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1.1 Summary 
 

 

Parasites are integral and important elements of ecosystems that occur in virtually every habitat on 

this planet (Poulin 1999, Hudson et al. 2006). However, except for the obviously important role of 

some species as disease agents, parasites have long been neglected and considered unimportant in 

the context of most ecological studies. Only in recent years, studies have begun to investigate the 

ecological importance of parasites, e.g. their structuring forces in trophic transmissions and food webs 

(Lafferty et al. 2008) or their contribution to an ecosystem’s biomass (Kuris et al. 2008, Thieltges et al. 

2008). It has been argued, that it is even impossible to fully understand ecosystems without 

considering the parasites therein (Lafferty et al. 2006a). Furthermore, based on their often complex 

life cycles and strong interaction in ecosystems, parasites may serve as useful bioindicators to assess 

environmental conditions and changes (Lafferty 1997, Vidal-Martínez et al. 2010, Nachev & Sures, 

2015). 

Environmental changes, such as climate change and global warming are expected to have 

major impacts on parasites and on entire ecosystems, often with yet unpredictable consequences 

(Marcogliese 2001, 2008). It is, therefore, essential that we understand host-parasite systems at the 

ecosystem level. Although there are some exceptionally well-studied aquatic ecosystems that focus on 

the roles of parasites in these habitats and allow predictions of the impact and possible effects of 

environmental changes (e.g. Kuris et al. 2008, Preston et al. 2013, Thieltges et al. 2013, Lagrue et al. 

2015), our knowledge of host-parasite interaction in man-made waterbodies, such as impounded lakes 

and reservoirs, is still very limited and large-scale studies focussing on the ecological role of parasites 

in such systems are lacking. This is especially critical, since such waterbodies fulfil vital roles in densely 

populated areas, where they serve as drinking water storages, recreational areas and constitute 

important biodiversity hot spots. The Ruhr area in Germany is one of the largest and most densely 

populated urban areas in Europe and the eponymous extensive reservoir system of the Ruhr and its 

tributaries plays a vital role for the whole region. Our knowledge of the ecological role of parasites in 

these aquatic habitats is still fairly limited, however. 

In order to bridge this gap, this thesis aims at assessing the biology and ecology of trematodes 

parasitizing aquatic snails in the Ruhr reservoir system in Germany. Trematodes in snails have been 

identified as a particularly promising group of parasites that lend themselves to investigating and 

assessing environmental conditions and ecosystem changes in aquatic systems (Huspeni & Lafferty 

2004), due to their complex multiple-host life cycles that enable us to study the complex roles of 

parasites in ecosystems at many levels and in great detail. This thesis, therefore, aims at addressing 

the importance of trematodes in the Ruhr reservoir systems by identifying larval trematode infections 
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in snails in the reservoirs of the Ruhr river system. The individual studies of this work provide (i) 

detailed integrative approaches to taxonomically questionable trematode groups to assess the full 

diversity in the ecosystem, (ii) an analysis of the productivity and emergence of trematode cercariae 

to assess the parasites’ functional role in the ecosystem, (iii) an evaluation of the risk factors of 

swimmer’s itch via a detailed case study of one of the Ruhr lakes, and finally (iv) an assessment of the 

overall diversity, distribution and community structure of larval trematodes and the identification of 

potential trematode transmission pathways between their host groups. Altogether, this holistic 

approach, encompassing trematode taxonomy, their functional part in ecosystems, the role of 

medically relevant species and their contribution to an ecosystem’s diversity will provide a detailed 

and comprehensive insight into the complex role of trematodes in an important reservoir system in 

Europe. 

In order to assess the diversity and distribution patterns of trematodes in the Ruhr area, snails 

were collected at several sampling sites in five reservoirs of the Ruhr river catchment area in Germany, 

Baldeneysee, Hengsteysee, Hennetalsperre, Sorpetalsperre and Versetalsperre, during the summer 

months of the years 2012 and 2013. Sampling and analyses were mostly focused on gastropod snails 

belonging to two families, Lymaeidae and Planorbidae, since they proved to harbour the most diverse 

trematode fauna in Europe (Faltýnková & Haas 2006, Soldánová et al. 2011, Brown et al. 2011). A total 

of 3,171 lymnaeid snails belonging to four species, Radix auricularia, Stagnicola palustris, 

Radix peregra and Lymnaea stagnalis, and 2,176 planorbid snails belonging to two species, Gyraulus 

albus and Segmentina nitida, were collected and screened for trematode infections. Trematode stages 

were identified according to morphological features and, where necessary, with the aid of molecular 

methods.  

Of the 5,347 sampled snails, 1,049 showed patent or prepatent infections with trematodes, 

resulting in a total prevalence of 19.6%. Detailed integrative approaches of molecular and 

morphological methods revealed the presence of cryptic species within the trematode genera 

Echinostoma, Petasiger and Diplostomum. The analysis of Echinostoma spp. cercariae allowed the 

delineation of two cryptic species of the ‘revolutum’ group from larval stages found in R. auricularia, 

R. peregra and S. palustris. Likewise, analyses of infections from G. albus revealed the distinctive status 

of three species of Petasiger from this host that occurred in sympatry at one locality, highlighting the 

high diversity within this trematode genus, even at small spatial scales. Most distinctively, seven 

different species of Diplostomum were found in the lymnaeid snail populations from the Ruhr 

reservoirs, three named species, D. spathaceum, D. pseudospathaceum and D. parviventosum, and 

four species-level lineages, ‘Diplostomum sp. Clade Q’ and ‘D. mergi’ Lineages 2-4. Furthermore, the 

detailed approach provided evidence that the cercariae of ‘D. mergi’ Lineage 1 of Georgieva et al. 

(2013a) are actually D. parviventosum. Remarkably, the snail species L. stagnalis and S. palustris 
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harboured only one species, D. pseudospathaceum, while R. auricularia populations revealed a highly 

diverse picture with six different lineages of Diplostomum, and it remains to be investigated why the 

diversity of Diplostomum in these hosts presents such contrary situation. Altogether, these integrative 

approaches of molecular and morphological data advance our knowledge of the taxonomic situation 

of these trematode taxa and reveal the remarkably high cryptic diversity of these parasites in the Ruhr 

reservoir system.  

However, the knowledge of the sheer diversity of trematodes in snails does not provide 

information on their functional role within an ecosystem. In order to assess the contribution of 

trematode cercariae to the biomass in European freshwaters, cercarial emergence of the bird 

schistosome Trichobilharzia szidati from naturally infected L. stagnalis was studied. The study revealed 

an average daily emergence rate of 2,621 cercariae per snail, with emissions peaks of up to 29,560 

cercariae. Calculated for an individual snail’s lifetime this summed up to a cumulative cercarial biomass 

of 4.8 g, a mass equivalent of or even exceeding the snail‘s own body weight, illustrating the ecological 

importance a single trematode species that contributes a considerable amount of cercarial mass to an 

aquatic ecosystem. Since T. szidati is only one out of 37 species that produce large amounts of 

cercariae, the overall cercarial biomass emitted into the Ruhr reservoirs is comparable to the 

impressive numbers recently calculated for marine (Thieltges et al. 2008), estuary (Kuris et al. 2008) 

and North American freshwater ecosystems (Preston et al. 2013). The results of this study demonstrate 

how trematodes, despite their small individual size, significantly contribute to the biotic productivity 

in the Ruhr freshwater system. 

Since bird schistosomes are the causative agents of swimmer’s itch, a re-emerging disease in 

Europe (Soldánová et al. 2013), the disease risk factors in the Ruhr area based on the occurrence, 

distribution and biology of these parasites was assessed for one reservoir (Baldeneysee). Two bird 

schistosome species, Trichobilharzia franki and T. szidati, could be detected at several sampling sites 

in Baldeneysee, where abundant lymnaeid snail populations were present. Although these species 

showed only low prevalence, human infections are well possible, due to the high numbers of cercariae 

that can be released from individual infected snail hosts in short periods of time, as shown in the 

laboratory emission studies. 

With a total of 37 species, the trematode species richness in the Ruhr reservoir system was 

considerably higher than the trematode species richness in snail intermediate hosts described from 

most other well-studied ecosystems (e.g. Faltýnková 2005, Faltynkova & Haas 2006, Thieltges et al. 

2006, Żbikowska 2007, Kuris et al. 2008, Lagrue & Poulin 2015). Altogether, Radix auricularia 

harboured by far the most prevalent, species rich and diverse trematode fauna of all studied hosts, 

supporting the assumption that R. auricularia plays the most important role in the life cycle of 

trematodes in large reservoirs and lakes, comparable to the dominant role of L. stagnalis described for 
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small pond systems. Similarly, G. albus harboured more diverse and prevalent trematode communities 

compared to S. nitida, which contrasts with the situation observed for these two species in small ponds 

(Faltýnková et al. 2008a). The analysis of the data from the Ruhr, therefore, suggests a characteristic 

host-parasite dynamics in large reservoir systems. 

The majority of trematode species in the Ruhr requires fish-eating or anatid birds as final hosts 

and almost all trematode species have life cycles involving trophic transmission of the parasites to their 

respective final host, which provides information on trophic interactions and energy flow in the 

ecosystem. Since trematodes with trophic transmission strategies often directly or indirectly alter their 

host’s behaviour in order to facilitate transmission success to the next host (see e.g. Lafferty & Morris 

1996), they actively shape the structure of food webs through which they are transmitted. Therefore, 

the rich and abundant trematode fauna in the Ruhr freshwaters plays a highly complex role in the food 

web connectivity in the Ruhr reservoirs. 

Overall, the selected aspects of trematodes in the Ruhr river system studied in the context of 

this thesis provide a broad and comprehensive overview of these parasites in a freshwater ecosystem 

that is typical for freshwater reservoirs in Europe for the first time. Trematodes are deeply embedded 

in and active elements of the ecological processes that shape and structure ecological communities, 

energy flow and the biodiversity of complex ecosystems and the rich trematode fauna in the Ruhr 

contributes to key aspects that make this ecosystem more diverse, productive and stable, and thus 

healthy. 
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1.2 Zusammenfassung 
 

 

Hintergrund 

Parasiten stellen zentrale und wichtige Akteure in Ökosystemen dar und kommen weltweit in nahezu 

jedem Habitat vor (Poulin 1999, Hudson et al. 2006). Abgesehen von der offensichtlich bedeutenden 

Rolle mancher Parasitenarten als Krankheitserreger, werden Parasiten in ökologischen Studien häufig 

vernachlässigt oder für unbedeutend befunden. Erst in den letzten Jahren wurde der ökologischen 

Bedeutung von Parasiten vermehrt Beachtung geschenkt und Studien haben beispielsweise ihre 

strukturgebende Rolle in Nahrungsnetzen (Lafferty et al. 2008) oder ihren Beitrag zur 

Biomasseproduktion in Ökosystemen im Detail beleuchten können (Kuris et al. 2008, Thieltges et al. 

2008). Es ist somit nahezu unmöglich Ökosysteme überhaupt vollständig zu verstehen, ohne die darin 

vorkommenden Parasiten zu beachten (Lafferty et al. 2006a). Darüber hinaus können Parasiten durch 

ihre häufig komplexen Lebenszyklen und die starke Vernetzung mit ihren Wirten als Bioindikatoren 

genutzt werden, die Auskunft über den Zustand eines Ökosystems oder mögliche 

Umweltveränderungen liefern können (Lafferty 1997, Vidal-Martínez et al. 2010, Nachev & Sures, 

2015). 

Umweltveränderungen wie der Klimawandel und die globale Erwärmung werden massive 

Auswirkungen auf Ökosysteme und deren Biozönosen inklusive der Parasiten haben, deren 

Konsequenzen gegenwärtig nur schwer vorherzusagen sind (Marcogliese 2001, 2008). Es ist daher von 

grundlegender Bedeutung, dass wir die ökosystemaren Zusammenhänge und Funktionen von Wirt-

Parasiten Systeme verstehen. Einige aquatische Ökosysteme (marine Systeme, Ästuare, 

Süßwasserseen) wurden hinsichtlich der Rolle von Parasiten bereits eingehend untersucht und liefern 

weitreichende Informationen, die zum besseren Verständnis der komplexen Interaktionen und 

zukünftige Umweltveränderungen beitragen (z.B. Kuris et al. 2008, Preston et al. 2013, Thieltges et al. 

2013, Lagrue et al. 2015). Unser Wissen über die Rolle von Parasiten in anthropogenen Gewässern, 

wie Talsperren und Stauseen, ist jedoch stark begrenzt und weitreichende Studien über die 

ökologische Funktion von Parasiten in diesen Systemen in Europa fehlen gänzlich. Dies ist besonders 

bedenklich, da solche Gewässer in dicht besiedelten Gebieten zentrale und grundlegende Funktionen 

erfüllen und der Trinkwasserversorgung, Naherholung sowie der Schaffung lokaler Biodiversitäts-

Hotspots dienen. Das Ruhrgebiet in Deutschland stellt eine der größten und dicht besiedelten urbanen 

Regionen Europas dar, und die Ruhr und ihre Nebenflüsse verfügen über ein umfassendes Netzwerk 

aus Talsperren und Stauseen, die der Wasserversorgung der Region dienen. Über die ökologische 

Bedeutung von Parasiten der Ruhr liegen bislang keine umfassenden Studien vor.  
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Die vorliegende Dissertation soll diese Lücke schließen und die ökologische Rolle von Trematoden in 

aquatischen Schnecken in den Ruhrstauseen erfassen. Digene Trematoden eignen sich besonders, um 

die Strukturen in Ökosystemen zu untersuchen, da sie durch ihre komplexen Lebenszyklen mit 

verschiedenen Wirten Einblicke in die Rolle von Parasiten auf verschiedenen Ebenen ermöglichen. 

Die einzelnen Studien dieser Arbeit liefern (i) detaillierte integrative Untersuchungen taxonomisch 

fragwürdiger Trematodengruppen, um die potentielle kryptische Diversität der Parasiten erfassen zu 

können, (ii) eine Analyse der Produktivität von Zerkarien, um die funktionelle Rolle von Trematoden in 

den Gewässern beurteilen zu können, (iii) eine Bewertung der Risikofaktoren der Badedermatitis 

anhand einer Fallstudie aus einem der Ruhrgewässer und (iv) eine Studie der Diversität, Verteilung und 

Struktur der Trematodengemeinschaft in Schnecken in der Ruhr. Dieser übergreifende Ansatz, der 

taxonomische, funktionelle, humanrelevante sowie ökologische Aspekte einschließt, soll einen 

detaillierten und umfassenden Einblick in die komplexe Rolle von Trematoden in Stauseen und 

Talsperren in Europa ermöglichen. 

Um die Diversität und Verteilung von Trematoden in der Ruhr zu erfassen, wurden aquatische 

Schnecken in fünf Gewässern der Ruhr und ihrer Nebenflüsse, Baldeneysee, Hengsteysee, 

Hennetalsperre, Sorpetalsperre und Versetalsperre in den Sommermonaten der Jahre 2012 und 2013 

gesammelt und auf Infektionen mit Larvalstadien der Trematoden untersucht. Das Hauptaugenmerkt 

wurde dabei auf Gastropoden der Familien Lymnaeidae und Planorbidae gelegt, die als wichtigste erste 

Zwischenwirte für Trematoden in Europa dienen (s. Faltýnková & Haas 2006, Soldánová et al. 2011, 

Brown et al. 2011). Insgesamt wurden 3171 lymnaeide Schnecken der vier Arten Radix auricularia, 

Stagnicola palustris, Radix peregra, und Lymnaea stagnalis sowie 2176 planorbide Schnecken der 

Arten Gyraulus albus und Segmentina nitida gesammelt und untersucht. Trematodeninfektionen 

wurden anhand morphologischer Merkmale und, sofern notwendig, mittels molekularbiologischer 

Methoden identifiziert. 

Insgesamt zeigten 1049 der 5347 untersuchten Schnecken Infektionen mit Larvalstadien von 

Trematoden, was einer Gesamtprävalenz von 19,6% entspricht. Detaillierte morphologische und 

molekularbiologische Untersuchung offenbarten kryptische Trematodenarten innerhalb der 

Gattungen Echinostoma, Petasiger und Diplostomum. So erlaubten die Untersuchungen der Zerkarien 

von Echinostoma spp. die Beschreibung zweier kryptischer Arten der ‘revolutum’ Gruppe aus 

R. auricularia, R. peregra und S. palustris. Die genaue Betrachtung der larvalen Trematodenstadien aus 

G. albus bestätigte den distinkten Status von drei Arten der Gattung Petasiger, die sympatrisch an einer 

Probestelle vorkamen und somit die hohe Trematodendiversität auf kleinstem geographischem Raum 

verdeutlichen. Insgesamt sieben verschiedene Arten der Gattung Diplostomum konnten in den 

Schlammschneckenpopulationen der Ruhrstauseen nachgewiesen werden, darunter drei 

beschriebene Arten, D. spathaceum, D. pseudospathaceum und D. parviventosum sowie vier weitere 
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Abstammungslinien, ‘Diplostomum sp. Clade Q’ und ‘D. mergi’ Lineages 2-4. Die detaillierten 

morphologischen und molekularen Analysen erlaubten es dabei, ‘D. mergi’ Lineages 1 von Georgieva 

et al. (2013a) als D. parviventosum zu identifizieren. Bemerkenswerterweise waren die 

Schneckenarten L. stagnalis und S. palustris mit nur einer einzigen Art, D. pseudospathaceum, infiziert, 

während R. auricularia eine ungleich diversere Fauna mit sechs verschiedenen Diplostomum Arten 

beherbergte. Diese ungleiche Verteilung der Trematodenarten bedarf weiterer Untersuchungen und 

bietet ein aufschlussreiches Modellsystem zur Untersuchung von Wirt-Parasit Spezifität und Co-

Evolution nahe verwandter Arten. Insgesamt tragen die taxonomischen Studien dieser Arbeit zum 

besseren Verständnis der untersuchten Trematodengattungen bei und zeigen die hohe kryptische 

Diversität dieser Parasiten in den Ruhrstauseen. 

Das Wissen um die bloße Diversität von Trematoden in ihren Zwischenwirten liefert jedoch 

keine Anhaltspunkte über die funktionelle Rolle der Parasiten in den Ökosystemen. Um den Beitrag 

der Trematodenlarven aus Schnecken in europäischen Frischwassersystemen besser beurteilen zu 

können, wurde die Zerkarienproduktion der Vogelschistosomen Trichobilharzia szidati aus L. stagnalis 

untersucht. Die Studie zeigte eine mittlere tägliche Produktionsrate von 2621 Zerkarien pro Schnecke, 

jedoch konnten Produktionsspitzen mit bis zu 29 560 individuelle Larven pro Schnecke und Tag 

nachgewiesen werden. Berechnet für die Lebensdauer einer einzelnen Schnecke ergibt die mittlere 

Produktion eine kumulative Zerkarienbiomasse von 4,8 Gramm, was dem Eigengewicht der 

Wirtsschnecke entspricht oder dieses sogar übersteigt. Da T. szidati nur eine der insgesamt 37 in der 

Ruhr gefunden Arten ausmacht, von denen alle große Zerkarienzahlen produzieren, ist die 

Gesamtproduktivität der Trematoden in diesen Stauseen durchaus vergleichbar mit der hohen 

Parasitenbiomasse, die für marine (Thieltges et al. 2008), ästuare (Kuris et al. 2008) und 

nordamerikanische Süßwasserökosysteme (Preston et al. 2013) beschrieben wurde. Die Studie zeigt 

somit die ökologische Bedeutung von Trematoden, die trotz ihrer geringen individuellen Größe einen 

substantiellen Beitrag  zur Biomasse in den aquatischen Ökosystemen der Ruhr leisten. 

Da Vogelschistosomen als Erreger der Badedermatitis in Europa eine bedeutende Rolle spielen 

(Soldánová et al. 2013), wurden die Infektionsrisiken für Menschen in der Ruhr evaluiert. Hierzu 

wurden am Beispiel des Baldeneysees das Vorkommen und die Verteilung von Vogelschistosomen 

erfasst und Risikofaktoren aufgrund der Biologie der Parasiten ermittelt. Zwei relevante Arten, 

Trichobilharzia franki und T. szidati, konnten an verschiedenen Stellen im Baldeneysee, an denen 

jeweils abundante Schneckenpopulationen vorkamen, nachgewiesen werden. Obwohl beide Arten 

charakteristisch niedrige Prävalenz zeigten, ist ein Infektionsrisiko in diesem Gewässer gegeben, 

besonders da einzelne infizierte Schnecken in der Lage sind, große Mengen infektiöser Zerkarien 

abzugeben, wie die Experimente zur Zerkarienproduktion zeigen konnten. 
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Mit insgesamt 37 Arten ist die Trematodenfauna in Schnecken in der Ruhr deutlich artenreicher als die 

Gemeinschaften in Schnecken der meisten anderen bisher untersuchten Ökosysteme (z.B. Faltýnková 

2005, Faltýnková & Haas 2006, Thieltges et al. 2006, Żbikowska 2007, Kuris et al. 2008, Lagrue & Poulin 

2015). Insgesamt verfügte Radix auricularia über die mit Abstand artenreichste und diverseste 

Trematodengemeinschaft und stellt somit den wichtigsten ersten Zwischenwirt in den Ruhrstauseen 

dar. Dies stützt die Annahme, dass R. auricularia in großen Seen und Stauseen eine ähnlich bedeutende 

Rolle im Lebenszyklus von Trematoden spielt, wie Lymnaea stagnalis in kleinen Gewässern und 

Tümpeln. Gleichermaßen zeigte sich bei planorbiden Wirten ein ähnliches Bild und Gyraulus albus wies 

deutlich artenreichere und prävalentere Trematodengemeinschaften auf als Segementina nitida. 

Verglichen mit der dominanteren Rolle von S. nitida in kleinen Gewässern und Teichen (Faltýnková et 

al. 2008a), zeigten diese Arten somit in Stauseen eine gegensätzliche Rolle. Die Analyse der Daten aus 

den Ruhrstauseen legt somit nahe, dass diese Gewässertypen über eine charakteristische Wirt-Parasit 

Dynamik verfügen. 

Die Mehrheit der Trematodenarten aus der Ruhr benötigen zur Vervollständigung ihrer 

Lebenszyklen fischfressende Vögel oder Entenvögel als Endwirte und fast alle Trematoden verfügen 

über trophische Übertragungswege zu ihren Endwirten. Diese Informationen lassen wertvolle 

Rückschlüsse über die trophischen Beziehungen und Energieflüsse innerhalb des Ökosystems zu. Da 

Trematoden mit tropischen Übertragungsstrategien häufig das Verhalten ihrer Wirte manipulieren 

oder beeinflussen, um die Übertragungswahrscheinlichkeit in den nächsten Wirt zu begünstigen 

(Lafferty & Morris 1996), tragen sie aktiv zur Strukturierung der Nahrungsnetze bei, durch die sie 

übertragen werden. Der artenreichen und abundanten Trematodenfauna in Schnecken fällt somit eine 

zentrale und komplexe Rolle in der Konnektivität und Strukturierung von Nahrungsnetzen und 

Energieflüssen in diesem Ökosystem zu. 

In ihrer Gesamtheit ermöglichen die im Rahmen dieser Dissertation erarbeiteten Aspekte von 

Trematodeninfektionen in Schnecken der Ruhrstauseen zum ersten Mal einen übergreifenden und 

detaillierten Überblick über die wichtige und vielschichtige Rolle dieser Parasiten in Stauseen in 

Europa. Trematoden stellen aktive Elemente in Ökosystemen dar, in denen sie maßgeblich zur 

Biodiversität, Biomasse und Struktur der Lebensgemeinschaften und somit zur Stabilität und 

Funktionalität von Ökosystemen beitragen.  
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2. Introduction

Ecology can be defined as the study of intra- and interspecific interactions between organisms and the 

interaction between organisms and their non-living environment (Poulin 2007), and ecologists are 

dealing with a wide range of topics from the diversity and distribution of species to nutrient cycling 

and energy flow in ecosystems, or the role humans play in these interactions. Consequently, ecologists 

have traditionally been interested in all forms of life from prokaryotic bacteria to macro-eukaryotes, 

e.g. large mammals. Parasitic organisms live in intimate contact with another organism, the host, on 

which they are energetically dependent and on which they exert some sort of harm (Thieltges et al. 

2013). Parasites are, therefore, consumers that use their hosts’ resources and thus are integral 

elements of food webs (Lafferty et al. 2006b, Kuris et al. 2008). Hence the study of parasites falls well 

within the wide field of ecology. However, parasites and their relationship to and interactions with 

hosts have traditionally been studied by a comparably small group of scientists, parasitologists, and 

the exchange of ideas between ecologists and parasitologists has long been rather limited (Poulin 

2007). 

Exceptions to this are parasite species that affect humans, livestock or crops as pathogens. 

These have often been extensively studied from veterinary, phytopathological or medical perspectives. 

Indeed, parasitic pathogens are responsible for some of the world’s most important diseases of 

humans, plaguing millions of people and constituting major global health problems. Malaria alone has 

accounted for 200 million cases and an estimated 584,000 deaths, mostly among African children, in 

2013 (WHO 2014), and helminth infections in humans are estimated to affect up to 4.3 billion people 

worldwide, i.e. more than half of the planet’s population (Crompton 1999). Highlighting the medical 

relevance of these parasites, the 2015 Nobel Prize in Physiology or Medicine was jointly awarded to 

researchers working on therapies against Malaria and helminth infections.  

Except for this obviously important role of some species as disease agents, parasites have long 

been neglected and considered unimportant in the context of most ecological studies, and vice versa 

new ecological ideas and theories were often ignored by parasitologists (Poulin 2007). However, the 

last 25 to 30 years have seen a slow but steady advancement of our understanding of parasites as 

important and integral elements of ecosystems (Poulin 1999, Hudson et al. 2006), leading to a new 

area of research at the junction of ecology and parasitology (Thomas et al. 2009), called Ecological 

Parasitology.  

Parasites are highly diverse and occur in literally every ecosystem, and parasitism is regarded 

as the most popular lifestyle on Earth (Hechinger & Lafferty 2005 and references therein). Since we 

know little of the total diversity on our planet (with about 90% of the estimated 8.7 million species still 
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awaiting description, Mora et al. 2011), we cannot precisely know the total number of parasitic species 

but current estimations are ranging from one third to over half the diversity on the planet (reviewed 

in Poulin 2014) and practically all free-living metazoan species harbour one or more parasite species 

(Poulin & Morand 2004). At the ecosystem level parasites have been shown to be important structuring 

forces in trophic transmissions and food webs (Lafferty et al. 2006b). They make up a large proportion 

of the cumulative biomass and thus considerably contribute to the energy flow within ecosystems 

(Kuris et al. 2008, Thieltges et al. 2008). Furthermore, parasites provide vital ‘ecosystem services’, such 

as regulation of host abundance or even concentration of pollutants (Sures 2003, Dobson et al. 2008). 

It has been argued, therefore, that it is even impossible to fully understand ecosystems without 

considering parasites (Lafferty et al. 2006a). Moreover, based on their often complex life cycles and 

strong interaction in ecosystems, parasites may serve as useful bioindicators to assess environmental 

conditions and changes (Lafferty 1997, Vidal-Martínez et al. 2010, Nachev & Sures, 2015).  

Our environment is rapidly and drastically changing due to anthropogenic pressures, such as 

population growth, increased pollution, growing needs of resources and, maybe most challenging, 

global warming. Especially climate change and global warming are regarded to have major impacts on 

parasites with many, often unforeseeable, consequences on parasite transmission patterns, life-

history traits, virulence, and on entire ecosystems (Marcogliese 2001, 2008). Moreover, we do not 

know how these complex changes in ecosystems will affect us in the future. Examples have shown how 

environmental alterations, such as eutrophication of water bodies due to agriculture, industrialization 

or urbanization, can affect parasite communities and trigger complex and often drastic changes that 

can restructure whole ecosystems. A well-documented example are local extinctions of amphibian 

populations in North American freshwaters that were caused by increased prevalence of the 

trematode Riberioa ondatrae. These parasites utilise amphibians as a second intermediate host in 

which they cause malformations that make infected animals easy prey for predatory birds, the 

parasite’s final host. As a result of anthropogenic nutrient enrichment in these ecosystems, suitable 

conditions for abundant snail intermediate host populations were created, offering an ideal habitat for 

the asexual reproduction of Riberioa ondatrae cercariae that then infect amphibian tadpoles and cause 

malformations (Johnson & Chase 2004, Johnson et al. 2007). Such examples show the essentiality of 

understanding host-parasite systems at the ecosystem level. 

While there are some exceptionally well-studied aquatic ecosystems that focus on the roles of 

parasites in these systems and allow predictions of the impact and possible effects of environmental 

changes (e.g. Kuris et al. 2008, Preston et al. 2013, Thieltges et al. 2013, Lagrue et al. 2015), these 

systems are geographically far apart and highly different (marine, intertidal with brackish water, or 

freshwater). On the other hand, our knowledge of host-parasite interaction in other ecosystems, such 

as man-made waterbodies (e.g. impounded lakes, reservoirs, channels etc.), is still very limited and 
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large-scale studies focussing on the role of parasites in such systems are scarce. However, especially 

impounded lakes and reservoir systems play important roles in densely populated areas, where they 

serve as water storage for drinking water supply and are widely used for recreational activities, e.g. 

swimming or water sports. Furthermore, such man-made freshwater systems constitute important 

biodiversity hot spots, especially in urbanised areas. With more than 5 million people and an area of 

approximately 4,400 km2 the metropolitan Ruhr area is one of the most densely populated and largest 

urban agglomerations in Europe. The eponymous extensive river system of the Ruhr and its tributaries 

consists of a network of interconnected reservoirs and impounded lakes (hereinafter referred to as 

reservoirs) that play a vital role for the whole region. However, our knowledge of the ecological role 

of parasites in these aquatic habitats is still fairly limited. It is therefore crucial that we understand the 

integral role of parasites to fully comprehend the ecology of such systems. In order to study complex 

interactions in ecosystems, a group of parasites is required that can adequately reflect this complexity 

and enable comparisons between different habitats.  

Digenean trematodes are a particularly promising group of parasites that lend themselves to 

investigating and assessing environmental conditions and ecosystem changes in aquatic systems 

(Huspeni & Lafferty 2004). They are ubiquitous and the most common metazoan parasites in aquatic 

ecosystems (Koehler et al. 2012), which makes them valuable bionindicators to compare different 

ecosystems. With an estimated number of 24,000 known species (Dobson et al. 2008), digenean 

trematodes are amongst the most species-rich parasite groups. Most importantly, trematodes typically 

have complex multiple-host life cycles, with a wide variety of vertebrate species serving as definitive 

hosts, molluscs (mainly gastropods, rarely bivalves) as first intermediate host, and a large group 

(depending on trematode species, usually fishes or invertebrates) as potential second intermediate 

host (Figure 1). Such multiple-host life cycle enables us to study the complex roles of parasites in 

ecosystems at many levels and in great detail. Moreover, due to these complex life cycles with snails 

serving as common first intermediate hosts, trematode communities in snails reflect the richness and 

abundance of free-living assemblages and are suitable bionindicators of the diversity of free-living 

species (Hechinger et al. 2007).  

Adult digeneans live in the vertebrate definitive host, in which they reproduce sexually, 

typically via cross-fertilisation. Most trematode life cycles are partially aquatic and eggs produced by 

the adult parasites are excreted into the aquatic environment, usually with the final host’s faeces, and 

contain a single short-lived larval stage each, the miracidium. For aquatic trematodes the ciliated 

miracidium hatches in the water and actively seeks out and infects a suitable first intermediate mollusc 

host, in which the miracidium transforms into a mother sporocyst and asexual reproduction occurs, 

either via daughter sporocysts or rediae. In the course of this process, large parts of the snail tissue are 

exploited by the parasites that replace the digestive gland or the gonads, usually resulting in castration 
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of the host snail. Each sporocyst or redia produces numerous infective dispersive stages, the cercariae, 

which can be released from an infected snail host in large numbers and over long periods of time. Since 

cercariae have limited energy reserves and are short-lived, it is crucial that cercarial emergence time 

is triggered by environmental conditions (e.g. sunshine or temperature) that will enhance the likeliness 

of encountering the next target host and the individual cercarial behaviour is adapted to enhancing 

the transmission success (Combes et al. 1994). Depending on the transmission strategy, cercarial 

morphology is very diverse and can often be used to distinguish trematode species. After release from 

the snail host, cercariae disperse in the aquatic environment to seek out a suitable second 

intermediate host and upon contact shed their tail and encyst in or on the host as metacercariae. The 

second intermediate host is usually part of the definitive host’s diet and the parasites are trophically 

transmitted to the next host. In order to facilitate transmission to the next host, some trematode 

species can alter the behaviour of the infected intermediate host, making parasitized prey more 

susceptible to predation by final host predators (Lafferty & Morris 1996). Alternatively cercariae of 

some species, such as trematodes of the family Schistosomatidae, directly seek out and penetrate their 

Figure 1 Schematic drawing of a typical aquatic life cycle of digenean trematodes showing the free-living parasite 
stages and the different host groups. 1st intermediate snail hosts and free-swimming trematode larval stages, 
the cercariae that are subject of this study are highlighted in blue. Area highlighted in light blue indicates stages 
that usually occur in water. 
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definitive host or encyst on aquatic plants waiting to be directly eaten by a suitable definitive host (e.g. 

Notocotylus attenuatus). Once in the definitive hosts, the trematodes migrate to their preferred site 

of infection where they reach sexual maturity, reproduce and produce eggs, thereby completing the 

life cycle. This generalized life cycle applies to the majority of trematode species but variations and 

exceptions can occur depending on the life strategies of certain species, e.g. the land-based life cycle 

of Dicrocoelium dendirticum relies on fully embryonated eggs being directly eaten by a terrestrial snail.  

Despite their importance in aquatic habitats, the ecology of trematodes has never been 

extensively studied in complex interconnected reservoir systems in densely populated areas that are 

subject to intense anthropogenic pressure and use. A preliminary study of trematodes from the Ruhr 

area in Germany revealed a diverse trematode fauna with species-rich and abundant trematode 

communities, including the presence of bird schistosomes that can cause swimmer’s itch in humans 

(Soldánová et al. 2010), indicating that the relatively young man-made reservoirs of the Ruhr river 

system may offer ideal conditions to study the role of trematodes in reservoirs. Such a single study can 

however only provide a first glimpse at the complex role of trematodes in an ecosystem, leaving many 

questions unanswered and many issues unresolved that require further attention. 

Traditionally morphological characteristics of adult trematodes, cercariae and metacercariae 

have been used to identify trematode species and study the parasites’ diversity. However, 

morphological species identification can be problematic, especially in groups with morphologically 

similar cryptic species. The incorporation of molecular data has facilitated unambiguous species 

identification, diagnoses of problematic taxa and the discovery of cryptic species (Georgieva et al. 

2013a). Furthermore, molecular tools allow the elucidation of complex trematode life cycles by 

matching sequences from different developmental stages of the parasite (e.g. metacercariae, cercariae 

and adults) that were sampled at different times and/or locations (Criscione et al. 2005). Integrative 

approaches that combine both morphological and molecular approaches are most promising, since 

they allow accurate identifications and descriptions as well as thorough comparisons with already 

described specimens. The first study of trematodes from the Ruhr area identified trematode diversity 

solely based on morphological species identification. Since taxonomy of many trematode groups has 

been shown to be much more complex than previously estimated and the diversity much higher than 

morphological assessment alone can reveal, it is likely that these samplings do not reflect the whole 

diversity of trematodes in the studied system. The high cryptic diversity recently shown in North 

American and European Diplostomum spp. suggests this (Locke et al. 2010, Georgieva et al. 2013a, 

Blasco-Costa et al. 2014, Pérez-del-Olmo et al. 2014), since these parasites were prevalent in the 

above-mentioned study from Germany. It remains a crucial question whether taxonomical in-depth 

studies based on integrative morphological and molecular approaches can provide additional insights 

and reveal hidden trematode diversity. 
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However, the knowledge of the full diversity of trematode species in a system does not give us 

information on their functional role in the respective ecosystem. Trematodes have been shown to 

contribute to a large extend to the biomass in aquatic ecosystems and play important parts in 

structuring food webs and energy flow (Thieltges et al. 2008, Preston et al. 2013, Lambden & Johnson 

2013), yet no studies on this exist from German freshwaters. It remains to be studied what functional 

role trematodes play in reservoir systems and what the biomass contribution of individual trematode 

species amounts to in such habitats.  

Furthermore, some trematode species are medically important disease agents, such as human 

schistosomes that cause Bilharziasis or Schistosomiasis with an estimated 230 million people infected 

and a further 500 million at risk of infection worldwide (Grimes et al. 2015). In Europe, bird 

schistosomes are the causative agents of swimmer’s itch or cercarial dermatitis, an allergic skin 

inflammation caused by the free-swimming cercariae that is considered a re-emerging disease in 

Europe (reviewed in Soldánová et al. 2013, Appendix II). These aspects highlight the importance to 

study snail-trematode interactions in aquatic ecosystems also from a human health perspective. The 

first study on trematode communities from the Ruhr revealed the presence of bird schistosomes, 

which exhibited a high prevalence at some of the sampling sites (Soldánová et al. 2010). Since these 

systems are man-made waterbodies that play important roles in densely populated areas where 

some of the reservoirs are used for recreational activities, such as swimming, surfing or canoeing, 

the relevance of trematodes for humans needs to be assessed in the context of given local factors in 

order to provide a conclusive risk assessment of human infections. 

Finally, since it is impossible to fully understand ecosystems without considering its parasites 

(Lafferty et al. 2006a), it is crucial to assess the organization and dynamics of trematodes and the 

overall diversity of trematode assemblages in snails in the Ruhr reservoir system. The extensive river 

system of the Ruhr and its tributaries consists of a network of interconnected reservoirs, and it remains 

to be tested whether the diversity of trematode assemblages in snails is equally distributed among the 

connected waterbodies and different snail hosts or whether there are structural patterns in the 

trematode assemblage and community structure. Altogether, such an approach would help to advance 

our understanding of the complex host-parasite interactions in reservoir systems and would reveal 

valuable information on final host occurrence and trophic interactions in the ecosystem. 

This thesis therefore aims at addressing the importance of trematodes in the Ruhr reservoir 

systems by identifying larval trematode infections of four lymnaeid (Radix auricularia, Radix peregra, 

Stagnicola palustris and Lymnaea stagnalis) and two planorbid snail species (Gyraulus albus and 

Segmentina nitida). Thereby, I will, quite literally, open a ‘can of worms’. However, more than creating 

a situation that causes a lot of problems and confusion, this shall reveal the complex role trematodes 

play in reservoir ecosystems. The following individual studies of this work provide (i) detailed 
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integrative approaches to taxonomically questionable trematode groups to assess the full diversity in 

the ecosystem, (ii) an analysis of the productivity and emergence of trematode cercariae to assess the 

parasites’ functional role in the ecosystem, (iii) an evaluation of the risk factors of swimmer’s itch via 

a detailed case study of one of the Ruhr lakes and finally (iv) an assessment of the overall diversity, 

distribution and community structure of larval trematodes and the identification of potential 

trematode transmission pathways between their host groups. These aspects will be individually 

addressed and discussed in detail in the following chapters and summarized and debated in an overall 

discussion. Altogether, this holistic approach, encompassing trematode taxonomy, their functional 

part in ecosystems, the role of medically relevant species and their contribution to an ecosystem’s 

diversity will provide a detailed and comprehensive insight into the complex role of trematodes in an 

important reservoir system in Europe. 
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3. Aims and objectives

Aims 

The aims of this study are to address essential aspects of trematode communities in snail hosts in the 

Ruhr reservoir system in order to give a comprehensive overview of their role in this ecosystem. To be 

able to do so, taxonomic, functional, public health and ecological aspects of trematode infections in 

six snail host species were studied in detail. Together, these aspects, addressed in individual studies, 

will provide a broad but detailed insight into the role of trematodes in interconnected man-made

waterbodies in Europe and expand our knowledge on this important group of parasites. In order to 

do so, larval trematode infections of four lymnaeid (Radix auricularia, Radix peregra, Stagnicola 

palustris and Lymnaea stagnalis) and two planorbid snail species (Gyraulus albus and Segmentina 

nitida) from five waterbodies of the Ruhr reservoir system were identified and studied. 

Objectives 

The individual objectives of this work are as follows: 

I. Taxonomic aspects

Application of thorough integrative approaches combining morphological and molecular methods

to taxonomically problematic trematode groups or specimens that showed conspicuous

morphological features to reveal potential cryptic diversity and provide detailed descriptions of

cercariae

II. Functional aspects

Assessment of the productivity and emergence of cercariae, using the example of Trichobilharzia

szidati cercariae from Lymnaea stagnalis, by determining (i) temporal cercarial emission patterns

and (ii) the average daily output rate of cercariae per snail that will allow accurate estimations of

the biomass of cercariae released into the ecosystem

III. Public health aspects

Identification of the occurrence of the main causative agents of simmer’s itch, Trichobilharzia spp.,

in Lake Baldeney (Baldeneysee) and estimation of risk factors based on parasite and host biology

and the given local situations
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IV. Ecological aspects

Assessment of the overall diversity and distribution of larval trematode assemblages in the six

studied snail species and analysis of trematode component community composition and

structure in the Ruhr river system, as well as the identification of trematode transmission

pathways between their hosts
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4. Materials and methods

This chapter presents a general overview of the sampling approach and the individual methods applied 

in the laboratory in order to identify trematode infections in the individual snail populations and to 

assess their role in the Ruhr river system. More detailed accounts of materials and methods of the

individual studies are presented in the respective chapters. 

Study area and sampling 

In order to assess the taxonomic diversity and distribution patterns of trematode in the Ruhr area, 

we collected snails at several sampling sites in five reservoirs of the Ruhr river catchment area in

Germany: Baldeneysee (51°24′ 20.08″N, 7°2′22.47″E); Hengsteysee (51°24′52.17″N, 7° 27′42.55″E); 

Hennetalsperre (51°19′50.97″N, 8°15′46.82″E); Sorpetalsperre (51°20′15.01″N, 7°56′46.18″E); and 

Versetalsperre (51°10′55.71″N, 7°40′57.12″E) (Figure 2). In order to be able to accurately estimate the 

potential risk of swimmer’s itch in Baldeneysee, some additional sampling sites were selected at this 

lake to assess the occurrence of bird schistosomes of the genus Trichobilharzia (see Chapter III). 

All waterbodies were constructed during the first half of the 20th century along the Ruhr river

and its tributaries as drinking water reservoirs, natural river water treatment plants and to regulate 

the water flow of the whole river system. Today, such reservoir systems are typical for man-made 

water bodies in Central Europe and fulfil viable functions in densely populated areas, such as drinking 

water supply, the generation of hydropower, or are used for recreational activities. All reservoirs and 

impounded lakes in this area are centrally operated by the Ruhr River Association (Ruhrverband), 

making it the largest multi-reservoir system in Germany (Ruhrverband 2015). Table 1 provides 

information on the individual reservoirs. 
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Table 1 General characteristics of the study reservoirs and water quality data. 

Baldeney-
see 

Hengstey-
see 

Sorpetal-
sperre 

Hennetal-
sperre 

Versetal-
sperre 

Reservoir 
dataa

Construction 
(year) 

1931-1933 1917-1929 1926-1935 1901-1905 
(1950-1955) 

1929-1951 

Surface area 
(km2) 

2.64 1.36 3.30 2.10 1.8 

Depth 
(m) 

3.14 
(mean) 

1.94 
(mean) 

up to 57 up to 51 up to 52 

Volume 
(Mio. m3) 

7.6 3.3 70 38.4 32.8 

Water quality 
data 

Eutrophication 
status 

eutrophic eutrophic mesotrophic– 
oligotrophicb 

mesotrophicb oligotrophicb 

a Ruhrverband (2015)
b AWWR & Ruhrverband (2013) 

Figure 2 Map of the Ruhr area and the reservoir system studied. Individual sampling sites are indicated by red 
dots. Abbreviations: Ba, Baldeneysee; He, Hengsteysee; Ve, Versetalsperre; So, Sorpetalsperre; Hn, 
Hennetalsperre. 

Each sampling site was visited repeatedly (11 times) during the summer months (May – September) in 

two consecutive years, 2012 and 2013. At each site, snails were collected by hand or with the aid of 

hand-nets from stones, sediment and aquatic vegetation. Although sampling was not quantitative, the 

sample sizes reflected the abundance of the individual hosts at the sampling sites, since the sampling 

effort (i.e. time spent at each locality) was comparable at each site.  
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A total of 6,569 snails belonging to 19 species from eight families were collected during that time (Table 

2). The most abundant species belonging to the families Planorbidae and Lymnaeidae that are known 

to serve as important intermediate hosts for digenean trematodes were selected for thorough 

examination for trematode infections (highlighted in bold in Table 2). In total 5,347 snails [1,909 

Radix auricularia (L.), 349 R. peregra (Müller), 668 Stagnicola palustris (Müller), 245 Lymnaea 

stagnalis (L.), 1,981 Gyraulus albus (Müller) and 195 Segmentina nitida (Müller)] were used in the 

following studies. 

Table 2 Snail species collected in the Ruhr reservoirs during the sampling campaigns in 2012 and 2013. Snail 
species analysed for trematode infections are highlighted in bold. 

Family Snail spp. Number 
sampled 

Planorbidae Ancylus fluviatilis 159 

Anisus vortex 175 
Bathyomphalus contortus 176 
Gyraulus albus 1,981 
Planorbarius corneus 121 
Planorbis planorbis 4 
Segmentina nitida 195 

Lymnaeidae Galba truncatula  61 

Lymnaea stagnalis 245 

Radix auricularia 1,909 

Radix peregra 349 

Stagnicola palustris 668 

Sphaeriidae Sphaerium sp. 3 

Viviparidae Viviparus contectus 6 

Hydrobiidae Potamopyrgus antipodarum 2 

Physidae Physa fontinalis 263 

Physella acuta 1 

Bithyniidae Bithynia tentaculata 170 

Acroloxidae Acroloxus lacustris 81 

Trematode identification 

After each sampling trip all snails were placed in individual cups with filtered lake water in the 

laboratory at a temperature of 20°C and exposed to a light source (LED lamps) for two to five days to 

induce cercarial shedding (see Figure 3). Snails that did not emit cercariae during that time were 

dissected and carefully checked for prepatent infections. Trematode stages were first identified alive 

under an Olympus BX51 microscope with the help of appropriate identification keys or other relevant 

primary sources (e.g. Faltýnková et al. 2007, 2008a, Niewiadomska 1986, Niewiadomska & Kiseliene 

1994) and documented with an Olympus UC30 digital camera. For further investigation of specimens 

that could not be accurately identified and for species belonging to taxonomically problematic groups, 

30



trematode material was fixed in molecular grade ethanol and hot and cold 4% formaldehyde solution 

for molecular and morphological studies, respectively. Trematode genera that are known to be 

taxonomically problematic or groups that showed conspicuous morphological features were subjected 

to thorough morphological and molecular studies to reveal potential cryptic diversity (see Chapter I). 

Following Bush et al. (1997) parasite prevalence (P) was calculated in each study as the proportion of 

infected host individuals in relation to total number of host individuals in a population (P=ninf/N*100, 

with ninf = infected snails and N = all snails in a population). 

Figure 3 From lake to laboratory: Sampling and identification of trematode infections in snails. A, collecting 
snails at the lake; B, separating snails in individual cups for cercarial emission; C, released cercariae in cup (left) 
and intramolluscan trematode stages in dissected snail (right); screening snails for trematode infections; E: 
trematode redia and cercaria under light microscopy; F: identification of trematode species based on 
morphology and/or molecular tools. 

For the analysis of the cercarial surface morphology and body spination by scanning electron 

microscopy (SEM), formalin-fixed cercariae were post-fixed in 2% osmium tetroxide for two hours, 

washed in 0.1 M phosphate buffer, dehydrated through an acetone series, point-dried and sputter-

coated with gold. SEM photographs were taken with a JEOL JSM-7401F field emission scanning electron 

microscope. All SEM photographs were taken at the Laboratory of Electron Microscopy at the Biology 

Centre of the Czech Academy of Sciences in České Budějovice. In order to obtain metrical data of live 

and formalin-fixed isolates, measurements from light and scanning electron microscope photographs 

were taken with the program ImageJ v.1.47 (Abramoff et al. 2004). 
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For molecular analyses, total genomic DNA was isolated from ethanol-fixed cercariae or rediae 

obtained from single snail individuals. Polymerase chain reaction (PCR) amplifications of different 

target gene regions (mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 1 

[nad1], partial fragments of the barcode region of the mitochondrial cytochrome oxidase subunit 1  

gene [cox1], and the internal transcribed spacer 1 and 2 including the 5.8S subunit of the ribosomal 

RNA-gene [ITS1- 5.8S-ITS2]) were performed using Ready-To-Go-PCR Beads (GE Healthcare, UK) and 

the appropriate primers (see Chapter I for full details, e.g. on specific primers and thermocycling 

profiles used for individual trematode groups). PCR amplicons were purified using Qiagen QIAquick™ 

PCR Purification Kits (Qiagen Ltd, UK) and sequenced directly for both strands using the respective PCR 

primers. Sequencing was performed on an ABI Prism 3130xl automated sequencer using ABI Big Dye 

chemistry (ABI Perkin Elmer, UK) according to the manufacturer’s protocol. Contiguous sequences 

were assembled with MEGA v6 (Tamura et al., 2013) and submitted to GenBank. Distance-based 

neighbour-joining (NJ), maximum likelihood (ML) and Bayesian inference (BI) analyses were used for 

tree reconstruction based on newly-generated and published sequences for the individual trematode 

groups studied (see Chapter I).  

 

 

More detailed information on the methodology of the individual studies are presented in the 

respective chapters, i.e. on the cercarial emission experiment (Chapter II), the assessment of risk 

factors of swimmer’s itch (Chapter III), and the calculation of diversity indices of parasite assemblages 

and component communities in the different snail host species (Chapter IV). 
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5. Chapter I
Taxonomy of selected trematode groups – a closer look 

This chapter contains the three following studies that investigate the diversity of taxonomically 

questionable groups by applying an integrative approach, combining thorough morphological and 

molecular methods. 

5.1 Georgieva, S.*, Selbach, C.*, Faltýnková, A., Soldánová, M., Sures, B., Skírnisson, K., & 

Kostadinova, A. (2013). New cryptic species of the 'revolutum' group of Echinostoma

(Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasites 

& Vectors, 6(1), 64. *Authors contributed equally 

5.2  Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A., Kalbe, M., & Sures, B. (2014). 

Morphological and molecular data for larval stages of four species of Petasiger Dietz, 1909 

(Digenea: Echinostomatidae) with an updated key to the known cercariae from the Palaearctic. 

Systematic Parasitology, 89(2), 153–66. 

5.3  Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A., & Sures, B. (2015). Integrative 

taxonomic approach to the cryptic diversity of Diplostomum spp. in lymnaeid snails from 

Europe with a focus on the ‘Diplostomum mergi’ species complex. Parasites & Vectors, 8, 300. 
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New cryptic species of the ‘revolutum’ group of
Echinostoma (Digenea: Echinostomatidae)
revealed by molecular and morphological data
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Abstract

Background: The digenean species of Echinostoma (Echinostomatidae) with 37 collar spines that comprise the so-
called ‘revolutum’ species complex, qualify as cryptic due to the interspecific homogeneity of characters used to
differentiate species. Only five species were considered valid in the most recent revision of the group but recent
molecular studies have demonstrated a higher diversity within the group. In a study of the digeneans parasitising
molluscs in central and northern Europe we found that Radix auricularia, R. peregra and Stagnicola palustris were
infected with larval stages of two cryptic species of the ‘revolutum’ complex, one resembling E. revolutum and one
undescribed species, Echinostoma sp. IG. This paper provides morphological and molecular evidence for their
delimitation.

Methods: Totals of 2,030 R. auricularia, 357 R. peregra and 577 S. palustris were collected in seven reservoirs of the
River Ruhr catchment area in Germany and a total of 573 R. peregra was collected in five lakes in Iceland. Cercariae
were examined and identified live and fixed in molecular grade ethanol for DNA isolation and in hot/cold 4%
formaldehyde solution for obtaining measurements from fixed materials. Partial fragments of the mitochondrial
gene nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) were amplified for 14 isolates.

