
 

 

 

Acid sphingomyelinase inhibition protects mice 

from lung edema and lethal Staphylococcus 

aureus sepsis 
 

Ph.D. thesis 

 

Inaugural-Dissertation 

zur 

Erlangung des Doktorgrades 

Dr. rer. nat. 

der Fakultät Biologie  

an der 

Universität Duisburg-Essen 

 

 

vorgelegt von 

Huiming Peng 

Hubei, P.R.China 

June 2015 

 



 

 

 

Die der vorliegenden Arbeit zugrundeliegenden Experimente wurden am Institut für 

Molekularbiologie (Tumorforschung) der Universität-Gesamthochschule Essen durchgeführt. 

 

 

1. Gutachter: Prof. Dr. Erich Gulbins 

 

2. Gutachter: Prof. Dr. Astrid Westendorf 

 

3. Gutachter: Prof. Dr. Andrea Musacchio 

 

Vorsitzender des Prüfungsausschusses: Prof. Dr. Andrea Musacchio 

 

 

Tag der mündlichen Prüfung: 27. Jan. 2016 



 

 

Parts of this thesis are published for publication in the following article: 

 

 

 

Huiming Peng, Cao Li, Stephanie Kadow, Brian D. Henry, Jörg Steinmann, Katrin Anne 

Becker, Andrea Riehle, Natalie Beckmann, Barbara Wilker, Pin-Lan Li, Timothy Pritts, 

Michael J. Edwards, Yang Zhang, Erich Gulbins, Heike Grassmé. Acid sphingomyelinase 

inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J Mol Med 

(2015) 93:675–689 

 



 

I 

INDEX 
INDEX ..................................................................................................................... I 
LIST OF FIGURES ................................................................................................ V 
ABBREVIATIONS ............................................................................................... VII 

1.  INTRODUCTION ............................................................................................................ 1 
1.1. Staphylococcus aureus (S. aureus) .................................................................................. 1 

1.1.1.  Overview of S. aureus ............................................................................................. 1 
1.1.2.  Evolution of S. aureus ............................................................................................. 2 
1.1.3.  Typing methods for S. aureus ................................................................................. 4 

1.2. Sepsis ............................................................................................................................... 6 
1.2.1.  Overview of sepsis .................................................................................................. 6 
1.2.2.  Sepsis pathogenesis ................................................................................................. 7 
1.2.3.  Mechanisms of acute lung injury (ALI) and acute respiratory distress syndrome 

(ARDS) ................................................................................................................. 11 
1.2.4.  ALI/ARDS therapy ............................................................................................... 13 

1.3. Ceramide-enriched membrane platforms ...................................................................... 14 
1.3.1.  Lipid interactions and domain formation .............................................................. 14 
1.3.2.  Ceramide synthesis and metabolism ..................................................................... 16 
1.3.3.  Acid sphingomyelinase (Asm) and ceramide-enriched membrane platforms ...... 18 
1.3.4.  Visualization of ceramide-enriched membrane domains ...................................... 20 
1.3.5.  Function of ceramide-enriched membrane platforms ........................................... 21 
1.3.6.  Asm/ceramide in bacterial infections .................................................................... 23 

1.4. Redox signaling ............................................................................................................. 27 
1.4.1.  Overview of Reactive oxygen species (ROS) ....................................................... 27 
1.4.2.  ROS production and regulation ............................................................................ 28 

1.5. Endothelial Barrier ........................................................................................................ 30 
1.5.1.  Overview of Endothelial Barrier ........................................................................... 30 
1.1.1.  Leukocytes and Endothelial Barriers .................................................................... 32 

1.6. Aims of the study .......................................................................................................... 34 

2.  MATERIALS .................................................................................................................. 36 
2.1. Chemicals ...................................................................................................................... 36 
2.2. Tissue culture materials ................................................................................................. 38 
2.3. Antibodies ..................................................................................................................... 39 
2.4. PCR primers .................................................................................................................. 39 
2.5. Cell lines ........................................................................................................................ 40 
2.6. Animals ......................................................................................................................... 40 
2.7. Radioactive substances .................................................................................................. 40 
2.8. Other materials .............................................................................................................. 41 
2.9. Special laboratory equipment ........................................................................................ 41 
2.10.  Buffer and Solutions ............................................................................................. 42 

3.  METHODS ..................................................................................................................... 45 



 

II 

3.1. Tissue culture techniques .............................................................................................. 45 
3.1.1.  Culture and passage of established cell lines ........................................................ 45 
3.1.2.  Freezing and thawing of cells ............................................................................... 45 

3.2. Infection experiments .................................................................................................... 46 
3.2.1.  Preparation of Staphylococus aureus (S. aureus) ................................................. 46 
3.2.2.  Infection cells with S. aureus ................................................................................ 46 
3.2.3.  Infection mice with S. aureus ............................................................................... 47 

3.3. Determination colony-forming units (CFUs) of S. aureus in the liver and spleen ....... 47 
3.4. Immunocytochemistry ................................................................................................... 48 
3.5. Histology ....................................................................................................................... 48 

3.5.1.  Preparation of the lung sample ............................................................................. 48 
3.5.2.  Hematoxylin and eosin staining ............................................................................ 48 
3.5.3.  Fluorescence staining for the lungs ....................................................................... 49 

3.6. Electron Spin Resonance Detection of Endothelial O2
.- ................................................ 49 

3.7. Asm activity assay ......................................................................................................... 50 
3.8. Ceramide measurement by DAG kinase assay ............................................................. 50 

3.8.1.  Lipid extraction and enzymatic reaction ............................................................... 50 
3.8.2.  Separation of lipids by Thin Layer Chromatography (TLC) ................................ 51 

3.9. Evans blue microvascular permeability analysis of lung edema ................................... 51 
3.10.  DNA techniques .................................................................................................... 52 

3.10.1. DNA isolation ....................................................................................................... 52 
3.10.2. Polymerase Chain Reaction (PCR) ....................................................................... 52 
3.10.3. Agarose gel electrophoresis .................................................................................. 53 

4.  RESULTS ........................................................................................................................ 54 
4.1. Asm deficiency prevent S. aureus-induced lung edema ............................................... 54 

4.1.1.  Asm deficiency mitigates pulmonary edema upon S. aureus infection ................ 54 
4.1.2.  Asm deficiency prevents neutrophil trafficking to the lung ................................. 55 

4.2. Infection of endothelial cells with S. aureus activates  Asm and leads to the 
production of ROS in a positive feedback loop ............................................................ 57 

4.2.1.  S. aureus infection rapidly activates the Asm ....................................................... 57 
4.2.2.  S. aureus infection also induces a marked formation of the ceramide ................. 58 
4.2.3.  S. aureus infection induces a rapid production of the ROS .................................. 59 
4.2.4.  Infection of endothelial cells with S. aureus activates Asm and leads to the 

production of ROS in a positive feedback loop .................................................... 60 
4.3. S. aureus induces degradation of junctional proteins via the Asm/ceramide system.... 61 

4.3.1.  Asm deficiency prevents degradation of junctional proteins upon S. aureus 
infection in vivo ..................................................................................................... 61 

4.3.2.  Asm and ROS are necessary to degradation of junctional proteins induced by S. 
aureus infection in vivo ......................................................................................... 66 

4.3.3.  Asm and ROS are necessary to degradation of junctional proteins induced by S. 
aureus infection in vitro ........................................................................................ 68 

4.4. Pharmacologic inhibition of Asm or ROS before systemic infection with S. aureus 
prevents lung edema ...................................................................................................... 69 



 

III 

4.4.1.  Pretreatment with amitriptyline, Tiron or NAC alleviates pulmonary edema upon 
S. aureus infection ................................................................................................ 69 

4.4.2.  Pretreatment with amitriptyline, Tiron or NAC decreases neutrophil trafficking 
into the lung .......................................................................................................... 71 

4.5. Treatment of already septic mice with amitriptyline prevents the development of lung 
edema ............................................................................................................................ 72 

4.5.1.  Treatment with amitriptyline 1 hr or 2 hrs post S. aureus-infection reduces 
pulmonary edema .................................................................................................. 72 

4.5.2.  Treatment with amitriptyline 1 hr or 2 hrs after S. aureus-infection prevents 
degradation of junctional proteins ........................................................................ 74 

4.5.3.  Treatment with amitriptyline 1hr or 2 hrs after infection prevents neutrophil 
trafficking into the lung tissue .............................................................................. 76 

4.6. The combination of amitriptyline and antibiotics in the very early time can be a novel 
therapy to S. aureus-induced sepsis .............................................................................. 78 

4.6.1.  The combination of amitriptyline and antibiotics contributes to bacteria killing . 78 
4.6.2.  The combination of amitriptyline and antibiotics inhibits neutrophil trafficking 

into the lung .......................................................................................................... 80 
4.6.3.  The combination of amitriptyline and antibiotics protects mice from tight 

junctional proteins degradation after S. aureus infection ..................................... 81 
4.6.4.  The combination of amitriptyline and antibiotics rescues mice form S. 

aureus-induced lung edema .................................................................................. 85 
4.7. The pharmacological treatment of lung edema and bacterial burden protects from 

lethality of S. aureus sepsis ........................................................................................... 87 
4.8. Control studies ............................................................................................................... 88 

4.8.1.  Amitriptyline, Tiron or NAC has no effect on EOMA cells ................................. 88 
4.8.2.  The drugs have no effect on lung parameters ....................................................... 89 

5.  DISCUSSION ................................................................................................................. 93 
5.1. Discussion of the Methods ............................................................................................ 93 

5.1.1.  Determination of Asm activity in cell lysates ....................................................... 93 
5.1.2.  Ceramide measurement by diacylglycerol (DAG) kinase assay ........................... 94 
5.1.3.  Detection of lung edema by Evans Blue Dye ....................................................... 96 
5.1.4.  Measurement of production of ROS by Electron Spin Resonance (ESR) ............ 97 
5.1.5.  Asm-deficient animals .......................................................................................... 98 

5.2. Discussion of the Results .............................................................................................. 99 
5.2.1.  Role of the Asm/ceramide system in redox signaling .......................................... 99 
5.2.2.  Role of ROS in Asm activation .......................................................................... 101 
5.2.3.  Role of the Asm/ceramide system and ROS for lung edema induced by systemic 

S. aureus infection .............................................................................................. 102 
5.2.4.  Role of junctional proteins degradation for lung edema induced by systemic S. 

aureus infection .................................................................................................. 104 
5.2.5.  Role of neutrophil recruitment for lung edema induced by systemic S. aureus 

infection .............................................................................................................. 106 
5.2.6.  Clinical significance of combination of amitriptyline and antibiotic ................. 107 
5.2.7.  Possible additional roles of Asm as activator of ADAM 10 ............................... 109 



 

IV 

5.2.8.  Possible additional roles of Asm as activator of the Nalp3 inflammasome ....... 110 
5.2.9.  Significances and perspectives ........................................................................... 111 

6.  SUMMARY................................................................................................................... 112 

7.  REFERENCES ............................................................................................................. 114 

8.  PUBLICATIONS ......................................................................................................... 140 

9.  ACKNOWLEDGEMENTS ......................................................................................... 141 

 



 

V 

 

LIST OF FIGURES 

Figure 1.2.2.1. Pathogenetic networks in septic shock ............................................................ 9 

Figure 1.2.2.2. Important components of the host response to sepsis .................................... 10 

Figure 1.2.3. Mechanism of lung edema ............................................................................. 12 

Figure 1.3.2.A. Ceramide formation in response to diverse stress stimuli ............................. 17 

Figure 1.3.2.B. Ceramide synthesis and metabolism .............................................................. 18 

Figure 1.3.4. Ceramide forms ceramide-enriched membrane platforms in the cell 

membrane ....................................................................................................... 21 

Figure 1.3.6. Functions of Asm and ceramide during bacterial infections ......................... 26 

Figure 1.4.1. Possible oxidant generating reactions with stimulated neutrophils. NOS, 

nitric oxide synthase; MPO, myeloperoxidase .............................................. 28 

Figure 1.5.1. Transcellular and paracellular permeability pathways across the 

microvascular endothelium ............................................................................ 31 

Figure 1.5.2. The stages of neutrophil extravasation .......................................................... 33 

Figure 4.1.1. Effect of Asm deficiency on pulmonary edema upon S. aureus infection .... 55 

Figure 4.1.2. Effect of Asm deficiency on neutrophil trafficking induced by S. aureus 

infection ......................................................................................................... 56 

Figure 4.2.1. S. aureus infection activates Asm .................................................................. 58 

Figure 4.2.2. S. aureus infection induced ceramide release ................................................ 58 

Figure 4.2.3. S. aureus-induced ROS, a process that depends on the Asm......................... 60 

Figure 4.2.4. S. aureus-induced Asm activation and ROS production form a positive 

feedback loop ................................................................................................. 61 

Figure 4.3.1. Effect of Asm deficiency on degradation of junctional proteins upon S. 

aureus infection in vivo .................................................................................. 66 

Figure 4.3.2. Inhibition of Asm and ROS prevents S. aureus-induced degradation of 

junctional proteins in vivo .............................................................................. 68 

Figure 4.3.3. Inhibition of Asm and ROS prevents S. aureus-induced degradation of 

junctional proteins in vitro ............................................................................. 69 



 

VI 

Figure 4.4.1. Effect of pharmacological Asm inhibition and neutralization of ROS on 

pulmonary edema upon S. aureus infection ................................................... 70 

Figure 4.4.2. Effect of amitriptyline, Tiron or NAC on neutrophil trafficking into lung 

tissue induced by S .aureus infection ............................................................. 72 

Figure 4.5.1. Amitriptyline treatment prevents lung edema in S. aureus-infected mice even 

after onset of the systemic infection .............................................................. 73 

Figure 4.5.2. Amitriptyline treatment prevents degradation of junctional proteins even if 

administered after S. aureus infection ........................................................... 76 

Figure 4.5.3. Amitriptyline treatment reduces S. aureus-induced neutrophil trafficking ... 78 

Figure 4.6.1. Effect of the combination of amitriptyline and antibiotics on bacteria killing79 

Figure 4.6.2. The combination of amitriptyline and antibiotics abrogates S. aureus-induced 

neutrophil trafficking into the lung ................................................................ 81 

Figure 4.6.3. The combination of amitriptyline and antibiotics inhibits degradation of 

pulmonary tight junctional proteins upon S. aureus infection ....................... 85 

Figure 4.6.4. The combination of amitriptyline and antibiotics inhibits lung edema upon S. 

aureus infection ............................................................................................. 86 

Figure 4.7. The pharmacological treatment of lung edema and bacterial burden protects 

from lethality of S. aureus sepsis ................................................................... 87 

Figure 4.8.1. Effect of amitriptyline, Tiron or NAC on the distribution of ZO1, ZO2, 

Occludin and E-cadherin in EOMA cells ...................................................... 89 

Figure 4.8.2. Effect of the drugs on lung parameters .......................................................... 92 

Figure 5.2.1. A hypothetic model showing lipid rafts (LRs) and LRs clustering to form a 

redox signaling platform .............................................................................. 101 

 

 



 

VII 

ABBREVIATIONS 

ADAM10 A-disintegrin and metalloprotease 10 

AIDS acquired immune deficiency syndrome 

AJ adherens junction 

ALI acute lung injury 

Ami Amitriptyline 

APC activated protein C 

ARDS acute respiratory distress syndrome 

Asm Acid sphingomyelinase 

BAL bronchoalveolar lavage 

CA-MRSA community acquired MRSA 

CFUs colony-forming units 

DAG diacylglycerol 

DAMP danger-associated molecular pattern 

E. coli Escherichia coli 

EDVD endothelium-dependent vasodilation 

ESR Electron Spin Resonance 

GM-CSF granulocyte-macrophage colony stimulating factor 

HA-MRSA hospital associated MRSA 

HIV human immunodeficiency virus 

HPLC high performance liquid chromatography 

HPTLC high performance thin layer chromatography 

IL interleukin 

LPS lipopolysaccharide 

LRs lipid rafts 

Methi Methicillin 

MLST Multilocus sequence typing 

MMPs matrix metalloproteinases 

MRSA methicillin-resistant S. aureus 



 

VIII 

MSOF multisystem organ failure 

MSSA methicillin-sensitive S. aureus 

NAC N-acetylcysteine 

NADPH nicotinamide adenine dinucleotide phosphate 

NLR NOD-like receptors 

NMR nuclear magnetic resonance 

Nox NADPH oxidases 

P. aeruginosa Pseudomonas aeruginosa 

PAF platelet-activating factor 

PAMPs pathogen-associated molecular patterns 

PDTC pyrrolidine dithiocarbamate 

PFGE Pulsed-field gel electrophoresis 

PFT Pore-forming cytotoxins 

PMN polymorphonuclear 

PRRs pattern-recognition receptors 

ROS Reactive oxygen species 

RP-HPLC reversed phase HPLC 

S. aureus Staphylococcus aureus 

SCCmec staphylococcal chromosomal cassette mec 

SIRS systemic inflammatory response syndrome 

SOD superoxide dismutase 

SSTI Skin and soft tissue infection 

ST sequence type 

TJ tight junction 

TLC Thin Layer Chromatography 

TLRs Toll-like receptors 

TRAIL TNF-related apoptosis-inducing ligand 

UV ultraviolet 

Vanco Vancomycin 

 



INTRODUCTION 

- 1 - 

1. INTRODUCTION 

1.1.  Staphylococcus aureus (S. aureus) 

1.1.1. Overview of S. aureus 

 

S. aureus was discovered in the 1880s (Ogston 1880, Ogston 1881, Ogston 1882a, Ogston 

1882b) and is a faculative pathogenic Gram-positive bacterium. Currently, S. aureus is one of 

the most virulent and common pathogens inside and outside hospitals and infections with S. 

aureus are associated with considerable morbidity and mortality (Laupland et al 2013, Tom et 

al 2014, van Hal et al 2012). 

