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Abstract

We consider a stochastic extension of the vehicle routing problem with si-
multaneous delivery and pickup. While delivery amounts are assumed to be
fixed and known in advance, pickup amounts are stochastic and revealed only
after the determination of an a priori route. This may lead to arriving at
a customer with insufficient capacity to collect the realized pickup demand.
Such a situation is referred to as a failure. As corrective action an additional
route is computed to collect the pickup amounts which are left at the failure
points. The objective is to minimize the distance traveled in the first-stage
with known delivery quantities plus the expected distance traveled along the
corrective route. For the single vehicle case, we present a two-stage stochas-
tic programming model with recourse as well as an exact algorithm to solve
it. The proposed algorithm is based on an extension of the Integer L-Shaped
method adapted for stochastic vehicle routing problems. Risk neutral and risk
averse routing decisions are examined and compared.
Parts of this thesis have been submitted to the journal Computers & Oper-

ations Research.

Stochastic Integer Programming, Stochastic Vehicle Routing, Reverse Lo-
gistics, Integer L-Shaped.
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1. Introduction

The Vehicle Routing Problem (VRP) with various extensions, e.g. time win-
dows, inhomogeneous vehicle fleets, pickup and delivery, has been addressed
since 1959 where it was introduced by Dantzig and Ramser [17]. It consists
of determining a set of routes starting and ending at a depot, servicing with
a fleet of identical vehicles of finite capacity a set of customers each having
a known demand that minimizes the total travel cost. Deterministic VRPs
belong to the NP-hard complexity class, since they generalize the Traveling
Salesman Problem (TSP) and are thus difficult to solve. Many solution ap-
proaches involving both heuristic and exact methods have been published to
tackle this type of problems, for detailed surveys see [38] and [72], an anno-
tated bibliography is given by Laporte in [39].

In recent years, the study of Stochastic Vehicle Routing Problems (SVRP)
has gained popularity. The three most common causes of randomness re-
garding problem data are stochastic customers, which means the presence or
absence of a customer is not known with certainty, stochastic demands, and
stochastic times. Most solution strategies are based on the determination of
an a priori route and the consideration of some corrective policy. A survey
on SVRPs is presented by Gendreau, Laporte and Séguin in [28]. The most
studied SVRP of all is the Vehicle Routing Problem with Stochastic Demands
(VRPSD) (cf. [28]). The first exact algorithm using an Integer L-Shaped
method to solve the VRPSD was proposed by Séguin [64]. In [22] Dror, La-
porte, and Trudeau outline a variety of operating and service policies, proper-
ties and models for the VRPSD.

1



Introduction

In this thesis we concentrate on a stochastic extension of the Vehicle Rout-
ing Problem with Simultaneous Pickup and Delivery (VRPSPD). We assume
that the quantities to be delivered are fixed and known in advance, whereas
the quantities to be picked up are given as random variables, following finite
discrete probability distributions. For the stochastic model the recourse point
of view is chosen. As corrective action an additional route is determined to
collect the pickup amounts that have been left at failure nodes. The distance
traveled according to the route determined in the first stage by known deliv-
ery quantities plus the expected distance traveled according to the additional
corrective route is subject to minimization.

The Integer L-Shaped method, introduced 1993 by Laporte and Louveaux
[40], is adjusted to solve the present specific SVRP. In general terms the Inte-
ger L-Shaped method which is an extension of the L-Shaped method of Van
Slyke and Wets [74] for continuous stochastic programs is a branch-and-cut
procedure where lower optimality cuts are generated to eliminate feasible but
non-optimal solutions. Further, lower bounding functionals (LBFs) are used
to improve the efficiency of the algorithm by strengthening the lower bound
on the recourse cost associated to partial routes encountered throughout the
solution process. The construction of the LBF is due to Jabali, Rei, Gendreau
and Laporte [36]. The concept of partial routes originally introduced by Hjor-
ring and Holt in [34] is compared to the generalized counterpart presented in
[36] by Jabali, Rei, Gendreau, and Laporte. Different strategies for computing
a lower bound on the compensation cost given a partial route are presented
and examined. Furthermore risk neutral and risk averse routing decisions are
compared.

The thesis is structured as follows. Chapter 2 summarizes basic ideas and
models in context of stochastic programming. Risk neutral as well as risk
averse models are presented. In Chapter 3 the VRP is addressed. Section 3.1
deals with the definition of the classical deterministic VRP. Two different basic
formulations are given. Further the Vehicle Routing Problem with Simultane-

2



Introduction

ous Delivery and Pickup (VRPSDP) and the Generalized Traveling Salesman
Problem (GTSP) are introduced. These two problems arise partly in our spe-
cific problem and the GTSP needs to be solved several times during the solution
procedure. In section 3.2 the stochastic counterpart is formulated. Solution
concepts and algorithms for deterministic and stochastic VRPs are recapit-
ulated in section 3.3. The VRP with Simultaneous Delivery and Stochastic
Pickup (VRPSDSP) is presented in chapter 4. Section 4.1 precises a litera-
ture review on the problem studied. In section 4.2, for the single vehicle case,
the VRPSDSP is defined and formulated for the risk neutral as well as for
the risk averse routing strategies. In section 4.3 the Integer L-Shaped method
and its adaptation to the Single-VRPSDSP is described. Furthermore, the
construction of the LBF based on partial routes is displayed. Different aggre-
gation policies for the computation of local and global lower bounds on the
compensation costs are presented. Chapter 5 treats of the performance of the
implemented algorithm. Extensive tests on several sets of randomly generated
scenarios are performed and presented for the risk neutral and the risk averse
strategies. This thesis is concluded in section 6 and an outlook on future
research is given.
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2. Stochastic Programming

In deterministic settings, complete information on problem data has to be
available upon solving the problem. However, in most real world applications
one is challenged to make decisions under incomplete information. For instance
some input data is assumed to be uncertain and parts of the decisions have to
be taken prior to the observation of this uncertain data. To model phenomena
like this, stochastic programming concepts are applied, since solving a deter-
ministic problem where stochastic parameters are replaced by their expected
values can yield poor solutions (cf. [47]). Stochastic programming models are
characterized by the way they capture the interplay of making decisions and
gaining information. For a detailed introduction into stochastic programming
and an overview of basic models, methods and applications of stochastic pro-
gramming see [62].

2.1. Decision Making under Uncertainty

Including random data enforces the decision maker to call in to question how
to define feasibility and how to rank the arising random variables.

For a wide class of stochastic programming problems, also for those in the
present thesis, it is assumed that each decision variable x ∈ X causes an
individual random variable f(x, ω) : Ω → R, where Ω is a given probability
space, such that the decision maker is forced to select the “best” random

5



Stochastic Programming

variable out of the family

{f(x, ω) : x ∈ X}. (2.1)

Selecting an “optimal“ x is dependent on the choice of evaluation concept. In
[52] different possibilities for ranking random variables are introduced. We
consider ranking by statistical parameters, more specifically ranking by expec-
tation

min{Eω[f(x, ω)]︸ ︷︷ ︸
QE(x)

: x ∈ X}. (2.2)

To base the optimization on the expected value, only, completely neglects the
variability of the random variable and risk is not taken into account. With
regard to scenarios having small probability but high costs, one can base the
minimization on a weighted sum of expected value and some risk measure
QR(x)

min{QE(x) + ρ ·QR(x) : x ∈ X}, (2.3)

where ρ ≥ 0 is a fixed parameter. Models in form of (2.3) are called Mean-
Risk Models. Risk measures pertinent to the present thesis are the Excess
Probability (EP) and the Expected Excess (EE). They are chosen since being
practically meaningful and algorithmically tractable at the same time. The
EP is the probability of exceeding a prescribed threshold η ∈ R, i.e.

QPη(x) := P[{ω : f(x, ω) > η}]. (2.4)

The EE also takes into account the amount of exceeding η ∈ R:

QDη(x) := E[max{f(x, ω)− η, 0}]. (2.5)

In particular in banking and finance there exist many more measures quanti-
fying risk, such as the “Value-at-Risk"and the "Conditional Value-at-Risk. For
detailed descriptions, properties and applications see [58] and [60].

6



Stochastic Programming

Concerning feasibility, the two main solution concepts in stochastic pro-
gramming are Chance Constrained Programming (CCP) and Stochastic Pro-
gramming with Recourse (SPR). The difference between these two approaches
mainly lies in the fact that in some applications one is able to compensate
for first-stage decisions to maintain feasibility and in others, corrective actions
cannot be modeled reasonably or they simply do not exist. In circumstances
described the latter CCP is used to guarantee feasibility ’as often as possible’.
Unexpected extreme events may cause constraint violation, that can almost
never be avoided. In CCP the problem is solved under the condition that con-
straints are satisfied with some probability, i.e. constraint violation is allowed
up to a given tolerance. SPR is taken into consideration if the problem involves
a two-stage decision scheme, often consisting of some first-stage decision be-
fore and a recourse action after realization of the random data. Second-stage
variables ensuring feasibility are defined, such that first-stage decisions can be
compensated. SPR then aims at a first-stage decision such that the expected
value of the costs caused by the decisions in both stages becomes minimal.

Robust Optimization (RO) could be resorted to if one is interested in worst-
case analysis. Using concepts based on RO result in more restrictive and
pessimistic optimization models. In RO feasibility has to be guaranteed for
all realizations of the random variable and no constraint violation is allowed.
For a comprehensive account of RO see Ben-Tal, El-Ghaoui, and Nemirovski
[6]. Another conceptual framework is Stochastic Dominance (SD), where the
arising random variables are compared to some benchmark random variables.
An accessible introduction, deeper insights, and algorithmic experiments are
given in [21].

In the present thesis the recourse point-of-view is adopted, i.e., parts of the
decisions must be taken with incomplete information and the remaining ones
are serving as corrective actions after the complete information has been re-
vealed.

7
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2.2. Two-Stage Stochastic Linear Programs with
Recourse

Modeling stochastic programs in a two-stage framework results in an alternat-
ing decision and observation scheme. Prior to knowing the realizations of some
random variables first-stage or here-and-now decisions x must be taken. Af-
ter observing the randomness second-stage or wait-and-see decisions y can be
made to compensate for possible infeasibility. The goal of two-stage stochastic
programming is to choose a single set of actions for the first-stage that mini-
mizes expected costs for all possible realizations of the random variables.

The general formulation of a two-stage stochastic linear program with re-
course is given by:

Definition 2.2.1. Two-Stage Stochastic Linear Programs with Recourse

min{cTx+ q(ω)Ty : T (ω)x+W (ω)y = z(ω), x ∈ X , y ∈ Y} (2.6)

where X ⊆ Rm1, Y ⊆ Rm2 are nonempty polyhedra and (q, T,W, z)(ω) is a
random vector on some probability space (Ω,A,P) with values in Rm2×Rm1s×
Rm2s × Rs, whose distribution does not depend on x.

Regarding stochastic programs it is crucial, that the non-anticipativity con-
straint is fulfilled, which means, that the decision vector xmust be independent
on the realizations of ξ := (q, T,W, z)(ω). Note that X and Y might have in-
teger requirements.
The structural analysis of the stochastic programming models is mainly based
on the value function φ, which is defined as:

φ(s1,A, s2) := min
y∈Y
{sT1 y : Ay = s2} (2.7)

Using the value function φ, (2.6) can be rewritten as:

min{cTx+ φ(q(ω),W (ω), z(ω)− T (ω)x) : x ∈ X} (2.8)

8
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The value function φ can be seen as given by a parametric optimization prob-
lem with parameters in the objective function, the constraint matrix, and in
the right-hand-side of the constraints. For the problem studied in the present
thesis we just have randomness in the right-hand-side. Therefore, with z(ω)
as the only random variable the value function φ reduces to:

φ(z(ω)− Tx) := min
y∈Y
{qTy : Wy = z(ω)− Tx} (2.9)

Basic properties of φ depending on the random elements of vector ξ are sum-
marized and discussed by Ruszczyński and Shapiro in chapter 2 of [65].

Defining the function f(x, ω) from (2.1) as:

f(x, ω) := cTx+ φ(z(ω)− Tx) (2.10)

and minimizing the expected value

min{Eω[f(x, ω)] : x ∈ X} (2.11)

one obtains a well defined optimization problem. The computation of the
expected value requires to calculate a multi-dimensional integral, where also,
in general, the integrand is discontinuous. However, when assuming a discrete
probability distribution with finitely many realizations zω and probabilities
πω, ω ∈ Ω, |Ω| = S, the minimization in (2.11) can be equivalently expressed
by:

min{cTx+
∑
ω∈Ω

πωq
Tyω : Tx+Wy1 = z1

Tx +Wy2 = z2

... . . . ... (2.12)

Tx +WyS = zS

x ∈ X , yω ∈ Y , ω = 1, ..., S}

9



Stochastic Programming

Algorithms typically exploit the special form of the constraint matrix of prob-
lem (2.12). The block structure is depicted in figure (2.1).

A
T W
... . . .
T W

Figure 2.1.: Block structure of constraint matrix

Decomposition turns out an adequate method for solving these problems.
For example, there is the L-shaped decomposition by Van Slyke and Wets [74].
In the course of the algorithm, cutting planes are generated to approximate
both the objective and the constraints. Decomposition occurs by the scenario-
wise creation of the cuts.

Another algorithmic advantage can be exploited when writing the non-
anticipativity constraints in explicit fashion. More specifically, for each sce-
nario a set of copies of the first-stage decision variables is established and an
additional constraint is added stating that the copies have to be all equal. The
resulting block structure is depicted in figure (2.2).

A
T W

.. . . . .
T W

NA
first-stage second-stage

Figure 2.2.: Block structure of reformulation
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The additional constraint is treated by Lagrangean relaxation, such that
problem (2.12) decomposes into S single-scenario problems. An implementa-
tion of an algorithm based on dual decomposition can be found in [49], for
theoretical details see [11].

Regarding Mean-Risk Models using EP and EE as risk measures and still
concerning a finite discrete probability distribution, the resulting optimization
models are equivalent to the following mixed integer linear programs.

For the EP model additional binary variables Θω for each scenario ω ∈ Ω
may be introduced. Choosing a constant M , such that

M > sup{cTx+ φ(zω − Tx) : x ∈ X , ω = 1, ..., S}, (2.13)

where it is assumed, that the supremum on the right-hand-side is bounded,
the two-stage linear stochastic EP-model can be defined as:

Model 2.2.2. Excess Probability

min{QE(x) + ρ ·QEP (x) : x ∈ X}

= min{cTx+
∑
ω∈Ω

πωq
Tyω + ρ ·

∑
ω∈Ω

πωΘω :

Tx+Wyω = zω (2.14)

cTx+ qTyω −M ·Θω ≤ η

x ∈ X , yω ∈ Y ,Θω ∈ {0, 1}, ω = 1, ..., S}

The above model can be interpreted as: Given a specific scenario, it is
counted and penalized by the objective function whenever the corresponding
objective value exceeds the predefined threshold η ∈ R+.

Considering the Mean-Risk model with EE, further continuous variables νω
for each scenario ω ∈ Ω are imposed. Using continuous variables also the
amount of exceeding η ∈ R+ can be taken into account.

11
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Model 2.2.3. Expected Excess

min{QE(x) + ρ ·QEE(x) : x ∈ X}

= min{cTx+
∑
ω∈Ω

πωq
Tyω + ρ ·

∑
ω∈Ω

πωνω :

Tx+Wyω = zω (2.15)

cTx+ qTyω − νω ≤ η

x ∈ X , yω ∈ Y , νω ∈ R+, ω = 1, ..., S}

Due to the fact, that the block structure of the constraint matrix is main-
tained, one is able to apply all techniques, which are developed for the risk
neutral model.
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3. Routing under Uncertainty

Routing problems appear in a widespread area of real world applications, like
telecommunication, dispatching of goods, public transportation including air-
planes, and navigation. In this thesis we are focusing on a stochastic extension
of a special class of vehicle routing problem dealing with the determination
of an optimal route given a single vehicle with limited capacity to deliver and
collect various goods to and from a set of customers. Therefore this section will
provide fundamentals regarding VRPs that are important for comprehension
of the present work.

3.1. Deterministic Routing

In deterministic settings it is considered that all input data is known a priorily.
Nevertheless, routing problems, especially VRPs, are hard to solve and belong
to the NP-hard complexity class.1 Due to the fact that the VRP and its various
extensions are of great interest for logistics, distribution, and transportation,
it is one of the most studied combinatorial optimization problem.

The classical VRP, known as Capacitated VRP (CVRP), is defined on a
complete undirected graph G = (V,E), where V := {0, 1, .., n} denotes the
customers, including one special node, called the depot, indexed with 0 and
E := {(i, j)|i, j ∈ V, i < j} indicating all edges between customers and depot.
Each customer is assigned one positive number di representing the delivery

1VRPs are multiple traveling salesman problems with additional routing constraints and
therefore NP-hard (see e.g.[15]).
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Routing under Uncertainty

(or pickup) amount. Further, a fleet of homogeneous vehicles 1, ..., K is given,
each having a capacity limitation Q. The CVRP consists of determining (a
maximum of) K routes starting and ending at the depot, servicing each cus-
tomer exactly once, complying with the capacity limitation and minimizing
the overall traveled distance. To formulate the CVRP within the framework of
integer programming, binary variables xij are introduced to indicate, whether
a vehicle travels between customer i and j or not.
For S ⊂ V , let δ(S) := {(i, j)|i ∈ S, j /∈ S or i /∈ S, j ∈ S}, if S = {i},

then we simply write δ(i) instead of δ({i}). Further let r(S) be the minimum
number of vehicles needed to serve the customers of a subset S of customers.
Then an integer formulation of the CVRP is given by:

Model 3.1.1. Capacitated Vehicle Routing Problem

min
∑

(i,j)∈E
cijxij (3.1)

s.t.
∑

(i,j)∈δ(i)
xij = 2, i ∈ V/{0} (3.2)

∑
(i,j)∈δ(0)

xij ≤ 2K, (3.3)

∑
(i,j)∈δ(S)

xij ≥ 2r(S), S ⊆ V/{0}, S 6= ∅ (3.4)

xij ∈ {0, 1}, (i, j) ∈ E, i, j 6= 0 (3.5)

xij ∈ {0, 1, 2}, (i, j) ∈ δ(0) (3.6)

Constraints (3.2) ensure that each customer is visited exactly once. A maxi-
mum number of K vehicles leave the depot, because of constraint (3.3). If one
imposes, that exactly K vehicles have to serve the costumers, than inequality
(3.3) changes to an equality. Constraints (3.4) prohibit the formation of sub-
tours. Rather than writing the subtour elimination constraints explicitly, they
are only generated when needed. This is due to the fact that the number of
subtour elimination constraints is exponential.
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An alternative formulation which is amenable to column generation can be
defined as follows: Let R be the set of all feasible routes that is the set of
routes starting from the depot, visiting a subset S ⊆ V/{0} of customers, such
that ∑i∈S di ≤ Q and returning to the depot. Further, let cr be the cost of
route r ∈ R given by the sum of the costs of the arcs belonging to route r.
Using a binary variable zr for each route r ∈ R, taking value 1 if and only if
route r belongs to the solution, the CVRP can be modeled as:

Model 3.1.2. Capacitated Vehicle Routing Problem

min
∑
r∈R

crzr (3.7)

s.t.
∑
r∈R

yirzr = 1, i ∈ V/{0} (3.8)
∑
r∈R

zr ≤ K, (3.9)

zr ∈ {0, 1}, r ∈ R (3.10)

The coefficients yir ∈ {0, 1} indicate, whether customer i is visited along
route r or not, such that constraints (3.8) ensure that each customer is visited
exactly once. Constraint (3.9) states that the number of routes is at most K.
Here, again the inequality is changed to an equality, if the number of routes
should be exactly K.
In practice it is common to replace the partitioning constraints (3.8) by the

following covering constraints:

∑
r∈R

yirzr ≥ 1, i ∈ V/{0} (3.11)

By virtue of having an extremely large number of feasible routes, the linear
relaxation of model (3.1.2), where constraints (3.8) are replaced by constraints
(3.11) is solved considering a limited subset of columns R′ ⊆ R. To generate
further promising routes that are routes having negative reduced costs and
to prove optimality, a pricing problem is repeatedly solved. Optimality is
achieved, when no more routes with negative reduced costs are found.
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Replacing equality (3.8) by inequality (3.11) has no impact on the optimal
solution, since no optimal solution visits any customer more than once. Us-
ing set covering constraints has the advantage to find feasible solutions easier.
Moreover, they are preferable to set partitioning constraints, because when
relaxing the integrality constraints, a set covering model has a smaller dual
space, cf. [18].

As mentioned at the beginning the VRP has a tremendous variety of ap-
plications. Using additional side constraints, the VRP can be easily dilated.
For a detailed overview of the most common VRP extensions and solution
approaches based on exact methods, heuristics and metaheuristics see [72],
[15]. Other ideas based on approximations and reformulations are for example
the K-tree 2 approximation presented by Fisher [25] or the reformulation as
multi-commodity flow problem defined in [3].

3.1.1. Vehicle Routing with Simultaneous Delivery and
Pickup

In comparison to the CVRP, the VRP with Simultaneous Delivery and Pickup
(VRPSDP) involves supplementary routing constraints. Instead of one positive
number per customer, two positive numbers di and pi are assigned, representing
the delivery and pickup amount at customer i. In contrast to the CVRP, the
orientation of the route is now important to know and how the vehicle load
changes while proceeding the route. Therefore further continuous nonnegative
variables Dij and Pij need to be introduced, indicating the amount of delivery
load and collected load carried along arc (i, j). The following mixed-integer
programming formulation is taken from [18].

2A K-tree is a generalization of a spanningtree. Given a graph with n + 1 nodes, a K-tree
is defined as set of n + K arcs spanning the graph
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Model 3.1.3. Vehicle Routing Problem with Simultaneous Delivery and Pickup

min
∑

(i,j)∈E
cijxij (3.12)

s.t.
∑
j∈V

xij = 1, i ∈ V/{0} (3.13)

∑
j∈V/{0}

x0j ≤ K, (3.14)

∑
j∈V

xij =
∑
j∈V

xji, i ∈ V (3.15)

∑
j∈V

Pij −
∑
j∈V

Pji = pi, i ∈ V/{0} (3.16)

∑
j∈V

Dji −
∑
j∈V

Dij = di, i ∈ V/{0} (3.17)

Pij +Dij ≤ Qxij, (i, j) ∈ E (3.18)

Pij, Dij ≥ 0, (i, j) ∈ E (3.19)

xij ∈ {0, 1}, (i, j) ∈ E (3.20)

Constraints (3.13) provide for visiting each customer exactly once and con-
straint (3.14) enforces that this is done by a maximum number of K vehicles.
In this formulation no subtour elimination constraints like constraints (3.4)
in model 3.1.1 are required, because of constraints (3.15), (3.16), and (3.17).
These are flow conservation constraints on the number of vehicles and on the
amounts of pickup and delivery load. Constraints (3.18) ensure that the vehicle
capacity is not exceeded.

Regarding exact solution methods for the VRPSDP Dell’Amico, Righini
and Salani presented in 2006 the only exact algorithm so far, cf [18]. They
proposed a branch and price algorithm based on a set covering formulation of
the masterproblem. The largest instance that is solved to optimality, has 40
customers. A survey and detailed description on heuristic approaches is given
in [8]. Variants of the VRPSDP like clustered backhauls, mixed linehauls and
backhauls, divisible delivery and pickup, as well as solution approaches based
on exact methods, heuristics and metaheuristics are presented in [57].
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3.1.2. Generalized Traveling Salesman Problem

The Generalized Traveling Salesman Problem (GTSP) is a variant of the well
known Traveling Salesman Problem (TSP) in which the nodes are partitioned
into clusters and the salesman has to visit at least one node for each cluster.
In what follows the notation introduced by Fischetti, González, and Toth in
[24] is used.
Given a complete undirected graphG = (V,E) with node set V := {0, 1, ..., n},

edge set E := {(i, j)|i, j ∈ N, i 6= j} with associated arc costs cij and, a proper
partition C1, ...., Cm of N . For each S ⊆ N , let

E(S) := {(i, j) ∈ E|i ∈ S, j ∈ S},

δ(S) := {(i, j) ∈ E|i ∈ S, j /∈ S},

For v ∈ N they write δ(v) instead δ({v}), and Ch(v) denotes the cluster con-
taining v. With these notations, they formulate an integer linear programming
model for the GTSP as follows. Let xij = 1 if edge (i, j) ∈ E is chosen in the
optimal solution, xij = 0 otherwise. Further let yv = 1 if node v ∈ N is visited,
yv = 0 otherwise.