Results: Detailed examination of cercarial morphology allowed us to differentiate the cercariae of the two
Echinostoma spp. of the ‘revolutum’ species complex. A total of 14 partial nad1 sequences was generated and
aligned with selected published sequences for eight species of the ‘revolutum’ species complex. Both NJ and BI
analyses resulted in consensus trees with similar topologies in which the isolates from Europe formed strongly
supported reciprocally monophyletic lineages. The analyses also provided evidence that North American isolates
identified as E. revolutum represent another cryptic species of the ‘revolutum’ species complex.

Conclusion: Our findings highlight the need for further analyses of patterns of interspecific variation based on
molecular and morphological evidence to enhance the re-evaluation of the species and advance our
understanding of the relationships within the ‘revolutum’ group of Echinostoma.
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Background
The digenean species of Echinostoma Rudolphi, 1809
(Echinostomatidae) with 37 collar spines that comprise
the so-called Echinostoma ‘revolutum’ complex, qualify
as cryptic (sensu Bickford et al. [1]; see also Pérez-Ponce
de León and Nadler [2] for a recent review) due to the
interspecific homogeneity of characters used to differen-
tiate species. Only five species, the Eurasian Echinostoma
revolutum (Frölich, 1802), E. echinatum (Zeder, 1803)
and E. jurini (Skvortsov, 1924), the North American E.
trivolvis (Cort, 1914) and the African E. caproni Richard,
1964, were considered valid in the most recent revision
of the group using for species delimitation a single
morphological feature of the larval stages (the number
of pores of the para-oesophageal gland-cells in the
cercaria), the specificity towards the first intermediate
host (at the familial level), the ability to infect avian or
mammalian hosts (or both) and geographical range on a
global scale (continents) [3-5] (but see Kostadinova and

Gibson [6] for a critical review). It is worth noting that
E. echinatum has not been formally described and justi-
fied in a taxonomic publication and is not recognised as
valid [see 6 for details]. However, recent molecular stu-
dies have demonstrated a higher diversity within the
‘revolutum’ species complex. Thus one African species,
Echinostoma deserticum Kechemir et al., 2002, and a yet
unidentified species from New Zealand were distin-
guished based on molecular data [7] (see also [8]), and
E. trivolvis was found to represent a species complex [9].
Additional data on the geographical distribution of the
Echinostoma spp. have also been obtained. E. revolutum
was recorded in Australia [7] and North America
[10,11], Echinostoma paraensei Lie & Basch, 1967 in
Australia and South America [7], and E. cf. robustum in
North and South America [11].
The pioneer molecular studies, predominantly based on

laboratory strains, have revealed that the mitochondrial
nad1 gene provides a better resolution for investiga-

Table 1 List of species/isolates of the ‘revolutum’ species complex used in this study, their hosts, localities and
GenBank accession numbers

Species Host Locality Accession no. Reference

Echinostoma sp. IG Radix peregra (isolate RPI1) Nordic House (Iceland) KC618448 Present study

Echinostoma sp. IG Radix auricularia (isolate RAG1) Hengsteysee (Germany) KC618449 Present study

Echinostoma sp. IG Radix auricularia (isolate RAG2) Hengsteysee (Germany) KC618450 Present study

Echinostoma revolutum Radix peregra (isolate RPI2) Lake Myvatn (Iceland) KC618451 Present study

Echinostoma revolutum Radix peregra (isolate RPI3) Lake Myvatn (Iceland) KC618452 Present study

Echinostoma revolutum Radix peregra (isolate RPI4) Lake Myvatn (Iceland) KC618453 Present study

Echinostoma revolutum Stagnicola palustris (isolate SPG1) Hengsteysee (Germany) KC618454 Present study

Echinostoma revolutum Radix auricularia (isolate RAG3) Hennetalsperre (Germany) KC618455 Present study

Echinostoma revolutum Radix auricularia (isolate RAG4) Hennetalsperre (Germany) KC618461 Present study

Echinostoma revolutum Radix peregra (isolate RPG1) Hennetalsperre (Germany) KC618456 Present study

Echinostoma revolutum Radix peregra (isolate RPG2) Hennetalsperre (Germany) KC618457 Present study

Echinostoma revolutum Radix peregra (isolate RPG3) Hennetalsperre (Germany) KC618458 Present study

Echinostoma revolutum Radix peregra (isolate RPG4) Hennetalsperre (Germany) KC618460 Present study

Echinostoma revolutum Radix peregra (isolate RPG5) Hennetalsperre (Germany) KC618459 Present study

Echinostoma caproni na Cameroon AF025838 Morgan & Blair [7,13]

Echinostoma caproni na Madagascar, Egypt AF025837 Morgan & Blair [7,13]

Echinostoma caproni Rattus norvegicus Cairo (Egypt) AJ564378 Marcilla et al. (unpublished)

E. deserticum* na Niger AF025836 Morgan & Blair [7,13]

Echinostoma cf. friedi Planorbis sp. Wales (UK) AY168937 Kostadinova et al. [14]

Echinostoma friedi Mesocricetus auratus (exp.) Pons, Valencia (Spain) AJ564379 Marcilla et al. (unpublished)

Echinostoma paraensei na Brazil AF025834 Morgan & Blair [7,13]

Echinostoma revolutum Radix peregra/Columba livia (exp.) Bulgaria AY168933 Kostadinova et al. [14]

Echinostoma revolutum Lymnaea elodes/Gallus gallus (exp.) Shock Lake, Indiana (USA) GQ463082 Detwiler et al. [11]

Echinostoma revolutum Lymnaea elodes Pond A, Indiana (USA) GQ463088 Detwiler et al. [11]

Echinostoma revolutum Lymnaea elodes Pond A, Indiana (USA) GQ463090 Detwiler et al. [11]

Echinostoma revolutum Lymnaea elodes Pond A, Indiana (USA) GQ463086 Detwiler et al. [11]
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ting relationships within the problematic Echinostoma
‘revolutum’ species complex in comparison with the
nuclear rRNA spacers and the mitochondrial cox1 gene
[12,13]. The subsequent DNA-based studies [7,9-11,14] have
provided a framework for investigating genetic variation in
natural Echinostoma spp. populations and revealed novel
data on the cryptic variation, identification and geograph-
ical distribution of the species of the ‘revolutum’ complex.
However, in contrast with the wealth of sequences gath-

ered recently from North America, which have revealed
high diversity (six cryptic lineages) within the ‘revolutum’
complex of Echinostoma [9,11], data from European natural
populations are virtually lacking. Thus, of the eight species
described and/or recorded from Europe, i.e. E. revolutum,
E. paraulum Dietz, 1909, E. jurini (Skvortsov, 1924), E.
miyagawai Ishii, 1932, E. robustum Yamaguti, 1935, E.
bolschewense (Kotova, 1939), E. nordiana (Baschkirova,
1941), E. friedi Toledo et al., 2000 [3,5,15-22], sequence

data are available only for E. revolutum [7,12-14] and E.
friedi (GenBank AJ564379).
In a study of the digeneans parasitising molluscs in

central and northern Europe we found that Radix
auricularia (Linnaeus, 1758), Radix peregra (Müller,
1774) and Stagnicola palustris (Müller, 1774) were
infected with larval stages of two species of the
Echinostoma ‘revolutum’ complex of cryptic species, one
resembling E. revolutum sensu stricto (s.s.) and one
undescribed species (see also [23]). Here we describe the
cercariae of these two species and provide morphological
and molecular evidence for their delimitation. Further,
we extend the approaches of Morgan and Blair [7,13],
Kostadinova et al. [14] and Detwiler et al. [11] to the
relationships within the ‘revolutum’ species complex
inferred from the nad1 gene with the newly-generated
sequence data from natural infections in snails in
Europe. Phylogenetic analyses revealed the presence of

Table 1 List of species/isolates of the ‘revolutum’ species complex used in this study, their hosts, localities and
GenBank accession numbers (Continued)

Echinostoma revolutum Lymnaea elodes Shock Lake, Indiana (USA) GQ463084 Detwiler et al. [11]

Echinostoma revolutum Ondatra zibethicus Virginia (USA) JQ670862 Detwiler et al. [11]

Echinostoma revolutum na “Germany, Europe” AF025832 Morgan & Blair [7,13]

Echinostoma robustum** Lymnaea elodes Minnesota (USA) GQ463054 Detwiler et al. [11]

Echinostoma robustum** Biomphalaria glabrata/G. gallus (exp.) Brazil GQ463055 Detwiler et al. [11]

Echinostoma robustum** Lymnaea elodes Pond A, Indiana (USA) GQ463053 Detwiler et al. [11]

Echinostoma trivolvis Ondatra zibethicus Virginia (USA) JQ670860 Detwiler et al. [9]

Echinostoma trivolvis Ondatra zibethicus Virginia (USA) JQ670852 Detwiler et al. [9]

Echinostoma trivolvis Ondatra zibethicus Virginia (USA) JQ670854 Detwiler et al. [9]

Echinostoma trivolvis Ondatra zibethicus Virginia (USA) JQ670858 Detwiler et al. [9]

Echinostoma trivolvis Ondatra zibethicus Virginia (USA) JQ670856 Detwiler et al. [9]

Echinoparyphium recurvatum Radix peregra Wales (UK) AY168944 Kostadinova et al. [14]

Echinoparyphium aconiatum Lymnaea stagnalis Finland AY168945 Kostadinova et al. [14]
* Syn. Echinostoma sp. I Africa of Morgan and Blair [17,13]; ** sensu Detwiler et al. [11].

Table 2 Prevalence of Echinostoma spp. from natural infections in Radix spp. and Stagnicola palustris in Germany and
Iceland

Species Host Locality Prevalence (%)

Echinostoma revolutum Radix peregra Lake Myvatn (Iceland) 2.31

Radix auricularia Hennetalsperre (Germany) 1.92 - 10.00

Radix peregra Hennetalsperre (Germany) 37.50a

Stagnicola palustris Hengsteysee (Germany) 0.74

Echinostoma sp. IG Radix peregra Nordic House (Iceland) 0.94

Radix auricularia Baldeneysee (Germany) 1.32 (2009)b

Radix auricularia Hengsteysee (Germany) 2.00 - 2.90 (2009)b

Radix auricularia Hengsteysee (Germany) 1.56 (2011)b

a Sample size small (n = 16); b Year indicated for different surveys of the same snail host.
Values are calculated for homogenous distinct samples only.
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additional cryptic lineages of the Echinostoma ‘revolutum’
species complex.

Methods
Sample collection
Totals of 2,030 R. auricularia, 357 R. peregra and 577
S. palustris were collected during 2009–2012 in seven
reservoirs of the River Ruhr catchment area (North
Rhine-Westphalia, Germany): Baldeneysee (51°24020.08"N,
7°2022.47"E); Harkortsee (51°23040.56"N, 7°2408.27"E);
Hengsteysee (51°24052.17"N, 7°27042.55"E); Hennetalsperre
(51°19050.97"N, 8°15046.82"E); Kemnader See (51°25019.05"N,
7°15043.07"E); Sorpetalperre (51°200 15.01"N, 7°56046.18"E);
and Versetalsperre (51°10055.71"N, 7°40057.12"E). Seven
distinct samples of R. peregra (a total of 573 snails) were
collected in five localities in Iceland: Lakes Family Park
(64°08015"N, 21°52003"W) and Nordic House (64°08019"N,
21°56045"W) in Reykjavik; Opnur (63°58043"N, 21°10037"W);
Raudavatn (64°05035"N, 21°47014"W); and Helgavogur,
Lake Myvatn (65°38004"N, 16°55028"W) in May and
August 2012. Snails were collected randomly with a
strainer or picked by hand from stones and floating vege-
tation along the shore at several sampling sites at each
reservoir. In the laboratory, snails were labelled and placed
individually into beakers with a small amount of lake
water, and kept under a light source for up to 5 days
to stimulate emergence of cercariae. Thereafter, snails
were measured, dissected and examined for prepatent
infections.

Morphological data
Cercariae were examined and identified live using the
data from the keys of Faltýnková et al. [24,25] and other
relevant primary sources [3,18-22]. Digital photographs
of live cercariae (and rediae) were taken with a digital
camera of an Olympus BX51 microscope. Vital stains
(Neutral Red and Nile Blue sulphate) were used for visu-
alisation of the para-oesophageal gland-cells of the
cercariae. Measurements (in micrometres) were taken
from the digital images with the aid of QuickPHOTO
CAMERA 2.3 image analysis software or the program
ImageJ [26]. Upon preliminary identification, two sam-
ples of cercariae (rediae) per isolate were fixed: (i) in
molecular grade ethanol for DNA isolation and sequen-
cing; and (ii) in hot/cold 4% formaldehyde solution for
obtaining measurements from fixed materials. Snails

Figure 1 Echinostoma sp. IG, drawings of live cercaria. A. Body,
ventral view. B. Tail, lateral view (note that only one of the two
ventro-lateral fin-folds is illustrated). C. Head collar. D. Schematic
illustration of the para-oesophageal gland-cells. Abbreviations: d,
dorsal fin-fold; v, ventral fin-fold. Scale-bars: A, B, 100 μm; C, 50 μm.
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were identified using Glöer [27]. Although R. peregra
and R. ovata (Draparnaud, 1805) have recently been
treated as junior synonyms of R. balthica (Linnaeus,
1758) we used the name R. peregra following the
molecular studies of Bargues et al. [28] and Huňová
et al. [29] which provide sequences for snails sampled in
both central Europe and Iceland.

Molecular data
Total genomic DNA was isolated from ethanol-fixed sin-
gle rediae and/or 10–50 pooled cercariae obtained from

a single snail individual by placing the samples in 200 μL
of a 5% suspension of deionised water and ChelexW

containing 0.1 mg/mL proteinase K, followed by incuba-
tion at 56°C for 3 h, boiling at 90°C for 8 min, and cen-
trifugation at 14,000 g for 10 min. Polymerase chain
reaction (PCR) amplifications of partial fragments of the
mitochondrial gene nicotinamide adenine dinucleotide
dehydrogenase subunit 1 (nad1) were performed in
25 μl reactions using Ready-To-Go-PCR Beads (GE
Healthcare, UK) containing ~2.5 units of puReTaq DNA
polymerase, 10 mM Tris–HCl (pH 9.0), 50 mM KCl,

Figure 2 Echinostoma sp. IG, microphotographs of live cercaria. A. Body, ventral view. B. Dorsal view showing para-oesophageal gland-cells
and outlets (staining with Neutral Red) C. Tail, lateral view. D. Head collar, ventral view showing angle and lateral spines. E. Head collar, dorsal
view, showing dorsal collar spines. Scale-bars: A, C, 100 μm; B, D, E, 50 μm.
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1.5 mM MgCl2, 200 mM of each dNTP and stabilisers
including BSA, 10 mM of each PCR primer, and 50 ng
of template DNA. The following PCR primers were used:
forward NDJ11 (equivalent to JB11 in [13]) 50-AGA TTC
GTA AGG GGC CTA ATA-30 and reverse NDJ2a: 50-
CTT CAG CCT CAG CAT AAT-30 [14]. The thermo-
cycling profile comprised initial denaturation at 95°C for
5 min, followed by 35 cycles with 30 s denaturation at
94°C, 20 s primer annealing at 48°C, and 45 s at 72°C for
primer extension, with a final extension step of 4 min at
72°C.
PCR amplicons were purified using Qiagen QIAquick™

PCR Purification Kit (Qiagen Ltd, UK) and sequenced
directly for both strands using the PCR primers. Sequen-
cing was performed on an ABI Prism 3130xl automated
sequencer using ABI Big Dye chemistry (ABI Perkin-
Elmer, UK) according to the manufacturer’s protocol.
Contiguous sequences were assembled and edited using
MEGA v5 [30] and submitted to GenBank (accession
numbers shown in Table 1).
Newly-generated and published nad1 sequences for

Echinostoma spp. (see Table 1 for details) were aligned
using Clustal W implemented in MEGA v5 with refer-
ence to the amino acid translation, using the echino-
derm and flatworm mitochondrial code [31]. Species
boundaries were assessed via neighbour-joining (NJ)
analyses of Kimura-2-parameter distances using MEGA
v5 (nodal support estimated using 1,000 bootstrap
resamplings) and Bayesian inference (BI) analysis using
MrBayes 3.2 [32,33]. The best-fitting model of nucleo-
tide substitution estimated prior to BI analysis using
jModelTest 2.1 [34] was the Hasegawa-Kishino-Yano
model including estimates of invariant sites and among-
site rate heterogeneity (HKY + I + G).
BI log-likelihoods were estimated with default prior

probabilities and likelihood model settings (nst = 2; rates =
invgamma; ngammacat = 4) over 106 generations via 4 sim-
ultaneous Markov Chain Monte Carlo chains (nchains = 4)
with a sampling frequency of 100. The first 25% of the
samples were discarded (sump burnin = 2500) as deter-
mined by the stationarity of lnL assessed with Tracer v. 1.4
[35]; the remaining trees were used to construct the 50%
majority-rule consensus tree and to estimate the nodal
support as posterior probability values [36]. Genetic
distances (uncorrected p-distance) were calculated with
MEGA v5.

Figure 3 Echinostoma revolutum, drawings of live cercaria. A.
Body, ventral view. B. Tail, lateral view (note that only one of the
two ventro-lateral fin-folds is illustrated). C. Head collar. D. Schematic
illustration of the para-oesophageal gland-cells. Abbreviations: d,
dorsal fin-fold; v, ventral fin-fold; vl, ventro-lateral fin-fold. Scale-bars:
A, B, 100 μm; C, 50 μm.
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Results
Morphological identification of infections in natural snail
populations
We found larval stages of Echinostoma spp. in the snail
populations sampled in three of the seven reservoirs in
the River Ruhr drainage in Germany and in two of the
five lakes in Iceland (see Table 2 for details on hosts and
localities). Three lymnaeid snail species acted as first
intermediate hosts of Echinostoma spp. of the ‘revolutum’
species complex in the areas studied: R. peregra in the
lakes in Iceland and R. auricularia, R. peregra and S.
palustris in the reservoirs in Germany. Prevalences were

usually low (typically 1-3%) but occasionally higher values
were registered (Table 2).
Detailed examination of cercarial morphology allowed

us to identify two types of echinostomatid cercariae
among the isolates sampled in Iceland and Germany
(Figures 1, 2, 3, 4, 5). Both types belong to the ‘revolutum’
species complex of Echinostoma which is characterised by
the following features of the cercariae: (i) 37 collar spines
with an arrangement 5-6-15-6-5 (5 angle and 6 lateral
spines on each side and 15 dorsal spines in a double row;
Figures 1C, 2D,E, 3C, 4D,E); (ii) tail with a tip forming a
highly contractile attenuated process and seven prominent

Figure 4 Echinostoma revolutum, microphotographs of live cercaria. A. Body, ventral view. B. Ventral view showing outlets of para-
oesophageal gland-cells (staining with Neutral Red). C. Tail, lateral view. D. Head collar, ventral view showing angle and lateral spines. E. Head
collar, dorsal view showing dorsal collar spines. Scale-bars: A, C, 100 μm; B, D, E, 50 μm.
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tegumental fin-folds (2 dorsal, 3 ventral and 2 ventro-
lateral; Figures 1B, 2C, 3B, 4C); and (iii) a flame-cell for-
mula 2[(3 + 3 + 3) + (3 + 3 + 3)] = 36.
Eleven isolates (three ex R. peregra from Iceland, plus

two ex R. auricularia, five ex R. peregra and one ex S.
palustris from Germany) were identified as E. revolutum
based on cercarial morphology and especially the presence
of 12 small para-oesophageal gland-cells with long
ducts, located between pharynx and ventral sucker [24]
(Figures 2B, 4B). However, seven isolates of cercariae, one
ex R. peregra from Iceland and six ex R. auricularia from
Germany, further referred to as Echinostoma sp. IG (indi-
cating the origin of the isolates i.e. Iceland and Germany)
exhibited slight differences from the isolates identified as

E. revolutum as follows: (i) collar spines with blunt
(Figures 1C, 2D,E) vs sharp (Figures 3C, 4D,E) tips; (ii)
para-oesophageal gland-cell outlets opening at the margin
of the oral sucker only (one dorsal pair, four dorsolateral
pairs, and one ventro-lateral pair; see Figures 1D, 2B) vs
openings present on the ventral surface of the body (one
pair at the level of pharynx; the remaining i.e. one dorsal
pair, one dorsolateral pair, and three ventro-lateral pairs
opening at the margin of the oral sucker, see Figures 3D,
4B); and (iii) distal dorsal tail fin-fold large vs less promin-
ent (length 40-60% of tail length vs 20-38%; width c.70%
of tail width vs 20-30%; compare Figures 1B, 2C and 3B,
4C; Table 3). Comparison of the metrical data obtained
for live cercariae revealed that Echinostoma sp. IG had a
shorter tail, with distinctly larger distal dorsal fin-fold and
shorter distal ventral fin-fold (Table 3). Furthermore,
although it was difficult to observe the fin-folds in fixed
material thus rendering differentiation difficult, the cer-
cariae of Echinostoma sp. IG were characterised by a
distinctly more elongate, narrower body and a shorter tail
(Figure 5; Table 3); this represents another distinguishing
feature for the two European species studied by us.

Molecular analysis
A total of 14 partial nad1 sequences was generated (11
for E. revolutum and 3 for Echinostoma sp. IG; Table 1).
These sequences were aligned with selected published
sequences representing the data available for eight spe-
cies of the ‘revolutum’ species complex of Echinostoma
generated from both laboratory strains [13] and natural
isolates [9,11,14]; two otherwise unpublished sequences
were also retrieved from GenBank (see Table 1 for
details). The aligned dataset included 39 sequences and
was comprised of 472 nt positions after trimming the
ends to match the shortest aligned sequences. Sequences
for Echinoparyphium spp. of Kostadinova et al. [14]
were used as outgroups (Table 1).
Both NJ and BI analyses resulted in consensus trees

with similar topologies (see Figure 6 for a phylogeny
inferred from genetic distances and BI). The newly-
generated sequences for E. revolutum formed a strongly
supported clade which included a sequence for E. revo-
lutum (s.s.) of Kostadinova et al. [14] (see also [6]). On the
other hand, the sequences for the isolates identified as
Echinostoma sp. IG formed a strongly supported recipro-
cally monophyletic lineage, basal to Echinostoma spp.,
which also incorporated the sequence for an isolate from
Wales (UK) provisionally identified as Echinostoma cf.
friedi by Kostadinova et al. [14]. The isolates comprising
this lineage also exhibited the highest levels of divergence
from the isolates of Echinostoma spp. analysed (p-distance
range 17.2-21.6%; divergence from E. friedi (AJ564379)
(p-distance range 18.9-19.1%).

Figure 5 Cercariae fixed in 4% formaldehyde solution. A.
Echinostoma sp. IG. B. Echinostoma revolutum. scale-bar: 100 μm.
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Unexpectedly, the European isolates of E. revolutum
and those obtained from natural infections in Lymnaea
elodes and Ondatra zibethicus (L.) in North America by
Detwiler et al. [11] formed two strongly supported sister
lineages. This solution (both NJ and BI analyses) was
consistent with the distinctly higher inter-lineage diver-
gence (p-distance; 4.9–6.8%) compared with intra-lineage
divergence (p-distance range, European isolates: 0–2.1%,
North American isolates: 0.4–1.1%). These data indicate
that the North American isolates represent another cryp-
tic species of the ‘revolutum’ species complex.
Another unexpected result was that the sequence for

Echinostoma revolutum of Morgan and Blair [7,13]
(AF025832; isolate from Europe) exhibited a strong asso-
ciation with the sequence for Echinostoma friedi of
Marcilla et al. (unpublished, GenBank AJ564379) based
on an isolate of this species recently described by these
authors [22] from Spain (p-distance 0.8%; divergence
from nearest neighbours, i.e. Echinostoma robustum
sensu Detwiler et al. [11], of 4.9-9.1%. The clade
comprising the former two European isolates and those
of E. robustum from North America exhibited a complex
structure suggesting the existence of at least three
species (subclade support indicated in Figure 6).

Discussion
The combined morphological and DNA-based approaches
in this first intensive screening of Radix spp. for infections
with Echinostoma spp. allowed us to delineate two cryptic
species of the ‘revolutum’ complex in central and northern
Europe. Furthermore, comparative sequence analyses
depicted three additional cryptic lineages in North
America.
Both distance- and model-based phylogenies provided

high support for reciprocal monophyly of Echinostoma
sp. IG. The isolates of this lineage, that evidently repre-
sents a new species, awaiting further formal description
after a discovery of the adult parasite stage, were found
to be clearly distinguishable among the European iso-
lates by using both morphological and molecular evi-
dence. Although the identification of the European
isolates of Echinostoma spp. followed the standard taxo-
nomic practice, the detection of the new cryptic species
required substantial taxonomic expertise. This involved
detailed knowledge on the variation of the features used
for species delimitation based on thorough morpho-
logical examination of a large number of cercariae from
each isolate. The corroboration of our hypothesis for the
distinct species status of the two species of Echinostoma

Table 3 Comparative metrical data (in μm) for live and fixed cercariae of Echinostoma sp. IG and E. revolutum from
natural infections in Radix spp. and Stagnicola palustris in Germany and Iceland

Species Echinostoma sp. IG E. revolutum

Live material Fixed material Live material Fixed material

Range Range Mean Range Range Mean

Body length 260 − 362 228 − 292 254 303 − 427 159 − 234 188

Body width (max.) 184 − 249 90 − 97 94 193 − 251 107 − 125 112

Oral sucker length 45 − 63 36 − 46 42 56 − 71 38 − 52 45

Oral sucker width 50 − 66 37 − 45 42 53 − 68 37 − 49 42

Ventral sucker length 54 − 72 43 − 54 48 63 − 83 47 − 66 55

Ventral sucker width 57 − 81 44 − 47 46 58 − 83 48 − 60 54

Pharynx length 25 − 29 16 − 25 20 27 − 36 20 − 24 21

Pharynx width 22 − 26 12 − 19 15 25 − 29 13 − 14 13

Oesophagus length 56 − 89 61 − 96 78 54 − 103 30 − 55 40

Tail length 334 − 353 296 − 378 344 364 − 417 316 − 405 367

Tail width (at base) 44 − 49 30 − 34 32 39 − 52 20 − 36 27

Tail-tip length 67 − 83 − − 35 − 93 − −

Proximal dorsal fin-fold length 49 − 63 50 − 41 − 153 − −

Proximal dorsal fin-fold width 14 − 15 − − 5 − 13 8 − 11 9

Distal dorsal fin-fold length 147 − 212 106 − 154 120 72 − 159 − −

Distal dorsal fin-fold width 30 − 35 14 − 21 16 7 − 16 − −

Proximal ventral fin-fold length 47 − 90 73 − 51 − 116 85 −

Proximal ventral fin-fold width 12 − 15 − − 4 − 6 5 −

Distal ventral fin-fold length 44 − 64 41 − 74 − 202 99 − 157 125

Distal ventral fin-fold length 6 − 18 8 − 7 − 14 − −

Georgieva et al. Parasites & Vectors 2013, 6:64 Page 9 of 12
http://www.parasitesandvectors.com/content/6/1/64

43



parasitising snail populations in Germany and Iceland
on the basis of molecular data thus may appear secondary.
However, the distinguishing features are difficult to de-

tect and/or subject to variation (reviewed in Kostadinova
and Gibson [6]). For example, Kanev [3] described 16
ducts and pores of para-oesophageal gland-cells in the
cercariae of E. revolutum ex Lymnaea stagnalis; of these,
12 were located on the oral sucker and four on the ventral

surface. On the other hand, we detected only 12 small
para-oesophageal gland-cells in the cercariae of E. revo-
lutum ex Radix spp.; Faltýnková et al. [24] also provided
this number for E. revolutum ex L. stagnalis. It is worth
noting that recent field studies indicate that E. revolutum
most commonly occurs in L. stagnalis in Europe [23,24],
infections with this species have occasionally been repor-
ted in the past from R. auricularia, R. peregra and R.

Figure 6 Neighbour-joining (NJ) phylogram reconstructed using the newly-generated and retrieved from GenBank nad1 sequences
(472 nt positions) for Echinostoma spp. of the ‘revolutum’ species complex. Outgroup: Echinoparyphium spp. Nodal support (bootstrap
values > 70% shown only) inferred from 1,000 replicates; these are followed by posterior probabilities from BI analysis. The scale-bar indicates
expected number of substitutions per site. Sequence identification as in GenBank followed by a letter: D, Detwiler et al. [9,11]; K, Kostadinova
et al. [14]; M, Marcilla et al. (GenBank); M & B, Morgan & Blair [7,13].
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ovata (Draparnaud, 1805) [22,37-45]. Further molecular
study would reveal whether Echinostoma spp. of the
‘revolutum’ species complex parasitising L. stagnalis and
Radix spp. are conspecific or represent as yet undisco-
vered cryptic species. We believe that ‘reciprocal illumi-
nation’ sensu Hennig [46] of morphological characters
upon a molecular-based species delimitation has a strong
potential for delineating species boundaries within the
‘revolutum’ complex of cryptic species.
Echinostoma sp. IG was found to be conspecific with

an isolate from Wales (UK) provisionally identified as
Echinostoma cf. friedi by Kostadinova et al. [14]. The
lineage comprising this and the newly-sequenced isolates
occupied a basal position (as in Kostadinova et al. [14])
and this is in sharp contrast with the phylogenetic solu-
tion based on nad1 gene of Detwiler et al. [11]. These
authors wrote that “A comparison of samples identified
as E. robustum (U58102) and E. friedi (AY168937) re-
veals that they are found within the same monophyletic
clade and thus do not qualify as distinct species accor-
ding to a phylogenetic definition. Additionally, they are
genetically similar (0.009 genetic divergence, ND1 . . .”
and concluded that “the sample tentatively identified as
E. friedi in Kostadinova et al. (2003) is genetically very
similar to E. robustum”. Our results clearly indicate that
the sequence for E. friedi from its type-locality in Spain
(AJ564379; Marcilla et al. unpublished sequence in
GenBank) and for the European isolate labelled as E.
revolutum (AF025832) of Morgan and Blair [7,12,13]
represent conspecific isolates; the genetic divergence
between these two isolates was 0.8%, i.e. substantially
lower than that (i.e. 18.9-19.1%) between the lineage
containing E. cf. friedi (AY168937) of Kostadinova et al.
[14] and the European isolate labelled as E. revolutum
(nad1 sequence AF025832; ITS sequence U58102) by
Morgan and Blair [7,12,13]. We believe, therefore, that
Detwiler et al. [11] have in fact used the otherwise
unpublished sequence for E. friedi of Marcilla et al.
(AJ564379) but have mislabelled it (as AY168937).
Kostadinova et al. [14] indicated a tentative affiliation

to E. robustum of the isolates of the ‘Australian-German’
clade of Echinostoma spp. of Morgan and Blair [7], but
suggested that this specific identification is pending a
redescription of both larval and adult stages. The
present results indicate that suggesting synonymy for
the European isolate studied by Morgan and Blair
[7,12,13] and E. friedi should await examination of a
larger number of molecularly characterised natural
isolates of the European species of the ‘revolutum’ com-
plex since our knowledge on cryptic diversity in this
group is still limited. This suggestion is supported by the
discovery of two genetically distinct, geographically sepa-
rated lineages of E. revolutum: E. revolutum s.s. from
Europe and E. revolutum of Detwiter et al. [11] from

North America, thus demonstrating that the suggestion
for the cosmopolitan distribution of this species [11] ap-
pears to be a result of cryptic variation. Indeed, these
authors noted that their results of network analyses indi-
cate gene flow and population expansion within North
America but not on a global scale. The taxonomy of the
North American species can be further scrutinised using
the morphological data available for cercariae and/or
experimentally developed adults [11,47].

Conclusion
The results of our study suggest that further analyses of
patterns of interspecific variation based on a combin-
ation of molecular and well-documented morphological
data would enhance the re-evaluation of the species and
advance our understanding of the relationships within
the ‘revolutum’ group of Echinostoma.
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Abstract Large-tailed echinostomatid cercariae of

the genus Petasiger Dietz, 1909 (Digenea: Echinos-

tomatidae) from the planorbid snails Gyraulus albus

(Müller) and Planorbis planorbis (L.) collected in

Germany and the Czech Republic and metacercariae

from Gasterosteus aculeatus L. (Gasterosteiformes:

Gasterosteidae) collected in Canada are characterised

morphologically and molecularly. The rediae, cerca-

riae and metacercariae are described in detail and

compared with the existing data on the larval stages of

Petasiger spp. Comparative molecular analyses using

28S rDNA and nad1 mitochondrial sequences sup-

ported the distinct status of four species of Petasiger.

Molecular and morphological evidence for their

distinction and an updated key to the known large-

tailed cercariae of Petasiger from the Palaearctic are

provided.

Introduction

Echinostomatids of the genus Petasiger Dietz, 1909

constitute a relatively large group of digenean trem-

atodes (33 nominal species, of these 23 species

described from the Palaearctic; see Faltýnková et al.,

2008). The most recent revision of the genus recog-

nised a total of 18 valid species (Faltýnková et al.,

2008). Of these, seven have been described or

recorded in Europe: two species possessing 27 collar

spines [P. exaeretus Dietz, 1909 and P. phalacroc-

oracis (Yamaguti, 1939)] and five species with 19

collar spines [P. grandivesicularis Ishii, 1935, P.

islandicus Kostadinova & Skı́rnisson, 2007, P. meg-

acanthus (Kotlán, 1922), P. neocomense Fuhrmann,

1927 and P. pungens (Linstow, 1893)] (Faltýnková

et al., 2008).

Species of Petasiger utilise snails of the family

Planorbidae Rafinesque as first intermediate hosts, fish

as second intermediate hosts and fish-eating birds as

definitive hosts. However, in spite of the numerous

records of Petasiger spp. in the bird hosts, most

noticeably grebes (Faltýnková et al., 2008), data on the
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occurrence of parasite life-history stages in their

intermediate hosts are limited. To date, the life-cycles

of only three species have been elucidated in the

Palaearctic. The life-cycles of P. neocomense and P.

grandivesicularis were completed experimentally in

the laboratory (identification of the adult stage not

confirmed for P. neocomense, see Karmanova, 1971;

Kostadinova & Chipev, 1992). Recently Georgieva

et al. (2012) elucidated the life-cycle of P. islandicus

by matching sequences for the mitochondrial gene

nicotinamide adenine dinucleotide dehydrogenase

subunit 1 (nad1) and the 28S rRNA gene from all

parasite life-cycle stages, i.e. cercariae and rediae ex

Gyraulus cf. laevis (Alder), metacercariae ex Gaster-

osteus aculeatus L. and adults ex Podiceps auritus (L.)

from Iceland. These authors also provided compara-

tive sequences for P. neocomense and P. phalacroc-

oracis. Six otherwise unidentified large-tailed

echinostomatid cercariae have been described in

Europe: Cercaria thamesensis Khan, 1960 and Cer-

caria hamptonensis Khan, 1960 ex Planorbis planor-

bis (L.) from the River Thames, UK (Khan, 1960),

Cercaria rashidi Nasir, 1962 and Cercaria titfordensis

Nasir, 1962 ex Planorbis carinatus Müller from lakes

in Birmingham, UK (Nasir, 1962), Petasiger sp. of

Ginetsinskaya & Dobrovolskij (1964) ex P. planorbis

in the Volga Delta, Russia (Ginetsinskaya & Dobro-

volskij, 1964) and Petasiger sp. of Kostadinova (1997)

ex P. planorbis in Lake Durankulak, Bulgaria.

In the course of a study of parasites in planorbid

snails in Germany and the Czech Republic, we found

large-tailed echinostomatid cercariae in two snail

species, Gyraulus albus (Müller) and P. planorbis;

additionally, metacercariae of Petasiger were collected

from G. aculeatus from Vancouver Island, Canada.

Comparative analyses of the sequences obtained from

the cercarial and metacercarial isolates revealed the

presence of four species of Petasiger. This paper

provides molecular and morphological evidence for

their distinction and an updated key to the known large-

tailed echinostomatid cercariae from the Palaearctic.

Materials and methods

Sample collection

Sampling of planorbid snails in Germany was

carried out at five reservoirs of the River Ruhr:

Baldeneysee (51�24020.0800N, 7�2022.4700E), Hengs-

teysee (51�24052.1700N, 7�27042.5500E), Hennetalsp-

erre (51�19050.9700N, 8�15046.8200E), Sorpetalsperre

(51�200 15.0100N, 7�56046.1800E) and Versetalsperre

(51�10055.7100N, 7�40057.1200E) between May and

September 2012 and 2013. A total of 2,749 planorbid

snails belonging to seven species was examined:

Gyraulus albus (Müller) (1,919 snails), Segmentina

nitida (Müller) (195), Bathyomphalus contortus (L.)

(176), Anisus vortex (L.) (175), Ancylus fluviatilis

Müller (159), Planorbarius corneus (L.) (121) and

Planorbis planorbis (L.) (4). Additionally, ten large

P. planorbis were examined from Kleiner Plöner See

(54�09042.1700N, 10�22045.0900E) near Plön, Ger-

many in 2012, and further 72 P. planorbis and 57 P.

corneus were collected at Pond Černiš

(49�00010.300N 14�25057.900E) in the Nature Reserve

Vrbenské Ponds (Czech Republic) in July 2013.

Snails were identified according to Glöer (2002).

Of all snail hosts examined, only two species were

infected with Petasiger spp.: G. albus (seven in

Hennetalsperre and one in Hengsteysee) and P.

planorbis (two in Kleiner Plöner See and one in Pond

Černiš). Additionally, metacercariae of Petasiger sp.

were recovered from the oesophageal wall of G.

aculeatus from Gosling Lake (50�03030.300N,

125�30012.100W), Vancouver Island (Canada) by

MK; these were used for comparative purposes.

Morphological data

Samples of all isolates were fixed in molecular grade

ethanol for DNA isolation and sequencing, and in 4%

formaldehyde solution for measurements from fixed

materials. Formalin-fixed cercariae were stained with

iron-acetocarmine, dehydrated through an alcohol

series, cleared in dimethyl phthalate and mounted in

Canada balsam. Light microscopy photographs of live

and fixed isolates (rediae, cercariae and metacerca-

riae) were taken with a digital camera of an Olympus

BX51 microscope. Measurements were taken from

pictures of both live and fixed materials with the

software ImageJ (Abramoff et al., 2004). All mea-

surements are in micrometres and are given as the

range followed by the mean in parentheses. In addition

to measurements, ratios of (i) tail length in relation to

body length (TL/BL) and (ii) tail length in relation to

maximum tail width (TL/TW) were calculated for

both live and fixed cercariae.
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Molecular data

Total genomic DNA was isolated from 10–15 pooled

ethanol-fixed cercariae as described by Georgieva

et al. (2013). Polymerase chain reaction (PCR)

amplifications were performed in 25 ll reactions

using illustra puReTaq Ready-To-Go PCR beads

(GE Healthcare, UK). Partial fragments of the

mitochondrial gene nicotinamide adenine dinucleo-

tide dehydrogenase subunit 1 (nad1) were amplified

(c.500 nt) using primers NDJ11 (forward; 50-AGA

TTC GTA AGG GGC CTA ATA-3’) and NDJ2a

(reverse; 50-CTT CAG CCT CAG CAT AAT-30)
(Kostadinova et al., 2003) and the following ther-

mocycling profile: initial denaturation at 95�C for

5 min followed by 35 cycles with denaturation at

94�C for 30 s, primer annealing at 48�C for 20 s,

primer extension at 72�C for 45 s and a final

extension step at 72�C for 4 min. Partial 28S rDNA

sequences (domains D1-D3; c.1200 nt) were ampli-

fied for a subset of isolates from nad1-derived

lineages using primers ZX-1 (forward; 50-ACC CGC

TGA ATT TAA GCA TAT-30) (Bray et al., 2009)

and 1500R (reverse; 50-GCT ATC CTG AGG GAA

ACT TCG-30) (Tkach et al., 2003) and the following

thermocycling conditions: initial denaturation at

95�C for 5 min, followed by 40 cycles with dena-

turation at 95�C for 30 s, primer annealing at 55�C

for 30 s, primer extension at 72�C for 2 min and a

final extension step at 72�C for 7 min. PCR

amplicons were purified directly with a QIAquick

PCR purification kit (Qiagen Ltd, UK) following the

manufacturer’s instructions. PCR fragments were

sequenced directly for both strands using the PCR

primers with ABI BigDye chemistry (ABI Perkin-

Elmer), alcohol-precipitated, and run on an ABI

Prism 3130xl automated sequencer. Contiguous

sequences were assembled and aligned in MEGA

v.6 (Tamura et al., 2013), and submitted to GenBank

under accession numbers KM191799 - KM191817.

Two alignments were analysed. The first comprised

nad1 sequences (474 nt, 15 sequences) for ten isolates

plus five published sequences (Kostadinova et al.,

2003; Georgieva et al., 2012) for P. islandicus and

Echinostoma revolutum (Frölich, 1802) (used as the

outgroup) from Europe. The second alignment (1,261

nt, 12 sequences) comprised 28S rDNA sequences for

nine isolates and three published sequences (Kostadi-

nova et al., 2003; Georgieva et al., 2012) for European

isolates of P. islandicus, P. phalacrocoracis and

E. revolutum (used as the outgroup). Neighbour-

joining (NJ), maximum likelihood (ML) and Bayesian

inference (BI) analyses were conducted separately for

the two datasets. Prior to analyses, evolutionary

substitution models were analysed with jModelTest

2.1.4 (Darriba et al., 2012) using Akaike Information

Criteria (AIC) for selection of best-fitting models;

these were HKY?U (nad1 dataset) and GTR?I?U

(28S dataset). Maximum likelihood analyses were

carried out in PhyML 3.0 (Guindon et al., 2010). BI

analyses were performed with MrBayes version 3.2

(Ronquist et al., 2012). Log likelihoods were esti-

mated over 10,000,000 generations using Markov

chain Monte Carlo (MCMC) searches on two simul-

taneous runs of four chains, sampling trees every

1,000 generations. The first 2,500 trees were discarded

as ‘‘burn-in’’ and a consensus topology and nodal

support estimated as posterior probability values

(Huelsenbeck et al., 2001) were calculated from the

remaining trees.

Molecular data

A total of 12 isolates of Petasiger spp. was sequenced

(eight ex G. albus, three ex P. planorbis and one ex G.

aculeatus) resulting in successful generation of ten

nad1 and nine 28S rDNA sequences (see Table 1 for

details). The trees inferred from the NJ, ML and BI

analyses of the partial nad1 gene provided strong

support for four reciprocally monophyletic lineages of

Petasiger spp. (Fig. 1A) with the metacercarial isolate

as earlier divergent. Two clades (Petasiger sp. 1 and 2)

comprised cercarial isolates ex G. albus from Henne-

talsperre whereas the third (Petasiger sp. 3) comprised

cercarial isolates from both G. albus and P. planorbis

(see Table 1). The levels of intraspecific divergence

were substantially lower (p-distance; overall range

0–1.5%) compared with those of interspecific diver-

gence (14.0–28.5%). No nad1 sequences were

obtained for one isolate ex G. albus and for the Czech

isolate ex P. planorbis but the 28S sequences for these

isolates were identical with that for Petasiger sp. 1

(isolate GANH1).

Partial sequences of the 28S rRNA gene were

obtained from representative isolates of the nad1-

derived clades and aligned with the available

sequences on GenBank (Olson et al., 2003; Georgieva

et al., 2012) for P. islandicus, P. phalacrocoracis and
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E. revolutum (used as the outgroup). The phylogenetic

analyses provided support for the complex of species

possessing 19 collar spines and for two clades

(Petasiger sp. 1 and 3) depicted in the analyses of

the nad1 data (Fig. 1B) with the isolate of P. phala-

crocoracis (possessing 27 collar spines) as earliest

divergent (not supported by ML). However, the

relationships within the group with 19 collar spines

were not all resolved. No intra-lineage divergence was

detected; the interspecific divergence within the clade

of Petasiger spp. with 19 collar spines was between

0.7 and 2.2% (9–27 nt); the divergence between the

latter clade and P. phacrocoracis ranged between 3.8

and 5.3% (38–53 nt). Detailed descriptions of the

isolates sequenced are provided below.

Family Echinostomatidae Looss, 1899

Subfamily Echinostomatinae Looss, 1899

Genus Petasiger Dietz, 1909

Petasiger sp. 1

First intermediate host: Gyraulus albus (Müller),

Planorbis planorbis (L.) (Planorbidae).

Localities: Hennetalsperre, Germany; Pond Černiš,

Czech Republic.

Voucher material: IPCAS D-707 (hologenophore).

Representative DNA sequences: KM191808 - KM191809

(nad1); KM191799 - KM191801 (28S rDNA).

Description (Figs. 2A, 3A, 4A, 5A–B)

Redia

Body of daughter redia slightly brownish, elongate-

saccular, 776–3,541 9 182–343 (1,801 9 254). Col-

lar 96–153 (128) wide, divided into 4 lobes (2 lateral, 1

dorsal and 1 ventral). Pharynx 54–99 9 51–95

(74 9 71). Intestine saccate, reaching to locomotory

processes; the latter 2, situated in last quarter of body.

Cercaria

[Measurements from 19 live specimens.] Body colour-

less, elongate-oval, 111–257 9 77–163 (175 9 117).

Entire body surface covered with minute spines. Collar

58–97 (80) wide, with 19 collar spines (formula

4–11–4; 4 angle spines on each ventral lappet, 13–16 9

2; 11 marginal spines in single row, 12–15 9 2–3).

Tail massive, light brownish, elongate, with almost

parallel sides, 1,194–2,280 (1,804) long, much longer

Table 1 Summary data for the isolates of Petasiger spp. from planorbid snails in central Europe and fish in Canada used for

generation of the new nad1 and 28S rDNA sequences

Species Isolate Stagea Host species Locality GenBank accession number

nad1 28S

Petasiger sp. 1 GAHN1 C Gyraulus albus Lake Hennetalsperreb KM191808 KM191801

Petasiger sp. 1 GAHN2 C Gyraulus albus Lake Hennetalsperreb KM191809

Petasiger sp. 1 GAHN3 C Gyraulus albus Lake Hennetalsperreb KM191799

Petasiger sp. 1 PPC C Planorbis planorbis Pond Černišc KM191800

Petasiger sp. 2 GAHN4 C Gyraulus albus Lake Hennetalsperreb KM191810 KM191802

Petasiger sp. 2 GAHN5 C Gyraulus albus Lake Hennetalsperreb KM191811

Petasiger sp. 3 GAHN6 C Gyraulus albus Lake Hennetalsperreb KM191812 KM191803

Petasiger sp. 3 PPKPS1 C Planorbis planorbis Lake Kleiner Plöner Seeb KM191813 KM191804

Petasiger sp. 3 PPKPS2 C Planorbis planorbis Lake Kleiner Plöner Seeb KM191814

Petasiger sp. 3 GAHN7 C Gyraulus albus Lake Hennetalsperreb KM191815 KM191805

Petasiger sp. 3 GAHE C Gyraulus albus Lake Hengsteyseeb KM191816 KM191806

Petasiger sp. 4 GAG M Gasterosteus aculeatus Lake Goslingd KM191817 KM191807

a Life-cycle stage (C, cercaria; M, metacercaria); bGermany; cCzech Republic; dCanada
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than body [TL/BL = 10–17 (14)], with maximum

width 146–285 (220), much longer than wide [TL/TW

= 6–12 (9)]. Two fine tegumental membranes present

along three quarters of tail (1 dorsal and 1 ventral),

interrupted in some specimens (Fig. 5A, B). Tail

musculature consists of a group of fine longitudinal

muscle bands throughout length of tail and numerous

circular and oblique muscle fibres. Clearly separated

large brown cells present along median axis of tail in

immature cercariae.

Oral sucker ventro-subterminal, 41–51 9 40–57

(45 9 48). Ventral sucker muscular, post-equatorial,

40–55 9 38–55 (45 9 46). Prepharynx distinct; phar-

ynx elongate-oval, 16–24 9 11–18 (19 9 14);

oesophagus long, bifurcates anterior to ventral sucker;

caeca narrow, reach anterior margin of excretory

vesicle. Cystogenous gland-cells numerous, with

rhabditiform contents, occupy most of body posterior

to pharynx. Penetration gland-cells few (5–6), small,

indistinct, on either side of oesophagus. Genital

primordia in 2 cellular masses anterior and posterior

to ventral sucker, connected by chain of cells.

Excretory vesicle bipartite; main (ascending) col-

lecting ducts wide, filled with 37–70 refractive granules

4–15 in diameter (most formed by fusion of 2–3 smaller

ones) between posterior margin of pharynx and mid-

level of ventral sucker, narrowing posteriorly, connect-

ing to anterior borders of excretory vesicle; accessory

excretory vesicle present in narrow anterior region of

tail. Flame-cell formula not determined.

Measurements from 6 fixed cercariae: Body

148–206 9 54–87 (177 9 71); collar 47–62 (53)

wide; oral sucker 30–39 9 36–41 (35 9 38); ventral

sucker 35–42 9 28–41 (38 9 36); tail 1,130–1,471

 JQ425587

 JQ425588

  JQ425589

  JQ425590

 GAHN2

 GAHN1

 GAHN5

 GAHN4

 PPKPS2

 GAHN7

 PPKPS1
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 AY168933 E. revolutum

0.05

100/100/1
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Fig. 1 Neighbour-joining (NJ) phylogram reconstructed using the newly-generated and retrieved from GenBank sequences for

Petasiger spp. A, nad1 dataset (474 nt positions); B, 28S rDNA dataset (1,261 nt). Nodal support [bootstrap values[70% (NJ, ML) and

posterior probablility values [ 0.95 (BI) shown only] is provided as NJ/ML/BI. The scale-bar indicates the expected number of

substitutions per site. Isolates are coded as in Table 1; Echinostoma revolutum was used as an outgroup
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(1,345) long, with maximum width 169–197 (183);

TL/BL = 5–10 (8); TL/TW = 6–9 (7).

Remarks

The cercariae of Petasiger sp. 1 and Petasiger sp. 2

(described below) both possess fine membranes on the

tails (a feature not previously described in other large-

tailed echinostomatid cercariae), collar spines of

similar shape and size (Fig. 4A, B) and are morpho-

logically very similar with only a few non-overlapping

distinguishing features. The body of the cercaria of

Petasiger sp. 1 is longer [live material, 111–257 vs

101–110 (mean 175 vs 105 lm)] and the ratio TL/BL

differs [10–17 vs 16–20 (mean 14 vs 18)]. Compar-

isons with Petasiger sp. 3 (described below) revealed a

number of distinctive differences in cercarial mor-

phology that allow distinguishing the species. The tail

of the cercaria of Petasiger sp. 1 is longer [1,194–

2,280 vs 1,176–1,858 (mean 1,804 vs 1,486 lm)] and

wider [146–285 vs 103–200 (mean 220 vs 145 lm)]

than in Petasiger sp. 3; the ratio TL/BL is also higher

in the former [10–17 vs 7–12 (mean 14 vs 10)]

(Fig. 2A, C). Fine tegumental dorsal and ventral

Fig. 3 Live cercaria, body. A, Petasiger sp. 1; B, Petasiger sp. 2; C, Petasiger sp. 3. Scale-bars: 100 lm

Fig. 2 Live cercaria, total view. A, Petasiger sp. 1; B, Petasiger sp. 2; C, Petasiger sp. 3. Scale-bars: 500 lm
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membranes are present on the tail of the cercaria of

Petasiger sp. 1 (vs absent in Petasiger sp. 3). The body

of the cercaria of Petasiger sp. 1 is colourless whereas

the cercaria of Petasiger sp. 3 contains small yellow

pigmented granules on either side of the prepharynx

and oesophagus and the collar spines of Petasiger sp. 1

are slightly thinner (2–3 lm) with a sharp tip,

compared with the somewhat wider (3–4 lm) blunt

spines of Petasiger sp. 3 (Fig. 4A, C).

Within the group of large-tailed cercariae with 19

collar spines described from the Palaearctic, the

cercariae of P. islandicus and Cercaria titfordensis

(syn. Petasiger neocomense of Karmanova, 1971

sensu Kostadinova & Chipev, 1992) with their wide,

leaf-like tails differ markedly from those of Petasiger

sp. 1 possessing almost parallel sides. In addition to the

different shape, the cercarial tail in P. islandicus and C.

titfordensis is much shorter than in Petasiger sp. 1

(fixed material, 740–972 and 544–736 vs 1,130–1,471

lm, respectively). Cercariae of Petasiger grandivesic-

ularis and Petasiger sp. of Kostadinova (1997) show

different, non-overlapping ratios TL/BL (6–7 and 4–6,

respectively, vs 10–17 in Petasiger sp. 1) and can thus

be clearly distinguished from the latter. Furthermore,

the body of the cercaria of P. grandivesicularis is larger

[length 203–394 vs 111–257 (mean 274 vs 175 lm)].