 

Humans and other mammals are major reservoirs for S. aureus. Three out of ten people in the 

United States are asymptomatically colonized with S. aureus on their skin or mucous 

membranes, most commonly in the anterior nares (Gorwitz et al 2008). Some people are only 

intermittent carriers, and some carry the bacteria for longer periods. Nasal colonization with S. 

aureus increases the risk of developing serious infection by the same strain (von Eiff et al 

2001, Williams et al 1959), as when the bacterium is introduced into deeper tissues by cuts in 

the skin, in-dwelling catheters, aspiration, or surgery. Moreover, immune-deficient patients 

with advanced surgery, malignant diseases, prolonged stays in intensive care units and 

long-term care facilities and old patients are increasing since the beginning of the 21st century, 

which is another reason for S. aureus infections. 

 

Skin and soft tissue infection (SSTI) is the most common clinical manifestation of S. aureus 

disease (Hayward et al 2008, Lautz et al 2011), recent studies describe an increase in the 

incidence of SSTI in Australia and New Zealand over the past decade (O'Sullivan et al 2011, 

Vaska et al 2012, Williamson et al 2013, Williamson et al 2014). In addition to S. aureus 

SSTI, S. aureus also causes a spectrum of invasive infections, including osteomyelitis, 

necrotizing pneumonia, joint infections, endocarditis, sepsis, and death. In particular, S. 

aureus bacteremia is associated with considerable morbidity and mortality, with reported 
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global incidence rates varying between 14 and 41 per 100,000 population (El Atrouni et al 

2009, Laupland et al 2013), although it should be noted that differences in case ascertainment 

and study methodology limit comparisons between regions. 

 

1.1.2. Evolution of S. aureus 

In the pre-antibiotic era, prior to the introduction of penicillin for the treatment of S. aureus 

infections, the mortality rate of individuals with an S. aureus infection was about 80% 

(Skinner et al 1941). In 1929, Alexander Fleming reported his observations of the bactericidal 

effects of a fungal contaminant that produced penicillin, which can kill S. aureus on culture 

plates and is non-toxic to animals in enormous doses (Fleming 1929). Subsequently, with 

mass production of penicillin, the death rates from bacterial pneumonia and meningitis in 

World War II dramatically dropped, comparing to World War I (Neushul 1993).  

 

Alexander Fleming noted that the growth of E. coli and a number of other bacteria belonging 

to the colityphoid group was not inhibited by penicillin (Fleming 1929). Further work has 

been done to find the cause of the resistance of these organisms to the action of penicillin. In 

1940, an enzyme, which was called “penicillinase” and capable of hydrolyzing the active 

β-lactam ring in penicillin, was described in Escherichia coli (E. coli) (Abraham 1940). Soon 

thereafter, in 1944, penicillinase was extracted from penicillin resistant Staphylococci (Kirby 

1944). Later on, more and more penicillin-resistant S. aureus strains were observed in the 

hospital and community. Currently, 90 to 95% of all S. aureus strains are resistant to 

penicillin, with the plasmid encoded penicillinase readily transferable via transduction or 

conjugation. 

 

In 1961, 2 years after the introduction of methicillin, a penicillinase-resistant penicillin, the 

first strain of methicillin-resistant S. aureus (MRSA) was reported in a United Kingdom 

hospital due to the acquisition of the mecA gene (Eriksen 1961). This gene encodes for a 

penicillin-binding protein (PBP2a) which is expressed in the bacterial cell wall and which has 

a low affinity for β-lactam antibiotics. Thus, this group of antibiotics can’t disrupt the 

synthesis of the peptidoglycan layer of bacteria and is ineffective against bacteria expressing 
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this gene. As a consequence, S. aureus will survive. There is evidence that strains of 

methicillin-sensitive S. aureus (MSSA)  became methicillin resistant through the acquisition 

of the SCCmec element, probably from coagulase-negative staphylococcal strains, and that 

this has occurred on multiple occasions (Robinson et al 2004). The gene encoding meticillin 

resistance, mecA, is part of a larger genetic element known as the staphylococcal 

chromosomal cassette mec (SCCmec) (Ito et al 2001). The SCCmec element contains the 

mecA gene, chromosomal cassette recombinase (ccr) genes, mec regulatory genes and a 

junkyard region which contains non-essential components of SCCmec (Deurenberg et al 

2008). 

 

In recent years MRSA is now reported in about 60 to 70% of all S. aureus isolates found 

worldwide. There are now almost 100,000 cases of life threatening MRSA infections in the 

U.S. each year, evidences from the Centers for Disease Control and Prevention suggest with 

about 19,000 related deaths, more than the number of deaths from acquired immune 

deficiency syndrome (AIDS), which is induced by human immunodeficiency virus (HIV) 

(Klevens et al 2007). 

 

Glycopeptides, such as vancomycin, are the treatment of choice for infections due to MRSA. 

Unfortunately, up to now, three vancomycin-resistant MRSA isolates have been reported 

from the US since 2002 (Boyce et al 2005, Courvalin 2006, Weigel et al 2007). By far, the 

biggest threat in S. aureus is the spread of vancomycin-resistant MRSA isolates. Lack of 

previous or additional reports of vancomycin-resistant MRSA isolates might be because of 

lack of detection (several of those isolates had vancomycin intermediate susceptibility) or to 

lack of stability of the plasmid-mediated vancomycin-resistant determinants in S. aureus 

(Perichon et al 2004). However, a recent report indicates that a single plasmid transfer from 

vancomycin-resistant enterococci to MRSA may be sufficient for expression of resistance 

(Weigel et al 2007).  

 

Linezolid, quinupristin-dalfopristin, tigecycline, ceftopibrole and daptomycin are all available 

therapeutic options for treating vancomycin-resistant MRSA infections since they are all 
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active in vitro against those isolates. However, the clinical efficacy of the best antibiotic 

combinations remains to be determined using animal models of infection since we 

(fortunately) have not faced outbreaks with those isolates to this day. 

 

1.1.3. Typing methods for S. aureus 

For the first three decades after their appearance, MRSA strains typically have remained 

hospital associated MRSA (HA-MRSA). In addition, since the 1990s, in an unexpected 

epidemiological ‘move’, MRSA strains also began to appear in the community among people 

who had none of the usual risk factors for such infections. Such community acquired MRSA 

(CA-MRSA), characterized by the presence of the toxin Panton-Valentine leukocidin, spread 

worldwide, first in the community, but later on also in healthcare facilities. At this moment, 

the distinction between CA-MRSA and HA-MRSA is beginning to fade (Lowy 1998, Lowy 

2003). 

 

A thorough knowledge of the spread and the molecular evolution of MRSA is required to 

effective develop strategies to control the dissemination of MRSA. Therefore, several typing 

methods have been developed during the last decades. MRSA strains can be typed using both 

phenotypic and molecular methods. There are many phenotypic typing methods, including the 

use of colonial characteristics, biochemical reactions, antibiotic susceptibility pattern, 

susceptibility to various phages and toxin production. The most important molecular typing 

methods in current use comprise pulsed-field gel electrophoresis, multilocus sequence typing, 

SCCmec typing and spa locus typing (Aires de Sousa et al 2004). 

 

Pulsed-field gel electrophoresis (PFGE). As one of the earlier molecular methods, PFGE 

remains the most popular technique to differentiate MRSA isolates. In PFGE for S. aureus, 

the chromosomal DNA is digested with the restriction enzyme SmaI, and the obtained DNA 

fragments are separated by agarose gel electrophoresis in an electric field with an alternating 

voltage gradient. The resulting banding patterns are analyzed using a special software package 

(Tenover et al 1995). The advantage of this method is that it provides great discrimination 

between strains and is useful in the investigation of outbreaks by allowing differentiation of 



INTRODUCTION 

- 5 - 

unrelated strains. Disadvantages associated with the method relate principally to difficulties 

with inter-laboratory comparison of results. Thus reliable comparison of strains between 

regions and internationally is not always possible. 

 

Multilocus sequence typing (MLST). MLST is based on the sequence analysis of fragments 

of seven S. aureus housekeeping genes, i.e. arcC, aroE, glpF, gmk, pta, tpi and yqiL, each 

approximately 500-bp in length (Enright et al 2000). The DNA sequences are compared to 

those of previously identified alleles at each locus on the MLST online database 

(http://www.mlst.net). Each allele is given a number, and a string of seven numbers then 

represents the allelic profile designated sequence type (ST) of an isolate. The MLST scheme 

for S. aureus was developed in 2000 and the details of more than 1500 isolates are available at 

the S. aureus MLST website http://saureus.mlst.net (Enright 2006). The advantage of MLST 

is that the geographic source and clinical information on each isolate can be stored with its 

sequence online, making it useful for international and local surveillance purposes. 

Disadvantages associated with MLST are the economic and time-consuming costs of 

performing seven PCRs and 14 DNA-sequencing reactions per isolate. 

 

SCCmec typing. Seven major SCCmec types and their subtypes, which range in size from 20 

to 67 kb, are defined by combinations of different classes of mec and ccr genes (Chongtrakool 

et al 2006). The SCCmec gene cluster evolves rapidly and becomes another target for 

sequencing methods to differentiate MRSA strains. Unfortunately, a major disadvantage of 

such a method is that it is not feasible for routine applications, since the relative large number 

of PCR reactions that are needed to determine the structure of SCCmec are time consuming 

(Kondo et al 2007).  

 

Spa locus typing. Typing of a single locus zone in the polymorphic region X of S. aureus 

protein A (spa) has also become increasingly popular during recent years (Frenay et al 1996, 

Moodley et al 2006). The diversity of the spa gene, consisting mainly of a number of repeats 

of 24 bp in length, is attributed to point mutations, as well as to deletions and duplications of 

the repeats (Kahl et al 2005, Shopsin et al 1999). Spa typing is less expensive and 
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time-consuming than MLST and can be used to study both the molecular evolution as well as 

inter-hospital comparisons since it requires sequencing of one locus. 

 

In summary, although a lot of knowledge on the spread of MRSA clones has been gained in 

last decades, there are still a number of questions unanswered. Further investigations, 

addressing both basic research and performing epidemiological studies, are needed to 

understand completely the molecular evolution of S. aureus. 

 

1.2. Sepsis  

1.2.1. Overview of sepsis 

Sepsis is a very heterogeneous clinical syndrome broadly defined as the systemic host 

response to an infection. Indeed, sepsis can be initiated by any microorganism, whether it is 

bacterial, fungal, viral, parasitic, or by microbial products and toxins, and is then propagated 

by a complex network of inflammatory mediators and cellular dysfunction. 

 

In 1989, Roger Bone and colleagues proposed the term “sepsis syndrome” for the first time to 

define patients who have severe sepsis, by establishing a set of clinical parameters (Bone et al 

1989). Sepsis syndrome was defined as hypothermia (less than 96 ⁰F [35.5 ⁰C]) or 

hyperthermia (greater than 101 ⁰F [38.3 ⁰C])； tachycardia (greater than 90 beat/min); 

tachypnea (greater than 20 breath/min)； clinical evidence of an infection site； and the 

presence of at least one end-organ demonstrating inadequate perfusion or dysfunction 

expressed as poor or altered cerebral function, hypoxemia (PaO2 less than 100 mbar on room 

air), elevated plasma lactate， or oliguria (urine output less than 30 mL/h or 0.5 mL/kg body 

weight/h without corrective therapy) (Bone et al 1989). If untreated, the patient may develop 

systemic inflammatory response syndrome (SIRS), septic shock and multisystem organ 

failure (MSOF), which are the deadly forms of the disease. 

 

The most common sites of bacterial infection are the lungs, abdominal cavity, the skin, the 

urinary tract and primary infections of the blood stream. A microbiological diagnosis is made 
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in about half the cases; Gram-negative bacteria account for about 60% of cases, 

Gram-positive for the remainder (Alberti et al 2002, Angus et al 2001). 

 

Sepsis remains a significant problem in medical management, with an annual worldwide 

incidence of approximately 18 million cases with an associated 30-40% mortality rate (Blanco 

et al 2008, Karlsson et al 2007). In the U.S. alone, approximately 750,000 patients annually 

are diagnosed with sepsis, with a mortality rate ranging from 30% to 50% (Angus et al 2001). 

Most patients with sepsis are admitted to intensive care units and are on mechanical 

ventilation. The U.S. Center for Disease Control and Prevention indicates that sepsis is one of 

the top ten leading causes of death in the U.S., and estimates the annual costs for the treatment 

of patients with sepsis are estimated to exceed $17 billion (Angus et al 2001). Sepsis may be 

responsible for a majority of the mortality associated with significant public health concerns 

such as malaria, tuberculosis, HIV/AIDS and others. What’s more, the incidence of sepsis 

increases annually probably mainly due to an increase in the number of immunocompromised 

patients, increase in antibiotic resistance and the aging population. 

 

Unfortunately, very few new treatments have been introduced over the past several decades 

although many people are working in the field. Current management of septic patients is 

predominantly non-specific, relying on a range of interventions such as intravenous fluids and 

medications, antibiotics, mechanical ventilation, nutritional support and corticosteroid therapy. 

Therefore, there is an urgent need for new effective treatments for sepsis. 

 

1.2.2. Sepsis pathogenesis 

Sepsis develops when the host response to a pathogen or a microbial toxin is accelerated to an 

inappropriate degree. The immune system relies on a process of molecular pattern recognition 

to determine the appropriate immunologic response to a foreign protein. These bacterial 

motifs, which are recognized by the innate immune system, have been named 

pathogen-associated molecular patterns (PAMPs) or microorganism-associated molecular 

patterns (Janeway et al 1998). In Gram-negative bacteria, lipopolysaccharide (LPS; known 

also as endotoxin) correlates with the ability to activate host cell membranes. In Gram- 
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positive bacteria, identified structural components in the bacteria cell wall account for their 

biological activity since there is no endotoxin in these type of bacteria (Majcherczyk et al 

1999, Morath et al 2001). However, Gram-positive bacteria can also produce potent exotoxins, 

which exhibit the properties of super antigens and cause massive T-cell activation and release 

of pro-inflammatory lymphokines, suggesting a plausible role for these toxins as a cause of 

the profound shock that is seen in patients with toxic shock (Lavoie et al 1999). 

 

PAMP’s as well as other danger-associated molecular pattern (DAMP) molecules will bind to 

their receptors in the host cell membrane and begin a process of intracellular signaling and 

cellular activation: On one hand, the mechanisms involve widespread fibrin deposition 

causing microvascular occlusion, the development of tissue exudates further compromising 

adequate oxygenation, and disorders of microvascular homeostasis resulting from the 

elaboration of vasoactive substances such as platelet-activating factor (PAF), histamine and 

prostanoids (Anderson et al 1991). On the other hand, cellular infiltrates, particularly 

neutrophils, damage tissue directly by releasing lysosomal enzymes and superoxide-derived 

free radicals. TNF-α and other cytokines increase the expression of the inducible nitric oxide 

synthase and increased production of nitric oxide causes further vascular instability (Azevedo 

et al 2006) and may also contribute to the direct myocardial depression that occurs in sepsis 

(Landry et al 2001). Microvascular occlusion and vascular instability results in coagulopathy, 

fever, vasodilation and capillary leak, ultimately sepsis and multiple organ failure (Cohen 

2002) (Figure 1.2.2.1.). 
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Figure 1.2.2.1. Pathogenetic networks in septic shock 
 

Lipopolysaccharide (LPS) and other microbial components simultaneously activate multiple parallel 

cascades that contribute to the pathophysiology of adult respiratory distress syndrome (ARDS) and 

septic shock. The combination of poor myocardial contractility, impaired peripheral vascular tone and 

microvascular occlusion results in tissue hypoperfusion and inadequate oxygenation, and finally 

multiple organ failure (Cohen 2002). 

 

During a very long time, the prevailing concept of the pathogenesis of sepsis was that 

mortality is the consequence of an uncontrolled hyper-inflammatory response of the host. The 

disappointing results of nearly 40 years of anti-inflammatory strategies and the development 
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of animal models that more closely mimic clinical sepsis have led to the reconsideration of 

the pathophysiology of sepsis. Sepsis is now considered a misbalance between 

pro-inflammatory reactions (designed to kill invading pathogens but at the same time 

responsible for tissue damage) and anti-inflammatory responses (designed to limit excessive 

inflammation, but at the same time making the host more vulnerable for secondary infections) 

(Anas et al 2010) (Figure 1.2.2.2.).  

 

 

Figure 1.2.2.2. Important components of the host response to sepsis    

 

The interaction between pathogens and the host is mediated initially via an interaction between 

PAMPs (pathogen associated molecular pathogens) and TLRs (Toll-like receptors). The resulting 

innate response of immune cells can result in a balanced reaction leading to pathogen elimination and 

tissue recovery or an unbalanced reaction that on the one hand can lead to exaggerated inflammation 

and tissue injury and on the other hand to immune suppression caused by immune cell apoptosis (Anas 

et al 2010).    

In addition, new players have been described in the field of vascular dysfunction, such as 

platelet-derived microparticles, which are associated with apoptosis of vascular cells and 

cardiac failure (Azevedo et al 2007). However, the correlation of these pathways to outcome 

is so far poorly understood. 
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1.2.3. Mechanisms of acute lung injury (ALI) and acute respiratory distress syndrome 
(ARDS) 

Currently, the incidence of ALI and ARDS in the USA has been reported to be 79 and 59 per 

100,000 people per year, respectively (Bernard et al 1994, Herridge et al 2005, Peek et al 

2006, Rubenfeld et al 2005, Wheeler et al 2007). Based on the growth of the population, the 

incidence will likely double in the next 25 years (Rubenfeld et al 2005).  

 

The highest incidence of ALI is seen during sepsis, with approximately 25% of all ARDS 

cases stemming from severe sepsis (Brun-Buisson et al 2004) and 42.8% of sepsis was 

pneumonia (Blanco et al 2008). Moreover, ALI/ARDS are associated with a lethality of 

approximately 40%, accounting for around 75,000 deaths per year in the USA (Rubenfeld et 

al 2005, Wheeler et al 2007). 