Model 3.1.4. Generalized Traveling Salesman Problem

min
∑

(i,j)∈E
cijxij (3.21)

s.t.
∑

(i,j)∈δ(v)
xij = 2yv, v ∈ N (3.22)

∑
v∈Ch

yv ≥ 1, h = 1, ...,m (3.23)

∑
(i,j)∈δ(S)

xij ≥ 2(yi + yj − 1), S ⊂ N, 2 ≤ |S| ≤ n− 2, (3.24)

i ∈ S, j ∈ N\S (3.25)

xij ∈ {0, 1}, (i, j) ∈ E, (3.26)

yv ∈ {0, 1}, v ∈ N (3.27)
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Constraints (3.22) are the node degree constraints which impose that the
number of edges incident with a node is either 2 if yv is visited or 0 otherwise.
To ensure that at least one node in each cluster is visited, constraints (3.23)
are established. Note that when the arc costs satisfy the triangle inequality,
constraints (3.23) are equivalent to

∑
v∈Ch

yv = 1, h = 1, ...,m, (3.28)

indicating that exactly one node in each cluster is visited. Constraints (3.24)
are required to guarantee connectivity, which means each cut separating two
visited nodes i and j must be crossed at least twice.

An exact algorithm based on a branch-and-cut procedure is presented by
Fischetti, González, and Toth in [24]. A problem reduction algorithm deleting
redundant vertices and edges are given by Gutin and Karapetyan [32]. Using
the fact that the GTSP can be converted to an equivalent TSP with the same
number of vertices, efficient TSP solvers can be established (cf. [5], [43], [44],
[53]). Heuristics for the GTSP can be found for example in [33], [66], [67].

3.2. Capturing Uncertainty

Due to the fact that in almost every process regarding route planning input
data is not known prior to the solution process, one has to deal with random-
ness to capture uncertainty. To this purpose stochastic programming concepts
are adapted to formulate reasonable models which reflect real world applica-
tions satisfactorily.

Stochastic Vehicle Routing Problems (SVRPs) are extensions of the deter-
ministic VRPs in which some data is assumed to be random and following a
given probability distribution. Regarding SVRPs it is no longer required to
satisfy the constraints for all realizations of the random variables, and one
has to define new feasibility and optimality conceptions. In comparison to
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deterministic VRPs, they are considerably more difficult to solve, since they
combine the characteristics of stochastic and integer programs. For a detailed
introduction to the theory of linear and integer programming cf. [63].

Concerning uncertain input data in the field of vehicle routing, the three
most common causes are: stochastic demands, stochastic customers and stochas-
tic travel times. The best studied of all SVRP is the VRP with Stochastic
Demands (VRPSD), in which delivery (or pickup) demand di is replaced by
a random variable ξi. In the case of stochastic customers it is assumed that
the customers are only present with some probability, but have deterministic
demands. Stochastic times are assumed, whenever one has to deal with uncer-
tain travel or service times. In addition to the classical capacity constraints,
one imposes typically also duration and/or time window constraints.

Modeling SVRP using stochastic programming concepts, one can adapt the
two main branches presented in section 2.1, CCP and SPR. Using CCP the
distance traveled is minimized while controlling the probability of route failure.
A route failure is referred to as for example violation of capacity limitations
or time window restrictions. However the cost of such a failure is not taken
into account. In [70] Stewart and Golden showed that under appropriate as-
sumptions, solving CCP models involves the same level of difficulty as solving
a deterministic VRP with the same parameters.

In the framework of SPR first an a priori solution is computed, then the
realization of the random variable becomes known and in a second stage, a
recourse or corrective action is applied to the first stage solution to compensate
for possible failures. A common corrective action for VRPSD is a return trip
to the depot, whenever the vehicle runs out of capacity. After replenishing (or
unloading in the pickup case) the planned route is either resumed at the point
of failure or a new routing sequence for the remaining customers is planned.
An alternative strategy to reduce the expected cost of corrective action is to
break the planned vehicle routes at predefined or strategical points, which are
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based on the anticipated customer demands. In SPR the expected distance
traveled is subject to minimization. Since the potential location of a failure
has a significant impact on the expected route length, two routes with the
same probability of failure and the same distance might have quite different
expected distance values.

In [70] the two mentioned frameworks for solving a multiple VRPSD are
compared by Stewart and Golden. They concluded that if the route failure
penalty cost is known, SPR models produce lower costs than CCP.

3.2.1. VRP with Stochastic Demands

Taking the recourse point of view, the VRPSD can be formulated as a two-
stage stochastic program, where in a first-stage having incomplete information
an a priori route is constructed and in a second-stage compensation strategies
are performed, when route failures occur, which cause additional costs. In the
VRPSD each customer i = 1, ..., n is assigned a random variable ξi, represent-
ing its stochastic demand. To prevent from systematically failing of routes
because of unbalanced assigned customers with respect to expected demands,
it is common to require that the expected demand of a route (0, i1, ..., it, 0)
does not exceed the vehicle capacity:

t∑
j=1

E(ξij) ≤ Q. (3.29)

In contrast to the deterministic version, because of return trips to the depot,
the binary variable xij can now also take the value 2 for arcs connected to the
depot that is x0j ∈ {0, 1, 2} for j = 1, ..., n. The compensation costs Q(x) for
a first-stage solution x are added to the objective function.
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Model 3.2.1. Vehicle Routing Problem with Stochastic Demands

min
∑
i<j

cijxij +Q(x) (3.30)

s.t.
n∑
i=1

x0i = 2K, i ∈ V/{0} (3.31)
∑
i<k

xij +
∑
j>k

xij = 2, k ∈ V/{0} (3.32)

∑
i,j∈S

xij ≤ |S| −
⌈∑
i∈S

E(ξi)/D
⌉
, S ⊆ V/{0}, 2 ≤ |S| ≤ n− 1 (3.33)

xij ∈ {0, 1}, 1 ≤ i < j ≤ n (3.34)

x0j ∈ {0, 1, 2}, j ∈ V/{0} (3.35)

Neglecting the Q(x) term this model is that of a deterministic CVRP, in
which customer demands are E(ξ). Constraints (3.31) and (3.32) are the node
degree constraints. To ensure that the expected demand of any route does not
exceed the vehicle capacity and to prevent from subtours constraints (3.33)
are imposed.

Formulating the compensation costs Q(x) in terms of decision variables and
linear relationships is quite complex. However, for a given a priori solution x,
Q(x) is separable in the routes and can easily be computed under some as-
sumptions, depending on the recourse strategy and on stated problem features
and characteristics. Furthermore, in stochastic settings also route orientation
needs to be captured, which is irrelevant for the deterministic case. In [42] it
is described how to compute the compensation cost for divisible goods.

In [22] an overview concerning recourse strategies, stochastic mathematical
programming formulations, and solution frameworks is given by Dror, Laporte
and Trudeau. Depending on the number of vehicles considered, exact solution
methods are either based on a branch-and-price or branch-and-cut framework.
In [12] a branch-and-price algorithm is proposed by Christiansen and Lysgaard
and Laporte, Louveaux, and van Hamme presented a branch-and-cut algorithm
based on the Integer L-Shaped method in [42].
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3.3. Solution Concepts and Algorithms

Despite the fact that there are only finitely many feasible points,3 solving
VRPs, deterministic or stochastic, remains a formidable task. Exact solu-
tion methods very quickly come to their limits, such that for almost all real
world instances only heuristics or metaheuristics are practical. In what follows
some of the well-established exact algorithms, heuristics and metaheuristics
are summarized.

3.3.1. Exact Algorithms

The two most popular exact solution frameworks are based on Column Gen-
eration (CG) embedded in a Branch&Bound scheme and on a Branch&Cut
(B&C) procedure, respectively. Depending on the problem studied one of
these technics outperformes the other. For instance having a vehicle fleet of
more than 5 vehicles, it is common to use a CG based algorithm.

Solving VRPs using CG one operates on a Restricted Masterproblem (RMP)
that comes up by restricting model (3.1.2) to a limited set R′ ⊆ R of feasible
routes. To guarantee feasibility the RMP must be properly initialized. There-
fore either a dummy column is added, representing a fictitious, infeasible route
visiting all customers, but having extremely high costs, such that it will never
appear in the optimal solution, or feasible routes are generated with the aid
of problem specific heuristics. To determine auspicious routes a so called pric-
ing problem is solved, which identifies routes with least negative reduced costs
that are added to the RMP. Solving the pricing problem is the challenging task
in the CG procedure. Due to this a reformulation of the pricing subproblem
as Shortest Path Problem with Resource Constraints (SPPRC) can be carried
out. The SPPRC is solved using dynamic programming techniques4. The CG

3This is due to the fact that only binary variables or variables contained in the set {0, 1, 2}
are necessary to formulate the LP, thus only finitely many combinations of variables
exist.

4In general, a labeling algorithm is performed using domination rules, state space relax-
ations and bidirectional search refinements, for a detailed description see [18] and [19].
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algorithm is embedded in a Branch&Bound (B&B) framework, hence this al-
gorithm is also called Branch&Price (B&P). A didactic introduction to the use
of the CG technique is given in chapter 1 of [19]. Literature concerning B&P
approaches for the VRP can be found for example in [18] for the VRP with
Simultaneous Distribution and Collection and for the CVRP with stochastic
demands in [12].

In B&C procedures the initial problem is relaxed in the sense that integrality
constraints, subtour elimination constraints and possible further troublesome
constraints are neglected. During the solution process feasibility cuts are added
to cut off infeasible solutions. In [48] a B&C algorithm for the CVRP is pre-
sented by Lysgaard, Letchford, and Eglese.
Regarding stochastic settings formulated as two-stage stochastic programs
with recourse, also objective cuts are added that bound the compensation
costs, which are also relaxed in the initialization and replaced by a general
lower bound. The Integer L-Shaped method, introduced 1993 by Laporte and
Louveaux [40], is one of the most promising B&C procedures, when solving
stochastic integer programs with recourse. The efficiency of a B&C method
relies mainly on finding a good lower bound for the problem studied. It is
common to determine lower bounds only by solving the LP-Relaxation of the
masterproblem, which of course could be very weak depending on the cuts
added and on the initial integer formulation.

Since the Integer L-Shaped method is chosen as solution framework for the
problem studied in this thesis, the method will be described in detail. In the
following, we use the notation introduced in [40] by Laporte and Louveaux.
Let X be a set, where X = X̄ ∩ {0, 1}n and X̄ is the polytope defined by the
set of constants in X, the following problem is called Current Problem:
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Model 3.3.1. Current Problem

min cTx+ Θ (3.36)

s.t. Ax = b (3.37)

Dkx ≥ dk, k = 1, ..., s (3.38)

Elx+ Θ ≥ el, l = 1, ..., t (3.39)

0 ≤ x ≤ 1,Θ ∈ R (3.40)

Constraints (3.38) are used to approximate the feasible region X̄, they are
referred to as feasibility cuts. At the initial stage of the problem X̄ is re-
laxed, during the solution procedure feasibility cuts are only added when
needed, i.e. to cut off infeasible solutions. A set of feasibility cuts is said
to be valid if there exists some finite value s, such that x ∈ X̄ if and only if
{Dkx ≥ dk, k = 1, ..., s} (cf. [40] p. 135).

The recourse costs Q(x) are approximated using the variable Θ along with
constraints (3.39), which are referred to as optimality cuts. A set of optimality
cuts is said to be valid if for all x ∈ X, (x,Θ) ∈ {(x,Θ)|Elx + Θ ≥ el, l =
1, ..., t} implies Θ ≥ Q(x) (cf. [40] p. 135). Note that, in practice, only for the
optimal (x∗,Θ∗) it is required to have Θ ≥ Q(x) and not for all feasible (x,Θ).

In general terms the Integer L-Shaped method is described as follows:

Algorithm 3.3.2. Integer L-Shaped

Step 0 (Initialization)
Set ν = 0, t = 0, s = 0,
z̄ = +∞
Θ = −∞ or any valid general lower bound L.
Define the first pendant node as the initial current problem.

Step 1 (Selection)
Using a selection criterion, select a pendant node,
if there is none STOP.
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Step 2 (Separation)
2.1 ν = ν + 1

2.2 Solve the current problem,
if the current problem has no feasible solution then fathom the node
and go to Step 1,
else let (xν ,Θν) be the optimal solution to the problem.

2.3 Search for violated constraints of type (3.38),
if one is found then add one feasibility cut (3.38) to the current
problem, set s = s+ 1 go to 2.2.
if cTxν + Θν > z̄ then fathom the node and go to Step 1.

2.4 Search for violated integrality constraints,
if one is found then go to Step 3,
else solution xν is feasible.

2.5 Compute Q(xν), zν = cTxν +Q(xν), set z̄ = min{z̄, zν},
if Θν ≥ Q(xν) then fathom the node and go to Step 1,
else add an optimality cut (3.39), set t = t+ 1 go to 2.2.

Step 3 (Branching)
Using a branching criterion, create two new nodes, append them to the
list of active nodes and go to Step 1.

Solving stochastic vehicle routing problems which are formulated as stochas-
tic programs with recourse by means of the Integer L-Shaped method, the fea-
sibility and optimality cuts take on special forms. In the initial stage only de-
gree constraints of each vertex of the underlying graph are taken into account.
Feasibility cuts appear as subtour elimination and capacity constraints, they
are added in the separation step 2.3. Since having a finite number of routes,
assume that these are indexed by r and define

Sr := {xij : xij = 1 in the rth route},

where xij is a binary variable indicating if vehicle travels between customer i
and j. Further, let Θr be the cost of recourse for route r that are costs due to
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compensation strategies. The optimality cuts which are added in Step 2.5 can
be defined as:

Θ ≥ (Θr − L)
(∑

xij∈Sr xij − (n− 1)
2

)
+ L, (3.41)

where n is the number of customers. Each cut is active at one feasible route
only. Hence a result, constraints (3.41) only bound the value of recourse as-
sociated with the feasible solutions that were used to create them. However,
note that the cut for a feasible route is active in more fractional solutions than
the standard optimality cut, thus cuts of the form (3.41) are stronger than the
cuts used in the generic L-Shaped method (cf. [34]).
One can also impose an optimality cut which is only used to eliminate from

further considerations the r-th feasible solution:

∑
xij∈Sr

xij ≤ |Sr| − 1. (3.42)

Numerically, this cut is more stable than cut (3.41), since it is composed of
coefficients equal to one. However, it provides no information on the value of
recourse. Using exclusively cuts of the form (3.42), the number of active sub-
problems may increase enormously. This is due to the fact that the quality of
bound cTxν + Θν in the separation step will be poor whenever xν is infeasible.
Consequently, with a poor general lower bound, the Integer L-Shaped algo-
rithm will tend to enumerate feasible solutions. Regarding the determination
of an appropriate general lower bound, it is crucial to keep balance between
computation time and quality. Given a problem that is studied, searching for a
good bound may be of no avail or highly time consuming. Another possibility
to avoid the enumeration of feasible solutions, is to provide better approxima-
tions of the recourse cost using other lower bounding functionals.
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In [34] Hjorring and Holt present a new type of optimality cut, referred to
as general optimality cut. Since many feasible solutions might have a number
of xij values in common, they define a particular type of subsets of xij. Let
xij = 1, for all xij ∈ Sp and xij /∈ Sp are unspecified, except for feasibility
considerations, and Θp a corresponding lower bound on the expected second-
stage value. Define the general optimality cut as

Θ ≥ (Θp − L)
( ∑
xij∈Sp

xij − (|Sp| − 1)
)

+ L, (3.43)

where |Sp| is the cardinality of Sp.
The advantage of general optimality cuts is an improvement of the lower bound
on Θ for all solutions Sr where ∑xij∈Sr xij = |Sp|, if Θp > L. However, for
solutions in which ∑xij∈Sr xij < |Sp|, this cut will not be active.

The number of cuts required to prove optimality depends on the gap between
the lower bound from the LP relaxation and the best upper bound. Further,
for the vehicle routing problem with stochastic demands also the geographical
and demand distributions of the customers have a main impact on the number
of cuts.

3.3.2. Heuristics and Metaheuristics

Heuristics and metaheuristics are used to determine acceptable solutions in
reasonable computing time. Especially for big instances these solution meth-
ods are indispensable. Contrary to metaheuristics that try to explore the most
promising regions of the solution space, the search space which is investigated
by heuristics is quite limited. Most heuristics can be easily extended to ac-
count for various constraints occurring when formulating VRPs in different
real-life contexts. Metaheuristics require finely tuned parameters, such that it
could be difficult to extend them to other situations. Comparing the quality
of solutions, metaheuristics outperform the classical heuristics at the price of
increased computing time.
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Heuristics can be divided into three major groups, route constructive heuris-
tics, route improvement heuristics, and two-phase heuristics.

Constructive heuristics successively assemble routes, while respecting feasi-
bility restrictions and keeping tabs on the solution costs. Strategies used for
constructing VRP solutions are either merging existing routes using a savings
criterion or gradually assigning vertices to vehicle routes using an insertion
technique. The most popular savings algorithm is perhaps the Clarke&Wright
algorithm, cf.[14]. Modifications of the Clarke&Wright savings algorithm are
presented by Gaskell in [27] and Yellow in [77]. Including circumferential routes
and introducing a route shape parameter, they try to generate improved routes
also at the end of the solution procedure. Insertion techniques are presented
by Mole and Jameson in [51] and by Christofides, Mingozzi, and Toth in [13].

Route improvement heuristics either change the sequencing of customers
in vehicle routes taken separately or exchange parts between different routes.
Operating on one single route, any improvement heuristic for the TSP can be
applied. In [45] Lin defined the λ-opt mechanism, where λ edges are removed
and the remaining parts are reconnected. Enhancements are described for
example in [46], [54], and [59]. Multiroute edge exchanges are classified by Van
Breedam in [73] as string cross, string exchange, string relocation, and string
mix. Further exchange schemes are presented by Thompson and Psaraftis [71]
and Kindervater and Savelsbergh [37].

Two-phase heuristics can be divided into two groups: cluster-first, route-
second and route-first, cluster-second. A cluster-first, route-second method is
for example the sweep algorithm (cf. [31], [75], [76]), where initially feasible
clusters are formed by rotating a ray centered at the depot. For each of this
clusters a TSP is solved to obtain feasible routes. In [26] by Fisher and Jaiku-
mar the clustering is based on solving a generalized assignment problem. The
location-based heuristic of Bramel and Simchi-Levi [10] identify the seeds by
solving a capacitated location problem. Route-first, cluster-second methods
proposed by Beasley [4] start with determining a giant TSP tour not taking
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into account side constraints. In a second phase the giant tour is decomposed
into feasible vehicle routes.

Heuristics summarized above are only used for deterministic settings. How-
ever, some of them have been adapted to the stochastic case. In [23] Dror
and Trudeau proposed a savings based heuristic for the SVRP. The article [7]
by Bertsimas proposes various heuristics for the VRPSD based on lower and
upper bounds determined for different strategies and assumptions.

Metaheuristics are strategies that guide the search process to identify promis-
ing regions of the solution space and to escape local optima. For this purpose
metaheuristics allow deteriorating and even infeasible intermediary solutions
while exploring the search space. The complexity of such a procedure ranges
from simple local search techniques to involved learning processes. Metaheuris-
tics applied to the VRP are Simulated Annealing (SA), Deterministic Anneal-
ing (DA), Tabu Search (TS), Genetic Algorithms (GA), Ant Systems (AS),
and Neural Networks (NN). Descriptions of the mentioned metaheuristics are
presented in chapter 6 of [72] by Gendreau, Laporte, and Potvin. A structured
list of references for various metaheuristics and problem types for the VRP and
its extensions are given in [30].
In [29] TS is adapted to the VRP with Stochastic Demands and Customers.

A hybrid-metaheuristic for the VRPSD is presented by Bianchi et. al in [9].
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4. Single-VRP with Simultaneous
Delivery and Stochastic Pickup

In this section we propose a two-stage stochastic programming formulation
for the VRP with Simultaneous Delivery and Stochastic Pickup (VRPSDSP).
Routing decisions by known delivery quantities make up the first stage, while
recourse decisions are made in the second stage when uncertain pickup quan-
tities have been revealed. The overall objective is to optimize the cost of the
first stage routing decisions plus the total expected penalty cost incurred in
the second stage. Further, risk averse strategies are applied. Here, the Excess
Probability and the Expected Excess are chosen as risk measures.

4.1. Literature Review

The recent literature offers just a few contributions to stochastic extensions of
the VRPSDP. In [50] it is assumed by Minis and Tatarakis, that the vehicle
follows a predefined customer sequence and returns to the depot whenever the
vehicle needs to load/unload. A dynamic programming algorithm is proposed
to determine the expected routing cost. Hou and Zhou presented in [35] a
chance constrained programming model for the Stochastic Vehicle Routing
Problem with Uncertain Demand and Travel Times and Simultaneous Pickups
and Deliveries, that is solved using a genetic algorithm.
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4.2. Modeling: Complete Recourse

The VRPSDSP is defined on a complete undirected graph G = (N0, E), where
N0 = {0, 1, ..., n} is the vertex set and E = {(i, j) : i, j ∈ N0, i < j} the
edge set. The depot is indexed with 0 and the customers are N = {1, ..., n}.
The distance between nodes i and j is denoted by cij. Each customer de-
mands a quantity di of goods to be delivered and an unknown quantity pi(ω)
of goods to be picked up. We assume that the quantities to be picked up
are following a finite discrete probability distribution with realizations p(ω) =
(p1(ω), ..., pn(ω)), ω ∈ Ω and probabilities π(ω), ω ∈ Ω. For the time being, we
restrict ourselves to a single vehicle with capacityD. Further we postulate that
all delivery quantities can be delivered with a single vehicle, i.e. ∑n

i=1 di ≤ D.

A feasible solution to the problem consists of a first-stage a priori route
where all deliveries and “as much pickups as possible” are made complying
with the vehicle capacity limitation visiting each customer exactly once and a
second-stage corrective route collecting all pickup quantities which have been
left at the customers due to insufficient vehicle capacity. The situation of the
vehicle reaching a customer without sufficient capacity to collect the customer’s
pickup amount is referred to as a route failure.
The objective is to find a pair of an a priori and corrective routes that min-
imizes the distance traveled in terms of the a priori route plus the expected
distance traveled according to the corrective route.

As an application of this special SVRP one can think of forwarding agencies
which deliver beverage crates and pick up returned empties. Due to the fact,
that the customers behavior of returning their empties is not known with cer-
tainty, the quantity of returned empties is assumed to be random.

According to two-stage stochastic linear programming concepts, we formu-
late our specific SVRP in the sense of a two-stage random integer linear pro-
gramming model with recourse. Routing decision only on the basis of the
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known delivery orders make up the first stage x, while second stage decisions y
are made for compensation after disclosure of the unknown pickup orders p(ω).
The latter are called recourse decisions. Of course, the second stage decisions
y depend on the first stage decision x and on the realization of the random
variable p(ω). The alternating decision and observation scheme is depicted in
figure (4.1).

decide x 7−→ observe p(ω) 7−→ decide y = y(x, p(ω))

Figure 4.1.: Two-stage scheme - Non-anticipativity

To compensate for possible route failures an additional vehicle is sent. More
specifically, the additional vehicle also starts and returns to the depot after the
complete information on abandoned pickup orders are available and collects
the missing units.

Let xij be a binary variable which is 1 if the vehicle travels between node
i and j, 0 otherwise. Let Q(x) denote the expected recourse cost. Then the
model reads:

Model 4.2.1. Stochastic Vehicle Routing with Simultaneous Delivery and
Stochastic Pickup

min
∑
i<j

cijxij +Q(x) (4.1)

n∑
j=1

x0j = 2, (4.2)

∑
i<k

xik +
∑
j>k

xkj = 2, ∀k ∈ N (4.3)

∑
(i,j)∈S

xij ≤ |S| − 1, (S ⊂ N, 2 ≤ |S| ≤ n− 1) (4.4)

x = xij ∈ {0, 1} (4.5)
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Constraints (4.2) and (4.3) specify the degree of each vertex, whereas con-
straints (4.4) eliminate subtours. Apart from Q(x), this model is that of a
deterministic traveling salesman problem.

Given a first-stage solution x, the computation of the recourse cost Q(x) can
be carried out individually for the scenarios ω = 1, ..., S. For each scenario one
identifies a set of fail-proved nodes, i.e. nodes where there is a route failure
for sure. Since the possible route failures also depend on the orientation of the
route, the minimum over both orientations is taken:

Q(x) = min{Q1(x),Q2(x)} (4.6)

where Qδ(x) denotes the expected cost of recourse for orientation δ = 1, 2. Let
F δ(ω) be the set of fail-proved nodes for scenario ω and orientation δ. Then
one has to solve for each scenario and orientation δ = 1, 2 a traveling salesman
problem with node set F δ(ω).
Thus, to determine the compensation costs for the risk neutral case one has

to solve the following decomposable integer program:

Model 4.2.2. Recourse Costs

Q(x) = min
y,δ=1,2

∑
ω∈Ω

πω
∑
i<j

cijyij(ω) (4.7)

n∑
j=1

y0j(ω) = 2, ω ∈ Ω (4.8)

∑
i<k

yik(ω) +
∑
j>k

ykj(ω) = 2, k ∈ F δ(ω), ω ∈ Ω (4.9)

∑
(i,j)∈S

yij(ω) ≤ |S| − 1, S ⊂ F δ(ω), |S| ≥ 2, ω ∈ Ω (4.10)

y = yij ∈ {0, 1} (4.11)

Of course, the above problem could be solved from one single minimization,
however it is more reasonable to solve each single scenario problem for each
orientation individually.
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4.2.1. Deterministic Equivalent

Formulating the deterministic equivalent is not straight forward. Including the
compensation cost Q(x) in terms of decision variables in the masterproblem,
one has to deal with the determination of an (optimal) route and identification
of the failure nodes simultaneously.