The cercaria of Petasiger sp. of Kostadinova (1997)

has a shorter [753–1,380 vs 1,194–2,280 (mean 945 vs

1,804 lm)] and narrower tail [128–142 vs 146–285

Fig. 5 Details of cercarial tail with fine ventral and dorsal tegumental membranes (arrows). A, B, Petasiger sp. 1; C, Petasiger sp. 2.

Scale-bars: 200 lm

Fig. 4 Dorsal collar spines of cercaria. A, Petasiger sp. 1; B,

Petasiger sp. 2; C, Petasiger sp. 3. Scale-bar: 25 lm
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(mean 133 vs 220 lm)] than the cercaria of Petasiger

sp. 1 and contains yellow pigment in the body at the

level of the pharynx that is not present in Petasiger sp.

1. The cercaria of Petasiger sp. described by Ginet-

sinskaya & Dobrovolskij (1964) has 19 spines and a

long tail with parallel sides similar to Petasiger sp. 1

(1,300–1,500 vs 1,194–2,280 lm) but exhibits a lower

ratio TL/BL (10 vs 10–17). Since the description by

Ginetsinskaya & Dobrovolskij (1964) does not contain

information allowing detailed comparisons, this form

is not included in the key below.

Although the cercariae described by Khan (1960),

C. hamptonensis and C. thamesensis, were reported as

having 20 collar spines, there is a possibility that this is

due to miscounts and the cercariae belong to the group

with 19 collar spines instead. In that case, C.

thamesensis could be clearly distinguished from the

cercaria of Petasiger sp. 1 by the much shorter

[925–1,125 vs 1,194–2,280 (mean 1,065 vs

1,804 lm)], leaf-like (vs with almost parallel sides),

colourless (vs brownish) tail. Cercaria hamptonensis

is described with a tail with almost parallel sides

comparable to Petasiger sp. 1 but its body is much

longer [233–380 vs 111–257 (mean 290 vs 175 lm)]

resulting in a much lower ratio TL/BL [4–9 vs 10–17

(mean 14)]. Furthermore, yellow pigment is described

to be diffused throughout body and tail of C.

hamptonensis but is absent in Petasiger sp. 1.

Petasiger sp. 2

First intermediate host: Gyraulus albus (Müller)

(Planorbidae).

Locality: Hennetalsperre, Germany.

Voucher material: IPCAS D-708 (hologenophore).

Representative DNA sequences: KM191810 - KM191

811 (nad1); KM191802 (28S r DNA).

Description (Figs. 2B, 3B, 4B, 5C)

Redia

Body of daughter redia slightly brownish, elongate-

saccular, 1,551–2,372 9 294–311 (1,962 9 302).

Collar 116–153 (135) wide, divided into 4 lobes

(2 lateral, 1 dorsal and 1 ventral). Pharynx 69 9 63–67

(69 9 65). Intestine saccate, reaching to locomotory

processes; the latter 2, located in last quarter of body.

Cercaria

[Measurements from 2 live specimens.] Body colour-

less, elongate-oval, 101–110 9 122–125 (105 9 123).

Entire body surface covered with minute spines. Collar

54–79 (67) wide, with 19 collar spines (formula

4–11–4: 4 angle spines on each ventral lappet,

14 9 3; 11 marginal spines in a single row,

12–13 9 2).

Tail massive, light brownish, elongate, with almost

parallel sides, 1,665–2,239 (1,952) long, much longer

than body [TL/BL = 16–20 (18)], with maximum

width 253–279 (266), much longer than wide [TL/TW

= 7–8 (7)]. Two fine tegumental membranes present

along three quarters of tail (1 dorsal and 1 ventral),

interrupted in some specimens (Fig. 5C). Tail muscu-

lature consists of a group of fine longitudinal muscle

bands throughout length of tail and numerous circular

and oblique muscle fibres.

Oral sucker ventro-subterminal, 45–48 9 43–50

(46 9 47). Ventral sucker muscular, post-equatorial,

50 9 50. Prepharynx distinct; pharynx elongate-

oval, 18 9 13; oesophagus long, bifurcates anterior

to ventral sucker; caeca narrow, reach anterior

margin of excretory vesicle. Cystogenous gland-

cells numerous, with rhabditiform contents, occupy

most of body posterior to pharynx. Penetration

gland-cells few, small, indistinct, on either side of

oesophagus. Genital primordia in 2 cellular masses

anterior and posterior to ventral sucker, connected

by chain of cells.

Excretory vesicle bipartite; main (ascending) col-

lecting ducts wide, filled with 80–83 refractive

granules 3–17 in diameter (most formed by fusion of

2–3 smaller ones) between posterior margin of phar-

ynx and mid-level of ventral sucker, narrowing

posteriorly, connecting to anterior borders of excre-

tory vesicle; accessory excretory vesicle present in

narrow anterior region of tail. Flame-cell formula not

determined.

Measurements from 6 fixed cercariae: Body

123–145 9 60–82 (137 9 67); collar 41–52 (46)

wide; oral sucker 28–38 9 28–34 (31 9 31); ventral

sucker 30–43 9 29–44 (35 9 33); tail 1,025–1,551
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(1,159) long, with maximum width 110–138 (128);

TL/BL = 7–13 (9); TL/TW = 8–10 (9).

Remarks

The cercariae of Petasiger sp. 2 and Petasiger sp. 3

show a number of distinctive differences that allow to

distinguish the two forms. The tail of the cercaria of

Petasiger sp. 2 is longer [live material, 1,665–2,239 vs

1,176–1,858 (mean 1,952 vs 1,486 lm)] and wider

[253–279 vs 103–200 (mean 266 vs 145 lm)] than in

Petasiger sp. 3; the ratio TL/BL is also considerably

higher in the former [16–20 vs 7–12 (mean 18 vs 10)]

(see Fig. 2B, C for comparison). Fine tegumental

dorsal and ventral membranes are present on the tail of

the cercaria of Petasiger sp. 2 (vs absent in Petasiger

sp. 3). The body of the cercaria of Petasiger sp. 2 is

colourless whereas the cercariae of Petasiger sp. 3

contain small yellow pigmented granules on both sides

of the prepharynx and oesophagus and the collar

spines are slightly thinner (2–3 lm), with a sharp tip

[vs somewhat wider (3–4 lm) blunt spines in Petasi-

ger sp. 3] (Fig. 4B, C).

Within the group of large-tailed cercariae with 19

collar spines described from the Palaearctic, the

cercariae of P. islandicus and C. titfordensis with

their short, wide, leaf-like tails differ markedly from

Petasiger sp. 2, possessing an elongate tail with almost

parallel sides (fixed material, 740–972 and 544–736 vs

1,025–1,551 lm in Petasiger sp. 2, respectively). The

cercariae of Petasiger grandivesicularis and Petasiger

sp. of Kostadinova (1997) show different, non-over-

lapping ratios TL/BL (6–7 and 4–6, respectively, vs

16–20 in Petasiger sp. 2) and can thus be clearly

distinguished. The cercarial body of P. grandivesic-

ularis is colourless, two to four times longer [203–394

vs 101–110 (mean 274 vs 105 lm)] and also slightly

wider [120–219 vs 122–125 (mean 159 vs 123 lm)]

than in Petasiger sp. 2 and the tail is much shorter

[753–1,380 vs 1,665–2,239 (mean 945 vs 1,952 lm)]

and narrower [128–142 vs 253–279 (mean 133 vs 266

lm)]. The cercaria of Petasiger sp. of Ginetsinskaya &

Dobrovolskij (1964) has a shorter tail (1,300–1,500 vs

1,665–2,239 lm in Petasiger sp. 2), distinctly larger

body (179–190 vs 101–110 lm) and a considerably

lower ratio TL/BL (10 vs 16–20).

The cercaria of Petasiger sp. 2 can be differentiated

from C. hamptonensis and C. thamesensis based on

other features than the questionable number of spines.

The short, leaf-like, colourless tail of C. thamesensis is

clearly distinguishable from the much longer, almost

parallel-sided tail in Petasiger sp. 2 [925–1,125 vs

1,665–2,239 (mean 1,065 vs 1,952 lm)]. Cercaria

hamptonensis differs from Petasiger sp. 2 in having a

body more than twice as long [233–380 vs 101–110

(mean 290 vs 105 lm)] and a substantially lower ratio

TL/BL [4–9 vs 16–20 (mean 18)].

Petasiger sp. 3

First intermediate host: Gyraulus albus (Müller),

Planorbis planorbis (L.) (Planorbidae).

Localities: Hennetalsperre, Hengsteysee, Kleiner Plö-

ner See, Germany.

Voucher material: IPCAS D-709 (hologenophore).

Representative DNA sequences: KM191812 - KM191

816 (nad1); KM191803 - KM191806 (28S rDNA).

Description (Figs. 2C, 3C, 4C)

Redia

Body of daughter redia brownish, elongate,

434–1,994 9 115–335 (1,097 9 221). Collar 113–164

(138) wide, divided into 4 lobes (2 lateral, 1 dorsal and 1

ventral). Pharynx 48–90 9 42–88 (66 9 62). Intestine

saccate, reaching posterior to locomotory processes; the

latter 2, situated in last quarter of body.

Cercaria

[Measurements from 15 live specimens.] Body elon-

gate–oval, with yellow pigment in anterior part on

both sides of prepharynx and oesophagus,

135–225 9 96–184 (172 9 130). Entire body surface

covered with minute spines. Collar 80–115 (103)

wide, with 19 collar spines (formula 4–11–4; 4 angle

spines on each ventral lappet, 12–16 9 3–4; 11

marginal spines in single row, 13–16 9 3–4).

Tail massive, light brownish, elongate, with almost

parallel sides, 1,176–1,858 (1,486) long, much longer

than body [TL/BL = 7–12 (10)], with maximum

width 103–200 (145), much longer than wide

[TL/TW = 9–13 (11)]. Membranes on tail absent.

Tail musculature consists of a group of fine longitu-

dinal muscle bands throughout length of tail and

numerous circular and oblique muscle fibres. Clearly
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separated large transparent cells present along median

axis of tail in immature cercariae.

Oral sucker ventro-subterminal, 34–50 9 44–59

(45 9 52). Ventral sucker muscular, post-equatorial,

44–59 9 48–62 (53 9 56). Prepharynx short; pharynx

elongate-oval, 19–26 9 10–20 (22 9 16); oesopha-

gus long, bifurcates anterior to ventral sucker; caeca

narrow reach anterior margin of excretory vesicle.

Cystogenous gland-cells numerous, with rhabditiform

contents, occupy most of body posterior to pharynx,

accessory excretory vesicle in narrow anterior region

of tail. Penetration gland-cells few (5–6), small,

indistinct, on either side of oesophagus. Genital

primordia in 2 cellular masses anterior and posterior

to ventral sucker, connected by chain of cells.

Excretory vesicle bipartite; main (ascending) col-

lecting ducts wide, filled with 55–92 refractive

granules 3–15 in diameter (most formed by fusion of

2–5 smaller ones) between posterior margin of phar-

ynx and mid-level of ventral sucker, narrowing

posteriorly, connecting to anterior borders of excre-

tory vesicle. Flame-cell formula not determined.

Measurements from 11 fixed cercariae: Body

119–170 9 68–98 (151 9 80); collar 50–56 (54)

wide; oral sucker 32–39 9 32–36 (36 9 34); ventral

sucker 27–40 9 27–40 (34 9 35); tail 862–1,296

(1,116) long, with maximum width 81–121 (100);

TL/BL = 6–10 (7); TL/TW = 7–14 (11).

Remarks

The cercaria of Petasiger sp. 3 keys down to C. rashidi

in the key to the large-tailed cercariae of Kostadinova

& Chipev (1992). Both forms show matching mor-

phological features. Thus, the ratios TL/BL and TL/

TW vary within overlapping ranges [TL/BL 7–12 in

Petasiger sp. 3 vs 6–13 in C. rashidi; TL/TW 9–13 vs 9

(published drawing)]. The body length of fixed

cercariae of Petasiger sp. 3 and C. rashidi is similar

(119–170 vs 112–168 lm) but Petasiger sp. 3 appears

slightly narrower than C. rashidi (68–98 vs 88–136

lm). The tail of formalin-fixed Petasiger sp. 3 is

shorter than reported for C. rashidi (862–1,296 vs

1,448–1,640 lm). However, we believe this difference

is due to the fixation of Petasiger sp. 3 in cold formalin

in which the body, and especially the tail, can shrink.

The method of Nasir (1962) of relaxing the cercariae

with Neutral Red before fixing in hot formalin seems

to provide results much more consistent with our

measurements of the tail from live cercariae

(1,176–1,858 lm). The number of refractive granules

in the main collecting ducts of the excretory vesicle

differs slightly in both descriptions (55–92 formed by

fusion of 2–5 smaller ones in Petasiger sp. 3 vs 42–64

formed by fusion of 2–3 smaller ones in C. rashidi);

however, both shape and number of granules can be

very variable between cercariae of the same species.

The collar spines are of similar sizes in Petasiger sp. 3

and C. rashidi (dorsal spines 13–16 vs 12–14 lm;

angle spines 12–16 vs 16 lm) and the width of both

oral sucker (32–39 vs 29–33 in fixed cercariae) and

ventral sucker (27–40 vs 31–35 in fixed cercariae) is

overlapping. Most noticeably, both cercariae possess

characteristic small yellow granules on either side of

the prepharynx that are absent in most Petasiger spp.

Based on the key of Kostadinova & Chipev (1992) and

the descriptions and drawings of Nasir (1962), we

consider C. rashidi conspecific with Petasiger sp. 3.

The cercaria of Petasiger sp. 3 differs distinctly

from the cercariae of P. islandicus and C. titfordensis

possessing wide, leaf-like tails, (TL/TW 9–13 vs 4–8

and 3–4, respectively). The characteristic yellow

pigment in the body of Petasiger sp. 3 is not present

in either P. islandicus or C. titfordensis. The cercaria

of P. grandivesicularis shows a different ratio TL/BL

(6–7 vs 7–12 in Petasiger sp. 3). Furthermore, the

body of P. grandivesicularis is larger [length 203–394

vs 135–225 (mean 274 vs 172 lm) in Petasiger sp. 3]

and also lacks yellow pigment. Petasiger sp. of

Kostadinova (1997) is described with similar yellow

pigment at the level of the pharynx but can be

distinguished from Petasiger sp. 3 based on the non-

overlapping ratio TL/BL (4–6 vs 7–12 in Petasiger sp.

3). Although within a slightly overlapping range, the

cercarial tail of Petasiger sp. of Kostadinova (1997) is

shorter than in Petasiger sp. 3 [753–1,380 vs

1,176–1,858 (mean 945 vs 1,486 lm)]. The cercaria

of Petasiger sp. of Ginetsinskaya & Dobrovolskij

(1964) has a tail of similar length (1,300–1,500 vs

1,176–1,858 lm in Petasiger sp. 3) and a similar ratio

TL/BL (10 vs 7–12). However, the cercarial tail in

Petasiger sp. 3 is distinctly more elongate [ratio TL/

TW 9–13 (mean 11) vs 6 in Petasiger sp. (estimated

from the published figure)] and the cercarial body is

colourless (Ginetsinskaya & Dobrovolskij, 1964).

The cercaria of Petasiger sp. 3 can be distinguished

from C. hamptonensis and C. thamesensis based on

features other than the number of collar spines as
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follows. The short, leaf-like, colourless tail of C.

thamesensis is clearly distinguishable from the longer,

light brownish tail with almost parallel sides of the

cercaria of Petasiger sp. 3 [925–1,125 vs 1,176–1,858

(mean 1,065 vs 1,486 lm)]. Furthermore, the body of

C. hamptonensis is much longer [233–380 vs 135–225

(mean 290 vs 172 lm)] and the ratio TL/BL is lower

than in Petasiger sp. 3 [4–9 vs 7–12 (mean 10)].

Petasiger sp. 4

Second intermediate host: Gasterosteus aculeatus L.

(Gasterosteiformes: Gasterosteidae).

Locality: Gosling Lake, Vancouver Island, Canada.

Representative DNA sequences: KM191817 (nad1);

KM191807 (28S rDNA).

Description (Fig. 6)

Metacercaria

[Measurements from 3 fixed specimens encysted in

oesophageal wall of the host.] Cyst elongate-oval,

76–90 9 50–57 (81 9 52), covered with thin layer

(6–7) of parasite origin, surrounded by thick layer

(19–20) of connective tissue of host origin. Body spined;

collar bears 19 spines. Main collecting excretory ducts

filled with large, composite excretory granules.

Remarks

The life-cycles of two North American species of

Petasiger possessing 19 collar spines have been

elucidated experimentally: Petasiger nitidus Linton,

1928 and Petasiger chandleri Abdel-Malek, 1952 (see

Beaver, 1939; Abdel-Malek, 1953). Of these, the

metacercaria of P. nitidus encysting in the oesophagus

and lower pharynx of experimentally infected fish

[Ameiurus nebulousus (Lesueur), Notropis hudsonius

(Clinton), Umbra limi (Kirtland), Lepomis pallidus

(Mitchell), Ambloplites rupestris (Rafinesque), Perca

flavescents Mitchell, Lebistes reticulatus (Peters) and

‘minnows’] appears similar to the metacercaria ex G.

aculeatus in both shape and size (invariably ovoid,

85 9 68 lm), in possessing a thick outer layer of host

tissue surrounding the cyst (up to 40 lm) and in the

presence of large excretory granules in the main

excretory ducts (Beaver, 1939).

The metacercaria of P. chandleri (considered a

species inquirenda by Faltýnková et al., 2008) is

slightly larger (100 9 73 lm) than that of Petasiger

sp. 4. Furthermore, P. chandleri is described with

19–21 spines but this variation may be a result of

lumping together the observations on the cercaria

(Abdel-Malek, 1952) and adult (Abdel-Malek, 1953)

(see Faltýnková et al., 2008). The species status of P.

chandleri remains questionable until further material

from the final host is described (Faltýnková et al.,

2008). Based on the morphological data of the

metacercariae, it is possible that Petasiger sp. 4 is

conspecific with P. nitidus. However, species identi-

fication based on morphological features of the

metacercariae is rather difficult and further findings

of cercariae and adults of Petasiger spp. from North

America that provide comparative molecular and

morphological data are necessary to elucidate the

life-cycle of Petasiger sp. 4 and confirm whether it is

actually conspecific with P. nitidus. We provide the

first molecular data for such a comparison.

Key to the large-tailed echinostomatid cercariae

from the Palaearctic

1a Head collar with 20 spines; two groups of four

angle spines each plus 12 marginal spines in

single row (formula 4-12-4) ………………… 2

1b Head collar with 19 spines; two groups of four

angle spines each plus 11 marginal spines

in single row (formula 4-11-4) ……………… 3

2a Tail elongate (ratio TL/BL = 7–8), with almost

parallel sides (ratio TL/TW = 10–14).

Fig. 6 Metacercaria of Petasiger sp. 4. Scale-bar: 25 lm
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Yellow pigment in the body and tail. In Planor-

bis planorbis ……………………………………
…………… Cercaria hamptonensis Khan, 1960

2b Tail leaf-like (ratio TL/BL = 3–4; ratio TL/

TW = 2–4). Body and tail colourless.

In Planorbis planorbis …………………………
……………... Cercaria thamesensis Khan, 1960

3a Tail leaf-like ………………………………… 4

3b Tail elongate with almost parallel sides ……… 5

4a Tail short (540–740 lm in fixed cercarie). Ratio

TL/TW = 3–4. Body and tail colourless.

In Planorbis carinatus …………………………
……………… Cercaria titfordensis Nasir, 1962

[syn. Cercaria of Petasiger neocomense of

Karmanova (1971)]

4b Tail long (740–970 lm in fixed cercarie). Ratio

TL/TW = 4–8. Body whitish, tail brownish. In

Gyraulus cf. laevis …………………………
Petasiger islandicus Kostadinova & Skı́rnisson,

2007

5a Ratio TL/BL\7 …………………….……… 6

5b Ratio TL/BL[7 ………………………….… 7

6a Body with 2 ventral pits. Ratio TL/BL = 4–6;

ratio TL/TW = 6–10. Cercariae negatively pho-

totactic. In Planorbis planorbis ………………..

…………… Petasiger sp. of Kostadinova (1997)

6b Body lacking ventral pits. Ratio TL/BL = 6–7;

ratio TL/TW = 10–15. Cercariae positively

phototactic. In Planorbis planorbis ……….....…
……….. Petasiger grandivesicularis Ishii, 1935

7a Tail with fine ventral and dorsal tegumental

membranes. Body colourless ………………… 8

7b Tail lacking tegumental membranes. Yellow

pigment on both sides of prepharynx. In Gyra-

ulus albus and Planorbis planorbis ……………
…………………………………. Petasiger sp. 3

[syn. Cercaria rashidi Nasir, 1962]

8a Ratio TL/BL = 10–17. Body length [110 lm.

In Gyraulus albus and Planorbis planorbis ……
………………………………..... Petasiger sp. 1

8b Ratio TL/BL = 16–20. Body length \110 lm.

In Gyraulus albus ……………… Petasiger sp. 2

Discussion

The present material possesses features that are fully

consistent with the morphology of Petasiger spp.

whose life-cycles have been elucidated either exper-

imentally or with the aid of sequence data (Kostadi-

nova & Chipev, 1992; Georgieva et al., 2012). The

main characteristics of the larval stages of Petasiger

spp. of the group with 19 collar spines include:

(i) daughter redia with a collar divided into four lobes,

long saccate intestine, and two distinct locomotory

processes; (ii) large-tailed cercaria with 19 spines

(formula 4–11–4; four angle spines on each ventral

lappet), cystogenous gland-cells with rhabditiform

contents occupying most of the body and main

ascending collecting ducts of the excretory system

filled with large refractive granules, great mass of

which are formed by fusion of smaller ones; and (iii)

metacercaria encysting on the inner surface of pha-

ryngeal region, anterior oesophagus or maxillar mus-

culature of fish; cysts invariably ovoid, with a thin

layer of parasite origin enveloped (partially or

entirely) with thick connective tissue of host origin;

main excretory collecting ducts of metacercaria filled

with large, composite excretory granules.

Both morphological and molecular data supported

the distinct status of the larval stages of the three

Petasiger spp. from G. albus and P. planorbis in

central Europe and of the metacercaria ex G. aculeatus

in Canada. All three European species occurred in

sympatry in one locality (Lake Hennetalsperre); this

fact highlights the high diversity of Petasiger spp.

even at small spatial scales. Further, two of the species

developed in both hosts studied, G. albus and P.

planorbis, thus indicating that a relaxed host specific-

ity towards the snail intermediate host may be

common in Petasiger spp. The concordance of the

results from the two approaches applied in the present

study stresses the importance of the combination of

molecular and well-documented morphological data

for the advancement of our understanding of the

diversity and relationships of Petasiger spp.

However, we found it impossible to reach decisions

regarding the identity of the four species studied due to

the scarcity of comparative data. Of the five species

with 19 collar spines parasitising grebes in Europe, i.e.

P. grandivesicularis, P. islandicus, P. megacanthus,

P. neocomense and P. pungens (Linstow, 1893), three

were recorded in Germany: P. neocomense ex Podi-

ceps cristatus (L.) (type-host) (see Odhner, 1910, as

Echinostomum pungens); Odening, 1963); P. pungens

ex Tachybaptus ruficollis (Pallas) (see Odening, 1962,

1965); and P. grandivesicularis ex T. ruficollis (see
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Kostadinova, 1999). The life-cycle of the last species

has been completed experimentally and our compar-

isons of the three cercariae described here with the

cercaria described by Kostadinova & Chipev (1992)

revealed substantial morphological differences that

rule out a possibility for conspecificity.

The life-cycles of P. neocomense and P. pungens

are not yet known. Karmanova (1971) described a

large-tailed cercaria with 19 collar spines from the

planorbid Gyraulus acronicus (Férrusac) in the Volga

Delta (Astrakhan Reserve), which encysted in Rutilus

rutilus (L.), Scardinius erythrophthalmus (L.) and

Alburnus alburnus (L.). She identified the adults

obtained in experimental infections of young grebes as

P. neocomense but did not describe the adult. Kosta-

dinova & Chipev (1992) suggested that C. titfordensis

and the cercaria described by Karmanova (1971)

belong to one and the same species but expressed

concerns about the identification of the adults obtained

experimentally by Karmanova due to the lack of

morphological data and the contradictions in the

Russian literature concerning the descriptions of P.

neocomense, an opinion with which we agree (see key

above). Nevertheless, both C. titfordensis and the

cercaria described by Karmanova (1971) can be

readily differentiated from the three cercariae

described by us by the distinct shape of the tail and

other morphological features.

Kostadinova (1997) described and compared the

morphology of an unidentified cercaria of Petasiger

ex P. planorbis occurring in sympatry with P.

grandivesicularis in a lake on the Bulgarian Black

Sea coast and suggested that it is probably a larval

stage of P. pungens. However, although experimental

infections of fish were successful, no adult worms

were obtained. Therefore, based on the geographical

distribution of the adults, we do not rule out the

possibility that two of the cercariae described by us

may represent P. neocomense and P. pungens.

Nevertheless, our findings and the updated key to

the large-tailed cercariae indicate a much higher

diversity of larval rather than adult stages of

Petasiger spp. in Europe (cercariae of nine vs adults

of five species). Further studies focused on obtaining

molecular data for the adult parasites of grebes

would be influential for the identification of the

larval stages in snails and fish and the elucidation of

the life-cycles of Petasiger spp. (e.g. Georgieva

et al., 2012).
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Abstract

Background: Recent molecular studies have discovered substantial unrecognised diversity within the genus
Diplostomum in fish populations in Europe and North America including three species complexes. However, data
from the first intermediate host populations are virtually lacking. This study addresses the application of an
integrative taxonomic approach to the cryptic species diversity of Diplostomum spp. in natural lymnaeid snail
populations in Europe with a focus on the ‘D. mergi’ species complex.

Methods: Totals of 1,909 Radix auricularia, 349 Radix peregra, 668 Stagnicola palustris and 245 Lymnaea stagnalis
were sampled at five reservoirs of the Ruhr river system in Germany and screened for infections with Diplostomum
spp. Cercariae were examined and identified alive, fixed and under scanning electron microscopy. Sequences from
the barcode region of the cytochrome c oxidase subunit 1 (cox1) mitochondrial gene and from the internal
transcribed spacer cluster (ITS1-5.8S-ITS2) of the rRNA gene were amplified for 51 and 13 isolates, respectively.

Results: Detailed morphological and molecular analyses provided evidence for three named species (Diplostomum
spathaceum, D. pseudospathaceum and D. parviventosum), and a further four species-level lineages (‘D. mergi
Lineages 2–4’ and ‘Diplostomum sp. Clade Q’ in the lymnaeid snail populations from the Ruhr river basin. The paper
provides the first descriptions of molecularly identified cercariae of D. spathaceum and of the cercariae of
D. parviventosum, three lineages of the ‘D. mergi’ species complex and of ‘Diplostomum sp. Clade Q’.

Conclusion: The integration of molecular and morphological evidence for Diplostomum spp. achieved in this study
will serve as a baseline for species identification of these important parasites of snail and fish populations and thus
advance further studies on the distribution of Diplostomum spp. in Europe.

Keywords: ‘Diplostomum mergi’ species complex, Diplostomum parviventosum, Diplostomum pseudospathaceum,
Diplostomum spathaceum, Radix auricularia, Lymnaea stagnalis, Stagnicola palustris, Cercariae, cox1, ITS, Europe

Background
The incorporation of molecular data has brought a major
advancement in species taxonomy, due to the possibility
to distinguish cryptic species and re-evaluate existing mor-
phological identification criteria. Especially for trematode
species with complex life-cycles, where sampling often

provides only one stage of a parasite’s life-cycle at a time
(e.g. cercariae or metacercariae only), molecular analyses
provide an effective means of species identification and in-
ference of complete life-cycles by matching data from the
different life-cycle stages [1, 2]. However, although larval
trematodes in snails are potentially useful indicators of en-
vironmental conditions [3], they are difficult to identify
and the taxonomic expertise is limited to few individuals
[4]. This highlights the importance of providing accurate
and accessible information on their identification.
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Diplostomum von Nordmann, 1832 is a major and im-
portant taxonomic group of widely distributed fresh-
water trematode parasites that utilise lymnaeid snails,
fish and fish-eating birds to complete their life-cycles.
Recent molecular studies have discovered higher than
previously recognised diversity of Diplostomum spp. at
small geographical scales. A total of 12 species was found
in fishes in northern Canada based on molecular evidence:
three named species, Diplostomum indistinctum (Guberlet,
1923), Diplostomum huronense (La Rue, 1927) and Diplos-
tomum baeri Dubois, 1937, and a further nine unidenti-
fied species-level lineages of Diplostomum [5]. The first
studies addressing integration of morphological assess-
ment and molecular prospecting for species diversity of
the genus in Europe resulted in molecular elucidation of the
life-cycles of Diplostomum spathaceum (Rudolphi, 1819)
(type-species) and D. pseudospathaceum Niewiadomska,
1984 and provided evidence for a substantial unrecognised
genetic and morphological diversity, i.e. 15 species-level
lineages including three complexes of genetically distinct
lineages [6–9].
Six of these originate from the snail and fish popula-

tions studied in the River Ruhr drainage in Germany. Of
particular importance is the finding of a number of iso-
lates comprising three slightly divergent lineages within
the ‘D. mergi’ species complex [6]. However, most of
these isolates, i.e. ‘D. mergi Lineage 3’, originate from
fish and due to the low sampling effort only few isolates
from their lymnaeid snail hosts are available: a single
isolate for ‘D. mergi Lineage 1’ and three isolates for ‘D.
mergi Lineage 2’, all from Radix auricularia (L.).
The application of barcoding approach to species diver-

sity of Diplostomum in Europe depends on the availability
of sequence databases based on precisely identified iso-
lates, a process that is currently impeded by the lack of
taxonomic expertise (see Georgieva et al. [6] for detailed
discussion). This highlights the need for combining mo-
lecular data with thorough morphological descriptions
that will allow species delimitation and recognition in
future studies. This study addresses the application of an
integrative taxonomic approach to the cryptic species di-
versity of Diplostomum spp. in natural lymnaeid snail pop-
ulations in Europe with a focus on the ‘D. mergi’ species
complex. Detailed morphological and molecular data
gathered in an extensive sampling of four lymnaeid spe-
cies in five reservoirs of the Ruhr and its tributaries pro-
vided evidence for three named species and four distinct
lineages of Diplostomum spp. The thorough morpho-
logical descriptions of the cercariae of D. parviventosum
Dubois, 1932, D. pseudospathaceum, D. spathaceum and
of the three novel lineages of the ‘D. mergi’ species com-
plex and ‘Diplostomum sp. Clade Q’, in association with
the molecular delineation provided here, will serve as a
baseline for species identification of these important

parasites of snail and fish populations and thus advance
further studies on the distribution of Diplostomum spp. in
Europe.

Methods
Sample collection
A total of 3,171 lymnaeid snails of four species [1,909
Radix auricularia (L.), 349 R. peregra (Müller), 668 Stag-
nicola palustris (Müller), 245 Lymnaea stagnalis (L.)]
was collected and examined for trematode infections
during the summer months (May to September) in 2012
and 2013. Snails were collected at several sampling sites
in five reservoirs of the River Ruhr catchment area in
North Rhine-Westphalia, Germany: Baldeneysee (51°24′
20.08″N, 7°2′22.47″E); Hengsteysee (51°24′52.17″N, 7°
27′42.55″E); Hennetalsperre (51°19′50.97″N, 8°15′46.82″E);
Sorpetalsperre (51°20′15.01″N, 7°56′46.18″E); and Verse-
talsperre (51°10′55.71″N, 7°40′57.12″E) (see Fig. 1 and
Table 1 for details). At each sampling site snails were col-
lected randomly with hand-nets or picked by hand from
sediment, stones and floating aquatic vegetation along the
shore. In the laboratory all snails were measured, labelled
and placed in separate beakers with lake water under a
light source to stimulate cercarial emission. Snails that did
not emit cercariae for several days were dissected and ex-
amined for the presence of prepatent infections. Preva-
lence was calculated for distinct samples (i.e. collected
from one site within a locality on a given date) comprising
more than 15 snails.

Morphological data
Cercariae were identified alive under light microscope
and cercariae of Diplostomum spp. were identified
based on the morphological descriptions and the key
of Niewiadomska & Kiselienė [10]. Detailed light mi-
croscopy photographs of cercariae of Diplostomum spp.
were taken with an Olympus UC30 digital camera on
an Olympus BX51 microscope and all visible (under
light microscopy) features described by Niewiadomska
& Kiselienė [10] were recorded. Cercariae and/or sporo-
cysts of all isolates were fixed in molecular grade ethanol
for DNA isolation and sequencing and in cold and hot
4 % formaldehyde solution for detailed analysis of the sur-
face morphology and body spination by scanning electron
microscopy (SEM) and for obtaining measurements from
fixed materials. Formalin-fixed cercariae were post-fixed
in 2 % osmium tetroxide for two hours, washed in 0.1 M
phosphate buffer, dehydrated through an acetone series,
point-dried and sputter-coated with gold for SEM. SEM
photographs were taken with a JEOL JSM-7401 F field
emission scanning electron microscope. Descriptions are
based on examination of live and formalin-fixed material
and digital photomicrographs from both light microscopy
and SEM. Measurements were taken with the program
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ImageJ 1.47v [11]; measurements in the descriptions are
based on live specimens; measurements from fixed mater-
ial are provided in the tables. All measurements in the text
and tables are in micrometres and are presented as the
range followed by the mean in parentheses. The following
abbreviations for the metrical features were used: BL,
body length; BW, maximum body width; AOL, anterior
organ length; AOW, anterior organ width; VSL, ventral
sucker length; VSW, ventral sucker width; TSL, tail stem
length; TSW, tail stem width (at base); FL, furca length
(see Additional file 1: Figure S1 for a schematic illustration
of a cercaria showing the metrical features). The following
relative proportions (ratios) were calculated for both live
and fixed cercariae and used in addition to these measure-
ments: VSW/AOW, ventral sucker width to anterior
organ width ratio; BL/TSL, body length to tail stem length
ratio; TSL/FL, tail stem length to furca length ratio.

Molecular data
Total genomic DNA was isolated from 100–200 ethanol-
fixed cercariae obtained from single snail individuals using
the Chelex method (see [12] for details). Partial fragments
of the barcode region of the cox1 mitochondrial gene were
amplified via polymerase chain reaction (PCR) using
Ready-To-Go PCR beads (GE Healthcare, UK) and the
PCR primers Plat-diploCOX1F (5′-CGT TTR AAT TAT
ACG GAT CC-3′) and Plat-diploCOX1R (5′-AGC ATA

GTA ATM GCA GCA GC-3′) [13] as described in
Georgieva et al. [6]. PCR amplifications of the ITS1-
5.8S-ITS2 gene cluster were performed as above using
the primers D1 (forward: 5′-AGG AAT TCC TGG TAA
GTG CAA G-3′) and D2 (reverse: 5′-CGT TAC TGA
GGG AAT CCT GGT-3′) [14].
PCR amplicons were purified using a QIAquick PCR

purification kit (Qiagen Ltd, UK) and sequenced directly
from both strands using the PCR primers (cox1) and the
primers BD1 (forward: 5′-GTC GTA ACA AGG TTT
CCG TA-3′) and BD2 (reverse: 5′-TAT GCT TAA ATT
CAG CGG GT-3′) (ITS1-5.8S-ITS2; [14]) with ABI BigDye
chemistry (ABI Perkin-Elmer, UK), alcohol-precipitated,
and run on an ABI Prism 3130x1 automated sequencer.
Contiguous sequences were assembled with MEGA v6
[15] and submitted to GenBank.
Sequences were aligned with Muscle implemented in

MEGA v6. The 51 newly-generated cox1 sequences were
aligned with reference to the amino acid translation,
using the echinoderm and flatworm mitochondrial code
[16] together with 28 sequences retrieved from GenBank,
the latter comprising 1 − 4 representative sequences per
species/lineage identified in previous studies in Europe
[6, 17]; (see Additional file 2: Table S1 for details). The
ITS1-5.8S-ITS2 sequences generated from selected iso-
lates (n = 13) from the cox1-derived clades were aligned
with 32 published sequences, representative for the species/

Table 1 Summary data for the lymnaeid snails examined/infected with Diplostomum spp. in five reservoirs of the River Ruhr
catchment area in Germany

Ba He So Hn Ve Total

Total number of lymnaeid snails examined 437 1,772 357 292 313 3,171

Number of snails infected with Diplostomum spp. 8 66 4 – – 78

Number of distinct samples with Diplostomum spp. infections 7 (0)* 29 (20)* 2 (2)* – – 38 (22)*

Abbreviations: Ba, Baldeneysee; He, Hengsteysee; Hn, Hennetalsperre; So, Sorpetalsperre; Ve, Versetalsperre
*Distinct samples with n ≥ 15 in which Diplostomum spp. infections were detected (number in parentheses)

Fig. 1 Map of the Ruhr river system in Germany with sampling sites. Abbreviations: Ba, Baldeneyesee; He, Hengsteysee; Hn, Hennetalsperre; So,

Sorpetalsperre; Ve, Versetalsperre. Lymnaea stagnalis; Radix auricularia; Radix peregra; Stagnicola palustris
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lineages sequenced in Europe [6, 17, 18] and Canada [5, 14].
Sequences for Tylodelphys spp. were used as outgroups.
Distance-based neighbour-joining (NJ) and model-

based Bayesian inference (BI) algorithms were used for
tree reconstruction. Prior to analyses the best-fit nucleo-
tide substitution models were selected in jModelTest
2.1.1 [19, 20]. These were the Hasegawa-Kishino-Yano
model including estimates of invariant sites and among-
site rate heterogeneity (HKY + I + G) for the cox1 dataset
and the Hasegawa-Kishino-Yano model including esti-
mates of invariant sites (HKY + I) for the ITS dataset. BI
analyses were carried out with MrBayes 3.2 [21] using
Markov Chain Monte Carlo (MCMC) searches on two
simultaneous runs of four chains during 107 generations,
sampling trees every 103 generations. The first 25 % of
the sampled trees were discarded as with burn-in for
each data set and the consensus tree topology and the
nodal support were estimated from the remaining sam-
ples as posterior probability values [22]. Distance matri-
ces (p-distance model, i.e. the percentage of pairwise
character differences with pairwise deletion of gaps)
were calculated with MEGA v6. The numbering scheme
of Georgieva et al. [6] for the lineages of Diplostomum
spp. was applied for consistency.

Results
Overview of infections with Diplostomum spp.
Examination of 3,171 lymnaeid snails belonging to four
species revealed a total of 78 infections with Diplosto-
mum spp. (overall prevalence of 2.5 %): 35 in Radix aur-
icularia, 27 in Lymnaea stagnalis and 16 in Stagnicola
palustris; no infections were found in Radix peregra.
The majority of snails infected with Diplostomum spp.
was collected in Hengsteysee, supporting the most abun-
dant snail populations, whereas only few infected snails
were found in Baldeneysee and Sorpetalsperre due to
the lower snail density resulting in smaller sample size
and none were recorded in either Hennetalsperre or
Versetalsperre (Table 1). Prevalence of infections with
Diplostomum spp. in distinct samples comprising more
than 15 snails ranged from 1.0 to 16.7 % (Table 2). The
data in Table 2 also reveal the high diversity of Diplosto-
mum spp. in Hengsteysee.
Using the key and descriptions in Niewiadomska &

Kiselienė [10] morphological identification of cercariae
to the species level was achieved for two species, D. par-
viventosum ex R. auricularia and D. pseudospathaceum
ex L. stagnalis. Subsamples of the remaining isolates
were subjected to molecular identification based on se-
quence data [6, 17].

Molecular analyses
Partial cox1 sequences were obtained for most of the iso-
lates (51; 65 %) collected in Hengsteysee and Sorpetalsperre

(see Table 3 for details). Both NJ and BI analyses of the
cox1 dataset (410 nt) recovered eight reciprocally mono-
phyletic lineages (Figs. 2, 3). The predominant part of the
isolates ex R. auricularia (n = 25; 76 %) clustered with
the isolates comprising ‘D. mergi’ species complex sensu
Georgieva et al. [6] thus expanding substantially the con-
tent of the three lineages identified by these authors
(Fig. 2). Nine isolates identified here as D. parviventosum
based on morphology formed a strongly supported lineage
(‘D. mergi Lineage 1’) together with the single isolate ex R.
auricularia (JX986873) of Georgieva et al. [6], 11 further
isolates clustered together with the three isolates ex R.
auricularia (JX986874–JX986876) (‘D. mergi Lineage 2’
sensu Georgieva et al. [6]) and four isolates clustered with
five metacercarial isolates ex Salmo trutta fario L. and
Gobio gobio L. of the ‘D. mergi Lineage 3’ sensu Georgieva
et al. [6]; this lineage was joined by a single isolate
(RaHe20; further referred to as ‘D. mergi Lineage 4’). The
remaining isolates ex R. auricularia joined two additional
strongly supported lineages: D. spathaceum (7 isolates)
and ‘Clade Q’ sensu Georgieva et al. [6] (one isolate) rep-
resented by one cercarial isolate ex R. auricularia (RA97)
and two metacercarial isolates ex R. rutilus (RR43 and
RR45) from Lake Constance, all reported as D. spatha-
ceum (see Behrmann-Godel [17]) but annotated as D.
mergi in the GenBank. All isolates ex L. stagnalis and S.
palustris were identified as and clustered with isolates of
D. pseudospathaceum (Fig. 3).
The mean intraspecific divergence within the cox1

dataset examined ranged between 0.30 and 0.95 %, i.e.
below the range for mean divergence in the interspecific
comparisons (4.3–14.7 %) (Table 4). The lowest value
was obtained for the sister lineages 2 and 3 of the ‘D.
mergi’ complex. The single isolate of D. mergi Lineage 4
exhibited lower divergence values in comparisons with
isolates of Lineages 2 and 3 (3.7–3.9 and 2.4 %, respect-
ively). A total of 13 ITS1-5.8S-ITS2 sequences (975 nt)
was generated from isolates sub-sampled within the seven

Table 2 Prevalence of Diplostomum spp. in the distinct samples
(n ≥ 15) of the three lymnaeid snail hosts examined

Reservoir Hengsteysee Sorpetalsperre

Snail species R. auricularia L. stagnalis S. palustris R. auricularia

D. parviventosum 3.1–7.1 (2)

‘D. mergi Lineage 2’ 2.1–6.7 (4) 2.2–10.7 (2)

‘D. mergi Lineage 3’ 1.0–3.1 (3)

D. mergi Lineage 4 1.0 (1)

‘Diplostomum sp.
Clade Q’

3.6 (1)

D. spathaceum 2.1–4.1 (4)

D. pseudospathaceum 3.7–16.7 (6) 1.0–8.7 (5)

Prevalence is calculated for sample size n ≥ 15 only; the number of samples is
given in parentheses
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Table 3 Summary data for 51 isolates of Diplostomum spp. used for generation of the cox1 and ITS1-5.8S-ITS2 sequences

Species Isolate Snail host Reservoir GenBank accession number
(cox1/ITS1-5.8S-ITS2)

D. parviventosum RaHe1 R. auricularia Hengsteysee KR149504

D. parviventosum RaHe2 R. auricularia Hengsteysee KR149505

D. parviventosum RaHe3 R. auricularia Hengsteysee KR149506

D. parviventosum RaHe4 R. auricularia Hengsteysee KR149507

D. parviventosum RaHe5 R. auricularia Hengsteysee KR149508

D. parviventosum RaHe6 R. auricularia Hengsteysee KR149509/KR149490

D. parviventosum RaHe7 R. auricularia Hengsteysee KR149510

D. parviventosum RaHe8 R. auricularia Hengsteysee KR149511/KR149491

D. parviventosum RaHe9 R. auricularia Hengsteysee KR149512/KR149492

‘D. mergi Lineage 2’ RaBa1 R. auricularia Baldeneysee KR149513/KR149493

‘D. mergi Lineage 2’ RaHe10 R. auricularia Hengsteysee KR149514

‘D. mergi Lineage 2’ RaHe11 R. auricularia Hengsteysee KR149515

‘D. mergi Lineage 2’ RaHe12 R. auricularia Hengsteysee KR149516

‘D. mergi Lineage 2’ RaHe13 R. auricularia Hengsteysee KR149517

‘D. mergi Lineage 2’ RaHe14 R. auricularia Hengsteysee KR149518

‘D. mergi Lineage 2’ RaHe15 R. auricularia Hengsteysee KR149519/KR149494

‘D. mergi Lineage 2’ RaSo1 R. auricularia Sorpetalsperre KR149520

‘D. mergi Lineage 2’ RaSo2 R. auricularia Sorpetalsperre KR149521/KR149495

‘D. mergi Lineage 2’ RaSo3 R. auricularia Sorpetalsperre KR149522

‘D. mergi Lineage 2’ RaSo4 R. auricularia Sorpetalsperre KR149523

‘D. mergi Lineage 3’ RaHe16 R. auricularia Hengsteysee KR149524/KR149496

‘D. mergi Lineage 3’ RaHe17 R. auricularia Hengsteysee KR149525/KR149497

‘D. mergi Lineage 3’ RaHe18 R. auricularia Hengsteysee KR149526/KR149498

‘D. mergi Lineage 3’ RaHe19 R. auricularia Hengsteysee KR149527

D. mergi Lineage 4 RaHe20 R. auricularia Hengsteysee KR149528/KR149499

D. pseudospathaceum LsBa1 L. stagnalis Baldeneysee KR149529

D. pseudospathaceum LsBa2 L. stagnalis Baldeneysee KR149530

D. pseudospathaceum LsHe1 L. stagnalis Hengsteysee KR149531

D. pseudospathaceum LsHe2 L. stagnalis Hengsteysee KR149532/KR149500

D. pseudospathaceum LsHe3 L. stagnalis Hengsteysee KR149533/KR149501

D. pseudospathaceum LsHe4 L. stagnalis Hengsteysee KR149534

D. pseudospathaceum LsHe5 L. stagnalis Hengsteysee KR149535

D. pseudospathaceum LsHe6 L. stagnalis Hengsteysee KR149536

D. pseudospathaceum SpBa1 S. palustris Baldeneysee KR149537

D. pseudospathaceum SpHe1 S. palustris Hengsteysee KR149538

D. pseudospathaceum SpHe2 S. palustris Hengsteysee KR149539

D. pseudospathaceum SpHe3 S. palustris Hengsteysee KR149540

D. pseudospathaceum SpHe4 S. palustris Hengsteysee KR149541

D. pseudospathaceum SpHe5 S. palustris Hengsteysee KR149542

D. pseudospathaceum SpHe6 S. palustris Hengsteysee KR149543

D. pseudospathaceum SpHe7 S. palustris Hengsteysee KR149544

D. pseudospathaceum SpHe8 S. palustris Hengsteysee KR149545

D. pseudospathaceum SpHe9 S. palustris Hengsteysee KR149546
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cox1 lineages of newly-collected Diplostomum spp. The
analysis of the ITS data supported the molecular identifi-
cation of these isolates from cox1 gene trees except for D.
mergi Lineage 4 which clustered within the isolates of ‘D.
mergi Lineage 2’ (Fig. 4).

Detailed morphological assessment of the isolates fol-
lowing the identification of independent evolutionary line-
ages confirmed their distinct status. Using the new set of
morphological characters defined for each lineage, all iso-
lates were assigned to lineage. Taken together, the results

Table 3 Summary data for 51 isolates of Diplostomum spp. used for generation of the cox1 and ITS1-5.8S-ITS2 sequences
(Continued)

D. spathaceum RaHe21 R. auricularia Hengsteysee KR149547

D. spathaceum RaHe22 R. auricularia Hengsteysee KR149548

D. spathaceum RaHe23 R. auricularia Hengsteysee KR149549

D. spathaceum RaHe24 R. auricularia Hengsteysee KR149550

D. spathaceum RaHe25 R. auricularia Hengsteysee KR149551/KR149502

D. spathaceum RaHe26 R. auricularia Hengsteysee KR149552

D. spathaceum RaHe27 R. auricularia Hengsteysee KR149553

‘Diplostomum sp. Clade Q’ RaHe28 R. auricularia Hengsteysee KR149554/KR149503

JX986875Ge

JX986874Ge

JX986876 Ge

RaSo1

RaHe10

RaHe11

RaHe14

RaHe13

RaSo3

RaSo2

RaBa1

RaHe12

RaHe15

RaSo4

RaHe20

RaHe16

JX986886 Ge

RaHe17
JX986878Ge

JX986877Ge

JX986880 Ge

JX986879 Ge

RaHe18

RaHe19

RaHe6

RaHe7

RaHe4

RaHe3

RaHe2

RaHe8

RaHe5

JX986873 Ge

RaHe1

RaHe9

JQ639179 D. spathaceum B-G

JQ639177 D. spathaceum B-G

RaHe28

JQ639178 D. spathaceum B-G

100/1

100/1

98/1

91/0.97

95/0.97

94/0.94

93/0.95

99/-

77/1

98/1

‘Clade Q’

‘D. mergi  2’

‘D. mergi  3’

D. parviventosum
(‘D. mergi  1’)

‘D. mergi  4’

Fig. 2 Neighbour-joining (NJ) phylogram for Diplostomum spp. reconstructed using 51 newly-generated and 28 cox1 sequences retrieved from
GenBank. Nodal support from NJ and Bayesian Inference (BI) analyses indicated as NJ/BI. The scale bar indicates the expected number of substitutions
per site. The newly-sequenced isolates are coded as in Table 3. Sequence identification is as in GenBank, followed by a letter: B-G, Behrmann-Godel
[17]; Ge, Georgieva et al. [6]
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from the molecular and morphological analyses suggest
that isolates sampled in lymnaeid snails from Germany
represent three named species and four distinct lineages
of Diplostomum spp. Descriptions of the cercariae of D.
parviventosum, D. pseudospathaceum, D. spathaceum and
of the three novel lineages of the ‘D. mergi’ species com-
plex plus ‘Diplostomum sp. Clade Q’ are provided below.

Descriptions of the cercariae of Diplostomum spp. based
on the molecular voucher material
Diplostomum parviventosum Dubois, 1932
First intermediate host: Radix auricularia (Linnaeus).
Locality: Hengsteysee, Germany.