 

ALI/ARDS was first described in 1967 (Ashbaugh et al 1967) and a large body of research 

has been ongoing in order to understand ALI/ARDS and to improve the clinical outcomes of 

this entity. ALI/ARDS is a clinical syndrome, characterized by the acute onset of severe 

hypoxemia with diffuse bilateral infiltrates in the chest radiograph and without evidence of 

left atrial hypertension. The difference between both entities is the degree of hypoxemia. In 

ALI, the ratio of arterial oxygen tension (PaO2) to the fraction of inspired oxygen (FiO2) is ≤

300, while in ARDS it is ≤200 (Bernard et al 1994). 

 

The pathophysiology of ALI/ARDS is not completely understood. Initially, a direct 

pulmonary or indirect extrapulmonary insult is believed to cause a proliferation of 

inflammatory mediators that promote neutrophil accumulation in the microcirculation of the 

lung. These neutrophils activate and migrate in large numbers across the vascular endothelial 

and alveolar epithelial surfaces, releasing proteases, cytokines, and reactive oxygen species. 

This migration and mediator release lead to pathologic vascular permeability, gaps in the 

alveolar epithelial barrier, and necrosis of type I and II alveolar cells. This, in turn, leads to 

the pulmonary edema, hyaline membrane formation, and loss of surfactant that decrease 

pulmonary compliance and make air exchange difficult. Subsequent infiltration of fibroblasts 
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can result in collagen deposition, fibrosis, and further progression of the disease (Matthay et 

al 2003, Matthay et al 2005, Ware et al 2000). 

 

Increased permeability of microvascular barriers, resulting in extravascular accumulation of 

protein-rich edema fluid, is a cardinal feature of acute inflammation and a central 

pathophysiologic mechanism in ALI and ARDS (Figure 1.2.3.) (Bachofen et al 1977, 

Matthay et al 2003, Ware et al 2000).  

 

Neutrophils are proposed to have an important role in mediating ALI. When recruited to a site 

of infection/inflammation, they exert a variety of beneficial functions (phagocytosis, 

production of reactive oxygen species and nitric oxide species, and degranulation of lytic 

enzymes) that, when well regulated, enable clearance of the invading pathogen. However, it is 

also hypothesized that the recruitment of activated PMNs may be potentially harmful when 

these same functions are dysregulated and directed at otherwise normal host tissue, 

culminating in injury and organ damage.  

 

 

Figure 1.2.3. Mechanism of lung edema 
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(A) Disrupted alveolar barrier function, resulting in increased permeability to water, proteins, and 

other solutes, is a hallmark of clinical and experimental ALI. Intra-alveolar accumulation of 

neutrophils, other leukocytes, erythrocytes and inflammatory mediators is also associated with altered 

endothelial and epithelial barrier function. (B) Disruption of VE-cadherin bonds is a central 

mechanism of altered endothelial barrier function in experimental ALI and in models of sepsis and 

systemic vascular destabilization. Disruption of VE-cadherin bonds also facilitates transendothelial 

migration of leukocytes and, in some studies, is associated with accumulation of leukocytes and 

platelets in microvessels (Matthay 2003).  

 

1.2.4. ALI/ARDS therapy 

Despite the importance of ALI/ARDS healthcare issue, very few new treatments have been 

introduced over the past three decades, and the mortality and morbidity rates of ALI/ARDS 

-related conditions remains high. Current management of ALI/ARDS patients is 

predominantly non-specific, relying on a range of interventions such as intravenous fluids and 

medications, antibiotics, mechanical ventilation, nutritional support, corticosteroid therapy, 

and prevention of stress ulcers and venous thromboembolism (Adhikari et al 2004, Briel et al 

2010, Dellinger et al 2008, Geerts et al 2008, Lin et al 2010, National Heart et al 2006, Peter 

et al 2008, Petrucci et al 2013). 

 

Despite the large amount of research elucidating the molecular mechanisms underlying ALI/ 

ARDS, the investigation of pharmacologic therapies has led almost exclusively to negative 

results, often in contrast to very promising results in animal studies. Although some animal 

studies support the potential efficacy of anti-inflammatory therapies for decreasing lung 

injury, clinical trials have not demonstrated a convincing reduction in mortality using 

granulocyte-macrophage colony stimulating factor (GM-CSF) or glucocorticoids, antioxidants, 

or anticytokine therapies that were tested in patients with sepsis (Bernard et al 1987, Bernard 

et al 1997, Meduri et al 1998, Meduri et al 2007, Paine et al 2012, Steinberg et al 2006). 

Although pulmonary hypertension and lung vascular injury are important features of ALI and 

ARDS, vasodilator therapies including prostaglandin E1 and nitric oxide have not reduced 

mortality (Abraham et al 1999, Taylor et al 2004). Treatment to accelerate the resolution of 

pulmonary edema with aerosolized or intravenous β-adrenergic agonists also failed to 

improve survival (Gao Smith et al 2012). Nutritional supplement with ω-3 fatty acid may be 
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harmful (Rice et al 2011). 

 

Newer approaches, such as targeting the coagulation system, have been considered. 

Recombinant human activated protein C (APC) was found to reduce 28-day mortality in 

patients with severe sepsis (Bernard et al 2001). However, follow-up studies among patients 

with severe sepsis and a low risk of death and in children with severe sepsis were negative 

(Abraham et al 2005, Nadel et al 2007). Furthermore, a recent trial of APC has provided 

evidence that this anticoagulant and anti-inflammatory agent does not have efficacy for 

patients with severe sepsis, the most lethal cause of ALI and ARDS (Ranieri et al 2012). 

Strategies and rationale for anticoagulants for ALI and ARDS will now need to be 

reevaluated. 

 

Explanations for these outcomes are likely multifactorial, the lack of efficacy of many of 

these agents does raise the question of whether or not these treatments may perform better in 

more homogeneous cohorts of patients. Therefore, further research is needed to recommend 

any of these agents. Without therapeutic product currently approved for treatment of 

ALI/ARDS, there is clearly an urgent need for new effective and affordable treatments.  

 

1.3. Ceramide-enriched membrane platforms 

1.3.1. Lipid interactions and domain formation 

The biological membranes of eukaryotic cells are comprised mainly of sphingolipids, 

(glycerol-) phospholipids and cholesterol. Sphingolipids are characterized by a 1, 

3-dihydroxy-2-aminoalkane backbone, also named sphingoid base (Hakomori 1983). 

Sphingosine, the most prevalent backbone of mammalian sphingolipids refers to (2S, 3R, 

4E)-2-amino-4-octadecene-1, 3-diol. Sphingoid bases vary in length of the alkyl chain and 

position and number of the double bonds. Ceramide is generated from sphingosine by 

attachment of a fatty acid via an amide ester bond. The fatty acids in the ceramide moiety also 

vary in chain length and saturation. Thus, ceramide is composed of D-erythro-sphingosine 

and a fatty acid usually containing 2–32 carbon atoms in the acyl chain that are connected 
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via an amide ester bond. Ceramides are further modified by attachments of headgroups to 

form sphingomyelin, gangliosides, sulfatides, globosides or cerebrosides, for example, 

forming sphingomyelin by reaction with phosphorylcholine (Barenholz et al 1980, Kolesnick 

et al 2000). The most prevalent membrane sphingolipid is sphingomyelin, which consists of a 

very hydrophobic ceramide moiety (a D-erythro-sphingosine bound to a fatty acid by an amide 

ester) and a hydrophilic phosphorylcholine headgroup (Hakomori 1983). The acyl chain of the 

fatty acid may contain 2 to 32 carbon atoms. 

 

In 1972, Singer and Nicolson described the fluid mosaic model of the cell membrane; this 

model suggested a random distribution of lipids and proteins in the cell membrane, which was 

in a liquid-disordered phase. This model predicted free movement of proteins in the lipid 

bilayer, which was based on biophysical experiments that determined the melting 

temperatures of lipids (Singer et al 1972). However, biophysical studies in the last 15 years 

revised this model and suggested the formation of small domains in the cell membrane that 

exist in a liquid-ordered phase and thus form distinct domains in the cell membrane (Brown et 

al 1998, Simons et al 1997). 

 

Sphingomyelin is the most prevalent cellular sphingolipid and synthesized on the luminal side 

of the Golgi apparatus or the plasma membrane. Thus, it localizes predominantly to 

anti-cytoplasmic leaflets of the cell membrane and intracellular vesicles (Emmelot et al 1975, 

Futerman et al 1990, Jeckel et al 1990). This distribution pattern of sphingomyelin, which 

results in lipid bilayer asymmetry, is critical for the genesis of distinct membrane domains 

and, as discussed below, signal transduction. Sphingomyelin consists of a highly hydrophobic 

ceramide moiety and a hydrophilic phosphorylcholine headgroup (Barenholz et al 1980, 

Kolesnick et al 2000). Sphingolipids interact with each other via hydrophilic interactions 

between the sphingolipid headgroups (Brown et al 1998, Kolesnick et al 2000, Simons et al 

1997). In addition, sphingolipids, and in particular the predominant sphingolipid 

sphingomyelin, interact with cholesterol via hydrogen bonds with the hydroxy group in the 

cholesterol molecule and via hydrophobic van der Waal interactions between the ceramide 

moiety and the sterol ring system. These binding forces result in a relatively tight interaction 
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between these lipids and in the spontaneous formation of domains that are in the 

liquid-ordered phase or even of gel-like domains with higher melting temperatures than other 

phospholipids in the cell membrane (Brown et al 1998, Kolesnick et al 2000, Simons et al 

1997). These distinct sphingolipid- and cholesterol-enriched membrane domains were named 

rafts (Simons et al 1997). Recent microscopy studies of cell membranes using the STET 

technique suggest that these rafts have a diameter of less than 20 nm (Eggeling et al 2009). 

Cholesterol and some cholesterol precursors not only interact with sphingolipids but also 

seem to fill the void spaces between bulky sphingolipids and, sterically, to stabilize 

sphingolipid- and cholesterol-enriched domains (Megha et al 2004, Xu et al 2001). Extraction 

of cholesterol from rafts by interference with the cholesterol metabolism employing drugs 

such as filipin, nystatin or methyl-beta-cyclodextrin (Keller et al 1998) destroys rafts 

supporting the critical role of cholesterol for the integrity of at least some rafts. 

 

However, at present only indirect evidence exists to support the presence of rafts in cells 

under in vivo conditions, for instance at physiological temperature. The concept of rafts is still 

somewhat controversial (Munro 2003), since the use of detergents employed in most studies 

characterizing rafts may change the membrane and only cause the formation of rafts (Munro 

2003). Recently, Brugger and co-workers suggested the lipid composition of HIV particles 

released from living cells (Brugger et al 2006). This study demonstrated a high concentration 

of sphingolipids and cholesterol in the viral coat suggesting that viral budding occurs in 

distinct domains of the cell membrane that are enriched with these lipids arguing that rafts 

exist in vivo. 

 

1.3.2. Ceramide synthesis and metabolism 

Diverse stress stimuli, such as cytokines, environmental stress and chemotherapeutic or 

anti-cancer drugs (Hannun et al 2002, Senchenkov et al 2001, Spiegel et al 2002) (Figure 

1.3.2.A.) induce ceramide formation, and therefore ceramide is involved in the regulation of 

cell growth, differentiation, cell cycle arrest and apoptosis. 
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Figure 1.3.2.A. Ceramide formation in response to diverse stress stimuli 

 

Ceramide formation is induced in response to environmental stress, ionic/ultraviolet radiation, heat, 

hypoxia, reperfusion, cytokines and growth factors, tumor necrosis factor, interferon-gamma and 

interleukin-1-beta as well as chemotherapeutic agents/anticancer drugs (Pandey et al 2007). 

 

The hydrolysis of sphingomyelin is catalyzed by the activity of acid, neutral, or alkaline 

sphingomyelinase and results in the generation of ceramide (Gulbins et al 2003, Hannun et al 

2008, Quintern et al 1989). Further, ceramide is generated in membranes by a de novo 

pathway involving the enzyme ceramide synthase (Kolesnick et al 2000) (Figure 1.3.2.B.). 

Recent studies further revealed three additional pathways for the formation of ceramide, i.e. 

by the reverse activity of the acid ceramidase catalyzing synthesis of ceramide from 

sphingosine (Okino et al 2003), by hydrolysis of complex glycosylated lipids (Ishibashi et al 

2007) and by hydrolysis of ceramide-1-phosphate (Mitra et al 2007). Ceramide can also be 

converted into other sphingolipids, such as ceramide-1-phosphate, sphingosine, and 

sphingosine-1-phosphate. 
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Figure 1.3.2.B. Ceramide synthesis and metabolism 

 

Ceramide can be generated from the sphingomyelin via sphingomyelinase pathway (sphingomyelin 

metabolism), degradation of glycosylated sphingolipids or via the de novo synthesis pathway where 

cells synthesize ceramide from serine and palmitoyl-CoA (de novo synthesis). Ceramide can be further 

converted into other sphingolipids such as ceramide-1-phosphate, glycosylated ceramide, sphingosine 

and sphingosine-1-phosphate (Becker et al 2010a).  

 

 

1.3.3. Acid sphingomyelinase (Asm) and ceramide-enriched membrane platforms 

Acid sphingomyelinase (Asm) is the first and best-characterized sphingomyelinase and 

previous study already showed the enzyme critically involved in many forms of cell 

activation reviewed for instance by Gulbins et al. (Gulbins et al 2003). There are two forms of 

Asm, a lysosomal Asm and a secretory Asm that are both derived from the same gene, but 

differ in their glycosylation pattern and are also differentially processed at the NH2-terminus 

(Schissel et al 1998a). Most of Asm seems to reside in classical lysosomes, where it mediates 

the catabolism of sphingomyelin. Asm-deficiency leads to the accumulation of sphingomyelin 

and a lysosomal storage disorder named Niemann-Pick disease type A and B. Many studies 

suggested that the pool of Asm insecretory lysosomes seems to participate in signal 

transduction events (Bao et al 2010, Grassmé et al 2001a, Herz et al 2009, Schissel et al 1996, 

Schissel et al 1998b). Appropriate cellular activation triggers the fusion of secretory 
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lysosomes and the cell membrane, and this fusion results in the exposure of Asm on the outer 

leaflet of the cell membrane (Bao et al 2010, Herz et al 2009).  

 

Usually, Asm hydrolyzes sphingomyelin to ceramide, preferentially at an acidic pH. However, 

because other lipids crucially influence the Michaelis-Menten constant (Km) of the enzyme to 

its substrate, the enzyme seems to be able to hydrolyze sphingomyelin also under almost 

neutral PH conditions (Schissel et al 1996, Schissel et al 1998a). Since Asm is predominantly 

present in the outer leaflet of the cell membrane (Calderon et al 1997, Grassmé et al 2001a, 

Grassmé et al 2001b), the hydrolysis of sphingomyelin results in ceramide-enriched 

membrane domains that are primarily in the outer leaflet of the cell membrane, or in general 

in anti-cytoplasmic leaflets of cellular membranes. 

 

Changes in the glycosylation pattern of Asm result in the expression of a secretory form of 

Asm that is released upon stimulation, for instance via interleukin-1 receptors (Schissel et al 

1996, Schissel et al 1998b). Further, several studies demonstrated that stimuli such as CD95, 

DR5 and CD40 or infection with some pathogenic bacteria and viruses mobilize intracellular 

vesicles/secretory lysosomes, a process that results in exposure of Asm on the outer leaflet of 

the cell membrane (Cremesti et al 2001, Dumitru et al 2006, Grassmé et al 2001a, Grassmé et 

al 2002b, Grassmé et al 2003a, Grassmé et al 2003b, Grassmé et al 2005). 

 

Lysosomal Asm and secretory Asm hydrolyze sphingomyelin from the plasma membrane and 

generate ceramide within cell membranes. The release of ceramide within the cell membrane 

alters the biophysical characteristics of membranes, because they spontaneously self-associate 

to small, highly hydrophobic, and ordered ceramide-enriched membrane microdomains 

(Holopainen et al 1998, Kolesnick et al 2000, Nurminen et al 2002). These microdomains 

spontaneously fuse to larger ceramide-enriched membrane domains, also named membrane 

platforms, that can reach a width of up to 5 µm (Gulbins et al 2003). Ceramide-enriched 

membrane platforms seem to be very hydrophobic and stable, since ceramide molecules are 

highly packed and ordered. Furthermore, the presence of ceramide excludes cholesterol 

molecules from membrane domains, at least in artificial membranes, suggesting that ceramide 
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also changes the composition of rafts (Megha et al 2004, Megha et al 2006) with an increased 

concentration of ceramide and a decreased concentration of cholesterol, respectively. 

 

1.3.4. Visualization of ceramide-enriched membrane domains 

The formation of ceramide-enriched membrane platforms in the plasma membrane upon 

generation of ceramide might be critical for the signaling function of ceramide, which were 

demonstrated by several methods in vivo and in vitro.  

 

First, activation of several receptors, such as CD95, DR5, CD40, and the platelet-activating 

factor receptor, but also some bacterial and viral infections or stress stimuli, trigger the 

surface exposure of Asm and the formation of ceramide-enriched membrane platforms by 

fluorescence and electron microscopy (Cremesti et al 2001, Dumitru et al 2006, Grassmé et al 

2001a, Grassmé et al 2002b, Grassmé et al 2003a, Grassmé et al 2003b, Grassmé et al 2005) 

(Figure 1.3.4.). Secondly, studies on phosphatidylcholine/sphingomyelin-composed 

unilamellar vesicle that were treated with sphingomyelinase immobilized onto a microbead 

confirmed the formation of ceramide-enriched membrane macrodomains (Holopainen et al 

1998, Nurminen et al 2002). Furthermore, in vitro studies also indicated the formation of 

distinct membrane domains by magnetic resonance spectroscopy and atomic force 

microscopy studies, which revealed laminar phase separation of long chain ceramides in 

glycerol-phospholipid/cholesterol bilayers and formation of stable, distinct domains that 

correspond with a transition of fluid phospholipid bilayers into a gel-like phase  (Huang et al 

1999, ten Grotenhuis et al 1996, Veiga et al 1999). Finally, Ira and Johnston used a 

combination of atomic force microscopy and total internal reflection fluorescence to directly 

visualize clustering of small membrane domains into larger domains in artificial membranes 

composed of 1, 2-dioleoyl-sn-glycero-3-phosphocholine/sphingomyelin/cholesterol mixtures 

upon treatment with Bacillus cereus sphingomyelinase to generate ceramide or incubation 

with C16-ceramide. The studies revealed that enzymatic hydrolysis of sphingomyelin to 

ceramide in model membranes resulted in very rapid reorganization of the membrane, 

clustering of domains and the formation of larger distinct domains that presumably 

correspond to ceramide-enriched membrane domains. The addition of C16-ceramide also 
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resulted in the formation of larger domains in these bilayers, albeit with different kinetics and 

less impact on membrane organization (Ira et al 2008).  