Model 4.2.3. Deterministic Equivalent

min
∑

(i,j)∈E
cijxij +

∑
ω∈Ω

πω
∑

(i,j)∈E
cijy

ω
ij (4.12)

s.t.
n∑
j=1

x0j = 1,
n∑
j=1

xj0 = 1, (4.13)

n∑
j=1

xij = 1, i ∈ V/{0} (4.14)

n∑
j=1

yω0j ≤ 1,
n∑
j=1

yωj0 ≤ 1, (4.15)

F ω
i (

n∑
j=1

yωij − 1) = 0, i ∈ V/{0}, ω ∈ Ω (4.16)

n∑
j=1

xij =
n∑
j=1

xji, i ∈ V (4.17)

n∑
j=1

yωij =
n∑
j=1

yωji, i ∈ V (4.18)

∑
j∈V

P ω
ij −

∑
j∈V

P ω
ji = pi(ω), i ∈ V/{0}, ω ∈ Ω (4.19)

∑
j∈V

Dji −
∑
j∈V

Dij = di, i ∈ V/{0} (4.20)

P ω
ij +Dij ≤ Qxij + (pi(ω)− di)F ω

i , (i, j) ∈ E, ω ∈ Ω (4.21)

(pi(ω)− di)F ω
i ≥ 0, i ∈ V/{0}, ω ∈ Ω (4.22)∑

(i,j)∈Sω
yωij ≤ |Sω| − 1, Sω ⊂ {i|F ω

i = 1}, 2 ≤ |Sω| ≤ n− 1, ω ∈ Ω (4.23)

P ω
ij , Dij ≥ 0, (i, j) ∈ E, ω ∈ Ω (4.24)

xij, y
ω
ij, F

ω
i ∈ {0, 1}, (i, j) ∈ E, ω ∈ Ω (4.25)
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4.2.2. Risk Averse Strategies

Concerning risk averse routing strategies, one tries to capture the variability
of the random variable and hedge against fluctuations of extreme events that
equalize themselves in the mean. The Mean-Risk Models presented in section
(2.2) introduced for the EP and EE are taken. The objective function of
model (4.2.2) is extended by QEP (x) or by QEE(x) as defined below. Further,
additional constraints (4.27) and (4.30) are imposed, respectively.

Excess Probability:

QEP (x) = ρ
∑
ω∈Ω

πωΘω (4.26)

routeCost+ recCostω −M ·Θω ≤ η, ∀ω ∈ Ω (4.27)

Θω ∈ {0, 1} (4.28)

Expected Excess:

QEE(x) = ρ
∑
ω∈Ω

πωνω (4.29)

routeCost+ recCostω − νω ≤ η, ∀ω ∈ Ω (4.30)

νω ∈ R (4.31)

To illustrate how routes may change, when concerning different risk measures
and routing strategies, lets have a look at the following example. Given a
vehicle with capacity 25, 7 customers, and three different scenarios. Delivery
and pickup amounts, as well as customer‘s coordinates are depicted in table
4.1.
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πω 0 1 2 3 4 5 6 7
x-coord 30 70 80 70 90 40 0 10
y-coord 20 90 70 70 100 20 0 10
di 0 5 5 5 5 5 5 5

scenario 1 0.9 0 5 5 5 5 5 5 10
scenario 2 0.05 0 1 1 6 1 10 5 1
scenario 3 0.05 0 10 15 1 6 1 1 1

Table 4.1.: Customer Data

Solutions for the different stochastic models are depicted in figures 4.2, 4.3,
4.4, 4.5, and 4.6. For the Mean-Risk Models three different values for the
constant ρ have been considered, η was set to the optimal value of the expected
value model, i.e. η = E[f(x, ω)].
For the EP model the big M was set to 380. One obtains the route 0-6-7-1-

4-2-3-5-0 with optimal value 293.

depot
route

1

23

4

5

6

7

Figure 4.2.: Solution for Expected Value Model

Now, for all Mean-Risk Models η is set to 293. Concerning different values
for ρ, optimal routes and its corresponding objective value concerning different
values for ρ are depicted in table 4.2.
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depot
route

1

23

4

5

6

7

Figure 4.3.: Solution for Risk Model: Excess Probability; ρ = 1, 10

depot
route

1

23

4

5

6

7

Figure 4.4.: Solution for Risk Model: Excess Probability; ρ = 100

depot
route

1

23

4

5

6

7

Figure 4.5.: Solution for Risk Model: Expected Excess; ρ = 1
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EP EE
ρ route obj route obj
1 0-6-7-1-4-2-3-5-0 293 0-6-7-1-4-2-3-5-0 303
10 0-6-7-1-4-2-3-5-0 294 0-1-4-3-2-5-6-7-0 357
100 0-7-6-5-3-2-4-1-0 299 0-1-4-3-2-5-6-7-0 882

Table 4.2.: Solutions for Mean-Risk Models

depot
route

1

23

4

5

6

7

Figure 4.6.: Solution for Risk Model: Expected Excess; ρ = 10, 100

4.3. Solution Framework: Integer L-Shaped
Algorithm

To solve the problem described in section 4.2 by means of the Integer L-
Shaped method the Current Problem 4.3.1 is defined by relaxing the integrality
and subtour elimination constraints. Further, the Q(x) term of the objective
function is replaced by Θ which is set to be greater or equal L, where L is set
to 0, for a start.
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Model 4.3.1. Current Problem

min
∑
i<j

cijxij + Θ (4.32)

s.t.
n∑
j=1

x0j = 2 (4.33)

∑
i<k

xik +
∑
j>k

xkj = 2, k = 1, ..., n (4.34)

Θ ≥ L (4.35)

0 ≤ xij ≤ 1, 0 ≤ i < j ≤ n (4.36)

The algorithm starts with solving the above problem 4.3.1. During the solu-
tion procedure first feasibility cuts according to subtour elimination constraints
are added. If no more violated subtour elimination constraints could be found,
for fractional solutions a lower bound on the recourse cost is determined and an
additional cut is added using LBFs. To compute a lower bound on the cost of
recourse for fractional solutions the concept of partial routes is applied. Next,
one checks for violated integrality constraints and branches whenever they are
found. If the solution is integer the expected recourse cost is determined and
an optimality cut of the form (3.41) is added.

4.3.1. Partial Routes

The concept of partial routes was originally introduced by Hjorring and Holt
in [34]. They define a partial route as a sequence of customers interconnected
by integer arcs as well as an integer arc connected to the depot, followed by
an unsequenced set of customers, and finished with a chain of customers again
interconnected with integer arcs and also linked with an integer arc to the
depot.

40



Singel-VRP with Simultaneous Delivery and Stochastic Pickup

Definition 4.3.2. Given a set N = {1, ..., n} of customers. A Partial Route
(PR) is a sequence

(S, U, T ),

where S, T, and U are disjunctive sets with S∪T ∪U = N and arcs connecting
customers in S = (0, i1, ..., is) and T = (it, ..., in, 0) are integer, whilst cus-
tomers in U = {is+1, .., it−1} are unsequenced, i.e. arcs connecting S and U,
and U and T are fractional, respectively.

Figure 4.7.: Partial Route

In [36] this concept was generalized by Jabali, Rei, Gendreau, and Laporte.
They wanted to take advantage of structural parts in the unsequenced set U .
To exploit possible sequenced parts in U , they define a general partial route
as follows.

Definition 4.3.3. Given a set N = {1, ..., n} of customers. A General Partial
Route (GPR) is a sequence

(0, S1, U1, S2, U2, ..., Sk−1, Uk−1, Sk, 0),

where all Si and Uj are disjunctive with
k⋃
i=1

Si
k−1⋃
j=1

Uj = N and all customers in

Si := (i1, ..., is) are interconnected by integer arcs, whilst customers in Ui :=
{i1, .., it} are unsequenced and connected to sets Si by fractional arcs.

Note that S1 and Sk and also S and T for the partial routes might be empty.
i.e. there exist no integer arcs from the depot.
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Figure 4.8.: General Partial Route

4.3.2. Lower Bounding Functionals

To improve the efficiency of the Integer L-Shaped method lower bounding
functionals are commonly used to tighten the linear relaxation of the current
subproblem. Lower bounding functionals are employed to provide information
not only of integer solutions, but also of fractional solutions.

The construction of the lower bounding functional Wh(x) for each partial
route h is adapted from Jabali, Rei, Gendreau and Laporte [36], where vehi-
cle routing with stochastic demands is considered. They define the functional
Wh(x) for the case of multiple vehicles. Further, they tested three different
aggregation strategies including the concept of partial routes originally pro-
posed by Hjorring and Holt [34] and their defined general partial routes. In
the present thesis their approach is followed for the single vehicle case and for
the two mentioned aggregation strategies based on partial routes and general
partial routes. According to their formula, Wh(x) then reads:

Wh(x) =
∑

(0,j)∈S
x0j +

∑
(i,j)∈S,i6=0

3xij +
∑
j∈U

x0j +
∑
i∈U

xi0

+
∑

i,j∈U,i,j 6=0
3xij +

∑
(i,j)∈T,j 6=0

3xij +
∑

(i,0)∈T
xi0 (4.37)

−(3|A|+ |D|) + 1

where |A| is the number of arcs not connected to the depot and |D| is the
number of arcs connected to the depot. Constructing an LBF out of a par-
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tial route h given a solution x, only those variables xij are taken into account
which corresponding value given by the solution x is strictly positive. Since
each edge is represented by one variable, the term edge and variable are used
synonymously. The coefficients of all edges containing the depot are equal to
1 while all other edges have a coefficient of 3. The number of counted arcs is
subtracted by itself (3|A|+ |D|) and 1 is added, such that Wh(x) equals 1. For
a detailed description of all parts of formula (4.37) see [36].

Given a solution x satisfying (4.33), (4.34), (4.36) and, containing a PR h,
a valid inequality for the single vehicle case is given by:

Θ ≥ L+ (Θh − L)Wh(x), (4.38)

where Θh is a lower bound on the cost of recourse for PR h. In the next
section it is described how to compute Θh using different aggregation strategies.
Inequality (4.38) reduces to Θ ≥ Θh, if Wh(x′) = 1. This is the case, whenever
PR h is compatible with a PR h′, where x′ satisfies (4.33), (4.34), (4.36), and
contains h′. Route compatibility is attained if all customer vertices are ordered
in h′ as in h. Otherwise Wh(x) ≤ 0 and the cost of recourse is bounded below
by the general lower bound L.

4.3.3. Computation of Lower Bounds on Q(x)

This section provides the computation of a lower bound on the cost of recourse
using the concept of PR introduced by Hjorring and Holt [34]. In what follows
their definition of PRs is used. Given a PR h := (0, i1, ..., is, ..., ie, .., in, 0),
where the customers S := (i1, ..., is) and T := (ie, .., in) are specified, whilst
customers U := {is+1, .., ie−1} are unsequenced. A lower bound on the cost of
recourse is determined as follows. First, for both orientations δ = 1, 2 and each
scenario ω = 1, .., S the set of fail-proved nodes F δ(ω) is identified. For se-
quenced customers those nodes can be identified exactly. For the unstructured
vertex set U , only a maximum of one fail-proved node is taken into account,
which is obviously a lower bound. Let resCap := D −∑n

i=1 di be the residual
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capacity, which is left in the vehicle, before starting a determined tour and i0
referring to the index of the depot. Further, let (S, U, T ) be orientation 1, then
the fail-proved nodes F 1(ω) are identified as follows:

Subroutine 4.3.4. Identifying Fail-Proved Nodes

S = (i1, ..., is) :
resω(i0) = resCap

for j = 1, ..., s
resω(ij) = resω(ij−1) + dij − pij(ω)
• if resω(ij) < 0
set resω(ij) = 0 FAILURE at customer ij, store customer ij in
F 1(ω)
• if(j = s)
set resω(S) = resω(is)

END for
U = {is+1, .., ie−1} :

if resω(S) +
k∑
l=1

dil −
k∑
l=1

pil(ω) < 0 then there must be a FAILURE in
the unstructured vertex set;
all customers having dil − pil(ω) < 0, l = 1, ...k form a cluster
clusterω(U), that is:

clusterω(U) = {ij|dil − pil(ω) < 0, l = 1, ...k} (4.39)

and set resω(U) = 0

else there exists a sequence of customers such that all pickups can be
made without a FAILURE
set resω(U) = resω(Si−1) +

k∑
l=1

dil −
k∑
l=1

pil(ω)
END if

T = (ie, ..., in) :
resω(ie−1) = resω(U)
for j = e, ..., n

resω(ij) = resω(ij−1) + dij − pij(ω)
• if resω(ij) < 0

44



Singel-VRP with Simultaneous Delivery and Stochastic Pickup

set resω(ij) = 0 FAILURE at customer ij, store customer ij in
F 1(ω)

END for

Let T−1 := (in, ..., ie) and S−1 := (is, ..., i1), then the fail-proved nodes F 2(ω)
for orientation 2 are identified with subroutine 4.3.4 according to the sequence
(T−1, U, S−1).
Computing the lower bound Θh is done in two different ways. Either ar-

tificial nodes are imposed for clusters clusterω(U) and a TSP is solved on a
modified graph or a GTSP is solved for each scenario. The procedures are
described in detail below.

An artificial node, indexed n + 1, for clusterω(U) is created and added to
F 1(ω), ω = 1, ..., S. The TSP which is solved for each scenario and orientation
is defined on a graph Gω = (F 1(ω), Eω), with edge set Eω = {(i, j) : i, j ∈
F 1(ω), i < j}. Further, the distances between the nodes are defined as:

cij(ω) =

cij if j 6= n+ 1,

min_dist(i, clusterω(U)) if j = n+ 1,

where min_dist(i, clusterω(U)) is the minimum distance from the node set
clusterω(U) to node i, that is for fixed node i:

min_dist(i, clusterω(U)) = min{cij : j ∈ clusterω(U)}.

A lower bound on the cost of recourse for a given PR h is then given by:

Θh = min{
S∑
ω=1

πωT
1(ω),

S∑
ω=1

πωT
2(ω)}, (4.40)

where T δ(ω) denotes the optimal value of the TSP defined on the graph Gω

and orientation δ = 1, 2.
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The clusters for solving the GTSP are defined as follows:

• for each fail-proved node in F δ(ω) its own cluster Cs(ω), s = 1, ..., |F δ(ω)|
is created, i.e. each cluster Cs(ω) consists only of one node

• clusterω(U) is added to the cluster set of the GTSP

We end up with |F δ(ω)|+1 different clusters. The distances between customers
are taken from the initial problem. A lower bound on the cost of recourse for
a given PR h is then given by:

Θh = min{
S∑
ω=1

πωG
1(ω),

S∑
ω=1

πωG
2(ω)}, (4.41)

where Gδ(ω) denotes the optimal value of the GTSP defined for the clusters
Cs(ω) and clusterω(U) and orientation δ = 1, 2.

Concerning a GPR, one tries to exploit the set clusterω(U) by identifying
further sequences connected by integer arcs, in the sense depicted in figure 4.8.
Subroutine 4.3.4 is modified, such that it provides for clusters clusterω(Ui)
for each unstructured set Ui. Artificial nodes for the TSP are created for
each cluster clusterω(Ui). For the GTSP approach all clusters clusterω(Ui)
are added to the cluster set.

4.3.4. Global Lower Bounds

The computation of a global lower bound for the cost of recourse, is mainly
dependent on the sequencing of the customers. Prior to the solution process,
lower bounds on the expected cost of recourse are determined, when fixing
one customer i, i = 1, ..., n that is visited first or last. More specifically, one
generates n additional cuts constructed from PRs that consist of one chain
containing only node i and one unstructured part consisting of nodes N/{0, i}.
First/Last Fixing Inequalities:

Θ ≥
∑
ω∈Ω

πωRω(i)x0i, ∀i ∈ N\{0} (4.42)
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where Rω(i) = min{R1
ω(i), R2

ω(i)} and Rδ
ω(i) are the compensation costs of

scenario ω visiting customer i is visited first (δ = 1) or last (δ = 2). We entitle
cuts (4.42) F-Cuts.
A global lower bound L is obtained by taking the minimum over i ∈ N\{0}

of Rω(i):
L := min

i∈N/{0}

∑
ω∈Ω

πωRω(i) (4.43)
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5. Computational Experiments

5.1. Implementation Details

The Integer L-Shaped algorithm was coded on a C++ environment with CPLEX
12.6. Problems were solved on a computer with 126 GB of RAM using one
2.6-GHz Dual-Core AMD Opteron(tm) processor, and operating under Linux
Ubuntu 10.04.4 LTS. The separation procedure of the subtour elimination con-
straints was performed using the CVRPSEP package of Lysgaard, Letchford
and Eglese [48].

5.2. Computational Results

To assess the performance of the algorithm several sets of randomly generated
scenarios were formed. The instances are based on the Solomon benchmark
problems [68]. For instances with 10, 15, 20, and 50 customers demands as
well as the geographical data are taken from the Solomon clustered (c-type),
random (r-type), and mixed (rc-type) instances.

For the 3 graph types we created 3 different groups of pickup data, where
either all or 50% of the customers have stochastic pickup demands. First, the
delivery demands were shuffled to generate the pickup amounts. Second, the
pickup demands were generated by multiplying the delivery demands with a
uniformly distributed deviation factor of 20% and 70%. Third, the delivery
demands have been perturbed by a normal distributed random variable with
expected value µ = 1 truncated at 0 with a standard deviation of σ = 0.2 and
σ = 0.7. Random pickup amounts pi(ω) for each customer i ∈ N/{0} and

49



Computational Experiments

scenario ω ∈ Ω are calculated as follows:

pi(ω) = µ(ω) · di, (5.1)

where µ(ω) is a uniformly or normally distributed random variable and di are
the delivery demands taken from the Solomon benchmark instances. The case
where only 50% of the customers have stochastic pickup demands is considered
for the instances with a deviation factor or coefficient of variation of 70%, only.

The probabilities for each scenario were created randomly with the C++
function srand48() using time as seed. For each customer size, instances with
10, 30, 50, and 100 scenarios were built, such that we end up with 336 instances.
The computation time limit was set to 5 hours.

5.2.1. Risk Neutral Model

For the risk neutral case, we tested 4 different algorithmic features, named
C_PR, C_PR+GTSP, C_GPR, and C_GPR+GTSP. In all implementations
F-Cuts presented in section 4.3.4 are used. For C_PR and C_GPR the con-
struction of an artificial node is implemented and PRs or GPRs are used,
respectively. In C_PR+GTSP and C_GPR+GTSP the computation of a
GTSP is deployed and PRs or GPRs are used, respectively.

The experimental results for the risk neutral model are summarized in tables
5.1 - 5.7. To avoid overloading the text we display the average over the number
of customers and scenarios and refer to the appendix A for the detailed and
complete tables. Although the averaged results represent the typical situa-
tion, there are outliers as well. Column one is referred to the code-type and
column two displays the graph-type. In column three the average gap at the
root node is depicted. Column four denotes the average CPU time over the
solved as well as over the unsolved instances1. Columns five to eight display

1An instance is considered “unsolved” if no solution has been found after a CPU time of
18000 seconds.
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the average number of subtour elimination constraints, the average number of
cuts gained from LBFs, the average number of GPRs, and the average number
of optimality cuts, respectively. The gaps are reported in the ninth column,
which concern the average of unsolved instances and solved instances having
a 0.00% gap. The last column shows the number of solved instances.

For the benefit of the reader, the immediate text to come is structured
into the paragraphs: Implementations, Generated Cuts, Graph Types, and
Distributions.

Implementations Regarding the 4 different implementations the C_PR+GTSP
performs the best. Using C_PR+GTSP solves the most instances, produces
the smallest gaps, and also has the least CPU time, except for the shuffled
data. In the test, we observed that extending PRs into GPRs did not lead
to the advantages, one might expect due to enriched structure. Therefore,
it was not worth it to spend additional computation time to generate GPRs
from PRs. For the 10- and 15- customers instances the number of GPRs can
be neglected. Only starting from customer size 20 a few GPRs can be found
(see Appendix A tables A.1-A.21). In comparison to the number of LBFs,
the number of GPRs are insignificant, which explains the very small influence
regarding the gaps. Combining GPRs and the GTSP even produces inferior
results in some problem settings.

Generated Cuts Pertaining to the generated cuts, the average number of cuts
gained form LBFs is always lower than the average number of optimality cuts.
Surprisingly, the C_PR+GTSP implementation has created on average the
largest number of cuts gained from LBFs, except for the uniformly distributed
instances with 100% stochastic customers and 70% deviation. Due to the
fact, that creating an artificial node instead of solving a GTSP is less time
consuming, one might have anticipated, that C_PR would create the largest
number. Moreover, as expected, implementations using GPRs produce less
cuts than the ones with PRs in all settings.
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Table 5.1.: Computational results on instances with shuffled delivery demand

code graph-type root CPU (sec) Sub LBF GPR OptCut gap solved

C_PR

clustered 7.02% 5112.74 178 2436 - 2319 3.37% 12/16
random 5.49% 4532.31 179 1068 - 1212 0.74% 12/16
mixed 12.50% 9629.86 222 6049 - 6774 6.03% 8/16

overall-avrg 8.34% 6424.97 193 3184 - 3435 3.38% 32/48

C_PR+GTSP

clustered 7.02% 5129.87 181 2482 - 2335 3.30% 12/16
random 5.49% 4525.18 190 1128 - 1242 0.71% 12/16
mixed 12.50% 9569.18 225 6248 - 7097 5.76% 8/16

overall-avrg 8.34% 6408.08 199 3286 - 3558 3.26% 32/48

C_GPR

clustered 7.02% 4997.41 176 2150 14 2413 3.34% 12/16
random 5.49% 4537.12 188 1012 4 1261 0.73% 12/16
mixed 12.50% 9622.09 221 4345 21 5337 5.93% 8/16

overall-avrg 8.34% 6385.54 575 2502 13 3004 3.33% 32/48

C_GPR+GTSP

clustered 7.02% 5119.95 178 2098 12 2418 3.37% 12/16
random 5.49% 4541.53 197 1261 7 1561 0.65% 12/16
mixed 12.50% 9621.39 228 4860 23 6035 6.05% 8/16

overall-avrg 8.34% 6427.62 201 2740 14 3338 3.36% 32/48

Table 5.2.: Computational results on instances with 100% random customers,
normally distributed pickup demand, and σ = 0.2

code graph-type root CPU (sec) Sub LBF GPR OptCut gap solved

C_PR

clustered 3.87% 9045.28 169 3531 - 3074 2.05% 4/8
random 2.94% 9000.12 304 1852 - 2247 1.05% 4/8
mixed 4.07% 13526.70 178 6119 - 6017 2.26% 2/8

overall-avrg 3.63% 10524.04 217 3834 - 3779 1.79% 10/24

C_PR+GTSP

clustered 3.87% 9039.46 157 3871 - 3210 1.98% 4/8
random 2.94% 6773.92 256 1561 - 1807 0.82% 5/8
mixed 4.07% 13530.89 184 9358 - 9848 1.75% 2/8

overall-avrg 3.63% 9781.42 199 4930 - 4955 1.52% 11/24

C_GPR

clustered 3.87% 9054.55 164 3310 17 3062 2.04% 4/8
random 3.28% 9000.22 318 2148 10 2698 0.99% 4/8
mixed 3.98% 13555.15 169 5129 18 5264 2.21% 2/8

overall-avrg 3.71% 10536.64 217 3529 15 3675 1.75% 10/24

C_GPR+GTSP

clustered 3.87% 9066.02 164 3469 23 3268 2.03% 4/8
random 3.28% 9000.18 317 2142 8 2663 0.99% 4/8
mixed 3.98% 13539.84 170 5388 18 5488 2.19% 2/8

overall-avrg 3.71% 10535.35 217 3666 16 3806 1.74% 10/24

Graph Types Comparing computational results for all graph types, imple-
mentations and data situations, see tables 5.1 - 5.7, yields the conclusion that
our algorithm, with negligible exceptions, performed best at the random graph
instances. That means, reached optimality fastest and if not, terminated with
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smallest gaps. For the clustered and mixed types the performance fluctuates.
The clustered instances show better results for the shuffled and the 100%
stochastic customer data, whereas the mixed type performs better for the 50%
stochastic customer data.