[Figure 5 and Additional file 3: Figure S2A, Additional
file 4: Figure S3A, Additional file 5: Figure S4A. Mea-
surements of formalin-fixed specimens are provided in
Table 5.] Body elongate-oval, 127 − 164 × 53 − 86 (146 ×
62), shorter than tail stem [BL/TSL = 0.7 − 0.9 (0.8)],
with aggregations of yellow pigment in parenchyma on
both sides of terminal organ and around ventral sucker
(Fig. 5a, b). Anterior organ elongate-oval, with posterior
margin reaching to mid-length of forebody, 42 − 67 × 23
− 40 (51 × 32). Ventral sucker spherical, small, somewhat
post-equatorial, 31 − 44 × 30 − 48 (37 × 37), with fine un-
dulating membrane (3 high) (Fig. 5d); width slightly ex-
ceeds width of anterior organ [VSW/AOW= 1.1 − 1.3

JX986862 Ge

JX986863 Ge

JX986864 Ge

JX986865 Ge

JX986869 Ge

JQ639195 B-G

JQ639193 B-G

JQ639187 B-G

JQ639191 B-G

JQ639189 B-G

RaHe25

JX986892 Ge

RaHe26

JX986887 Ge

RaHe24

RaHe27

JX986895 Ge

RaHe23

RaHe21

RaHe22

SpHe7

SpHe9

SpBa1

SpHe8

JX986904 Ge

LsHe1

SpHe6

JX986905 Ge

JX986896 Ge

SpHe4

LsHe3

LsBa2

LsHe4

LsHe2

LsBa1

SpHe5

LsHe6

SpHe1

LsHe5

SpHe2

SpHe3

JX986909 Tylodelphys clavata Ge

100/0.99

72/0.99

98/-

100/1

100/1

-/0.97

100/1

0.02

‘D. baeri  1’

‘D. baeri  2’

D. pseudospathaceum

D. spathaceum

Fig. 3 Neighbour-joining (NJ) phylogram for Diplostomum spp. reconstructed using 51 newly-generated and 28 cox1 sequences retrieved from
GenBank; continuation of Fig. 2. Nodal support from NJ and Bayesian Inference (BI) analyses indicated as NJ/BI. The scale bar indicates the
expected number of substitutions per site. Codes for the newly-sequenced isolates are provided in Table 3. Sequence identification is as in
GenBank, followed by a letter: B-G, Behrmann-Godel [17]; Ge, Georgieva et al. [6]
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RaHe16
RaHe17
RaHe18 
JX986842 ‘D. mergi 3’ Ge
JX986840 ‘D. mergi 3’ Ge
JX986841 ‘D. mergi 3’ Ge
JX986843 ‘D. mergi 3’ Ge
JX986838‘D. mergi 1’ Ge
RaHe6 
RaHe8 
RaHe9 
RaHe20
JX494231 D. mergiH
JX986839 ‘D. mergi 2’ Ge

RaSo2 
RaBa1
RaHe15 
JX494233 D. mergi H

RaHe28 
JQ665458 D. spathaceum B-G

JX986837 D. baeri Ge
JQ665460 D. baeri B-G

GQ292505 Diplostomum sp. 2 L
AY123042 D. baeri Ga

GQ292513 D. huronense L
AY123044 D. huronense Ga

GQ292520 Diplostomum sp. 4 L
JX986847 Ge

RaHe25 
JX986846 Ge
JX986848 Ge

JX986844 Ge
JX986845 Ge

JQ665457 D. paracaudum B-G
GQ292519 Diplostomum sp. 1 L
AY123043 D. indistinctum Ga

GQ292511 Diplostomum sp. 3 L
JQ665456 B-G
LsHe3 
LsHe2 
JX986852 Ge
JX986854 Ge
JX986853 Ge
JX986849 Ge
JX986850 Ge
JX986851 Ge

KC685364 Tylodelphys excavata C

100/1

100/1

86/1

69/1

75/0.94

99/1

85/1

63/0.94

99/1

63/1

99/0.98

97/-

93/-

0.01

D. pseudospathaceum

D. spathaceum

81/-

‘Clade Q’

D. parviventosum
(‘D. mergi  1’)

‘D. mergi  2’

‘D. mergi  3’

‘D. mergi  4’

Fig. 4 Neighbour-joining (NJ) phylogram for Diplostomum spp. reconstructed using 13 newly-generated and 32 ITS1-5.8S-ITS2 sequences retrieved
from GenBank. Outgroup: Tylodelphys excavata. Nodal support from NJ and Bayesian Inference (BI) analyses are indicated as NJ/BI. The scale bar
indicates the expected number of substitutions per site. Codes for the newly-sequenced isolates are provided in Table 3. Sequence identification is as
in GenBank, followed by a letter: B-G, Behrmann-Godel [17]; Ge, Georgieva et al. [6]; Ga, Galazzo et al. [14]; H, Haarder et al. [18]; L, Locke et al. [5]

Table 4 Mean divergence (uncorrected p-distance in %) estimated for the cox1 sequence pairs within- (diagonal) and among species
and lineages of Diplostomum

1 2 3 4 5 6 7 8

1 ‘Diplostomum sp. Clade Q’ 0.56

2 D. baeri (trout) 1 13.5 0.44

3 D. baeri (perch) 2 13.3 6.5 0.95

4 D. parviventosum* 11.1 13.9 13.0 0.30

5 ‘D. mergi Lineage 2’ 10.9 13.8 13.8 6.7 0.30

6 ‘D. mergi Lineage 3’ 11.0 14.4 14.7 6.9 4.3 0.65

7 D. pseudospathaceum 12.0 14.7 13.2 13.9 12.0 12.9 0.66

8 D. spathaceum 12.1 14.6 12.4 11.2 10.7 11.6 10.0 0.53

*‘D. mergi Lineage 1’ of Georgieva et al. [6]
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Fig. 5 Cercaria of Diplostomum parviventosum ex Radix auricularia (light and scanning electron microscopy, SEM). a, Resting position; b, Body;
c, Anterior organ, apical view (SEM); d, Ventral sucker (SEM); e, Tail stem and furcae (SEM); f, Furcae (SEM)

Table 5 Comparative metrical data for cercariae of the Diplostomum ‘mergi’ species complex

Species D. mergi ‘D. mergi Lineage 2’ ‘D. mergi Lineage 3’ D. parviventosum

Source Niewiadomska & Kiselienė [10] Present study Present study Niewiadomska & Kiselienė [10] Present study

Fixation method Heat-killed in water Formalin Formalin Heat-killed in water Formalin

BL 161–204 (182) 157–179 (168) 171–191 (184) 162–185 (176) 115–151 (134)

BW 51–68 (59) 62–67 (64) 44–54 (49) 50–70 (55) 50–61 (54)

AOL 51–68 (58) 43–53 (49) 42–59 (48) 55–60 (56) 43–53 (47)

AOW 25–30 (28) 24–36 (33) 29–35 (32) 29–32 (31) 26–33 (30)

VSL 34–51 (44) 43–49 (46) 28–33 (31) 34–38 (36) 29–39 (33)

VSW 34–51 (44) 50–56 (53) 28–35 (32) 34–37 (36) 30–46 (37)

TSL 187–229 (207) 146–180 (168) 196–224 (212) 203–242 (228) 153–176 (165)

TSW 34–43 (36) 27–32 (29) 30–36 (33) 31–40 (35) 26–36 (30)

FL 187–229 (210) 203–227 (216) 210–245 (225) 191–218 (206) 178–217 (204)

VSW/AOW (1.6) 1.5–2.1 (1.6) 0.9–1.1 (1.0) (1.1) 1.0–1.4 (1.2)

BL/TSL (0.9) 1.0–1.1 (1.0) 0.8–1.0 (0.9) (0.8) 0.7–0.9 (0.8)

TSL/FL (1.0) 0.7–0.8 (0.8) 0.9–1.0 (0.9) (1.1) 0.8–0.9 (0.8)

Data are presented as the range followed by the mean in parentheses. See Methods and Additional file 1: Figure S1 for description and illustration of the
metrical features
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(1.2)]. Penetration gland-cells 2 pairs, relatively small,
with fine granular content, posterior to ventral sucker,
overlap caeca partially, posterior pair not reaching ex-
tremities of caeca; ducts open antero-laterally to mouth.
Tail stem 148 − 208 (173) long, 27 − 40 (33) wide at base,
slightly shorter than furcae [TSL/FL = 0.7 − 1.0 (0.8)],
contains 10 − 12 pairs of caudal bodies, irregularly shaped
but with smooth contours. Furcae 199 − 234 (216) long,
with fish-fin like fin-folds.
Body armature: Pre-oral spines arranged in median

group of 6 − 7 spines in 3 rows; lateral groups absent
(Fig. 5c, Additional file 3: Figure S2A). Post-oral spines
more robust than spines on body, in 7 − 8 alternate rows;
rows 1 − 2 with median interruption; first 4 spines in
row 1 on both sides of median interruption largest;
spines in row 1 larger than remaining spines, all of simi-
lar size. Wide zone of smaller, less dense, irregularly dis-
persed spines present posterior to post-oral spines,
followed by narrow spineless area and 11 transverse
rows of spines extending to mid-level of ventral sucker.
Rows 1 − 4 complete (i.e. encircling body); rows 5 − 8
discontinuous dorsally; rows 9 − 11 discontinuous ven-
trally and dorsally; rows 1 and 10 with additional spines
laterally. Two ventro-lateral fields of smaller spines (0.8–
1.2) present posterior to ventral sucker; fields converge
close to posterior extremity of body. Ventral sucker
armed with 2 rows of spines (c.40 per row; range 77 −
87; mean 81) (Fig. 5d, Additional file 4: Figure S3A). Tail
stem and furcae with scale-like spines (Fig. 5e); spines
on tail stem in 4 medio-lateral bands (2 ventral and 2
dorsal), each consisting of 2 − 3 scale-like spines, in-
creasing in size posteriorly (0.6 − 2), plus a median row
of minute spines; bands continue along furcal margins
as rows of 2 spines anteriorly and single spine posteriorly;
all spines on furcae enveloped by tegumental membrane
forming fish-fin like fin-fold (Fig. 5f, Additional file 5:
Figure S4A).
Resting position: Tail stem bent at < 90° (45–67°).

‘Diplostomum mergi Lineage 2’ of Georgieva et al. [6]
First intermediate host: Radix auricularia (Linnaeus).
Locality: Hengsteysee, Sorpetalsperre, Germany.
[Figure 6 and Additional file 3: Figure S2C, Additional

file 4: Figure S3C, Additional file 5: Figure S4C. Mea-
surements from formalin-fixed specimens are provided
in Table 5.] Body elongate-oval, 154 − 179 × 60 − 66
(167 × 63), slightly shorter than tail stem [BL/TSL = 0.8
− 0.9 (0.9)], with aggregations of yellow pigment in par-
enchyma on both sides of terminal organ and around
ventral sucker, most prominently anterior to ventral
sucker (Fig. 6a, b). Anterior organ elongate-oval, with
posterior margin reaching to mid-length of forebody, 50
− 62 × 26 − 30 (56 × 28). Ventral sucker subspherical,
large, somewhat post-equatorial, 47 − 53 × 42 − 52 (50 ×

47), with fine undulating membrane (3 − 4 high) (Fig. 6d);
width exceeds width of anterior organ [VSW/AOW=
1.5 − 2.0 (1.7)]. Penetration gland-cells 2 pairs, large,
with fine granular content, posterior to ventral sucker,
overlap caeca partially, posterior pair not reaching ex-
tremities of caeca; ducts open antero-laterally to mouth.
Tail stem 185 − 207 (195) long, 31 − 36 (33) wide at base,
shorter than furcae [TSL/FL = 0.8 − 0.9 (0.8)], contains
36 − 40 caudal bodies; individual caudal bodies with
smooth contours. Furcae 221 − 273 (247) long, with fish-
fin like fin-folds.
Body armature: Pre-oral spines arranged in median

group of 5 − 6 spines in 2 rows with one median spine
very large (Fig. 6c, Additional file 3: Figure S2C); one
additional very small spine may be present; lateral
groups absent. Post-oral spines more robust than spines
on body, in 11 alternate rows (one additional median
row may be present); rows 1 − 2 with median interrup-
tion; first 4 spines in row 1 and first 3 spines in row 2
on both sides of median interruption largest; spines in
row 1 larger than remaining spines, all of similar size.
Wide zone of smaller, less dense, irregularly dispersed
spines present posterior to post-oral spines, followed by
narrow spineless area and 10 transverse rows of spines
extending to mid-level of ventral sucker; row 10 with
smaller and fewer spines. Rows 1 − 5 complete (i.e. en-
circling body); rows 6 − 10 discontinuous ventrally and
dorsally; rows 1 − 4 with additional spines laterally; rows
5 and 6 with few additional spines laterally. Two ventro-
lateral fields of smaller spines (1.0–1.5) present posterior
to ventral sucker; fields converge close to posterior ex-
tremity of body. Ventral sucker armed with 2 rows of
spines (c.57 per row; range 110 − 120; mean 114) (Fig. 6d,
Additional file 4: Figure S3C). Tail stem and furcae with
scale-like spines (Fig. 6e); spines on tail stem in 4
medio-lateral bands (2 ventral and 2 dorsal), starting
from second quarter of tail, each consisting of 2 − 3
scale-like spines, increasing in size posteriorly (0.6 − 2.5);
bands continue along furcal margins as rows of 2 spines
anteriorly and 1 spine posteriorly; all spines on furcae
enveloped by tegumental membrane forming fish-fin like
fin-fold (Fig. 6f, Additional file 5: Figure S4C).
Resting position: Tail stem bent at < 90° (64 − 85°).

‘Diplostomum mergi Lineage 3’ of Georgieva et al. [6]
First intermediate host: Radix auricularia (Linnaeus).
Locality: Hengsteysee, Germany.
[Figure 7 and Additional file 3: Figure S2D, Additional

file 4: Figure S3D, Additional file 5: Figure S4D. Mea-
surements of formalin-fixed specimens are provided in
Table 5.] Body elongate-oval, 158 − 169 × 50 − 57 (162 ×
53), slightly shorter than tail stem [BL/TSL = 0.9 − 1.0
(0.9)], with aggregations of yellow pigment in parenchyma
on both sides of ventral sucker (Fig. 7a, b). Anterior organ
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elongate-oval, with posterior margin reaching to mid-
length of forebody, 50 − 57 × 26 − 29 (54 × 28). Ventral
sucker spherical, small, somewhat post-equatorial, 29 −
34 × 28 − 32 (31 × 31), with fine undulating membrane (2
high) (Fig. 7d); width slightly exceeds width of anterior
organ [VSW/AOW= 1.0 − 1.2 (1.1)]. Penetration gland-
cells 2 pairs, medium-sized, with fine granular content,
posterior to ventral sucker, overlap caeca partially, poster-
ior pair not reaching extremities of caeca, ducts open
antero-laterally to mouth. Tail stem 167 − 197 (179) long,
31 − 33 (32) wide at base, shorter than furcae [TSL/FL =
0.7 − 0.8 (0.8)], contains numerous (impossible to count)
caudal bodies with incised contours. Furcae 215 − 240
(227) long, with fish-fin like fin-folds.
Body armature: Pre-oral spines arranged in median

group of 7 spines in 3 rows with one median spine
slightly larger (Fig 7c, Additional file 3: Figure S2D); lat-
eral groups absent. Post-oral spines more robust than
spines on body, in 10 alternate rows; rows 1 − 2 with a

median interruption; first 4 spines in row 1 on both
sides of median interruption largest; spines in rows 1 − 2
larger than remaining spines, all of similar size. Wide
zone of smaller, less dense, irregularly dispersed spines
present posterior to post-oral spines, followed by narrow
spineless area and 11 transverse rows of spines extend-
ing to mid-level of ventral sucker; row 11 with smaller
spines. Rows 1 − 3 complete (i.e. encircling body); rows
4 − 11 discontinuous ventrally and dorsally; row 1 dou-
bled; rows 2 − 3 with additional spines laterally. Two
ventro-lateral non-converging fields of smaller spines
(0.7–1.0) present posterior to ventral sucker. Ventral
sucker armed with 2 rows of spines (c.45 per row; range
90 − 92; mean 90) (Fig. 7d, Additional file 4: Figure S3D).
Tail stem and furcae with scale-like spines (Fig. 7e);
spines on tail stem in 4 medio-lateral bands (2 ventral
and 2 dorsal), each consisting of 2 − 3 scale-like spines,
increasing in size posteriorly (0.8 − 3.0); bands continue
along furcal margins as rows of 2 spines anteriorly and 1

Fig. 6 Cercaria of ‘Diplostomum mergi Lineage 2’ of Georgieva et al. [6]) ex Radix auricularia (light and scanning electron microscopy, SEM).
a, Resting position; b, Body; c, Anterior organ, apical view (SEM); d, Ventral sucker (SEM); e, Tail stem and furcae (SEM); f, Furcae (SEM)
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spine posteriorly; all spines on furcae enveloped by tegu-
mental membrane forming fin-fold (Fig. 7f, Additional
file 5: Figure S4D).
Resting position: Tail stem bent at ≤ 90° (77 − 91°).

Diplostomum mergi Lineage 4
First intermediate host: Radix auricularia (Linnaeus).
Locality: Hengsteysee, Germany.
[Figure 8 and Additional file 3: Figure S2B, Additional

file 4: Figure S3B, Additional file 5: Figure S4B.] Body
elongate-oval, 180 − 186 × 94 − 115 (184 × 105), shorter
than tail stem (BL/TSL = 0.7), with aggregations of yel-
low pigment in parenchyma on both sides of terminal
organ and around ventral sucker (Fig. 8a, b). Anterior
organ elongate-oval, with posterior margin reaching to
mid-length of forebody, 54− 74 × 38 − 51 (63 × 44). Ventral
sucker transversely oval, large, somewhat post-equatorial,
58 − 79 × 65 − 78 (63 × 71), with fine undulating mem-
brane (3 − 5 high) (Fig. 8d); width exceeds width of

anterior organ [VSW/AOW=1.5− 1.7 (1.6)]. Penetration
gland-cells 3 pairs (anterior pair small, posterior pairs large),
with fine granular content, posterior to ventral sucker, over-
lap caeca partially, posterior pair not reaching extremities
of caeca; ducts open antero-laterally to mouth. Tail stem
261 − 263 (262) long, 41 − 47 (43) wide at base, of equal
length as furcae (TSL/FL = 1.0), with 36 − 40 caudal bodies;
individual caudal bodies irregularly shaped with smooth
contours. Furcae 269 long, with fish-fin like fin-folds.
Body armature: Pre-oral spines arranged in median

group of 7 spines in 3 rows with one median spine very
large (Fig. 8c, Additional file 3: Figure S2B); lateral
groups absent. Post-oral spines more robust than spines
on body, in 11 alternate rows; rows 1 − 2 with median
interruption, rows 10 − 11 interrupted dorsally; first 4
spines in row 1 and first 3 spines in row 2 on both sides
of median interruption largest; spines in first 2 rows lar-
ger than remaining spines, all of similar size. Wide zone
of smaller, less dense, irregularly dispersed spines

Fig. 7 Cercaria of ‘Diplostomum mergi Lineage 3’ of Georgieva et al. [6] ex Radix auricularia (light and scanning electron microscopy, SEM).
a, Resting position; b, Body; c, Anterior organ, apical view (SEM); d, Ventral sucker (SEM); e, Tail stem and furcae (SEM); f, Furcae (SEM)
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present posterior to post-oral spines, followed by narrow
spineless area and 10 transverse rows of spines extend-
ing to mid-level of ventral sucker. Rows 1 − 4 complete
(i.e. encircling body); rows 5 − 7 discontinuous dorsally;
rows 8 − 10 discontinuous ventrally and dorsally. Two
ventro-lateral fields of smaller spines (0.5–1.0) present
posterior to ventral sucker; fields converge close to pos-
terior extremity of body. Ventral sucker armed with 2
rows of spines (c.56 per row; range 112 − 114; mean 113)
(Fig. 8d, Additional file 4: Figure S3B). Tail stem and fur-
cae with scale-like spines (Fig. 8e); spines on tail stem in
4 medio-lateral bands (2 ventral and 2 dorsal), each con-
sisting of 1 − 2 scale-like spines, increasing in size pos-
teriorly (1 − 3); bands continue along furcal margins as
single rows of spines; all spines on furcae enveloped by
tegumental membrane forming fish-fin like fin-fold
(Fig. 8f, Additional file 5: Figure S4B).
Resting position: Tail stem bent at < 90° (66°).

‘Diplostomum sp. Clade Q’ of Georgieva et al. [6]
First intermediate host: Radix auricularia (Linnaeus).
Locality: Hengsteysee, Germany.

[Figure 9 and Additional file 4: Figure S3E, Additional
file 5: Figure S4E.] Body elongate-oval, 215 − 239 × 87 −
101 (224 × 96), shorter than tail stem (BL/TSL = 0.8),
with aggregations of yellow pigment in parenchyma on
both sides of terminal organ, around ventral sucker
(Fig. 9a) and in furcae. Anterior organ elongate-oval,
with posterior margin reaching to mid-length of fore-
body, 70 − 88 × 46 − 48 (80 × 47). Ventral sucker trans-
versely oval, large, somewhat post-equatorial, 51 − 60 ×
57 − 70 (56 × 65), with fine undulating membrane (5
high) (Fig. 9d); width exceeds width of anterior organ
[VSW/AOW= 1.2 − 1.4 (1.3)]. Penetration gland-cells 2
pairs, large, with fine granular content, posterior to ven-
tral sucker, overlap caeca partially, posterior pair not
reaching extremities of caeca; ducts open antero-laterally
to mouth. Tail stem 266 long, 43 − 48 (46) wide at base,
of equal length to furcae (TSL/FL = 1.0), contains 10
pairs of caudal bodies with incised contours. Furcae 280
long, with fish-fin like fin-folds.
Body armature: Pre-oral spines arranged in median

group of 9 spines in 3 rows (Fig. 9c); lateral groups ab-
sent. Post-oral spines more robust than spines on body,

Fig. 8 Cercaria of Diplostomum mergi Lineage 4 ex Radix auricularia (light and scanning electron microscopy, SEM). a, Resting position; b, Body;
c, Anterior organ, apical view (SEM); d, Ventral sucker (SEM); e, Tail stem and furcae (SEM); f, Furcae (SEM)
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in 12 alternate rows; first row with median interruption,
rows 11–12 interrupted laterally; first 5 spines in row 1
on both sides of median interruption largest; remaining
spines of different sizes, spines in rows 1–4 distinctly
larger than those in remaining rows, spines in rows 5–
10 small, spines in rows 10–12 medium-sized (Fig. 9b).
Wide zone of smaller, less dense, irregularly dispersed
spines present posterior to post-oral spines (spines
sparser dorsally), followed by narrow spineless area and
10 transverse rows of spines extending to mid-level of
ventral sucker. Rows 1 − 4 complete (i.e. encircling body);
rows 5 − 10 discontinuous ventrally and dorsally; row 1
doubled, rows 2 − 3 with additional spines laterally. Two
ventro-lateral non-converging fields of smaller spines (0.7–
1.3) present posterior to ventral sucker. Ventral sucker
armed with 2 rows of spines (c.57 per row; range 112 −
116; mean 114) (Fig. 9d, Additional file 4: Figure S3E). Tail

stem and furcae with scale-like spines (Fig. 9f); spines on
tail stem in 4 medio-lateral bands (2 ventral and 2 dorsal),
each consisting of 1 − 2 scale-like spines anteriorly and of
3 spines posteriorly close to bifurcation; spines increase in
size posteriorly (0.6 − 3.0); bands continue along furcal
margins as single rows of spines; all spines on furcae
enveloped by tegumental membrane forming fish-fin like
fin-folds (Fig. 9e, Additional file 5: Figure S4E).
Resting position not observed.

Diplostomum spathaceum (Rudolphi, 1819)
First intermediate host: Radix auricularia (Linnaeus).
Locality: Hengsteysee, Germany.
[Figure 10 and Additional file 3: Figure S2G, Additional

file 4: Figure S3G, Additional file 5: Figure S4G. Measure-
ments of formalin-fixed specimens are provided in
Table 6.] Body elongate-oval, 159 − 178 × 46 − 60 (172 ×

Fig. 9 Cercaria of ‘Diplostomum sp. Clade Q’ of Georgieva et al. [6] ex Radix auricularia (light and scanning electron microscopy, SEM). a, Body;
b, Anterior organ, lateral view (SEM); c, Anterior organ, apical view (SEM); d, Ventral sucker (SEM); e, Furcae (SEM); f, Tail stem and furcae (SEM)
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51), shorter than tail stem [BL/TSL = 0.7 − 0.9 (0.8)], with
aggregations of yellow pigment in parenchyma concen-
trated on both sides of anterior organ and above ventral
sucker (Fig. 10a, b). Anterior organ elongate-oval, with
posterior margin reaching to mid-length of forebody, 39 −
56 × 24 − 28 (50 × 26). Ventral sucker spherical, small,
somewhat post-equatorial, 26 − 35 × 27 − 33 (30 × 30),
with fine undulating membrane (2 − 3.5 high) (Fig. 10d);
width slightly exceeds width of anterior organ [VSW/
AOW= 1.0 − 1.3 (1.1)]. Penetration gland-cells 2 pairs,
large, with fine granular content, posterior to ventral
sucker, overlap caeca partially, posterior pair not reaching
extremities of caeca. Tail stem 197 − 233 (219) long, 29 −
32 (31) wide at base, shorter than furcae [TSL/FL = 0.8 −
0.9 (0.8)], contains 56 − 60 caudal bodies; individual caudal
bodies irregularly shaped with both incised and smooth
contours. Furcae 250 − 267 (260) long, without fin-fold.
Body armature: Pre-oral spines arranged in median

group of 18 − 19 spines in 3 rows (Fig. 10c, Additional
file 3: Figure S2G); spines in most anterior row largest,
gradually decreasing in size in remaining rows; 2 lateral
groups with 1 small spine each present. Post-oral spines
more robust than spines on body, in 9 alternate rows;

row 1 with median interruption; row 9 interrupted lat-
erally; spines in row 1 larger than remaining spines, all
of similar size. Wide zone of smaller, less dense, irregu-
larly dispersed spines present posterior to post-oral
spines, followed by narrow spineless area and 10 trans-
verse rows of spines extending to mid-level of ventral
sucker. Rows 1 − 8 complete (i.e. encircling body); rows
9 − 10 discontinuous ventrally; rows 1 − 2 doubled ven-
trally; row 3 with additional spines laterally. Two ventro-
lateral fields of smaller spines (1.0–1.5) present posterior
to ventral sucker; fields reach up to margin of ventral
sucker and transverse row 10 laterally and dorsally and
converge posterior to ventral sucker and close to poster-
ior extremity of body. Ventral sucker armed with 3 rows
of irregularly positioned spines (range 103 − 119; mean
110) (Fig. 10d, Additional file 4: Figure S3G). Tail stem
and furcae with scale-like spines; spines on tail stem in 4
medio-lateral bands (2 ventral and 2 dorsal), each con-
sisting of 3 scale-like spines (<1.0) (Fig. 10e); bands con-
tinue along furcal margins as rows of 4 spines anteriorly
and single rows of spines posteriorly (Fig. 10f, Additional
file 5: Figure S4G).
Resting position: Tail stem bent at < 45° (39°).

Fig. 10 Cercaria of Diplostomum spathaceum ex Radix auricularia (light and scanning electron microscopy, SEM). a, Resting position; b, Body;
c, Anterior organ, apical view (SEM); d, Ventral sucker (SEM); e, Tail stem and furcae (SEM); f, Furcae (SEM)
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Diplostomum pseudospathaceum Niewiadomska, 1984
First intermediate hosts: Lymnaea stagnalis (Linnaeus);
Stagnicola palustris (Müller).
Localities: Baldeneysee, Hengsteysee, Germany.
[Figure 11 and Additional file 3: Figure S2E, F, Additional

file 4: Figure S3F, Additional file 5: Figure S4F. Mea-
surements of formalin-fixed specimens are provided in
Table 6.] Body elongate-oval, 152 − 183 × 46 − 54 (166 ×
50), slightly shorter than tail stem [BL/TSL = 0.8 − 1.0
(0.9)] (Fig. 11a, b), with aggregations of yellow pigment in
the parenchyma of whole body, concentrated on both
sides of anterior organ, above ventral sucker and in tail
stem and furcae. Anterior organ elongate-oval, with pos-
terior margin reaching to mid-length of forebody, 41 −
58 × 22 − 28 (50 × 25). Ventral sucker spherical, small,
somewhat post-equatorial, 24 − 32 × 27 − 32 (29 × 30),
with fine undulating membrane (2 − 3 high) (Fig. 11d);
width exceeds width of anterior organ [VSW/AOW= 1.1
− 1.4 (1.2)]. Penetration gland-cells 2 pairs, large, with fine
granular content, posterior to ventral sucker, overlap caeca
partially, posterior pair not reaching extremities of caeca.
Tail stem 176 − 203 (187) long, 27 − 30 (29) wide at base,
shorter than furcae [TSL/FL = 0.8 − 0.8 (0.8)], contains 35
− 45 caudal bodies; individual caudal bodies irregularly
shaped with smooth contours. Furcae 219 − 253 (234)
long, without fin-fold.
Body armature: Pre-oral spines arranged in median

group of 10 − 11 spines in 3 rows; spines in anterior row
largest, remaining spines of similar size; 2 lateral groups
with 3 small spines each present (Fig. 11c, Additional file 3:
Figure S2E, F). Post-oral spines more robust than spines
on body, in 9 alternate rows; rows 1 − 2 with median

interruption; row 9 interrupted laterally; first 2 spines in
row 1 on both sides of median interruption largest; spines
in row 1 larger than remaining spines, all of similar size.
Wide zone of smaller, less dense, irregularly dispersed
spines present posterior to post-oral spines, followed by
narrow spineless area and 11 transverse rows of spines
extending to mid-level of ventral sucker. Rows 1 − 8
complete (i.e. encircling body); row 9 discontinuous ven-
trally, rows 10 − 11 discontinuous ventrally and dorsally;
rows 1 − 2 doubled ventrally; rows 3 − 7 with additional
spines laterally. Two ventro-lateral fields of smaller spines
(1.0–1.5) present posterior to ventral sucker; fields reach
up to margin of ventral sucker and transverse row 11 lat-
erally and dorsally and converge posterior of ventral
sucker and close to posterior extremity of body. Ventral
sucker armed with 2 rows of spines (c.42 per row; range
70 − 100; mean 84); third row may be partially formed
(Fig. 11d, Additional file 4: Figure S3F). Tail stem and fur-
cae with scale-like spines (Fig. 11e); spines on tail stem in
4 medio-lateral bands (2 ventral and 2 dorsal), each con-
sisting of 1 − 2 scale-like spines anteriorly, 2 − 3 spines
posteriorly, increasing in size posteriorly (0.5 − 1.3 μm);
bands continue along furcal margins as rows of 3 spines
anteriorly and 2 spines posteriorly (Fig. 11f, Additional file 5:
Figure S4F).
Resting position: Tail stem bent at < 45° (29 − 38°).

Discussion
To the best of our knowledge, this study provides the
first combined morphological and molecular character-
isation of Diplostomum spp. in natural lymnaeid snail
populations in central Europe and is the first to apply

Table 6 Comparative metrical data for cercariae of Diplostomum pseudospathaceum, D. spathaceum and D. paracaudum

Species D. pseudospathaceum D. spathaceum D. paracaudum D. spathaceum

Source Niewiadomska [27];
Niewiadomska & Kiselienė [10]

Present study Niewiadomska [27];
Niewiadomska & Kiselienė [10]

Niewiadomska [28];
Niewiadomska & Kiselienė [10]

Present study

Fixation method Heat-killed in water Formalin Heat-killed in water Heat-killed in water Formalin

BL 170–199 (185) 150–172 (162) 222–288 (235) 185–199 (189) 155–181 (170)

BW 44–51 (45) 57–64 (59) 66–81 (73) 44–51 (46) 50–58 (53)

AOL 40–51 (49) 43–51 (47) 61–95 (68) 51–54 (51) 33–50 (45)

AOW 25–27 (27) 28–34 (31) 30–40 (34) 23–30 (27) 28–33 (30)

VSL 23–30 (29) 19–31 (28) 47–68 (53) 23–30 (25) 29–31 (31)

VSW 23–34 (28) 26–33 (30) 51–68 (59) 27–30 (28) 25–31 (27)

TSL 199–214 (206) 203–221 (213) 244–303 (273) 185–222 (211) 241–260 (250)

TW 29–31 (29) 21–32 (29) 40–44 (44) 37 30–34 (32)

FL 185–222 (201) 212–246 (232) 251–296 (273) 185–222 (208) 237–261 (252)

VSW/AOW (1.0) 0.8–1.1 (1.0) (1.7) (1.0) 0.8–1.1 (0.9)

BL/TSL (0.9) 0.7–0.8 (0.8) (0.9) (0.9) 0.6–0.7 (0.7)

TSL/FL (1.0) 0.9–1.0 (0.9) (1.0) (1.0) 0.9–1.0 (1.0)

Data are presented as the range followed by the mean in parentheses. See Methods and Additional file 1: Figure S1 for description and illustration of the metrical
features
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thorough SEM analysis of species-specific features of the
cercariae that can be used for species identification and
delineation. This integrative approach allowed us to (i)
provide evidence for morphological and molecular dif-
ferentiation within the ‘D. mergi’ species complex, in-
cluding a previously undetected lineage; (ii) clarify that
‘D. mergi Lineage 1’ of Georgieva et al. [6] represents D.
parviventosum; (iii) partially elucidate the life-cycle of
‘D. mergi Lineage 3’ and ‘Diplostomum sp. Clade Q’ of
Georgieva et al. [6]; (iv) expand the cox1 database for
the European species D. pseudospathaceum and D.
spathaceum in association with descriptions based on
sequenced isolates; and (vii) assess the first intermediate
host-specificity of D. pseudospathaceum.
Morphologically, the cercaria corresponding genetic-

ally to ‘D. mergi Lineage 1’ of Georgieva et al. [6] keyed
down to D. parviventosum in the key of Niewiadomska
& Kiselienė [10] due to the presence of 6–7 pre-oral
spines, 11 transverse rows of spines on the body, 10–12
pairs of caudal bodies in the tail, ventral sucker slightly
exceeding the width of the anterior organ [VSW/AOW
1.0–1.4 (1.2)], fin-folds on the furcae, and small penetration

gland-cells which do not cover ends of caeca (see Additional
file 6: Table S2). As described for D. parviventosum by
Niewiadomska & Kiselienė [10], the present cercaria also
shows a characteristic resting position with the tail stem
bent at about 45° but differs in having 11 transverse rows
of spines on the body (vs 10); of these rows 9–11 are inter-
rupted ventrally and dorsally and rows 5–8 are interrupted
dorsally (vs rows 6–10 with ventral and dorsal interrup-
tion) (Additional file 6: Table S2). Comparisons of the
metrical data for fixed cercariae revealed differences prob-
ably due to the fixation method (Table 5). The present cer-
cariae (both live and formalin-fixed) exhibit lower ranges
and means for the length of the body, anterior organ and
tail stem, the latter resulting in a lower range for the ratio
TSL/FL (mean 0.8 vs 1.1), and higher upper limits for the
width of the ventral sucker (46 vs 37 μm). However, the
ratios VSW/AOW and BL/TSL are similar (see means in
Table 5). Furthermore, the number of rows of post-oral
spines (7–8 alternate rows) and the number of spines on
the ventral sucker (77–87 in two rows) agree well with the
description by Niewiadomska & Kiselienė [10], i.e. 6–8
rows of post-oral spines and 80–88 spines on ventral

Fig. 11 Cercaria of Diplostomum pseudospathaceum ex Lymnaea stagnalis (light and scanning electron microscopy, SEM). a, Resting position;
b, Body; c, Anterior organ, apical view, arrows indicate group of lateral pre-oral spines (SEM); d, Ventral sucker (SEM); e, Tail stem and furcae (SEM);
f, Furcae (SEM)
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sucker in two rows (Additional file 6: Table S2). Our
study thus provides the first detailed morphological de-
scription of the cercaria of D. parviventosum based on
both light and scanning electron microscopy. Further-
more, the concordance of the morphological and mo-
lecular data clearly suggests that the isolates of ‘D. mergi
Lineage 1’ of Georgieva et al. [6] actually belong to D.
parviventosum. However, the ITS sequences for this spe-
cies generated by us formed a reciprocally monophyletic
lineage within the ‘D. mergi’ species complex instead of
joining the cluster of sequences (‘Clade Q’ sensu Georgieva
et al. [6]) representative for D. parviventosum according
to Niewiadomska & Laskowski [23] (see also comment
below).
Cercariae of the remaining three lineages of the ‘D.

mergi’ species complex discovered in this study differ
from the description of D. mergi by Niewiadomska &
Kiselienė [10] in four unique qualitative features, i.e. the
presence of scale-like spines on the tail stem and furcae
and of yellow pigment in the forebody, the greater num-
ber of rows of post-oral spines (10–11 vs 6–9) and in
the different number of transverse rows with additional
spines laterally (Additional file 6: Table S2). Cercariae of
Lineages 2 and 3 of ‘D. mergi’ can be further differenti-
ated from D. mergi of Niewiadomska & Kiselienė [10])
by having furcae longer than tail stem (vs equal); the cer-
caria of ‘D. mergi Lineage 3’ also possesses 11 transverse
rows of spines on body (vs 10) and a smaller number of
spines on ventral sucker (90–92 vs 94–130) and the cer-
caria of D. mergi Lineage 4 is unique in having three
pairs of penetration gland-cells (Additional file 6: Table S2).
Morphometric comparisons revealed that the cercariae of
D. mergi Lineage 4 exhibit much higher upper ranges and
means for all morphometric characters than those of the
two other lineages (Lineage 1 and 2; both live and fixed
samples) and those in the description of D. mergi by
Niewiadomska & Kiselienė [10] (Table 5). Fixed cercariae
of Lineages 2 and 3 both differ from those of D. mergi as
described by Niewiadomska & Kiselienė [10] in having
generally shorter (mean length 48–49 vs 58 μm) and wider
(mean width 32–33 vs 28 μm) anterior organs, narrower
tail stems (mean 29–33 vs 36 μm), longer furcae (mean
216–225 vs 210 μm) that are also longer than tails (mean
TSL/FL 0.8–0.9 vs 1.0), and shorter (‘D. mergi Lineage 2’)/
longer (‘D. mergi Lineage 3’) tail stems (means 160 and
212 vs 207 μm, respectively). Further, compared with
the cercaria of D. mergi described by Niewiadomska &
Kiselienė [10], the cercaria of ‘D. mergi Lineage 2’ has a
shorter body (mean 168 vs 182 μm), a wider ventral sucker
(mean 53 vs 44 μm) and a greater ratio BL/TSL (mean 1.0
vs 0.9), and the cercaria of ‘D. mergi Lineage 3’ has a nar-
rower body (mean 49 vs 59 μm) and a smaller ventral sucker
(mean 31 × 32 vs 44 × 44 μm) that is also narrower in rela-
tion to the anterior organ (mean VSW/AOW 1.0 vs 1.6).

Overall, the isolates of the three lineages (Lineages 2–
4) of the ‘D. mergi’ species complex described here ex-
hibit a number of unique differentiating features (five for
Lineages 2 and 4 and nine for Lineage 3; see Additional
file 6: Table S2). In addition to the consistent differences
in the morphometric characters and ratios (Table 5) the
live cercariae of the single isolate of D. mergi Lineage 4
differ from those of both Lineage 2 and 3 in the relation
BL < TSL = FL (vs BL ≤ TSL < FL and BL ≤ TSL < FL, re-
spectively), in the pattern of incomplete transverse rows
of spines on the body (ventral interruption in rows 8–10
vs 6–10 and 4–11, respectively; dorsal interruption in
rows 5–10 vs 6–10 and 4–11, respectively), and in the
lack of transverse rows with additional lateral spines.
Both live and fixed cercariae of ‘D. mergi Lineage 2′

differ from those of ‘D. mergi Lineage 3’ in having wider
bodies (mean 63 and 64 vs 53 and 49 μm, respectively),
larger ventral suckers (50 × 47 vs 31 × 31 μm and 46 × 53
vs 31 × 32 μm, respectively) that are also distinctly wider
than anterior organs [ratio VSW/OSW 1.5–2.0 (1.7) vs
1.0–1.2 (1.1) and 1.5–2.1 (1.6) vs 0.9–1.1 (1.0), respect-
ively]. The cercaria of ‘D. mergi Lineage 2’ further differs
from the cercaria of ‘D. mergi Lineage 3’ in having 5–6
pre-oral spines of the median group located in 2 rows
(vs 7 in 3 rows) with one spine very large, 11 rows of
post-oral spines (vs 10) with spines in the first row larger
than the remaining (vs spines in the first two rows), 10
transverse rows of spines (vs 11), as well as in the lack of
double transverse rows (vs row 1), in the pattern of incom-
plete transverse rows and in having distinctly more spines
on the ventral sucker (110–120 vs 90–92) (Additional
file 6: Table S2). All these differences, in association with
the molecular evidence, justify the distinct status of the
four lineages of the ‘D. mergi’ species complex examined
by us. However, it is difficult to decide whether the de-
scription of Niewiadomska & Kiselienė [10] (see Additional
file 6: Table S2) corresponds to one of these due to the dif-
ferent level of detail provided in the early description of D.
mergi and the consistent differences outlined above.
The detailed morphological and molecular data pro-

vided here further advance our knowledge of the ‘D.
mergi’ species complex in several aspects. First, we have
clarified that ‘D. mergi Lineage 1’ of Georgieva et al. [6]
in fact represents D. parviventosum. These authors pro-
vided sequence data for a single isolate ex R. auricularia
from Hengsteysee thus making decisions of its relation-
ships difficult, whereas our study provides ample evidence
for the distinct status of this lineage, its identification to
the species level and the detection of its relatively high
prevalence in R. auricularia in Hengsteysee, and probably
elsewhere in Europe. Our study further expands the num-
ber of isolates of ‘D. mergi Lineage 2’ ex R. auricularia
and its distribution in Baldeneysee, Hengsteysee and
Sorpetalsperre. Finally, we provide the first link between
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sequences for ‘D. mergi Lineage 3’ from isolates of meta-
cercariae in the second intermediate host (Salmo trutta
fario and Gobio gobio from the River Ruhr; see Georgieva
et al. [6]) and a number of isolates from the first inter-
mediate hosts (R. auricularia from Hengsteysee) thus par-
tially elucidating the life-cycle of this lineage (arguably
species). Further efforts should be focused on the discov-
ery of the adult stages and formal descriptions of the three
novel lineages (Lineages 2, 3 and 4) of the ‘D. mergi’ spe-
cies complex.
Two ITS1-5.8S-ITS2 sequences for D. mergi (sensu lato)

have been published recently by Haarder et al. [18] from
cercarial isolates ex Radix balthica (L.) in Denmark. These
authors have shown experimentally that the cercariae in-
fect Oncorhynchus mykiss (Walbaum). Faltýnková et al.
[8] suggested, based on analysis of ITS1 only, that one of
the isolates (JX494231) may belong to ‘D. mergi Lineage 2’
whereas the second (JX494233) appeared associated with
‘D. mergi Lineage 3’. In our analyses based on the entire
ITS gene cluster one of the isolates (JX494231) clustered
together with the single isolate of D. mergi Lineage 4
(however with low support) and the other clustered with
isolates of ‘D. mergi Lineage 2’. Analysis of cox1 sequences
for these two isolates would help reveal their actual
assignment.
Our study expanded the cox1 database for European

D. pseudospathaceum and D. spathaceum (18 and 7 iso-
lates, respectively). The new isolates of both species
clustered together with the isolates reported previously
by Georgieva et al. [6] with high support. Based on all
sequence data available to date, we can confidently sug-
gest that D. pseudospathaceum completes its life-cycle
using only L. stagnalis and S. palustris as first intermedi-
ate hosts and that the latter two hosts are infected only
with this species. The two isolated records of D. pseu-
dospathaceum ex R. auricularia (see [24, 25]) most
probably represent misidentifications. The lack of infec-
tions with D. pseudospathaceum in more than 3,500 R.
auricularia examined in the River Ruhr drainage ([26];
present study) provides further support for this sugges-
tion. Morphologically, the cercarial isolates sequenced
here generally (excluding the number of caudal bodies)
key down to D. pseudospathaceum in the key of
Niewiadomska & Kiselienė [10]. However, our detailed
description (including SEM examination) of the cercaria
revealed some differences compared with the data pro-
vided by these authors that generally show a wider range
of variation: 10–11 pre-oral spines in the median group
(vs 8–14); 3 pre-oral spines in each lateral group (vs 1–4);
9 post-oral rows of spines (vs 6–8); 11 transverse rows of
spines on body (vs 10); transverse rows 3–7 with add-
itional spines laterally (vs rows 3–4); spines present on en-
tire tail stem (vs present at distal end of the tail stem); and
resting position with tail stem bent at < 45° (vs at 90°) (see

Additional file 6: Table S3). Morphometric comparisons
revealed that both live and formalin-fixed cercariae de-
scribed here possess shorter and wider bodies (means
166 × 50 and 162 × 59 μm, respectively, vs 185 × 45 μm),
longer furcae (means 234 and 232 μm, respectively, vs
201 μm), the latter resulting in somewhat lower TSL/FL
ratios (means 0.8 and 0.9, respectively, vs 1.0). Fixed cer-
cariae described by us further exhibit greater width of the
anterior organ (mean 31 vs 27 μm) and length of the tail
stem (mean 213 vs 206 μm) and a lower BL/TSL ratio
(mean 0.8 vs 0.9) (Table 6). These data indicate that SEM
examination and adequate fixation should be considered
for identification of the cercariae of D. pseudospathaceum
in future studies.
This study is the first to provide a description of mo-

lecularly identified cercarial isolates of D. spathaceum.
Both live and formalin-fixed isolates of D. spathaceum
studied by us exhibit smaller dimensions for the size of
the body, tail and all organs compared with the descrip-
tion of the cercaria of D. spathaceum by Niewiadomska
[27] (the same data from 10 heat-fixed specimens were
reiterated by Niewiadomska & Kiselienė [10]) (Table 6).
Qualitative comparisons revealed that our isolates pos-
sess a slightly greater number of pre-oral spines (18–19
vs 8–16 in the median group and 1 in each lateral group
vs no lateral spines), a smaller number of post-oral
spines (9 vs 10–14), three spine rows on ventral sucker
(vs 2), spined tail stem and furcae (vs unspined) and a
smaller angle of bending of the tail stem in resting pos-
ition (<45° vs 90°) (see Additional file 6: Table S3).
The cercaria of D. spathaceum described above ex-

hibits similarities with the description of D. paracaudum
by Niewiadomska [28] reiterated by Niewiadomska &
Kiselienė [10] such as: an overlap in the number of the
pre-oral spines (18–19 vs 15–20 spines in the median
group; 1 vs 1–2 pre-oral spines in each lateral group)
and the presence of 10 transverse rows of spines on the
body, three (incomplete) spine rows on the ventral
sucker and large penetration gland-cells that do not
cover ends of the caeca (Additional file 6: Table S3).
However, the present cercaria possesses yellow pigment
in the body, a ventral sucker slightly wider than the an-
terior organ, nine (vs 6–7) rows of post-oral spines and a
different pattern of spines in the transverse rows of
spines on the body [rows 1–2 double ventrally only (vs
row 1); rows 9–10 with ventral interruption (vs rows 5–
10 with both ventral and dorsal interruption); row 3 with
additional spines laterally (vs anteriormost rows)]. Fur-
ther differences include the lower ranges of the number
of spines on the ventral sucker (103–119 vs 116–141),
the presence of spines on the tail stem and furcae (vs ab-
sent) and the much smaller angle of bending of the tail
stem in resting position (<45° vs 90°) (Additional file 6:
Table S3). Comparisons of the morphometric data revealed
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that both live and formalin-fixed isolates of D. spathaceum
studied by us exhibit shorter and wider bodies (means
172 × 51 and 170 × 53 μm, respectively, vs 189 × 46 μm),
longer ventral suckers (means 30 and 31 μm, respectively,
vs 25 μm), longer (means 219 and 250 μm, respectively, vs
211 μm) but narrower tail stems (means 31 and
32 μm, respectively, vs 37 μm), much longer furcae
(means 260 and 252 μm, respectively, vs 208 μm) and
lower BL/TSL ratios (means 0.8 and 0.7, respectively,
vs 0.9) (Table 6). The above comparisons indicate that
the morphology of the cercaria of D. spathaceum char-
acterised molecularly in the present study departs from
the single limited descriptions of cercariae of both D.
spathaceum sensu Niewiadomska [27] and D. paracau-
dum sensu Niewiadomska [28]. It is unfortunate that
the morphologies described by Niewidomska have not
been confirmed for nearly 30 years.
Georgieva et al. [6] denoted as ‘Clade Q’ (question-

able) a single genotype representing two cercarial iso-
lates ex R. ovata identified as D. spathaceum (AF419275;
AF419276) and two for a cercarial isolate ex R. ovata
identified as D. parviventosum (AF419277; AF419278)
by Niewiadomska & Laskowski [23]; one metacercarial
isolate ex R. rutilus submitted to GenBank as D. cf. parvi-
ventosum/spathaceum (JF775727) by Rellstab et al. [29];
and one cercarial isolate ex R. auricularia (JQ665458; iso-
late RA97) annotated as D. mergi in GenBank but pub-
lished as D. spathaceum by Behrmann-Godel [17]. One
additional metacercarial isolate belonging to ‘Clade Q’ has
been recently sequenced and described by Pérez-del-
Olmo et al. [9]. Georgieva et al. [6] also suggested to
use temporarily the name D. parviventosum as a label
for the four identical sequences (AF419275–AF419278)
of Niewiadomska & Laskowski [23]. One of the import-
ant results of our integrative taxonomic approach is the
clarification of the distinct status of D. parviventosum
and its close relationship with the species/lineages of the
‘D. mergi’ species complex (see above). However, the
species identification of the sequences within ‘Clade Q’
sensu Georgieva et al. [6] is still questionable. The fact
that new isolates are being added to this clade ([9, 17];
present study) indicates that this lineage has a wider distri-
bution and still requires taxonomic scrutiny. It is worth
noting that the metacercaria of ‘Diplostomum sp. Clade
Q’ ex Cyprinus carpio L. from the Ebro Delta in Spain de-
scribed and sequenced by Pérez-del-Olmo et al. [9] was
shown to possess a smaller oral sucker and a shorter hold-
fast organ compared with the Spanish and Polish (see
Niewiadomska [27]) isolates of D. spathaceum plus a dis-
tinctly lower number of excretory granules in the second-
ary excretory system than the metacercariae of D.
spathaceum sensu Niewiadomska [27]. The cercaria of the
single isolate of ‘Diplostomum sp. Clade Q’ sequenced and
described here keys down to D. spathaceum in the key by

Niewiadomska & Kiselienė [10] and agrees with their de-
scription in many aspects. However, the present cercaria
differs in having fewer pre-oral spines in the median group
(9 vs 8–16), 12 post-oral rows of spines (vs 10–14), 10
pairs of caudal bodies (vs 11–12 pairs), as well as in the
presence of two non-converging fields of dispersed spines
in the hindbody (vs two fields converging ventrally) and of
bands of scale-like spines on the tail stem and furcae (vs
spines absent); spines on the latter enveloped by tegumen-
tal membrane forming a specific fish-fin like fin-fold
(Additional file 6: Table S3). Although the metrical data
for our isolate (live cercariae measured only) are not dir-
ectly comparable with those by Niewiadomska [27] the
former exhibits much lower values for the length of body
(mean 224 vs 235 μm) and the ratios VSW/AOW (mean
1.3 vs 1.7) and BL/TSL (mean 0.8 vs 0.9) and much greater
values for body width (mean 96 vs 73 μm) and for the size
of the anterior organ (mean 80 × 47 vs 68 × 34 μm) and
ventral sucker (mean 56 × 65 vs 53 × 59 μm). The above
comparisons indicate that the cercariae and metacercariae
of ‘Diplostomum sp. Clade Q’ possess distinctive morpho-
logical characteristics that do not allow their identification
as D. spathaceum sensu Niewiadomska [27]. The solution
for the taxonomic status of this clade should await mor-
phological and molecular data for the adult stages.

Conclusion
The integration of molecular and morphological evi-
dence for Diplostomum spp. achieved in this study will
serve as a baseline for species identification of these im-
portant parasites of snail and fish populations and thus
advance further studies on the distribution of Diplosto-
mum spp. in Europe.

Additional files

Additional file 1: Figure S1. Schematic illustration of a cercaria of
Diplostomum spp. showing the metrical features used. Abbreviations: BL,
body length; BW, maximum body width; AOL, anterior organ length;
AOW, anterior organ maximum width; VSL, ventral sucker length; VSW,
ventral sucker width; TSL, tail stem length; TSW, tail stem width (at base);
FL, furca length.

Additional file 2: Table S1. Summary data for cox1 sequences for
Diplostomum spp. retrieved from GenBank.

Additional file 3: Figure S2. Cercariae of Diplostomum spp. Pre- and
post-oral spines (light microscopy). A, Diplostomum parviventosum; B,
Diplostomum mergi Lineage 4; C, ‘Diplostomum mergi Lineage 2’; D,
‘Diplostomum mergi Lineage 3’; E, F, Diplostomum pseudospathaceum
(arrows indicate lateral spines); G. Diplostomum spathaceum.

Additional file 4: Figure S3. Cercariae of Diplostomum spp. Ventral
sucker (light microscopy). A, Diplostomum parviventosum; B, Diplostomum
mergi Lineage 4; C, ‘Diplostomum mergi Lineage 2’; D, ‘Diplostomum mergi
Lineage 3’; E, ‘Diplostomum sp. Clade Q’; F, Diplostomum pseudospathaceum;
G. Diplostomum spathaceum.