 

 
 

Figure 1.3.4. Ceramide forms ceramide-enriched membrane platforms in the cell membrane 

 

Jurkat T cells (0.5 x·106 cells/sample) were centrifuged for 5 min at 1400 rpm, resuspended in 90 µl 

PBS. Cells were rested for 8 min at 37 ℃, shaked at 400 rpm, and treated with 1 µM C16 ceramide for 

5 min. Cells were fixed in 1% PFA for 20 min, washed once, unspecific binding sites were blocked 

with 2% fetal calf serum (FCS) and stained with anti-ceramide antibody clone 15B4 (1:20 dilution). 

Cells were incubated on ice for 45 min, washed once and incubated for 45 min on ice with 100 µl of a 

Cy3 F (ab) 2 fragment of a donkey anti-mouse IgM (1:300). Cells were washed once and analyzed on 

a fluorescence microscope (Grassmé et al 2007).  

 

1.3.5. Function of ceramide-enriched membrane platforms 

Ceramide-enriched membrane domains may have several biological functions. First, the 

composition and fluidity of ceramide-enriched membrane domains differ from the 

surrounding areas in biological membranes, which are perfect structures to sort proteins in 

cells and to provide a mean for the spatial re-organization of receptors and/or intracellular 

signaling molecules within these membrane domains. Trapping and clustering of activated 

receptors in ceramide-enriched membrane domains was demonstrated for CD95, DR5, or 

CD40 (Dumitru et al 2006, Grassmé et al 2001a, Grassmé et al 2002a, Grassmé et al 2002b), 

but many more receptors may use the mechanism of clustering to reach a very high density in 

circumscribed areas of the cell membrane. The reorganization of receptors within 

ceramide-enriched membrane domains results in a very high receptor density within a 

relatively small area of the cell membrane, which is required for the transmission of signals 
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via many receptor molecules. Receptor aggregation and trapping in ceramide-enriched 

membrane domains may limit lateral diffusion and, thus, stabilize the interaction of a ligand 

with its receptor, in particular if the ligand is also trapped in distinct membrane domains. The 

interaction of ligand-bound receptors with the very hydrophobic ceramide-enriched 

membrane platform and/or individual ceramide molecules may in addition stabilize 

conformational changes that may occur upon activation of a receptor by its ligand. 

Furthermore, ceramide-enriched membrane domains may sort intracellular signalling 

molecules, for instance via farnesyl or geranyl-moieties, which may result in the spatial 

association of activated receptors with signalling molecules that transmit the signal from the 

receptor into the cell, while at the same time inhibitory molecules are excluded from this area 

of the cells. Thus, in general, ceramide-enriched membrane platforms may primarily function 

to re-organize receptor and signaling molecules in and at the cell membrane to facilitate and 

amplify signaling processes via a specific receptor.  

 

Second, in addition to its function in membrane platforms, ceramide was also shown to 

directly interact and regulate several molecules including cathepsin D (Heinrich et al 1999), 

phospholipase A2 (Huwiler et al 2001), kinase suppressor of Ras (identical to 

ceramide-activated protein kinase) (Zhang et al 1997), ceramide-activated protein 

serine-threonine phosphatases(CAPP) (Dobrowsky et al 1993), protein kinase C isoforms 

(Muller et al 1995) and c-Raf-1 (Yao et al 1995). A direct binding of ceramide was 

demonstrated for cathepsin D (Heinrich et al 1999), phospholipase A2 (Huwiler et al 2001) 

and CAPP (Chalfant et al 2004, Dobrowsky et al 1993), although at present the details and the 

specificity of ceramide-protein interactions are still unknown except for cathepsin D. 

Cathepsin D binds ceramide within a short domain of the cathepsin D molecule, which 

triggers the autocatalytic cleavage of cathepsin D to its active form and promotes, via still 

unknown mechanisms, the translocation of active cathepsin D from lysosomes into the 

cytoplasm where cathepsin D triggers cell death via Bid, Bax and Bak (Heinrich et al 1999, 

Schneider-Brachert et al 2004). Ceramide might facilitate the transport of cathepsin D over 

the double membrane by forming a hydrophobic coat around the protein, the formation of 

ceramide channels (Siskind et al 2000) or by a very short disruption of the membrane bilayer. 
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Third, ceramide has been shown to regulate several ion channels. Ceramide inhibits the 

potassium channel Kv1.3 and the calcium release activated calcium channel in lymphocytes 

(Bock et al 2003, Gulbins et al 1997, Lepple-Wienhues et al 1999, Szabo et al 1996). This is 

also consistent with the finding that Kv1.3 localizes to ceramide-enriched membrane domains 

after stimulation via CD95 (Bock et al 2003, Lepple-Wienhues et al 1999). However, these 

studies do not exclude that ceramide also affects ion channels by a direct interference or by 

the change of the lipid composition in ceramide-enriched membrane platforms. The calcium 

release activated calcium channels that are central in the regulation of cellular Ca2+ 

concentrations and, thus, involved in multiple cellular pathways (Lee et al 2004), are also 

inactivated upon stimulation of cells via CD95 (Hannun et al 2000) or the TNF-receptor 

(Zemann et al 2007) or upon treatment with synthetic ceramides, C2, C6 and C16-ceramides, 

respectively. Genetic deficiency of the Asm abrogated the inhibition of the calcium release 

activated calcium channels by CD95 and TNF-receptor stimulation. Finally, 

ceramide-molecules seem to form channels or pores, at least in the outer mitochondrial 

membrane (Siskind et al 2000, Siskind et al 2006). These channels might be important for the 

induction of apoptosis, although it is unknown whether ceramide pores are also formed in 

vivo. The regulation of ion channels by ceramide is a poorly investigated field, although its 

potential for many physiological and pathophysiological processes appears immense. 

 

In summary, ceramide-enriched membrane domains serve the temporal and spatial 

organization of signaling molecules to regulate multiple cell functions. However, the 

mechanisms responsible for the action of ceramide on these downstream targets are not fully 

understood.  

 

1.3.6. Asm/ceramide in bacterial infections 

Asm/ceramide in internalization of bacteria. Numerous studies, using either genetic 

deficiency of pharmacological inhibition of Asm, demonstrated that the activation of Asm and 

the concomitant release of ceramide upon the infection of human epithelial and myeloid cells 

with Neisseria gonorrhoeae (Grassmé et al 1997, Hauck et al 2000), the infection of 
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endothelial cells with S. aureus (Esen et al 2001), the infection of pulmonary epithelial cells 

and fibroblasts with Pseudomonas aeruginosa (P. aeruginosa) (Grassmé et al 2003b), the 

infection of immature dendritic cells with Escherichia coli (Falcone et al 2004), the infection 

of macrophages with Listeria monocytogenes (Utermohlen et al 2003) or Salmonella 

typhimurium (McCollister et al 2007), and the infection of mononuclear cells with 

Mycobateria avium (Utermohlen et al 2008), resulted in uptake of the bacteria (Figure 

1.3.6.A.). The bacteria very rapidly activate the enzyme, induce a rapid surface translocation 

of the Asm and trigger the release of ceramide and, thus, the formation of ceramide-enriched 

membrane platforms, which seem to be central for the uptake of pathogens. 

 

Asm/ceramide in bacterial killing. Infection of macrophages with Listeria monocytogenes 

(Utermohlen et al 2008) or Salmonella typhimurium (McCollister et al 2007) results in 

intracellular killing of the bacteria. In wild-type macrophages, the phagosome rapidly fuses 

with the lysosome to form a phago-lysosome and to kill and digest the bacteria. In contrast, 

Asm-deficient macrophages were unable to kill the bacteria. Studies with Listeria 

monocytogenes also demonstrated that Asm deficient macrophages impaired the maturation 

and fusion of intracellular phagosomes with lysosomes and led to development of sepsis and 

greatly increased mortality of Asm deficient mice (Schramm et al 2008, Utermohlen et al 

2003). Moreover, Yang and colleagues showed that the Asm is also required to produce ROS 

upon infection, which also kills the pathogens. Deficiency of the Asm prevents ROS release 

and reduces bacterial killing (Zhang et al 2008) (Figure 1.3.6.B.).  

 

Asm/ceramide in cell death induced by bacterial infection. In addition to mediating the 

internalization of pathogens and fusion of intracellular vesicles, Asm and ceramide have been 

shown to be also crucial for the induction of cell death on infection of endothelial cells with S. 

aureus (Esen et al 2001), on infection of immature dendritic cells with E. coli (Falcone et al 

2004), on infection of pulmonary epithelial cells and fibroblasts with P. aeruginosa (Grassmé 

et al 2003b, Kannan et al 2008). The molecular mechanisms by which Asm and ceramide are 

involved in induction of cell death are still not well-known. Below is a summary of possible 

mechanisms: a. Ceramide-enriched membrane platforms cluster CD95 and induce cell death 



INTRODUCTION 

- 25 - 

on infection of epithelial cells with P. aeruginosa (Becker et al 2012, Grassmé et al 2000). b. 

Ceramide-enriched membrane platforms are required to internalize P. aeruginosa, induce 

apoptosis and regulate the cytokine response in infected cells. Impaired bacterial killing in 

Asm-deficient mice induced overwhelming inflammation and cell death (Grassmé et al 2003b, 

Kannan et al 2006) (Figure 1.3.6.C.). 

 

Asm/ceramide in cytokine release induced by bacterial infection. The release of cytokines, 

which is moderately increased in the lungs of wild-type mice upon infection, is uncontrolled 

and exaggerated in Asm-deficient mice infected with P. aeruginosa, resulting in a cytokine 

storm and the death of the mice (Grassmé et al 2003b). This finding is confirmed by Kannan 

and co-workers’ work (Kannan et al 2006). However, the mechanisms that mediate the 

activation of Asm and cytokines release by P. aeruginosa require definition. 

 

Asm/ceramide in host survival. Our group revealed that Asm/ceramide are critical for the 

internalization of P. aeruginosa into epithelial cells and fibroblasts, the induction of death of 

infected cells, and controlled release of cytokines critical, finally facilitating the mice survival 

P. aeruginosa infection (Grassmé et al 2003b). Schramm and colleagues ascertained the role 

of Asm/ceramide in Listeria monocytogenes infection by demonstrating that Asm-deficient 

macrophages showed impaired phagolysosome fusion and maturation correlated with severe 

sepsis and increased mortality of Asm-deficient mice (Schramm et al 2008). Moreover, recent 

studies showed that Asm-deficienct mice controled the bacteria in small granulomas to protect 

the mice from uncontrolled inflammation upon Mycobacteria avium infection, but not 

wild-type mice (Utermohlen et al 2008). 
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Figure 1.3.6. Functions of Asm and ceramide during bacterial infections 

 

Asm functions in the outer leaflet of the cell membrane to mediate internalization of pathogens (A) 

and in lysosomes to mediate fusion of phagosomes with lysosomes (B). Asm also seems to be 
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involved in maturation of phagolysosomes (B). Finally, surface and intracellular ceramide generated 

by Asm activity is important for induction of cell death upon infection with some pathogens (C) 

(Grassmé et al 2008). 

 

1.4. Redox signaling 

1.4.1. Overview of Reactive oxygen species (ROS) 

ROS are chemically reactive molecules containing oxygen. Examples include oxygen ions 

and peroxides. ROS are formed as a natural byproduct of the normal metabolism of oxygen 

and have important roles in cell signaling and homeostasis (Devasagayam et al 2004). Various 

ROS (Figure 1.4.1.), including O2
.-, H2O2, 

.OH, and ONOO.-, participate in cell signaling 

under certain physiological or pathological conditions. The most important of these ROS is 

O2
.-, which is unstable and short-lived because it has an unpaired electron, and it is highly 

reactive with a variety of cellular molecules, including proteins and DNA. O2
.- is reduced to 

H2O2 by superoxide dismutase (SOD), an enzyme which catalyzes the dismutation of 

superoxide radicals (O2
.- + O2

.- + 2H+ -- O2 + H2O2) (McCord et al 1969). Both O2
.- and H2O2 

can diffuse from their sites of generation to other cellular locations. H2O2 is further reduced to 

generate the highly reactive .OH through the Haber-Weiss or Fenton reaction under 

pathological conditions. In contrast to O2
.- and H2O2, 

.OH is highly reactive and, therefore, 

causes primarily local damage. In addition, O2
.- can also interact with NO to form another 

reactive oxygen free radical, ONOO.-. Under physiological conditions, O2
.- preferably 

produces H2O2 via the dismutation reaction. However, when excess O2
.- is produced, a 

substantial amount of O2
.- reacts with NO to produce ONOO.- (Figure 1.4.1.).  
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Figure 1.4.1. Possible oxidant generating reactions with stimulated neutrophils. NOS, nitric 

oxide synthase; MPO, myeloperoxidase (Hampton et al 1998) 

 

1.4.2. ROS production and regulation 

O2
.- is the progenitor of other ROS. In mammalian cells, many pathways are involved in the 

production of O2
.-, including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, 

xanthine oxidase, mitochondrial respiration chain, and NO synthase-uncoupling. NADPH 

oxidase has been detected in nearly every tissue, and in many cells, such as those in 

phagocytes and vascular cells, it is the primary source of ROS. Recent studies suggest that 
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NADPH oxidase localizes to specific subcellular compartments, including lamellipodial focal 

complexes and focal adhesions, membrane ruffles, caveolae and lipid rafts, endosomes, 

sarcoplasmic reticulum, and the nucleus. NO synthases normally localize in caveolae and 

function as homodimers to synthesize NO. When exposed to oxidative or nitrosative stress, 

NOS becomes structurally unstable (“uncoupling state”) and exhibits NADPH oxidase 

activity resulting in O2
.- formation. Given that ROS are short-lived and diffusible, the 

localization of ROS signals in specific subcellular compartments suggests that mammalian 

cells contain temporally and spatially organized redox signaling pathways that regulate 

various cellular functions. 

 

An antioxidant is a molecule that inhibits the oxidation of other molecules. Oxidation is 

a chemical reaction that transfers electrons or hydrogen from a substance to an oxidizing 

agent. Oxidation reactions can produce free radicals. In turn, these radicals can start chain 

reactions. When the chain reaction occurs in a cell, it can cause damage or death to the cell. 

Antioxidants terminate these chain reactions by removing free radical intermediates, and 

inhibit other oxidation reactions. They do this by being oxidized themselves, so antioxidants 

are often reducing agents such as thiols, ascorbic acid, or polyphenols (Sies 1997).  

 

ROS formation and redox signaling are well known to play a major role in physiology as well 

as in a variety of pathologies. For instance, in the heart, cardiomyocyte differentiation, and 

excitation-contraction coupling are under tight redox control (Burgoyne et al 2012, Steinberg 

2013). On the other hand, cardiac pathologies, such as ischemia/reperfusion injury, heart 

failure, and arrhythmias can be prevented or blocked by inhibiting specific processes that 

result in ROS generation in several experimental models (Anderson et al 2014, Kaludercic et 

al 2014, Takimoto et al 2007, Youn et al 2013). Thus, it appears that pro-oxidant generation 

and antioxidant defense need to be tightly regulated (Chance et al 1979). Indeed, disruption of 

redox signaling and control, and imbalance in favor of pro-oxidant species is defined 

oxidative stress, term first coined in 1985 (Jones 2006, Sies et al 1985). Conversely from 

pathological modifications (Chance et al 1979, Powers et al 2008), it appears that 
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physiological redox signaling is characterized by reversible oxido-reductive modifications, 

confined both spatially and temporally in subcellular compartments and microdomains. 

 

1.5. Endothelial Barrier 

1.5.1. Overview of Endothelial Barrier 

The vascular endothelium lining the inner surface of blood vessels serves as the first interface 

for circulating blood components to interact with cells of the vascular wall and surrounding 

extravascular tissues. In addition to regulating blood delivery and perfusion, a major function 

of vascular endothelia, especially those in exchange microvessels (capillaries and 

postcapillary venules), is to provide a semipermeable barrier that controls blood-tissue 

exchange of fluids, nutrients, and metabolic wastes while preventing pathogens or harmful 

materials in the circulation from entering into tissues. 

 

Blood fluid, solutes, and even circulating cells can cross the endothelium via two routes: 

through the cell body (transcellular), or between the cells (paracellular, or intercellular)(Mehta 

et al 2006) (Figure 1.5.1.). The transcellular pathway, which contributes very little to the 

leakage of events in pathophysiological conditions, includes vesicle-mediated endocytosis, 

vacuole-vesicular organelles (VVOs) and regulated water channels (aquaporins). On the other 

hand, the paracellular pathway, which is responsible for the majority of leakage of blood fluid 

and proteins across the microvascular endothelium under pathophysiological conditions, is 

mainly mediated by junctional proteins (Figure 1.5.1.). 
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Figure 1.5.1. Transcellular and paracellular permeability pathways across the microvascular 

endothelium  

 

Barrier function of the microvasculature is provided by closely apposed endothelial cells of 

themicrovessel walls. The thin layer of endothelium is attached to the microvascular basement 

membrane via endothelial membrane-bound integrins. Endothelial cells are joined together by 

intercellular junction proteins that allow the selective passage of solutes and fluids across the 

endothelium. Intercellular junctions can become more porous, or even form large-sized gaps under 

pathophysiological conditions. The glycocalyx forms a selective filter across the endothelial luminal 

surface, forming an additional permeability barrier. Solutes can also traverse the cell interior via 

receptor-mediated vesicle endocytosis originating at caveolae, or via vacuole-vesicular organelles 

(VVOs) that can fuse with trafficking vesicles and form open transcellular pores. Transcellular water 

transport can occur in parallel with other fluxes, through regulated water channels (aquaporins) in the 

endothelial cell membrane (Yuan et al 2010). 