Distributions When comparing the different distributions, the instances with
uniformly distributed pickup demands and 20% deviation are the easiest ones.
Further, the results create the impression that instances with normally dis-
tributed demands are more difficult to solve than instances with uniformly
distributed demands. Concerning the tendency by increasing the deviation
factor the complexity and intricacy grow.

Table 5.3.: Computational results on instances with 50% random customers,
normally distributed pickup demand, and σ = 0.7

code graph-type root CPU (sec) Sub LBF GPR OptCut gap solved

C_PR

clustered 11.66% 10676.80 356 5274 - 6819 7.11% 8/16
random 6.30% 7265.42 360 2886 - 2905 2.47% 10/16
mixed 10.52% 12429.95 241 6759 - 7635 5.40% 5/16

overall-avrg 9.49% 10124.06 319 4973 - 5786 4.99% 23/48

C_PR+GTSP

clustered 11.66% 10214.85 322 4973 - 6217 5.68% 8/16
random 6.30% 7302.67 364 3060 - 2949 2.28% 10/16
mixed 10.52% 12381.63 224 7139 - 7259 4.25% 5/16

overall-avrg 9.49% 9966.38 303 5057 - 5475 4.07% 23/48

C_GPR

clustered 11.29% 10727.02 345 4243 2 5600 7.16% 7/16
random 6.07% 7051.33 355 2346 5 2504 2.45% 10/16
mixed 9.88% 12392.09 225 5125 3 5757 5.22% 5/16

overall-avrg 9.08% 10056.81 308 3905 3 4620 4.94% 22/48

C_GPR+GTSP

clustered 11.29% 11344.74 328 4001 2 5074 7.26% 6/16
random 6.07% 7073.23 353 2206 3 2449 2.47% 10/16
mixed 9.88% 12391.81 222 4843 5 5284 5.27% 5/16

overall-avrg 9.08% 10269.93 301 3683 3 4269 5.00% 21/48

Out of the 336 instances 209 could be solved to optimality. Our algorithm is
able to solve almost all 10 customer instances, except for the clustered graph
type concerning the 100% stochastic customer data and normally distribution
with σ = 0.7.
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Table 5.4.: Computational results on instances with 100% random customers,
normally distributed pickup demand, and σ = 0.7

code graph-type root CPU (sec) Sub LBF GPR OptCut gap solved

C_PR

clustered 13.84% 12623.12 396 5536 - 5654 7.84% 5/16
random 12.38% 9565.61 519 3443 - 4418 5.36% 8/16
mixed 15.78% 13516.76 310 6095 - 6950 10.39% 4/16

overall-avrg 14.00% 11901.83 408 5025 - 5674 7.86% 17/48

C_PR+GTSP

clustered 13.84% 11598.31 361 5474 - 7652 6.60% 6/16
random 12.38% 9399.21 493 3546 - 4464 4.70% 8/16
mixed 15.78% 12602.65 262 6459 - 7013 7.56% 5/16

overall-avrg 14.00% 11200.06 372 5160 - 6376 6.29% 19/48

C_GPR

clustered 13.55% 11636.36 373 5084 4 6987 7.35% 6/16
random 11.92% 9323.25 519 3785 3 5079 5.07% 8/16
mixed 15.10% 13503.19 309 6266 6 7089 9.32% 4/16

overall-avrg 13.52% 11487.60 400 5045 4 6385 7.25% 18/48

C_GPR+GTSP

clustered 13.55% 11625.96 346 4524 5 6137 7.46% 6/16
random 11.92% 9321.15 493 3370 2 4402 5.12% 8/16
mixed 15.10% 13503.42 298 4914 2 5518 9.48% 4/16

overall-avrg 13.52% 11483.51 379 4269 3 5352 7.35% 18/48

Table 5.5.: Computational results on instances with 100% random customers,
uniformly distributed pickup demand, and 20% deviation

code graph-type root CPU (sec) Sub LBF GPR OptCut gap solved

C_PR

clustered 0.28% 1110.91 34 945 - 458 0.00% 8/8
random 0.01% 0.42 11 0 - 3 0.00% 8/8
mixed 1.30% 527.47 44 1561 - 1073 0.00% 8/8

overall-avrg 0.53% 546.27 30 836 - 511 0.00% 24/24

C_PR+GTSP

clustered 0.28% 539.41 34 943 - 458 0.00% 8/8
random 0.01% 0.32 11 0 - 1 0.00% 8/8
mixed 1.30% 566.77 43 1606 - 1072 0.00% 8/8

overall-avrg 0.53% 368.83 30 850 - 510 0.00% 24/24

C_GPR

clustered 0.28% 886.38 34 807 2 459 0.00% 8/8
random 0.01% 0.38 11 0 0 1 0.00% 8/8
mixed 1.29% 1024.66 40 1269 0 1003 0.00% 8/8

overall-avrg 0.53% 637.14 28 692 1 488 0.00% 24/24

C_GPR+GTSP

clustered 0.28% 864.44 34 798 2 458 0.00% 8/8
random 0.01% 0.33 11 0 0 1 0.00% 8/8
mixed 1.29% 954.07 41 1295 0 1003 0.00% 8/8

overall-avrg 0.53% 606.28 29 697 1 487 0.00% 24/24
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Table 5.6.: Computational results on instances with 50% random customers,
uniformly distributed pickup demand, and 70% deviation

code graph-type root CPU (sec) Sub LBF GPR OptCut gap solved

C_PR

clustered 7.35% 7459.27 213 3387 - 3222 4.09% 10/16
random 3.92% 4807.68 271 1275 - 1462 2.23% 12/16
mixed 6.62% 10448.56 193 6043 - 5693 3.96% 8/16

overall-avrg 5.96% 7571.84 226 3568 - 3459 3.43% 30/48

C_PR+GTSP

clustered 7.35% 7154.61 220 3931 - 3738 3.59% 10/16
random 3.92% 4706.09 260 1540 - 1716 1.86% 12/16
mixed 6.62% 10124.42 175 6433 - 6255 2.91% 8/16

overall-avrg 5.96% 7328.37 218 3968 - 3903 2.79% 30/48

C_GPR

clustered 7.09% 7883.33 207 2872 2 3035 4.15% 9/16
random 3.94% 4730.48 283 1289 3 1523 2.19% 12/16
mixed 6.45% 10446.85 185 4380 5 4266 3.95% 7/16

overall-avrg 5.82% 7686.88 225 2847 3 2112 3.43% 28/48

C_GPR+GTSP

clustered 7.09% 7884.74 210 2900 2 3086 4.21% 9/16
random 3.94% 4728.51 271 1272 2 1510 2.19% 12/16
mixed 6.45% 9878.27 184 4860 5 4682 3.89% 8/16

overall-avrg 5.68% 7497.17 222 3011 3 3093 3.43% 29/48

Table 5.7.: Computational results on instances with 100% random customers,
uniformly distributed pickup demand, and 70% deviation

code graph-type root CPU (sec) Sub LBF GPR OptCut gap solved

C_PR

clustered 11.03% 9805.65 337 5048 - 6233 5.77% 8/16
random 6.41% 6716.80 326 2439 - 2866 1.97% 11/16
mixed 11.55% 13500.16 253 7508 - 8105 6.90% 4/16

overall-avrg 9.66% 10007.54 305 4998 - 5735 4.88% 23/48

C_PR+GTSP

clustered 11.03% 9651.59 306 5095 - 5868 4.68% 8/16
random 6.41% 6608.45 323 2626 - 2741 1.65% 11/16
mixed 11.55% 11615.08 214 6849 - 6899 4.52% 6/16

overall-avrg 9.66% 9291.71 281 4857 - 5169 3.62% 25/48

C_GPR

clustered 10.93% 9697.77 310 4189 5 5179 5.80% 8/16
random 6.17% 6862.17 330 2031 3 2742 2.01% 10/16
mixed 10.96% 13500.24 238 5598 4 5805 6.86% 4/16

overall-avrg 9.35% 10020.29 293 2989 4 4575 4.89% 22/48

C_GPR+GTSP

clustered 10.93% 9743.69 311 3942 5 5148 5.78% 8/16
random 6.17% 6899.98 305 1692 2 2296 2.01% 10/16
mixed 10.96% 13500.39 239 6204 5 6754 6.70% 4/16

overall-avrg 9.35% 10048.02 285 3946 4 4733 4.83% 22/48
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Due to the fact, that lower bounds are only determined by solving the linear
relaxation of the master problem, these bounds are very weak. Optimal or
present best solutions are found at the very beginning of the solution process,
consequently most of the solution time is spent to tighten the lower bound. By
finding a way to produce better lower bounds, the algorithm could be speed
up enormously.

5.2.2. Averaged Value versus Averaged Data (Model)

In this section best available solutions gained from the Expected Value Model
(EV-Model) are compared to solutions determined by taking the Expected
Value (EV) of the random data. The results are summarized in tables 5.8 and
5.9. Column one is referred to the graph-type and column two displays the
number of customers. In column three to five the average relative additional
costs when inserting the solution gained from the model with random data
replaced by their EV are reported, we refer to this model as EV of Expected
Solution (EEV). That is, let x̄ = argmin{f(x,E[ω])}, further let cEEV =
E[f(x̄, ω)] and cEV = min{E[f(x, ω)]}, then the relative additional costs are
determined as follows:

(cEEV − cEV ) ∗ 100/cEEV .

Only the instances with 100% stochastic pickup data and 100 scenarios are
taken into account.

Comparing the 3 different instance classes, one gains the highest savings
when using the EV-Model for the shuffled instances (see table 5.8). Although
the average of instances with normally distributed pickup demands produce
higher savings compared to the uniformly distributed instances, for the clus-
tered and mixed graph types it is vice versa.

Table 5.9 shows the average savings with respect to the number of customers.
When increasing the number of customers the average savings over the graph
types increase for the shuffled instances, but concerning the uniformly and nor-
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mally distributed pickup data the average savings decrease for the 50-customer
instances.

Table 5.8.: Comparison of savings for instances with up to 50 customers
uniformly normally

graph-type n shuffled 70% 0.7

clustered

10 4.9335% 1.3216% 0.1806%
15 4.8820% 0.1278% 0.0000%
20 6.2440% 4.1569% 3.5948%
50 4.3700% 1.0574% 1.5713%

avrg 3.0607% 1.6659% 1.3367%

random

10 4.1481% 0.0000% 0.0000%
15 0.4309% 0.0000% 0.0000%
20 5.0140% 0.0000% 0.7963%
50 9.5358% 1.0456% 0.0000%

avrg 4.8762% 0.2614% 0.1991%

mixed

10 0.3635% 0.0000% 0.4524%
15 7.2658% 1.0861% 1.7682%
20 9.8969% 4.0045% 5.6803%
50 5.1982% 1.5826% 1.8742%

avrg 5.6811% 1.6683% 2.4438%
overall-avrg 4.5393% 1.1985% 1.3265%

Table 5.9.: Average savings concerning the number of customers
uniformly normally

n shuffled 70% 0.7
10 3.1484% 0.4405% 0.2110%
15 3.4272% 0.4046% 0.5894%
20 5.1429% 2.7205% 3.3571%
50 6.4388% 1.2285% 1.1485%

5.2.3. Risk Averse Models

This section deals with the computational results for the risk averse models,
more specifically for the Excess Probability (EP) and Expected Excess (EE)
risk measures introduced in section 2.2 and adapted to the VRPSDSP in sec-
tion 4.2.2.

We tested the risk averse models for the instances with 100 scenarios and
100% stochastic customer data, only. Most of the calculated instances could
not be solved to optimality and the resulting gaps are very poor, especially for
the EE-Model (for details see appendix A tables A.22 - A.25). When reporting
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computational results, we find it convenient to refer to best available solutions,
only. This concerns solutions for which we are able to prove optimality and
solutions, where we could not, but at least were able to provide lower bounds
for the optimal value.

Table 5.10.: Solutions determined by EP-Model compared to solutions of EV-
Model, EEV, and EE-Model with ρ = 50.

route-costs recourse-costs
data-type n graph-type EP EV EEV EE EP EV EEV EE

shuffle

10
clustered 58.49 ±0 -3.20 +1.69 2.86 ±0 +15.29 +47.14
random 182.06 ±0 -9.02 ±0 7.42 ±0 +32.65 ±0
mixed 141.37 ±0 -3.59 ±0 0.00 ±0 +6.89 ±0

15
clustered 103.19 ±0 -0.57 +0.65 0.94 ±0 +7.33 +49.06
random 237.27 -6.99 -8.11 +3.53 7.15 +9.06 +12.36 +42.85
mixed 159.08 ±0 -4.54 ±0 9.20 ±0 +28.44 ±0

20
clustered 127.85 -3.84 -3.84 +0.23 8.86 +4.01 +4.01 +44.05
random 268.05 ±0 -5.71 ±0 2.77 ±0 +37.81 ±0
mixed 225.97 ±0 -5.16 ±0 34.34 ±0 +49.07 ±0

50
clustered 255.37 -13.27 -14.94 -12.81 41.27 +27.76 +45.83 +27.88
random 472.49 ±0 -7.18 -2.19 28.05 ±0 +79.87 +9.62
mixed 411.81 ±0 -37.97 +22.32 60.95 ±0 +70.97 -15.98

norm0.7

10
clustered 55.42 ±0 -0.13 -0.13 50.84 ±0 +0.65 +0.65
random 173.04 ±0 ±0 ±0 58.55 ±0 ±0 ±0
mixed 138.06 ±0 -0.28 ±0 35.21 ±0 +37.60 ±0

15
clustered 102.62 ±0 ±0 +4.39 19.12 ±0 ±0 -2.27
random 230.28 ±0 ±0 +7.95 61.21 ±0 ±0 -4.75
mixed 157.75 +0.24 -4.12 +0.40 67.92 -0.02 +7.11 +1.41

20
clustered 127.86 -3.84 -4.21 +2.77 68.48 +5.59 +4.12 +3.60
random 262.34 +1.67 -1.12 +1.67 91.63 -1.09 +2.63 -1.09
mixed 221.93 +2.63 +6.27 +2.69 121.63 +8.00 -0.45 +4.34

50
clustered 244.63 +0.25 -4.60 +0.01 92.43 +15.41 +24.56 +12.50
random 462.03 ±0 ±0 +9.09 111.62 ±0 ±0 +1.18
mixed 376.73 +2.66 -6.80 +0.01 141.19 +7.00 +10.77 +6.15

uni70%

10
clustered 57.06 ±0 -1.77 ±0 30.39 ±0 +5.95 ±0
random 173.04 ±0 ±0 +9.02 75.76 ±0 ±0 -3.53
mixed 137.78 ±0 ±0 +4.58 55.71 ±0 ±0 -0.65

15
clustered 104.39 ±0 -1.77 +4.63 6.71 ±0 +1.91 -1.82
random 229.16 ±0 ±0 ±0 62.26 ±0 ±0 ±0
mixed 154.54 +2.38 -0.91 +4.19 85.74 +0.04 +2.53 -1.23

20
clustered 129.60 +0.35 -5.96 ±0 26.35 +0.87 +6.84 ±0
random 262.34 ±0 ±0 +15.72 80.69 ±0 ±0 -1.78
mixed 220.05 +6.88 -0.65 ±0 75.92 +0.08 +2.21 ±0

50
clustered 241.00 +0.36 -0.98 +1.27 84.54 +4.02 +3.04 +19.21
random 468.74 ±0 -6.71 -2.03 70.36 ±0 +16.15 +7.46
mixed 370.74 +1.11 -0.80 +4.14 119.43 +3.36 +1.89 -2.79

The parameter ρ was set to 50 and 100 and threshold η was chosen to be
the solution of the EV-Model. The results for ρ = 50 are depicted in table
5.10 and table 5.11 present the results for ρ = 100. Solutions determined by
the EP-Model (xEP ) are compared to solutions gained from the EV-Model
(xEV ), the EEV (xEEV ), and the EE-Model (xEE), respectively. In column
four the route costs for xEP (costs(xEP )) are displayed. Columns five to seven
show the difference between (costs(xEP )) and the route costs of the EV-Model
(costs(xEV )), EEV (costs((xEEV )), and the EE-Model (costs((xEE)), respec-
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tively2. Column eight depicts the recourse costs given by xEP (rec(xEP )),
columns nine to eleven display the difference between rec(xEP ) and the re-
course costs given by xEV (rec(xEV )), xEEV (rec(xEEV )), and xEE (rec(xEE)),
respectively.

Table 5.11.: Solutions determined by EP-Model compared to solutions of EV-
Model, EEV, and EE-Model with ρ = 100.

route-costs recourse-costs
data-type n graph-type EP EV EEV EE EP EV EEV EE

shuffle

10
clustered 58.49 ±0 -3.20 +1.69 4.51 ±0 +24.30 +95.49
random 182.06 ±0 -9.02 ±0 11.69 ±0 +48.27 ±0
mixed 141.37 ±0 -3.59 ±0 0.00 ±0 +9.67 ±0

15
clustered 103.19 ±0 -0.57 +0.65 1.48 ±0 +11.36 +98.52
random 237.27 -6.99 -8.11 +3.53 10.84 +13.47 +17.94 +89.16
mixed 159.08 ±0 -4.54 ±0 12.86 ±0 +39.45 ±0

20
clustered 130.52 -6.5 -6.55 -0.52 6.75 +12.45 +14.56 +5.14
random 268.05 ±0 -5.71 ±0 4.09 ±0 +54.56 ±0
mixed 229.60 -3.63 -8.79 -3.63 43.60 +4.67 +70.59 +4.67

50
clustered 257.58 -15.48 -17.15 -4.17 72.05 +29.39 +56.55 +47.01
random 472.49 ±0 -7.18 -2.19 44.88 ±0 +97.27 +10.81
mixed 410.60 -1.65 -36.75 -1.65 85.99 +2.49 +91.31 +2.49

norm0.7

10
clustered 55.42 ±0 -0.13 -0.26 78.84 ±0 +1.03 +1.03
random 173.04 ±0 ±0 ±0 83.45 ±0 ±0 ±0
mixed 138.06 ±0 -0.28 ±0 48.62 ±0 +3.42 ±0

15
clustered 102.62 ±0 ±0 +4.39 28.60 ±0 ±0 -2.98
random 229.16 ±0 ±0 +6.83 88.25 ±0 ±0 -4.40
mixed 157.75 +0.24 -4.12 +0.40 90.50 -0.01 +10.47 +2.48

20
clustered 130.26 -2.27 -2.27 +0.85 91.72 +6.88 +6.88 +9.94
random 262.34 +1.67 ±0 +1.67 116.23 +0.42 ±0 +0.42
mixed 219.42 +5.14 +8.78 +5.20 154.76 +10.01 -3.39 +7.24

50
clustered 244.88 +0.01 -4.86 -3.45 116.92 +1.54 +20.45 +16.59
random 462.03 ±0 ±0 +5.74 137.08 ±0 ±0 +2.49
mixed 375.17 +4.22 -5.24 +5.14 170.41 +6.62 +10.89 +0.81

uni70%

10
clustered 57.06 ±0 -1.77 ±0 47.08 ±0 +9.18 ±0
random 173.04 ±0 ±0 +9.02 125.76 ±0 ±0 -3.53
mixed 137.78 ±0 ±0 +4.58 105.71 ±0 ±0 -0.65

15
clustered 104.39 ±0 -1.77 +4.63 6.70 ±0 +1.92 -1.82
random 229.16 ±0 ±0 +8.60 112.26 ±0 ±0 -0.41
mixed 154.54 +2.38 -0.91 ±0 135.74 +0.04 +2.53 ±0

20
clustered 129.60 +0.35 -5.96 +4.62 26.35 +0.87 +6.84 +1.04
random 262.34 ±0 ±0 +15.72 130.69 ±0 ±0 -1.78
mixed 220.05 +6.88 -0.65 ±0 75.92 +0.08 +2.21 ±0

50
clustered 241.00 +0.36 -0.98 +0.72 114.74 +5.74 +3.95 +40.07
random 468.74 ±0 -6.71 -2.03 90.65 ±0 +21.58 +10.46
mixed 370.74 +1.11 -0.80 +5.77 169.43 +3.35 +1.88 -3.64

EP versus EV Comparing xEP and xEV 22 of 36 routes are identical. Among
the routes that differ, those belonging to shuffled instances, the resulting
route costs are lower (costs(xEV ) < costs(xEP )) and the recourse costs are
higher (rec(xEV ) > rec(xEP )). This may be due to the fact, that the sce-
nario solutions for the shuffled instances from the EV-Model are subject to
fluctuations. The fluctuations could be caused by large deviations of the

2The differences are calculated as: costs(xEV ) − costs(xEP ), costs(xEEV ) − costs(xEP ),
and costs(xEE)− costs(xEP ), respectively.
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pickup demands concerning different scenarios. For the normally and uni-
formly distributed instances, route costs as well as recourse costs are higher
(costs(xEV ) > costs(xEP ) and rec(xEV ) > rec(xEP )), however there are some
exceptions.

EP versus EEV Regarding solutions gained from EEV xEEV , for each data
setting, route costs are lower and recourse costs are higher compared to solu-
tions determined by the EP-Model xEP , i.e. costs(xEEV ) < costs(xEP ) and
rec(xEEV ) > rec(xEP ), except for one instance. For the mixed 20-customer
instance with normally distributed data an exception occurred. Here, just
the opposite could be observed: costs(xEEV ) > costs(xEP ) and rec(xEEV ) <
rec(xEP ). However, this can be explained by the remaining gap. The instance
was not solved to optimality and the best solution found upon termination was
taken. Inserting xEP in the EEV, one gains lower costs than for xEEV . Due
to the fact, that for the EEV only one scenario with the EV of the random
data is considered, it was to be expected that costs(xEEV ) < costs(xEP ) and
rec(xEEV ) > rec(xEP ).

EP versus EE Solutions gained from the EE-Model seem to be more pes-
simistic. That means most route costs and recourse costs are higher compared
to solutions calculated by the EP-Model. However, one has to take into ac-
count, that most instances still have a quite large gap (see appendix A table
A.24).

ρ = 50 versus ρ = 100 Changing parameter ρ from 50 to 100, does not have
a major influence on the solutions, i.e. only a few routes change. However,
of course, the recourse costs increase. Comparing solutions determined by the
different models, one observes the same correlation for ρ = 50 and ρ = 100.

Cross-Check Exemplary, we would like to examine the clustered 50-customer
instance with shuffled demand in detail. Figure 5.1 shows the quantitative
difference in the cost distribution over the ensemble of pickup scenarios for the
different risk averse measures.
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Figure 5.1.: 50-customer instance: Objective values for each of the hundred
scenarios are rendered with bar charts for the solutions given by
the EV-Model, EP-Model, and EE-Model (from top to bottom)
for η = 278.7135 and ρ = 50.

For the EV-Model a weighted sum over all single-scenario objectives is min-
imized. That means scenarios with high objective values can be compensated
by scenarios with low objective values. For the EP-Model it only matters
whether the objective value exceeds η or not. Therefore, the arising flexibility
given by scenarios that do not exceed η can be used to decrease objective val-
ues of scenarios above η, such that the number of scenarios exceeding η can
be reduced from 61 to 37. However, scenarios exceeding η are expected to be
”lost” anyway and a growth of objective values can be observed. Regarding
the EE-Model, also the amount of excess over η is taken into account. Hence,
decreasing objective values of scenarios above η gains more attention.
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The value of η has a main impact on finding optimal and even feasible solu-
tions. In our calculations η is chosen, such that feasible and optimal solutions
can be found easily. Taking evenly small probabilities, like in our present
example (see figure 5.2), the selection of the treated scenario exerts little in-
fluence. However, choosing strongly asymmetric probabilities, i.e. there are
outliers with high probabilities, would result in more fluctuating solutions.

Figure 5.2.: 50-customer instance: Probabilities together with objective val-
ues are plotted for each of the hundred scenarios and different
risk measures; EV-Model, EP-Model, and EE-Model (from top to
bottom) for η = 278.7135 and ρ = 50.

Figure 5.3 shows another example, here the random 15-customer instance
with shuffled demand is taken. In figure 5.4 probabilities and objective values
for each of the hundred scenarios are displayed. Opposing EP-Model to EV-
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Model the number of scenarios exceeding η can be reduced from 15 to 6. For
the EE-Model another observation can be made. We get a solution with no
variability, that means for each scenario we gain the same objective value.

Figure 5.3.: 15-customer instance: Objective values for each of the hundred
scenarios are rendered with bar charts for the solutions given by
the EV-Model, EP-Model, and EE-Model (from top to bottom)
for η = 238.3877 and ρ = 50.

