicted stars.

120



C. Supplementary Information to Chapter 4

This shifting of the hyperplane can be used to calculate the receiver operating charac-

teristic (ROC) curve and the area under it. A ROC curve based on the four different cost

matrices above would look like Figure C.1B (assuming that the crosses are the positives

and the stars the negatives in the ROC statistics). The point at (1.0|1.0) corresponds to

the purple hyperplane, where all crosses are classified correctly and all stars wrongly; the

point at (0.4|1.0) to the blue discrimination line, where all crosses are classified correctly

and 4 stars are falsely predicted as positives; the point at (0.1|0.9) to both the red and

black hyperplane, where 9 crosses are classified correctly and one star wrongly as positive;

and finally one more point at (0|0) that is not depicted in Figure C.1A but represents the

extreme when all samples are assumed to be negatives (stars), which can be considered

the opposite of the purple discrimination line. Finally, the area under the curve can be

computed, which is 0.93 in this example.
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Figure C.1: Classification example using a linear SVM with different cost matrices (A),

and the corresponding ROC curve (B).
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C.2 Details on SVM prediction

The decision function of the SVM classification is given by

𝑓(𝑥⃗) = sgn
(︃

𝑚∑︁
𝑖=1

𝑦𝑖𝛼𝑖𝑘 (𝑥𝑖, 𝑥⃗) + 𝑏

)︃
, (C.1)

where 𝑚 is the number of training samples (cell lines), 𝑦𝑖 the class label of the 𝑖th train-

ing sample (-1 or 1 for sensitive and resistant cell lines, respectively), 𝛼𝑖 the respective

Lagrange multiplier, 𝑥⃗𝑖 a vector of length 𝑓 (𝑓 being the number of selected features)

holding the ratios of the 𝑖th training sample, 𝑥⃗ a vector of length 𝑓 holding the ratios of

the test sample, and 𝑏 the bias (i.e. the translation of the hyperplane with respect to the

origin). 𝑘(𝑥⃗𝑖, 𝑥⃗) is called a kernel, i.e. a function that characterizes the similarity of two

vectors. Equation C.1 can be rewritten as

𝑓(𝑥⃗) = sgn
(︁

𝑘 (𝑤⃗, 𝑥⃗) + 𝑏
)︁

, (C.2)

with the weight vector 𝑤⃗, whose elements represent the importance (influence) of the

corresponding features, defined as 𝑤⃗ =
∑︀𝑚

𝑖=1 𝛼𝑖𝑦𝑖𝑥⃗𝑖. In the case of the linear SVM, the

kernel function is defined as the dot product of the two vectors, which leads to the linear

decision function

𝑓(𝑥⃗) = sgn
(︃

𝑓∑︁
𝑗=1

𝑤𝑗𝑥𝑗 + 𝑏

)︃
. (C.3)

So far, changes in the phosphorylation level were represented by ratios, which can be

expressed as 𝑥 = 𝑆 − 𝑆ref , where 𝑆 is the signal of the phosphosite in the corresponding

cell line and 𝑆ref the signal of the site in the reference cell line pool. Here, the signal is

defined as log intensity of the corresponding phosphosite. For data produced by other

methods such as multiple reaction monitoring or ELISA, where the quantitative data

are represented by intensities, one can still make predictions with the proposed phospho-

signature, but the decision function (Equation C.2) has to be modified to

𝑓(𝑆⃗) = sgn
(︁

𝑘
(︀
𝑤⃗, 𝑆⃗

)︀
+ 𝑏 − 𝑘

(︀
𝑤⃗, 𝑆⃗ref

)︀⏟  ⏞  
𝑏̃

)︁
. (C.4)
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Note, that only the bias term has to be modified while the weight vector 𝑤⃗ stays the same.

In geometrical terms, the orientation of the hyperplane does not change, but is translated

to the new position. In the case of the linear SVM the decision function thus changes to

𝑓(𝑆⃗) = sgn
(︃

𝑓∑︁
𝑗=1

𝑤𝑗𝑆𝑗 + 𝑏̃

)︃
. (C.5)

C.3 Supplementary Figures
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Figure C.2: SILAC labelling diagram. The scheme illustrates how isotopic labelling en-

ables relative quantification of phosphorylation amounts via a spike-in reference (Super-

SILAC).
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Figure C.3: Workflow diagram for prediction quality assessment, where two cross valida-

tion loops are applied. In the inner CV loop the optimal number of features is determined.