Additional file 5: Figure S4. Cercariae of Diplostomum spp. Tail furcae
(light microscopy). A, Diplostomum parviventosum; B, Diplostomum mergi
Lineage 4; C, ‘Diplostomum mergi Lineage 2’; D, ‘Diplostomum mergi

Selbach et al. Parasites & Vectors  (2015) 8:300 Page 20 of 21

80

http://www.parasitesandvectors.com/content/supplementary/s13071-015-0904-4-s1.pdf
http://www.parasitesandvectors.com/content/supplementary/s13071-015-0904-4-s2.xls
http://www.parasitesandvectors.com/content/supplementary/s13071-015-0904-4-s3.pdf
http://www.parasitesandvectors.com/content/supplementary/s13071-015-0904-4-s4.pdf
http://www.parasitesandvectors.com/content/supplementary/s13071-015-0904-4-s5.pdf


Lineage 3’; E, ‘Diplostomum sp. Clade Q’; F, Diplostomum
pseudospathaceum; G. Diplostomum spathaceum.

Additional file 6: Table S2. Comparative qualitative and meristic data
for cercariae of the Diplostomum ‘mergi’ species complex. Table S3
Comparative qualitative and meristic data for cercariae of Diplostomum
spathaceum, D. pseudospathaceum, D. paracaudum and ‘Diplostomum sp.
Clade Q’ of Georgieva et al. [6].
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6. Chapter II
Functional aspects of trematodes –  

temporal release patterns and productivity of cercariae

This chapter contains the following study that investigates the productivity and emergence of 

cercariae, using the example of Trichobilharzia szidati cercariae from Lymnaea stagnalis, by 

determining (i) temporal cercarial emission patterns and (ii) the average daily output rate of cercariae 

per snail that will allow accurate estimations of the biomass of cercariae released into the ecosystem 

6.1  Soldánová, M.*, Selbach, C.* & Sures, B. (2015). The early worm catches the bird? Productivity 

and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. 

 (Submitted to PLOS ONE). *Authors contributed equally 
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Abstract 

Digenean trematodes are common and abundant in aquatic habitats and their free-living larvae, the 

cercariae, have recently been recognized as important components of ecosystems in terms of 

comprising a significant proportion of biomass and in having a strong potential influence on food web 

dynamics. One strategy to enhance their transmission success is to produce high numbers of cercariae 

which are released during the activity peak of the next host. In laboratory experiments with 13 

Lymnaea stagnalis snails infected with Trichobilharzia szidati the average daily emergence rate per 

snail was determined as 2,621 cercariae, with a maximum of 29,560. During a snail’s lifetime this 

summed up to a mass equivalent to or even exceeding the snail‘s own body mass. Extrapolated for the 

eutrophic pond where the snails were collected, annual T. szidati biomass may reach 4.65 tons, a value 

equivalent to a large Asian elephant. Emission peaks were observed after the onset of illumination, 

indicating emission synchronizing with the high morning activities of the definitive hosts, ducks. 

However, high cercarial emission is possible throughout the day under favorable lightning conditions. 

Therefore, although bird schistosomes, such as T. szidati constitute only a fraction of the diverse 

trematode communities in the studied aquatic ecosystem, their cercariae can still pose a considerable 

risk for humans of getting cercarial dermatitis (swimmer's itch), due to the high number of cercariae 

emitted from infected snails. 
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Introduction 

Except for their role as pathogens, parasites have long been considered negligible components of 

ecosystems. Recent studies elucidating the patterns of parasite biomass, species abundance and 

interactions in food webs have revealed that parasites actually represent important ecological players 

in the dynamics of natural systems (e.g. Lafferty et al. 2006, 2008, Kuris et al. 2008, Amundsen et al. 

2009, Preston et al. 2012). Especially free-swimming larvae of trematodes, the cercariae, which emerge 

from the molluscan first intermediate hosts as a result of asexual reproduction, represent essential 

components of ecosystems subsuming a substantial fraction of biomass in marine (Kuris et al. 2008, 

Thieltges et al. 2008a) and freshwater ecosystems (Preston et al. 2012, Preston et al. 2013) and may 

exert strong influence on the structure, dynamics and function of food webs (Lafferty et al. 2006, 2008, 

Hechinger et al. 2005, 2007).  

The cercarial stage is crucial in the life cycle of trematodes as it plays an inevitable role in the 

transmission to the next target hosts. After emerging from an infected snail host, the principal task of 

cercariae is to disperse in the environments, locate and infect as many hosts as possible. However, 

only a small fraction of the emitted cercariae successfully reaches its target because cercariae are 

short-lived and directly exposed to and affected by external biotic and abiotic environmental factors, 

often leading to a failure in infecting the next host (Pietrock et al. 2003, Thieltges et al. 2008b). 

Accordingly, many trematode species produce high numbers of cercariae, whose shedding peak is 

assumed to be synchronized with the behavior of the next host (Combes et al. 1994) and is often 

triggered by factors such as the photoperiod and light exposure or water temperature (Poulin 2006, 

Morley & Lewis 2013). 

Bird schistosomes of the genus Trichobilharzia, which utilize freshwater snails and waterfowl 

in their life cycle, are the most common representatives of this group and their cercariae are important 

agents of swimmer’s itch in humans in Europe (Soldánová et al. 2013) and North America (Brant & 

Loker 2013). Although complex information about various aspects of the biology of Trichobilharzia spp. 

has been gathered in past decades (e.g. Horák et al. 2002, 2015, Horák & Kolářová 2001, 2005, 2011), 

available data on the patterns of cercarial emission are still rather fragmentary and virtually no reliable 

data exist on the total number of cercariae entering the ecosystem. Early observations and estimations 

of cercarial productivity of Trichobilharzia are rather broad, ranging from several thousand cercariae 

during a snail’s lifetime (Neuhaus 1952) to several thousand larvae during a few days or weeks 

(Anderson et al. 1976, Sluiters et al. 1980). Likewise, temporal emergence patterns have been studied 

for a variety of trematode species (e.g. Combes et al. 1994), but there are only few studies investigating 

the temporal patterns for Trichobilharzia sp. cercariae in detail (e.g. Anderson et al. 1976) that allow 

to assess these patterns on an ecosystem level. 
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Therefore, the main aim of the present study was to examine cercarial emergence of the model 

organism of bird schistosomes, Trichobilharzia szidati, under laboratory conditions in order to 

determine (i) daily output rates per individual snail; (ii) peaks in cercarial emission under controlled 

and natural light conditions; (iii) output variation among conditions and experiments; and (iv) direct 

contribution of the parasite larvae to ecosystem energetics using estimates for cercarial abundance 

and biomass. First, we investigated cercarial emergence in a series of laboratory experiments under 

different conditions using 13 naturally infected Lymnaea stagnalis with T. szidati over a 72-hour period 

during each experiment. Secondly, we quantified cercarial biomass using data on the mean daily 

output rates and metrical data of living cercariae, and finally we estimated the total biomass of 

cercariae for the life span of an individual snail and for the snail population within a typical freshwater 

ecosystem in Europe using data from the literature on snail abundance and Trichobilharzia spp. 

prevalence.  

Materials and Methods 

Experimental design 

In our experimental study we selected Trichobilharzia szidati Neuhaus, 1952 as a model organism 

because knowledge on exact total or average numbers of cercariae released from a snail host is rather 

ambiguous and quantitative estimates on its cercariae productivity is entirely lacking, although it is 

probably the most studied model bird schistosome (Horák et al. 2002, 2014). Cercariae of T. szidati 

were obtained from naturally infected Lymnaea stagnalis (L.) which were sampled from a fishpond in 

the Czech Republic in June 2012 (Vlkovský pond: 49°08'56"N, 14°43'51"E). A total of 168 snails was 

collected along the pond shore from aquatic vegetation, transported to the laboratory and screened 

for patent infections by placing them individually into beakers with a small amount of filtered lake 

water under the light source for 24 hours. To avoid the possible influence of different snail host sizes 

on the cercarial emergence when larger snails produce higher daily outputs (e.g. Thieltges et al. 2008b, 

Poulin 2006, Studer & Poulin 2013), sampling effort was focused on snails of similar size cohorts 

between 40-50 mm in shell height only. Moreover, in this size/age L. stagnalis can be found with higher 

percentage of infection (Żbikowska et al. 2013), assuring a higher probability of encountering the 

desired trematode species. In total, 13 snails with T. szidati infections were found (7.74% of 168 snails 

examined). Because several stress factors such transportation of snails and their subsequent handling 

under different temperatures and illumination scenarios in the laboratory might negatively affect both 

host and parasites leading to distorted rhythms of cercarial emergence (e.g. Morley & Lewis 2013, 

Anderson et al. 1976, Brassard et al. 1982, Taskinen 1998), all snails infected with T. szidati were 

maintained in one aerated aquarium at room temperature ranging from 19°C to 21°C and under 
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natural photoperiod for 14 days for acclimatization. Snails were stopped feeding on lettuce five days 

prior to emission experiments and were measured before each experiment. As ambient temperature 

is considered the most important factor influencing daily cycles of cercarial emergence (Poulin 2006) 

all experiments were designed under stable thermal conditions and both air and water temperature 

were monitored throughout the entire course of the study.  

 Cercarial emergence of T. szidati from 13 naturally infected L. stagnalis was investigated under 

different conditions in a series of two types of laboratory experiments, each performed over three 

consecutive days in July and September (i.e. for 72 hours). A “daily output experiment” was designed 

to obtain data on the total and mean number of cercariae released per snail and day. Cercarial counts 

were carried out every four hours from 8:00 to 20:00 over a period of 72 hours. Because examination 

of cercariae for the state of degradation did not reveal any decomposition during this period, cercariae 

produced during the night intervals were counted once in the morning after 12-hours (from 20:00 to 

8:00). Additionally, “peak output experiments” were performed aiming at assessing the 

chronobiological variation in a cercarial release during 72 hours, and to determine the day period with 

the highest emission rates. Cercarial counts were performed every two hours over a period of 72 hours. 

Each type of experiment was conducted under two different laboratory conditions, a natural 

photoperiod regime (sunrise at 5:30 and sunset at 21:50 in July; i.e. 16:20 h of light and 8:40 h of 

darkness) in the laboratory at room temperature (range from 19.6°C to 20.4°C; mean 20.2°C), and 

12:12 light-dark cycle under standard conditions in a climate chamber with the temperature set to 

20°C. In the climate chamber illumination was provided by an overhead halogen lamp; in the 

laboratory, snails were exposed to the natural photoperiod regime by placing them next to the 

window. In total, we investigated variation in cercarial output in four consecutive experiments in July: 

one “daily output experiment” at room temperature (further DJ-L) and one in a climate chamber (DJ-

C), further one “peak output experiment” at room temperature in the laboratory (further PJ-L) and 

one in a climate chamber (PJ-C) (Table 1). Altogether, the four experiments in July lasted 15 days with 

an interval of one free day in between experiments. In September, only one “peak output experiment” 

in the climate chamber (PS-C) was performed (Table 1). Light dark circles in the climate chamber were 

set from 6:00 to 18:00 light and 18:00 to 6:00 dark in July and 8:00 to 20:00 light and 20:00 to 8:00 

dark in September. No specific permissions were required for these locations/activities and our field 

study does not involve endangered or protected species.
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Table 1 Numbers of cercariae of Trichobilharzia szidati released from naturally infected Lymnaea stagnalis per snail. 

Range, means (± standard deviation, SD) and total numbers of emerged cercariae are given per snail pooled across three days (i.e. 72 hours) of each experiment. In September 

only one experiment was performed. Number of snails used in a given experiment is indicated by “n” in parentheses. 
aSnail died during the experiment. 
bSnail with patent double infection. 

July September 

Snail 
code 

Daily output experiment 
in laboratory (DJ-L; n=13) 

Peak output experiment 
in laboratory  (PJ-L; n=11) 

Peak output experiment  
in climate chamber (PJ-C; 
n=11) 

Daily output experiment  
in climate chamber (DJ-C; 
n=10) 

Peak output experiment  
in climate chamber (PS-C; n=9) 

Range Mean±SD Total Range Mean±SD Total Range Mean±SD Total Range Mean±SD Total Range Mean±SD Total 

L1 510-
2,740 

1,483±1,142 4,450 1,290-
2,520 

1,700±710 5,100 1,650-
3,230 

2,190±901 6,570 400-
2,320 

1,603±1,009 4,810 9,550-
24,070 

15,213±7,769 45,640 

L2 1,310-
1,500 

1,390±98 4,170 1,890-
2,510 

2,160±318 6,480 1,870-
3,390

2,393±864 7,180 560-
2080 

1,107±845 3,320 7,530-
21,430b 

13,003±7,406 39,010 

L3 360-
620 

460±140 1,380 810-
1,760 

1,190±503 3,570 430-
1,100 

667±376 2,000 390-
1,000 

703±305 2,110 2,520-
7,920b 

4,947±2,741 14,840 

L4 330-
1,020 

597±371 1,790 740-
1,680 

1,300±495 3,900 520-
730 

590±121 1,770 40-
260 

173±117 520 5,970-
19,950 

12,783±6,997 38,350 

L5 980-
1,480 

1,150±286 3,450 810-
990 

903±90 2,710 910-
1,600 

1,147±393 3,440 260-
620 

453±181 1,360 2,620-
14,750b 

10,470±6,808 31,410 

L6 600-
1,480 

1,143±475 3,430 860-
2,590 

1,647±876 4,940 1,580-
2,940 

2,083±746 6,250 700-
1,880 

1,093±681 3,280 6,510-
29,560 

17,947±11,526 53,840 

L7 380-
1,490 

963±557 2,890 1,360-
2,600 

1,887±641 5,660 240-
2,230 

960±1,103 2,880 100-
140 

120±20 360 2,6  90-
4,720b 

3,707±1,015 11,120 

L8 540-
1,200 

880±330 2,640 880-
1,450 

1,197±290 3,590 350-
780 

553±216 1,660 - a - - -a 

L9 780-
1,190 

1,043±229 3,130 1,160-
1,350 

1,277±102 3,830 910-
2,060 

1,457±577 4,370 560-
1,820 

1,117±643 3,350 5,290-
10,730 

7,993±2,720 23,980 

L10 550-
1,620 

1,203±573 3,610 -a - - -a - - - - - -a 

L11 300-
690 

490±195 1,470 610-
1,590 

1,007±516 3,020 390-
2,130 

1,057±939 3,170 330-
1,640 

1,070±671 3,210 2,840-
8,730b 

5,197±3,116 15,590 

L12 940-
3,000 

1,740±1,104 5,220 - a - - -a - - - - - -a 

L13 580-
4,560 

1,927±2,281 5,780 600-
1,800 

1,267±611 3,800 360-
1,940 

987±839 2,960 220-
2,700 

1,120±1,373 3,360 -a 
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Determining cercarial numbers 

The emission experiment of cercariae from individual snail replicates was carried out in plastic cups 

with 100 ml of lake water. Prior to use, the water was filtered in order to avoid contamination and 

placed in the relevant conditions corresponding to each type of experiment to balance potential 

differences in temperature. After each emission period, ten homogenized subsamples of one ml each 

were taken with a micropipette from each replicate while vigorously mixing the water containing 

swimming larvae and transferred into cell-well plates to count cercariae. Drops of vital stain (Natural 

Red) were added to make cercariae immobile and more visible, allowing precise counts under a 

dissection microscope. After each emission time unit interval (two or four and 12 hours depending on 

the type of experiment), snails were transferred to new clean plastic cups with fresh pond water. To 

avoid contamination of the sample with cercariae of other replicates, the spoon used was washed and 

dried thoroughly. Raw data (i.e. counts per snail per unit time) for each replicate were converted into 

daily output rates (i.e. number of cercariae emitted snail-1 day-1) as follows: the numbers of cercariae 

found in 1 ml after each emission interval were summed over 10 subsamples and means were 

calculated. Averages were multiplied by 100 (water volume) and pooled across all emission intervals 

from one day, resulting in an estimate of the total number of cercariae emitted from a single snail 

during a day.  

Estimation of cercarial biomass 

In order to assess the direct contributions of T. szidati cercariae to the energy flow in ecosystems,  its 

cercarial biomass was quantified using data on the mean daily output rates which we acquired from 

emission experiments, metrical data of live cercariae and data from the literature on snail abundance 

and parasite prevalence. First, we obtained metrical data of 11 unflattened live cercariae by measuring 

length and width of cercarial body, tail stem and furcae from photographs taken with an Olympus UC30 

digital camera fitted on an Olympus BX51 microscope. Measurements were taken with the program 

ImageJ 1.47v (Abràmoff et al. 2004). Based on formulas provided by Koehler et al. (2012) we calculated 

the total cercarial volume (in mm3) as the sum of volumes calculated for the cercarial body (equation 

for ellipsoid), tail stem (equation for cylinder) and furcae (equation for cone), and estimated mass (in 

mg) of an individual cercaria by multiplying the total cercarial volume by a tissue density of 1.1 g/ml 

(Kuris et al. 2008). Thereafter, we estimated parasite productivity for the life span of an individual snail 

(2 years for L. stagnalis) (Glöer 2002), considering the mean cercarial emission per snail and day 

(pooled across all 5 experiments) and the hibernation period of L. stagnalis in moderate climate of 

Central Europe. Given that development of many trematode species in snails throughout the winter 

period is arrested and no cercarial emergence occurs due to the decreased metabolic activity of both 

host and parasite (Galaktionov & Dobrovolskij 2003), we assume that the ongoing uninterrupted 
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cercarial emission of T. szidati persists from April to October in two subsequent years (428 days). The 

total mass of T. szidati emitted from one infected snail during its life span was calculated by multiplying 

cercarial mass by mean daily cercarial output per snail by 428 days. The cercarial mass estimated to be 

emitted from a single snail individual was afterwards compared with the tissue mass of 30 uninfected 

snails of similar size (mean of 45.1 mm) to those 13 snails infected with T.szidati used in the 

experiments (mean of 42.2 for snails entering experiments in July and 47.5 mm for snails in 

September), which we obtained by weighing the snail body deprived of their shells. Furthermore, we 

were interested in the total annual biomass of T. szidati cercariae entering an ecosystem. Accordingly, 

we used data from the literature on density of L. stagnalis (10 snails/m2) (Jurkiewicz-Karnkowska 2008) 

to estimate the total biomass of cercariae in the pond from which the snails were collected. We 

assessed the snail population size within the ecosystem by multiplying the snail density of 10 snails/m2 

by surface area (m2) of the water body (47.09 ha for Vlkovský pond). Considering the usual prevalence 

of T. szidati in snail populations in Europe (5%) (e.g. Soldánová et al. 2013) we estimated the total 

number of infected snails within the water body and calculated the total biomass of cercariae released 

by these snails during one year from April to October (214 days). Since infection levels of T. szidati in 

eutrophic ponds might exceed 20% and occasionally reach more than 40% (Soldánová et al. 2013) we 

calculated a biomass of cercariae in the pond estimating a prevalence of 41.5% (Soldánová et al. 2011, 

2013). 

Data analyses 

We used the non-parametric Spearman's correlation coefficient (rs) to statistically assess the effect of 

host size (shell height) on cercarial emergence. Correlation was tested for total numbers of cercariae 

pooled across three days (i.e. 72 hours) and by each day of all five experiments separately due to 

unequal numbers of replicates. Due to the one “peak emission experiment” conducted in September 

(PS-C), cercarial numbers were compared with only two experiments of equal treatment in July, i.e. PJ-

L and PS-C; and PJ-C and PS-C. Furthermore, five snails in the September experiment showed patent 

double infections with other trematode species (four with Diplostomum pseudospathaceum and one 

with Plagiorchis elegans). Therefore, Student’s t-test was applied to detect significant difference in 

total numbers of T. szidati cercariae (pooled across three days) emitted from singly and doubly infected 

snails. 

To assess output variation among experiments in different conditions we carried out a 

comparative statistical assessment on daily cercarial emergence using a general linear model (GLM) 

repeated measures ANOVA (RM-ANOVA) with cercarial numbers as dependent variable and 

“experiment” and “day” as within-subjects factors. Further, we analyzed whether there are significant 

differences in cercarial output between all three “peak emission output” experiments (PJ-L, PJ-C and 
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PS-C) in relation to time unit interval of two hours and day of experiment (“hour” and “day” as within-

subjects factors). Post hoc Tukey HSD tests were performed where appropriate. Data on cercarial 

counts were ln (x+1)-transformed in order to meet the assumption of normality. A probability value of 

p<0.05 was considered to represent a significant difference in all comparisons. Statistical analyses were 

performed using Statistica 7.0 software package (StatSoft, Inc., Tulsa, OK, USA). 

Results 

Emergence and biomass of cercariae 

Cercarial emergence of T. szidati was circadian with high levels in the light period in both types of 

experiments and laboratory conditions, although being variable for individual replicates (Table 1; Fig. 

1A-C of “peak emission experiments” in different conditions). The mean daily emergence rate was 

1,117 cercariae snail-1 day-1 in the four experiments performed in July, with a maximum of 4,560 

cercariae per day. Cercarial productivity in the single experiment carried out in September was much 

higher in all snails and the mean emission rate was 10,140 cercariae snail-1 day-1, reaching a maximum 

of 29,560 cercariae per day. The mean daily emergence pooled across all five experiments in both 

months was 2,621 cercariae snail-1 day-1. Total and mean numbers of cercariae emitted for each type 

and day of a given experiment are shown in Table 2. Four snails died during the course of the 

experiments in July or before the experiments in September, resulting in a reduced number of 

replicates in the latter setup. Comparison of cercarial outputs recorded of snails with single and double 

infections in September did not detect any significant difference, although the emission from doubly 

infected snails appeared to be lower (t=2.13; p=0.07).  
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Fig 1. Daily output rates and emergence patterns of Trichobilharzia szidati cercariae from Lymnaea stagnalis 
individuals.  
Plots show circadian cercarial emission with high levels in the light part of the day and variability across individual 
snail replicates (L1 – 13). Data are pooled across three days of each experiment. (A) Mean number of emitted 
cercariae from 11 naturally infected snails used in a “peak emission experiment” (PJ-L) in July under laboratory 
conditions at room temperature (range 19.6°C-20.4°C) and natural photoperiod regime (light dark cycle of 16:8 
h). (B) Mean number of emitted cercariae from 11 naturally infected snails used in a “peak emission experiment” 
(PJ-C) in July under standard thermal conditions in a climate chamber (20°C) and controlled light dark cycle of 
12:12 h. (C) Mean number of emitted cercariae from 9 naturally infected snails used in a “peak emission 
experiment” (PS-C) in September under standard thermal conditions in a climate chamber (20°C) and controlled 
light dark cycle of 12:12 h.  
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Table 2 Numbers of cercariae of Trichobilharzia szidati released from naturally infected Lymnaea stagnalis per 

day. 

Month of 
experiment 

Type of experiment Day of 
experiment 

Range Mean±SD Total 

July Daily output experiment 
in laboratory 
(DJ-L; n=13) 

Day 1 330-4,560 1,193±1,083 15,510 
Day 2 300-1,440 808±397 10,500 
Day 3 360-3,000 1,338±789 17,400 

Total 43,410 

Peak output experiment 
in laboratory  
(PJ-L; n=11) 

Day 1 600-2,520 1,181±614 12,990 
Day 2 820-2,510 1,436±473 15,800 
Day 3 810-2,600 1,619±587 17,810 

Total 46,600 

Peak output experiment 
in climate chamber  
(PJ-C; n=11) 

Day 1 530-3,230 1,849±881 18,490 
Day 2 350-1,650 777±487 7,770 
Day 3 240-1,730 881±543 8,810 

Total 35,070 

Daily output experiment 
in climate chamber 
(DJ-C; n=10) 

Day 1 140-2,700 1,238±892 12,380 
Day 2 120-2,320 894±761 8,940 
Day 3 40-970 436±285 4,360 

Total 25,680 

Pooled data (mean) 1,117 

September Peak output experiment 
in climate chamber 
(PS-C; n=9) 

Day 1 4,720-29,560 13,588±7,618 122,290 
Day 2 3,710-24,070 11,494±7,669 103,450 
Day 3 2,520-10,050 5,338±2,964 48,040 

Total 273,780 

Pooled data (mean) 10,140 

July & 
September 

Pooled data (mean) 2,621 

Range and total numbers of cercariae are given for each day of experiment and pooled across snail individuals (number of 

snails used in a given experiment is indicated by “n” in parentheses). Mean (± standard deviation, SD) represents numbers 

of emerged cercariae snail-1day-1. In September, only one experiment was performed. 

Based on our live photographs we calculated the total volume of an individual cercaria of T. szidati to 

0.0039 mm3 (summing volume of cercarial body: 0.0022 mm3, tail stem: 0.0015 mm3, and furcae: 

0.0002 mm3) and estimated its mass to 0.0043 mg. Applying data on average output rates from our 

emission experiments pooled across all experiments conducted in both months (2,621 cercariae snail-

1day-1) resulted in an estimate of 4.8 g of cercariae of T. szidati, which are emitted into an ecosystem 

during the life span of an individual snail, a value equivalent to or even exceeding the weight of the 

snail’s own body (range of soft tissue snail mass of 2.0-4.5 g, mean across 30 uninfected snails of 2.9 

g). Based on snail density data and a T. szidati prevalence of 5%, the total annual parasite biomass in 

the large fishpond (47.09 ha) sums up to 561 kg. Since prevalence of Trichobilharzia spp. in these highly 

eutrophic ponds occasionally reaches more than 40% (Soldánová et al. 2011, 2013), we calculated a 

possible cercarial biomass in the pond of up to 4.65 tons per year.  
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Chronobiology 

Although there were variations in the cercarial emission between replicates and days of experiments, 

clear peaks were observed in the morning hours after the onset of illumination (Table 3, Figs. 1 and 2). 

These morning peaks were confirmed by the “daily output experiments” with cercarial counts carried 

out every four hours. Again, the highest numbers of emitted cercariae occurred during an interval from 

8:00 to 12:00. In addition to determining emission peaks, the “peak output experiments” revealed a 

complex intraspecific variation in cercarial emergence depending on experimental conditions. Under 

natural photoperiodic regime (light dark cycle of 16:8 h in the experiment PJ-L) the emission increased 

rapidly with sunrise around 5:30 (Fig. 2A). While the highest proportion of cercariae was released in a 

single two-hour interval from 4:00 to 6:00 across all replicates and three experimental days, i.e. on 

average 30% (range of 34-43% with a maximum of 74%) of the total number emerged within 24 hours, 

cercariae emitted in the remaining time units did not exceed 14% during a day. Under controlled 

conditions in a climate chamber (light dark cycle of 12:12 h in the experiment PJ-C) the initial peak 

appeared after the light was switched on at 6:00 (Fig. 2B). The highest proportion of emitted cercariae 

under these controlled laboratory conditions was observed for two experimental days between 6:00 

and 10:00 with an average range of 24-28% of cercariae released from all snails (maximum range of 

42-57%). In most of the remaining two-hour intervals mean numbers of emerged cercariae remained 

below 4%. The cercarial output in the experiment performed in September (PS-C) showed greater 

variability in relation to both time units and days of the experiment compared to the July experiment 

(PJ-C) under similar laboratory conditions (Fig. 2C). Altogether, on average 18% of cercariae (pooled 

across replicates and days) were released between 12:00 and 14:00 (11-21% range with maximum of 

38%). Moreover, means of 22% (38% maximum) from 8:00 to 10:00 and 27% (65% maximum) from 

20:00-22:00 were emitted on day one and day three, respectively. 
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Fig 2. Proportions of emerged cercariae of Trichobilharzia szidati from Lymnaea stagnalis during two-hour-
intervals.  
Plots showing the emerged cercariae for each day as averaged proportions of the total numbers emerged within 
24 hours across all replicate snails. (A) The “peak emission experiment” (PJ-L) in July under laboratory conditions 
at room temperature (19.6°C-20.4°C) and natural photoperiod regime (light dark cycle of 16:8 h) with highest 
cercarial emission corresponding to sunrise at 5:30. (B) The “peak emission experiment” (PJ-C) in July under 
standard thermal conditions in a climate chamber (20°C) and light dark cycle of 12:12 h showing high cercarial 
emission after onset of illumination at 6:00. (C) The “peak emission experiment” (PJ-C) in September under 
standard thermal conditions in a climate chamber (20°C) and light dark cycle of 12:12 h showing high emission 
rates after the onset of illumination at 8:00 but high variability in the emergence patterns during a day. 
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Table 3 Numbers of cercariae of Trichobilharzia szidati released from Lymnaea stagnalis per two-hour interval. 

Month Type of experiment Day of 
experiment 

Time/Number (mean) of emerged cercariae per two-hour interval 

00:00-
02:00 

02:00-
04:00 

04:00-
06:00 

06:00-
08:00 

08:00-
10:00 

10:00-
12:00 

12:00-
14:00 

14:00-
16:00 

16:00-
18:00 

18:00-
20:00 

20:00-
22:00 

04:00-
06:00 

July Peak output experiment in 
laboratory (PJ-L; n=11) 

Day 1 950 
(86) 

390 
(35) 

1,430 
(130) 

3,750 
(341) 

1,230 
(112) 

1,670 
(152) 

870 
(79) 

500 
(45) 

210 
(19) 

780 
(71) 

450 
(41) 

1,430 
(130) 

Day 2 120 
(11) 

180 
(16) 

7,070 
(643) 

1,040 
(95) 

1,860 
(169) 

2,400 
(218) 

1,140 
(104) 

1,050 
(95) 

420 
(38) 

150 
(14) 

320 
(29) 

7,070 
(643) 

Day 3 160 
(15) 

220 
(20) 

5,840 
(530) 

1,330 
(121) 

1,340 
(122) 

1,320 
(120) 

1,880 
(171) 

1,140 
(104) 

1,030 
(94) 

2,690 
(245) 

720 
(65) 

5,840 
(530) 

Total 1,230 
(112) 

790 
(72) 

14,340 
(1,304) 

6,120 
(556) 

4,430 
(403) 

5,390 
(490) 

3,890 
(354) 

2,690 
(245) 

1,660 
(151) 

3,620 
(329) 

1,490 
(136) 

14,340 
(1,304) 

Peak output experiment in 
climate chamber (PJ-C; n=11) 

Day 1 500 
(50) 

400 
(40) 

220   
(22) 

5,120 
(512) 

5,830 
(583) 

4,200 
(420) 

760 
(76) 

540 
(54) 

240 
(24) 

290 
(29) 

90 
(9) 

220 
(22) 

Day 2 50 
(5) 

50 
(5) 

160 
(16) 

1,400 
(140) 

2,220 
(222) 

1,640 
(164) 

1,130 
(113) 

310 
(31) 

250 
(25) 

370 
(37) 

140 
(14) 

160 
(16) 

Day 3 460 
(46) 

290 
(29) 

1,080 
(180) 

350 
(35) 

660 
(66) 

1,650 
(165) 

1,570 
(157) 

430 
(43) 

460 
(46) 

1,390 
(139) 

270 
(27) 

1,080 
(180) 

Total 1,010 
(92) 

740 
(67) 

1,460 
(133) 

6,870 
(625) 

8,710 
(792) 

7,490 
(681) 

3,460 
(315) 

1,280 
(116) 

950 
(86) 

2,050 
(186) 

500 
(70) 

1,460 
(133) 

September Peak output experiment in 
climate chamber (PS-C; n=9) 

Day 1 810 
(90) 

530 
(59) 

880 
(98) 

12,180 
(1,353) 

28,060 
(3,118) 

14,020 
(1,558) 

25,470 
(2,830) 

15,260 
(1,696) 

11,110 
(1,234) 

7,510 
(834) 

4,230 
(470) 

880 
(98) 

Day 2 1,080 
(120) 

950 
(106) 

1,140 
(127) 

1,100 
(122) 

16,600 
(1,844) 

9,400 
(1,044) 

22,810 
(2,534) 

17,650 
(1,961) 

12,810 
(1,423) 

3,160 
(351) 

14,800 
(1,644) 

1,140 
(127) 

Day 3 880 
 (98) 

830 
(92) 

1,780 
(198) 

570 
(63) 

3,430 
(381) 

5,420 
(602) 

5,300 
(589) 

6,670 
(741) 

3,380 
(376) 

3,060  
(340) 

14,090 
(1,566) 

1,780 
(198) 

Total 2,770 
(308) 

2,310 
(257) 

3,800 
(422) 

13,850 
(1,593) 

48,090 
(5,343) 

28,540 
(3,204) 

53,580 
(5,953) 

39,580 
(4,398) 

27,300 
(3,033) 

13,730 
(1,526) 

33,120 
(3,680) 

3,800 
(422) 

Total and mean (in parenthesis) numbers of cercariae released by a given number of snails used in each experiment (indicated by “n” in parentheses) per day for each two-hour 

interval. In September only one experiment was performed. 
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Following Spearman’s rank correlation analysis carried out separately for each experiment, no 

significant correlation between cercarial output and snail shell height (ln-transformed; mean of 42.2 

mm for snails entering experiments in July and 47.5 mm for snails in September) was detected (all 

p>0.05). A statistical assessment of cercarial emission rates between experiments revealed significant 

differences between the four experiments and in relation to day of experiment, which were performed 

in July and one experiment in September with distinctively higher cercarial emission rates in 

September reaching 29,560 cercariae per snail per a day (REP-ANOVA F(8, 64)=7.86, p<10-4) (Tables 1 and 

2, Fig. 3). There was a striking nine-fold increase in cercarial emission of T. szidati in September. 

Moreover, within experiments carried out in July, cercarial numbers significantly differed between DJ-

C and the two “peak output experiments” (p=0.001 for PJ-L vs DJ-C; and p=0.02 for PJ-C vs DJ-C), 

probably due to the low numbers of replicate snails (Tables 1 and 2, Fig. 3). Furthermore, we found 

significant differences in cercarial emergence in different time intervals and between days of 

experiment when comparing cercarial output between all three “peak emission output” experiments 

(PJ-L, PJ-C and PS-C). While different light and laboratory conditions of the two “peak” experiments in 

July (PJ-L and PJ-C) did not affect the overall cercarial emission rates (Fig. 1), significant differences 

were detected in relation to two-hours intervals between PJ-L and PJ-C (REP-ANOVA F112, 209)=4.16, 

p<10-4) and also between all three “peak experiments” (REP-ANOVA F(22, 297)=11.31, p<10-4) (Table 3). 

However, no effect of day of experiment was detected between PJ-L and PJ-C in July (REP-ANOVA F(2, 

38)=1.08, p=0.35), indicating that cercarial emergence followed similar patterns between days in both 

experiments. When comparing all three “peak experiments”, emission significantly differed among 

days due to the distinctly higher rates and longer release throughout the day in September (PS-C) (REP-

ANOVA F(4, 54)=5.01, p=0.002). 
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Fig 3. Mean number of cercariae of Trichobilharzia szidati (ln-transformed) from Lymnaea stagnalis in five 

emission experiments. 
Statistical comparison using Repeated Measures ANOVA showing significant differences in cercarial emission 
rates between four experiments performed in July (DJ-L, PJ-L, PJ-C, DJ-C) and one experiment in September (PS-
C), with significantly higher cercarial emission rates in September reaching up to 29,560 cercariae per snail and 
day (mean 10,140 snail-1day-1). Cercarial emission followed similar pattern among days of experiments. Vertical 
bars denote 0.95 confidence intervals. 

Discussion 

The present experimental study is the first providing comprehensive insights into the total production 

and patterns in cercarial emergence of the most common causative agent of swimmer’s itch in Europe, 

bird schistosomes of the genus Trichobilharzia, and allows a better understanding of the parasites’ 

ecological relevance and epidemiological consequences. Although it is often noted that Trichobilharzia 

cercariae are produced in high quantities (e.g. Horák et al. 2002), only few studies concern the total or 

average numbers of cercariae released from individual snail hosts. However, these data are rather 

ambiguous and often not easily comparable. In the first description of T. szidati, Neuhaus (Neuhaus 

1952) estimated the number of T. szidati cercariae released from infected L. stagnalis over a period of 

16 to 19 days to be 8,000 to 10,000, whereas Żbikowska et al. (2001) and Sluiters (1980) describe much 
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higher productions of T. ocellata (syn. T. szidati; see Rudolfová et al. 2005) cercariae from L. stagnalis, 

ranging from 7,500 to 10,700 per week. The most accurate descriptions from experiments on the 

emergence pattern of T. ocellata cercariae from L. stagnalis show a variation of 0 – 3,069 cercariae 

released during a 36-hour period and identify strong peak activities in the first hours after light 

exposure (Anderson et al. 1976). 

Our results reveal a high variability in cercarial productivity of T. szidati between individual 

replicates, days, two-hour intervals, type of experiment and between the different months of the 

experiments. The mean daily emergence rate of 1,117 cercariae snail-1 day-1 recorded in the 

experiments in July falls into the lower range of the weekly emission numbers described by Sluiters 

(1980) and Żbikowska (2001). However, the cercarial productivity of individual snails was highly 

variable and ranged from 40 to 4,560 cercariae, which matches the observations of Anderson et al. 

(1976). However, the extremely high emission rates in September (mean 10,140 snail-1 day-1, maximum 

of 29,560) have not been reported before and allow more precise estimates of the parasites’ 

contribution to ecosystem biomass, and better assessments of swimmer’s itch infection risks. 

Temperature is a major factor influencing the development of trematodes in their snail host 

and the production of cercariae (e.g. Morley & Lewis 2013, Studer & Poulin 2013), but room 

temperature was highly similar across all experiments (20°C in the climate chamber and 19.6 – 20.4°C 

in the air-conditioned laboratory) and does not play a role in our results. The main difference between 

the experiments in the climate chamber in July and September was the shift in the light regime from 

6:00 – 18:00 (July) to 8:00 – 20:00 (September). However, this does not account for the higher emission 

in the latter experiment, since Anderson et al. (1976) found no differences in emergence patterns, 

even if the lightning regime was reversed.  

Since experimental setup and all other conditions in the climate chamber (handling, length of 

illumination, water and air temperature) were the same in the peak experiments, the nine-fold 

increase in cercarial emission of T. szidati in September can probably be best explained by intra-

molluscan development cycles of sporocyst microhemipopulations in which sporocysts producing 

cercariae alternate with sporocysts producing daughter sprocysts which have been described to take 

35-40 days in schistosomes (Théron 1981a, b). Sluiters et al. (1980) describe two peaks in cercarial 

production of T. ocellata ca. 40 days apart. In our case there were 64 days between experiments in 

July and September and it is possible that we hit a production peak during that time after the newly 

formed sporocysts matured. Since all snails were sampled at the same small water body at the same 

time and are of similar size/age, it is likely that they were infected at about the same time, explaining 

the similar pattern across all snails.  

Furthermore, five snails in the September experiment showed patent double infections with 

other trematode species (four snails with Diplostomum pseudospathaceum and one snail with 
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Plagiorchis elegans), both are being frequently found in Lymnaea stagnalis (Selbach et al. 2015). 

Although some of these snails showed lower T. szidati emissions (see Table 1), there was no significant 

difference in overall productivity or emergence patterns. Double infections, and the subsequent 

elimination of less dominant or subordinate trematode species as a result of interspecific competition, 

may be common in natural waters, especially in small eutrophic ponds with high trematode prevalence 

and colonization rates (Soldánová et al. 2011b, 2012). The occurrence of double infections should, 

therefore, make the results more comparable to natural conditions and no snails with double 

infections were excluded. Variations in cercarial production among snails can also be due to a number 

of reasons, ranging from slight differences in the intra-molluscan development cycles described above 

to individual snail metabolism (see Poulin & George-Nascimento 2007, Hechinger 2013) or the initial 

miracidial dose (Sluiters et al. 1980).  

Parasites are usually much smaller than their hosts. While this is certainly true at the level of 

the individual, the combined biomass of parasites contributes significantly to the total biomass in an 

ecosystem (2008). Only few studies quantified trematode biomass in an attempt to assess the potential 

function and contribution of free-living stages of parasites to the energy flow in ecosystems. Kuris et 

al. (Kuris et al. 2008) estimated that the annual production of trematode cercariae in the Carpinteria 

Salt Marsh represented biomass greater than that of other parasites and even of birds, the top 

predators in this system. They concluded that the presence and abundance of a certain type of 

organism in a given territory may be dependent on the activity of trematodes, thus stressing their 

importance in structuring aquatic food webs and energy transfer. Thieltges et al. (2008b) used 

published data on the cercarial output rates in marine systems and calculated an annual production of 

cercariae comparable to the biomass estimated for free-living benthic marine invertebrates. Most 

recently, in freshwater pond ecosystems in California, the trematode productivity and cumulative 

biomass, which was equal or exceeded the biomass of the most abundant insect groups, was 

comparable to those estimated for marine and estuarine systems (Preston et al. 2013).  

Based on the information from our cercarial emission experiments, we can make sound 

estimations of the biomass productivity of T. szidati cercariae at two levels, i) the cercarial productivity 

of an individual snail during its lifetime, and ii) the annual contribution of T. szidati cercariae to an 

ecosystem’s biomass. The cercarial production of 4.8 g of a single snail during its lifetime underlines 

the ecological importance of these trematodes at the host-parasite level. By relocating the snail’s 

reproductive resources, and thereby castrating the host (Brant & Loker 2013), the parasites are able 

to transfer a substantial amount of biomass into cercarial production. Besides being “hands inside of 

a puppet” that take up a large amount of the host’s soft tissue mass (on average around 20%; 

Hechinger et al. 2009), trematodes are able to produce a substantial amount of biomass outside the 

host that equals or even exceeds the weight of the soft tissue mass of the snail host during its life span. 
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On an ecosystem level, our results show that a single trematode species contributes a considerable 

amount of cercarial mass to an aquatic ecosystem during the parasite’s active period in the summer 

months of a year. Using a conservative estimation of a T. szidai prevalence of 5%, we calculated an 

annual biomass contribution of 561 kg into the small fishpond. However, since prevalence of 

Trichobilharzia sp. in this pond of more than 40% have been reported (Soldánová et al. 2011a), we end 

up with a possible annual cercarial production of 4.6 tons. This would equal the weight of a large Asian 

elephant, an illustrative figure and comparison already used to describe parasite contributions to the 

biomass in estuarine systems (Hudson 2005). While both the elephant and the reproduction of the 

snail’s individual weight are certainly impressive, we have taken care to follow a rather conservative 

approach in our calculations. L. stagnalis can live up to three years (Finch & Roth 1999) and may thus 

produce even more cercariae than estimated for the two-year lifetime we assumed. Furthermore, the 

body volume we calculated for T. szidati based on our measurements of live cercariae is considerably 

smaller than the one calculated for T. szidati by Koehler et al. (Koehler et al. 2012) based on literature 

data (0,0039 mm3  vs. 0,0068 mm3, respectively), resulting in possibly higher actual contribution of 

T. szidati to an ecosystem’s biomass than our calculations. Moreover, the mean number of cercariae 

(2,621 snail-1day-1) across all our experiments is low compared to the possible peaks of 29,560 cercariae 

per snail and day detected in September. If such peaks occur frequently, the total number of cercariae 

and their biomass contribution may turn out higher still. 

In Central European freshwater ecosystem bird schistosomes, such as T. szidati, only constitute 

a fraction of the diverse trematode communities which comprise a multitude of species (e.g. Soldánová 

et al. 2010, 2011b, Loy & Haas 2001), all of which contribute to the ecosystem’s biomass. Depending 

on the transmission strategies of the parasites, daily cercarial emission can be significantly higher than 

in bird schistosomes, e.g. in Diplostomum spp. with productions of up to 60,000 cercariae snail-1day-1 

(Lyholt & Buchmann 1996, Karvonen et al. 2004), and well beyond up to 500,000 cercariae per snail 

and day for some species (Haas 2003). It is therefore safe to assume that the overall cercarial biomass 

emitted into these systems is comparable to the impressive numbers recently calculated for marine 

(Thieltges et al. 2008b), estuary (Kuris et al. 2008) and freshwater ecosystems (Preston et al. 2013). 

Since the majority of produced cercariae are not able to successfully infect a suitable target host and 

end up as food for predators (Johnson et al. 2010, Morley 2012) or contribute to the ecosystem’s 

detritus, the free living parasite stages, along with the life cycle stages within the hosts, contribute 

significantly to the energy flow in aquatic systems (Combes et al 1994, Thieltges et al. 2013). 

Emergence of Trichobilharzia cercariae has been shown to occur in the first hours of light 

exposure (Anderson et al. 1976) and was determined to peak early in the morning hours between 9 

and 11am (Sluiters et al. 1980). Our results clearly confirm the strong peak activities in cercarial 

emission after the onset of light exposure described by Anderson et al. (1976), both in controlled 
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environments and under natural conditions with gradually increasing daylight. In all experiments, high 

emission rates were observed immediately at the beginning of the light phase, following a low-

emission dark regime. These patterns suggest a synchronization of cercarial emission with the daily 

activity patterns of the definitive hosts, ducks that also show strong diurnal patterns with the highest 

activities around sunrise and sunset (Sauter et al. 2011). Such a synchronization of cercarial release 

with host-time can be explained as an adaptive behavior enhancing the probability of transmission 

success of the short-lived cercariae to their hosts (Combes et al 1994). This is also a common feature 

with mammalian schistosomes in which cercarial emergence varies on a circadian cycle and is 

associated with definitive host availability (Théron et al. 1997, Pagess & Théron 1990, N‘goran et al. 

1997). 

The morning emission of cercariae was most prominent in the peak experiment conducted in 

the laboratory with natural lightning conditions (Figs. 1A and 2A). The experiments conducted in the 

climate chamber showed longer windows of continuous emission during the light period (Figs. 1B-C, 

2B-C). This may be due to the exposure to a direct light source (halogen lamp) in the climate chambers 

in contrast to the changing intensity of illumination in the laboratory throughout the day. Since the 

windows in the laboratory were facing north, snails were mostly exposed to indirect sunlight, whereas 

the climate chamber experiments simulate conditions similar to an unshaded area during a summer 

day, possibly explaining the longer emission patterns. Furthermore, we observed small emission peaks 

in the climate chamber experiments during the dark phases (see Figs. 1B-C, 2B-C). It is possible that 

snails were accidentally exposed to indirect light when the door to the climate chamber was briefly 

opened during the handing of the snails. This would suggest that only very brief light impulses are 

sufficient to trigger cercarial emission and show a high flexibility of the parasites to react to 

environmental changes, e.g. short sunny phases in cloudy weather.  

Besides the biomass contribution of T. szidati and ecological importance of these parasites, 

e.g. in food webs, our results may help to give better estimations of the risks of swimmer’s itch that 

can be caused by bird schistosomes. The exceptionally high emission rates of cercariae in the 

September experiment highlight why infections in humans are typical, even in regions where 

prevalence of bird schistosomes is very low. A single infected L. stagnalis snail appears to be enough 

to create a potential ‘infection hot spot’ of swimmer’s itch, e.g. if about 29,500 cercariae are released 

at a shallow area frequented by many swimmers during a day. 
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Conclusions 

The results of our study show the large cumulative biomass of T. szidati cercariae both on the individual 

host and the ecosystem level. We can confirm strong peak activities in cercarial emission as a result of 

illumination but were able to show that emission patterns can be flexible and large quantities of 

cercariae can be released throughout the course of a day, if the snails are exposed to light. Therefore, 

while the early worm catches the bird, it tries to do so many times. Although bird schistosomes 

constitute only a fraction of the diverse trematode communities in the studied aquatic ecosystems, 

their infective stages, the cercariae, can still pose a considerable risk of swimmer's itch due to the high 

number of cercariae emitted from infected snails. 
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7. Chapter III
Trematodes and public health –  
bird schistosomes and swimmer’s itch  

This chapter contains the following study on the occurrence of the main causative agents of simmer’s 

itch, Trichobilharzia spp., in Lake Baldeney (Baldeneysee) and estimations of risk factors based on 

parasite and host biology and the given local situations. 

7.1  Selbach, C., Soldánová, M. & Sures, B. (2015). Estimating the risk of swimmer's itch in surface 

waters - a case study from Lake Baldeney, River Ruhr. International Journal of Hygiene 

and Environmental Health, (In Press).
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a b s t r a c t

Swimmer’s itch is a zoonotic disease caused by certain digenean trematodes, in Europe most noticeably
by bird schistosomes of the genus Trichobilharzia. These parasites require waterfowl and aquatic snails as
final and intermediate hosts, respectively, to complete their life cycle. Swimmer’s itch occurs when the
free-swimming larvae emitted from snails, the cercariae, accidentally infect humans. Here the parasites
cannot complete their life cycle but can cause allergic inflammatory responses of the skin. In the con-
text of the joint BMBF project ‘Sichere Ruhr’ (Safe Ruhr), which evaluates the Ruhr River as a potential
bathing water, the occurrence of the causative agents of swimmer’s itch in Lake Baldeney was studied. A
total of 1741 snails was examined for the presence of trematode infections, including bird schistosomes.
Snails infected with Trichobilharzia spp. were found at three sampling locations but showed low overall
prevalences (0.6–3.0%). Based on parasite and host biology, risk factors were evaluated and discussed in
the context of the potential use of Lake Baldeney as a bathing water. Although bird schistosomes only
constitute a fraction of the trematode diversity occurring in natural snail populations and show low
prevalence, they still pose an infection risk due to the high emission rates of cercariae from individual

snail hosts. A wide variety of often interacting biotic and abiotic factors, as well as personal behaviour
have an effect on the likelihood and severity of a human infection. Based on these risk factors, a number of
possible preventive actions aiming at the disruption of the life cycle, or personal protective measures can
be suggested. While absolute protection is impossible (unless swimming in natural waters is altogether
avoided) some preventive measures can reduce the risk of human infections.

© 2015 Elsevier GmbH. All rights reserved.
ntroduction

Swimmer’s itch or cercarial dermatitis is a water-borne par-
sitic disease that results from repeated infections with the
ree-swimming larval stages of schistosome trematodes which
ause allergic inflammatory responses of the skin (Kolářová et al.,
010), an observation first made by Cort (1928) in Lake Michi-
an, USA. Swimmer’s itch is considered a re-emerging disease
hat occurs world-wide and the spread of bird schistosomes and
eported cases in Europe (Soldánová et al., 2013) highlight the wide

eographical distribution of these parasites.

Cercarial dermatitis can be caused by a number of schistoso-
atid flukes, including human schistosomes (Kolářová et al., 2013).
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The most important agents of swimmer’s itch however are bird
schistosomes, in Europe most noticeably species of the genus Tri-
chobilharzia that utilise lymnaeid snails (freshwater pulmonate
molluscs) as intermediate hosts and waterfowl as definitive hosts
to complete their life cycle (Fig. 1; for a full review see Horák et al.,
2002 and references therein). Waterfowl, mostly ducks, serve as
definitive hosts in which the adult parasites mate and produce
eggs that are (i) either released into the water via the host’s fae-
ces, where a free-swimming larvae, the miracidium, hatches from
each egg (visceral schistosomes), or (ii) placed in the host’s nasal
cavity, where the miracidium hatches and leaves upon contact
with water (Trichobilharzia regenti, a nasal schistosome). In the
water the miracidia actively seek out and infect suitable snail inter-
mediate host species in which asexual reproduction via mother

and daughter sporocysts takes place and free-swimming larvae,
the cercariae (Fig. 2A), are produced. Cercariae are released and
dispersed into the aquatic environment in large quantities and ori-
entate themselves towards the light and the water surface (Fig. 2B)
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Fig. 1. Trichobilharzia spp. life cycle (from Soldánová et al., 2013, with permissio

to increase chances of host contact (Hertel et al., 2006). In the wate
the short-lived cercariae (1–3 days; Neuhaus, 1952) show comple
swimming behaviours and are sensitive to a range of chemical an
tactile stimuli that allow the location and penetration into a poten
tial definitive host (Haas, 1992; Haas and Haberl, 1997). Once insid
a suitable bird host, the cercaria develops into a juvenile worm, th
schistosomulum, and migrates to the preferred site of infectio
either via the circulatory system (visceral schistosomes) or throug
nervous tissue (nasal schistosomes), where it matures, mates an
reproduces.