The calculated route for the EE-Model serves all customers without a failure.
The recourse costs only arise, because the route costs exceed η. Hence, the
recourse costs are independent of the random variables:
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Eω[f(x, ω)] + ρ · Eω[max{f(x, ω)− η, 0}] (5.2)

=cTx+
∑
ω∈Ω

πωq
Tyω︸ ︷︷ ︸

=0

+ρ ·max{cTx+
∑
ω∈Ω

πωq
Tyω︸ ︷︷ ︸

=0

−η, 0} (5.3)

=cTx+ ρ ·max{cTx− η︸ ︷︷ ︸
>0

, 0} (5.4)

=cTx+ ρ · (cTx− η) (5.5)

Figure 5.4.: 15-customer instance: Probabilities together with objective val-
ues are plotted for each of the hundred scenarios and different
risk measures; EV-Model, EP-Model, and EE-Model (from top to
bottom) for η = 238.3877 and ρ = 50.
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For the random 15-customer instance with shuffled demand and 100 scenar-
ios, we finally report the objective values and recourse costs of the different
routes calculated by the stochastic models EV-Model, EP-Model, and EE-
Model, respectively, in table 5.12. Although, there exists a route serving all
customers without a failure for all realizations of the pickup data, for the EV-
Model and the EP-Model this route is not optimal. Due to the fact, that
recourse caused by scenarios with small probabilities increase the objective
value only little for the EV-Model and also for EP-Model, if η is not exceeded,
it could be beneficial to accept routes that have failures for some realizations.

Table 5.12.: Cross-Check for random 15-customer instance with shuffled de-
mand and 100 scenarios; ρ = 50

EP-Model EV-Model EE-Model
objective recourse-costs objective recourse-costs objective recourse-costs

EP-solution 244.429399 7.154578 240.741112 3.466291 411.380994 174.106174
EV-solution 246.489517 16.212642 238.387741 8.110866 578.21894 347.942065
EE-solution 290.796112 50.00 240.796105 0.00 361.216358 120.420254
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6. Conclusion

We have developed an exact algorithm for the vehicle routing problem with
simultaneous delivery and stochastic pickup. The problem was formulated
within the framework of stochastic integer programming and solved by means
of the Integer L-Shaped algorithm. To our knowledge, this is the first two-
stage stochastic two index formulation for this type of problem. Furthermore,
the recourse policy which is performed for the problem examined, has never
been considered.
Our results show that the proposed algorithm determines promising routes

at the beginning of the solution procedure. However, the challenge in solving
certain instances to optimality resides in tightening the lower bound that is
produced in the search process. Especially for the risk averse implementation
the resulting gaps are very high and could only be seen as a first step towards
combining mean risk models and SVRPs. However, the effect of the different
risk measures becomes apparent (see figures 5.1 and 5.3).
The generalized definition of partial routes, which is provided in [36] by

Jabali, Rei, Gendreau and Laporte does not give a competitive edge, unfortu-
nately. However, the use of a generalized traveling salesman problem instead
of creating an artificial node for computing a lower bound on the cost of re-
course presented section 4.3.2 has a beneficial effect. For future research the
construction of disaggregated cuts, which are used for example by Côté, Potvin
and, Gendreau in [16] will be of great interest.
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A. Appendix

Tables A.1 - A.21 display the detailed computational results for the 4 differ-
ent implementations. In column three the gap at the root node is depicted.
Column four denotes the CPU time. Columns five to eight display the num-
ber of subtour elimination constraints, the number of cuts gained from lower
bounding functionals, the number of GPRs, and the number of optimality cuts,
respectively. The gaps are reported in the last column.

For instances with uniformly and normally distributed pickup demand and
a deviation factor of 20% and σ = 0.2 the 10 and 15 customer instances are
solved under a tenth of a second, therefore only results for the 20 and 50 cus-
tomer instances are reported.

Tables A.22 - A.25 show the results for the EP-Model and the EE-Model
with ρ = 50 and ρ = 100, respectively. The risk averse models were tested
for the instances with 100 scenarios and 100% stochastic customer data, only.
Column three denotes the number of customers, column four the gap at the
root node, and column five the CPU time. Columns six to nine display the
number of subtour elimination constraints, the number of cuts gained from
lower bounding functionals, the number of GPRs, and the number of optimality
cuts, respectively. The gaps are reported in the last column.
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Table A.1.: Computational results on instances with shuffled delivery demand
using F-Cuts, PR, and artificial nodes.

graph-type n scen root CPU (sec) Sub LBF OptCut gap

clustered

10

10 0.00% 0.10 5 1 8 0.00%
30 8.00% 23.29 38 155 211 0.00%
50 8.11% 73.79 54 314 413 0.00%
100 7.10% 76.30 59 278 392 0.00%

avrg 5.80% 43.37 39 187 256 0.00%

15

10 0.13% 0.18 15 5 12 0.00%
30 0.13% 0.27 15 5 8 0.00%
50 0.30% 0.46 14 6 10 0.00%
100 3.08% 1.17 19 19 25 0.00%

avrg 0.91% 0.52 16 9 14 0.00%

20

10 0.00% 0.07 13 0 1 0.00%
30 3.90% 1007.00 121 2785 2604 0.00%
50 2.08% 60.86 35 242 197 0.00%
100 4.93% 8560.36 283 9146 10524 0.00%

avrg 2.73% 2407.07 113 3043 3332 0.00%

50

10 19.21% 18000 532 6516 5635 13.64%
30 19.10% 18000 538 6505 5669 13.35%
50 18.54% 18000 559 6731 5961 13.72%
100 17.73% 18000 548 6273 5437 13.27%

avrg 18.64% 18000 544 6506 5676 13.50%
clustered-avrg 7.02% 5112.74 178 2436 2319 3.37%

random

10

10 1.93% 0.28 8 4 9 0.00%
30 1.11% 0.33 6 2 7 0.00%
50 0.00% 0.35 5 1 5 0.00%
100 1.21% 0.56 4 2 7 0.00%

avrg 1.06% 0.38 6 2 7 0.00%

15

10 1.08% 0.28 6 5 5 0.00%
30 0.00% 0.27 3 0 2 0.00%
50 0.00% 0.60 5 1 3 0.00%
100 1.93% 2.03 13 11 17 0.00%

avrg 0.75% 0.79 7 4 7 0.00%

20

10 5.79% 467.13 115 888 824 0.00%
30 3.26% 13.63 34 76 93 0.00%
50 6.47% 17.66 35 96 88 0.00%
100 4.98% 13.87 27 56 62 0.00%

avrg 5.12% 128.07 53 279 267 0.00%

50

10 13.07% 18000 562 4054 5102 1.64%
30 15.05% 18000 686 3734 4623 3.51%
50 16.49% 18000 654 4227 4457 3.43%
100 15.43% 18000 695 3937 4091 3.21%

avrg 15.01% 18000 649 3988 4568 2.95%
random-avrg 5.49% 4532.31 179 1068 1212 0.74%

mixed

10

10 0.00% 0.02 5 0 1 0.00%
30 0.48% 0.25 6 6 8 0.00%
50 0.00% 0.18 6 0 5 0.00%
100 1.76% 0.85 8 20 32 0.00%

avrg 0.56% 0.33 6 6 12 0.00%

15

10 3.67% 3.56 20 64 63 0.00%
30 14.52% 3309.13 102 5213 5672 0.00%
50 17.07% 2477.7 92 4592 4675 0.00%
100 2.88% 4286.01 95 6265 6842 0.00%

avrg 12.04% 2519.10 77 4034 4313 0.00%

20

10 12.00% 18000 227 13782 16809 4.78%
30 18.34% 18000 289 14170 17524 7.99%
50 16.56% 18000 268 14295 17593 7.18%
100 17.85% 18000 246 13241 17579 7.57%

avrg 16.19% 18000 258 13872 17376 6.88%

50

10 17.83% 18000 524 6185 5439 15.55%
30 21.92% 18000 580 6351 5460 17.42%
50 23.09% 18000 558 6209 5485 18.44%
100 21.96% 18000 528 6385 5189 17.54%

avrg 21.20% 18000 548 6282 5393 17.24%
mixed-avrg 12.50% 9629.86 222 6049 6774 6.03%

overall-avrg
solved: 32/48 8.34% 6424.97 193 3184 3435 3.38%
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Table A.2.: Computational results on instances with shuffled delivery demand
using F-Cuts, PR, and GTSP.

graph-type n scen root CPU (sec) Sub LBF OptCut gap

clustered

10

10 0.00% 0.10 5 1 7 0.00%
30 8.00% 20.94 38 155 210 0.00%
50 8.11% 67.96 54 314 413 0.00%
100 7.10% 57.21 59 280 392 0.00%

avrg 5.80% 36.55 39 188 256 0.00%

15

10 0.13% 0.18 15 5 10 0.00%
30 0.13% 0.24 15 5 7 0.00%
50 0.30% 0.40 14 6 8 0.00%
100 3.08% 1.17 19 19 25 0.00%

avrg 0.91% 0.50 16 9 12 0.00%

20

10 0.00% 0.05 13 0 0 0.00%
30 3.90% 1067.94 122 2745 2604 0.00%
50 2.08% 46.36 35 242 197 0.00%
100 4.93% 8815.33 278 9242 10522 0.00%

avrg 2.73% 2482.42 112 3057 3331 0.00%

50

10 19.21% 18000 580 6696 5871 13.60%
30 19.10% 18000 535 6697 5614 12.47%
50 18.54% 18000 572 6588 6021 13.45%
100 17.73% 18000 538 6719 5459 13.24%

avrg 18.64% 18000 556 6675 5741 13.19%
clustered-avrg 7.02% 5129.87 181 2482 2335 3.30%

random

10

10 1.93% 0.22 8 4 9 0.00%
30 1.11% 0.21 6 2 7 0.00%
50 0.00% 0.23 5 1 5 0.00%
100 1.21% 0.37 4 2 7 0.00%

avrg 1.06% 0.26 6 2 7 0.00%

15

10 1.08% 0.19 6 5 5 0.00%
30 0.00% 0.18 3 0 2 0.00%
50 0.00% 0.28 5 1 3 0.00%
100 1.93% 1.50 13 11 17 0.00%

avrg 0.75% 0.54 7 4 7 0.00%

20

10 5.79% 366.58 123 895 809 0.00%
30 3.26% 12.05 36 77 93 0.00%
50 6.47% 12.41 34 93 89 0.00%
100 4.98% 8.58 29 54 56 0.00%

avrg 5.12% 99.91 56 280 262 0.00%

50

10 13.07% 18000 637 4231 5034 2.56%
30 15.05% 18000 672 3869 4838 3.17%
50 16.49% 18000 699 4422 4472 2.50%
100 15.43% 18000 762 4379 4423 3.18%

avrg 15.01% 18000 692 4225 4692 2.85%
random-avrg 5.49% 4525.18 190 1128 1242 0.71%

mixed

10

10 0.00% 0.01 5 0 0 0.00%
30 0.48% 0.21 6 6 8 0.00%
50 0.00% 0.12 6 0 5 0.00%
100 1.76% 0.86 8 23 31 0.00%

avrg 0.56% 0.30 6 7 11 0.00%

15

10 3.67% 2.79 20 64 58 0.00%
30 14.52% 3041.54 102 5251 5667 0.00%
50 17.07% 2342.89 92 4509 4676 0.00%
100 12.88% 3718.42 94 6220 6839 0.00%

avrg 12.04% 2276.41 77 4011 4310 0.00%

20

10 12.00% 18000 182 14529 18089 2.00%
30 18.34% 18000 290 14652 18901 6.92%
50 16.56% 18000 263 14349 18363 7.16%
100 17.85% 18000 277 14685 18856 7.46%

avrg 16.19% 18000 253 14554 18552 5.88%

50

10 17.83% 18000 495 6185 5643 15.18%
30 21.92% 18000 607 6438 5554 18.15%
50 23.09% 18000 579 6391 5487 18.44%
100 21.96% 18000 576 6671 5374 16.91%

avrg 21.20% 18000 564 6421 5514 17.17%
mixed-avrg 12.50% 9569.18 225 6248 7097 5.76%

overall-avrg
solved: 32/48 8.34% 6408.08 199 3286 3558 3.26%
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Table A.3.: Computational results on instances with shuffled delivery demand
using F-Cuts, GPRs, and artificial nodes.

graph-type n scen root CPU (sec) Sub LBF GPR OptCut gap

clustered

10

10 0.00% 0.15 5 1 0 7 0.00%
30 8.00% 17.05 33 110 0 179 0.00%
50 8.11% 84.47 58 170 1 413 0.00%
100 7.10% 69.76 58 186 0 391 0.00%

avrg 5.80% 42.86 38 117 0 248 0.00%

15

10 0.13% 0.25 15 4 0 10 0.00%
30 0.13% 0.35 15 5 0 7 0.00%
50 0.30% 0.52 14 3 0 8 0.00%
100 3.08% 1.20 19 11 0 25 0.00%

avrg 0.91% 0.58 16 6 0 12 0.00%

20

10 0.00% 0.10 13 0 0 0 0.00%
30 3.90% 1143.81 123 2479 0 2605 0.00%
50 2.08% 69.44 39 222 4 197 0.00%
100 4.93% 6571.39 286 7731 5 10466 0.00%

avrg 2.73% 1946.19 115 2608 2 3317 0.00%

50

10 19.21% 18000 550 5661 15 5951 13.63%
30 19.10% 18000 556 5380 87 5913 13.34%
50 18.54% 18000 535 5913 28 5653 13.34%
100 17.73% 18000 501 6527 82 6782 13.18%

avrg 18.64% 18000 536 5870 53 6075 13.37%
clustered-avrg 7.02% 4997.41 176 2150 14 2413 3.34%

random

10

10 1.93% 0.35 8 2 0 9 0.00%
30 1.11% 0.33 6 1 0 7 0.00%
50 0.00% 0.36 5 1 0 5 0.00%
100 1.21% 0.56 4 1 0 7 0.00%

avrg 1.06% 0.40 6 1 0 7 0.00%

15

10 1.08% 0.32 6 2 0 5 0.00%
30 0.00% 0.32 3 0 0 2 0.00%
50 0.00% 0.54 5 1 0 3 0.00%
100 1.93% 2.48 13 4 0 17 0.00%

avrg 0.75% 0.92 7 2 0 7 0.00%

20

10 5.79% 472.93 120 709 3 824 0.00%
30 3.26% 15.46 37 36 2 93 0.00%
50 6.47% 18.48 35 52 2 88 0.00%
100 4.98% 11.77 25 22 0 54 0.00%

avrg 5.12% 129.66 54 205 2 265 0.00%

50

10 13.00% 18000 576 3895 16 5187 1.64%
30 15.05% 18000 686 3777 10 4841 3.45%
50 16.49% 18000 685 3936 19 4657 2.57%
100 15.43% 18000 798 3756 6 4379 4.00%

avrg 15.01% 18000 686 3841 13 4766 2.92%
random-avrg 5.49% 4537.12 188 1012 4 1261 0.73%

mixed

10

10 0.00% 0.01 5 0 0 0 0.00%
30 0.48% 0.18 6 6 1 8 0.00%
50 0.00% 0.18 6 0 0 5 0.00%
100 1.76% 0.85 8 18 0 31 0.00%

avrg 0.56% 0.30 6 6 0 11 0.00%

25

10 3.67% 2.86 19 34 0 58 0.00%
30 14.52% 3032.2 99 4064 6 5675 0.00%
50 17.07% 2390.14 87 3502 6 4671 0.00%
100 12.88% 3809.85 94 5137 6 6836 0.00%

avrg 12.04% 2308.76 75 3184 4 4310 0.00%

20

10 12.00% 18000 230 14424 27 22705 4.55%
30 18.34% 18000 292 13872 20 23459 7.81%
50 16.56% 18000 270 14508 26 22481 7.00%
100 17.85% 18000 284 14153 20 22746 7.32%

avrg 16.19% 18000 269 14239 23 22848 6.67%

50

10 17.83% 18000 542 6625 41 6137 16.17%
30 21.92% 18000 590 5806 46 5465 18.18%
50 23.09% 18000 544 6092 56 5457 15.62%
100 21.96% 18000 528 6338 88 5197 16.15%

avrg 21.20% 18000 551 6215 58 5564 16.53%
mixed-avrg 12.50% 9622.09 221 4345 21 5337 5.93%

overall-avrg
solved: 32/48 8.34% 6385.54 575 2502 13 3004 3.33%
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Table A.4.: Computational results on instances with shuffled delivery demand
using F-Cuts, GPRs, and GTSP.

graph-type n scen root CPU (sec) Sub LBF GPR OptCut gap

clustered

10

10 0.00% 0.09 5 1 0 7 0.00%
30 8.00% 13.88 33 110 0 179 0.00%
50 8.11% 62.87 58 170 1 413 0.00%
100 7.10% 53.59 58 186 0 391 0.00%

avrg 5.80% 32.61 38 117 0 248 0.00%

15

10 0.13% 0.15 15 4 0 10 0.00%
30 0.13% 0.20 15 5 0 7 0.00%
50 0.30% 0.33 14 3 0 8 0.00%
100 3.08% 0.70 19 11 0 25 0.00%

avrg 0.91% 0.34 16 6 0 12 0.00%

20

10 0.00% 0.06 13 0 0 0 0.00%
30 3.90% 971.49 124 2475 0 2605 0.00%
50 2.08% 45.1 39 222 4 197 0.00%
100 4.93% 8770.79 286 7739 5 10530 0.00%

avrg 2.73% 2446.86 116 2609 2 3333 0.00%

50

10 19.21% 18000 560 5682 50 6314 13.62%
30 19.10% 18000 545 5854 67 6162 13.32%
50 18.54% 18000 542 5868 25 5885 13.75%
100 17.73% 18000 527 5231 35 5949 13.24%

avrg 18.64% 18000 544 5659 44 6078 13.48%
clustered-avrg 7.02% 5119.95 178 2098 12 2418 3.37%

random

10

10 1.93% 0.48 8 2 0 9 0.00%
30 1.11% 0.44 6 1 0 7 0.00%
50 0.00% 0.55 5 1 0 5 0.00%
100 1.21% 0.78 4 1 0 7 0.00%

avrg 1.06% 0.56 6 1 0 7 0.00%

15

10 1.08% 0.46 6 2 0 5 0.00%
30 0.00% 0.46 3 0 0 2 0.00%
50 0.00% 0.67 5 1 0 3 0.00%
100 1.93% 2.67 13 4 0 17 0.00%

avrg 0.75% 1.06 7 2 0 7 0.00%

20

10 5.79% 606.05 120 709 3 824 0.00%
30 3.26% 17.55 37 36 2 93 0.00%
50 6.47% 20.67 35 52 2 88 0.00%
100 4.98% 13.76 25 22 0 54 0.00%

avrg 5.12% 164.51 54 205 2 265 0.00%

50

10 13.07% 18000 623 4747 24 6292 1.55%
30 15.05% 18000 772 4860 22 5902 3.36%
50 16.49% 18000 706 5004 51 5952 2.47%
100 15.43% 18000 784 4738 1 5712 3.09%

avrg 15.01% 18000 721 4837 24 5964 2.62%
random-avrg 5.49% 4541.53 197 1261 7 1561 0.65%

mixed

10

10 0.00% 0.03 5 0 0 0 0.00%
30 0.48% 0.38 6 6 1 8 0.00%
50 0.00% 0.28 6 0 0 5 0.00%
100 1.76% 1.49 8 18 0 31 0.00%

avrg 0.56% 0.55 6 6 0 11 0.00%

25

10 3.67% 4.23 19 34 0 58 0.00%
30 14.52% 3129.05 100 4013 6 5672 0.00%
50 17.07% 2567.63 83 3454 6 4671 0.00%
100 12.88% 4239.2 100 5140 6 6836 0.00%

avrg 12.04% 2485.03 76 3160 4 4309 0.00%

20

10 12.00% 18000 205 8758 27 12300 5.05%
30 18.34% 18000 259 9142 22 13644 8.18%
50 16.56% 18000 268 8580 27 12675 7.47%
100 17.85% 18000 265 8177 20 13132 7.77%

avrg 16.19% 18000 249 8664 24 12938 7.12%

50

10 17.83% 18000 556 8018 43 7539 15.93%
30 21.92% 18000 568 7748 56 6845 16.74%
50 23.09% 18000 588 7241 60 6689 17.83%
100 21.96% 18000 609 7429 90 6462 17.78%

avrg 21.20% 18000 580 7609 62 6884 17.07%
mixed-avrg 12.50% 9621.39 228 4860 23 6035 6.05%

overall-avrg
solved: 32/48 8.34% 6427.62 201 2740 14 3338 3.36%
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Table A.5.: Computational results on instances with 100% random customers,
normally distributed pickup demand, and σ = 0.2 using F-Cuts,
PRs, and GTSP.

graph-type n scen root CPU (sec) Sub LBF OptCut gap

clustered

20

10 0.00% 0.01 13 0 0 0.00%
30 3.07% 3.63 27 69 71 0.00%
50 3.04% 192.89 59 719 513 0.00%
100 2.41% 119.17 51 520 340 0.00%

avrg 2.13% 78.92 38 327 231 0.00%

50

10 4.60% 18000 201 7069 5646 2.12%
30 3.49% 18000 212 7268 6182 2.41%
50 6.10% 18000 322 6872 5801 4.80%
100 8.23% 18000 368 8447 7127 6.51%

avrg 5.61% 18000 276 7414 6189 3.96%
clustered-avrg 3.87% 9039.46 157 3871 3210 1.98%

random

20

10 0.00% 0.06 6 0 0 0.00%
30 0.25% 0.21 6 4 6 0.00%
50 0.54% 0.27 8 6 10 0.00%
100 0.69% 0.52 7 6 9 0.00%

avrg 0.37% 0.27 7 4 6 0.00%

50

10 5.63% 190.29 108 151 144 0.00%
30 5.51% 18000 637 4042 4985 2.27%
50 6.67% 18000 638 4414 4679 2.03%
100 4.26% 18000 634 3866 4623 2.25%

avrg 5.52% 13547.57 504 3118 3608 1.64%
random-avrg 2.94% 6773.92 256 1561 1807 0.82%

mixed

20

10 1.97% 215.84 37 741 437 0.00%
30 5.44% 18000 235 18700 19731 1.51%
50 7.05% 18000 239 17466 22523 2.46%
100 8.29% 18000 278 16114 22839 4.96%

avrg 5.69% 13553.96 197 13255 16382 2.23%

50

10 0.50% 31.29 43 162 46 0.00%
30 1.86% 18000 142 7899 3553 0.27%
50 2.97% 18000 220 6882 4830 1.71%
100 4.51% 18000 280 6897 4827 3.11%

avrg 2.46% 13507.82 171 5460 3314 1.27%
mixed-avrg 4.07% 13530.89 184 9358 9848 1.75%

overall-avrg
solved: 10/24 3.63% 9781.42 199 4930 4955 1.52%

74



Appendix

Table A.6.: Computational results on instances with 100% random customers,
normally distributed pickup demand, and σ = 0.2 using F-Cuts,
GPRs, and GTSP.

graph-type n scen root CPU (sec) Sub LBF GPR OptCut gap

clustered

20

10 0.00% 0.02 13 0 0 0 0.00%
30 3.07% 4.86 27 72 11 71 0.00%
50 3.04% 358.42 61 633 3 513 0.00%
100 2.46% 164.89 51 502 7 340 0.00%

avrg 2.14% 132.05 38 302 5 231 0.00%

50

10 4.60% 18000 219 6379 54 6035 2.10%
30 3.49% 18000 217 6459 74 6215 2.41%
50 6.10% 18000 337 6677 21 6302 4.76%
100 8.23% 18000 386 7033 12 6670 6.97%

avrg 5.61% 18000 290 6637 40 6306 4.06%
clustered-avrg 3.87% 9066.02 164 3469 23 3268 2.03%

random

20

10 0.00% 0.09 6 0 0 0 0.00%
30 0.25% 0.33 6 4 0 6 0.00%
50 0.54% 0.44 8 6 0 10 0.00%
100 0.73% 0.62 8 7 1 10 0.00%

avrg 0.38% 0.37 7 4 0 6 0.00%

50

10 6.38% 18000 529 4350 15 5251 0.89%
30 5.51% 18000 709 4509 38 5506 2.69%
50 6.67% 18000 636 4261 9 5109 1.98%
100 6.20% 18000 635 4001 3 5410 2.36%

avrg 6.19% 18000 627 4280 16 5319 1.98%
random-avrg 3.28% 9000.18 317 2142 8 2663 0.99%

mixed

20

10 1.99% 298.3 39 657 0 437 0.00%
30 5.37% 18000 189 6570 3 9461 2.59%
50 7.03% 18000 210 6876 1 9242 4.30%
100 7.74% 18000 230 7103 10 9173 5.09%

avrg 5.53% 13574.58 167 5302 4 7078 3.00%

50

10 0.44% 20.44 45 148 23 45 0.00%
30 1.79% 18000 174 7617 48 4927 0.78%
50 2.99% 18000 205 7239 37 5148 1.69%
100 4.48% 18000 271 6890 19 5472 3.08%

avrg 2.43% 13505.11 174 5474 32 3898 1.39%
mixed-avrg 3.98% 13539.84 170 5388 18 5488 2.19%

overall-avrg
solved: 10/24 3.71% 10535.35 217 3666 16 3806 1.74%
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Table A.7.: Computational results on instances with 50% random customers,
normally distributed pickup demand, and σ = 0.7 using F-Cuts,
PRs, and artificial nodes.