This number is then used in the feature selection process in the outer CV loop. Subse-

quently, an SVM is trained and tested with the respective data sets. The prediction results

in each outer CV loop are combined and the prediction accuracy is calculated.
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which is then used to train the final SVM predictor.
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Figure C.5: The prediction accuracy depending on the number of top-ranked features

incorporated into the phospho-signature. While the accuracy increased with the first few

features, it reached its maximum at 12 features (circle), where it saturated.
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Figure C.6: Bar charts of log10 ratios(cell line/Super-SILAC) of phosphorylation sites

on tyrosine kinases quantified in at least two thirds of experiments.
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Figure C.7: Immunohistochemical staining of ITGB4 in lung cancer tissue from the

Human Protein Atlas. A red border indicates heavy staining, orange moderate, yellow

weak and grey no staining.
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Figure C.8: Immunohistochemical staining of ITGB4 in breast cancer tissue from the

Human Protein Atlas. A yellow border indicates weak and grey no staining.
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Figure C.9: Effect of the imputation method for the final predictor when applied to the

breast cancer samples. Purple dots indicate the classification results with the predictor

trained on the mean-imputed NSCLC data, the box plots show the results for the impu-

tation based on 100 samplings from the respective normal distribution of each feature and

class.
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C.4 Supplementary Tables

Table C.1: Cell line information

GI50(µM) GI50(µM) GI50(µM)

Supplier dasatinib dasatinib TP53 Doubling sorafenib

Cell line Indication Origin number literature1 this paper Class Valid2 status3 time (h) 4literature