 

 

Two types of intercellular junctions have been characterized as the cell–cell adhesive barrier 

structures in the microvascular endothelium: the adherens junction (AJ) and tight junction 

(TJ) (Komarova et al 2010, Mehta et al 2006). The former has been identified in nearly all 

types of vascular beds, especially in the peripheral microvasculature. Vascular endothelial 

(VE)–cadherin is believed to be the most important protein in forming the molecular basis, as 

well as regulating the function of AJs. Intracellularly, VE–cadherin is connected to the actin 

cytoskeleton via a family of catenins (α-, β-, γ-, and p120-catenins) (Mehta et al 2006). Thus, 

the stability of the VE–cadherin–catenin–cytoskeleton complex is essential to the 

maintenance of endothelial barrier function (Alcaide et al 2008, Sallee et al 2006, Vincent et 

al 2004). 
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Endothelial tight junctions are composed of interactions of tight junction proteins: occludin, 

claudins, and JAM-A (Abbott et al 2010, Hawkins et al 2005, Mehta et al 2006), which are 

connected to the actin cytoskeleton via zona occludens proteins (ZO-1, ZO-2) and α-catenin. 

ZO proteins play both structural and signaling roles in tight junctions (Hawkins et al 2005, 

Shen et al 2009). 

 

During host defense against infection or tissue injury, endothelial barrier dysfunction occurs 

as a consequence as well as cause of inflammatory responses. Endothelial barrier dysfunction 

is characterized by leakage of fluid, proteins, or small molecules, measured as excessive flux 

of these molecules across the endothelium (termed hyper-permeability), and clinically 

manifests as accumulation of plasma-like, protein-rich fluid in the extravascular space leading 

to tissue swelling (termed edema) (Yuan et al 2010).  

 
1.1.1. Leukocytes and Endothelial Barriers  

Endothelial hyper-permeability occurs following trauma, pathogen infection, or chronic 

disease states, which is a generalized response to inflammation (Kumar et al 2009, Lush et al 

2000). A hallmark of inflammation is extravasation of leukocytes from the blood to the tissue 

across the microvascular endothelium (Cavanagh et al 1998, Lewis et al 1986, Nathan 2006). 

Leukocytes, which are white blood cells circulating in the blood, include lymphocytes 

(T-cells, B-cells, and natural killer cells), monocytes, and polymorphonuclear (PMN) 

granulocytes (neutrophils, eosinophils, and basophils) (Moser et al 2010). 

 

Neutrophil extravasation is a multi-stage process: rolling, activation, adhesion, and 

transmigration, requiring complex interactions of PMNs or other leukocytes with the 

microvascular endothelium (Figure 1.5.2.) (Butcher 1991, Kubes 2002). Leukocyte 

trans-endothelial migration occurs in response to endothelial hyper-permeability caused by 

bacterial invasion or tissue inflammatory injury. In the presence of a compromised 

microvascular endothelial barrier, leukocytes can become immobilized by firm adhesion to 

the micro-vessel luminal surface and cross the endothelium into the tissues step by step. 
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Generally, PMNs are the first leukocyte cell type to arrive at the site of barrier dysfunction 

(Nathan 2006). After and/or during transmigration across the micro-vessel wall, PMNs will 

become activated and undergo a respiratory burst, characterized by release of granule 

secretions of numerous compounds (Lewis et al 1986), which can attack and liquify tissue 

surrounding the compromised vasculature (pus formation) (Nathan 2006). PMNs also secrete 

chemokines or induce endothelial expression of chemokines (Middleton et al 1997) to attract 

other leukocytes (macrophages, monocytes, and immune cells) to the site of inflammation. 

Hence, leukocyte activation and migration across the endothelium are both cause and 

consequence of endothelial hyper-permeability and barrier dysfunction (Nathan 2006). 

 

 

 

Figure 1.5.2. The stages of neutrophil extravasation 

 

Neutrophil transmigration is a sequential process of (1) rolling along the microvessel wall, (2) firm 

adhesion to the endothelium (via interactions with cell surface adhesion molecules), (3) diapedesis 

(transmigration) coordinated by interactions between cell surface glycoproteins, followed by migration 

into the extravascular space, and (4) neutrophil activation, characterized by granule secretions of 
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hyper-permeability-inducing agents (oxygen free radicals (O2
.-), NO, cytokines, and arachidonic acid 

metabolites: leukotriences and prostaglandins), further contributing to barrier dysfunction (Yuan et al 

2010). 

 

1.6. Aims of the study 

Sepsis is a devastating and complex syndrome and continues to be a major cause of morbidity 

and mortality among critically ill patients at the surgical intensive care unit setting in the 

United States (Angus et al 2001, Dombrovskiy et al 2007, Kung et al 2008, Martin et al 2003, 

Melamed et al 2009, Russell 2006). Antibiotics alone are often insufficient to cure patients 

with S. aureus–induced sepsis. Although treatment with effective doses of bactericidal 

antibiotics indeed prevents the bacterial burden, antibiotics often fail to prevent fatal lung 

edema after septic infection with S. 

aureus. 

 

Our group has demonstrated that Asm/ceramide system activates several receptors, mediates 

entry of several microorganisms into cells and participates in signal transduction events. 

Particularly, we discovered S. aureus infection activates the Asm/ceramide system, and 

finally induces apoptosis of human endothelial cells (Esen et al 2001). However, it is 

unknown whether the Asm/ceramide system also plays an important role in endothelial cells 

injury and lethal lung edema induced by systemic S. aureus infection. The endothelium is a 

highly dynamic cell layer that is involved in a multitude of physiological functions, thus, it is 

very important to emphasize the potential value of the endothelium as a target for lethal lung 

edema therapy in sepsis. 

 

The present thesis first defines the role of Asm in regulating lung edema induced by systemic 

S. aureus infections. Because ceramide is an important signaling molecule that regulates redox 

signaling (Zhang et al 2007), the present study further investigated whether lung edema induced 

by S. aureus infections is prevented by Asm deficiency. The importance of Asm for lung injury 

was tested in Asm-deficient mice. 
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Furthermore, the mechanism of Asm activation inducing lung edema was addressed. It was 

investigated whether S. aureus infections induces activation of Asm, subsequent ceramide 

release and activation of ROS, leading to degradation of tight junctions, neutrophils trafficking 

and lung edema. 

 

The last part of the study focused on the clinical significance of the Asm/ceramic system in a S. 

aureus sepsis. It was tested whether treatment of already septic mice with Asm inhibitor 

amitriptyline prevents the development of lung edema and whether the combination of 

amitriptyline and antibiotic prevents sepsis. 

 

Our results will increase the understanding of the signaling mechanism that Asm deficiency 

protects lung edema induced by S. aureus infections. Moreover, the study will announce a 

novel approach to treat severe systemic and often lethal infections and to prevent lung injury in 

patients with incipient sepsis. 
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2. MATERIALS 

2.1. Chemicals 

Aqua ad Injectabilia DeltaSelect GmbH, Dreieich 

Acetic acid (C2H4O2) Merck, Darmstadt 

Acetone Sigma-Aldrich Chemie GmbH, Steinheim 

Adenosine Tri-Phosphate (ATP) Sigma-Aldrich Chemie GmbH, Steinheim 

Amitriptyline Sigma-Aldrich Chemie GmbH, Steinheim 

β-mercaptoethanol Sigma-Aldrich Chemie GmbH, Steinheim 

Bromphenol blue Sigma-Aldrich Chemie GmbH, Steinheim 

C16-Ceramide  Biomol, PA, USA 

Calcium chloride (CaCl2) Sigma-Aldrich Chemie GmbH, Steinheim 

Cardiolipin Sigma-Aldrich Chemie GmbH, Steinheim 

Chloroform (CHCl3) Ridel-de Haen, Seelze 

CDP-STAR with Nitro-Block II enhancer PerkinElmer, Boston, USA 
DABCO (1,4-Diazabicyclo(2,2,2)octane) Sigma-Aldrich Chemie GmbH, Steinheim 

Deoxycholic acid (C24H40O4) Sigma-Aldrich Chemie GmbH, Steinheim 

Dithiothreitol (DTT) Carl-Roth GmbH & Co, Karlsruhe 

Dimethylsulfoxid (DMSO) Sigma-Aldrich Chemie GmbH, Steinheim 

Eosin (gelblich) E.Merk, Darmstadt 

Ethidium bromide Sigma-Aldrich Chemie GmbH, Steinheim 

Ethanol (C2H5OH) Sigma-Aldrich Chemie GmbH, Steinheim 

Ethylenediamine Tetraacetic Acid 

(EDTA) 

Serva Electrophoresis GmbH, Heidelberg 

Evan’s Blue Dye Sigma-Aldrich Chemie GmbH, Steinheim 

Eukitt® quick-hardening mounting 

medium 

Formamide                             

Sigma-Aldrich Chemie GmbH, Riedstrasse  

Sigma-Aldrich Chemie GmbH, Steinheim    
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Glucose Sigma-Aldrich Chemie GmbH, Steinheim 

Glycerol  Fluka Chemie GmbH, Buchs 

H2DCFDA Molecular Probes, Eugene, OR 

HEPES Carl-Roth GmbH & Co, Karlsruhe 

Hydrochloric acid (HCl) Sigma-Aldrich Chemie GmbH, Steinheim 

Hematoxylin Carl-Roth GmbH & Co, Karlsruhe 

Imidazole (C3H4N2)  Sigma-Aldrich Chemie GmbH, Steinheim 

Isopropanol Sigma-Aldrich Chemie GmbH, Steinheim 

Ketamine Ceva Tiergesundheit GmbH, Duesseldorf 

Magnesium chloride (MgCl2) Sigma-Aldrich Chemie GmbH, Steinheim 

Magnesium sulphate (MgSO4) Sigma-Aldrich Chemie GmbH, Steinheim 

Methanol (CH3OH) Fluka Chemie GmbH, Buchs 

Methicillin Sigma-Aldrich Chemie GmbH, Steinheim 

Mowiol Kuraray Specialities Europe GmbH, 

Frankfurt 

N-acetylcysteine Sigma-Aldrich Chemie GmbH, Steinheim 

N-octylglucopyranoside Sigma-Aldrich Chemie GmbH, Steinheim 

Paraformaldehyde (PFA) Sigma-Aldrich Chemie GmbH, Steinheim 

Paraplast plus Tissue Embedding Medium Leica Microsystems GmbH, Netherlands 

Pepsin Invitrogen, Frederick, USA 

Phosphatase inhibitor Sigma-Aldrich Chemie GmbH, Steinheim 

Potassium chloride (KCl) Sigma-Aldrich Chemie GmbH, Steinheim 

Potassium dihydrogenphosphate 

(KH2PO4) 

Sigma-Aldrich Chemie GmbH, Steinheim 

Protease inhibitor Carl-Roth GmbH & Co, Karlsruhe 

RPMI-1640 Gibco/Invitrogen, Karlsruhe, Germany 

Saponin Serva Electrophoresis GmbH, Heidelberg 

Sodium acetate (CH3COONa)   Sigma-Aldrich Chemie GmbH, Steinheim 

Sodium chloride (NaCl) Carl-Roth GmbH & Co, Karlsruhe 
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Sodium dodecyl sulphate (SDS)   Serva Electrophoresis GmbH, Heidelberg 

Sodium fluoride (NaF)   Sigma-Aldrich Chemie GmbH, Steinheim 

Sodium hydroxide (NaOH) Sigma-Aldrich Chemie GmbH, Steinheim 

Sodium phosphate (Na2HPO4)    Merck, Darmstadt 

Sodium pyrophosphate (Na4P2O7) Sigma-Aldrich Chemie GmbH, Steinheim 

Surgipath Paraplast Leica Microsystems GmbH, Netherlands 

Taq Polymerase   Invitrogen, Karlsruhe, Germany 

Tiron Fluka Chemie GmbH, Buchs 

Tryptic soy broth (TSB)   BD Biosciences, Heidelberg, Germany 

Tris-HCl and Tris-Base Carl-Roth GmbH & Co, Karlsruhe 

Triton X-100   Sigma-Aldrich Chemie GmbH, Steinheim 

Tween-20 Sigma-Aldrich Chemie GmbH, Steinheim 

Vancomycin Sigma-Aldrich Chemie GmbH, Steinheim 

Xylazin   Ceva Tiergesundheit GmbH, Duesseldorf 

Xylene Applichem GmbH, Darmstadt, Germany 

 

2.2. Tissue culture materials 

Cell dissociation buffer enzyme-free Gibco/Invitrogen, Karlsruhe 

DMEM (EAGLE) Gibco/Invitrogen, Karlsruhe 

Fetal Calf Serum (FCS) Gibco/Invitrogen, Karlsruhe 

L-Glutamine Gibco/Invitrogen, Karlsruhe 

MEM non-essential aminoacids Gibco/Invitrogen, Karlsruhe 

Penicilin/Streptomycin Gibco/Invitrogen, Karlsruhe 

Sodium pyruvate Gibco/Invitrogen, Karlsruhe 

Tissue culture flasks 75 cm² TPP, Trasadingen, Switzerland 

Tissue culture flasks 25 cm² TPP, Trasadingen, Switzerland 

Tissue culture test plates TPP, Trasadingen, Switzerland 

Trypsin Gibco/Invitrogen, Karlsruhe 
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2.3. Antibodies  

Alkaline phosphatase-coupled secondary Santa Cruz Biotechnology, CA, USA 

antibodies  

Anti-E-cadherin(H-108) rabbit IgG Santa Cruz Biotechnology, CA, USA 

Anti- Ly-6G and Ly-6C (GR1) rat IgG BD Biosciences, Heidelberg, Germany 

Anti-Occludin rabbit IgG Invitrogen, CA, USA 

Anti-ZO1 rabbit IgG Invitrogen, CA, USA 

Anti-ZO2 (H-110) rabbit IgG Santa Cruz Biotechnology, CA, USA 

Cy3-donkey-anti-rabbit IgG   Jackson Immunoresearch, West Grove, PA, 

USA 

Cy3-donkey anti-rat IgG Jackson Immunoresearch, West Grove, PA, 

USA 

FITC-labled Isolectin B4 Vector Laboratories, CA, USA 

 

2.4. PCR primers 

Asm-PA 1-2 

5´-CGA GAC TGT TGC CAG ACA TC-3´ 

Hermann GbR, Freiburg 

Asm-PA 2-2 

5´-GGC TAC CCG TGA TAT TGC TG-3´ 

Hermann GbR, Freiburg 

Asm-PS-2 

5´-AGC CGT GTC CTC TTC CTT AC-3´ 

Hermann GbR, Freiburg 

Myco P1 

5´-GTG CCA GCA GCC GCG GTA ATA 

C-3´ 

Hölle & Hüttner AG, Germany 

Myco P4 

5´-TAC CTT GTT ACG ACT TCA CCC 

CA-3´ 

Hölle & Hüttner AG, Germany 
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2.5. Cell lines  

EOMA CRL-2586 established murine endothelial cell line 

 

The cell line was tested monthly by PCR to exclude mycoplasma contamination. 

 

2.6. Animals 

Asm-deficient mice were kindly provided by Dr. R. Kolesnick (Memorial Sloan-Kettering 

Cancer Center, NY, USA) and backcrossed for more than 10 generations on a C57BL/6 

background. Syngenic wild-type littermates from the same heterozygous breeding were used 

as control.  

 

The mice used in the present study show the earliest clinical manifestation of Niemann-Pick 

disease type A at approximately 12 weeks of age; therefore, all the Asm-deficient mice used 

in our experiments were younger than 10 weeks of age, before any biochemical, histological 

or clinical manifestations of Niemann-Pick disease type A were apparent. This excluded that 

the effects observed in the Asm-deficient cells were due to altered cellular processes but 

instead, were dependent on the lack of Asm. Wild-type and Asm-deficient mice were 

propagated in the Animal Facility of the Uniklinikum Essen. The genotype was verified by 

PCR analysis.  

 

Mice were housed in pathogen-free conditions under diurnal lighting alternated with a dark 

phase between 18:00–6:00, allowed daily food “Zuchthaltungsfutter Maus-Ratte 10 H 10” 

(Eggersmann) and water ad libitum. All mice were repeatedly tested for the presence of 

pathogens and were free of any pathogens according to the criteria of the Federation of 

Laboratory Animal Science Associations. 