graph-type n scen root CPU (sec) Sub LBF OptCut gap

clustered

10

10 8.25% 138 57 403 324 0.00%
30 7.07% 76.65 44 325 231 0.00%
50 7.78% 100.17 55 342 299 0.00%
100 7.95% 341.69 88 582 659 0.00%

avrg 7.76% 164.13 61 413 378 0.00%

15

10 4.33% 492.83 73 741 811 0.00%
30 5.57% 9305.47 324 8730 9555 0.00%
50 4.20% 1440.23 134 2229 2311 0.00%
100 5.93% 14933.8 394 9985 13016 0.00%

avrg 5.01% 6543.08 231 5421 6423 0.00%

20

10 12.12% 18000 537 8746 15725 9.22%
30 12.90% 18000 547 10016 16046 9.15%
50 13.41% 18000 502 9976 15285 10.13%
100 12.64% 18000 496 9483 12883 9.30%

avrg 12.77% 18000 520 9555 14985 9.45%

50

10 17.62% 18000 590 6612 5867 16.61%
30 23.50% 18000 697 5532 5402 21.24%
50 21.68% 18000 596 5221 5363 19.44%
100 21.58% 18000 560 5467 5330 18.60%

avrg 21.09% 18000 611 5708 5490 18.97%
clustered-avrg 11.66% 10676.80 356 5274 6819 7.11%

random

10

10 2.53% 0.23 2 3 3 0.00%
30 0.00% 0.05 0 0 1 0.00%
50 0.00% 0.03 0 0 1 0.00%
100 0.00% 0.09 0 0 1 0.00%

avrg 0.63% 0.10 1 1 2 0.00%

15

10 4.75% 8.27 26 51 55 0.00%
30 5.54% 21.52 43 99 85 0.00%
50 6.23% 53.04 52 153 125 0.00%
100 6.06% 52.47 48 124 115 0.00%

avrg 5.64% 33.83 42 107 95 0.00%

20

10 3.80% 50.56 45 128 111 0.00%
30 8.12% 8060.48 478 8018 6149 0.00%
50 9.51% 18000 634 10976 10263 1.91%
100 9.29% 18000 673 11006 10419 1.88%

avrg 7.68% 11027.76 458 7532 6736 0.95%

50

10 10.12% 18000 905 4175 4887 7.64%
30 11.16% 18000 943 4204 4713 7.87%
50 12.24% 18000 1045 3825 4904 9.96%
100 11.43% 18000 864 3415 4649 10.25%

avrg 11.24% 18000 939 3905 4788 8.93%
random-avrg 6.30% 7265.42 360 2886 2905 2.47%

mixed

10

10 0.00% 0.04 5 0 1 0.00%
30 1.62% 1.66 10 23 25 0.00%
50 1.77% 1.4 8 19 24 0.00%
100 1.74% 1.35 8 19 25 0.00%

avrg 1.28% 1.11 8 15 19 0.00%

15

10 10.69% 874.68 58 1832 1047 0.00%
30 16.47% 18000 226 12994 15802 4.51%
50 16.28% 18000 236 12804 15905 5.26%
100 14.12% 18000 201 12637 14473 4.70%

avrg 14.39% 13718.67 180 10067 11807 4.82%

20

10 15.12% 18000 270 10994 14141 3.62%
30 13.45% 18000 319 10892 13926 7.88%
50 14.13% 18000 348 10589 14019 9.07%
100 10.69% 18000 324 9808 11951 8.15%

avrg 13.35% 18000 315 10571 13509 7.45%

50

10 7.59% 18000 267 6484 5403 3.28%
30 14.11% 18000 569 5997 5183 12.53%
50 14.54% 18000 498 6519 4913 12.26%
100 16.07% 18000 516 6537 5318 14.05%

avrg 13.08% 18000 462 6384 5204 10.53%
mixed-avrg 10.52% 12429.95 241 6759 7635 5.40%

overall-avrg
solved: 23/48 9.49% 10124.06 319 4973 5786 4.99%
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Table A.8.: Computational results on instances with 50% random customers,
normally distributed pickup demand, and σ = 0.7 using F-Cuts,
PRs, and GTSP.

graph-type n scen root CPU (sec) Sub LBF OptCut gap

clustered

10

10 8.25% 3.04 14 36 37 0.00%
30 7.07% 65.08 44 338 231 0.00%
50 7.78% 84.19 56 343 299 0.00%
100 7.95% 303.39 88 581 659 0.00%

avrg 7.76% 113.92 50 324 306 0.00%

15

10 4.33% 536.89 73 741 811 0.00%
30 5.57% 1138.29 109 1641 1391 0.00%
50 4.20% 1403.53 137 2221 2310 0.00%
100 5.93% 15903.16 386 10123 13018 0.00%

avrg 5.01% 4745.47 176 3682 4382 0.00%

20

10 12.12% 18000 430 9096 13908 3.18%
30 12.90% 18000 531 9763 15900 7.85%
50 13.41% 18000 472 8982 13988 8.14%
100 12.64% 18000 501 9602 12845 7.41%

avrg 12.77% 18000 484 9361 14160 6.65%

50

10 17.62% 18000 490 7060 6098 12.18%
30 23.50% 18000 619 6277 6054 17.78%
50 21.68% 18000 623 6306 5885 16.87%
100 21.58% 18000 577 6458 6045 17.49%

avrg 21.09% 18000 577 6525 6020 16.08%
clustered-avrg 11.66% 10214.85 322 4973 6217 5.68%

random

10

10 2.53% 0.32 2 3 3 0.00%
30 0.00% 0.08 0 0 1 0.00%
50 0.00% 0.08 0 0 1 0.00%
100 0.00% 0.08 0 0 1 0.00%

avrg 0.63% 0.14 0 1 2 0.00%

15

10 4.75% 9.4 26 51 55 0.00%
30 5.54% 23.67 45 97 85 0.00%
50 6.23% 52.35 51 160 125 0.00%
100 6.06% 44.94 49 123 115 0.00%

avrg 5.64% 32.59 43 108 95 0.00%

20

10 3.80% 65.33 50 132 111 0.00%
30 8.12% 8646.42 479 7947 6149 0.00%
50 9.51% 18000 598 11393 10256 1.93%
100 9.29% 18000 639 11019 10222 1.92%

avrg 7.68% 11177.94 442 7623 6684 0.96%

50

10 10.12% 18000 900 4755 5067 6.10%
30 11.16% 18000 875 4630 5123 7.83%
50 12.24% 18000 1068 4305 4894 8.95%
100 11.43% 18000 1036 4337 4975 9.71%

avrg 11.24% 18000 970 4507 5015 8.15%
random-avrg 6.30% 7302.67 364 3060 2949 2.28%

mixed

10

10 0.00% 0.04 5 0 1 0.00%
30 1.62% 1.46 10 22 24 0.00%
50 1.77% 1.32 8 19 24 0.00%
100 1.74% 1.81 8 19 25 0.00%

avrg 1.28% 1.16 8 15 18 0.00%

15

10 10.69% 101.5 29 288 213 0.00%
30 16.47% 18000 203 15155 10015 0.51%
50 16.28% 18000 198 13064 14995 3.41%
100 14.12% 18000 199 14519 16675 4.52%

avrg 14.39% 13525.38 157 10756 10474 2.11%

20

10 15.12% 18000 209 11361 12382 1.78%
30 13.45% 18000 259 10931 13584 5.38%
50 14.13% 18000 318 10585 12963 6.01%
100 10.69% 18000 301 10435 13063 7.29%

avrg 13.35% 18000 272 10828 12998 5.12%

50

10 7.59% 18000 253 7671 5709 2.52%
30 14.11% 18000 468 6455 5600 11.70%
50 14.54% 18000 540 7034 5455 11.58%
100 16.07% 18000 577 6673 5420 13.28%

avrg 13.08% 18000 460 6958 5546 9.77%
mixed-avrg 10.52% 12381.63 224 7139 7259 4.25%

overall-avrg
solved: 23/48 9.49% 9966.38 303 5057 5475 4.07%
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Table A.9.: Computational results on instances with 50% random customers,
normally distributed pickup demand, and σ = 0.7 using F-Cuts,
GPRs, and artificial nodes.

graph-type n scen root CPU (sec) Sub LBF GPR OptCut gap

clustered

10

10 6.31% 25.45 39 160 0 148 0.00%
30 8.19% 47.37 50 262 0 248 0.00%
50 6.48% 38.00 50 258 0 218 0.00%
100 7.52% 127.1 67 449 0 431 0.00%

avrg 7.12% 59.48 52 282 0 261 0.00%

15

10 0.97% 0.25 12 1 0 3 0.00%
30 5.57% 8304.82 322 7897 0 9532 0.00%
50 4.20% 1089.40 133 1939 1 2310 0.00%
100 5.94% 18000 342 7984 0 10463 0.50%

avrg 4.17% 6848.62 202 4455 0 5577 0.12%

20

10 12.12% 18000 475 6903 3 11052 9.43%
30 12.88% 18000 511 6332 12 10554 9.44%
50 13.35% 18000 436 7003 2 9934 10.36%
100 12.57% 18000 475 5194 12 10407 9.66%

avrg 12.73% 18000 474 6358 7 10487 9.72%

50

10 17.58% 18000 615 6381 0 6143 16.17%
30 23.36% 18000 705 5551 2 6057 21.17%
50 21.89% 18000 602 5437 2 6015 19.32%
100 21.63% 18000 683 6141 0 6086 18.47%

avrg 21.11% 18000 651 5878 1 6075 18.78%
clustered-avrg 11.29% 10727.02 345 4243 2 5600 7.16%

random

10

10 0.00% 0.05 0 0 0 1 0.00%
30 0.00% 0.03 0 0 0 1 0.00%
50 0.00% 0.03 0 0 0 1 0.00%
100 0.00% 0.03 0 0 0 1 0.00%

avrg 0.00% 0.04 0 0 0 1 0.00%

15

10 4.69% 3.72 35 21 0 47 0.00%
30 5.51% 10.02 38 30 0 80 0.00%
50 6.23% 21.49 43 49 0 109 0.00%
100 6.06% 17.28 39 70 0 98 0.00%

avrg 5.62% 13.13 39 42 0 84 0.00%

20

10 3.74% 38.45 44 102 0 106 0.00%
30 7.94% 4730.12 435 5941 2 4691 0.00%
50 9.25% 18000 555 8083 1 7723 2.14%
100 9.06% 18000 539 7654 0 7430 1.96%

avrg 7.50% 10192.14 393 5445 1 4988 1.02%

50

10 10.13% 18000 880 3997 70 5440 7.59%
30 11.30% 18000 1017 4089 4 4976 7.78%
50 12.20% 18000 1023 4153 6 4646 9.85%
100 11.04% 18000 1027 3347 3 4713 9.94%

avrg 11.17% 18000 987 3896 21 4944 8.79%
random-avrg 6.07% 7051.33 355 2346 5 2504 2.45%

mixed

10

10 0.00% 0.06 5 0 0 3 0.00%
30 1.03% 0.43 6 8 0 11 0.00%
50 1.25% 0.58 8 13 0 12 0.00%
100 0.49% 0.40 7 7 0 9 0.00%

avrg 0.69% 0.37 6 7 0 9 0.00%

15

10 9.67% 272.03 42 697 0 378 0.00%
30 15.60% 18000 204 9485 0 10393 3.23%
50 15.83% 18000 192 8755 0 10824 4.32%
100 14.02% 18000 174 8951 0 9190 3.25%

avrg 13.78% 13568.01 153 6972 0 7696 2.70%

20

10 12.07% 18000 249 6761 4 10334 4.92%
30 12.97% 18000 297 7050 0 9684 8.16%
50 13.12% 18000 290 6708 0 9931 9.29%
100 11.69% 18000 293 6843 0 8668 8.36%

avrg 12.46% 18000 282 6840 1 9654 7.68%

50

10 5.81% 18000 274 6857 21 6048 3.22%
30 14.08% 18000 539 6866 2 5542 12.50%
50 14.48% 18000 506 5986 10 5522 12.24%
100 16.03% 18000 514 7020 10 5566 14.03%

avrg 12.60% 18000 458 6682 11 5670 10.50%
mixed-avrg 9.88% 12392.09 225 5125 3 5757 5.22%

overall-avrg
solved: 22/48 9.08% 10056.81 308 3905 3 4620 4.94%
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Table A.10.: Computational results on instances with 50% random customers,
normally distributed pickup demand, and σ = 0.7 using F-Cuts,
GPRs, and GTSP.

graph-type n scen root CPU (sec) Sub LBF GPR OptCut gap

clustered

10

10 8.19% 60.89 50 262 0 248 0.00%
30 6.31% 33.51 39 160 0 148 0.00%
50 6.48% 51.5 50 258 0 218 0.00%
100 7.52% 154.1 69 455 0 431 0.00%

avrg 7.12% 75.00 52 284 0 261 0.00%

15

10 0.97% 0.4 12 1 0 3 0.00%
30 5.57% 18000 301 7242 0 8184 0.61%
50 4.2% 1215.52 135 1942 1 2310 0.00%
100 5.94% 18000 308 6552 0 8815 1.05%

avrg 4.17% 9303.98 189 3934 0 4828 0.42%

20

10 12.12% 18000 439 5811 3 9042 9.58%
30 12.88% 18000 477 5408 12 8918 9.59%
50 13.35% 18000 481 5971 2 8577 10.52%
100 12.57% 18000 446 4812 11 9029 9.73%

avrg 12.73% 18000 461 5500 7 8892 9.86%

50

10 17.58% 18000 565 6652 0 6123 16.17%
30 23.36% 18000 660 5607 2 6355 21.13%
50 21.89% 18000 599 6291 0 6575 19.28%
100 21.63% 18000 624 6584 0 6200 18.45%

avrg 21.11% 18000 612 6284 0 6313 18.76%
clustered-avrg 11.29% 11344.74 328 4001 2 5074 7.26%

random

10

10 0.00% 0.11 0 0 0 1 0.00%
30 0.00% 0.07 0 0 0 1 0.00%
50 0.00% 0.07 0 0 0 1 0.00%
100 0.00% 0.08 0 0 0 1 0.00%

avrg 0.00% 0.08 0 0 0 1 0.00%

15

10 4.69% 5.71 35 21 0 47 0.00%
30 5.51% 14.68 38 30 0 80 0.00%
50 6.23% 30.25 43 49 0 109 0.00%
100 6.06% 22.4 39 70 0 98 0.00%

avrg 5.62% 18.26 39 42 0 84 0.00%

20

10 3.74% 51.39 44 102 0 106 0.00%
30 7.94% 5046.96 431 5927 3 4696 0.00%
50 9.25% 18000 503 6177 2 6622 2.63%
100 9.06% 18000 498 6448 0 6496 2.36%

avrg 7.50% 10274.59 369 4664 1 4480 1.25%

50

10 10.13% 18000 1010 4111 32 5621 6.97%
30 11.3% 18000 963 4202 7 5288 7.77%
50 12.2% 18000 1031 4679 2 5177 9.85%
100 11.04% 18000 1020 3479 4 4840 9.94%

avrg 11.17% 18000 1006 4118 11 5232 8.63%
random-avrg 6.07% 7073.23 353 2206 3 2449 2.47%

mixed

10

10 0.00% 0.07 5 0 0 3 0.00%
30 1.03% 0.58 6 8 0 11 0.00%
50 1.25% 0.73 8 13 0 12 0.00%
100 0.49% 0.52 7 7 0 9 0.00%

avrg 0.69% 0.47 6 7 0 9 0.00%

15

10 9.67% 267.11 42 696 0 378 0.00%
30 15.6% 18000 181 8086 0 8776 3.38%
50 15.83% 18000 187 7708 0 9144 4.57%
100 14.02% 18000 172 8161 0 8199 3.43%

avrg 13.78% 13566.78 146 6163 0 6624 2.85%

20

10 12.07% 18000 231 6129 7 8957 5.03%
30 12.97% 18000 298 6487 0 8845 8.26%
50 13.12% 18000 300 6324 1 8722 9.37%
100 11.69% 18000 295 6138 0 8297 8.41%

avrg 12.46% 18000 281 6270 2 8705 7.77%

50

10 5.81% 18000 267 6264 24 5400 3.26%
30 14.08% 18000 572 7302 1 5944 12.3%
50 14.48% 18000 476 6961 28 5733 12.21%
100 16.03% 18000 512 7202 26 6106 14.01%

avrg 12.60% 18000 457 6932 20 5796 10.45%
mixed-avrg 9.88% 12391.81 222 4843 5 5284 5.27%

overall-avrg
solved: 21/48 9.08% 10269.93 301 3683 3 4269 5.00%
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Table A.11.: Computational results on instances with 100% random customers,
normally distributed pickup demand, and σ = 0.7 using F-Cuts,
PRs, and artificial nodes.

graph-type n scen root CPU (sec) Sub LBF OptCut gap

clustered

10

10 15.23% 862.35 141 1614 1972 0.00%
30 17.40% 18000 574 8946 18377 2.69%
50 16.03% 18000 512 9030 15096 1.41%
100 18.05% 18000 498 7963 14503 4.12%

avrg 16.68% 13715.59 431 6888 12487 2.06%

15

10 0.00% 0.03 11 0 1 0.00%
30 2.42% 32.65 30 174 160 0.00%
50 2.91% 236.45 56 478 419 0.00%
100 5.44% 2838.41 165 3541 3355 0.00%

avrg 2.69% 776.88 66 1048 984 0.00%

20

10 7.65% 18000 364 10394 10728 1.09%
30 18.24% 18000 530 8562 1225 13.68%
50 17.37% 18000 542 8072 1140 14.51%
100 19.16% 18000 521 7165 1081 16.42%

avrg 15.61% 18000 489 8548 3544 11.43%

50

10 20.14% 18000 591 6227 5923 16.46%
30 19.52% 18000 646 6153 5865 17.42%
50 19.80% 18000 638 5535 5744 18.15%
100 22.04% 18000 522 4720 4879 19.53%

avrg 20.38% 18000 599 5659 5603 17.89%
clustered-avrg 13.84% 12623.12 396 5536 5654 7.84%

random

10

10 4.58 % 0.55 9 11 9 0.00%
30 10.59% 10.71 36 70 78 0.00%
50 10.40% 16.21 40 101 83 0.00%
100 9.57% 12.49 30 75 67 0.00%

avrg 8.79% 9.99 29 64 59 0.00%

15

10 5.34% 1.3 17 21 27 0.00%
30 12.51% 3642.45 377 4029 4823 0.00%
50 11.07% 1381.85 247 2158 2151 0.00%
100 12.12% 3984.25 355 4030 4305 0.00%

avrg 10.26% 2252.46 249 2560 2826 0.00%

20

10 16.74% 18000 692 9146 10788 7.89%
30 18.16% 18000 785 7292 10520 11.76%
50 15.61% 18000 775 6608 9349 9.49%
100 16.68% 18000 720 6320 8680 10.83%

avrg 16.80% 18000 743 7342 9834 9.99%

50

10 13.40% 18000 1055 4151 5579 8.78%
30 13.92% 18000 1099 3883 5150 11.91%
50 12.95% 18000 989 3453 4851 11.82%
100 14.36% 18000 1082 3738 4234 13.25%

avrg 13.66% 18000 1056 3806 4954 11.44%
random-avrg 12.38% 9565.61 519 3443 4418 5.36%

mixed

10

10 2.90% 6.15 15 87 62 0.00%
30 3.86% 28.93 22 153 140 0.00%
50 3.08% 17.51 19 84 97 0.00%
100 5.67% 215.57 45 445 503 0.00%

avrg 3.88% 67.04 25 192 200 0.00%

15

10 12.63% 18000 179 11218 12538 4.05%
30 16.76% 18000 250 9703 12805 8.78%
50 15.18% 18000 212 10337 11606 7.76%
100 17.11% 18000 196 8849 11144 9.14%

avrg 15.42% 18000 209 10027 12023 7.43%

20

10 22.10% 18000 460 8852 11615 17.88%
30 18.99% 18000 409 8234 10263 14.18%
50 19.67% 18000 393 8637 9872 15.67%
100 20.83% 18000 419 8173 9163 17.30%

avrg 20.40% 18000 420 8474 10228 16.26%

50

10 23.94% 18000 560 5591 5718 16.55%
30 25.55% 18000 596 5767 5438 19.17%
50 22.95% 18000 605 5745 5252 18.16%
100 21.25% 18000 572 5637 4979 17.65%

avrg 23.42% 18000 583 5685 5347 17.88%
mixed-avrg 15.78% 13516.76 310 6095 6950 10.39%

overall-avrg
solved: 17/48 14.00% 11901.83 408 5025 5674 7.86%
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Table A.12.: Computational results on instances with 100% random customers,
normally distributed pickup demand, and σ = 0.7 using F-Cuts,
PRs, and GTSP.

graph-type n scen root CPU (sec) Sub LBF OptCut gap

clustered

10

10 15.23% 212.69 69 600 601 0.00%
30 17.40% 18000 545 8642 19580 0.15%
50 16.03% 18000 531 10101 16451 0.95%
100 18.05% 18000 539 9981 18081 3.41%

avrg 16.68% 13553.17 421 7331 13678 1.13%

15

10 0.00% 0.03 11 0 1 0.00%
30 2.42% 38.17 33 173 160 0.00%
50 2.91% 206.64 55 476 419 0.00%
100 5.44% 2386.12 173 3579 3352 0.00%

avrg 2.69% 657.74 68 1057 983 0.00%

20

10 7.65% 2729.31 173 3984 3238 0.00%
30 18.24% 18000 509 9083 12758 9.93%
50 17.37% 18000 471 8368 12368 10.31%
100 19.16% 18000 521 8510 12188 13.61%

avrg 15.61% 14182.33 418 7486 10138 8.46%

50

10 20.14% 18000 543.00 6634.00 5834.00 14.00%
30 19.52% 18000 594 6167 5889 15.87%
50 19.80% 18000 554 5602 5957 18.11%
100 22.04% 18000 460 5678 5548 19.24%

avrg 20.38% 18000 538 6020 5807 16.80%
clustered-avrg 13.84% 11598.31 361 5474 7652 6.60%

random

10

10 4.58% 0.55 9 11 9 0.00%
30 10.59% 9.03 34 72 78 0.00%
50 10.40% 11.00 38 106 83 0.00%
100 9.57% 7.15 30 71 67 0.00%

avrg 8.79% 6.93 28 65 59 0.00%

15

10 5.34% 1.29 17 21 27 0.00%
30 12.51% 2490.29 319 2977 3464 0.00%
50 11.07% 1199.03 239 2179 2152 0.00%
100 12.12% 2668.96 345 3976 4301 0.00%

avrg 10.26% 1589.89 230 2288 2486 0.00%

20

10 16.74% 18000 611 8456 10022 4.59%
30 18.16% 18000 787 7659 10903 10.71%
50 15.61% 18000 810 6937 10617 9.35%
100 16.68% 18000 777 8134 10346 10.20%

avrg 16.80% 18000 746 7796 10472 8.71%

50

10 13.40% 18000 976 4346 5256 4.79%
30 13.92% 18000 921 4102 4904 11.04%
50 12.95% 18000 990 3794 4702 11.25%
100 14.36% 18000 980 3893 4490 13.22%

avrg 13.66% 18000 967 4034 4838 10.07%
random-avrg 12.38% 9399.21 493 3546 4464 4.70%

mixed

10

10 2.90% 0.84 8 11 13 0.00%
30 3.86% 17.69 21 128 116 0.00%
50 3.08% 13.72 19 89 97 0.00%
100 5.67% 145.14 43 442 503 0.00%

avrg 3.88% 44.35 23 168 182 0.00%

15

10 12.63% 3464.93 95 5880 3944 0.00%
30 16.76% 18000 222 10338 13874 6.06%
50 15.18% 18000 191 11830 12779 4.97%
100 17.11% 18000 199 10959 13354 7.33%

avrg 15.42% 14366.23 177 9752 10988 4.59%

20

10 22.10% 18000 276 8991 11433 7.84%
30 18.99% 18000 381 9507 11463 10.65%
50 19.67% 18000 354 10116 11136 10.47%
100 20.83% 18000 375 9579 11198 14.14%

avrg 20.40% 18000 346 9548 11308 10.78%

50

10 23.94% 18000 464 5797 5724 14.05%
30 25.55% 18000 552 6241 5412 13.77%
50 22.95% 18000 486 6889 5662 15.44%
100 21.25% 18000 511 6552 5501 16.28%

avrg 23.42% 18000 503 6370 5575 14.88%
mixed-avrg 15.78% 12602.65 262 6459 7013 7.56%

overall-avrg
solved: 19/48 14.00% 11200.06 372 5160 6376 6.29%
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Table A.13.: Computational results on instances with 100% random customers,
normally distributed pickup demand, and σ = 0.7 using F-Cuts,
GPRs, and artificial nodes.