Calu6 NSCLC ATCC HTB-56 22.54 2.8 - YES MUT 25 30

H1395 NSCLC ATCC CRL-5868 31.12 4.7 - YES WT 50 7.24

H1568 NSCLC ATCC CRL-5876 0.8975 5.44 + no – 59 6.46

H157 NSCLC MPI5 – 10.54 2.63 - YES MUT 25 6.61

H1648 NSCLC ATCC CRL-5882 0.0593 0.079 + YES MUT 50 6.03

H1666 NSCLC ATCC CRL-5885 0.175 0.076 + YES WT 30 30

H2009 NSCLC ATCC CRL-5911 0.7465 0.085 + YES MUT 50 11.09

H2030 NSCLC ATCC CRL-5914 0.1183 0.022 + YES MUT 25 7.76

H2077 NSCLC MPI – 10.07 4.75 - YES – 50 5.37

H2172 NSCLC ATCC CRL-5930 16.71 5.85 - YES – 50 –

H2887 NSCLC MPI – 11.3 0.176 - no – 40 13.65

H322 NSCLC MPI – 0.2588 2.1 + no MUT – 5.43

H460 NSCLC ATCC HTB-177 24.16 3.9 - YES WT 25 30

HCC827 NSCLC ATCC CRL-2868 0.1456 0.033 + YES – 43 5.25

H520 NSCLC ATCC HTB-182 11.56 1.43 - YES MUT 42 4.84

H647 NSCLC ATCC CRL-5834 12.39 0.016 - no MUT – 12.45

HCC1359 NSCLC MPI – 11.3 0.52 - no MUT 30 11.89

LCLC103H NSCLC DSMZ ACC 384 13.9 0.08 - no MUT – 9.66

LouNH91 NSCLC DSMZ ACC 393 0.113 0.068 + YES – 55 4.68

HCC366 NSCLC DSMZ ACC 492 0.482 0.017 + YES – 53 6.03

HCC4006 NSCLC ATCC CRL-2871 0.8376 0.95 + YES – – 6.46

HCC78 NSCLC DSMZ ACC 563 13.9 17.05 - YES – – 11.09

H322M NSCLC MPI – 0.0819 0.311 + YES MUT – 14.13

HOP62 NSCLC MPI – 12.76 0.014 - no MUT – 9.44

HCC2279 NSCLC MPI – 0.139 0.045 + YES MUT – 12.45

PC9 NSCLC MPI – 0.4603 0.02 + YES MUT 25 15.85

BT-20 Breast c. ATCC HTB-19 0.1652 0.497 + YES MUT – –

BT-549 Breast c. ATCC HTB-122 9.0576 1.71 - YES MUT – –

MDA-MB-468 Breast c. ATCC HTB-132 7.1258 2.8 - YES MUT – –

MDA-MB-231 Breast c. ATCC HTB-26 0.0095 0.036 + YES MUT – –

MCF7 Breast c. ATCC HTB-22 >9.524 3.27 - YES WT – –

HCC1937 Breast c. ATCC CRL-2336 0.07 0.082 + YES MUT – –

1NSCLC data from Sos, et al. [94], breast cancer data from Huang, et al. [86]
2Whether the GI50 values from the literature and this paper agree
3According to the IARC TP53 database [123] version R15
4Data from Sos, et al. [94]
5Max Planck Institute for Neurological Research (Cologne, Germany)
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Table C.2: Mass spectrometric pairing scheme

Exp. Group Group Cell line Cell line Cell line

number medium heavy light medium heavy

1 + - CELLMIX LouNH91 H460

2 + - CELLMIX H1648 Calu6

3 + - CELLMIX HCC827 6LCLC103H

4 + - CELLMIX H322M H2077

5 + - CELLMIX H2030 H1395

6 + - CELLMIX HCC2279 H2172

7 + - CELLMIX H15686 6H647

8 + - CELLMIX H3226 6HOP62

9 + - CELLMIX HCC366 HCC78

10 + - CELLMIX HCC4006 6HCC1359

11 + - CELLMIX H1666 H157

12 + - CELLMIX PC9 H520

13 + - CELLMIX H2009 6H2887

147 - + CELLMIX H2077 H322M

158 - + CELLMIX H28876 H2009

16 + - CELLMIX BT-20 MDA-MB-468

17 - + CELLMIX BT-549 MDA-MB231

18 + - CELLMIX HCC1937 MCF7

Table C.3: Additional phosphorylation site information

Gene Canonical Canonical Known

Name Site9 Uniprot id10 site11 All Uniprot ids12 13site

ITGB4 S1448 P16144 S1518 A0AVL6;B7ZLD5;B7ZLD8;Q0VF97;Q59H46;P16144-2/-4;P16144 YES

BAIAP2 S509 Q9UQB8-5 S509 Q9UQB8-5;B3KPV9 no

ITGB4 S1387 P16144 S1457 A0AVL6;B7ZLD5;B7ZLD8;Q0VF97;Q59H46;P16144-2/-3/-4;P16144 YES

ITGB4 T1385 P16144 T1455 A0AVL6;B7ZLD5;B7ZLD8;Q0VF97;Q59H46;P16144-2/-3/-4;P16144 no

ITGB4 S1069 P16144 S1069 A0AVL6;B7ZLD5;B7ZLD8;Q0VF97;Q59H46;P16144-2/-3/-4;P16144 14YES

GPCR5A S345 Q8NFJ5 S345 A8K556;Q8NFJ5 YES

ITPR3 S916 Q14573 S916 Q14573;Q59ES2;A6H8K3 YES

TNKS1BP1 S429 Q9C0C2 S429 Q9C0C2;B3KXS7 YES

ARHGEF18 S1101 Q6ZSZ5 S1101 Q6ZSZ5;B5ME81;D6W646;Q6ZSZ5-2/-3;A8MV62 YES

IASPP S102 Q8WUF5 S102 Q8WUF5;Q6ZNZ8 YES

APG16L S269 Q676U5 S269 Q676U5;Q676U5-3/-4;Q17RG0;Q53SV2 YES

TPD52L2 S141 O43399 S161 O43399;Q6FGS1;Q53GA0;B4DDV4;O43399-2;Q68E05;B4DPJ6 YES

6GI50 value inconsistent with the one reported in Sos, et al. [94]; cell line was not used in analysis
7Label switch of experiment 4
8Label switch of experiment 13
9As reported throughout the paper