Swimmer’s itch occurs when the cercariae accidentally pen
trate into humans. Here the parasites cannot complete their li

cycle but become entrapped in the skin and die soon after pene-
tration. While primary infections of accidental hosts usually show
no or only mild reactions, repeated contact with the parasites lead
to host sensitisation and immune responses that result in allergic

Fig. 2. (A) Trichobilharzia franki cercaria ex Radix auricularia. (B) T. franki cercariae relea
(C) Case of swimmer’s itch in one of the authors after collecting snails in one of the Ru
indicated by arrows).
inflammatory reactions of the skin (Fig. 2C; Kouřilová et al., 200
Horák and Kolářová, 2005). Although unpleasantly itching, infe
tions are usually harmless and recede after a few days, but ca
be more serious in repeatedly sensitised individuals (includin
symptoms such as oedema and fever; Horák and Kolářová, 2001
Although the disease technically represents an infestation, sinc
the parasites cannot complete their life cycle and do not multiply
the human accidental host, the term ‘infection’ is more common
used with reference to cases of swimmer’s itch. Data from expe
imentally infected animal models indicate that bird schistosom
cercariae may escape immune response and entrapment in th
skin in unsensitised mammals and migrate within the body, whe
they can cause haemorrhages or neurological disorders (Horák an
Kolářová, 2001). It remains unclear however, whether these symp
toms can occur in humans and no such cases have been reporte
yet (Horák et al., 2015).

Considered a benign skin disease (Caumes et al., 2003), infe
tions with bird schistosomes and swimmer’s itch are not part
the European Union’s directive concerning the management
bathing water quality (Directive 2006/7/EC, European Union, 2006
and thus not legally binding for the monitoring and classificatio
of bathing water quality. They are of considerable public intere
however, as news reports following individual cases of infectio
regularly show. Furthermore, parasites carry a negative connot
tion, and the idea of parasites burrowing into one’s skin whil
going for a swim usually provokes a rather strong emotional rea
tion to the point that many bathers are willing to reduce or sto
their bathing activities (Chamot et al., 1998). Whilst a much great
danger (one of the six leading causes of deaths for people under 2
in Europe, WHO, 2014), the risk of drowning seems to evoke a muc
milder reaction and appears to be much more ‘acceptable’. Cons
quently, repeated cases or occasional but rare mass outbreaks

swimmer’s itch (e.g. Allgöwer, 1995) can be of considerable eco-
nomic importance, especially in regions with tourism based on
recreational water activities. In this context, epidemiological stud-
ies, risk assessments or preventive measures have been undertaken

sed from infected R. auricularia orientating towards light source (indicated by arrow).
hr reservoirs (inflammatory skin reaction around points of penetration by cercariae,
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Fig. 3. Map of Lake Baldeney indicating the occurrence and size of lymnaeid snail populations and the findings of Trichobilharzia spp. in 2009 and 2012. Individual sampling
s lymna
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ites numbered, site 8 located further downstream. Large snail symbols indicate
ymnaeid snails; cercaria symbols indicate Trichobilharzia spp. findings.

n various lakes with histories of swimmer’s itch outbreaks, e.g.
n Germany (Lake Constance, Fiedler et al., 2005), France (Lake
nnecy, Caumes et al., 2003), Switzerland (Lake Geneva, Chamot
t al., 1998), Canada (Cultus Lake, Leighton et al., 2000) or the
SA (Lake Michigan, Blankespoor and Reimink, 1991; Douglas Lake,
erbrugge et al., 2004).

In the context of the joint BMBF project ‘Sichere Ruhr’, which
valuates the Ruhr River as a potential bathing water, the occur-
ence of the causative agents of swimmer’s itch in Lake Baldeney
Baldeneysee) was studied in order to estimate risk factors based
n the parasites’ and hosts’ biology and the local situations. Individ-
al cases of swimmer’s itch have been reported from the Ruhr river
ystem (AWWR and Ruhrverband, 2008), indicating the presence
f bird schistosomes.

aterials and methods

In order to assess the occurrence of bird schistosomes and to
stimate the infection risk of swimmer’s itch in Lake Baldeney
51◦24′20.08′′N, 7◦2′22.47′′E), freshwater snails were sampled at
arious localities along the lake’s shoreline (Fig. 3). In addition to
he sampling sites of the Safe Ruhr project (sites 1–8), four sites
n a bird reserve were selected (Heisinger Bogen, sites 9–12). Every
ite was sampled six times during the months May to September
012. Snails were collected by hand from floating vegetation and/or
tones along the shoreline of the lake. All snails were taken to the
aboratory, placed in individual cups with lake water and exposed

o a light source for two to five days to induce cercarial shedding.
nails that did not emit any cercariae during that time were diss-
cted and checked for prepatent infections. Live trematodes were
hotographed with a digital camera through an Olympus BX51 light
eid populations; small snail symbols indicate scattered occurrence of individual

microscope and identified based on the keys by Faltýnková et al.
(2007, 2008). Molecular identification of bird schistosomes was car-
ried out for specimens found in 2012 (based on sequences of the
internal transcribed spacer (ITS) regions of rDNA; see Dvořák et al.,
2002), since cercariae of one schistosome species can be found in
closely related intermediate hosts (Kock, 2001; Picard and Jousson,
2001), and vice versa, a single snail species may serve as a host
for more than one schistosomatid (Rudolfová et al., 2005; Jouet
et al., 2008). Furthermore, caution is required due to the compli-
cated identification of Radix spp. and the presence of Trichobilharzia
species complexes that require further taxonomic investigation
(see Jouet et al., 2010).

Although all occurring snail species were checked for trematode
infections, the focus of the study was on the lymnaeid snail species
Lymnaea stagnalis and Radix auricularia present in Lake Baldeney.
Both are known to serve as intermediate hosts for two of the most
important agents of swimmer’s itch in Europe, T. szidati and T. franki,
respectively. A further species, Trichobilharzia regenti, utilises Radix
peregra, R. lagotis and R. labiata (Huňová et al., 2012), but these
hosts were not found in Lake Baldeney. Altogether, 1437 snails were
collected in Lake Baldeney in 2012. Besides L. stagnalis and R. auric-
ularia, 14 additional snail species were collected and examined for
trematode infections. Additionally, 135 L. stagnalis and 169 R. auric-
ularia from a sampling campaign during the summer months of
2009 (published in Soldánová et al., 2010) were added to our data,
including an additional sampling site on the south bank of the reser-
voir (site 13, Fig. 3). Table 1 provides an overview of all collected

snails by year. This combined dataset of 1741 snails provides a com-
prehensive insight into the lake’s trematode fauna and shall allow
estimating the relative importance of bird schistosomes among the
trematode community.
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Table 1
Overview of snail species sampled in 2009 and 2012, overall trematode prevalence and Trichobilharzia spp. prevalence (i.e. Trichobilharzia szidati ex Lymnaea stagnalis and T.
franki ex Radix auricularia).

Snail species 2009a 2012

Number of
examined snails

Overall
prevalence (%)

Trichobilharzia spp.
prevalence (%)

Number of
examined snails

Overall
prevalence (%)

Trichobilharzia spp.
prevalence (%)

1 Acroloxus lacustris 81 0
2 Ancylus fluviatilis 157 2.6
3 Anisus vortex 165 0.6
4 Bathyomphalus contortus 176 2.3
5 Bithynia tentaculata 131 16.8
6 Gyraulus albus 5 0
7 Lymnaea stagnalis 135 14.1 2.96 28 17.9
8 Physa fontinalis 247 0.4
9 Physella acuta 1 0
10 Planorbarius corneus 119 1.7
11 Planorbis planorbis 3 0
12 Potamopyrgus antipodarum 2 0
13 Radix auricularia 169 18.3 0.59 275 16.7 0.73
14 Segmentina nitida 15 0
15 Sphaerium sp. 3 (33.3)b

16 Stagnicola palustris 29 10.3
Total 304 1,437
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Table 2
Overview of trematode species and their snail hosts found in Lake Baldeney in 2009
(Soldánová et al., 2010) and 2012.

Trematode species Snail hosta

1 Opisthioglyphe ranae RA, SP
2 Plagiorchis elegans LS
3 Echinoparyphium recurvatum RA, LS
4 Echinostoma revolutum LS
5 Echinostoma sp. IG RA
6 Paryphostomum radiatum RA
7 Isthmiophora melis AF
8 Trichobilharzia franki RA
9 Trichobilharzia szidati LS
10 Tylodelphys clavata RA, LS, SP
11 Notocotylus attenuatus RA
12 Australapatemon burti AV, BC
13 Diplostomum pseudospathaceum LS, SP
14 Diplostomum spathaceum RA
15 Notocotylus sp. BT
16 Cotylurus sp. PC, BC
17 Cyclocoelium sp. RA, SP
18 Echinostomatid rediae BT, AF
19 Family Gorgoderidae Ssp
20 Family Psilostomatidae BT
21 unidentified rediae BT
22 unidentified xiphidiocercariae PF, BT

a Abbreviations for snail hosts: AF: Ancylus fluviatilis; AV: Anisus vortex; BC: Bathy-
omphalus contortus; BT: Bithynia tentaculata; LS: Lymnaea stagnalis; PC: Planorbarius

p:
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a Data from Soldánová et al. (2010).
b Sample size small.

Results

A total of 10 snail species out of 16 was found to be infecte
with trematode species. Trematode prevalences in the individu
snail species from Lake Baldeney ranged from 0.4% in Physa font
nalis (2012) to 18.3% in R. auricularia (2009). Table 1 shows overa
prevalences in all snail species collected in 2009 and 2012. How
ever, due to the low number of specimens of some snail species (e.
only five Gyraulus albus were found), trematode infections in the
species may have evaded detection. A total of 17 trematodes w
identified, 14 to species and three to genus level. Additionally, fiv
trematode infections were found but not identified further than th
family level, mostly from Bithynia tentaculata (aquatic prosobranc
mollusc) for which no sufficient trematode keys exist. Since the
comprised no bird schistosomes, no further molecular identific
tion was carried out in these cases. Table 2 gives an overview
the trematode species found in Lake Baldeney. In both snail speci
that serve as potential hosts for Trichobilharzia spp. overall trem
tode prevalence was high in both years: R. auricularia 18.3% (200
and 16.7% (2012); L. stagnalis 14.1% (2009) and 17.9% (2012).

Trichobilharzia spp. infections could be found at different sites
Lake Baldeney in 2009 and 2012. Trichobilharzia franki ex R. auri
ularia was found twice in May and September 2012 at a samplin
site in the bird reserve Heisinger Bogen (site 11). In 2009 T. fran
was found at a location of the reservoir’s south bank (site 13). Tr
chobilharzia szidati ex L. stagnalis was discovered at one locality
2009 (site 6), but could not be detected in the summer months
2012, despite the presence of suitable lymnaeid snail population
at the site. In Fig. 3, all Trichobilharzia findings and the occurren
of lymnaeid snail populations at the individual sampling sites a
highlighted. Prevalences of Trichobilharzia spp. in the pooled sam
ples ranged from 0.59% (2009) and 0.73% (2012) in R. auricularia
2.96% (2009) in L. stagnalis (Table 1).

Discussion: Risk factors, diagnosis and preventive measures

Bird schistosomes are present in Lake Baldeney and could b
detected at several sampling sites in the years 2009 and 201

The low prevalences of Trichobilharzia spp. of 0.6–3% are typical
for bird schistosomes and are quite common in areas where swim-
mer’s itch occurs in humans (Loy and Haas, 2001; Zbikowska, 2004).
However, these low prevalences make a precise risk assessment of

e

corneus; PF: Physa fontinalis; RA: Radix auricularia; SP: Stagnicola palustris; Ss
Sphaerium sp.

swimmer’s itch problematic, since the detection of the parasites
difficult and requires extensive screening of snail populations; an
cases of cercarial dermatitis may still occur in water bodies whe
no infected snail can be found (Schets et al., 2010). Furthermor
the identification of cercariae by microscopy is labour intensiv
and requires specific parasitological expertise, especially since th
trematode fauna of freshwater ecosystems is diverse and comprise
a multitude of species, of which some share similar morphologic
features (Fig. 4). The recent discovery of new cryptic species and y
unrecognised molecular diversity in several trematode genera
the Ruhr area further highlight the taxonomic complexity of thes

parasites, e.g. Echinostoma spp. (Georgieva et al., 2013a), Diplosto-
mum spp. (Georgieva et al., 2013b) or Petasiger spp. (Selbach et al.,
2014).
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ig. 4. Cercariae of selected trematode species found in Lake Baldeney. (A) Echinosto
E) Notocotylus attenuatus. (F) Australapatemon burti. Scale bars: (A) and (C) 200 �m

Due to the difficult detection of bird schistosomes, the occur-
ence of suitable snail host populations and the potential dispersal
f cercariae should be given main consideration to risk assessments.
n the summer of 2012, constant lymnaeid snail populations in Lake
aldeney were found on floating vegetation (Nymphaeaceae) in
he area of the bird reserve Heisinger Bogen at sites 9 and 11 (see
ig. 3), as well as on littoral aquatic vegetation at sampling site 6, a
ormer and potential future bathing site (Seaside Beach). At samp-
ing sites 1–3 only individual lymnaeid snails were found. These
ites are further upstream along a more narrow section of the Ruhr
ith stronger water currents and more sparse floating vegetation,

hus providing less suitable habitats for large lymnaeids. Although
t a wider section of the reservoir and richer in vegetation, site 4
howed no abundant lymnaeid snail populations throughout 2012.
t sites 5, 7 and 8 no suitable lymnaeid snail populations were

ound during the samplings. Site 5 is characterised by steep bank
einforcements with stones and hardly any vegetation, sites 7 and
are further downstream where water currents are stronger. In

009, suitable snail populations were found on aquatic vegetation
t site 13.

In accordance with the presence of abundant lymnaeid snail
opulations, infections with Trichobilharzia spp. were found at
ampling sites 6, 11 and 13. Sites 6 and 11 are also characterised by
he occurrence of waterfowl: the bird reserve Heisinger Bogen (site
1) provides a large protected area as breeding grounds for a mul-
itude of bird species and the area surrounding the Seaside Beach
site 6) is a popular local recreation spot, where people can often
e seen feeding birds, mainly anatids. These sites therefore provide

deal conditions for bird schistosomes to complete their life cycle.
Since the parasites have a complex life cycle, their occurrence

s dependent on the availability of all hosts and is subject to a
ide variety of environmental factors (reviewed in Soldánová et al.,

013). In order to assess the risk of a human infection, it is nec-
ssary to take these environmental factors, as well as personal
spects into consideration. Although infections of Trichobilharzia
pp. were detected at different sampling sites, they only occurred in

ndividual snails. However, despite the typically low prevalence of
richobilharzia spp., human infestations are possible due to the high
umber of cercariae that can be released from individual infected
nail hosts in short periods of time (Zbikowska, 2004; Fig. 2B). In
olutum. (B) Plagiorchis elegans. (C) Paryphostomum radiatum. (D) Tylodelphys clavata.
D) and (F) 50 �m; (E) 500 �m.

general, localities with rich aquatic vegetation, usually along the
shore, are considered more risky, as they provide suitable habitats
for lymnaeid snails (Lévesque et al., 2002), which coincides with
our findings of snail populations and Trichobilharzia infections in
Lake Baldeney. However, lymnaeid snails can also occur in deeper
waters and at sites free of vegetation (Fiedler et al., 2005). Further-
more, although the cercariae are rather short-lived, they are good
swimmers and may be able to actively disperse within a radius
of 100 m (Fiedler et al., 2005). Moreover, water currents may pas-
sively carry infective cercariae over distances of several kilometres
into other areas where they may pose an infection risk (Leighton
et al., 2000; Fiedler et al., 2005). In Lake Baldeney, human infections
may therefore also occur at sections downstream from localities
with lymnaeid snail populations, although they are less likely than
directly at these sites.

Most cases of cercarial dermatitis in humans occur during the
summer months when both cercarial emergence of bird schisto-
somes and human bathing activities peak (Lévesque et al., 2002;
Valdovinos and Balboa, 2008). Besides season, time of day plays
an important role in the risk of an infection, as most cercariae are
released from their snail hosts during the early morning hours,
leading to higher infection risks for swimmers in the morning
(Lindblade, 1998; Verbrugge et al., 2004). As stated above however,
cercariae remain infective for a couple of hours and can be trans-
ported over large distances, and the risk of infection is not neces-
sarily restricted to proximity of time and place to cercarial release.

Temperature as well as sunshine play important roles for the
parasites’ development and have been shown to correspond with
higher infection risks. Cercarial output is elevated in warm water
(Valdovinos and Balboa, 2008) and on sunny days, especially after
overcast periods (Horák et al., 2002). Moreover, high tempera-
tures increase chances of encountering the parasites and becoming
infected due to increased bathing activities, i.e. more time spent in
the water (Chamot et al., 1998). Due to the parasites’ seasonal and
temperature-dependent development (Horák et al., 2002), climate
change and global warming are considered important risk factors,

especially since increased temperatures can provide favourable
conditions for both snail hosts and overwintering migratory birds,
allowing for longer host-parasite transmission windows and subse-
quently higher parasite prevalence in lakes (Mas-Coma et al., 2009).
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Furthermore, eutrophication is an ecological key factor for swim
mer’s itch that leads to higher host and parasite abundances an
increased risks of human infections (reviewed in Soldánová et a
2013). In contrast to the typically low prevalences of less than 5
exceptionally high infection rates with prevalences exceeding 40
can occur in snails in eutrophic systems (Soldánová et al., 2011
Consequently, most cases of swimmer’s itch in Europe are regi
tered in eutrophic lakes and manmade water bodies (Soldánov
et al., 2013). Therefore, although presently not detected, high
bird schistosome prevalences are well possible in a shallow an
eutrophic reservoir such as Lake Baldeney under certain condition
e.g. local infection hot-spots at sites of high nutrient input (cf. Lak
Hengstey; Soldánová et al., 2010).

Besides these environmental influences, personal factors hav
significant effects on the risk of swimmer’s itch infection
Since cercarial dermatitis develops as a consequence of immun
responses in already sensitised people (Kouřilová et al., 2004; Horá
et al., 2008), the individual history of previous contact with th
parasites plays an important role in the likelihood and severity
swimmer’s itch (Chamot et al., 1998).

Personal bathing behaviour and bathing time have significa
effects on the chances of encountering bird schistosomes. Peop
engaged in immersed activities, such as swimming or wading a
much more likely to become infected than people engaged in su
face activities, such as water skiing or wind surfing (Lindblad
1998). Likewise, the frequency of bathing activities and the amou
of time spent in water is positively correlated with the risk of a
infection due to the increased chance of contact with the parasit
(Verbrugge et al., 2004; Schets et al., 2008). The fact that youn
children have been reported to show a higher risk of cercarial de
matitis (Lindblade, 1998) can possibly best be explained by the
individual bathing habits, i.e. more frequent visits and more tim
spent in warm, shallow water along the shore (Lévesque et a
2002). Therefore, besides the biotic and abiotic environmental fa
tors that affect the parasites’ occurrence, it is how people intera
with the lake that determines the risk of encountering cercari
dermatitis (Verbrugge et al., 2004).

Based on the parasites’ biology and the ecological factors th
drive their occurrence, a number of preventive measures are po
sible (for a full review see Soldánová et al., 2013; Horák et a
2015 and references therein). Many possible measures direct
aim at disrupting the parasitic life cycle at some stage, main
either by targeting the free-swimming larval stages or by remo
ing suitable host populations. Most of these actions are howev
rather difficult, expensive or labour-intense (e.g. biological contr
of parasites or hosts, manual removal of snails) and their effectiv
ness unsure, or come at high ecological costs (e.g. use of chemic
molluscicides or mechanical habitat destruction). However, sim
ple measures such as encouraging people not to feed waterfow
(e.g. by putting up information boards) may help and provide th
opportunity to inform the public about infection risks.

Since personal behaviour plays an important role on the lik
liness of encountering the parasites, personal preventive action
can help reducing the risk of an infection. Avoiding shallow wate
close to the shoreline (e.g. by entering the water via a bathing jett
and sites with aquatic vegetation, as well as avoiding swimmin
during the morning hours have been suggested (Lindblade, 199
Lévesque et al., 2002). Although free of ecological side effects, the
actions cannot guarantee absolute safety from infections (Fiedl
et al., 2005). Furthermore, briskly rubbing the skin with a tow
after bathing has been suggested to kill off invading cercaria
(Baird and Wear, 1987). However, since penetration of cercaria

of Trichobilharzia spp. into human skin can be fast (as fast as 83 s,
average 4 min; Haas and van de Roemer, 1998), this only offers
some protection immediately after contact and seems not feasi-
ble for swimmers. Cream formulations that inhibit cercarial skin
penetration have been tested and proven successful (Wulff et a
2007), but would need to be applied extensively before bathing.

Altogether, while these actions may lower the risk of huma
infection, they cannot guarantee total safety. Bird schistosome
along with the other trematode species, are integral parts of th
ecosystem and the risk of swimmer’s itch comes with the use
freshwater lakes as bathing waters. Therefore, although not legal
binding or dangerous, these risks should be included in the evalu
ation of the Ruhr River as a potential bathing water and should b
communicated to the public.
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dermatitis, a neglected allergic disease. Clin. Rev. Allergy Immunol. 45 (1), 63–74.
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8. Chapter IV
Trematode ecology – biodiversity of trematodes in the Ruhr 

This chapter contains the following manuscript on the overall diversity and structure of trematode 

assemblages and communities in snails in the Ruhr reservoirs.

8.1  Selbach, C., Soldánová, M., & Sures, B. Hidden diversity on our doorstep – trematode 

assemblages and communities in lymnaeid and planorbid snails in a Central European reservoir 

system. 
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Hidden diversity on our doorstep: trematode assemblages and communities in lymnaeid and 

planorbid snails in a Central European reservoir system 

Christian Selbach1, Miroslava Soldánová2, Bernd Sures1,3 

1Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University 

of Duisburg-Essen, Essen, Germany 

2Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech 

Republic 

3Department of Zoology, University of Johannesburg, Johannesburg, South Africa 

Introduction 

Except for their role as disease agents, parasites have long been ignored and considered unimportant 

in the context of most ecological studies. However, the last 25 to 30 years have seen a slow but steady 

advancement of our understanding of parasites as important and integral elements of healthy and 

functioning ecosystems (Poulin 1999, Hudson et al. 2006) and it is impossible to fully understand 

ecosystems without considering parasites (Lafferty et al. 2006). In this context, parasites have been 

shown to be important structuring forces in ecological food webs (Lafferty et al. 2008) that make up a 

large proportion of an ecosystem’s biomass (Kuris et al. 2008, Soldánová et al. submitted) and thus 

considerably contribute to the energy flow within ecosystems (Thieltges et al. 2008). Furthermore, 

parasites provide viable ‘ecosystem services’ (Dobson et al. 2008), such as regulation of host 

abundance or even concentrations of pollutants (Sures 2003). Moreover, based on their often complex 

life cycles and strong interaction in ecosystems, parasites may serve as useful bioindicators to assess 

environmental conditions and changes (Lafferty 1997, Vidal-Martínez et al. 2010, Nachev & Sures, 

2015). 

One fundamental question in science that has been debated throughout the years is the total 

number of species on Earth, but with about 90% of the estimated 8.7 million species still awaiting 

description (Mora et al. 2011), we are a long way from a full inventory of our planet’s biodiversity. 

Likewise, the question how many parasite species there are on Earth has been a major point of 

discussion with estimations ranging from one third to over half the diversity on the planet (reviewed 

in Poulin 2014). These are very broad and rather imprecise estimations and we still know only little of 

the true diversity of parasites and are far from a total knowledge of the diversity of parasite taxa 

(Poulin & Morand 2004), if such knowledge is possible at all. However, as Poulin (2014) points out, 

knowing the exact number of parasite species may currently not be as important as understanding 
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other more pressing issues, such as cases of parasite extinctions, identification of parasite diversity hot 

spots or emerging zoonotic diseases caused by parasites. 

Since our environment is rapidly changing due to anthropogenic pressures (e.g. global 

warming, population growth, increased needs of resources and pollution), we need to better 

understand these changes and their often complex effects on the health of humans, livestock and 

ecosystems. Especially climate change and global warming are regarded to have major impacts on 

parasites with many, often still unforeseeable, consequences on parasite transmission patterns, life-

history traits, virulence, and on entire ecosystems (Marcogliese 2001, 2008). However, examples have 

shown how even more small-scale local environmental alterations, such as eutrophication of water 

bodies due to agriculture, industrialization or urbanization, can affect parasite communities and trigger 

complex and often drastic changes that can restructure whole ecosystems. For example local 

extinctions of amphibian populations in North American fresh waters were caused by increased 

prevalence of the trematode Riberioa ondatrae as a result of anthropogenic nutrient enrichment in 

these ecosystems that provided suitable conditions for snail intermediate hosts and the parasites 

(Johnson & Chase 2004, Johnson et al. 2007). However, although a world-wide decline of amphibian 

populations had been observed and possible reasons discussed before (Kiesecker et al. 2001), parasites 

were not considered at first, despite their crucial role in this development. It is, therefore, essential 

that we understand parasite assemblages and local distribution patterns at the ecosystem level and 

thoroughly study individual host-parasite systems. 

There are some exceptionally well-studied aquatic ecosystems (e.g. Kuris et al. 2008, Preston 

et al. 2013, Thieltges et al. 2013, Lagrue et al. 2015) that focus on the roles of parasites in these systems 

and allow estimations of the effects of environmental changes. However, these systems are 

geographically far apart and highly different (marine, intertidal and freshwater). On the other hand, 

our knowledge of host-parasite interaction in man-made waterbodies, such as impounded lakes and 

reservoirs, is still very limited and large-scale studies focussing on the diversity and distribution of 

parasites in such systems are lacking. This is especially critical, since such waterbodies fulfil vital roles 

as drinking water storages, recreational areas and important biodiversity hot spots, especially in urban 

areas. Studies on parasite diversity and community structure from man-made waterbodies would, 

therefore, be crucial to advance our understanding of such ecosystems and to allow better 

comparisons between different habitats, geographical regions and host-parasite systems. 

Trematodes are a diverse group of ubiquitous and cosmopolitan parasites that have complex 

life cycles, involving molluscs as first intermediate and a wide range of invertebrate and vertebrate 

second intermediate and definitive hosts. Due to these complex life cycles with snails serving as 

common hosts, trematode communities in snails reflect the richness and abundance of free-living 
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assemblages and are suitable bionindicators of free-living diversity (Hechinger et al. 2007) that lend 

themselves to studying the complex interactions within ecosystems. 

In a preliminary study, we were able to show that the Ruhr river system in Germany offers ideal 

conditions to study trematode community structure in snails in a man-made reservoir system 

(Soldánová et al. 2010). Such reservoir systems are typical for man-made waterbodies in Central 

Europe and fulfil viable functions in densely populated areas. Future anthropogenic and environmental 

changes will have impacts on these ecosystems and its parasitic and free-living organisms that we will 

not be able to assess without a thorough understanding of the parasite communities therein. In two 

consecutive sampling campaigns during the summer months of 2012 and 2013 we have built an 

extensive dataset on the snail-trematode assemblages from five interconnected reservoirs of the Ruhr 

river and its tributaries. Our knowledge of the trematode diversity in these Ruhr reservoirs includes 

‘cryptic’ diversity, since questionable taxonomic groups were studied in detail by applying integrative 

approaches combining morphological and molecular tools that have revealed new and yet unknown 

species lineages in several genera (see Georgieva et al. 2013, Selbach et al. 2014, Selbach et al. 2015). 

This information on the diversity of trematodes, including taxonomically controversial trematode 

groups, allows an accurate assessment of the diversity and distribution of trematodes in snails in the 

Ruhr system. Based on this extensive dataset we are able to address the overall diversity of trematode 

assemblages in snails and analyse how the parasites are distributed at small scales in the man-made 

Ruhr reservoir system. We are interested whether trematode assemblages in snails are equally 

distributed among the interconnected reservoirs or whether we can identify patterns and structure in 

the trematode communities. Furthermore, we want to find out what information the potential 

trematode component community structure and the parasites’ transmission pathways between their 

hosts can reveal about the ecosystem. 

The aims of the study are (i) to assess structure and composition of trematode assemblages 

and component communities across the interconnected reservoirs in the Ruhr system, (ii) to study the 

role of lymnaeid and planorbid snails as first intermediate hosts for digenean trematodes, (iii) to 

identify the diversity of trematode assemblages in the individual snail hosts and in the different 

reservoirs, (iv) to identify the most common and dominant trematode species, and based on the 

knowledge of the parasites’ life cycles (v) to identify transmission pathways between the hosts that 

can reveal information on final host occurrence and trophic interactions in the ecosystems. 
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Materials and Methods 

Sampling 

In order to assess the diversity and distribution patterns of trematode communities, we collected snails 

at several sampling sites in five reservoirs of the Ruhr river catchment area, Germany: Baldeneysee 

(51°24′ 20.08″N, 7°2′22.47″E), Hengsteysee (51°24′52.17″N, 7° 27′42.55″E), Hennetalsperre 

(51°19′50.97″N, 8°15′46.82″E), Sorpetalsperre (51°20′15.01″N, 7°56′46.18″E) and Versetalsperre 

(51°10′55.71″N, 7°40′57.12″E) (Figure 1). All waterbodies were constructed during the first half of the 

20th century along the Ruhr river and its tributaries as drinking water reservoirs, natural river water 

treatment plants and to regulate the water flow of the river system. Table 1 provides additional 

information on the individual reservoirs. 

Figure 1 Map of the Ruhr area and the reservoir system studied. Individual sampling sites are indicated by red 
dots. Abbreviations: Ba, Baldeneysee; He, Hengsteysee; So, Sorpetalsperre; Hn, Hennetalsperre; Ve, 
Versetalsperre. 

Table 1 General characteristics of the study reservoirs and water quality data 

Reservoir data  Baldeneysee Hengsteysee Sorpetalsperre Hennetalsperre Versetalsperre 

Construction (year)a 1931-1933 1917-1929 1926-1935 1901-1905 

(1950-1955) 

1929-1951 

Surface area (km2)a 2.6 1.4 3.3 2.1 1.8 

Depth (m)a 3.1 (mean) 1.9 (mean) up to 57 up to 51 up to 52 

Volume (Mio. m3)a 7.6 3.3 70 38.4 32.8 

Eutrophication statusb eutrophic eutrophic mesotrophic– 

oligotrophic 

mesotrophic oligotrophic 

a Ruhrverband (2015)
b AWWR & Ruhrverband (2013) 
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Each sampling site was visited repeatedly (11 times) during the summer months (May – September) in 

two consecutive years, 2012 and 2013. At each site snails were collected by hand or with the aid of 

hand-nets from stones, sediment and aquatic vegetation. Sampling was mostly focused on snails 

belonging to two families, Lymnaeidae and Planorbidae, since they proved to harbour the most 

diverse trematode fauna in Europe (Faltýnková & Haas 2006, Soldánová et al. 2011, Brown et al. 2011). 

In total, 3,171 lymnaeid snails belonging to four species [1,909 Radix auricularia (L.), 668 Stagnicola 

palustris (Müller), 349 R. peregra (Müller) and 245 Lymnaea stagnalis (L.)] and 2,176 planorbid snails 

belonging to two species [1,981 Gyraulus albus (Müller) and 195 Segmentina nitida (Müller)] were 

collected and screened for trematode infections. Although sampling was not quantitative, the sample 

sizes reflected the abundance of the individual hosts at the sampling sites, since the sampling effort 

(i.e. time spent at each locality) was comparable at each site. 

In the laboratory, all snails were placed in individual cups with lake water and exposed to a 

light source for two to five days to induce cercarial shedding. Snails that did not emit cercariae during 

that time were dissected and screened for prepatent infections. Trematode stages were identified 

alive under an Olympus BX51 microscope with the help of appropriate identification keys or other 

relevant primary sources (e.g. Faltýnková et al. 2007, 2008, Niewiadomska 1986, Niewiadomska & 

Kiseliene 1994) and documented with an Olympus UC30 digital camera. For further investigation of 

taxonomically problematic groups, trematode material was fixed in molecular grade ethanol and 4% 

formaldehyde solution for molecular and morphological studies. Trematode genera that are known to 

be taxonomically problematic or groups that showed conspicuous morphological features were 

subjected to thorough morphological and molecular studies to reveal potential cryptic diversity (see 

Georgieva et al. 2013, Selbach et al. 2014, Selbach et al. 2015). 

Data Analysis 

Following Poulin & Morand (2004), we distinguished between different hierarchical levels at which we 

studied parasite biodiversity, the component community level and parasite assemblages. A component 

community is defined as all parasite species exploiting a host population at a given point in time (i.e. 

all parasite species found in one snail population at a certain locality during one sampling trip). All 

other entities are referred to as parasite assemblages, i.e. all parasite species found within one 

specified subdivision of a given scale (e.g. trematode assemblage per snail species: all parasites found 

in one host species; or trematode assemblage per lake: all parasites found in one lake; or trematode 

assemblage per snail species and lake: all parasites found within one host species in one lake). In order 

to identify the most common final hosts, we grouped parasite species in guilds, following the broad 

definition of Polis et al. (1989) as "all taxa in a community that use similar resources (food or space) 

and thus may compete, regardless of differences in the tactics of resource acquisition”. 
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Parasite prevalence (P) was calculated for parasite assemblages in hosts and lakes as well as for each 

component community as the proportion of infected host individuals in relation to total number of 

host individuals in a population (P = ninf / N * 100, where ninf is the number of infected snails and N are 

all snails in a population). In order to compare the diversity of trematode assemblages between the 

different snail species and among the different lakes, we calculated the following diversity indices: 

species richness S (the total number of parasite species in a community or assemblage), Shannon 

diversity index H (H = -∑ (Pi * ln Pi, where Pi is the proportion of infections with species i relative to the 

total number of infections), Shannon evenness or equitability (J) as a measure of evenness with which 

individuals are divided among the taxa (Shannon diversity divided by the logarithm of number of taxa), 

and the Berger-Parker dominance d (d = Nmax / N, where Nmax is the number of infections of the most 

abundant species, and N is the total number of infections in the sample). Furthermore, we calculated 

the average taxonomic diversity Δ (i.e. the average taxonomic distance of every pair of individual 

infections in a sample, Warwick & Clarke, 1995) to take into account the phylogenetic diversity up to 

the family level. All calculations were performed with PAST 3.08 (Hammer et al. 2003), except for the 

average taxonomic diversity Δ which was calculated using PRIMER v6 (Clarke & Gorley 2006). 

Trematodes that could not be identified because they were immature were used for the overall 

prevalence calculations but were excluded from the diversity analyses. Double infections were rare 

throughout our samplings and treated as two individual infections for the diversity calculations. 

Non-parametric tests (Spearman’s rank order correlations) were carried out with Statistica v.7 

(StatSoft Inc.) to identify possible correlations between trematode species richness and overall 

sampling size of the snail host species (pooled number of all snails of a species as a measure for overall 

snail abundance), as well as between trematode species richness and size of the different snail hosts, 

reflecting the resources each host group represents to parasites. Snail hosts were categorized 

according to length and width measurements given in the literature (Glöer 2002) and ranked from 

small to large: 1. S. nitida, 2. G. albus, 3. S. palustris, 4. R. peregra, 5. R. auricularia and 6. L. stagnalis. 

These categories match the data from our measurements of sampled snails. Furthermore, possible 

correlations between overall prevalence and sample size as well as snail host size were analysed. 

In order to identify patterns and structures at the trematode component community level, 

component community composition analyses, i.e. non-metric multi-dimensional scaling (MDS) 

ordination and randomization tests on similarity matrices (ANOSIM) based on Bray-Curtis index values, 

were performed with PRIMER v6. In the MDS plots each parasite component community is represented 

by a symbol; the more similar the parasite communities are to each other, the closer the respective 

symbols will group together. Different characteristics of the component communities can be visualised 

(e.g. snail host or reservoir of origin) in order to analyse the structure of trematode communities. To 

reduce the bias due to small sample size, only data from distinct samples (n > 14 snails) were used at 
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the component community level (n = 75). In order to identify the most dominant species, we 

considered trematode species with prevalence higher than 10% in at least one component community 

dominant. 

Most component community data was available from R. auricularia (48 component communities), 

allowing us to test for community structures within this host species in detail by comparing component 

communities between different lakes, seasons and years. We tested whether snail abundance 

(indicated by sample size) was correlated with overall prevalence and species richness (Spearman’s 

rank order correlations). Mean snail size (snail shell length) in the individual R. auricularia component 

communities varied considerably (9.6 mm – 22.5 mm, mean 14.1 mm). Therefore, we tested the 

possible relationship of mean snail size with overall prevalence and species richness (Spearman’s rank 

order correlations). If the test showed significant positive correlation between snail size and overall 

prevalence, suggesting higher rates of infection in communities with larger snails, we used more 

appropriate statistical test to evaluate the effect of the variables ‘lake’, ‘season’ and ‘year’ on the 

overall prevalence by two-way analyses of covariance (ANCOVA), while controlling the effect of snail 

size (entered as covariate). For the factor ‘season’ samples were grouped as follows: spring (May), 

summer (June – August) and autumn (September). For these analyses we used two datasets: for the 

analysis of variation between lakes and years, five samples from Hennetalsperre were excluded, since 

they were available from one year only (2012) and would not have allowed comparisons between the 

years. For the analysis of seasonal variation, the samples from spring (n = 7) were excluded, since they 

were from one year (2012) only. Prepatent infections, which were identified as sporocysts or rediae 

and could not be assigned to any trematode species due to their immature stage were excluded from 

the analyses. Similarly, rare trematode species which occurred in less than three component 

communities were not included in the analyses. This resulted in the 15 most common species (out of 

23, 8 were excluded) which were entered into analyses testing the infection levels variation in space 

and time. To improve the fit of the normal distribution, data on sample size and snail size (mean length) 

were log10 (x) transformed, prevalence data (expressed as proportions) were arcsin square-root-

transformed, and species richness data log10 (x+1) transformed. All tests were carried out with 

Statistica v.7 (StatSoft Inc.). 

 

Results 

Of the 5,347 snails sampled in both years, 2012 and 2013, 1,049 showed patent or prepatent infections 

with trematodes, resulting in a total prevalence of 19.6%. Overall prevalence was highly different 

among the individual snail species, ranging from 2.6% in Segmentina nitida to 31.7% in Radix 

auricularia. Table 2 provides an overview of the total number of snails sampled in the five reservoirs 

in 2012 and 2013 and the overall prevalence of trematode infections for each reservoir and year. In 
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total 37 different trematode species belonging to nine families were found. Table 3 shows the 

individual prevalence of larval trematode species in the six snail hosts per reservoir. Trematode species 

richness varied considerably between the different hosts assemblages and ranged from only three 

species in S. nitida to 23 species in R. auricularia. Figure 2 shows a graphical representation of the sizes 

of the individual snail host populations and the number of trematodes found therein. 

Spearman’s rank order correlations for the pooled trematode assemblages in snails revealed a 

significant positive correlation between overall trematode species richness and sample size of each 

host species (rs = 0.943, p = 0.005) but did not show any significant correlation between snail host size 

and trematode species richness (rs = 0.2, p = 0.7), showing that snail species that were more abundant 

harboured more species rich trematode assemblages, but trematode assemblage species richness was 

not correlated with the size of the host species. Overall prevalence in the different host species was 

not correlated with either sample size or host size. 

 

Figure 2 Graphical representation of the snail species sampled during the study and their trematode fauna in the 
Ruhr reservoirs. Each circle represents one host snail species, the size of each circle corresponds to the number 
of snails sampled during the study, trematode species are indicated in the respective circles; overlaps show 
shared trematode species. 
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Table 2 Total numbers of the six snail species sampled in the five reservoirs in 2012 and 2013, overall prevalence of trematode infections (% of infected snails in the pooled 
samples) and number of samples used in the component community analyses 

Baldeneysee Hengsteysee Sorpetalsperre Hennetalsperre Versetalsperre Total 
2012 2013 Both 2012 2013 Both 2012 2013 Both 2012 2013 Both 2012 2013 Both 

Radix 
auricularia 

No. of snails 275 91 366 596 353 949 248 90 338 220 36 256 1.909 

No. of infections 46 15 61 178 132 310 99 56 155 70 10 80 606 

Prevalence 16.7 16.5 16.7 29.9 37.4 32.7 39.9 62.2 45.9 31.8 27.8 31.3 31.7 

Distinct samplesa 10 (8) 3 (3) 13 (11) 12 (11) 11 (9) 23 (20) 9 (9) 3 (3) 12 (12) 5 (5) 0 5 (5) 

Radix 
peregra 

No. of snails 16 20 36 294 19 313 349 

No. of infections 12 7 19 7 1 8 27 

Prevalence 75.0 35.0 52.8 2.4 5.5 2.6 7.7 

Distinct samplesa 1 (1) 0 1 (1) 4 (3) 0 4 (3) 

Lymnaea 
stagnalis

No. of snails 28 8 36 100 108 208 1 1 245 

No. of infections 5 2 7 12 21 33 0 0 40 

Prevalence 17.9 25.0b 19.4 12.0 19.4 15.9 0 0 16.3 

Distinct samplesa 0 0 0 2 (2) 4 (4) 6 (6) 0 0 

Stagnicola 
palustris

No. of snails 29 6 35 530 85 615 15 3 18 668 

No. of infections 3 3 6 75 6 81 1 1 2 89 

Prevalence 10.3 50.0b 17.1 14.5 7.1 13.2 6.7 33.3b 11.1 13.3 

Distinct samplesa 0 0 0 7 (6) 2 (1) 9 (7) 0 0 0 

Gyraulus 
albus 

No. of snails 5 14 19 2 26 28 1.098 830 1.928 1 5 6 1.981 
No. of infections 0 8 8 0 2 2 157 114 271 1 0 1 282 
Prevalence 0 57.1 42.1 0 7.7 7.1 14.3 13.7 14.1 100.0b 0 16.7b 14.2 
Distinct samplesa 0 0 0 0 0 1 (0) 6 (6) 5 (4) 11 (10) 0 0 0 

Segmentina 
nitida 

No. of snails 15 15 127 53 180 195 
No. of infections 0 0 2 3 5 5 
Prevalence 0 0 1.6 5.7 2.8 2.6 
Distinct samplesa 0 0 4 (1) 1 (1) 5 (2) 

a Distinct samples only n ≤ 14 used in component community analyses; numbers in brackets show samples with trematode infections 
b Sample size small (n ≤ 14)
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Table 3 Overall prevalence of individual larval trematode species (% of infected snails in the pooled samples from 2012 and 2013) in the six snail species and final hosts 
of the trematodes. Abbreviations: WAT, waterfowl; F-B, fish-eating birds; RAL, Rallidae; AMP, amphibians; B, birds; MAM, mammals; CYP, cyprinids; STO, storks.

Snail species Trematode family Trematode species Final host Reservoir 
Versetalsperre Sorpetalsperre Hennetalsperre Hengsteysee Baldeneysee TOTAL 

Radix 
auricularia

Echinostomatidae Echinoparyphium aconiatum* WAT 0.3 3.5 0.2 0.6 

Echinoparyphium recurvatum* WAT 13.0 3.9 1.5 0.3 3.6 

Echinostoma revolutum* WAT 2.3 0.3 

Echinostoma sp. IG WAT 0.3 0.3 0.1 

Paryphostomum radiatum* F-B 11.5 6.6 9.9 12.0 10.2 

Notocotylidae Notocotylus attenuatus* WAT 4.4 4.7 2.2 0.8 2.7 

Cyclocoelidae Cyclocoelum sp.a* RAL 0.9 4.1 0.3 2.3 
Telorchiidae Opisthioglyphe ranae AMP 0.4 0.3 0.8 0.4 
Plagiorchiidae Plagiorchis elegans* B, MAM 4.7 4.7 7.0 4.9 
Schistosomatidae Trichobilharzia franki * WAT 5.0 0.4 0.4 0.6 1.3 
Diplostomidae Diplostomum parviventosum F-B 1.0 0.5 

F-B 1.2 0.7 0.3 0.6 
F-B 0.4 0.2 
F-B 0.1 0.1 
F-B 0.1 0.1 
F-B 0.7 0.4 
F-B 0.1 0.1 
F-B 1.8 3.1 1.2 1.1 1.5 

Strigeidae WAT 0.9 1.0 0.3 0.7 
WAT 1.2 0.6 0.5 
WAT 0.8 0.1 
F-B 0.1 0.1 

Sanguinicolidae 

Diplostomum mergi 2* 
Diplostomum mergi 3 
Diplostomum mergi 4 
Diplostomum sp. Clade Q 
Diplostomum spathaceum 
Diplostomum baeri 
Tylodelphys clavata* 
Australapatemon burti 
Cotylurus cornutus* 
Cotylurus brevis 
Apatemon gracilis 
Sanguinicola inermis CYP 1.2 0.2 

Radix 
peregra 

Echinostomatidae Echinostoma revolutum* WAT 16.7 1.7 

Echinoparyphium recurvatum* WAT 1.6 13.9 2.9 

Paryphostomum radiatum F-B 11.1 1.2 

Notocotylidae Notocotylus attenuatus WAT 2.8 0.3 
Plagiorchiidae Plagiorchis elegans B, MAM 0.6 2.8 0.9 
Strigeidae Cotylurus sp. WAT 2.8 0.3 

a Metacercariae only
b Sample size small (n < 14) 
*Species dominant (prevalence ≥ 10 %) in at least one component community
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Table 3 Continued. 

Snail species Trematode family Trematode species Final host Reservoir 
Versetalsperre Sorpetalsperre Hennetalsperre Hengsteysee Baldeneysee TOTAL 

Lymnaea 
stagnalis 

Schistosomatidae Trichobilharzia szidati WAT 1.0 0.8 

Diplostomidae Diplostomum pseudospathaceum* F-B 10.6 13.9 11.0 

Tylodelphys clavata F-B 5.6 0.8 

Telorchiidae Opisthioglyphe ranae AMP 1.4 2.8 1.6 

Stagnicola 
palustris

Echinostomatidae Echinoparyphium recurvatum WAT 0.2 0.2 

Echinostoma revolutum WAT 0.2 0.2 

Cyclocoelidae Cyclocoelum sp. a* RAL 8.9 8.2 

Telorchiidae Opisthioglyphe ranae AMP 0.3 8.6 0.8 

Plagiorchiidae Plagiorchis elegans B, MAM 5.6 0.3 0.5 

Diplostomidae Diplostomum pseudospathaceum* F-B 2.6 5.7 2.7 

Tylodelphys clavata F-B 0.2 2.9 0.3 

Lissorchiidae Asymphylodora tincae CYP 0.2 0.2 

Schistosomatidae Schistosomatidae gen. sp.4 WAT 0.2 0.2 

Gyraulus 
albus

Echinostomatidae Paryphostomum sp.* F-B 2.2 26.3 2.4 

Petasiger sp. 1 F-B 0.2 0.2 

Petasiger sp. 2 F-B 0.1 0.1 

Petasiger sp. 3 F-B 0.1 3.6 0.2 

Diplostomidae Tylodelphis excavata STO 5.3 0.1 

Strigeidae Hysteromorpha triloba F-B 3.3 3.6 3.3 

Australapatemon burti* WAT 16.7 b 7.5 7.3 
Cotylurus sp. WAT 10.5 0.1 

Schistosomatidae Schistosomatidae gen. sp. 1 WAT 0.1 0.1 
Schistosomatidae gen. sp. 2 WAT 0.2 0.2 

Segmentina 
nititda

Strigeidae Hysteromorpha triloba F-B 0.6 0.5 

Australapatemon burti WAT 1.1 1.0 

Schistosomatidae Schistosomatidae gen. sp. 3 WAT 0.6 0.5 
a Metacercariae only 

b Sample size small (n < 14) 
*Species dominant (prevalence ≥ 10 %) in at least one component community
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Trematode assemblages in Radix auricularia 

A total of 31.7% (606 out of 1,909) of the collected R. auricularia harboured infections with larval 

trematodes. The most abundant R. auricularia population was found in Hengsteysee (949 snails), 

followed by Baldeneysee (366), Sorpetalsperre (338) and Hennetalsperre (256); no R. auricularia were 

found at Versetalsperre. Trematode prevalences was highest in Sorpetalsperre (45.9%), followed by 

Hengsteysee and Hennetalsperre (32.7% and 31.3% respectively), and was lowest in Baldeneysee 

(16.7%) (Table 2).  

In total, R. auricularia housed 23 different trematode species, more than half of them 

belonging to the families Diplostomidae (8 species) and Echinostomatidae (5 species), including cryptic 

and novel species (Georgieva et al. 2013, Selbach et al. 2015) that contribute to the diversity in these 

groups (Table 3). The remaining species belong to a further seven families (Table 3). Altogether, 

R. auricularia showed by far the highest species richness of all sampled host species. Accordingly, 

trematode assemblages in R. auricularia showed the highest Shannon diversity (H = 2.3) and average 

taxonomic diversity (Δ = 79.8) as well as the lowest Berger-Parker dominance (d = 0.3; Table 4, Figure 

3), indicating a high trematode diversity in this host. Coinciding with the most abundant snail 

population in Hengsteysee, the highest trematode species richness and diversity occurred in this 

waterbody (19 species, H = 2.2), followed by Sorpetalsperre (13 species, H = 2.0), Hennetalsperre and 

Baldeneysee (10 species each). Interestingly, the latter reservoir showed a far lower diversity and 

Shannon evenness compared with the other reservoirs, even when having the same species richness 

(H = 1.2, J = 0.5 in Baldeneysee vs. H = 2.1, J = 0.9 in Hennetalsperre), since the trematode assemblage 

in Baldeneysee was clearly dominated by one species, Paryphostomum radiatum (overall prevalence 

12.0%). 

Individual component communities in R. auricularia (n=48) comprised 1 – 13 trematode 

species, were generally species rich (mean S = 3.7) and were dominated by 1 – 4 species (prevalence ≥ 

10%). In total, 11 species were considered dominant in one or more of the component communities. 

Most noticeably, Paryphostomum radiatum occurred in 31 component communities and was 

dominant in 15 communities, with individual prevalence up to 67.9%. Other dominant species were 

Plagiorchis elegans (occurred 27 times, dominant 6 times), Notocotylus attenuatus (occurred 22 times, 

dominant 2 times) or Echinoparyphium recurvatum (occurred 19 times, dominant 7 times). 

With two exceptions, all trematode species found in R. auricularia utilise birds as definitive 

hosts (21 species), and the majority of trematodes fall either within the fish-eating guild that uses fish 

and fish-eating birds as second intermediate and definitive host (10 species), or within an anatid 

generalist guild that utilise waterfowl (9 species). The remaining species utilize birds of the family 

Rallidae, amphibians, cyprinids or mammals and various birds as definitive host (Table 3). 
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Figure 3 Schematic representation of the diversity indices of trematode assemblages in the six snail hosts. Berger-
Parker dominance is inverted (1-d), so the further the lines extend to the margins, the higher the diversity and 
evenness in the trematode assemblages. (Possible maximum values of the individual indices: Species richness = 
24; Shannon H = 3; Shannon evenness and 1 - Berger-Parker = 1; Average taxonomic distinctness = 100). 

Trematode assemblages in Radix peregra 

A total of 27 out of the 349 collected R. peregra were infected with larval trematodes (7.7%). An 

abundant R. peregra population was only found in Versetalsperre (313 snails), a further few snails (36) 

were found at one locality at Hennetalsperre. Trematode prevalence was low at Versetalsperre (2.6%) 

but very high at Hennetalsperre (52.8%), probably due to the small sampling size at the latter reservoir 

(Table 2).  

In total R. peregra harboured six different trematode species of four families (Table 3), all of 

which were present at Hennetalsperre and two at Versetalsperre. Half of the species belonged to the 

family Echinostomatidae and showed high prevalence in Hennetalsperre (11.1% – 16.7%). Despite the 

low sample size at Hennetalsperre, species richness, diversity and average taxonomic diversity were 
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relatively high (H = 1.5; Δ = 63.6) and Berger-Parker dominance was low (d = 0.3) in this system, 

especially compared to the low diversity (H = 0.6), taxonomic diversity (Δ = 47.6) and high Berger-

Parker dominance (d = 0.7) in Versetalsperre (Table 4), indicating a diverse trematode fauna in 

Hennetalsperre, despite the small R. peregra population. 

Individual component communities in R. peregra (n = 4) comprised 1 – 4 trematode species 

and showed a mean species richness of S = 2.0. Two trematode species of the family Echinostomatidae 

were considered dominant (Echinoparyphium recurvatum and Echinostoma revolutum) and appeared 

in the same component community with very high prevalence (25.0% and 37.5%, respectively), most 

likely due to the rather small same size of 16 snails in this sample. 

Of the six species found in R. peregra, all species use birds as definitive host, with the majority 

belonging to the anatid generalist guild that utilises waterfowl (4 species), one species using fish and 

fish-eating birds as second intermediate and definitive hosts, and one generalist species using 

mammals or various birds as definitive host (Table 3). 