graph-type n scen root CPU (sec) Sub LBF GPR OptCut gap

clustered

10

10 18.16% 668.12 137 1234 0 1630 0.00%
30 15.96% 18000 490 6724 0 12998 1.27%
50 14.06% 3863.9 314 4772 0 6703 0.00%
100 16.17% 18000 427 6695 0 10628 1.82%

avrg 16.09% 10133.00 342 4856 0 7990 0.77%

15

10 0.00% 0.03 11 0 0 1 0.00%
30 1.58% 13.05 31 128 8 105 0.00%
50 2.59% 128.65 48 414 0 280 0.00%
100 4.21% 1508.07 138 1881 0 1837 0.00%

avrg 2.09% 412.45 57 606 2 556 0.00%

20

10 7.65% 18000 299 7100 24 8410 1.53%
30 18.24% 18000 675 13753 13 22998 13.17%
50 17.15% 18000 480 5924 13 9107 14.48%
100 18.65% 18000 552 5596 5 8689 16.23%

avrg 15.42% 18000 502 8093 14 12301 11.35%

50

10 19.90% 18000 588 7163 0 7852 15.69%
30 20.21% 18000 597 7286 4 7017 16.79%
50 19.65% 18000 587 6369 1 7272 17.62%
100 22.59% 18000 595 6308 0 6264 19.01%

avrg 20.59% 18000 592 6782 1 7101 17.28%
clustered-avrg 13.55% 11636.36 373 5084 4 6987 7.35%

random

10

10 4.87% 0.32 7 5 0 5 0.00%
30 9.48% 6.02 24 15 0 47 0.00%
50 10.37% 7.55 29 49 0 51 0.00%
100 9.52% 6.10 23 15 0 45 0.00%

avrg 8.56% 5.00 21 21 0 37 0.00%

15

10 5.30% 1.28 16 7 0 28 0.00%
30 11.87% 1887.21 320 3305 1 3356 0.00%
50 10.72% 887.67 202 1452 0 1494 0.00%
100 11.82% 2375.86 283 2758 0 3390 0.00%

avrg 9.93% 1288.01 205 1880 0 2067 0.00%

20

10 15.99% 18000 612 6149 0 8757 7.73%
30 17.59% 18000 697 6156 4 8144 11.31%
50 14.66% 18000 640 5958 12 7773 8.85%
100 16.09% 18000 1027 14305 4 21350 8.62%

avrg 16.08% 18000 744 8142 5 11506 9.13%

50

10 11.89% 18000 1147 5601 4 7275 8.59%
30 13.66% 18000 1129 5148 8 6947 11.53%
50 12.76% 18000 1087 5305 13 6553 11.48%
100 14.17% 18000 1054 4338 5 6048 12.95%

avrg 13.12% 18000 1104 5098 8 6706 11.14%
random-avrg 11.92% 9323.25 519 3785 3 5079 5.07%

mixed

10

10 2.90% 4.68 15 62 1 62 0.00%
30 3.46% 10.42 17 100 0 92 0.00%
50 2.07% 4.35 13 40 0 42 0.00%
100 3.92% 31.62 27 92 0 160 0.00%

avrg 3.09% 12.77 18 74 0 89 0.00%

15

10 12.15% 18000 171 8598 0 10033 4.03%
30 17.57% 18000 227 8160 0 9502 8.37%
50 14.58% 18000 239 17924 1 24097 5.95%
100 16.92% 18000 196 6900 0 8806 8.49%

avrg 15.30% 18000 208 10396 0 13110 6.71%

20

10 18.54% 18000 366 6322 5 9420 13.06%
30 17.33% 18000 365 6563 0 8671 12.41%
50 19.16% 18000 425 6753 0 8039 13.92%
100 20.32% 18000 399 6804 0 7487 15.53%

avrg 18.84% 18000 389 6610 1 8404 13.73%

50

10 23.71% 18000 587 8143 2 7105 14.37%
30 25.43% 18000 668 8174 18 6861 18.67%
50 22.74% 18000 640 7970 36 6861 17.63%
100 20.83% 18000 592 7655 27 6186 16.77%

avrg 23.18% 18000 622 7986 21 6753 16.86%
mixed-avrg 15.10% 13503.19 309 6266 6 7089 9.32%

overall-avrg
solved: 18/48 13.52% 11487.60 400 5045 4 6385 7.25%
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Table A.14.: Computational results on instances with 100% random customers,
normally distributed pickup demand, and σ = 0.7 using F-Cuts,
GPRs, and GTSP.

graph-type n scen root CPU (sec) Sub LBF GPR OptCut gap

clustered

10

10 18.16% 700.32 140 1259 0 1630 0.00%
30 15.96% 18000 450 6079 0 11258 2.09%
50 14.06% 3650.64 324 4835 0 6704 0.00%
100 16.17% 18000 417 6245 0 9991 2.11%

avrg 16.09% 10087.74 333 4604 0 7396 1.05%

15

10 0.00% 0.04 11 0 0 1 0.00%
30 1.58% 14.64 31 128 8 105 0.00%
50 2.59% 137.74 48 391 0 280 0.00%
100 4.21% 1511.91 138 1881 0 1837 0.00%

avrg 2.09% 416.08 57 600 2 556 0.00%

20

10 7.65% 18000 275 6020 24 7504 1.69%
30 18.24% 18000 579 12155 14 18578 13.30%
50 17.15% 18000 502 5106 12 8347 14.55%
100 18.65% 18000 503 5149 10 8154 16.30%

avrg 15.42% 18000 465 7108 15 10646 11.46%

50

10 19.90% 18000 570 6780 0 7062 15.79%
30 20.21% 18000 512 5619 7 5656 16.84%
50 19.65% 18000 536 5776 1 5744 17.65%
100 22.59% 18000 503 4957 0 5344 19.04%

avrg 20.59% 18000 530 5783 2 5952 17.33%
clustered-avrg 13.55% 11625.96 346 4524 5 6137 7.46%

random

10

10 4.87% 0.39 7 5 0 5 0.00%
30 9.48% 6.87 24 15 0 47 0.00%
50 10.37% 7.97 29 49 0 51 0.00%
100 9.52% 7.09 23 15 0 45 0.00%

avrg 8.56% 5.58 21 21 0 37 0.00%

15

10 5.30% 1.47 16 7 0 28 0.00%
30 11.87% 1889.27 315 3277 1 3356 0.00%
50 10.72% 900.83 194 1495 0 1494 0.00%
100 11.82% 2324.53 289 2724 0 3389 0.00%

avrg 9.93% 1279.03 204 1876 0 2067 0.00%

20

10 15.99% 18000 623 5362 1 7632 7.93%
30 17.59% 18000 667 5570 6 7758 11.43%
50 14.66% 18000 623 5519 2 7066 8.97%
100 16.09% 18000 966 15244 5 20704 8.63%

avrg 16.08% 18000 720 7924 4 10790 9.24%

50

10 11.89% 18000 1049 4217 6 4972 8.72%
30 13.66% 18000 1024 3734 13 4780 11.63%
50 12.76% 18000 1002 3499 5 4586 11.59%
100 14.17% 18000 1029 3195 0 4523 13.05%

avrg 13.12% 18000 1026 3661 6 4715 11.25%
random-avrg 11.92% 9321.15 493 3370 2 4402 5.12%

mixed

10

10 2.90% 5.08 15 62 1 62 0.00%
30 3.46% 12.01 17 100 0 92 0.00%
50 2.07% 4.28 13 40 0 42 0.00%
100 3.92% 33.38 27 92 0 160 0.00%

avrg 3.09% 13.69 18 74 0 89 0.00%

15

10 12.15% 18000 171 7495 0 8853 4.18%
30 17.57% 18000 207 7383 0 8783 8.47%
50 14.58% 18000 185 7082 0 8640 7.38%
100 16.92% 18000 202 6570 0 8368 8.55%

avrg 15.30% 18000 191 7132 0 8661 7.15%

20

10 18.54% 18000 372 5962 2 8588 13.13%
30 17.33% 18000 386 6118 0 8038 12.46%
50 19.16% 18000 421 6076 0 7892 13.99%
100 20.32% 18000 412 7146 0 7510 15.56%

avrg 18.84% 18000 398 6326 0 8007 13.79%

50

10 23.71% 18000 553 6644 3 5740 14.79%
30 25.43% 18000 613 6318 16 5331 18.74%
50 22.74% 18000 629 5818 8 5067 17.68%
100 20.83% 18000 547 5713 6 5116 16.8%

avrg 23.18% 18000 586 6123 8 5314 17.00%
mixed-avrg 15.10% 13503.42 298 4914 2 5518 9.48%

overall-avrg
solved: 18/48 13.52% 11483.51 379 4269 3 5352 7.35%
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Table A.15.: Computational results on instances with 50% random customers,
uniformly distributed pickup demand, and 70% deviation using
F-Cuts, PRs, and artificial nodes.

graph-type n scen root CPU (sec) Sub LBF OptCut gap

clustered

10

10 9.21% 9.49 27 109 56 0.00%
30 4.19% 5.38 20 65 38 0.00%
50 5.01% 26.75 39 151 105 0.00%
100 4.39% 9.93 26 103 68 0.00%

avrg 5.70% 12.89 28 107 67 0.00%

15

10 0.00% 0.02 11 0 1 0.00%
30 0.00% 0.02 11 0 1 0.00%
50 0.00% 0.02 11 0 1 0.00%
100 0.00% 0.02 11 0 1 0.00%

avrg 0.00% 0.02 11 0 1 0.00%

20

10 2.39% 150.43 54 587 304 0.00%
30 5.24% 18000 342 11366 11053 1.21%
50 4.58% 11146.26 280 9845 7521 0.00%
100 6.05% 18000 376 10599 11643 2.28%

avrg 4.57% 11824.17 263 8099 7630 0.87%

50

10 19.56% 18000 562 5939 5213 14.57%
30 20.12% 18000 524 5108 5147 16.67%
50 18.57% 18000 564 4900 5302 15.09%
100 18.21% 18000 551 5416 5094 15.67%

avrg 19.12% 18000 550 5341 5189 15.50%
clustered-avrg 7.35% 7459.27 213 3387 3222 4.09%

random

10

10 0.00% 0.01 0 0 1 0.00%
30 0.00% 0.01 0 0 1 0.00%
50 0.00% 0.01 0 0 1 0.00%
100 0.00% 0.03 0 0 1 0.00%

avrg 0.00% 0.01 0 0 1 0.00%

15

10 0.00% 0.01 1 0 1 0.00%
30 0.00% 0.05 1 0 1 0.00%
50 0.00% 0.04 1 0 1 0.00%
100 0.00% 0.15 1 0 2 0.00%

avrg 0.00% 0.06 1 0 1 0.00%

20

10 1.79% 1.14 19 22 17 0.00%
30 4.92% 419.12 96 465 475 0.00%
50 6.51% 1717.01 220 2105 1718 0.00%
100 7.15% 2785.32 294 3030 2688 0.00%

avrg 5.09% 1230.36 157 1406 1224 0.00%

50

10 9.35% 18000 813 3880 4598 6.69%
30 11.75% 18000 953 3664 4781 10.10%
50 10.86% 18000 964 3931 4789 9.66%
100 10.39% 18000 979 3297 4310 9.25%

avrg 10.59% 18000 927 3693 4620 8.93%
random-avrg 3.92% 4807.68 271 1275 1462 2.23%

mixed

10

10 0.00% 0.01 5 0 1 0.00%
30 0.00% 0.01 5 0 1 0.00%
50 0.00% 0.01 5 0 1 0.00%
100 0.00% 0.02 5 0 1 0.00%

avrg 0.00% 0.01 5 0 1 0.00%

15

10 6.42% 974.58 53 1708 1002 0.00%
30 2.48% 16.59 23 128 71 0.00%
50 6.24% 7373.33 144 8586 5992 0.00%
100 6.84% 14812.36 153 13450 10092 0.00%

avrg 5.50% 5794.22 93 5968 4289 0.00%

20

10 12.69% 18000 296 11015 14116 7.17%
30 14.77% 18000 343 12383 13305 10.68%
50 13.48% 18000 312 11849 12902 10.01%
100 13.55% 18000 352 10689 12454 10.13%

avrg 13.62% 18000 326 11484 13194 9.50%

50

10 4.97% 18000 298 6809 5614 3.93%
30 4.83% 18000 294 6917 5261 3.88%
50 9.57% 18000 397 6439 5391 8.39%
100 10.14% 18000 409 6714 4878 9.11%

avrg 7.38% 18000 350 6720 5286 6.33%
mixed-avrg 6.62% 10448.56 193 6043 5693 3.96%

overall-avrg
solved: 30/48 5.96% 7571.84 226 3568 3459 3.43%
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Table A.16.: Computational results on instances with 50% random customers,
uniformly distributed pickup demand, and 70% deviation using
F-Cuts, PRs, and GTSP.

graph-type n scen root CPU (sec) Sub LBF OptCut gap

clustered

10

10 9.21% 6.54 27 109 56 0.00%
30 4.19% 3.06 18 63 38 0.00%
50 5.01% 18.24 39 151 105 0.00%
100 4.39% 5.34 26 103 68 0.00%

avrg 5.70% 8.29 28 106 67 0.00%

15

10 0.00% 0.01 11 0 0 0.00%
30 0.00% 0.01 11 0 0 0.00%
50 0.00% 0.01 11 0 0 0.00%
100 0.00% 0.01 11 0 0 0.00%

avrg 0.00% 0.01 11 0 0 0.00%

20

10 2.39% 99.33 56 536 304 0.00%
30 5.24% 18000 387 13692 12747 0.96%
50 4.58% 6341.26 269 8020 6314 0.00%
100 6.05% 18000 431 12059 14378 2.04%

avrg 4.57% 10610.15 286 8577 8436 0.75%

50

10 19.56% 18000 543 7630 6380 12.61%
30 20.12% 18000 613 6164 6451 14.49%
50 18.57% 18000 570 6969 6645 14.15%
100 18.21% 18000 502 7400 6319 13.12%

avrg 19.12% 18000 557 7041 6449 13.59%
clustered-avrg 7.35% 7154.61 220 3931 3738 3.59%

random

10

10 0.00% 0.01 0 0 0 0.00%
30 0.00% 0.01 0 0 0 0.00%
50 0.00% 0.01 0 0 0 0.00%
100 0.00% 0.01 0 0 1 0.00%

avrg 0.00% 0.01 0 0 1 0.00%

15

10 0.00% 0.01 1 0 0 0.00%
30 0.00% 0.02 1 0 1 0.00%
50 0.00% 0.02 1 0 1 0.00%
100 0.00% 0.09 1 0 2 0.00%

avrg 0.00% 0.03 1 0 1 0.00%

20

10 1.79% 0.78 19 22 17 0.00%
30 4.92% 255.59 94 450 475 0.00%
50 6.51% 1398.52 228 2048 1718 0.00%
100 7.15% 1642.34 280 3051 2688 0.00%

avrg 5.09% 824.31 155 1393 1224 0.00%

50

10 9.35% 18000 717 4736 5405 3.78%
30 11.75% 18000 916 4408 5470 8.49%
50 10.86% 18000 991 5094 5836 9.13%
100 10.39% 18000 914 4828 5834 8.38%

avrg 10.59% 18000 884 4766 5636 7.45%
random-avrg 3.92% 4706.09 260 1540 1716 1.86%

mixed

10

10 0.00% 0.01 5 0 0 0.00%
30 0.00% 0.01 5 0 0 0.00%
50 0.00% 0.01 5 0 0 0.00%
100 0.00% 0.01 5 0 0 0.00%

avrg 0.00% 0.01 5 0 0 0.00%

15

10 6.42% 133.3 37 456 299 0.00%
30 2.48% 13.48 23 128 71 0.00%
50 6.24% 6194.63 142 9026 5996 0.00%
100 6.84% 11649.23 168 13431 10095 0.00%

avrg 5.50% 4497.66 92 5760 4115 0.00%

20

10 12.69% 18000 263 11710 16228 2.80%
30 14.77% 18000 296 13545 15237 7.20%
50 13.48% 18000 269 13479 14735 6.66%
100 13.55% 18000 335 12510 15624 9.35%

avrg 13.62% 18000 291 12811 15456 6.50%

20

10 4.97% 18000 244 7221 5307 1.82%
30 4.83% 18000 286 6792 5161 3.88%
50 9.57% 18000 357 7225 5406 6.48%
100 10.14% 18000 362 7410 5923 8.34%

avrg 7.38% 18000 312 7162 5449 5.13%
mixed-avrg 6.62% 10124.42 175 6433 6255 2.91%

overall-avrg
solved: 30/48 5.96% 7328.37 218 3968 3903 2.79%
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Table A.17.: Computational results on instances with 50% random customers,
uniformly distributed pickup demand, and 70% deviation using
F-Cuts, GPRs, and artificial nodes.

graph-type n scen root CPU (sec) Sub LBF GPR OptCut gap

clustered

10

10 6.60% 5.89 22 84 0 49 0.00%
30 3.94% 3.17 15 54 0 32 0.00%
50 5.05% 10.21 28 90 0 74 0.00%
100 3.82% 6.74 26 67 0 67 0.00%

avrg 4.85% 6.50 23 74 0 56 0.00%

15

10 0.00% 0.01 11 0 0 0 0.00%
30 0.00% 0.01 11 0 0 0 0.00%
50 0.00% 0.01 11 0 0 0 0.00%
100 0.00% 0.01 11 0 0 0 0.00%

avrg 0.00% 0.01 11 0 0 0 0.00%

20

10 2.39% 107.19 58 515 2 304 0.00%
30 5.24% 18000 288 6986 10 8086 1.71%
50 4.58% 18000 273 7434 10 6453 0.58%
100 5.95% 18000 324 6267 5 8184 2.70%

avrg 4.54% 13526.80 236 5300 7 5757 1.25%

50

10 19.37% 18000 541 6310 7 6593 14.15%
30 20.09% 18000 529 5719 2 6482 16.59%
50 18.65% 18000 601 6291 1 6142 15.00%
100 17.77% 18000 559 6129 0 6095 15.60%

avrg 18.97% 18000 558 6112 2 6328 15.34%
clustered-avrg 7.09% 7883.33 207 2872 2 3035 4.15%

random

10

10 0.00% 0.01 0 0 0 0 0.00%
30 0.00% 0.01 0 0 0 0 0.00%
50 0.00% 0.01 0 0 0 0 0.00%
100 0.00% 0.01 0 0 0 1 0.00%

avrg 0.00% 0.01 0 0 0 0 0.00%

15

10 0.00% 0.01 1 0 0 0 0.00%
30 0.00% 0.03 1 0 0 1 0.00%
50 0.00% 0.04 1 0 0 1 0.00%
100 0.00% 0.11 1 0 0 2 0.00%

avrg 0.00% 0.05 1 0 0 1 0.00%

20

10 1.79% 0.96 24 9 0 18 0.00%
30 4.92% 310.47 95 372 0 474 0.00%
50 6.51% 1260.15 216 1635 0 1712 0.00%
100 7.05% 2115.91 280 2510 0 2655 0.00%

avrg 5.07% 921.87 154 1132 0 1215 0.00%

50

10 9.39% 18000 920 4507 23 4964 6.24%
30 11.64% 18000 1102 4367 14 4700 10.00%
50 10.81% 18000 952 3468 3 4900 9.61%
100 10.89% 18000 931 3759 15 4932 9.16%

avrg 10.68% 18000 976 4025 14 4874 8.75%
random-avrg 3.94% 4730.48 283 1289 3 1523 2.19%

mixed

10

10 0.00% 0.01 5 0 0 0 0.00%
30 0.00% 0.01 5 0 0 0 0.00%
50 0.00% 0.01 5 0 0 0 0.00%
100 0.00% 0.01 5 0 0 0 0.00%

avrg 0.00% 0.01 5 0 0 0 0.00%

15

10 5.86% 670.90 54 1387 0 945 0.00%
30 1.97% 3.18 18 28 0 34 0.00%
50 6.34% 4475.55 129 6096 0 5453 0.00%
100 6.98% 18000 147 8501 0 7121 0.52%

avrg 5.29% 5787.41 87 4003 0 3388 0.13%

20

10 11.83% 18000 277 7066 0 9119 7.28%
30 14.74% 18000 338 7316 0 8800 10.59%
50 12.51% 18000 328 7446 0 8236 9.93%
100 13.39% 18000 275 6944 0 8210 9.59%

avrg 13.12% 18000 304 7193 0 8591 9.35%

50

10 5.10% 18000 306 6959 32 5030 3.98%
30 4.83% 18000 285 6465 32 5099 3.89%
50 9.57% 18000 408 6113 7 4929 8.38%
100 10.13% 18000 381 5758 7 5286 9.09%

avrg 7.41% 18000 345 6324 20 5086 6.33%
mixed-avrg 6.45% 10446.85 185 4380 5 4266 3.95%

overall-avrg
solved: 28/48 5.82% 7686.88 225 2847 3 2112 3.43%
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Table A.18.: Computational results on instances with 50% random customers,
uniformly distributed pickup demand, and 70% deviation using
F-Cuts, GPRs, and GTSP.

graph-type n scen root CPU (sec) Sub LBF GPR OptCut gap

clustered

10

10 6.60% 6.49 22 84 0 49 0.00%
30 3.94% 3.50 15 54 0 32 0.00%
50 5.05% 11.64 28 90 0 74 0.00%
100 3.82% 7.57 26 67 0 67 0.00%

avrg 4.85% 7.30 23 74 0 56 0.00%

15

10 0.00% 0.01 11 0 0 0 0.00%
30 0.00% 0.01 11 0 0 0 0.00%
50 0.00% 0.01 11 0 0 0 0.00%
100 0.00% 0.01 11 0 0 0 0.00%

avrg 0.00% 0.01 11 0 0 0 0.00%

20

10 2.39% 126.58 58 515 2 304 0.00%
30 5.24% 18000 316 8058 8 9041 1.51%
50 4.58% 18000 281 8558 10 7445 0.04%
100 5.95% 18000 343 6991 4 9465 2.48%

avrg 4.54% 13531.65 250 6030 6 6564 1.01%

50

10 19.37% 18000 566 5651 1 5658 16.13%
30 20.09% 18000 534 5026 4 5656 16.63%
50 18.65% 18000 567 5587 0 6032 15.02%
100 17.77% 18000 552 5711 0 5555 15.62%

avrg 18.97% 18000 555 5494 1 5725 15.85%
clustered-avrg 7.09% 7884.74 210 2900 2 3086 4.21%

random

10

10 0.00% 0.01 0 0 0 0 0.00%
30 0.00% 0.01 0 0 0 0 0.00%
50 0.00% 0.01 0 0 0 0 0.00%
100 0.00% 0.02 0 0 0 1 0.00%

avrg 0.00% 0.01 0 0 0 0 0.00%

15

10 0.00% 0.01 1 0 0 0 0.00%
30 0.00% 0.04 1 0 0 1 0.00%
50 0.00% 0.03 1 0 0 1 0.00%
100 0.00% 0.13 1 0 0 2 0.00%

avrg 0.00% 0.05 1 0 0 1 0.00%

20

10 1.79% 1.02 24 9 0 18 0.00%
30 4.92% 360.93 95 372 0 474 0.00%
50 6.51% 1263.61 226 1632 0 1712 0.00%
100 7.05% 2030.35 268 2392 0 2655 0.00%

avrg 5.07% 913.98 153 1101 0 1215 0.00%

50

10 9.39% 18000 776 4364 14 4898 6.26%
30 11.64% 18000 1047 3846 16 4803 10.02%
50 10.81% 18000 934 3904 1 4867 9.63%
100 10.89% 18000 969 3830 8 4722 9.18%

avrg 10.68% 18000 932 3986 10 4822 8.77%
random-avrg 3.94% 4728.51 271 1272 2 1510 2.19%

mixed

10

10 0.00% 0.01 5 0 0 0 0.00%
30 0.00% 0.01 5 0 0 0 0.00%
50 0.00% 0.01 5 0 0 0 0.00%
100 0.00% 0.01 5 0 0 0 0.00%

avrg 0.00% 0.01 5 0 0 0 0.00%

25

10 5.86% 697.86 54 1387 0 945 0.00%
30 1.97% 3.53 18 28 0 34 0.00%
50 6.34% 4487.69 129 6068 0 5452 0.00%
100 6.98% 8863.26 145 9044 0 7945 0.00%

avrg 5.29% 3513.09 86 4132 0 3594 0.00%

20

10 11.83% 18000 291 8386 2 10401 7.15%
30 14.74% 18000 342 8721 0 10018 10.47%
50 12.51% 18000 323 8530 0 9170 9.85%
100 13.39% 18000 279 8319 0 9945 9.47%

avrg 13.12% 18000 309 8489 0 9884 9.23%

50

10 5.10% 18000 283 6914 30 5308 3.97%
30 4.83% 18000 296 7074 27 5360 3.87%
50 9.57% 18000 372 6515 9 5294 8.34%
100 10.13% 18000 384 6780 7 5038 9.08%

avrg 7.41% 18000 334 6821 18 5250 6.32%
mixed-avrg 6.45% 9878.27 184 4860 5 4682 3.89%

overall-avrg
solved: 29/48 5.68% 7497.17 222 3011 3 3093 3.43%
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Table A.19.: Computational results on instances with 100% random customers,
uniformly distributed pickup demand, and 70% deviation using
F-Cuts, PRs, and artificial nodes.