10The main Uniprot entry of the corresponding protein
11The position in the canonical Uniprot entry
12All Uniprot accession numbers from which the corresponding phosphopeptide could originate
13According to PhosphoSitePlus (www.phosphosite.org) accessed on 6thAugust 2011
14Detected in mouse only
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Table C.6: Significantly enriched GO terms

GO term GO id Category15 q-value16

cell communication GO:0007154 GOBP 2.5E-06

signal transduction GO:0007165 GOBP 2.5E-06

signal transducer activity GO:0004871 GOMF 5.1E-04

cytoskeletal protein binding GO:0008092 GOMF 5.1E-04

small GTPase regulator activity GO:0005083 GOMF 5.5E-04

regulation of cellular process GO:0050794 GOBP 7.2E-04

GTPase regulator activity GO:0030695 GOMF 1.1E-03

protein kinase activity GO:0004672 GOMF 2.0E-03

protein serine/threonine kinase activity GO:0004674 GOMF 2.9E-03

protein tyrosine kinase activity GO:0004713 GOMF 2.9E-03

receptor activity GO:0004872 GOMF 2.9E-03

phosphotransferase activity, alcohol group as acceptor GO:0016773 GOMF 3.6E-03

lipid binding GO:0008289 GOMF 3.6E-03

kinase activity GO:0016301 GOMF 3.7E-03

actin binding GO:0003779 GOMF 3.7E-03

zinc ion binding GO:0008270 GOMF 1.2E-02

Ras protein signal transduction GO:0007265 GOBP 1.2E-02

protein amino acid phosphorylation GO:0006468 GOBP 1.2E-02

regulation of cell communication GO:0010646 GOBP 1.3E-02

transferase activity, transferring phosphorus-containing groups GO:0016772 GOMF 1.3E-02

regulation of signal transduction GO:0009966 GOBP 1.7E-02

GTPase activator activity GO:0005096 GOMF 2.0E-02

cell surface receptor linked signal transduction GO:0007166 GOBP 2.1E-02

intracellular signaling cascade GO:0007242 GOBP 2.2E-02

enzyme activator activity GO:0008047 GOMF 2.2E-02

vesicle-mediated transport GO:0016192 GOBP 2.4E-02

Rho protein signal transduction GO:0007266 GOBP 2.5E-02

transport GO:0006810 GOBP 2.5E-02

establishment of localization GO:0051234 GOBP 2.5E-02

amine binding GO:0043176 GOMF 2.7E-02

epidermal cell differentiation GO:0009913 GOBP 2.9E-02

phosphorylation GO:0016310 GOBP 2.9E-02

transmembrane receptor activity GO:0004888 GOMF 3.1E-02

cytoskeleton organization GO:0007010 GOBP 3.5E-02

locomotory behavior GO:0007626 GOBP 3.5E-02

transition metal ion binding GO:0046914 GOMF 3.8E-02

phosphate metabolic process GO:0006796 GOBP 4.0E-02

Rho guanyl-nucleotide exchange factor activity GO:0005089 GOMF 4.3E-02

actin filament binding GO:0051015 GOMF 4.6E-02

post-translational protein modification GO:0043687 GOBP 4.7E-02

C.5 Additional Files

Additional Files 2-5 can be found at:

http://www.mcponline.org/content/11/9/651/suppl/DC1

15GOBP: biological process, GOMF: melecular function
16Adjusted p-value
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Appendix D

Supplementary Information to

Chapter 5

D.1 Supplementary Figures

Pareto point

Feasible point

Infeasible point

Utopia point

Objective 1

O
bj

ec
tiv

e 
2

Pareto front

Figure D.1: Example of a Pareto front in a minimization problem. The plot shows

different solutions of a toy example. Blue points are feasible solutions, where those that

are not dominated by any other solution are referred to as Pareto points (dark-blue).

Together they form the Pareto front. The points in the lower left area represent solutions

that are desired but not feasible (yellow/red).
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