 

2.7. Radioactive substances 

[32P] gamma-ATP Hartmann Analytic, Braunschweig 

[14C] Sphingomyelin Perkin Elmer, Boston, MA, USA 
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2.8. Other materials 

Coverslips 12 mm diameter Carl-Roth GmbH & Co, Karlsruhe 

Cryo 1C Freezing container Nalgene, USA 

Cryovials Carl-Roth GmbH & Co, Karlsruhe 

Cuvettes 10 x 4 x 45 mm Sarstedt, Nümbrecht, Germany 

Leica Confocal software (Leica) Leica Microsystems, Germany 

Microscopy glass slides 76 x 26 mm Engelbrecht, Edermunde, Germany 

Minisart syringe filters Vivascience AG, Hannover, Germany 

Neubauer chamber 0.1 mm Marienfeld, Germany 

Parafilm Peckiney, Chicago, IL, USA 

PCR Tubes Sarstedt, Nümbrecht, Germany 

Polyethylene vials 20 ml Packard, USA 

Silica G60 TLC plates Merck, Darmstadt 

sn-1,2-Diacylglycerol (DAG) Biotrak Assay 

Reagents System 

Amersham Biosciences, Freiburg 

Steritop Vacuum-driven disposable top 

filters 

Millipore, Billerica, MA, USA 

Tryptic soy agar plates with 5% sheep 

blood 

BD Biosciences, Heidelberg, Germany 

Whatman filter paper Whatman, Maidstone, UK 

X-Ray films Amersham Biosciences, Buckinghamshire, 

UK 

 

2.9. Special laboratory equipment 

Fluorescence Microplate Reader BMG Labtech, Offenburg, Germany 

Leica TCS SP confocal microscope 

equipped with a 100× oil objective 

Leica Microsystems, Wetzlar, Germany 

Microtome Techno-Med, GmbH, Bielefelt, Germany 
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Paraffin-Embedding-System Techno-Med, GmbH, Bielefelt, Germany 

Portable Datalogging Spectrophotometer Bachofer, Reutlingen, Germany 

Sonorex bath sonicator 

SpeedVac (Vacuum Concentrator) 

Bandelin electronic, Berlin, Germany 

Bachofer, Reutlingen, Germany 

TriCarb Liquid scintillation Perkin Elmer, USA 

 

2.10. Buffer and Solutions 

Anesthesia cocktail 

 

 

ASM lysis buffer 

10% Ketamin 2 ml 

2% Xylazin 0.5 ml 

ddH2O 10 ml 

0.1% Triton X-100 

50 mM sodium acetate pH 5.0 

Complete DMEM (Gibco) medium 500 ml DMEM (Gibco) 

10% FCS 

10 mM HEPES, pH 7.4 

2 mM L-Glutamine 

1 mM Sodium pyruvate 

100 µM non-essential amino acids 

100 units/ml Penicillin 

100 µg/ml Streptomycin 

DAG-assay Buffered Saline Solution 135 mM NaCl 

1.5 mM CaCl2 

0.5 mM MgCl2 

5.6 mM Glucose 

10 mM HEPES, pH 7.2 

DAG-assay detergent solution 7.5% N-octylglucopyranoside 

5 mM cardiolipin 

1 mM DETAPAC 

DAG-kinase diluent 1 mM DETAPAC, pH 6.6 
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DAG-kinase reaction buffer 

0.01 M imidazole/HCl 

100 mM imidazole/HCl pH 6.6 

100 mM NaCl 

25 mM MgCl2 

2 mM EDTA 

2.8 mM DTT 

5 μM ATP 

10 μCi [32P] gamma-ATP 

Freezing medium 1 ml DMSO 

2 ml FCS 

7 ml complete DMEM 

HEPES buffer 132 mM NaCl 

20 mM Hepes pH 7.4 

5 mM KCl 

1 mM CaCl2 

0.7 mM MgCl2 

0.8 mM MgSO4 

HEPES/Saline 132 mM NaCl 

20 mM HEPES, pH 7.4 

5 mM KCl 

1 mM CaCl2 

0.7 mM MgCl2 

0.8 mM MgSO4 

Mowiol 

 

 

 

 

PFA 2% 

6 g Glycerol 

2.4 g Mowiol 

6 ml ddH2O 

12 ml 0.2 M Tris-Base, pH 8.5 

0.1% DABCO 

2.5 ml PFA stock solution 
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 7.5 ml PBS 

PFA stock solution 

 

SA medium 

 

8 g PFA 

100 ml PBS 

500 ml DMEM 

1 mM HEPES, pH 7.4 

Trypsin 0.25% Trypsin 

5 mM Glucose 

1.3 mM EDTA 
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3. METHODS 

3.1. Tissue culture techniques 

3.1.1. Culture and passage of established cell lines 

EOMA cells were maintained in complete DMEM medium (see Materials) at 37°C in a 10% 

CO₂ atmosphere. Because EOMA cells grow adherent, passage of cells was achieved by 

incubation with trypsin solution to dislodge the cells from the flask wall. Prior to that, the 

cultures were examined using a light microscope, to assess the degree of confluence. Medium, 

PBS and trypsin were pre-warmed at 37°C. The cell monolayer was washed with PBS for two 

times and trypsin was added. Detachment of cells was assessed by light microscope. The 

digestion was stopped by addition of medium and the cells were centrifuged at 1500 rpm for 5 

minutes to pellet the cells. Cells were then re-suspended in medium, transferred to fresh flasks 

and kept incubated at 37°C. 

 

3.1.2. Freezing and thawing of cells 

The basic principle of successful cryo-preservation is a slow freeze and a quick thaw of cells. 

For the freezing step, DMSO was used to protect cells from ice crystal formation, which 

causes cell rupture. The freezing medium (see Materials) was prepared in advance and kept at 

4°C. Cells were collected, counted with a Neubauer chamber and re-suspended at a 

concentration of 1x106 cells/ml in freezing medium. The cell suspension was transferred in 

cryo-protective vials, which were placed at -80°C in a Cryo 1C Freezing Container overnight. 

For long-term storage, cells were placed in a liquid nitrogen storage vessel. To thaw the cells, 

the vials from liquid nitrogen storage were transferred to a water bath at 37°C.  The vials 

were moved back and forth to ensure a quick thaw. After thawing, cells were washed with 

medium to remove the DMSO, re-suspended in fresh medium, transferred to culture flasks 

and incubated at 37°C. 
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3.2. Infection experiments 

3.2.1. Preparation of Staphylococus aureus (S. aureus) 

S. aureus was stored at -80°C and plated with plastic swaps on Trypticase Soy Agar plates 

with 5% sheep blood (Becton Dickinson #254053). The plates were incubated for 16 hrs at 

37°C. Bacteria were then transferred into 40 ml 37°C pre-warmed Trypticase Soy Broth 

(TSB, Becton Dickinson #221093) in Erlenmeyer flasks at an optical density at 550 nm of 

0.2/ml (equals to 1.85 x 108 colony forming units (CFU)/ml). The bacteria were incubated for 

70 min at 37°C with shaking at 125 rpm and collected during the early logarithmic growth 

phase by centrifuging at 3000 rpm for 10 min. The bacterial pellet was washed twice in 

pre-warmed DMEM supplemented with 10 mM HEPES or phosphate buffered saline (PBS, 

137 mM NaCl, 2.7 mM KCL, 7 mM CaCl2, 0.8 mM MgSO4, 1.4 mM KH2PO4, and 6.5 mM 

Na2HPO4) and then resuspended in DMEM supplemented with 10 mM HEPES for infection 

of EOMA cells or at 5×106 CFU per 100 μL in PBS for infection of mice. Cells or mice were 

then infected within the next 10 min. 

. 

3.2.2. Infection cells with S. aureus 

To evaluate the role of S. aureus on EOMA cells, EOMA cells were plated in 24 well plates 

with cover slip at 5x104 per well with 1 ml complete DMEM or 6 well plate at 8x105 per well 

with 4 ml complete DMEM, grown for 2 days. Prior to infection, the cells were washed with 

pre-warmed PBS for 2 times and maintained in buffered DMEM medium supplemented with 

10 mM HEPES during infection and were inoculated with S. aureus at bacteria-to-host cell 

ratio of 200:1  or 10:1 (Multiplicity of infection (MOI) 200:1 or 10:1 ). Synchronous 

infection conditions and an enhanced bacterium-host cell interaction were achieved by a 

2-min centrifugation (1000 rpm) of the bacteria onto the cells. The end of the centrifugation 

was defined as the starting point of infection. If required for the experiment, we added the 

anti-oxidant Tiron or N-acetylcysteine (NAC) or the Asm inhibitor amitriptyline 20 minutes 

prior to infection as follows. 
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3.2.3. Infection mice with S. aureus 

The littermates of 8 weeks old Asm wild-type or Asm-deficient mice were infected 

intravenously with 5x106 CFU S. aureus. Between the first and the last mouse infected, we 

allowed a time interval of maximally 10 min, to exclude a change in viable counts of the 

bacteria.  

 

For pretreatment with inhibitors before infection, wt mice were injected intraperitoneally with 

10 mg/kg amitriptyline, 100 mg/kg Tiron or 100 mg/kg NAC twice daily for 2.5 days. The 

last dose was given 1 h before infection. For treatment with amitriptyline post infection, wt 

mice were injected i.p. 1 h or 2 hrs after infection with 16 mg/kg amitriptyline. Antibiotics 

were also injected i.p. 1 h after infection with 100 mg/kg methicillin (Sigma) or 100 mg/kg 

vancomycin (Sigma). The injection of methicillin or vancomycin was repeated 9 hrs after 

infection.  For mortality experiment, 10 mg/kg amitriptyline, 100 mg/kg methicillin or 100 

mg/kg vancomycin were treated twice daily in indicated group until 11 days. 

 

The mice were sacrificed at indicated infection times by cervical dislocation. The lungs were 

removed and used for CFU counting and histology as described below.  

 

3.3. Determination colony-forming units (CFUs) of S. aureus in the liver 

and spleen 

To quantify S. aureus colony forming units (CFUs) in mouse livers and spleens, the organs 

were removed after 12 hrs infection and homogenised in a loose Dounce homogenizor. The 

homogenates were lysed for 10 min in 5 mg/ml saponin (SERVA) at 37 °C to release 

intracellular bacteria. The samples were centrifuged at 3200 rpm for 10 min, resuspended in 

PBS, and plated on normal LB plates in duplicates. Bacterial CFUs were counted after the 

plates had been incubated overnight at 37 °C.  
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3.4. Immunocytochemistry 

EOMA cells were grown on coverslips, infected or uninfected for indicated time and with 

designed treatment as above. They were fixed in 2% PFA/PBS for 10 min. For intracellular 

staining, cells were permeabilized with 0.1% Triton X-100/PBS for 5 min at room 

temperature. Cells were washed again with PBS and incubated for 60 min in PBS 

supplemented with 5% FCS for all antibodies to block nonspecific binding sites. Cells were 

washed and incubated for 45 min with either anti-ZO1 IgG, anti-ZO2 IgG, anti-E-cadherin 

IgG, or an anti-Occludin IgG(see Materials). Cells were then washed three times in PBS with 

0.05% Tween-20 and incubated for an additional 45 min with Cy3-labeled donkey anti-rabbit 

antibodies. Cells were then washed again in PBS with 0.05% Tween-20. After a final PBS 

wash, cells were mounted on glass coverslips with moviol. Control experiments were 

performed with irrelevant rabbit antibodies and secondary antibodies. Control antibodies did 

not significantly bind to the cells. Cells were examined on a Leica TCS SP confocal 

microscope equipped with a 100x oil objective and images were analyzed using Leica 

Confocal software (Leica). 

 

3.5. Histology 

3.5.1. Preparation of the lung sample 

Mice were sacrificed and the lungs were subsequently removed. The left lungs were fixed in 

4% PFA for 38 hours, serially dehydrated and embedded in paraffin for sectioning at a 

thickness of 6 µm. 

 

3.5.2. Hematoxylin and eosin staining 

Lung tissue (6-mm paraffin embedded sections) were dewaxed, rehydrated and stained for 2 

min with hematoxylin and washed with water for 5 min prior to being stained with eosin for 1 

min. After a final short wash with water the sections were mounted in Mowiol and evaluated 

using a Leica TCS-SP2 microscope. 
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3.5.3. Fluorescence staining for the lungs 

The sections were then dewaxed, rehydrated and incubated in pepsin (see Materials) for 30 

min at 37°C incubator. The sections were washed and incubated for 10 min in PBS 

supplemented with 5% FCS to block nonspecific binding sites. The sections were washed 

again and incubated overnight at 4 °C with either anti-ZO1 IgG, anti-ZO2 IgG, , 

anti-E-cadherin IgG, anti-Occludin IgG, or anti-Ly-6G and Ly-6C (GR1) or FITC-labeled 

anti-Lectin antibodies, respectively. The sections were washed in PBS with 0.05% Tween-20 

and incubated for an additional 45 min with Cy3-labeled donkey anti-rabbit or anti-rat 

antibodies. The sections were then washed again in PBS with 0.05% Tween-20, once in PBS 

wash, and mounted in moviol. Control experiments were performed with irrelevant rabbit or 

goat antibodies and secondary antibodies. Control antibodies did not significantly bind to the 

lungs. The sections were examined on a Leica TCS SP confocal microscope equipped with a 

40x oil objective and images were analyzed using Leica Confocal software (Leica). 

 

3.6. Electron Spin Resonance Detection of Endothelial O2
.- 

ROS production was measured by electron spin resonance (ESR), as we described previously 

(Abais et al 2014, Li et al 2013b). 2x105 endothelial Cells were infected with S.aureus for the 

indicated time, the medium removed, the cells scraped into 20 mM HEPES (PH 7.5), 1 mM 

EDTA, and 255 mM sucrose and shock frozen in liquid nitrogen. Proteins were isolated and 

resuspended with modified Krebs-HEPES buffer containing deferoximine (100 μM, Sigma) 

and diethyldithiocarbamate (5 μM, Sigma). A spin trap, 

1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH, Noxygen, Elzach, 

Germany) (1 mM final concentration), was then added to the mixture in the presence or 

absence of manganese-dependent superoxide dismutase (SOD, 200 U/mL; Sigma, St. Louis, 

MO). The mixture was loaded into glass capillaries and immediately kinetically analyzed for 

O2
.- production for 10 min. The SOD-inhibited fraction of the signal was used to calibrate the 

system. The ESR settings were as follows: biofield, 3,350; field sweep, 60 G; microwave 

frequency, 9.78 GHz; microwave power, 20 mW; modulation amplitude, 3 G; points of 

resolution, 4,096; receiver gain, 100; and kinetic time, 10 min. The ESR signal strength was 
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recorded in arbitrary units and the final results were expressed as the fold changes compared 

to the control as described (Xu et al 2013). 

 

3.7. Asm activity assay 

The activity of Asm was measured as the consumption of radioactive [14C]-sphingomyelin to 

ceramide and [14C]-phophorylcholine. To this end, 8x105 EOMA cells were infected with S. 

aureus for indicated times, washed, lysed in 300 μl/sample ice-cold ASM-lysis buffer (see 

Materials). The cells were removed from the plate, transferred into eppendorf tubes and 

immediately sonicated three times (3x10 s). Since [14C]-sphingomyelin is insoluble in water, 

it was first dried by SpeedVac centrifugation and solubilized into micelles in ASM-lysis 

buffer, using a bath sonicator for 10 min. Cell lysates were incubated with 0.05 μCi per 

sample [14C]-labeled sphingomyelin (2 GBq/mmol) for 30 min at 37°C on a thermomixer. 

Lipids were extracted by addition of 1 ml/sample of CHCl3:CH3OH (2:1, v/v), followed by 

vigorous vortexing for 30 sec and centrifugation at 14000 rpm for 5 min. An aliquot (300 μl) 

of the aqueous phase was applied for liquid scintillation counting. Hydrolysis of 

[14C]-sphingomyelin by Asm results in release of [14C]-choline chloride into the aqueous 

phase, whereas ceramide and unreacted [14C]-sphingomyelin remain in the organic phase. 

Therefore, the release of [14C]-choline chloride (pmol/105 cells/h) serves to determine the 

activity of the Asm. 

 

3.8. Ceramide measurement by DAG kinase assay 

3.8.1. Lipid extraction and enzymatic reaction 

Cellular ceramide was measured by DAG kinase assay, in which ceramide is converted to a 

quantifiable product (ceramide-1-phosphate) by transfer of [32P]-phosphate from [32P]-gamma 

ATP to ceramide. To this end, cells were infected as above, first extracted in 

CHCl3:CH3OH:1N HCl (100:100:1, v/v/v). The resulting biphasic mixture is composed of a 

lower lipid-containing organic phase, and an upper aqueous phase. An aliquot of the lower 

organic phase was collected and dried by evaporation of the chloroform in a SpeedVac. The 

dried lipids were solubilized in 20 µl of DAG-assay detergent solution (see Materials) and 
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sonicated for 10 min in a bath sonicator, and 50 µl of DAG-kinase reaction buffer (see 

Materials), and 10 µl of diluted enzyme (dilution 1:1, v/v in DAG-kinase diluent) (see 

Materials) were added. The kinase reaction was performed for 30 min at room temperature on 

a thermomixer. The samples were re-extracted in 1 ml/sample CHCl3:CH3OH:1N HCl 

(100:100:1, v/v/v), 170 µl/sample DAG-assay Buffered Saline Solution (see Materials) and 30 

µl of a 100 mM EDTA solution, followed by vortexing. The resulting upper phase was 

removed, and the lower organic phase was again concentrated by SpeedVac centrifugation. 

The dried lipids were dissolved in 20 µl/sample CHCl3:CH3OH (1:1, v/v). 

 

3.8.2. Separation of lipids by Thin Layer Chromatography (TLC) 

Lipids were separated on a Silica G60 TLC plate. A solvent system of 

CHCl3:CH3COCH3:CH3OH:CH3COOH:H2O (10:4:3:2:1, v/v/v v/v) was added to the TLC 

chamber, and was allowed to saturate the atmosphere for 1 h by using a sheet of Whatman 

filter paper. The silica plates were loaded with the solubilized lipids, placed into the TLC 

chamber and the solvent front was allowed to migrate to the top of the plate. The plate was 

then removed, air dried for 45 min and exposed to X-ray films for 24 hours. Ceramide-spots 

were identified by comigration with a C16-ceramide standard, and incorporation of 32P into 

ceramide was quantified by liquid scintillation counting. Comparison with a standard curve 

using C16-ceramide permitted the determination of ceramide amounts. 

 

3.9. Evans blue microvascular permeability analysis of lung edema 

To assess vascular leakage, 4% Evans blue dye (20 mg/kg) was injected into the external 

jugular vein 30 min before the termination of the experiment as described (Moitra et al 2007). 

Evans blue dye has a very high binding affinity for serum albumin. When the vascular barrier 

in the lung is compromised, albumin-bound Evans blue moves into the lung parenchyma. The 

lungs were perfused free of blood with phosphate-buffered saline via right heart, removed, 

dried, weighed, and was homogenized in PBS (1 ml/100 μg tissue), incubated with 2 volumes 

of formamide to extract the dye (18 h, 60°C), and centrifuged at 5,000 × g for 30 minutes, and 

the optical density of the supernatant was determined at 620 nm and 740 nm with a 
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fluorescence microplate reader (BMG Labtech, Offenburg, Germany). The extravasated EB 

concentration in lung homogenate was calculated against a standard curve and was expressed 

as micrograms of Evans blue dye per gram of lung.  