Trematode assemblages in Lymnaea stagnalis 

Of the 245 L. stagnalis sampled, 40 were infected with larval trematodes, resulting in an overall 

prevalence of 16.3%, the second highest after R. auricularia. The only abundant L. stagnalis population 

was found in Hengsteysee (208 snails), whereas at Baldeneysee and Sorpetalsperre only individual 

snails were found (36 and 1, respectively); no L. stagnalis were found at the other reservoirs. 

Trematode prevalence was generally high in both lakes, 15.9% in Hengsteysee and 19.4% in 

Baldeneysee, the latter probably resulting from the rather small sample size (Table 2). 

In total, L. stagnalis harboured four trematode species belonging to three families (Table 3). 

Altogether, trematode assemblages in L. stagnalis showed the second lowest species richness and by 

far the lowest overall diversity (H = 0.8), average taxonomic diversity (Δ = 36.6) and highest Berger-

Parker dominance (d = 0.8) of all host assemblages (Table 4), due to the domination of trematode 

assemblages in both reservoirs by one species, Diplostomum pseudospathaceum. Altogether, with 

11.0% D. pseudospathaceum from L. stagnalis showed the highest overall prevalence of all trematode 

species. 

Individual component communities in L. stagnalis (n = 6) comprised 1 – 3 trematode species 

and were generally species poor (mean S = 1.3). Only one species, D. pseudospathaceum, was 

dominant, and dominated the majority of the individual samples with prevalence ranging from 13.3% 

– 18.0%. In communities where D. pseudospathaceum was present but not dominant, this species

showed lower prevalence (4% – 9%). 

Of the four species found in L. stagnalis, two belong the fish-eating guild that uses fish and 

fish-eating birds as second intermediate and definitive host, and one species each utilises anatid birds 

and amphibians as definitive host (Table 3). 
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Trematode assemblages in Stagnicola palustris 

A total of 89 of the 668 collected S. palustris (13.3%) was infected with larval trematodes. The most 

abundant S. palustris population occurred in Hengsteysee, where the majority of snails was found (615 

snails). Only few snails were found in Baldeneysee and Sorpetalsperre (35 and 18 snails, respectively). 

Overall trematode prevalence was high in all reservoirs, 13.2% in Hengsteysee, 17.1% in Baldeneysee 

and 11.1% in Sorpetalsperre, the high values in the latter two are due to the rather small samples from 

these lakes (Table 2). Stagnicola palustris harboured nine trematode species belonging to seven 

families (Table 2). The trematode assemblage in this host showed mid-range values for Shannon 

diversity (H = 1.2), average taxonomic diversity (Δ = 55.5), Shannon evenness (J = 0.5) and Berger-

Parker dominance index (d = 0.6) (Table 3). Coinciding with the most abundant snail population in 

Hengsteysee, the highest trematode species richness occurred in this waterbody (9 species), compared 

with Baldeneysee (3 species) and Sorpetalsperre (1 species). Although showing equal Shannon 

diversity values (H = 1.0 vs. H = 1.0), average taxonomic diversity (Δ = 68.9 vs. Δ = 49.0) was considerably 

higher and Shannon evenness much lower (J = 0.5 vs. J = 0.9) in Hengsteysee compared to Baldeneysee, 

respectively (Table 4), due to the higher number of species from different families in Hengsteysee. 

Individual component communities in S. palustris (n = 7) comprised 1 – 4 trematode species 

and were rather species poor (mean S = 1.9). In two component communities dominant species 

occurred, D. speudospathaceum (13.0%) and Cyclocoelum sp. (41.0%). The exceedingly high 

prevalence of the latter occurred in one sample from Hengsteysee, where it dominated the entire 

trematode community. 

The nine trematode species found in S. palustris use a wide range of different hosts; two 

species utilize fish and fish-eating birds, three species waterfowl. The remaining species use 

amphibians, cyprinids, birds of the family Rallidae, or a wide group of mammals and birds as definitive 

host (Table 3). 

Trematode assemblages in Gyraulus albus 

A total of 14.2% (282 out of 1,981) of the collected G. albus had infections with larval trematodes. With 

1,981 sampled snails, G. albus was the most abundant snail species in our system. The vast majority of 

snails comes from a population at one locality at Hennetalsperre (1,928 snails), whereas only few snails 

were found at Baldeneysee (19), Hengsteysee (28) and Versetalsperre (6). Prevalence in the small 

samples ranged from a fairly low 7.1% at Hengsteysee to 16.7% in Versetalsperre and very high 42.1% 

in Baldeneysee, caused by the small samples size. The largest population in Hennetalsperre showed a 

prevalence of 14.1% (Table 2). 

In total G. albus harboured 10 different trematode species belonging to four families (Table 3). 

Most species belonged to the families Strigeidae (3 species) and Echinostomatidae (4 species), the 

latter comprising three different species of the genus Petasiger (Selbach et al. 2015). For G. albus 
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overall Shannon diversity (H = 1.3) and average taxonomic diversity (Δ = 54.0) as well as Berger-Parker 

dominance index (d = 0.5) were in the mid-range (Table 4). Overall Shannon evenness (J = 0.5) was low 

compared with other hosts, due to the dominant role of a few trematode species. 

Individual component communities in G. albus (n = 10) comprised 1 – 6 trematode species and 

were generally species rich (mean S = 3.4) and were dominated by 1 – 2 species (prevalence ≥ 10%). In 

total, three species, Australapatemon burti, Hysteromorpha triloba and Paryphostomum sp., were 

considered dominant in one or more of the component communities; these species were present in 

the majority of the G. albus samples (10, 5 and 8 times, respectively). 

Of the 10 different species found in G. albus, five belong the fish-eating guild that uses fish and 

fish-eating birds as second intermediate and definitive host, four species each utilise anatid birds, and 

one species uses storks (Ciconia sp.) as definitive hosts (Table 3).  

Trematode assemblages in Segmentina nititda 

The majority of S. nititda (180 out of 195) originated from the same locality at Hennetalsperre where 

G. albus was also abundant; a further few individual snails were found in Baldeneysee (15). Trematode 

prevalence in S. nititda was by far the lowest of all snail hosts (2.6%; 5 out of 195) and all infections 

were recorded in Hennetalsperre (Table 2). In total S. nitida harboured three different trematode 

species belonging to two families (Table 3). Overall Shannon diversity was low (H = 1.0) but average 

taxonomic diversity was rather high (Δ = 72.2) and Shannon evenness was the highest recorded in all 

assemblages (J = 1.0); the Berger Parker index was median (d = 0.5) (Table 4). However, due to the low 

number of infections, these diversity indices are not very conclusive. 

Component communities in S. nitida (n = 2) comprised only one trematode species each. The 

two species recorded in the component communities showed low prevalence. Due to the low number 

of distinctive S. nititda communities with only one infection each, they were excluded from the 

component community analysis.  

The three species found in S. nitida utilize either anatid birds as final host (2 species), or fish 

and fish-eating birds as second intermediate and definitive host (1 species; Table 3). 
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Table 4 Trematode diversity in the six snail species. Abbreviations: Ba, Baldeneysee; He, Hengsteysee; So, Sorpetalsperre; Hn, Hennetalsperre; Ve, Versetalsperre. 

Radix auricularia Radix peregra Lymnaea stagnalis Stagnicola palustris Gyraulus albus Segmentina nitida 

Overall S 23 6 4 9 10 3 
NINF 596 25 35 87 273 4 
Shannon H 2.3 1.5 0.8 1.2 1.3 1.0 
Shannon evenness J  0.7 0.9 0.6 0.5 0.5 1.0 
Berger-Parker dominance d 0.3 0.4 0.8 0.6 0.5 0.5 
Average taxonomic diversity Δ 79.8 63.2 36.6 55.5 54.0 72.2 

Lake Ba S 10 3 3 3 
NINF 61 8 6 8 
Shannon H 1.2 0.9 1.0 0.9 
Shannon evenness J  0.5 0.8 0.9 0.8 
Berger-Parker dominance d 0.7 0.6 0.5 0.6 
Average taxonomic diversity Δ 45.9 48.8 68.9 60.7 

He S 19 6 3 9 2 
NINF 300 18 27 80 2 
Shannon H 2.2 1.5 0.6 1.0 0.7 
Shannon evenness J  0.7 0.9 0.6 0.5 1 
Berger-Parker dominance d 0.3 0.3 0.8 0.7 0.5 
Average taxonomic diversity Δ 80.7 63.6 33.1 49.0 100.00 

So S 13 1* 
NINF 157 1* 
Shannon H 2.0 -* 
Shannon evenness J  0.8 -* 
Berger-Parker dominance d 0.3 - * 
Average taxonomic diversity Δ 77.6 -* 

Hn S 10 8 3 
NINF 78 262 4 
Shannon H 2.1 1.2 1.0 
Shannon evenness J  0.9 0.6 2.8 
Berger-Parker dominance d 0.2 0.6 0.5 
Average taxonomic diversity Δ 78.9 52.0 72.2 

Ve S 2 1† 
NINF 7 1† 
Shannon H 0.6 -† 
Shannon evenness J  0.9 -† 
Berger-Parker dominance d 0.7 -† 
Average taxonomic diversity Δ 47.6 -† 

*Only one infection in sample
† Sample size small (< 14 snails), only one infection in sample 
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Component community structure  

For the analysis of individual trematode component communities only distinct samples comprising 

more than 14 snails were used, resulting in a total of 75 distinct samples with trematode communities 

(48 samples of R. auricularia, 10 samples of G. albus, 7 samples of S. palustris, 6 samples of L. stagnalis 

and 4 samples of R. peregra).  

The non-metric MDS ordination revealed differences in composition and structure of 

trematode component communities. Although the ANOSIM test revealed a significant difference for 

the factor ‘reservoir’ (but with a low R = 0.189, p = 0.001), no overall structure for this factor was visible 

in the MDS ordination (Figure 4A, stress value 0.1), and the differences are rather due to the two 

isolated groups of samples from Hennetalsperre and Hengsteysee. A clear structuring pattern became 

obvious for the factor ‘snail host’ that revealed clear differences in composition and structure of 

trematode communities in Radix auricularia, Radix peregra, Stagnicola palustris, Lymnaea stagnalis 

and Gyraulus albus (Figure 4B, stress value 0.1). This was supported by the results of the ANOSIM with 

a high R = 0.637 (p = 0.001). The distinctive groups in Hennetalsperre and Hengsteysee are clearly due 

to the different snail hosts of these communities. 

Temporal and spatial variation of trematode communities in Radix auricularia 

Spearman’s rank order correlations of Radix auricularia communities showed significant positive 

correlations between sample size and overall prevalence (rs = 0.322, p = 0.02) as well as species 

richness (rs = 0.473, p = 0.0003), indicating more species rich and prevalent trematode communities in 

localities with abundant R. auricularia populations. Mean snail size in the individual host populations 

was positively correlated with overall prevalence (rs = 0.338, p = 0.01) but not with species richness (rs 

= 0.23, p = 0.1), revealing higher infections levels but not more parasite species in populations with 

larger, i.e. older snails. 

Correlations showed that overall prevalence is probably affected by the size of snails (mean 

length tested). In order to avoid this effects while evaluating possible differences in overall prevalence 

between lakes, seasons and years to examine spatial and temporal variation in overall prevalence, we 

performed sets of ANCOVAs using ‘season’, ‘lake’ and ‘year’ as factors and ‘mean snail length’ as a 

covariate to control for the effect of snail size. After the effect of snail size was accounted for, no 

significant differences in overall prevalence was detected between lakes, seasons and years, indicating 

spatially and temporarily stable communities in R. auricularia in the Ruhr ecosystem. 
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Figure 4 Two-dimensional MDS ordination plot of 75 trematode component communities based on the similarity 
in trematode component community structure (Bray-Curtis index). A: Ordination plot for the factor ‘reservoir’; 
B: Ordination plot for the factor ‘snail host’ (stress value = 0.1). 
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Discussion 

The 5,347 snails belonging to six species revealed a species-rich and diverse trematode fauna in the 

Ruhr reservoirs with a total of 37 different trematode species belonging to nine families. This is 

considerably higher than the trematode species richness in snail intermediate hosts described from 

most other well-studied ecosystems. In their extensive study of the parasite contribution to the 

biomass in an estuarine saltmarsh system, Kuris and colleagues (2008) examined 14,000 snails 

belonging to 11 species and found 18 recognised trematode ‘castrator’ species. In studies from the 

same ecosystem, the most abundant snail species in the saltmarshes, the California horn snail 

Cerithidea californica (see Huspeni & Lafferty 2004), showed high trematode prevalence (30.1%, 926 

out of 3,079) and revealed a species-rich trematode fauna with 16 species (Hechinger et al. 2007). 

Altogether, this provides a comparable situation to our system, with respect to one snail host species, 

in our case Radix auricularia, harbouring the most species-rich trematode assemblages. However, the 

species richness of the trematode assemblage in R. auricularia (23 species), as well as the overall 

species richness (37) in the Ruhr reservoir system are much higher than the 16 species in C. californica 

and the total of 18 species described in the extensive sampling from the Californian estuary system, 

despite the much larger number of potential host snail species studied in the latter. Thieltges et al. 

(2006) studied the macroparasite community in molluscs in the Wadden Sea and found 26 trematode 

species from 10 gastropod and bivalve host species, again a much lower species richness than in the 

Ruhr reservoirs, despite the wider host range. Likewise, Lagrue & Poulin (2015) investigated the entire 

community of free-living and parasitic metazoans from the littoral zone of four lakes in New Zealand, 

yet only 11 trematode species that utilize a single snail species, Potamopyrgus antipodarum, as first 

intermediate host were found. An extensive study of freshwater ponds in North America investigated 

10,821 snails of one species, Helisoma trivolis (Richgels et al. 2013), and revealed six trematode groups 

that were, however, not identified beyond the genus level, making a precise diversity assessment 

impossible, but staying under the diversity found in the Ruhr system. 

Comparable studies from European freshwaters are mostly from small inland freshwaters. 

Faltýnková  & Haas (2006) sampled 6,403 molluscs of 28 species, of which 15 harboured a total of 31 

trematode species. However, these data are pooled across a variety of different habitats all over 

Southeast Germany including rivers, ponds and lakes, and include a much wider intermediate snail 

host range. Similarly, ponds in the Czech Republic harboured 28 larval trematode species from 12 

species of molluscs (Faltýnková 2005). Most comparably to our study, six snail species (10,581 snails) 

studied from Polish reservoirs were shown to be parasitized by 25 species of digeneans, most of which 

were recorded from L. stagnalis (Żbikowska 2007). Likewise, the study by Loy & Haas (2001) describes 

a much more species-rich trematode fauna for L. stagnalis (18 species) than found in the same host in 

this study in the Ruhr area (4 species). However, the study summarizes data from 43,000 snails 
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sampled from 174 ponds over a period of 20 years, making a direct comparison to local host-parasite 

interactions not feasible. Community-based approaches from fishponds in the Czech Republic revealed 

a similarly diverse trematode fauna with 14 species found in 7,600 L. stagnalis (Soldánová et al. 2012). 

A first study from the Ruhr area (Soldánová et al. 2010) found L. stagnalis to be infected with six 

species, three of which we did not encounter in our sampling, resulting in a total of seven trematode 

species described from this host in the Ruhr region so far. This is still considerably less than in the 

above mentioned studies and the 23 trematode species described in this host from Central Europe 

(Brown et al. 2011 and references therein).  

Radix auricularia on the other hand harboured the most species-rich and diverse trematode 

fauna of all studied hosts in the Ruhr system (Figure 3), and by far outnumbers the 12 species initially 

found in this system (Soldánová et al. 2010). This high species richness is in stark contrast to what is 

described from this snail species in the literature. Initial compilations of the cercariae species recorded 

in lymnaeid snails counted six species in R. auricularia (Bargues et al. 2001 and references therein) and 

sampling data from Southeast Germany (4 trematode species, Faltýnková & Haas 2006), the Czech 

Republic (3 species, Faltýnková 2005) and Poland (1 species, Żbikowska 2007) supported the low 

number of trematode species in this host. The highest species richness recorded are eleven species of 

cercariae recovered from R. auricularia in a gravel pit in the United Kingdom (Adam & Lewis 1993). 

The remarkably high trematode species richness in R. auricularia in the Ruhr system supports 

the assumption that R. auricularia plays the most important role in the life cycle in large reservoirs and 

lakes, in contrast to the more dominant role of L. stagnalis in small pond systems (see Soldánová et al. 

2010 and reference therein). The only snail species that was equally abundant in the Ruhr was G. albus, 

but the trematode richness and diversity were far lower in this snail host (see Figure 2; Figure 3). G. 

albus was only abundant at one locality where it dominated the snail community. The other planorbid 

snail species, S. nitida, occurred at the same locality but was less abundant and harboured a less 

species-rich and diverse trematode assemblage, although with a higher evenness and higher 

taxonomic distinctness, most likely to the limited number of samples from this host (see Table 3). 

Interestingly, an overall survey of larval trematodes of planorbid snails showed S. nitida to be more 

abundant and with higher trematode prevalence (6.2%) compared to G. albus (0.9%) (Faltýnková et al. 

2008). Since these data are from small ponds in Germany and the Czech Republic, it is well possible 

that the same reversed role that applies to R. auricularia and L. stagnalis is true for small planorbid 

snails in large reservoir systems. The data from the Ruhr, therefore, suggests a characteristic host-

parasite dynamics in such large reservoir systems. 

Host population density and host body size have been identified as two universal determinants 

of parasite species richness in hosts, since dense host populations are more likely to be colonised by 

parasite species and large bodied hosts provide greater space and other resources to the parasites 
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(Kamiya et al. 2014 and references therein). The positive correlations between trematode species 

richness and sample size (reflecting host population density) confirmed this for both the overall host 

level, as well as at the component community level for R. auricularia. However, for the studied host 

species in the Ruhr reservoirs, trematode species richness was not correlated with the overall size of 

the snail host species, since some small-bodied hosts harboured considerably more species-rich 

trematode assemblages than larger bodied hosts, i.e. the trematode assemblage in G. albus was more 

species-rich than in S. palustris, which in turn harboured more trematode species than R. peregra; and 

R. auricularia harboured almost six times the species richness of the larger L. stagnalis. Within the 

component communities of R. auricularia, significant positive correlations of both sample size and 

mean snail size with prevalence were revealed, indicating that snail populations with larger, older host 

individuals harbour more prevalent trematode communities, most likely due to longer potential 

recruitment period, and that abundant local populations of R. auricularia offer ideal conditions for the 

asexual reproduction of digenean trematodes. However, after the effect of snail size was accounted 

for, no significant differences in overall prevalence was detected between reservoirs, seasons and 

years, indicating spatially and temporarily stable trematode communities in R. auricularia. 

The two-dimensional MDS ordination plot of 75 trematode component communities 

supported this and did not show a conclusive structure of the communities in different reservoirs 

(Figure 4A), although the ANOSIM test revealed a significant difference for the factor ‘reservoir’ (but 

with a low R = 0.189, p = 0.001). These differences are rather due to the two isolated groups of samples 

from Hennetalsperre and Hengsteysee. A clear structure in the trematode communities was revealed 

for the factor ‘snail host’ and clearly supported by the results of the ANOSIM with a high R = 0.637 (p 

= 0.001). It is, therefore, the structure of snail host populations in the waterbodies that shape the 

trematode community structure.  

Almost all of the trematode species found in R. auricularia utilize birds as final hosts, mainly 

either anatid or fish-eating birds that overwinter in the Ruhr area, due to the abundant food resources 

available at the reservoirs. This continuous presence of final bird hosts that can migrate among the 

reservoirs and the presence of abundant snail host populations can explain the seasonal and spatial 

homogeneity in this system. Interestingly, this contrasts with the variable trematode communities in 

L. stagnalis described from smaller waterbodies in Central Europe (Soldánová et al. 2011). Altogether, 

the results highlight the important and integral role of digenean trematodes in the Ruhr reservoir 

system. From the parasites’ perspective, the patchy snail populations represent habitable islands and 

within the reservoirs it is the availability of hosts in the ecosystem that shapes the distribution and 

structure of trematode communities. 

Having identified the diversity and structure of trematode assemblages and communities in 

the Ruhr reservoirs, we may ask what information about the ecosystem this can reveal. The majority 
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of the 37 trematode species identified in the six snail intermediate host species use birds as definitive 

hosts to complete their life cycle, only two species require cyprinids and one species amphibians. Most 

of the species utilizing birds either fall within the large guild of parasites that use fish and fish-eating 

birds (mainly cormorants, gulls or grebes), or belong to the generalist guild parasitizing waterfowl 

(mostly anatids) as final hosts. The remaining species use either birds of the families Rallidae (rails) or 

Ciconiidae (storks), or a wider host spectrum of various birds or mammals. 

Altogether, this information on the life cycle and required host species allows the 

reconstruction of the transmission pathways the individual parasite species take through the 

ecosystem (Figure 5). Since the infections of snails as intermediate hosts require final hosts to release 

eggs into the ecosystem, the transmission pathways provide accurate information on the presence of 

these hosts in the ecosystem. Especially in the case of highly mobile birds that can migrate some 

distances and may not be present at the sampling site at all times, the occurrence of trematode 

infections in snails can provide evidence of the local host distribution. Trematode infections, therefore, 

provide an integral of past final host presence at a locality (Hudson et al. 2006). This can be especially 

useful in the case of rare species, such as storks, where trematode infections in snails may be used to 

map host distribution, e.g. with regard to conservation biology. Such examples highlight practical 

applications where trematodes may serve as bionindicators of free-living diversity and species 

distribution (Hechinger et al. 2007).  

Furthermore, all transmission strategies, except for the direct infection of final hosts by the 

cercariae (e.g. in bird schistosomes), involve trophic transmission to the final host and thus provide 

information on trophic interactions and energy flow within the ecosystem. This connectivity exposes 

to what extent intra-host stages of digenean trematodes are embedded in larger food webs. Moreover, 

trematode infections can have drastic effects on second intermediate hosts and lead to behavioural 

changes that make parasitized prey easier for predators to capture (Lafferty & Morris 1996). Therefore, 

more than mere ‘blind passengers’, parasites often directly or indirectly manipulate their hosts 

(Thomas et al. 2005) and thereby actively shape the structure of food webs through which they are 

transmitted, thus regulating host population dynamics and influencing the community structure of 

free-living species (Marcogliese 2004). The large percentage of trophically transmitted parasite species 

underlines their central structuring role in the food webs of the Ruhr reservoir ecosystem. 
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Figure 5 Scheme of transmission pathways of individual trematode species found in the snail populations in the 
five studied reservoirs. The size of the circles at the bottom is proportional to the size of the overall snail 
populations in each reservoir (pooled across snail species, sampling sites and years), boxes in the middle 
represent 2nd intermediate hosts, boxes at the top final host groups. The lines indicate trematode species utilising 
individual transmission pathways, thickness of the lines represents the number of trematode species utilising 
each transmission pathway. Abbreviations: BA, Baldeneysee; HE, Hengsteysee; SO, Sorpetalsperre; HN, 
Hennetalsperre; VE, Versetalsperre. 

 

Environmental changes, such as local anthropogenic habitat alterations or long term climate changes 

and global warming will have severe effects on whole ecosystems, with many often unpredictable 

consequences for the free-living and parasitic species therein. Since parasites with complex life cycles 

may serve as early warning indicators of ecological changes to ecosystem health or environmental 

conditions (Marcogliese 2004 and references therein), and especially trematode diversity indices have 

been shown the provide prospective and valuable bionindicators (Shea et al. 2012), this dataset from 

the Ruhr reservoirs may serve as a baseline to assess and interpret possible future changes in this 

ecosystems. Furthermore, together with other well-studied host-parasite assemblages from other 

ecosystems, this work shall help to facilitate our understanding of parasite distribution and diversity, 

and shall allow us to better understand (and maybe foresee) how environmental changes will affect 

parasites and their hosts on a larger scale. Therefore, while the cumulative curve of known parasite 

species is nowhere near levelling off and we may not (yet) be able to precisely approximate the total 

number of parasite species in the world (see Poulin 2014), we can do so at a local ecosystem level to 

better understand the role and distribution of parasites. Hidden diversity is not restricted to the tropics 

and the deep-sea but might be sitting right on our doorstep, and it can provide valuable information 

on our environment.
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9. General discussion

As outlined in the introduction, parasites have recently been recognised as important and integral 

elements of ecosystems in which they play crucial roles. However, while some very well-studied 

systems have provided insights into the multifaceted roles of parasites, data from freshwater reservoir 

systems in Europe is lacking, despite the vital function of such man-made waterbodies for human 

usage, e.g. as drinking water supplies, and as ecosystems that support biodiversity. By zooming in on 

various relevant aspects of trematode infections in snails, namely taxonomy, biomass productivity, 

human health relevance and their contribution to biodiversity and structure in ecosystems, the 

individual studies of this thesis illustrate to what extent digenean trematodes are embedded within 

the interconnected reservoir system of the Ruhr area. This holistic approach provides a detailed and 

comprehensive overview of the complexity and centrality of trematodes in typical reservoir systems in 

Europe. In the following, I will discuss the central findings of the individual studies and provide a brief 

outlook at further research questions and possible follow-up studies resulting from this work. 

The morphological species identification of trematodes is often problematic, especially due to 

the presence of groups with morphologically similar cryptic species. The incorporation of molecular 

data has allowed unambiguous species identification and the re-evaluation of morphological 

identification criteria and thus considerably advanced our understanding of trematode taxonomy. 

Furthermore, molecular tools provide effective means of inferring complex trematode life cycles by 

matching sequences from different developmental stages that were sampled at different times and/or 

locations (Criscione et al. 2005, Pérez-Ponce de León & Nadler 2010). In order to identify the diversity 

of trematodes in the Ruhr, integrative approaches that combine both morphological and molecular 

methods were used to approach taxonomically questionable groups.  

These combined morphological and DNA-based approaches allowed the delineation of two 

cryptic species of the ‘revolutum’ group of the genus Echinostoma from larval stages found in 

R. auricularia, R. peregra and S. palustris (see Georgieva et al. 2013b, Chapter I). The inclusion of 

samples from Iceland showed that both species lineages were present in central and northern Europe, 

indicating a wide geographical distribution of the parasites with their final bird hosts. Furthermore, the 

analysis of comparable molecular data from North America provided evidence that these isolates 

previously identified as E. revolutum represent yet another cryptic species of the ‘revolutum’ species 

complex and the suggested cosmopolitan distribution of this species (Detwiler et al. 2010) may actually 

result from overlooked cryptic variation within this genus. The results from this study highlight the 

hidden diversity in this well-studied group of parasites and the need for further integrative taxonomic 
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studies to advance our understanding of the complex relationships within the ‘revolutum’ group of 

Echinostoma. 

The abundant Gyraulus albus population found at one locality in Hennetalsperre harboured 

larval trematodes of the genus Petasiger that provided another taxonomically uncertain group, which 

required an in-depth taxonomical investigation (see Selbach et al. 2014, Chapter I). Comparative 

molecular and morphological analyses revealed the distinctive status of three species of Petasiger from 

G. albus that occurred in sympatry at one locality in Hennetalsperre. This highlights the high diversity 

of Petasiger spp. in one host species even at small spatial scales, whilst at the same time showing the 

suitability of the Ruhr reservoirs as a habitat for trematodes. Overall, the high diversity of 

Petasiger spp. at such a small scale suggests a much higher number of species in this genus than the 

seven species that have been recorded or described in Europe so far (see Faltýnková et al. 2008b). 

A third group that required close attention was the genus Diplostomum, a major taxonomic 

group of trematodes that use lymnaeid snails, fish and fish-eating birds to complete their life cycle, 

and constitute important fish pathogens, especially in aquaculture (Overstreet & Curran 2004, Blasco-

Costa et al. 2014). Recent molecular studies have discovered a much higher diversity within this group 

than previously expected in samples from North America (Locke et al. 2010) and Europe (Blasco-Costa 

et al. 2014, Faltýnková et al. 2014, Pérez-del-Olmo et al. 2014), including the Ruhr area (Georgieva et 

al. 2013a). The study from the Ruhr reservoirs by Georgieva and colleagues (2013a) showed the 

presence of six species, including three different lineages in the ‘D. mergi’ species complex. However, 

since most of the samples from this study were from fish intermediate hosts and only few isolates from 

snails were available, the samples from lymnaeid snails obtained during this dissertation provided a 

chance to thoroughly assess the diversity of Diplostomum spp. from their snail intermediate hosts 

(R. auricularia, R. peregra, L. stagnalis and S. palustris) in this region for the first time. Altogether, seven 

different species of Diplostomum were found in the snail populations from the Ruhr reservoirs, three 

named species, D. spathaceum, D. pseudospathaceum and D. parviventosum, and four species-level 

lineages, ‘Diplostomum sp. Clade Q’ and ‘D. mergi’ Lineages 2-4 (see Selbach et al. 2015, Chapter I). 

This study is the first in-depth integrative approach of molecular and morphological methods to 

Diplostomum diversity in natural snail populations in Central Europe and provides the first 

description of molecularly identified cercariae of D. spathaceum, as well as providing evidence that 

the cercariae of ‘D. mergi’ Lineage 1 of Georgieva et al. (2013a) are actually D. parviventosum. These 

findings therefore advance our knowledge of the complicated taxonomic situation of Diplostomum 

spp. in Europe and the molecular and morphological data will serve as a baseline for future studies of 

the diversity of this important group of parasites. Remarkably, L. stagnalis and S. palustris harboured 

only one species, D. pseudospathaceum, while R. auricularia populations revealed a highly diverse 

picture with six different species of Diplostomum. This provides a promising case to study the co-
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evolutionary development of host-parasite specificity, especially since these lymnaeid snails share the 

same habitats and are widely distributed. Interestingly, with its Holarctic distribution, L. stagnalis has 

a wider geographical range than the Palearctic R. auricularia (Glöer 2002), and L. stagnalis is a much 

larger host than R. auricularia. Both host body size and host geographical range have been identified 

as key determinants of parasite species richness (Kamiya et al. 2014) and it remains to be investigated 

why the diversity of Diplostomum in these hosts presents such contrary situation.  

Altogether, the taxonomical studies of these three trematode genera reveal a remarkably high 

diversity of these parasites in the Ruhr reservoir system. Future findings of Diplostomum spp., 

Petasiger spp. or Echinostoma spp. isolates from their respective second intermediate or definitive 

hosts would be desirable and could be matched via the molecular information provided in the 

publications to infer the complete parasite life cycles and fully describe these species. In order to be 

able to use trematodes as bioindicators of free-living diversity and to assess and evaluate habitat 

alterations and ecosystems changes (Lafferty 1997, Vidal-Martínez et al. 2010, Nachev & Sures 2015), 

we need to know which species are present and able to complete their life cycles in an ecosystem. A 

clear species identification and knowledge about the parasites’ biology is a central requirement for the 

use of trematodes as bioindicators. The individual studies presented in Chapter I therefore provide the 

foundation for the subsequent ecological study of trematode diversity and distribution in the Ruhr 

reservoirs. 

However, the knowledge of the sheer diversity of trematodes in snails does not yet allow us to 

assess their functional role within an ecosystem. Parasites with complex life cycles such as trematodes 

often include numerous asexually reproduced dispersal stages in order to facilitate transmission 

success to the next host. Therefore, despite their small size, the high production of free-living larval 

stages of trematodes in snails has been calculated to amount to a significant contribution to an 

ecosystem’s biomass (Kuris et al. 2008, Thieltges et al. 2008, Preston et al. 2013, Lambden & Johnson 

2013). However, no studies on the productivity and biomass contribution of trematode species 

commonly found in European freshwater systems were available. 

In order to assess the contribution of trematode cercariae to the biomass in European 

freshwaters, cercarial emergence of the model organism Trichobilharzia szidati from naturally infected 

Lymnaea stagnalis was studied in a set of laboratory experiments (Soldánová et al. submitted, Chapter 

II). Furthermore, since bird schistosomes of the genus Trichobilharzia, which utilize freshwater snails 

and waterfowl in their life cycle, are the most important agents of swimmer’s itch in humans in Europe 

(Soldánová et al. 2013, see Appendix II) and North America (Brant & Loker 2009, 2013), temporal 

emission patterns were observed to allow a better understanding of the parasites’ ecological relevance 

and potential epidemiological consequences. The study revealed an average daily emergence rate of 

2,621 cercariae per snail, but emissions could reach peaks of up to 29,560 cercariae per snail and day, 
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a magnitude that has never been reported before for bird schistosomes. Based on the mean emission 

rates and cercarial measurements, the cumulative biomass contribution of T. szidati larvae could be 

assessed. Calculated for an individual snail’s lifetime this summed up to 4.8 g, a mass equivalent to or 

even exceeding the snail‘s own body mass. This illustrates the ecological importance of trematodes at 

the host-parasite level, since the parasites relocate a substantial amount of the host’s resources into 

cercarial production. On an ecosystem level, the results show how a single trematode species 

contributes a considerable amount of cercarial mass to an aquatic ecosystem during the parasite’s 

active period in the summer months of a year. While annual ecosystem level biomass contributions of 

4.6 tons of cercariae were calculated for small eutrophic ponds where T. szidati prevalence of more 

than 40% have been reported (Soldánová et al. 2011), prevalence of Trichobilharzia was typically lower 

in the Ruhr system. However, bird schistosomes only constitute a small fraction of the species-rich and 

diverse trematode fauna in snails in the Ruhr reservoirs (see Chapter IV) and the productivity of other 

trematode species can even be significantly higher than in bird schistosomes, e.g. in Diplostomum spp. 

with productions of up to 60,000 cercariae per snail and day (Lyholt & Buchmann 1996, Karvonen et 

al. 2004), and well beyond up to 500,000 cercariae per snail and day for some species (Haas 2003). It 

is therefore safe to assume that the overall cercarial biomass emitted into the Ruhr reservoirs is 

comparable to the impressive numbers recently calculated for marine (Thieltges et al. 2008), estuary 

(Kuris et al. 2008) and North American freshwater ecosystems (Preston et al. 2013). The results of this 

study demonstrate how trematodes, despite their small individual size, contribute to the biotic 

productivity in the Ruhr freshwater system. 

With respect to human infection risks, the occurrence of bird schistosomes in Baldeneysee 

(Lake Baldeney) was studied to evaluate the suitability of the Ruhr reservoirs as potential bathing 

waters (Selbach et al. 2015, Chapter III). Since swimmer’s itch is considered a re-emerging disease in 

Europe (Soldánová et al. 2013) and individual cases of swimmer’s itch have been reported from the 

Ruhr river system in the past (AWWR & Ruhrverband 2008), we assessed the disease risk factors in the 

Ruhr area based on the occurrence, distribution and biology of bird schistosomes. Two bird 

schistosome species, Trichobilharzia franki and T. szidati, could be detected at several sampling sites 

in Baldeneysee where abundant lymnaeid snail populations were present. Together with samples 

obtained during a preliminary study at the Ruhr reservoirs (Soldánová et al. 2010), the combined data 

provides a coherent overview of the distribution of bird schistosomes in the waterbody and allows a 

thorough risk assessment of human infection based on the parasites’ and hosts’ biology. Although 

Trichobilharzia spp. showed low prevalence at the sampling sites in Baldeneysee (0.6 – 3%), this is 

typical for bird schistosomes and rather common in areas where swimmer’s itch occurs in humans (Loy 

& Haas 2001, Żbikowska 2004). Despite these low prevalence values, human infections are well 

possible due to the high numbers of cercariae that can be released from individual infected snail hosts 
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in short periods of time, as we were able to show in the emission studies (see Soldánová et al. 

submitted, Chapter II). Given that a single infected L. stagnalis is able to release nearly 30,000 cercariae 

per day under favourable conditions, a few snails with Trichobilharzia infections can create potential 

infection hot spots for humans, especially in shallow areas where cercariae may become densely 

concentrated. Besides the spatial localisation of the cercariae, temporal release patterns play an 

important role for the risk of an infection, as most infections of swimmer’s itch usually occur in the 

morning hours (Lindblade 1998, Verbrugge et al. 2004). Accordingly, main cercarial emission peaks in 

our laboratory experiments (Chapter II) were observed after the onset of illumination, indicating a 

synchronized emission of cercariae with the main activities of the anatid definitive hosts. However, 

under favourable lightning conditions, high cercarial emission was shown to be possible at different 

times throughout the day, demonstrating that infections can occur at any time of day, especially since 

cercariae remain infective for several hours after being released into the environment. Altogether, the 

assessment of the Ruhr, by way of example of Lake Baldeney, revealed that Trichobilharzia spp. present 

a potential risk of human infections in these waterbodies. It therefore seems advisable to 

communicate such potential risks of swimming in surface waters to the public and provide adequate 

and understandable information at swimming sites, e.g. information boards on swimmer’s itch. Such 

a raised awareness will not only help to better identify cases and thus facilitate our understanding of 

the disease’s occurrence, but may also allow a factual discussion of the problem free of exaggerated 

alarmism (Soldánová et al. 2013). After all, bird schistosomes, along with the other trematode species, 

are integral and natural parts of the ecosystem and the risk of swimmer’s itch comes with the use of 

freshwater lakes as bathing waters. 

Having looked at the high taxonomic complexity, the fundamental contribution of trematode 

cercariae to biotic productivity, both on the individual host and the ecosystem level, as well as 

discussing the important role of some species as human pathogens, the last study of this thesis 

(Chapter IV) provides an overview of the overall diversity and structure of trematode assemblages and 

communities in the Ruhr reservoirs. The 37 different trematode species found in lymnaeid and 

planorbid snails reveal the important role of these snails as first intermediate hosts for digenean 

trematodes in the Ruhr reservoir system. Altogether the diversity in the Ruhr reservoir system is 

considerably higher than the trematode species richness in snail intermediate hosts described from 

most other well-studied ecosystems (e.g. Faltýnková 2005, Faltynkova & Haas 2006, Thieltges et al. 

2006, Żbikowska 2007, Kuris et al. 2008, Lagrue & Poulin 2015). In the Ruhr reservoirs Radix auricularia 

harbours by far the most species-rich and diverse trematode fauna of all studied hosts, which supports 

the initial assumption that R. auricularia plays the most important role in the life cycle of trematodes 

in large reservoirs and lakes, in contrast to the more dominant role of L. stagnalis in small pond systems 

(Soldánová et al. 2010 and reference therein). Remarkably, the same seems to apply to planorbid 
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species in the large Ruhr reservoirs, where G. albus harbours more diverse and prevalent trematode 

communities compared to S. nitida, which contrasts with the situation observed for these two species 

in small ponds (Faltýnková et al. 2008a). The analysis of the data from the Ruhr, therefore, suggests a 

characteristic host-parasite dynamics in large reservoir systems. 

The majority of the trematode species found in snail intermediate hosts in the Ruhr requires 

birds as definitive hosts to complete their life cycle, with most of the species either falling within a 

large guild of parasites that use fish and fish-eating birds (mainly cormorants, gulls or grebes), or 

belonging to a generalist guild parasitizing waterfowl (mostly anatids) as final hosts. Based on the 

knowledge of the required intermediate and final hosts, transmission strategies of the individual 

parasite species could be analysed. Except for the direct infection of final hosts by the cercariae of bird 

schistosomes, all transmission strategies involve trophic transmission of the parasites to their 

respective final host, which provides information on trophic interactions and energy flow in the 

ecosystem. Furthermore, since trematodes often directly or indirectly alter their host’s behaviour in 

order to facilitate transmission success to the next host (see e.g. Lafferty & Morris 1996), they actively 

shape the structure of food webs through which they are transmitted. In addition to these life cycle 

stages within the hosts, the free living parasite larvae contribute significantly to the energy flow in 

aquatic systems, since the majority of produced cercariae are not able to successfully infect a suitable 

target host and end up as food for predators  or contribute to the ecosystem’s detritus (Johnson et al. 

2010, Morley 2012). This illustrates how a single trematode species acts at many different levels in 

food webs at the same time. Therefore, the rich and abundant trematode fauna in the Ruhr 

freshwaters plays a highly complex role in the food web connectivity in the Ruhr reservoirs. 

Based on the novel insights gained from the individual studies of this thesis, the important and 

central role of digenean trematodes in reservoirs becomes obvious (see Figure 4). Furthermore, we 

can obtain valuable information on inter-specific interactions in these systems by looking at the 

parasites’ life cycles. However, does that imply that such an ecosystem is a healthy one? Being ‘healthy’ 

is a rather vague conception and often equated with being pristine or free of illness (Hudson 2006). 

Accordingly, one would certainly consider an ecosystem with such a rich and prevalent parasite fauna 

far from being healthy, and this study has not even included parasitic nematodes or cestodes. The 

health of an ecosystem, however, is not defined by the presence or absence of parasite species, but 

rather by the performance and sustainability of the whole system, i.e. its ability to be resilient and to 

maintain its organization (structure and biodiversity) and vigor (function and productivity) over time 

(Costanza & Mageau 1999). The studies of this thesis show how digenean trematodes significantly 

contribute to the biodiversity, food web connectivity and productivity in the Ruhr reservoir. Therefore, 

far from diminishing the ecosystem’s health, the rich trematode fauna in the Ruhr contributes to key 

aspects that make this ecosystem more diverse, productive and stable, and thus healthy. 
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Figure 4 Overview of the main aspects of trematode infections in snail populations studied in the Ruhr 
reservoir system 

The selected aspects of trematodes in the Ruhr river system studied in the context of this thesis give a 

broad and comprehensive overview of these parasites in a freshwater ecosystem that is typical for 

freshwater reservoirs in Europe. Of course, a thesis can never fully cover all aspects of a given topic, 

especially when it is such a complex one as the role of host-parasite systems in an ecosystem, and for 

every question we solve and new insight we gain, new interesting questions arise that are worth being 

studied. As discussed above, the dominant role of R. auricularia for such a diverse and species-rich 

trematode fauna in large reservoir freshwaters provides an interesting model system to study host-

parasite co-evolution and interaction, comparable to L. stagnalis as a model organism in smaller water 

bodies. Furthermore, the dataset of this thesis may provide a basis to assess how parasite communities 

will change over time, which may reveal valuable information about the dynamics of the ecosystem, 

especially in the light of environmental changes, e.g. whether the food web structure in the system 

will remain stable.  

In conclusion I may ask, what have the studies of this dissertation shown and contributed? 

When presenting results of this work, I have often used the, maybe somewhat obvious but certainly 

illustrative, analogy of an iceberg to show the hidden but fundamental nature of parasites in 
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ecosystems. On the surface, parasites are usually not directly visible in an ecosystem, while their hosts 

are naturally regarded to constitute the biota that inhabit an ecosystem. For this reason parasites have 

traditionally been omitted from the majority of ecological studies (Poulin 2007), as discussed in the 

introduction. This is illusive however, since it only shows the tip of the iceberg, i.e. a small fraction of 

the whole ecosystem. From the parasites’ perspective the hosts themselves represent patchy habitats 

that offer resources and shelter. Beneath the surface, parasites are deeply embedded in and active 

elements of the ecological processes that shape and structure ecological communities, energy flow 

and the biodiversity of complex ecosystems. Therefore, rather than proverbially opening a can of 

worms that creates irresolvable problems and confusion, the individual studies of this thesis shall 

advance our understanding of the central and complex roles of trematodes in the Ruhr reservoir 

system. Coming full circle to the initially discussed dichotomy of classical ecology and parasitology, I 

hope this thesis can contribute to our overall understanding of the complexity of ecosystems. After 

all, regardless of the different labels, e.g. ecology, parasitology, evolutionary biology etc., the 

fundamental and unifying purpose and aim of science are simply to better understand the complex 

and fascinating world that surrounds us and that we live in. 
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Bithynia tentaculata 

body width 

cercaria 

cytochrome c oxidase subunit 1 

daily output experiment in the climate chamber in July 

daily output experiment in the laboratory in July 

deoxyribonucleic acid 

deoxynucleotide 

furca length 

general linear model 

Hengsteysee 

Hasegawa-Kishino-Yano model 

Hennetalsperre 

internal transcribed spacer cluster  

ITS1-5.8S-ITS2 see ITS 

L. Linnaeus 

LS Lymnaea stagnalis 

M metacercariae 

MCMC Markov chain Monte Carlo 
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ML maximum likelihood 

nad1 mitochondrial gene nicotinamide adenine dinucleotide dehydrogenase subunit 1 

NJ neighbour-joining 

PC Planorbarius corneus 

PCR polymerase chain reaction 

PF Physa fontinalis 

PJ-C peak output experiment in the climate chamber in July 

PJ-L peak output experiment in the laboratory in July 

PS-C peak output experiment in the climate chamber in September 

RA Radix auricularia  

rDNA ribosomal deoxyribonucleic acid 

RM-ANOVA repeated measures analysis of variance 

rRNA ribosomal ribonucleic acid 

SEM scanning electron microscope 

So Sorpetalsperre 

SP Stagnicola palustris  

sp. species 

spp. species pluralis 

Ssp Sphaerium sp. 

TL tail length 

TSL tail stem length 

TSW tail stem width 

TW tail width 

Ve Versetalsperre 

VSL ventral sucker length 

VSW ventral sucker width 
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14.1 Appendix I 
Additional files 

This appendix contains the additional files to the following publication: 

Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A., & Sures, B. (2015). Integrative taxonomic 

approach to the cryptic diversity of Diplostomum spp. in lymnaeid snails from Europe with a 

focus on the ‘Diplostomum mergi’ species complex. Parasites & Vectors, 8, 300. 

Additional file 1: Figure S1. Schematic illustration of a cercaria of Diplostomum spp. showing the 

metrical features used. Abbreviations: BL, body length; BW, maximum body width; AOL, anterior organ 

length; AOW, anterior organ maximum width; VSL, ventral sucker length; VSW, ventral sucker width; 

TSL, tail stem length; TSW, tail stem width (at base); FL, furca length. 

Additional file 2: Table S1. Summary data for cox1 sequences for Diplostomum spp. retrieved 

from GenBank. 

Additional file 3: Figure S2. Cercariae of Diplostomum spp. Pre- and post-oral spines (light 

microscopy). A, Diplostomum parviventosum; B, Diplostomum mergi Lineage 4; C, ‘Diplostomum 

mergi Lineage 2’; D, ‘Diplostomum mergi Lineage 3’; E, F, Diplostomum pseudospathaceum 

(arrows indicate lateral spines); G. Diplostomum spathaceum. 

Additional file 4: Figure S3. Cercariae of Diplostomum spp. Ventral sucker (light microscopy). A, 

Diplostomum parviventosum; B, Diplostomum mergi Lineage 4; C, ‘Diplostomum mergi Lineage 2’; D, 

‘Diplostomum mergi Lineage 3’; E, ‘Diplostomum sp. Clade Q’; F, Diplostomum pseudospathaceum; G. 

Diplostomum spathaceum. 

Additional file 5: Figure S4. Cercariae of Diplostomum spp. Tail furcae (light microscopy). A, 

Diplostomum parviventosum; B, Diplostomum mergi Lineage 4; C, ‘Diplostomum mergi Lineage 2’; D, 

‘Diplostomum mergi Lineage 3’; E, ‘Diplostomum sp. Clade Q’; F, Diplostomum pseudospathaceum; G. 

Diplostomum spathaceum. 