graph-type n scen root CPU (sec) Sub LBF OptCut gap

clustered

10

10 5.49% 9.28 27 112 64 0.00%
30 13.32% 1942.08 271 3305 3906 0.00%
50 12.21% 2003.02 253 2762 3861 0.00%
100 13.14% 3026.98 293 3822 5521 0.00%

avrg 11.04% 1745.34 211 2500 3338 0.00%

15

10 1.04% 1.25 19 33 21 0.00%
30 2.58% 158.91 57 463 356 0.00%
50 2.30% 81.8 45 393 273 0.00%
100 5.44% 5667.1 270 6420 7402 0.00%

avrg 2.84% 1477.27 98 1827 2013 0.00%

20

10 10.74% 18000 433 9821 13295 5.11%
30 14.51% 18000 479 9760 13278 9.51%
50 16.50% 18000 548 9402 15725 9.80%
100 16.15% 18000 556 9789 14457 12.46%

avrg 14.47% 18000 504 9693 14189 9.22%

50

10 13.43% 18000 436 7048 5728 10.77%
30 15.53% 18000 526 6212 5499 13.62%
50 16.61% 18000 600 6105 5298 14.83%
100 17.55% 18000 582 5322 5049 16.26%

avrg 15.78% 18000 536 6172 5394 13.87%
clustered-avrg 11.03% 9805.65 337 5048 6233 5.77%

random

10

10 3.49% 0.57 9 8 9 0.00%
30 0.43% 0.35 2 1 5 0.00%
50 5.17% 4.47 19 27 19 0.00%
100 6.34% 6.54 19 34 29 0.00%

avrg 3.86% 2.98 12 18 16 0.00%

15

10 0.00% 0.05 2 0 1 0.00%
30 1.50% 0.51 7 8 4 0.00%
50 3.42% 2.48 17 21 27 0.00%
100 3.19% 2.7 14 17 19 0.00%

avrg 2.03% 1.42 10 12 13 0.00%

20

10 12.72% 18000 719 10522 13258 5.55%
30 6.29% 1072.97 167 1743 1343 0.00%
50 6.77% 1391.51 191 1774 1374 0.00%
100 8.54% 14986.71 579 9015 9571 0.00%

avrg 8.58% 8862.80 414 5764 6386 1.39%

50

10 7.57% 18000 646 4917 5398 1.86%
30 12.44% 18000 930 3964 4804 7.73%
50 12.37% 18000 894 3737 5098 7.39%
100 12.28% 18000 994 3229 4900 9.04%

avrg 11.16% 18000 866 3962 5050 6.50%
random-avrg 6.41% 6716.80 326 2439 2866 1.97%

mixed

10

10 0.00% 0.16 6 1 7 0.00%
30 0.00% 0.03 5 0 2 0.00%
50 2.01% 1.66 12 33 29 0.00%
100 1.53% 0.75 6 20 13 0.00%

avrg 0.89% 0.65 7 14 13 0.00%

15

10 18.44% 18000 244 13632 14987 5.02%
30 18.92% 18000 258 12980 15021 8.77%
50 16.27% 18000 236 12413 14705 6.58%
100 13.24% 18000 205 11952 13826 5.43%

avrg 16.72% 18000 236 12744 14635 6.45%

20

10 13.58% 18000 259 10813 14374 5.91%
30 19.54% 18000 405 11180 12549 12.92%
50 18.14% 18000 378 10518 11955 12.82%
100 18.15% 18000 402 10394 11419 15.23%

avrg 17.35% 18000 361 10726 12574 11.72%

50

10 7.48% 18000 289 6706 5651 5.08%
30 11.77% 18000 466 6725 5341 10.46%
50 12.60% 18000 414 6631 5079 10.66%
100 13.19% 18000 466 6131 4715 11.55%

avrg 11.26% 18000 409 6548 5196 9.44%
mixed-avrg 11.55% 13500.16 253 7508 8105 6.90%

overall-avrg
solved: 23/48 9.66% 10007.54 305 4998 5735 4.88%
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Table A.20.: Computational results on instances with 100% random customers,
uniformly distributed pickup demand, and 70% deviation using
F-Cuts, PRs, and GTSP.

graph-type n scen root CPU (sec) Sub LBF OptCut gap

clustered

10

10 5.49% 1.74 10 24 16 0.00%
30 13.32% 917.61 201 2088 2123 0.00%
50 12.21% 925.37 176 1635 2097 0.00%
100 13.14% 2486.88 299 4091 5520 0.00%

avrg 11.04% 1082.90 172 1960 2439 0.00%

15

10 1.04% 1.79 20 31 21 0.00%
30 2.58% 19.08 33 155 112 0.00%
50 2.30% 19.08 31 171 124 0.00%
100 5.44% 6053.87 280 6400 7403 0.00%

avrg 2.84% 1523.45 91 1689 1915 0.00%

20

10 10.74% 18000 345 12145 9475 0.78%
30 14.51% 18000 504 10440 15871 8.36%
50 16.50% 18000 443 9492 13865 8.12%
100 16.15% 18000 497 10052 15687 9.10%

avrg 14.47% 18000 447 10532 13724 6.59%

50

10 13.43% 18000 355 6619 5779 5.44%
30 15.53% 18000 537 6359 5406 12.81%
50 16.61% 18000 580 6322 5240 14.50%
100 17.55% 18000 587 5489 5145 15.80%

avrg 15.78% 18000 515 6197 5392 12.14%
clustered-avrg 11.03% 9651.59 306 5095 5868 4.68%

random

10

10 3.49% 0.79 9 8 9 0.00%
30 0.43% 0.41 2 1 5 0.00%
50 5.17% 4.26 19 27 19 0.00%
100 6.34% 5.12 19 34 29 0.00%

avrg 3.86% 2.65 12 18 16 0.00%

15

10 0.00% 0.04 2 0 1 0.00%
30 1.50% 0.62 7 8 4 0.00%
50 3.42% 2.98 17 21 27 0.00%
100 3.19% 2.87 14 17 19 0.00%

avrg 2.03% 1.63 10 12 13 0.00%

20

10 12.72% 18000 673 13485 12102 1.27%
30 6.29% 1144.01 176 1714 1344 0.00%
50 6.77% 1454.23 203 1719 1375 0.00%
100 8.54% 13119.89 575 9096 9556 0.00%

avrg 8.58% 8429.53 407 6504 6094 0.32%

50

10 7.57% 18000 611 4956 5311 1.85%
30 12.44% 18000 937 3815 4438 7.07%
50 12.37% 18000 979 3725 5002 7.41%
100 12.28% 18000 928 3394 4608 8.84%

avrg 11.16% 18000 864 3972 4840 6.29%
random-avrg 6.41% 6608.45 323 2626 2741 1.65%

mixed

10

10 0.00% 0.23 6 1 7 0.00%
30 0.00% 0.04 5 0 2 0.00%
50 2.01% 2.04 12 34 29 0.00%
100 1.53% 1.08 6 20 13 0.00%

avrg 0.89% 0.85 7 14 13 0.00%

15

10 18.44% 5105.63 135 7275 5156 0.00%
30 18.92% 18000 206 12950 14486 6.18%
50 16.27% 18000 230 13666 16316 4.88%
100 13.24% 18000 214 13806 16133 5.03%

avrg 16.72% 14776.41 196 11924 13023 4.02%

20

10 13.58% 732.2 42 1143 792 0.00%
30 19.54% 18000 262 10691 11506 2.37%
50 18.14% 18000 295 11153 13535 8.21%
100 18.15% 18000 347 11990 11943 12.15%

avrg 17.35% 13683.05 236 8744 9444 5.68%

50

10 7.48% 18000 300 7038 5698 4.63%
30 11.77% 18000 490 6458 4991 8.86%
50 12.60% 18000 432 6891 4971 9.69%
100 13.19% 18000 444 6466 4810 10.32%

avrg 11.26% 18000 416 6713 5118 8.38%
mixed-avrg 11.55% 11615.08 214 6849 6899 4.52%

overall-avrg
solved: 25/48 9.66% 9291.71 281 4857 5169 3.62%
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Table A.21.: Computational results on instances with 100% random customers,
uniformly distributed pickup demand, and 70% deviation using
F-Cuts, GPRs, and GTSP.

graph-type n scen root CPU (sec) Sub LBF GPR OptCut gap

clustered

10

10 5.15% 10.02 19 91 0 65 0.00%
30 12.71% 1730 215 2210 0 2682 0.00%
50 11.14% 1868.67 240 2047 0 3003 0.00%
100 12.00% 2354.78 285 2824 0 4431 0.00%

avrg 10.25% 1490.87 190 1793 0 2545 0.00%

15

10 1.16% 2.27 16 32 2 21 0.00%
30 2.58% 217.51 58 351 4 356 0.00%
50 2.30% 123.03 50 305 0 273 0.00%
100 5.36% 5592.77 263 4846 5 7270 0.00%

avrg 2.85% 1483.90 97 1384 3 1980 0.00%

20

10 10.78% 18000 377 6239 16 9771 5.40%
30 14.51% 18000 422 5683 4 9227 9.88%
50 16.50% 18000 451 6239 6 8940 10.18%
100 16.15% 18000 498 5240 5 9519 12.81%

avrg 14.48% 18000 437 5850 8 9364 9.57%

50

10 15.55% 18000 458 6686 4 6762 10.65%
30 15.40% 18000 538 7125 19 7092 12.98%
50 16.57% 18000 533 6461 4 6305 14.65%
100 17.03% 18000 546 6692 5 6650 15.97%

avrg 16.14% 18000 519 6741 8 6702 13.56%
clustered-avrg 10.93% 9743.69 311 3942 5 5148 5.78%

random

10

10 3.49% 0.66 9 4 0 9 0.00%
30 0.54% 0.51 0 2 0 2 0.00%
50 4.97% 3.10 15 7 0 17 0.00%
100 5.82% 4.67 18 7 0 26 0.00%

avrg 3.71% 2.23 10 5 0 14 0.00%

15

10 0.00% 0.07 1 0 0 1 0.00%
30 1.52% 0.48 10 2 0 4 0.00%
50 3.42% 3.09 17 8 0 27 0.00%
100 3.41% 2.90 13 6 0 19 0.00%

avrg 2.09% 1.64 10 4 0 13 0.00%

20

10 11.88% 18000 586 5144 0 8051 5.61%
30 5.76% 1066.63 153 828 0 919 0.00%
50 6.25% 1317.62 161 952 0 1080 0.00%
100 8.15% 18000 453 4764 2 6427 0.71%

avrg 8.01% 9596.06 338 2922 0 4119 1.58%

50

10 7.57% 18000 642 3731 5 5178 1.91%
30 11.30% 18000 907 3759 16 5120 7.66%
50 12.37% 18000 975 3964 2 4907 7.32%
100 12.28% 18000 924 3890 11 4942 8.96%

avrg 10.88% 18000 862 3836 8 5037 6.46%
random-avrg 6.17% 6899.98 305 1692 2 2296 2.01%

mixed

10

10 0.00% 0.49 6 1 0 7 0.00%
30 0.00% 0.08 5 0 0 2 0.00%
50 1.99% 3.85 13 28 0 26 0.00%
100 1.46% 1.78 6 13 0 12 0.00%

avrg 0.86% 1.55 8 10 0 12 0.00%

15

10 17.77% 18000 173 8332 0 10083 5.34%
30 18.54% 18000 214 8061 1 9471 9.16%
50 16.06% 18000 251 20104 0 26526 5.52%
100 12.68% 18000 173 7616 0 8790 5.59%

avrg 16.26% 18000 203 11028 0 13718 6.40%

20

10 9.92% 18000 242 7855 0 8500 5.87%
30 17.43% 18000 345 6855 0 8541 12.27%
50 16.71% 18000 376 6715 0 8203 12.09%
100 18.51% 18000 399 6857 0 7830 14.42%

avrg 15.64% 18000 340 7070 0 8268 11.16%

50

10 7.42% 18000 306 6546 32 5081 4.52%
30 12.00% 18000 467 6695 33 4901 10.49%
50 11.95% 18000 399 7046 12 5062 10.62%
100 12.93% 18000 446 6534 8 5035 11.35%

avrg 11.07% 18000 404 6705 21 5020 9.24%
mixed-avrg 10.96% 13500.39 239 6204 5 6754 6.70%

overall-avrg
solved: 22/48 9.35% 10048.02 285 3946 4 4733 4.83%
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Table A.22.: Computational results for the EP-Model with ρ = 50.

data-type graph-type n root CPU (sec) Sub LBF OptCut gap

shuffle

clustered

10 23.99% 402.40 127 936 1444 0.00%
15 6.61% 1.98 21 42 57 0.00%
20 9.32% 18000 435 10162 16514 4.26%
50 25.68% 18000 736 8126 7634 20.53%

avrg 16.40% 9101.09 330 4817 6412 6.20%

random

10 3.43% 0.81 7 8 15 0.00%
15 5.21% 8.79 30 82 69 0.00%
20 9.32% 15.02 38 80 92 0.00%
50 21.63% 18000 900 5312 6027 5.93%

avrg 9.90% 4506.15 244 1371 1551 1.48%

mixed

10 3.37% 1.26 10 29 40 0.00%
15 17.38% 18000 169 13253 18930 1.82%
20 25.28% 18000 346 12291 15009 12.64%
50 29.24% 18000 697 8778 7683 20.36%

avrg 18.82% 13500.32 306 8588 10416 8.71%

norm0.7

clustered

10 40.58% 18000 657 9226 20624 31.43%
15 12.24% 18000 506 8218 15463 7.57%
20 32.86% 18000 808 8922 13078 30.22%
50 29.34% 18000 552 7003 6947 26.43%

avrg 28.75% 18000.00 631 8342 14028 23.91%

random

10 14.34% 4755.27 259 5497 11675 0.00%
15 28.37% 18000 380 10967 14893 20.59%
20 30.06% 18000 560 10440 11763 27.64%
50 26.37% 18000 508 7682 6838 24.42%

avrg 24.79% 14688.82 427 8647 11292 18.16%

mixed

10 18.55% 617.11 174 1306 1626 0.00%
15 18.92% 18000 657 9151 13454 7.63%
20 23.71% 18000 908 8169 10991 18.14%
50 19.13% 18000 1021 4255 5103 17.52%

avrg 20.08% 13654.28 690 5720 7794 10.82%

uni70

clustered

10 32.40% 18000 654 7601 16634 20.73%
15 5.53% 7114.59 270 6408 8162 0.00%
20 17.19% 18000 514 7806 10176 13.77%
50 25.39% 18000 610 8066 7678 24.23%

avrg 20.13% 15278.65 512 7470 10663 14.68%

random

10 27.57% 18000 372 6742 18925 15.46%
15 32.50% 18000 463 9287 11734 27.28%
20 22.27% 18000 469 9236 10119 19.39%
50 22.09% 18000 636 8543 7263 20.96%

avrg 26.11% 18000 485 8452 12010 20.77%

mixed

10 24.84% 9662.31 570 7089 15743 0.00%
15 19.93% 18000 642 7267 11594 9.23%
20 22.17% 18000 867 7107 10176 16.56%
50 16.65% 18000 1104 4787 5912 12.57%

avrg 20.90% 15915.58 796 6563 10856 9.59%

overall-avrg
solved: 10/36 20.65% 13627.21 491 6663 9447 12.70%
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Table A.23.: Computational results for the EP-Model with ρ = 100.

data-type graph-type n root CPU (sec) Sub LBF OptCut gap

shuffle

clustered

10 19.69% 991.84 247 2486 4651 0.00%
15 9.87% 8.36 26 90 113 0.00%
20 13.30% 18000 461 10389 16707 5.50%
50 32.23% 18000 853 7788 7196 21.69%

avrg 18.77% 9250.05 397 5188 7167 6.80%

random

10 1.82% 1.51 9 35 31 0.00%
15 22.48% 18000 200 13211 19681 4.04%
20 31.74% 18000 394 12743 15245 16.72%
50 34.00% 18000 642 8458 7633 23.66%

avrg 22.51% 13500.38 311 8612 10648 11.11%

mixed

10 5.66% 2.07 16 22 28 0.00%
15 8.23% 52.13 49 153 179 0.00%
20 13.28% 46.31 44 120 142 0.00%
50 26.98% 18000 1154 5236 6072 8.60%

avrg 13.54% 4525.13 316 1383 1605 2.15%

norm0.7

clustered

10 52.97% 18000 655 9689 21550 45.56%
15 18.58% 18000 574 8288 16050 14.19%
20 41.22% 18000 828 8677 12034 38.41%
50 35.00% 18000 559 7009 7035 31.4%

avrg 36.94% 18000.00 654 8416 14167 32.39%

random

10 20.35% 18000 335 9256 23387 5.63%
15 35.62% 18000 475 10722 14517 27.84%
20 35.66% 18000 650 10488 11808 33.43%
50 29.83% 18000 559 7052 7000 28.1%

avrg 30.36% 18000 505 9380 14178 23.75%

mixed

10 25.31% 10563.49 573 7353 16017 0.00%
15 24.28% 18000 751 8774 14566 13.73%
20 28.67% 18000 967 7736 11282 23.38%
50 22.49% 18000 1079 4275 5113 21.02%

avrg 25.19% 16140.87 843 7035 11745 14.54%

uni70

clustered

10 43.89% 18000 670 7605 17192 33.24%
15 5.53% 6780.04 265 6424 8163 0.00%
20 17.19% 18000 541 7887 10292 13.73%
50 31.86% 18000 610 8110 7654 30.65%

avrg 24.62% 15195.01 522 7507 10825 19.41%

random

10 37.43% 18000 645 7033 16347 18.84%
15 31.79% 18000 786 7564 12692 22.56%
20 32.07% 18000 1011 6321 10397 27.22%
50 20.47% 18000 1139 4633 5940 15.75%

avrg 30.44% 18000 895 6388 11344 21.09%

mixed

10 42.43% 18000 572 7212 17666 33.33%
15 44.06% 18000 553 9441 12365 39.73%
20 22.27% 18000 455 9200 10100 19.40%
50 29.31% 18000 694 8634 7211 28.26%

avrg 34.52% 18000 569 8622 11836 30.18%

overall-avrg
solved: 8/36 26.32% 14512.38 557 6948 10390 17.93%
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Table A.24.: Computational results for the EE-Model with ρ = 50.

data-type graph-type n root CPU (sec) Sub LBF OptCut gap

shuffle

clustered

10 75.26% 18000 703 9460 25295 23.63%
15 61.80% 18000 508 9345 18569 6.95%
20 70.20% 18000 1109 10674 15149 53.70%
50 80.48% 18000 996 7589 7876 62.93%

avrg 71.94% 18000 829 9267 16722 36.80%

random

10 44.51% 18000 733 9608 23518 26.61%
15 59.57% 18000 972 9785 17432 26.66%
20 71.33% 18000 926 8754 14724 16.63%
50 88.17% 18000 1390 4751 6497 62.11%

avrg 65.89% 18000 1005 8225 15543 33.00%

mixed

10 31.93% 2.13 12 19 58 0.00%
15 86.80% 18000 827 10965 17438 60.80%
20 88.10% 18000 1078 11992 14832 76.61%
50 86.96% 18000 841 8243 7870 70.47%

avrg 73.45% 13500.30 690 7805 10050 51.97%

norm0.7

clustered

10 90.05% 18000 605 7341 15110 88.34%
15 78.89% 18000 1047 6216 11878 75.55%
20 88.50% 18000 1097 6356 9790 87.65%
50 84.02% 18000 631 6070 6940 82.26%

avrg 85.36% 18000 845 6496 10930 83.45%

random

10 85.27% 18000 654 6098 13366 81.08%
15 80.86% 18000 1113 5143 10483 78.44%
20 83.56% 18000 1208 5900 9061 81.89%
50 77.07% 18000 1227 3529 4700 76.46%

avrg 81.69% 18000 1051 5168 9403 79.47%

mixed

10 84.91% 18000 593 6629 14527 82.93%
15 89.50% 18000 792 8057 11153 87.87%
20 86.52% 18000 913 7493 10348 84.70%
50 85.52% 18000 635 6659 6769 84.21%

avrg 86.61% 18000 733 7210 10699 84.93%

uni70

clustered

10 89.74% 18000 610 8031 18356 86.85%
15 76.61% 18000 1063 7043 14401 66.26%
20 88.99% 18000 1144 7621 11609 87.43%
50 84.68% 18000 810 7339 7443 81.61%

avrg 85.00% 18000 907 7509 12952 80.54%

random

10 81.24% 18000 719 7007 17943 75.63%
15 69.22% 18000 1116 7589 13975 65.16%
20 79.93% 18000 1307 7532 11246 78.27%
50 80.34% 18000 1449 4578 6195 75.26%

avrg 77.68% 18000 1148 6677 12340 73.58%

mixed

10 65.24% 18000 642 8599 20003 58.17%
15 88.51% 18000 816 10087 12045 86.42%
20 87.83% 18000 939 8497 11307 87.06%
50 82.45% 18000 823 7694 7132 81.95%

avrg 81.01% 18000 805 8719 12622 78.40%

overall-avrg
solved: 1/36 78.74% 17500.06 890 7453 12362 66.90%
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Table A.25.: Computational results for the EE-Model with ρ = 100.

data-type graph-type n root CPU (sec) Sub LBF OptCut gap

shuffle

clustered

10 85.73% 18000 679 7455 19342 41.46%
15 76.21% 18000 625 7349 13927 16.58%
20 82.33% 18000 1269 8265 12151 70.18%
50 88.91% 18000 947 7017 7644 76.40%

avrg 83.30% 18000 880 7522 13266 51.16%

random

10 61.39% 18000 686 7744 17304 50.02%
15 74.54% 18000 1191 7790 14420 45.44%
20 83.12% 18000 1018 6580 11411 31.42%
50 93.64% 18000 1389 4640 6114 75.01%

avrg 78.17% 18000 1071 6689 12312 50.47%

mixed

10 1.78% 1.20 8 25 32 0.00%
15 92.86% 18000 908 9212 14895 75.68%
20 93.59% 18000 997 9264 11694 86.64%
50 92.77% 18000 958 7613 7347 84.25%

avrg 70.25% 13500.30 718 6529 8492 61.65%

norm0.7

clustered

10 94.70% 18000 602 6863 13784 93.81%
15 88.12% 18000 1134 5932 11114 86.01%
20 93.81% 18000 1100 6908 10238 93.25%
50 91.13% 18000 599 6227 6718 90.17%

avrg 91.94% 18000 859 6483 10464 90.81%

random

10 91.99% 18000 677 7498 14492 89.66%
15 89.53% 18000 1086 5726 10320 87.76%
20 90.87% 18000 1205 5533 8831 89.92%
50 86.75% 18000 1244 3966 4951 86.23%

avrg 89.78% 18000 1053 5681 9649 88.39%

mixed

10 91.80% 18000 598 7268 15057 90.70%
15 94.39% 18000 809 8292 11219 93.50%
20 92.69% 18000 965 8774 12236 91.51%
50 92.02% 18000 604 6429 6292 91.26%

avrg 92.72% 18000 744 7691 11201 91.74%

uni70

clustered

10 94.32% 18000 627 8574 19322 92.96%
15 86.63% 18000 1101 7640 14545 79.55%
20 94.11% 18000 1168 7452 11227 93.16%
50 91.41% 18000 801 7095 7376 89.69%

avrg 91.62% 18000 924 7690 13118 88.84%

random

10 89.55% 18000 701 8045 18784 86.40%
15 81.69% 18000 1155 6796 14445 79.28%
20 88.73% 18000 1340 7214 11101 87.72%
50 88.50% 18000 1523 4349 6176 85.66%

avrg 87.12% 18000 1180 6601 12627 84.77%

mixed

10 78.90% 18000 593 8530 21026 74.23%
15 93.88% 18000 824 9451 12203 92.70%
20 93.42% 18000 1027 9057 11714 92.98%
50 90.24% 18000 837 7584 7134 89.77%

avrg 89.11% 18000 820 8656 13019 87.42%

overall-avrg
solved: 1/36 86.00% 17500.03 917 7060 11572 77.25%
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