 

3.10. DNA techniques  

3.10.1. DNA isolation 

3.10.1.1 DNA isolation from mouse tails 

For genotyping of wt and Asm-deficient mice, app. 1-2 mm of mouse tail was cut and placed 

into 80 µl Tissue Lysis Buffer (TLB) (see Materials). The samples were incubated at 56°C 

overnight and diluted with 800 µl autoclaved ddH2O. 

 

3.10.1.2 DNA isolation from cell lines 

To test cultured cell lines for the presence of Mycoplasma, 5 x105 cells/sample were pelleted 

and re-suspended into 50 µl TLB. The samples were incubated at 56°C for 3 h and boiled at 

95°C for 10 min. The volumes were then raised to 100 µl with autoclaved ddH2O. 

 

3.10.2. Polymerase Chain Reaction (PCR)  

3.10.2.1 Asm PCR 

For the detection of Asm by PCR, 1 µl of overnight tail digest (see 3.10.1.1.) was added to 1.2 

µl 10 x PCR Buffer, 2.5 mM MgCl2, 1µl dNTP mix 5 units/ml Taq Polymerase and 0.1 µl 

each of primers Asm-PA1-2, Asm-PA2-2 an Asm-PS-2 in 0.2 ml PCR tubes. The temperature 

of the lid of the PCR machine was raised to 104°C and the temperature of the PCR block was 

raised to 96°C for 17 min, after which the following cycle was carried out 35 times: 

Denaturation: 95°C for 1 min 

Annealing: 58°C for 1 min 

Elongation: 72°C for 1 min 45 sec  

After the last cycle, the PCR block remained at 72°C for 5 min, after which the samples were 

placed at 4°C. 
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3.10.2.2 Mycoplasma PCR 

For the identification of mycoplasma by PCR, 1 µl of cell digest (see 3.10.1.2.) was added to 

2.5 µl 10 x PCR Buffer, 4.1 mM MgCl2, 0.5 µl dNTP mix 1.25 units/ml Taq Polymerase and 

0.25 each of primers P1 and P4 in 0.2 ml PCR tubes. The temperature of the lid of the PCR 

machine was raised to 104°C and the temperature of the PCR block was raised to 96°C for 17 

min, after which the following cycle was carried out 25 times: 

Denaturation: 95°C for 1 min 

Annealing: 60°C for 1 min 

Elongation: 72°C for 1 min 30 sec 

After the last cycle, the PCR block remained at 72°C for 7 min, after which the samples were 

placed at 4°C. 

 

3.10.3. Agarose gel electrophoresis 

PCR products were analysed on 1% agarose gels. Agarose was poured in TBE buffer (see 

Materials) that contained 0.01 µg/ml ethidium bromide. The samples (15 µl) were loaded on 

the gel along with 0.1 µg/µl of a 100-bp-standard. The gel was run under 5 V/cm current. 

Visualization of the DNA fragments was performed under UV-light. 
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4. RESULTS 

4.1. Asm deficiency prevent S. aureus-induced lung edema 

4.1.1. Asm deficiency mitigates pulmonary edema upon S. aureus infection  

To investigate whether activation of Asm is required in the in vivo development of lung 

edema upon S. aureus infection, we systemically infected C57BL/6 wild type (wt) and 

Asm-deficient mice with S. aureus for various time periods. To date, a large amount of 

studies indicated that degradation of tight junctional proteins leads to microvascular leakage 

and finally pulmonary edema (Corada et al 1999, Jang et al 2011). To determine pulmonary 

edema, we injected Evans blue dye into the mice 30 min before sacrificing the mice to 

analyze lung edema. The studies revealed massive leakage of Evans blue dye into the lungs of 

wt mice but almost no leakage into the lungs of Asm-deficient mice upon systemic infection 

with a clinical S. aureus strain (Figure 4.1.1.A-1.) or the S. aureus Newman strain (Figure 

4.1.1.A-2.). Moreover, hematoxylin and eosin (H&A) staining of the lungs demonstrated that 

the clinical S. aureus infection induced massive lung edema in a time-dependent manner in wt 

mice, a finding that was absent or much less pronounced in Asm-deficient mice (Figure 

4.1.1.B.). 

 

A-1                                     A-2 
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B 

 

 

Figure 4.1.1. Effect of Asm deficiency on pulmonary edema upon S. aureus infection 

 

(A) Wild-type (wt) and Asm-deficient mice were infected with a clinical S. aureus strain (A-1) or the 

S. aureus Newman strain (A-2) for the indicated time periods. Evans blue dye was injected 30 min 

before sacrificing the mice, flushing the lung via the right heart to remove intravascular Evans Blue 

and removal of the lungs. The amount of dye leaking into the lung tissue was quantified. Shown is the 

number (mean ± SD) of the concentration of Evans blue dye in the lungs from each 5 wildtype and 

Asm-deficient mice. *, significant differences between uninfected mice and infected mice; Δ, 

significant differences between infected wild-type mice and Asm-deficient mice (all P<0.05; t-test).  

 (B) Wild-type and Asm-deficient mice were infected with S. aureus for the indicated time periods. 

They were sacrificed and lung sections were stained with H&E and analyzed by light microscopy for 

the detection of lung edema. Scale bar is 100 µM (magnification, 63×). Representative images from 

three independent experiments are shown. 

 

4.1.2. Asm deficiency prevents neutrophil trafficking to the lung 

Neutrophils have a pivotal role in the defense against bacterial infections. However, 

overwhelming activation of neutrophils is known to elicit tissue damage and contribute to 

severe sepsis (Adams et al 2001, Guo et al 2002, Windsor et al 1993). 

 

This led us to examine whether Asm expression is also required for pulmonary neutrophil 

trafficking during systemic S. aureus infection. To this end, we stained lung sections from 

infected wt and Asm-deficient mice with anti-GR1 antibodies, a neutrophil marker. Confocal 

fluorescence microscopy studies reveal that S. aureus infection induced excessive neutrophil 

trafficking to the lung in a time-dependent manner in wild type mice (Figure 4.1.2.A.). 

However, neutrophil trafficking into the lung tissue was reduced markedly in Asm-deficient 

mice after infection (Figure 4.1.2.A.). Quantitative analysis of neutrophils demonstrates that 
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Asm is an important regulator for S. aureus–induced neutrophil trafficking to the lung during 

S. aureus sepsis (Figure 4.1.2.B.). 

     A 

 

 

     B 

Figure 4.1.2. Effect of Asm deficiency on neutrophil trafficking induced by S. aureus infection 

 

(A and B) For determination of neutrophil trafficking, wt and Asm-deficient mice were left uninfected 

or were infected with a clinical S. aureus strain for different time points. Lung sections were stained 

with Cy3-labeled anti-GR1 antibodies and analyzed by fluorescence microscopy. Scale bar is 50 µM. 

Shown are representative images from three independent experiments. Cells staining positive for GR1, 
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a neutrophil marker, were quantified by analysis of 50 fields per group. Shown is the number (mean ± 

SD) of GR1-positive cells per field of 63x magnification. *, significant differences between uninfected 

mice and infected mice; Δ, significant differences between infected wild-type mice and Asm-deficient 

mice (all P<0.05; t-test).  

 

Taken together, these findings indicate that Asm plays a key role in the development of 

pulmonary edema induced by systemic infection with S. aureus. Asm deficiency prevents the 

development of lung injury during infection. 

 

4.2. Infection of endothelial cells with S. aureus activates  

Asm and leads to the production of ROS in a positive feedback loop 

4.2.1. S. aureus infection rapidly activates the Asm 

To test whether systemic S. aureus infections activates Asm, we infected murine endothelial 

(EOMA) cells with a clinical S. aureus strain (MOI 200:1) and measured Asm activity. S. 

aureus infection induced a marked activation of the Asm (Figure 4.2.1.A.). Additionally, the 

well-characterized S. aureus sepsis strain Newman was tested to determine whether systemic 

S. aureus infections induced Asm activation is a general phenomenon. Following infection 

with S. aureus sepsis strain Newman (MOI 200:1), the kinetics of Asm activation showed a 

similar pattern in EOMA cells than after infection with the clinical S. aureus strain (Figure 

4.2.1.B.).  

A                                            B 

                         
 

Figure 4.2.1. S. aureus infection activates Asm 
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Asm activity were measured in EOMA cells after infection with a clinical S. aureus strain (MOI 

200:1) (A) or the S. aureus Newman strain (MOI 200:1) (B) for 0, 2, 5, or 10 min. Results show the 

mean ± SD of three independent experiments. *, significant differences compared to uninfected 

control mice (P<0.05, t-test).  

 

4.2.2. S. aureus infection also induces a marked formation of the ceramide    

As we know Asm is one of the most important sphingomyelinase which hydrolyzes 

sphingomyelin to ceramide and phosphorylcholine. To further define whether systemic S. 

aureus infections induces the formation of ceramide, which is the product of Asm activity, we 

infected EOMA cells with a clinical S. aureus strain or the S. aureus Newman stain (MOI 

200:1) and measured ceramide production. The results showed a rapid release of ceramide 

upon these two S. aureus strains infection (Figure 4.2.2.A. and B.). 

 

A                                              B 

 

              
 

Figure 4.2.2. S. aureus infection induced ceramide release  

 
Ceramide concentrations were measured in EOMA cells after infection with a clinical S. aureus strain 

(MOI 200:1) (A) or the S. aureus Newman strain (MOI 200:1) (B) for 0, 2, 5, or 10 min. Results show 

the mean ± SD of three independent experiments. *, significant differences compared to uninfected 

control mice (P<0.05, t-test).  
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4.2.3. S. aureus infection induces a rapid production of the ROS     

Amitriptyline is a tricyclic antidepressant (TCA). It is the most widely used TCA and is 

efficacious for the treatment of depression (Barbui et al 2001, Garattini et al 1998). Several 

publications indicated that amitriptyline works as a functional Asm inhibitor and for instance 

reduces the pulmonary accumulation of ceramide in cystic fibrosis (Becker et al 2010b, 

Grassmé et al 1997, Kornhuber et al 2008, Kornhuber et al 2010, Kornhuber et al 2011, 

Teichgraber et al 2008).  

 

ROS have been shown for a long time to play a critical role in host-pathogen interactions 

(Djaldetti et al 2002, Karupiah et al 2000, Moore et al 2012, Pai et al 2012, Wyllie et al 2011). 

Previous studies showed a critical role of the Asm in ROS production in macrophages and 

hepatocytes (Hatanaka et al 1998, Pai et al 2012, Reinehr et al 2005, Zhang et al 2007). To 

investigate whether S. aureus infection induces ROS production and whether S. 

aureus-induced ROS production depends on Asm, we infected EOMA cells with two 

different strains (MOI 200:1)  and analyzed the production of oxygen radicals. The results 

showed that S. aureus infection induced a rapid production of ROS in EOMA cells (Figure 

4.2.3.A. and B.), which was prevented by pre-incubation with the functional Asm inhibitor 

amitriptyline (Ami) (Figure 4.2.3.A. and B.) indicating that the production of ROS after 

infection with S. aureus requires the activation of Asm. 

 

A                                             B 
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Figure 4.2.3. S. aureus-induced ROS, a process that depends on the Asm 

 

EOMA cells were preincubated with amitriptyline (20 µM) for 20 min and then infected with a 

clinical S. aureus strain (MOI 200:1) (A) or the S. aureus Newman strain (MOI 200:1) (B) for 7.5 min. 

The production of ROS was quantified by electron spin resonance. Relative O2
- levels were used to 

indicate ROS accumulation. Data for panels A and B are mean ± SD of four independent experiments. 

Significant differences between infected and non-infected controls were determined by t-test and are 

indicated by asterisk (* P<0.05). Significant differences between untreated samples and 

amitriptyline-treated samples were determined by t-test and are indicated by delta (Δ P<0.05). 

 

4.2.4. Infection of endothelial cells with S. aureus activates Asm and leads to the 
production of ROS in a positive feedback loop 

To further define the interaction of S. aureus-induced Asm activation and ROS production, 

we pre-incubated of EOMA cells with the functional Asm inhibitor amitriptyline (Ami) or 

with antioxidant Tiron or NAC for 20 min, and infected EOMA cells with a clinical S. aureus 

strain at a lower multiplicity of infection (MOI= 10:1) for another 20 min and determined 

Asm activity and ROS production. The results revealed a similar but slightly delayed time 

course of Asm activation (Figure 4.2.4.A.) and ROS release (Figure 4.2.4.B.). Pre-incubation 

of EOMA cells with the antioxidants Tiron or N-acetylcysteine (NAC) reduced Asm 

activation by S. aureus (Figure 4.2.4.A.). Pre-incubation of EOMA cells with the functional 

Asm inhibitor amitriptyline (Ami) or with Tiron or NAC also inhibited ROS release (Figure 

4.2.4.B.) suggesting a positive feedback loop of S. aureus–induced Asm activation and ROS 

release.  

 

A                                       B 
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Figure 4.2.4. S. aureus-induced Asm activation and ROS production form a positive feedback 

loop  

 

EOMA cells were pre-incubated with Ami or NAC or Tiron (20 µM) for 20 min and then infected 

with a clinical S. aureus strain (MOI 10:1)  for 20 min. Ceramide concentrations (A)  and ROS 

production (B) were measured. Data for panels A and B are mean ± SD of four independent 

experiments. Significant differences between infected and non-infected controls were determined by 

t-test and are indicated by asterisk (* P<0.05). Significant differences between untreated samples and 

amitriptyline-treated samples were determined by t-test and are indicated by delta (Δ P<0.05). 

 

4.3. S. aureus induces degradation of junctional proteins via the 

Asm/ceramide system 

4.3.1. Asm deficiency prevents degradation of junctional proteins upon S. aureus 
infection in vivo          

During a severe S. aureus infection, the bacteria and their toxins may spread in the 

bloodstream and affect the integrity of endothelial cells, thereby resulting in increased 

vascular permeability (Hocke et al 2006, Seeger et al 1990). It is well documented that 

endothelial activation plays a major role in the cellular immune response to sepsis (Aird 2003, 

Ait-Oufella et al 2010, Boos et al 2006). 

 

To gain insight into the mechanism by which Asm and ceramide mediate endothelial 

dysfunction and lung edema after S. aureus infection, we determined whether systemic 

infection with S. aureus induces the breakdown of junctional proteins in pulmonary 

endothelial cells in vivo, and, if so, whether this process depends on the Asm/ceramide 

system. To this end, we systemically infected wt and Asm-deficient mice with 5x106 a clinical 

S. aureus strain. We then obtained lung sections and stained them with Cy3-labeled 

antibodies against ZO1, ZO2, Occludin, or E-cadherin. Confocal microscopy showed that 

infection with S. aureus induces dramatic degradation of ZO1, ZO2, Occludin, and 

E-cadherin junctional proteins in a time-dependent manner in endothelial cells from blood 

vessels in wt lungs but not in endothelial cells from the lungs of Asm-deficient mice (Figure 

4.3.1.A-D.). Thus, the disruption of junctional proteins, which is caused by S. aureus 

infection in vivo, requires functional Asm. 
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Co-stainings of lung sections with Cy3-coupled antibodies against junctional proteins and 

FITC isolectin B4, which is a marker for endothelial cells, confirmed that junctional proteins 

are only degraded in lung endothelial cells of wt mice upon infection with S. aureus, but not 

in Asm-deficient endothelial cells (Figure 4.3.1.E-H.). 
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Figure 4.3.1. Effect of Asm deficiency on degradation of junctional proteins upon S. aureus 

infection in vivo 

 

Wild-type and Asm-deficient mice were left uninfected or were infected with S. aureus for different 

time points. The lungs were removed, fixed, dehydrated and embedded in paraffin for sectioning at a 

thickness of 6 µm. The lung sections were stained with Cy3-labeled anti-ZO1 (A and E), anti-ZO2 (B 

and F), anti-Occludin (C and G) or anti-E-cadherin (D and H) antibodies (magnification, 40×). 

Representative fluorescence images from three independent experiments are shown (original image 

and an area of interest [AOI]). Scale bar is 10 µM. 

 

4.3.2. Asm and ROS are necessary to degradation of junctional proteins induced by S. 
aureus infection in vivo 

In order to further confirm that Asm is involved in regulating junctional proteins degradation 

upon S. aureus infection in vivo and whether junctional proteins degradation presupposes the 

production of ROS, we pretreated wt mice with intraperitoneal injections of amitriptyline or 

Tiron and then infected them with a clinical S. aureus strain. Confocal microscopy analysis 

demonstrated that the inhibition of Asm or ROS also protects junctional proteins in lung 

endothelial cells from degradation after systemic S. aureus infection in vivo (Figure 

4.3.2.A-D.).   
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Figure 4.3.2. Inhibition of Asm and ROS prevents S. aureus-induced degradation of junctional 

proteins in vivo 

 

Wild type C57BL/6J mice were pretreated with 10 mg/kg amitriptyline, 100 mg/kg Tiron or 100 

mg/kg NAC by intraperitoneal injection, twice daily for 2.5 days, and then infected with S. aureus for 

12 hrs. The lungs were removed, fixed, dehydrated and embedded in paraffin for sectioning at a 

thickness of 6 µm. The lung sections were stained with Cy3-labeled anti-ZO1 (A), anti-ZO2 (B), 

anti-Occludin (C) or anti-E-cadherin (D) antibodies (magnification, 40×). Representative fluorescence 

images from three independent experiments are shown (original image and an area of interest [AOI]). 

Scale bar is 10 µM. 

 

4.3.3. Asm and ROS are necessary to degradation of junctional proteins induced by S. 
aureus infection in vitro 

To further confirm the degradation of junctional proteins is a consequence of Asm activation 

and ROS production, we pre-incubated EOMA cells with 20 µM amitriptyline, 10 mM Tiron 

or 10 mM NAC before infection with a clinical S. aureus strain (MOI 10:1). We found that 

inhibition of Asm or ROS protects junctional proteins from degradation after S. aureus 

infection in the EOMA cells (Figure 4.3.3.).    
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Figure 4.3.3. Inhibition of Asm and ROS prevents S. aureus-induced degradation of junctional 

proteins in vitro 

 

EOMA cells were pretreated for 20 min with amitriptyline (20 µM), Tiron (10 mM) or NAC (10 mM) 

before being infected with a clinical S. aureus strain (MOI 10:1) for 2hrs. Immunoflourescence 

stainings were performed with antibodies against ZO1, ZO2, Occludin, or E-cadherin for 

determination of the degradation of these junctional proteins. The presented pictures are representative 

of the results of at least three independent experiments (magnification, 40×). Scale bar is 25 µM. 