Additional file 6: Table S2. Comparative qualitative and meristic data for cercariae of the Diplostomum 

‘mergi’ species complex. Table S3. Comparative qualitative and meristic data for cercariae of 

Diplostomum spathaceum, D. pseudospathaceum, D. paracaudum and ‘Diplostomum sp. Clade Q’ of 

Georgieva et al. (2013). 
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BL

AOW

AOL

BW

VSW

VSL

TSW

TSL

FL

Supplementary Figure S1 Schematic illustration of a cercaria of Diplostomum spp. showing the 
metrical features used. Abbreviations: BL, body length; BW, maximum body width; AOL, anterior 
organ length; AOW, anterior organ maximum width; VSL, ventral sucker length; VSW, ventral sucker 
width; TSL, tail stem length; TSW, tail stem width (at base); FL, furca length. 
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Supplementary Table S1 Summary data for cox 1 sequences for Diplostomum  spp. retrieved from GenBank
GanBank accession numbers

Species Host Locality Isolate Life-cycle 

stage

Tissue cox 1 ITS1+5.8S

+ITS2

Reference 

Diplostomum baeri Perca flavescens* Canada 6DM25 metacercaria eye vitreous humour/retina* AY123042 Locke et al. (2010); Galazzo et al. (2002)

Diplostomum huronense Larus delawarensis* Canada adult (exp.)* AY123044 Galazzo et al. (2002)

Diplostomum huronense Catostomus commersoni Canada isolate D.LL.IVT.Cc.3F.1 metacercaria eye lens GQ292513 Locke et al. (2010)

Diplostomum indistinctum Larus delawarensis* Canada adult (exp.)* eye lens* AY123043 Galazzo et al. (2002)

'Diplostomum mergi  1' Radix auricularia Germany: Hengsteysee RAH1 cercaria JX986873 JX986838 Georgieva et al. (2013)

'Diplostomum mergi  2' Radix auricularia Germany: Hengsteysee RAH3 cercaria JX986875 JX986839 Georgieva et al. (2013)

'Diplostomum mergi  2' Radix auricularia Germany: Hengsteysee RAH4 cercaria JX986876 Georgieva et al. (2013)

'Diplostomum mergi  2' Radix auricularia Germany: Hengsteysee RAH2 cercaria JX986874 Georgieva et al. (2013)

'Diplostomum mergi  3' Gobio gobio Germany: River Ruhr (Henne) GGR4 metacercaria eye lens JX986843 Georgieva et al. (2013)

'Diplostomum mergi  3' Gobio gobio Germany: River Ruhr (Henne) GGR2 metacercaria eye lens JX986877 JX986840 Georgieva et al. (2013)

'Diplostomum mergi  3' Salmo trutta fario Germany: River Ruhr (Henne) STR10 metacercaria eye lens JX986878 JX986841 Georgieva et al. (2013)

'Diplostomum mergi  3' Gobio gobio Germany: River Ruhr (Henne) GGR3 metacercaria eye lens JX986842 Georgieva et al. (2013)

'Diplostomum mergi  3' Salmo trutta fario Germany: River Ruhr (Henne) STR15 metacercaria eye lens JX986886 Georgieva et al. (2013)

'Diplostomum mergi  3' Salmo trutta fario Germany: River Ruhr (Henne) STR12 metacercaria eye lens JX986880 Georgieva et al. (2013)

'Diplostomum mergi  3' Salmo trutta fario Germany: River Ruhr (Henne) STR11 metacercaria eye lens JX986879 Georgieva et al. (2013)

Diplostomum mergi Radix balthica Denmark: Lake Fure D14 cercaria JX494231 Haarder et al. (2013)

Diplostomum mergi Radix balthica Denmark D13 cercaria JX494233 Haarder et al. (2013)

Diplostomum  sp. 'Clade Q' Radix auricularia Germany: Lake Constance RA97 cercaria JQ639179 JQ665458 Behrmann-Godel (2013)

Diplostomum  sp. 'Clade Q' Rutilus rutilus Germany: Lake Constance RR43 metacercaria eye lens JQ639177 Behrmann-Godel (2013)

Diplostomum  sp. 'Clade Q' Rutilus rutilus Germany: Lake Constance RR45 metacercaria eye lens JQ639178 Behrmann-Godel (2013)

Diplostomum pseudospathaceum Larus cachinnans Czech Republic: near Tovacov LCT3 adult JX986896 JX986849 Georgieva et al. (2013)

Diplostomum pseudospathaceum Larus cachinnans Czech Republic: near Tovacov LCT4 adult JX986905 JX986854 Georgieva et al. (2013)

Diplostomum pseudospathaceum Gasterosteus aculeatus Germany: Hengsteysee GAH6 metacercaria eye lens JX986852 Georgieva et al. (2013)

Diplostomum pseudospathaceum Lymnaea stagnalis Germany: Baldeneysee LSB2 cercaria JX986850 Georgieva et al. (2013)

Diplostomum pseudospathaceum Lymnaea stagnalis Germany: Harkortsee LSH1 cercaria JX986851 Georgieva et al. (2013)

Diplostomum pseudospathaceum Larus argentatus Poland: near Gdansk LAG2 adult JX986904 Georgieva et al. (2013)

Diplostomum pseudospathaceum Gymnocephalus cernuus Germany: Lake Constance GC87 metacercaria eye lens JQ665456 Behrmann-Godel (2013)

Diplostomum pseudospathaceum Larus argentatus Poland: near Gdansk LAG2 adult JX986853 Georgieva et al. (2013)

Diplostomum spathaceum Larus cachinnans Czech Republic: near Tovacov LCT2 adult JX986895 JX986848 Georgieva et al. (2013)

Diplostomum spathaceum Larus argentatus Poland: near Gdansk LAG1 adult JX986892 JX986847 Georgieva et al. (2013)

Diplostomum spathaceum Radix auricularia Germany: Hengsteysee RAH5 cercaria JX986845 Georgieva et al. (2013)

Diplostomum spathaceum Radix auricularia Germany: Hengsteysee RAH6 cercaria JX986846 Georgieva et al. (2013)

Diplostomum spathaceum Larus cachinnans Czech Republic: near Tovacov LCT1 adult JX986887 JX986844 Georgieva et al. (2013)

Diplostomum spathaceum Coregonus lavaretus Germany: Lake Constance CL100 metacercaria eye lens JQ665457 Behrmann-Godel (2013)

Diplostomum  sp. 1 Larus delawarensis Canada D.IN.SSO.Ld.1F.27 adult Locke et al. (2010)
Diplostomum  sp. 1 Larus delawarensis Canada D.IN.SSO.Ld.2F.6 adult GQ292519 Locke et al. (2010)

Diplostomum  sp. 2 Pimephales notatus Canada D.BR.S.B.20.1 metacercaria brain GQ292505 Locke et al. (2010)

Diplostomum  sp. 3 Micropterus salmoides Canada D.RL.B08.Ms.1F.1 metacercaria eye lens GQ292511 Locke et al. (2010)

Diplostomum  sp. 4 Larus delawarensis Canada D.IN.SSO.Ld.2F.10 adult GQ292520 Locke et al. (2010)

'Diplostomum baeri  1' Salmo trutta fario Germany: River Ruhr (Henne) STR4 metacercaria eye vitreous humour JX986864 Georgieva et al. (2013)

'Diplostomum baeri  1' Salmo trutta fario Germany: River Ruhr (Henne) STR7 metacercaria eye vitreous humour JX986869 Georgieva et al. (2013)

'Diplostomum baeri  1' Salmo trutta fario Germany: River Ruhr (Henne) STR3 metacercaria eye vitreous humour JX986862 JX986837 Georgieva et al. (2013)

'Diplostomum baeri  1' Salmo trutta fario Germany: River Lenne STL1 metacercaria eye vitreous humour JX986863 Georgieva et al. (2013)

'Diplostomum baeri  1' Salmo trutta fario Germany: River Lenne STL2 metacercaria eye vitreous humour JX986865 Georgieva et al. (2013)

'Diplostomum baeri  2' Perca fluviatilis Germany: Lake Constance PF6D3 metacercaria eye vitreous humour JQ639189 Behrmann-Godel (2013)

'Diplostomum baeri  2' Perca fluviatilis Germany: Lake Constance PF15D4 metacercaria eye vitreous humour JQ639187 Behrmann-Godel (2013)

'Diplostomum baeri  2' Perca fluviatilis Germany: Lake Constance PF8D7 metacercaria eye vitreous humour JQ639191 Behrmann-Godel (2013)

'Diplostomum baeri  2' Perca fluviatilis Germany: Lake Constance PF15D9 metacercaria eye vitreous humour JQ639193 Behrmann-Godel (2013)

'Diplostomum baeri  2' Perca fluviatilis Germany: Lake Constance PF5D3 metacercaria eye vitreous humour JQ639195 Behrmann-Godel (2013)

'Diplostomum baeri  2' Perca fluviatilis Germany: Lake Constance PF4D3 metacercaria eye vitreous humour JQ665460 Behrmann-Godel (2013)

* No data in GenBank
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Supplementary Figure S2 Cercariae of Diplostomum spp. Pre- and post-oral spines (light 
microscopy). A, Diplostomum parviventosum; B, Diplostomum mergi Lineage 4; C, ‘Diplostomum 
mergi Lineage 2’; D, ‘Diplostomum mergi Lineage 3’; E, F, Diplostomum pseudospathaceum (arrows 
indicate lateral spines); G. Diplostomum spathaceum 
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Supplementary Figure S3 Cercariae of Diplostomum spp. Ventral sucker (light microscopy). A, 
Diplostomum parviventosum; B, Diplostomum mergi Lineage 4; C, ‘Diplostomum mergi Lineage 2’; D, 
‘Diplostomum mergi Lineage 3’; E, ‘Diplostomum sp. Clade Q’; F, Diplostomum pseudospathaceum; G. 
Diplostomum spathaceum 
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Supplementary Figure S4 Cercariae of Diplostomum spp. Tail furcae (light microscopy). A, 
Diplostomum parviventosum; B, Diplostomum mergi Lineage 4; C, ‘Diplostomum mergi Lineage 2’; D, 
‘Diplostomum mergi Lineage 3’; E, ‘Diplostomum sp. Clade Q’; F, Diplostomum pseudospathaceum; G. 
Diplostomum spathaceum.  
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Table S2 Comparative qualitative and meristic data for cercariae of the Diplostomum ‘mergi’ species complex 

Species Diplostomum parviventosum Dubois, 1932 Diplostomum mergi 

Dubois, 1932 

‘Diplostomum mergi 

Lineage 2’ of Georgieva 

et al. [6] 

‘Diplostomum mergi 

Lineage 3’ of Georgieva 

et al. [6] 

Diplostomum mergi 

Lineage 4 

Hosts Radix auricularia Radix ovata R. ovata R. auricularia R. auricularia R. auricularia

Source Present study Niewiadomska & 

Kiseliene [10] 

Niewiadomska & 

Kiseliene [10] 

Present study Present study Present study 

Yellow pigment in body Present na Absent Present Present Present 

Relation BL-TSL-FL BL<TSL<FL BL<TSL>FL BL<TSL=FL Live: BL≤TSL<FL 

Fixed: BL=TSL<FL 

Live: BL≤TSL<FL 

Fixed: BL<TSL≤FL 

Live: BL<TSL=FL 

Relation VSW-AOW VSW>AOW VSW>AOW VSW>AOW VSW>AOW Live: VSW≥AOW 

Fixed: VSW=AOW 

Live: VSW>AOW 

No. of pre-oral spines 

(median group) 
67 in 3 rows 5–7 in 2 rows 6–8 in 2 rows 5–6 in 2 rows 7 in 3 rows 7 in 3 rows 

No. of pre-oral spines in 

each lateral group 

No lateral group No lateral group No lateral group No lateral group No lateral group No lateral group 

No. of rows of post-oral 

spines 

7–8 6–8 6–9 11 (an additional median 

row may be present) 

10 11 

Incomplete rows of post-

oral spines 

Rows 1–2 with median 

interruption  

na na Rows 1–2 with median 

interruption 

Rows 1–2 with median 

interruption 

Rows 1–2 with median 

interruption, rows 10–11 

interrupted dorsally 

Size of post-oral spines First 4 spines in row 1 on 

both sides of median 

interruption largest; 

spines in row 1 larger than 

remaining spines 

na na First 4 spines in row 1 and 

first 3 spines in row 2 on 

both sides of median 

interruption largest; 

spines in row 1 larger than 

remaining spines  

First 4 spines in row 1 on 

both sides of median 

interruption largest; 

spines in rows 1–2 larger 

than remaining spines 

First 4 spines in row 1 and 

first 3 spines in row 2 on 

both sides of median 

interruption largest; 

spines in rows 1–2 larger 

than remaining spines 

Zone of dispersed post-

oral spines  

Present (wide) Present Present Present (wide) Present (wide) Present (wide) 

Spineless area posterior to 

dispersed spines 

Present (narrow) Present Present Present (narrow) Present (narrow) Present (narrow) 

Transverse rows of spines 

on body 

11 10 10 10 11 10 

Double transverse rows  None na na None Row 1 None 

Incomplete transverse 

rows 

Rows 9–11 discontinuous 

ventrally and dorsally; 

rows 5–8 discontinuous 

dorsally 

Rows 6–10 discontinuous 

ventrally and dorsally 

Last rows Rows 6–10 discontinuous 

ventrally and dorsally 

Rows 4–11 discontinuous 

ventrally and dorsally 

Rows 5–7 discontinuous 

dorsally; rows 8–10 

discontinuous ventrally 

and dorsally 

Transverse rows with 

additional spines laterally 

Rows 1 and 10 na Rows 1–2 Rows 1–4 (rows 5–6 with 

1–2 additional spines) 

Rows 2–3 None 

178



Species Diplostomum parviventosum Dubois, 1932 Diplostomum mergi 

Dubois, 1932 

‘Diplostomum mergi 

Lineage 2’ of Georgieva 

et al. [6] 

‘Diplostomum mergi 

Lineage 3’ of Georgieva 

et al. [6] 

Diplostomum mergi 

Lineage 4 

Hosts Radix auricularia Radix ovata R. ovata R. auricularia R. auricularia R. auricularia

Source Present study Niewiadomska & 

Kiseliene [10] 

Niewiadomska & 

Kiseliene [10] 

Present study Present study Present study 

Zone of dispersed spines 

in hind body 

2 fields converging 

posteriorly 

2 wide ventro-lateral 

bands converging 

posterior to VS and close 

to posterior extremity 

na 2 fields converging 

posteriorly 

2 wide, non-converging 

fields 

2 fields converging 

posteriorly 

No. of spine rows on 

ventral sucker 

2 2 2 2 2 2 

No. of spines on ventral 

sucker (mean) 

77–87 (81) 80–88 94–130 110–120 (114) 90–92 (90) 112–114 (113) 

Penetration gland-cells 2 pairs; small, do not 

cover ends of caeca 

2 pairs; small, do not 

overpass caeca laterally 

2 pairs; large, do not 

cover ends of caeca 

2 pairs; large, do not 

cover ends of caeca 

2 pairs; medium-sized, do 

not cover ends of caeca 

3 pairs (anterior pair 

small, posterior 2 pairs 

large); do not cover ends 

of caeca 

Spines on tail stem Present (2 ventral and 2 

dorsal bands) 

Dispersed spines on 

ventral and dorsal 

surfaces 

Absent Present (2 ventral and 2 

dorsal bands) start from 

second quarter of tail 

Present (2 ventral and 2 

dorsal bands) 

Present (2 ventral and 2 

dorsal bands) 

Spines on furcae Present Present Absent Present Present Present 

Fin-folds on furcae Present 

(fish-fin like fin-folds) 

Present Present Present 

(fish-fin like fin-folds) 

Present 

(fish-fin like fin-folds) 

Present 

(fishfin-like fin-fold) 

No. of caudal bodies 1012 pairs 10–11 pairs 10–11 pairs 3640 individual caudal 

bodies 

Individual caudal bodies 

impossible to count 
3640 individual caudal 

bodies 

Shape of caudal bodies With smooth contours With incised contours With incised contours With smooth contours With incised contours With smooth contours 

Resting position tail stem bent at < 90 

(45–67) 

Tail stem bent at c.45 Tail stem bent at < 90 Tail stem bent at < 90 

(64–85) 

Tail stem bent at 90 

(77–91) 

Tail stem bent at < 90 

(66) 

Abbreviations: BL, body length; BW, maximum body width; AOW, anterior organ width; VS, ventral sucker; VSW, ventral sucker width; TSL, tail stem length; FL, furca length; na, no 

data available 
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Table S3 Comparative qualitative and meristic data for cercariae of Diplostomum spathaceum, D. pseudospathaceum, D. paracaudum and 

‘Diplostomum sp. Clade Q’ of Georgieva et al. [6] 

Species D. spathaceum

(Rudolphi, 1819)

D. paracaudum

(Iles, 1959)

‘Diplostomum sp. Clade 

Q’ of Georgieva et al. [6] 

Diplostomum spathaceum 

(Rudolphi, 1819) 

Diplostomum pseudospathaceum Niewiadomska, 

1984 

Hosts R. auricularia, R. ovata,

R. peregra

R. auricularia, R. ovata,

S. palustris

R. auricularia R. auricularia L. stagnalis, S. palustris L. stagnalis, S. palustris

Source Niewiadomska & 

Kiseliene [10] 

Niewiadomska [28]; 

Niewiadomska & 

Kiseliene [10] 

Present study Present study Niewiadomska & 

Kiseliene [10] 

Present study 

Yellow pigment in body Present Absent Present Present Present Present 

Relation BL-TSL-FL BL<TSL=FL BL<TSL≥FL Live: BL<TSL=FL Live: BL<TSL<FL 

Fixed: BL<TSL=FL 

BL<TSL=FL Live: BL≤TSL<FL 

Fixed: BL<TSL≤FL 

Relation VSW-AOW VSW>AOW VSW=AOW Live: VSW>AOW Live: VSW≥AOW 

Fixed: VSW≤AOW 

VSW=AOW Live: VSW>AOW 

Fixed: VSW=AOW 

No. of pre-oral spines 

(median group) 

8–16 in 3–4 rows 15–20 in 3 rows 9 in 3 rows 18–19 in 3 rows 8–14 in a triangle 10–11 in 3 rows 

No. of pre-oral spines in 

each lateral group 

No lateral groups 1–2 No lateral groups 1 small spine 1–4 3 small spines 

No. of rows of post-oral 

spines 

10–14 6–7 12 9 6–8 9 

Incomplete rows of post-

oral spines 

na na Row 1 with median 

interruption, rows 1112 

interrupted laterally 

Row 1 with median 

interruption; row 9 

interrupted laterally 

na Rows 1–2 with median 

interruption; row 9 

interrupted laterally 

Size of post-oral spines na na First 5 spines in row 1 on 

both sides of median 

interruption largest; 

remaining spines of 

different sizes 

Spines in row 1 larger 

than remaining spines 

na Spines in row 1 larger 

than remaining spines 

Zone of dispersed post-

oral spines  

Present Present Present (wide) Present (wide) Present Present (wide) 

Spineless area posterior 

to dispersed spines 

Present Present Present (narrow) Present (narrow) Present Present (narrow) 

Transverse rows of 

spines on body 

9–10 10 10 10 10 11 

Double transverse rows Rows 1–2 Row 1 (drawing) Row 1 Rows 12 (only 

ventrally) 

Rows 1–2 Rows 12 (only 

ventrally) 

Incomplete transverse 

rows 

Posterior rows 

discontinuous ventrally 

and dorsally 

Rows 5–6 to 10 

discontinuous ventrally 

and dorsally 

Rows 5–10 discontinuous 

ventrally and dorsally 

Rows 9–10 discontinuous 

ventrally 

Last rows Row 9 discontinuous 

ventrally; rows 10–11 

discontinuous ventrally 

and dorsally 
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Species D. spathaceum

(Rudolphi, 1819)

D. paracaudum

(Iles, 1959)

‘Diplostomum sp. Clade 

Q’ of Georgieva et al. [6] 

Diplostomum spathaceum 

(Rudolphi, 1819) 

Diplostomum pseudospathaceum Niewiadomska, 

1984 

Hosts R. auricularia, R. ovata,

R. peregra

R. auricularia, R. ovata,

S. palustris

R. auricularia R. auricularia L. stagnalis, S. palustris L. stagnalis, S. palustris

Source Niewiadomska & 

Kiseliene [10] 

Niewiadomska [28]; 

Niewiadomska & 

Kiseliene [10] 

Present study Present study Niewiadomska & 

Kiseliene [10] 

Present study 

Transverse rows with 

additional spines 

laterally 

Rows 3–4 Anteriormost rows Rows 2–3 Row 3 Rows 3–4 Rows 3–7 

Zone of dispersed spines 

in hind body 

2 fields converging 

ventrally 

2 fields converging 

ventrally and dorsally 

2 non-converging fields 

posterior to VS 

2 fields converging 

posteriorly to VS and 

close to posterior 

extremity of body 

2 lateral fields 2 fields converging 

posteriorly to VS and 

close to posterior 

extremity of body 

No. of spine rows on 

ventral sucker 

2 3 2 3 2 (3rd row may be 

partly formed) 

2 

No. of spines on ventral 

sucker (mean) 

108–125 116–141 112–116 (114) 103–119 (110) 66–107 70–100 (84) 

Penetration gland-cells Large, do not cover ends 

of caeca 

Large, do not cover ends 

of caeca 

Large, do not cover ends 

of caeca 

Large, do not cover ends 

of caeca 

Large, do not cover ends 

of caeca 

Large, do not cover ends 

of caeca 

Spines on tail stem Absent Absent Present (2 ventral and 2 

dorsal bands) 

Present (2 ventral and 2 

dorsal bands) 

Present near distal end Present (2 ventral and 2 

dorsal bands) 

Spines on furcae Absent Absent Present  Present Present Present 

Fin-folds on furcae Present Absent Present 

(fish-fin like fin-folds) 

Absent Absent Absent 

No. of caudal bodies 11–12 pairs 10–11 pairs 10 pairs 56–60 individual caudal 

bodies 

10 pairs 35–45 individual caudal 

bodies 

Shape of caudal bodies With incised contours With incised contours With incised contours With both incised and 

smooth contours 

With incised contours With smooth contours, 

irregular in shape and 

size 

Resting position Tail stem bent at 90 Tail stem bent at 90 na Tail stem bent at < 45 

(39) 

Tail stem bent at 90 Tail stem bent at < 45 

(29–38) 

Abbreviations: BL, body length; BW, maximum body width; AOW, anterior organ width; VS, ventral sucker; VSW, ventral sucker width; TSL, tail stem length; FL, furca length; na, no 

data available 
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Budě jovice, Czech Republic
3 Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, D-24306 Plön,

Germany

This review summarizes current knowledge about the
occurrence and distribution of swimmer’s itch, with a
focus on Europe. Although recent publications have
reviewed the biology and systematics of bird schisto-
somes and their complex host–parasite interactions, the
underlying ecological factors that create favorable con-
ditions for the parasites and the way humans interact
with infested water bodies require further attention.
Relevant studies from the past decade were analyzed
to reveal an almost complete set of ecological factors as
a prerequisite for establishing the life cycle of bird schis-
tosomes. Based on both records of the occurrence of the
parasite infective agents, and epidemiological studies
that investigate outbreaks of swimmer’s itch, this re-
view concentrates on the risk factors for humans en-
gaged in recreational water activities.

Bird schistosomes as causative agents of swimmer’s
itch
Swimmer’s itch is regarded as a re-emerging disease [1,2]
in Europe and can lead to severe skin infections in humans
engaged in recreational water activities. Although schisto-
somes infecting mammals are also known to cause swim-
mer’s itch not only worldwide [3], and more recently also in
Europe [4], the most common causative agents in Europe
are the larval stages (cercariae) of the bird schistosomes of
the genus Trichobilharzia that complete their life cycles in
freshwater snails and waterfowl. Although cercariae may
infect humans, they are not able to complete their life cycle
within these accidental hosts, and most die soon after
penetration [5,6]. Primary infection in unsensitized mam-
mals usually show mild or no skin reaction, but parasites
may escape from the skin and migrate to different organs
([1,3] and references therein). However, repeated exposure
of humans to cercariae results in an inflammatory skin
reaction termed cercarial dermatitis or swimmer’s itch.
This is caused by host immune response leading to de-
struction of the parasites entrapped in the skin. Swimmer’s
itch is typically not harmful but is very unpleasant due to
intense itching; nevertheless, in repeatedly sensitized

persons other symptoms such as fever, local lymph node
swelling, and edema can occur [1]. Furthermore, bird
schistosomes such as the neuropathogenic Trichobilharzia
regenti may escape mammalian immune defense and mi-
grate further in the accidental host, thus presenting risks
of potential neurologic disorders [1,7].

Recent reviews have compiled much information about
the current state of the taxonomy of the bird schistosomes
(e.g., [8,9] and references therein for a focus on Europe), the
present knowledge of their biology and the complex host–
parasite associations [3,10], or estimated effects of climate
change on the spread of trematodiases in general (e.g.,
[11,12]). However, the underlying ecological factors that
create favorable conditions for bird schistosomes and the
way humans interact with infested water bodies require
more in-depth investigation. Increasing recreational use of
freshwater habitats associated with the ongoing global
changes such as climate warming, urbanization, and an-
thropogenic pressures on natural habitats, enhances the
risks of acquiring swimmer’s itch in the future.

Accordingly, our aim is to focus on the ecological condi-
tions that drive parasite occurrence and disease to assess
the risk factors for humans engaging in recreational activ-
ities in the aquatic environments in Europe. The records of
parasite occurrence and concomitant epidemiological stud-
ies that investigate outbreaks of swimmer’s itch are dis-
cussed. The available literature is used to predict the
potential occurrence of Trichobilharzia spp., the most com-
mon agents of swimmer’s itch in Europe [8], and to inter-
pret the associated risks of infection at swimming sites into
an integrated risk assessment.

The life cycle of bird schistosomes
Bird schistosomes are distributed worldwide [3,8]. They
require two hosts from different trophic levels for the
successful completion of their life cycles (Figure 1). The
definitive vertebrate hosts are typically waterfowl, in
which the schistosomes reach sexual maturity, mate,
and produce eggs. Eggs containing fully developed larvae
(miracidia) are deposited and released depending on the
location of adult worms: (i) in the tissues of the visceral
organs and associated blood vessels of the definitive
host, and are released with the host’s feces (visceral
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schistosomes); or (ii) in the nasal mucosa where miracidia
hatch directly in the soft tissues of the nasal cavity, and
leave the host after its contact with water (nasal schisto-
somes) [8]. The free-swimming miracidia locate and pene-
trate suitable snail intermediate hosts, where asexual
reproduction of the parasite takes place. Miracidia trans-
form into mother sporocysts, which in turn give rise to
daughter sporocysts, each forming numerous infective dis-
persive stages (ocellate furcocercariae). After their emer-
gence from snails, cercariae disperse in the aquatic
environment where they actively seek out and penetrate
the skin of bird legs or the skin of humans accidentally.
After successful penetration of a suitable bird host, cercar-
iae transform to schistosomula (juvenile worms), which
migrate to the preferred sites of infection. Migration routes
of the visceral schistosomes are through the circulatory
system, and those of the nasal Trichobilharzia regenti are
through the peripheral nerves and central nervous system.
Schistosomula migration, together with the presence of
adults and eggs (in birds only), may result in severe
damage of various organs and tissues and possibly neuro-
motor disorders; these have been documented in natural
infections and experiments on bird and mammalian mod-
els (reviewed in [1,10]).

Both free-living dispersal stages, miracidia and cercari-
ae, do not feed and possess limited energy supplies, result-
ing in very short lifespans of 1 day and up to 2.5 days,
respectively (e.g., T. szidati [13]). Miracidia can locate the
appropriate specific snail species according to differential
miracidia-attracting glycoproteins (e.g., T. szidati [14,15]
and references therein), whereas the negatively geotropic
and positively phototactic cercariae use complex swim-
ming behaviors stimulated by shadow, water turbulence.
and tactile stimuli for definitive host-finding [16,17]. Rec-
ognition and responding to chemical cues of the host skin
components such as ceramides, cholesterol, and fatty
acids, trigger the attachment and penetration processes,

respectively [18–20]. Cercarial emergence rates have been
quantified as ca 400–500 cercariae snail–1.day–1, with an
estimated total number of ca 25 000 cercariae snail–1 [13],
and emergence peaks between 9 and 11 am [21].

Prevalence in snails and birds
Six genera of schistosomes utilize aquatic birds, mostly of
the order Anseriformes (ducks, geese, and swans) as defin-
itive hosts in Europe: Allobilharzia, Bilharziella, Dendri-
tobilharzia, Gigantobilharzia, and Trichobilharzia [8,22].
Species of the genus Ornithobilharzia occur in charadrii-
form and procellariiform birds and marine gastropods
[23,24]. Several new and previously undescribed species,
mostly detected as larval stages in the snail hosts, have
been recognized recently as a result of the application of
molecular markers for species discrimination (e.g., [9,25–
30]). Snail hosts supporting most of the bird schistosome
diversity in Europe are freshwater pulmonates of the
families Lymnaeidae and Planorbidae [8,30]. Bird schisto-
somes in snails are widespread throughout Europe
(Figure 2; Table S1 in the supplementary material online)
including cold areas at higher latitudes. The lymnaeids
Lymnaea stagnalis and Radix spp. represent the most
frequent, abundant, and widely distributed intermediate
hosts for the most important and common bird schisto-
somes of the genus Trichobilharzia [8,10]. Notably, a re-
cent molecular study revealed high schistosome species
diversity in small planorbids, adding six previously unde-
scribed species [30].

The specificity of host-snail recognition in Trichobilhar-
zia spp. might be rather high (as shown for T. szidati [15]).
Further research on host compatibility appears to be an
area of importance for our understanding of local trans-
mission patterns because recent findings suggest that bird
schistosome specificity towards the snail hosts may be
lower than previously known (compare snail and schisto-
some richness in Table 1).

Infection rates in snails may vary annually and/or
seasonally with increases in the summer months [31].
Prevalence of bird schistosomes in snails in Europe show
generally low levels (mostly ranging from 0.05% to 5.0%)
compared to infection rates in birds (up to 74.5%) ([8,10] for
details). Occasionally prevalence values in snails reach ca
25% [9,32–35] but may exceed 40%, especially in eutrophic
environments [36] (Table 1).

Ecological factors driving bird schistosome and
swimmer’s itch occurrence
Table 1 summarizes the data extracted from the literature
in an attempt to reveal patterns and derive predictions for
the occurrence of swimmer’s itch, snail intermediate hosts,
and bird schistosomes in relation to ecological conditions of
the aquatic habitats in Europe. We focused primarily on
original records of swimmer’s itch and/or bird schistosomes
from studies providing data on sampling sites, snail and
schistosome identification, and prevalence of infection. Of
69 studies (Table S1 and Reference List S1 in the supple-
mentary material online), 10 contain both data on ecologi-
cal conditions of the habitats and reports of swimmer’s itch.
Overall, the dataset comprised records of 30 parasite taxa
(six identified species and 24 as yet undescribed species) in

TRENDS in Parasitology 

Figure 1. Generalized life-cycle of a bird schistosome. Adult trematodes reproduce

in waterfowl, and eggs are released into the water. From eggs the first dispersive

larval stages (miracidia) hatch and infect suitable snail intermediate hosts in which

asexual reproduction occurs, resulting in the production of the second dispersive

larval stages (ocellate furcocercariae). Cercariae emerge from infected snails and

infect appropriate final hosts (birds) thus completing the life cycle. Swimmer’s itch

occurs when cercariae accidentally penetrate human skin.
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22 snail intermediate hosts from 17 European countries.
Notably, recent molecular studies revealed a much higher
diversity of the bird schistosomes than previously known
(Table S1 in the supplementary material online). Most
cases of swimmer’s itch were registered in eutrophic lakes
[61% and 55% of the records from large (>1000 ha) and
smaller lakes (<1000 ha), respectively]. In addition, many
cases were reported from pond systems (mostly in the
Czech Republic and Germany), which are artificial man-
made water bodies for intensive fish farming with eutro-
phic and even hypertrophic status. These results coincide
with a higher species richness of both snail hosts and bird
schistosomes under eutrophic conditions. Furthermore,
natural reserves and protected zones, which provide suit-
able habitats for nesting and stop-over sites for migratory
birds, appear to be hot-spots for high richness and infection
levels of bird schistosomes (Table 1). The rarity of reports of
swimmer’s itch from oligotrophic and mesotrophic lakes
might be related to snail distribution as evidenced by the
low snail species diversity, which in turn results in low bird
schistosome species richness. It can be expected that snail
populations in less productive meso- and oligotrophic

systems will be less abundant and patchy, and bird schis-
tosomes will be also.

Anthropogenic eutrophication is a major stressor lead-
ing to changes in disease patterns (reviewed in [10,37,38]).
Increases in nitrogen and phosphorus concentrations in
freshwater bodies stimulate biomass growth of primary
producers, which in turn provides ideal conditions for
abundant snail populations. Due to high abundance of
potential prey, eutrophication has been linked to increased
colonization of the aquatic ecosystems by birds [10,39],
which may result in higher input of trematode eggs into
the habitat. Taken together, such dense intermediate and
definitive host populations create ideal opportunities for
rich and abundant trematode communities and enhanced
parasite transmission [36–40].

Furthermore, nutrient-rich environments allow snails
to grow faster, thus reaching a size-refuge in which they
are invulnerable to predators [41]. Increased lifespan leads
to higher infection risks for subsequent hosts in the schis-
tosome life cycle because larger snails also support higher
production of infective cercarial stages [10,40]. The idea of
bird schistosome proliferation with increased productivity

2000 km
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Figure 2. Occurrence of bird schistosomes and reported cases of swimmer’s itch in Europe. Open red circles ( ) show the confirmed occurrence of bird schistosomes, filled

red circles ( ) show reported cases of swimmer’s itch, and blue triangles ( ) indicate both reported cases of swimmer’s itch and confirmed occurrence of bird

schistosomes in a body of water. Enlarged symbols indicate pooled data from several bodies of water in a region and/or across years. Only data from publications that

clearly identify bodies of water with cases of swimmer’s itch and/or bird schistosome occurrence are used. The clusters seen (e.g., in the Czech Republic, Austria, and

Norway) are likely due to an increased regional research focus on bird schistosomes and/or swimmer’s itch, rather than to the presence of infection hot-spots in these areas.

Therefore, occurrence of bird schistosomes and consequently increased risks of swimmer’s itch can also be expected in areas with no data currently available.
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is supported by the demonstration of extraordinarily rapid
rates of recruitment of T. szidati to the snail populations in
eutrophic ponds in Europe [42].

Owing to high recruitment rates and trematode diver-
sity, competition appears to play a major structuring role
in larval trematode communities in eutrophic environ-
ments [43]. Species of Trichobilharzia and Austrobilharzia
may be obligate secondary invaders that preferentially
infect snails with compromised immunity due to prior
trematode infection [44,45], or may persist for a long time
in double infections with otherwise dominant species ([46]
and references therein). This is consistent with the finding
that T. szidati most frequently occurs in multiple infec-
tions, thus counteracting the effects of competition on
transmission dynamics in the eutrophic environment [43].

Climate change is another key ecological process driving
the emergence and increase in prevalence of parasitic
diseases [47–49]. Temperature-mediated changes in para-
site transmission dynamics in aquatic systems may result
from either direct effects on the survival and infectivity of
the free-living infective larvae [50,51], or indirectly via
altering host distribution and abundance and the compo-
sition of local host communities [11,47]. Trematodes are
extremely sensitive to changes in temperature [52] because
cercarial production and emission rates are temperature-
dependent. Field evidence from geothermally heated lakes

and ponds in Iceland indicates acceleration of both snail
and trematode development, such that young snail cohorts
are already infected with bird schistosomes, and thus
swimmer’s itch cases are reported throughout the year
irrespectively of season [9]. Usually, the occurrence of
cercariae in aquatic habitats is limited seasonally when
ambient temperature exceeds a minimum threshold for
their emergence [53]. Highest cercarial output for Tricho-
bilharzia spp. occurs at temperatures of 17–25 8C [54], and
even small increases in temperature can speed up parasite
development rates and transmission success, thus leading
to a fivefold increase in cercarial emergence with a 10 8C
increase in temperature (e.g., Trichobilharzia sp. [52]).
Because more cercariae released into the aquatic environ-
ment exert a higher infection pressure on the definitive
hosts, the likelihood of successfully completing the life
cycle is enhanced, even though cercarial survival and
infectivity are lower at higher temperatures [52]. Trema-
tode transmission may be further facilitated by longer
growing seasons that increase snail generations per year,
and by mild winters that alter the population dynamics of
the aquatic bird hosts [47]. Migratory waterfowl have
therefore become sedentary and overwinter at many Eu-
ropean lakes, allowing a longer host–parasite transmission
window [10,55,56].

Although a range of additional ecological factors affect
the occurrence and distribution of bird schistosomes, eu-
trophication and temperature are the most crucial. This is
mirrored by the number of papers dealing with these
aspects, and therefore justifies our focus on these factors.

The human perspective of swimmer’s itch: impact,
epidemiology, and risk factors
Although the connection between the infection and bird
schistosome larvae was first made by Cort in 1928 [57], it is
clear that the disease had been troubling people around the
world long before because it had become linguistically
established in different languages; for example ‘koganbyo’
or ‘rice farmer dermatitis’ in Japan, ‘sawah itch’ in
Indonesia, ‘puces de canard’ in Switzerland or ‘dermatite
des nageurs’ in France and Switzerland, ‘Entenbilharziose’
or ‘Wasserhibbel’ in Germany and Austria, or ‘sedge pool
itch’ in the United States. This linguistic diversity not only
reflects the long history of the disease but highlights its
worldwide occurrence and impact on humans in different
regions. Swimmer’s itch can, therefore, be regarded as a re-
emerging rather than a newly emerging disease [1,2]. The
map (Figure 2) provides a graphical representation of both
the confirmed occurrence of bird schistosomes and cases of
swimmer’s itch across Europe. The wide spread of the
records across different regions highlights the importance
of swimmer’s itch in Europe. However, its occurrence is
underestimated because the often benign pathology results
in only a minority of victims consulting a physician [58,59]
and many cases remain unreported. Furthermore, infec-
tions may be confused with insect bites or allergic reactions
(Figure 3) [60] thus leaving even more cases unreported. In
addition to the health risks for humans, especially with
regard to the potential migration of both nasal [8,10] and
visceral bird schistosomes [3,61] in mammals, swimmer’s
itch is an important economic factor in areas where
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Figure 3. Swimmer’s itch developed after sampling snails in shallow water for 2 h

by one of the authors.
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tourism depends on recreational water use, and health
complaints may lead to severe economic losses [62,63]. As
recent studies on bird schistosome diversity, for example,
[30] suggest a much broader spectrum of potential infective
agents, a potentially wider range of swimmer’s itch cases
than currently known can be expected.

Risk assessment of swimmer’s itch is usually based on
the detection of bird schistosomes in snails [24]. Congruent
detection of parasites and cases of swimmer’s itch can be
difficult due to their low prevalence in snails [64]. There-
fore, human infections may occur at sites where no para-
sitized snails can be found [65]. We have compiled data
from epidemiological studies on swimmer’s itch and field
and laboratory studies on the biology of Trichobilharzia
spp. for a comprehensive risk assessment that may help to
understand the recent re-emergence of the disease, as well
as help to identify potential infection hot-spots and create a
basis for discussion of possible preventive measures.

A wide variety of often interacting factors, ranging from
ecological (e.g., eutrophication) to weather influence and
personal behavior have been shown to affect the risk of
human infection (Table 2). All these considerations illus-
trate that a mono-causal risk assessment is impossible
because a multitude of interacting biotic and abiotic as well
as personal factors play an important role in the risk of
encountering the disease. A thorough analysis of the local
situation taking this variety of factors into consideration is
therefore essential in a reliable risk assessment of swim-
mer’s itch.

Possible prevention measures
Here we summarize preventive measures that have been
suggested or applied to control the disease and discuss
their effectiveness and ecological impacts. Preventive
actions should be linked to parasite ecology and host-
finding behavior, and aim at interrupting the trematode
life cycle at some stage, preventing free-swimming dispers-
al larval stages (miracidia and cercariae) from entering
their respective hosts, or at changing human bathing
behaviors in a way that reduces the risk of encountering
the infective agents (Table 3).

Adult worms as a target

Reducing the prevalence of bird schistosomes in their final
hosts appears to be the most obvious measure for control-
ling the distribution of swimmer’s itch, and reducing duck
abundance has been repeatedly suggested. However, in-
tensive hunting or even merely scaring away waterfowl is
not well accepted in recreational areas by the public, and
especially during the bathing season. Ducks are well
known to escape hunting pressure and this approach is
therefore not very effective. One way to prevent aggrega-
tion of potential bird hosts close to swimming sites is by
placing prohibition signs asking people not to feed ducks in
the area. This is also a good opportunity to inform visitors
about the etiology of swimmer’s itch, the causative agent
and the ecological context, and particularly allay baseless
public fears about the severity of exposure and concerns
about the water quality. However, so far there is no

Table 1. Swimmer’s itch and/or bird schistosome records in Europea

Water body type

(surface in ha)

Ecological

conditions

(trophic status,

habitat

description)b,c

Swimmer’s

itch reported

Snail species

richness

(no. of spp.)

Schistosome

species richness

(no. of spp.)

Bird presence

and/or

abundance

reported

Prevalence

(range, %)

Countryd Total

no. of

studies

Lakes (>1000) E: 4 14 (3d) 11 14 5 0.05–9.6 AUT, BLR, CHE,

DEU, DNK, FRA,

ITA, ISL, NOR,

POL, UK

23

M: 3 1 2 2 1 0.10–0.8 AUT, FIN 3

O: 3 – 2 2 – 0.27–8.3 CZE, FIN 3

Lakes (<1000) E: 5 11 (2e) 6 5 6 0.76–26.7 AUT, BLR, DEU,

FIN, FRA, ISL,

NLD, NOR,

POL, UK

20

M: 1 – 1 1 – 24.1 DEU 1

O: 3 1 2 2 – 17.1 FIN, ISL 3

Ponds (>30) 11 4 (1e) 5 4 6 0.20–41.5 AUT, CZE, FRA 13

Ponds (<30) 15 8 (2e) 11 15 8 0.01–9.7 AUT, BLR, CZE,

DEU, FRA, ISL,

RUS

25

Rivers, canals,

wetlands

3 7 (2e) 5 4 1 2.20–6.5 AUT, ESP,

FRA, NOR

9

Regional surveys 6 4 8 5 2 0.04–22.0 DEU, CZE,

POL, SVK

10

Natural reserves/

protected areas

12 5 6 6 8 0.05–41.5 BLR, CZE, DEU,

FRA, ISL, ITA, POL

12

aNumber of records in relation to ecological conditions, snail and bird schistosome species richness, prevalence in snails and geographical distribution in Europe broken

down by water body type, size, and trophic status (Table S1 in the supplementary material online for details).

bRecords providing information for the trophic status and/or sampling site descriptions (e.g., bottom substrate, aquatic vegetation).

cAbbreviations: E, eutrophic lake; M, mesotrophic lake; O, oligotrophic lake.

dAlpha-3 country codes; a list of codes is given in Table S2 in the supplementary material online.

eStudies reporting swimmer’s itch only.
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evidence whether this rather cheap measure has any effect
on the frequency of swimmer’s itch outbreaks. A direct
reduction of adult schistosomes in birds has been success-
fully achieved in a field trial by treatment with praziquantel
[66]. However, this cost- and labor-intensive action can be
effective only in areas with low waterfowl migration. Fur-
thermore, the possible ecological consequences need to be
considered carefully; although the drug and its metabolites

show only low toxicity on non-target organisms [67], mass
treatment of waterfowl with praziquantel might cause spe-
cies shifts in entire trematode communities in birds, with
unpredictable effects – for example, on the fish fauna.

The miracidia

The larvae hatching from released bird schistosome eggs
need to find and infect a suitable snail host within their

Table 2. Most important swimmer’s itch risk factors

Risk factor Effect Refs

Personal factors

and behavior

History of

swimmer’s itch

Individual history of swimmer’s itch plays an important role, because repeated

exposure and infection correspond with a higher chance of contracting cercarial

dermatitis and severity of infection due to host sensitization.

[1,3,62]

Age Significantly higher risks of infection among children younger than 15 years are

reported, most likely due to age-related bathing habits, i.e., children spending more

time in shallow, warm water where snails and parasites accumulate. However,

evidence is inconclusive because some studies observed no significant effect of the

age factor.

[58,60,62,

90,91]

Bathing activity Bathing behavior has a significant influence on the chances of encountering bird

schistosome cercariae. People engaged in immersed activities (swimming, wading)

are at higher risk than those merely engaged in surface activities, such as surfing,

water skiing, or boating, due to higher exposure to cercariae.

[90]

Bathing time The amount of time spent in water positively correlates with the risk and severity of

an infection, because the longer exposure allows more possible cercarial

penetrations.

[60,62,92]

Frequency

of visits

The frequency of visits to the water body corresponds with higher incidence of

swimmer’s itch, due to increased chances of encountering the parasites.

Contrastingly, negative associations between days of exposure and disease severity

were found, which probably indicates that sensitized people with a known history of

swimmer’s itch tend to reduce or avoid recreational use of potentially infested

waters.

[60,92]

Bathing

locality

Shallow

waters/surface

water

Spending time in shallow water is associated with high infection risks because snails

accumulate in shallow waters where cercarial production is further enhanced by

high water temperatures in summer. However, suitable hosts can also occur at

greater depths and the risk of swimmer’s itch can, therefore, not be restricted to

shallow areas, although risk of an infection is highest there. Bird schistosome

cercariae become concentrated in the surface. Therefore, contact with surface water

at sites with abundant snail communities can be considered a risk factor.

[8,18,31,33,54,

58,60,76,78,90]

Aquatic vegetation Rich aquatic vegetation is often considered an indicator of potential high-risk sites

because it provides ideal conditions for abundant snail communities. However,

suitable snail hosts can also occur in areas free of vegetation.

[78,93]

Time Season Shows a significant association with human infections because most cases occur

during warm summer months with prolonged daylight hours and increased water

temperatures when prevalence in snails is highest, and both cercarial emergence

and human bathing activities peak.

[58,93]

Time of day Both probability and severity of infection are highest in morning hours when

cercarial emergence peaks. Infectivity of released free-swimming cercariae declines

with time, and the free-swimming larval stages are subject to predation by a wide

variety of animals, probably reducing the risk of human infection as the day

progresses.

[60,62,76,90]

Weather Air temperature Higher temperatures correspond with higher infection risk, probably due to

increased bathing activity (i.e., more time spent in water) and higher cercarial

emergence rates.

[62]

Water temperature High water temperature is considered a risk factor because high abundances of

infected snails can often be found in warm waters.

[93]

Sunshine Long periods of sunshine increase the number of recorded outbreaks of swimmer’s

itch due to increased bathing activities and elevated cercarial emission on sunny

days, especially following overcast periods.

[8,94]

Wind and water

movement

Onshore winds and water currents correspond with increased infection risks

because they can transport cercariae that become concentrated in the surface water

layers towards bathing sites. Clouds of cercariae may be transported by winds and

currents for several kilometers. Infections can, therefore, also occur in areas

seemingly devoid of snails.

[60,76,78,95]

Other factors Eutrophication Key ecological factor that triggers a cascade of factors (high host abundances and

high prevalence) ultimately leading to an increased risk of human infections.

[2,40,90,93–95]

Global warming Increased risk of swimmer’s itch expected because overwintering migratory birds in

central Europe allow a longer host–parasite transmission window, leading to higher

parasite prevalence and higher densities of cercariae.

[11]
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lifespan of only a few hours. Considering that after the
enormous intramolluscan multiplication a single miracid-
ium can produce several thousands of cercariae, it is obvi-
ous that this stage is a promising target for any control
measure of trematode diseases. This idea has fuelled nu-
merous studies on miracidial host-finding behavior and the
chemical nature of the snail-emitted cues. Owing to the
sensitivity with which T. szidati miracidia recognize mac-
romolecular glycoconjugates from their molluscan hosts
[15], traps baited with a synthetic, super-attractive snail
kairomone have been suggested [68]. However, miracidia
of two Trichobilharzia spp. have also been found to be
capable of distinguishing between susceptible and nonsus-
ceptible snail host species [15,69,70], and there is no reason
to assume that other bird schistosomes are less capable of
recognizing exclusively their specific host snail. Therefore,
it might be difficult to compose a universal miracidial
attractant for traps for all the different Trichobilharzia
species, but more research is needed.

Another approach for reducing infections of the specific
snail hosts is the introduction of large numbers of non-host
snails, which miracidia penetrate but then fail to develop
further. However, this so-called decoy effect was demon-
strated mainly in neotropical Schistosoma mansoni
strains, which seems to be less capable of species-specific
snail recognition [71,72]. Non-host snails were shown to be

unattractive for miracidia of T. szidati under simulated field
conditions [14]. Therefore, besides possible negative ecologi-
cal effects, the introduction of decoy snails does not appear to
be a promising measure to control swimmer’s itch.

With respect to biological measures, typical filter fee-
ders have a significant effect on free-swimming miracidia,
such as the annelid Chaetogaster limnaei, an ecto-commen-
sal living directly on the surface and in the mantle cavity of
freshwater snails; the annelid feeds upon miracidia
approaching the snail, as well as upon cercariae freshly
emerged from the snail [38]. In fact, evidence from experi-
mental [73] and field studies [74] suggests that an in-
creased presence of C. limnaei negatively correlates with
trematode infection in snails.

Snails and intramolluscan stages

The most obvious way to control bird schistosomes inside
their intermediate hosts is the reduction of the host snail
populations. For ecological reasons, the massive use of
molluscicides such as niclosamide in recreational lakes,
which often serve as wildlife sanctuaries, is definitely not
acceptable. By contrast, collecting potential host snails by
hand is a rather mild intervention. Although this was
regarded as a suitable option locally in some places [75],
it appears far too personnel-intensive and also not efficient
enough as a reasonable control strategy. Mechanical

Table 3. Possible preventive measures to control swimmer’s itch

Target Action Estimated effectiveness Estimated ecological impact

Final hosts and

adult worms

as targets

Hunting and scaring away waterfowl Low: waterfowl escape

hunting pressure

High

Avoiding feeding waterfowl Probably low but may help

to inform people

Low

Treatment of birds with

anthelminthics (praziquantel)

Medium: time-consuming

and labor-intense; probably

only works in areas with low

density of migratory waterfowl

Medium: small dosages given

to individual birds; total effects

unpredictable

Miracidia as targets Traps for miracidia ?a

Promising, but difficult

Low

Predators of miracidia ?a Hard to predict

Decoy snails

(non-host snails)

Probably low High

Snails as targets Manual removal of snails Probably low: labor-intense,

collecting all snails is impossible

Low

Mechanical destruction of

snails/disturbance of habitat

Medium: only local reduction

of snail density

Medium-high: local habitat disturbance

Use of molluscicides High High: severe ecological side

effects; not acceptable

Predators of snails ?a Hard to predict

Removal of vegetation

(indirect snail control)

Low: snails also in areas free

of vegetation

High

Intra-molluscan

stages as targets

Antagonistic trematode species ?a

Promising, but difficult

Hard to predict

Cercariae as targets Predators of cercariae ?a Hard to predict

Traps for cercariae ?a

Promising, but difficult

Probably low

Personal preventive

measures

Protective cream formulations High: effectively inhibit cercarial

penetration

None

Avoiding shallow waters Medium: cercariae can also be released

from snails in deeper water

None

Avoiding morning hours Medium: risk highest in morning, but

infections can occur throughout the day

None

Prohibition of bathing Absolute if restrictions are respected None

a?, unknown.
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crushing of snails on a large scale by dragging heavy,
harrow-like devices over shallow areas along the shore of
swimming lakes has led to a significant reduction in the
number of cases of swimmer’s itch in two lakes in Canada
and France [76,77]. However, this procedure requires good
accessibility with heavy machines and an even and solid
lake bottom substrate without larger obstacles. Further-
more, the effort and the expected effects should be carefully
balanced against the serious ecological damage. Hence, this
solution is probably applicable for bathing ponds or only
very locally in frequently visited parts of larger lakes.
Furthermore, the removal of aquatic vegetation has been
suggested to destroy snail habitats [75]. Nevertheless, suit-
able snail hosts may also occur in areas lacking aquatic
vegetation [78]. Biological control of snail populations by fish
has also been discussed in schistosomiasis areas (e.g.,
[32,79]); however, conclusive field data are still lacking.

An elegant biological method to control schistosomes
inside their snail hosts is the use of antagonistic trema-
todes. Contrary to schistosome intramolluscan sporocyst
stages that take up nutrients solely via their surface, other
digenean groups develop via rediae, larval stages with a
mouth and a pharynx; these not only feed on the snail’s
hepatopancreas but also on other coinfecting trematodes.
Laboratory and field studies have shown that echinosto-
matids outcompete and reduce/eliminate schistosomes in
the snails [80–83]. However, as some echinostome meta-
cercariae are a major pathogen, for example in amphibians
[37], only indigenous, sympatric non-pathogenic echinos-
tome species can be used for this purpose, which requires a
thorough investigation of the natural trematode fauna to
identify suitable candidate species in a given habitat.

The infective cercariae

Another auspicious target could be the actual causative
agent of swimmer’s itch, the furcocercariae emerging in
large numbers from infected snails. Here again, control
approaches for bird schistosomes could make use of the
experience gained in research efforts towards control
methods for Schistosoma spp. that are human pathogens.

Several aquatic organisms such as small fish [84], tur-
bellarians [85], and planktonic crustaceans [51,86] have
been shown to feed upon schistosome cercariae. However,
manipulating the faunal composition of a natural water
body to increase potential predators is probably not easy to
achieve and always a mixed blessing: high densities of
daphnids and copepods require eutrophic conditions from
which the host snails benefit as well. High numbers of fish
larvae feed not only on cercariae but also on daphnids and
copepods. Furthermore, in contrast to S. mansoni, for
example, the cercariae of Trichobilharzia spp. accumulate
at the water surface [54] and are thus not accessible to
several potential predators. The oligochaete C. limnaei is
probably the most promising candidate, and is frequently
associated with lymnaeid snails that serve as hosts for bird
schistosomes in temperate zones [38], but so far there is
nothing known about how its prevalence on snails can
actually be increased under natural conditions.

Traps for S. mansoni cercariae have been successfully
applied for monitoring cercarial densities, using polyunsat-
urated fatty acids as an attractant [87]. These compounds

resemble the lipid composition of human skin and stimulate
the cercariae to transform their tegument even without host
contact, which kills them due to the loss of their osmotic
protective surface [88,89]. Cercariae of Trichobilharzia spp.
respond to similar fatty acids (the reason for the erroneous
penetration of the human non-host) [18], which might have
the same cercaricidal effect. Here more research on ecologi-
cal non-hazardous derivates could provide another promis-
ing approach to tackle swimmer’s itch [68].

In summary, there are several possibilities to interrupt
the life cycle of the bird schistosomes causing swimmer’s
itch. Every measure against the different target stages has
pros and cons (Table 3), and not all options suggested from
laboratory experiments appear applicable or promising un-
der natural conditions, in lakes and recreational areas in
developed countries. Each strategy needs to be evaluated in
relation to the specific characteristics of a given locality, and
the economic effort and ecological interference should be
weighed against the expected risk and the actual necessity
to take action against an unpleasant and painful, but even-
tually not really dangerous disease. Of course, the situation
in a sparsely visited, ecologically-sensitive conservation
area differs completely from a bathing lake in a tourist
hot-spot. A useful and very successful procedure in one place
might appear as an economical and/or ecological disaster in
another site. There is definitely no patent remedy for all
affected water bodies, and none of the biological control
methods reviewed here could guarantee a complete disap-
pearance of swimmer’s itch. Furthermore, the total elimi-
nation of parasites that belong to a natural ecosystem is
highly questionable and may even be in conflict with the
European Water Framework Directive [59]. Nevertheless, if
carefully evaluated and competently organized, some of the
approaches described might prove to be mild but powerful
tools. Last but not least, applying biological methods for
controlling bird schistosomes in wealthy developed coun-
tries offer not only interesting scientific possibilities but
might equally serve for testing potential projects in devel-
oping countries where schistosomiasis in humans is a seri-
ous medical and socio-economic problem.

Personal preventive measures

In addition to the biological control and preventive mea-
sures, personal protective care and bathing behavior can
have effects on the risks of an infection in humans. Based
on the potential risk factors (Table 2), changes in bathing
behavior (e.g., avoiding swimming during morning hours
or in shallow waters) have been suggested to decrease the
risk of an infection [58,90]. Although such measures have
no negative ecological impact, their effectiveness is ques-
tionable because snail and trematode occurrence cannot be
restricted to regional clusters or temporal windows [78].
Cream formulations have shown to inhibit cercarial pene-
tration effectively, but current products are expensive and
may not be widely available [63]. Although total avoidance
of potentially infested waters appears the only effective
measure to ensure absolute protection, bathing restric-
tions may not be respected [62], and infections will still
occur. The personal protective measures can only help to
reduce the risk of obtaining swimmer’s itch but can never
provide absolute protection. It is therefore important to
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communicate the possible negative effects of swimming in
surface waters to the public [59] and provide adequate and
understandable information on the potential risks (e.g.,
information boards on swimmer’s itch at swimming sites).
This raised awareness will not only help to identify cases
better, and thus facilitate our understanding of the dis-
ease’s occurrence, but may also allow a factual discussion of
the problem free of exaggerated alarmism.
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Forschung (BMBF) program ‘Sustainable Water Management’.

Appendix A. Supplementary data
Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.pt.2012.12.002.

References
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