 

The data presented above demonstrate that S. aureus infection leads to the degradation of 

tight junctional proteins in vitro and in vivo. Genetic deficiency or pharmacological inhibition 

of Asm prevents S. aureus-induced degradation of junctional proteins. Moreover, inhibition of 

ROS also protects junctional proteins from degradation. Collectively, these findings indicate 

that Asm mediates the S. aureus–induced breakdown of junctional proteins by ROS. 

 

4.4. Pharmacologic inhibition of Asm or ROS before systemic infection 

with S. aureus prevents lung edema 

 

4.4.1. Pretreatment with amitriptyline, Tiron or NAC alleviates pulmonary edema upon 
S. aureus infection  

To test the significance of the pathway from the Asm via ROS to the degradation of junctional 

proteins for the development of lung edema, we treated wt mice with intraperitoneal 

injections of amitriptyline, Tiron or NAC before systemic infection with a clinical S. aureus 

strain and then measured lung edema. S. aureus infection induced severe lung edema (Figure 

4.4.1.A. and B.), events that were prevented by pretreatment with amitriptyline, Tiron or 

NAC (Figure 4.4.1.A. and B.). These findings show that lung edema induced by S. aureus 

via the pathway through Asm and ROS can be prevented by pretreatment with pharmacologic 

inhibitors of this pathway. 
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Figure 4.4.1. Effect of pharmacological Asm inhibition and neutralization of ROS on pulmonary 

edema upon S. aureus infection 

 

Wild-type mice were pretreated by intraperitoneal injection of 10 mg/kg amitriptyline, 100 mg/kg 

Tiron or 100 mg/kg NAC, twice daily for 2.5 days. Mice were infected with S. aureus for 12 hrs. Lung 

edema was determined by extravasation of Evans Blue (A) and by staining with H&E (scale bar is 100 

µM, magnification, 20×) (B). Representative images from three independent experiments are shown. 

*, significant differences between uninfected and infected samples; Δ, significant differences between 

treated and untreated samples (all P<0.05, t-test). 
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4.4.2. Pretreatment with amitriptyline, Tiron or NAC decreases neutrophil trafficking 
into the lung               

Next, we tested whether Asm and ROS play an important role on neutrophil trafficking to the 

lung induced by S. aureus infection as suggested by their marked effect on the integrity of 

junctional proteins and lung edema. To this end, we treated wt mice with intraperitoneal 

injections of amitriptyline, Tiron or NAC before systemic infection with a clinical S. aureus 

strain and then measured neutrophil influx. The results revealed that pretreatment with 

amitriptyline, Tiron or NAC prevented influx of neutrophils into the lung (Figure 4.4.2.A. 

and B.). This data indicates that Asm and ROS facilitate neutrophil trafficking following into 

lung tissue upon S. aureus infection. 
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Figure 4.4.2. Effect of amitriptyline, Tiron or NAC on neutrophil trafficking into lung tissue 

induced by S .aureus infection 

 
Wild-type mice were pretreated by intraperitoneal injection of 10 mg/kg amitriptyline, or 100 mg/kg 

Tiron or 100 mg/kg NAC twice daily for 2.5 days. Mice were infected with S. aureus for 12 hrs. 

Neutrophil emigration was determined by staining of lung sections with Cy3-labeled anti-GR1 

antibody (scale bar is 50 µM) followed by fluorescence microscopy (A). Shown are representative 

images from three independent experiments. Neutrophil trafficking was quantified by analysis of 50 

fields per group (B). Displayed is the average of GR1-positive cells per field of 63x magnification. *, 

significant differences between uninfected and infected samples; Δ, significant differences between 

treated and untreated samples (all P<0.05, t-test). 

 

The results from 4.4.1 and 4.4.2 indicate pharmacologic inhibition of Asm or ROS before 

systemic infection with S. aureus prevents lung edema and influx of neutrophils into the lung.  

 

4.5. Treatment of already septic mice with amitriptyline prevents the 

development of lung edema 

4.5.1. Treatment with amitriptyline 1 hr or 2 hrs post S. aureus-infection reduces 
pulmonary edema             

The finding that both Asm-deficiency and pre-incubation with the Asm inhibitor amitriptyline 

protect mice from lung edema induced by S. aureus infection led us question whether the 

administration of amitriptyline reduces the severity of pulmonary edema in mice that were 

already infected with S. aureus. If so, amitriptyline administration might be a clinically 

relevant therapeutic option for the treatment of S. aureus–induced pulmonary edema. To this 

end, we infected wt mice with a clinical S. aureus strain and treated them with amitriptyline 1 

or 2 hrs later. Twelve hours after infection, the mice were sacrificed and Evans Blue 

extravasation was determined or lung sections were stained with H&E. As shown in Figure 

4.5.1.A. and B., treatment with amitriptyline reduced the severity of pulmonary edema even 

after the onset of systemic infection with S. aureus. 
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Figure 4.5.1. Amitriptyline treatment prevents lung edema in S. aureus-infected mice even after 

onset of the systemic infection 

 

Wild-type mice were infected with S. aureus. 1 h or 2 hrs later they were i.p. injected with 16 mg/kg 

amitriptyline. The mice were sacrificed 12 hrs after infection. Lung edema was determined by 

extravasation of Evans Blue (A) and by staining with H&E (scale bar is 100 µM, magnification, 20×) 

(B). Panel A shows the mean ± SD from 4 mice. Images in B are representative from three 

independent experiments. *, significant differences between uninfected and infected samples; Δ, 

significant differences between treated and untreated samples (all P<0.05, t-test). 
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4.5.2. Treatment with amitriptyline 1 hr or 2 hrs after S. aureus-infection prevents 

degradation of junctional proteins 

To determine whether pharmaceutical blockade of Asm by amitriptyline even after infection 

with S. aureus also protects the mice from degradation of junctional proteins in vivo, 

wild-type C57BL/6J mice were infected with a clinical S. aureus strain. The mice were 

treated with i.p. injection of 16 mg/kg amitriptyline 1 hr or 2 hrs after infection, respectively. 

The mice were sacrificed 12 hrs after infection and the lung sections were stained with 

anti-ZO1, anti-ZO2, anti-Occludin or anti-E-cadherin antibodies and analyzed by confocal 

fluorescence microscopy. The results showed amitriptyline-treatment reduced the degradation 

of junctional proteins even when the drug was applied 1 hr or 2 hrs post infection with S. 

aureus (Figure 4.5.2. A-D.).  
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Figure 4.5.2. Amitriptyline treatment prevents degradation of junctional proteins even if 

administered after S. aureus infection 

 
Wild-type mice were infected with S. aureus and were treated 1 h or 2 hrs after infection with i.p. 

amitriptyline. Twelve hours after infection, the mice were sacrificed. Lung sections were stained with 

Cy3-labeled antibodies against ZO1 (A), ZO2 (B), Occludin (C) or E-cadherin (D). Images were 

obtained by confocal microscopy and are representative of three independent experiments 

(magnification, 40×). The original image and an area of interest (AO1) are shown. Scale bar is 10 µM. 

 

4.5.3. Treatment with amitriptyline 1hr or 2 hrs after infection prevents neutrophil 
trafficking into the lung tissue  

To determine whether pharmacological inhibition of Asm with amitriptyline also reduces 

neutrophil trafficking after infection of mice with S. aureus, wild-type C57BL/6J mice were 

infected with S. aureus. Again, the mice received 16 mg/kg amitriptyline by i.p. injected 1 hr 

or 2 hrs after infection. The mice were sacrificed 12 hrs after infection and the lung sections 

were stained with anti-GR1 antibody. The results demonstrated that amitriptyline treatment 

reduced pulmonary influx of neutrophils even if injected 1 hr or 2 hrs after infection, which 
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confirms that Asm play an important role in S. aureus-induced neutrophil trafficking (Figure 

4.5.3. A. and B.). 
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Figure 4.5.3. Amitriptyline treatment reduces S. aureus-induced neutrophil trafficking  

 
Wild-type mice were infected with S. aureus for 1 hr or 2 hrs, and then treated with i.p. injection of 16 

mg/kg amitriptyline. The mice were sacrificed 12 hrs after infection and the lungs were removed, 

fixed, dehydrated and embedded. The lung sections were stained with Cy3-labeled anti-GR1 antibody 

(scale bar is 50 µM, magnification, 63×) (A). Representative images from three independent 

experiments are shown. The average number of GR1-positive cells per field of 63x magnification was 

quantified by analysis of 50 fields per group (B). Data are shown as mean ± SD, n = 3. *, significant 

differences between uninfected and infected samples; Δ, significant differences between treated and 

untreated samples (all P<0.05, t-test). 

 

This indicates that amitriptyline treatment after systemic infection with S. aureus protects 

junctional proteins degradation and reduces pulmonary influx of neutrophils, finally 

preventing pulmonary edema. Thus, amitriptyline might be a novel therapy to S. 

aureus-induced sepsis. 

 

4.6. The combination of amitriptyline and antibiotics in the very early time 

can be a novel therapy to S. aureus-induced sepsis 

4.6.1. The combination of amitriptyline and antibiotics contributes to bacteria killing  

Sepsis remains a challenge for intensive care physicians and is one of the leading causes of 

death nowadays. Although improvements in supportive care of patients with sepsis (eg, more 

effective and less damaging mechanical ventilation, improved fluid resuscitation, and 

broad-spectrum antibiotic coverage) have improved survival rates, sepsis remains a condition 

with high mortality ranging from 20% to 50% of severely affected patients (Creamer et al 

2012, Kanafani et al 2009, Moore et al 2011).  

 

Clinically, treating S. aureus sepsis with antibiotics often achieves only limited success, and 

severe lung edema often still develops even with appropriate antibiotic treatment (Kanafani et 

al 2009, Moore et al 2011, Moore et al 2012). Thus, with the aim of developing novel 

efficient therapeutic approaches to the treatment of S. aureus–induced sepsis and lung edema, 

we examined the effect of a combination of amitriptyline and antibiotics on bacterial killing 

and lung edema after systemic S. aureus infection. To this end, we infected wt mice with a 



RESULTS 

- 79 - 

clinical S. aureus strain or the S. aureus Newman strain. One hour after infection with the 

incidence of first clinical symptoms, amitriptyline (Ami) or methicillin (Methi) or 

vancomycin (Vanco) or a combination of amitriptyline and either methicillin or vancomycin 

were injected. The injection of methicillin or vancomycin was repeated after 9 hrs. Control 

mice were left uninfected. The mice were sacrificed 12 hrs after infection, and bacterial 

numbers were determined in liver and spleen. Only antibiotics alone or in combination with 

amitriptyline kill bacteria in liver and spleen (Figure 4.6.1. A-B.). Treatment with 

amitriptyline alone can’t kill bacteria and even shows more bacterial numbers in liver and 

spleen compared to untreated wt mice after infection (Figure 4.6.1. A-B.). 
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Figure 4.6.1. Effect of the combination of amitriptyline and antibiotics on bacteria killing 

 
Wild-type mice were infected with a clinical S. aureus strain (A) or the S. aureus Newman strain (B). 

They were then left untreated; treated with an i.p. injection of amitriptyline (16 mg/kg) 1 h after 
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infection; treated with either methicillin or vancomycin (both 100 mg/kg) 1 h and 9 hrs after infection; 

or treated with the combination of amitriptyline and methicillin or vancomycin. The mice were 

sacrificed 12 hrs after infection. The liver and spleen were removed, homogenized, and lysed in 

saponin for the quantification of intracellular and extracellular bacteria (CFU) on lysogeny broth (LB) 

plates. Data shown are mean ± SD of three independent experiments. *, significant differences 

between uninfected and infected samples; Δ, significant differences between treated and untreated 

samples (P<0.05, t-test). 

 

4.6.2. The combination of amitriptyline and antibiotics inhibits neutrophil trafficking 
into the lung 

To define the effect of the combination of amitriptyline with antibiotics on neutrophil 

trafficking into the lung upon S. aureus infection, we infected wt mice with a clinical S. 

aureus strain or the S. aureus Newman strain. One hour after infection with the incidence of 

first clinical symptoms, amitriptyline or methicillin or vancomycin or a combination of 

amitriptyline and either methicillin or vancomycin were injected. The injection of methicillin 

or vancomycin was repeated after 9 hrs. Control mice were left uninfected. The mice were 

sacrificed 12 hrs after infection and the left lungs were removed. Obtained lung sections were 

stained with anti-GR1 antibody and analysed by confocal fluorescence microscopy. The 

results showed S. aureus-induced neutrophil trafficking into the lung is abrogated by 

treatment with amitriptyline alone or combining with antibiotics, but not treatment with 

methicillin or vancomycin alone (Figure 4.6.2. A-B.). 
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Figure 4.6.2. The combination of amitriptyline and antibiotics abrogates S. aureus-induced 

neutrophil trafficking into the lung 

 

Wild-type mice were infected with a clinical S. aureus strain (A) or the S. aureus Newman strain (B). 

They were then left untreated; treated with an i.p. injection of amitriptyline (16 mg/kg) 1 h after 

infection; treated with either methicillin or vancomycin (both 100 mg/kg) 1 h and 9 hrs after infection; 

or treated with the combination of amitriptyline and methicillin or vancomycin. 12 hrs after infection, 

four mice per group were sacrificed and the left lungs were removed, fixed, dehydrated and embedded 

in paraffin for sectioning at a thickness of 6 µm. The lung sections were stained with Cy3-labeled 

anti-GR1 antibody (scale bar is 50 µM, magnification, 63×). Representative fluorescence images from 

three independent experiments are shown. 

 
4.6.3. The combination of amitriptyline and antibiotics protects mice from tight 

junctional proteins degradation after S. aureus infection 

To determine the effect of the combination of amitriptyline with antibiotics on degradation of 

pulmonary junctional proteins upon S. aureus infection, we infected wt mice with a clinical S. 

aureus strain or the S. aureus Newman. One hour after infection with the incidence of first 

clinical symptoms, amitriptyline or methicillin or vancomycin or a combination of 

amitriptyline and either methicillin or vancomycin were injected. The injection of methicillin 

or vancomycin was repeated after 9 hrs. Control mice were left uninfected. The mice were 

sacrificed 12 hrs after infection and the left lungs were removed. Lung sections were stained 
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with anti-ZO1, anti-ZO2, anti-Occludin or anti-E-cadherin antibodies. The stainings were 

analysed by confocal fluorescence microscopy. The results showed that only treatment with 

amitriptyline alone or combining with antibiotics, but not treatment with methicillin or 

vancomycin alone, prevented breakdown of TJ proteins in vivo after infection of mice with S. 

aureus (Figure 4.6.3. A-D.). 
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Figure 4.6.3. The combination of amitriptyline and antibiotics inhibits degradation of 

pulmonary tight junctional proteins upon S. aureus infection 
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Wild-type mice were infected with a clinical S. aureus strain (A-D-1) or the S. aureus Newman strain 

(A-D-2). They were then left untreated; treated with an i.p. injection of amitriptyline (16 mg/kg) 1 h 

after infection; treated with either methicillin or vancomycin (both 100 mg/kg) 1 h and 9 hrs after 

infection; or treated with the combination of amitriptyline and methicillin or vancomycin. After 12 hrs 

infection, four mice per group were sacrificed and the left lungs were removed, fixed, dehydrated and 

embedded in paraffin for sectioning at a thickness of 6 µm. The lung sections were stained with 

Cy3-labeled anti-ZO1 (A), anti-ZO2 (B), anti-Occludin (C) or anti-E-cadherin (D) antibodies (scale 

bar is 10 µM, magnification, 40×). Representative fluorescence images from three independent 

experiments are shown. 

 

4.6.4. The combination of amitriptyline and antibiotics rescues mice form S. 
aureus-induced lung edema  

To determine the effect of the combination of amitriptyline with antibiotics on pulmonary 

edema upon S. aureus infection, we infected wt mice with a clinical S. aureus strain or the S. 

aureus Newman strain. One hour after infection, amitriptyline or methicillin or vancomycin 

or a combination of amitriptyline and either methicillin or vancomycin were injected. The 

injection of methicillin or vancomycin was repeated after 9 hrs. Control mice were left 

uninfected. The mice were sacrificed 12 hrs after infection and the left lungs were removed. 

Lung sections were stained with Hematoxylin-Eosin and analysed by confocal fluorescence 

microscopy. The results showed that only treatment with amitriptyline alone or combining 

with antibiotics, but not treatment with methicillin or vancomycin alone, prevented lung 

edema in vivo after infection of mice with S. aureus (Figure 4.6.4.A. and B.). 
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Figure 4.6.4. The combination of amitriptyline and antibiotics inhibits lung edema upon S. 

aureus infection 

 

Wild-type mice were infected with a clinical S. aureus strain (A) or the S. aureus Newman strain (B). 

They were then left untreated; treated with an i.p. injection of amitriptyline (16 mg/kg) 1 h after 

infection; treated with either methicillin or vancomycin (both 100 mg/kg) 1 h and 9 hrs after infection; 

or treated with the combination of amitriptyline and methicillin or vancomycin. After 12 hrs infection, 

four mice per group were sacrificed and the left lungs were removed, fixed, dehydrated and embedded 
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in paraffin for sectioning at a thickness of 6 µm. The lung sections were stained with 

Hematoxylin-Eosin (scale bar is 100 µM, magnification, 20×). Representative fluorescence images 

from three independent experiments are shown. 

 

4.7. The pharmacological treatment of lung edema and bacterial burden 

protects from lethality of S. aureus sepsis 

To investigate the link between bacterial burden and sepsis-induced lethality, we performed 

mortality experiments with untreated and pharmacologically treated wt and Asm-deficient 

mice after infecting them intravenously with 5×106 CFU S. aureus. Wt mice died between 26 

and 52 h after infection. Treatment of wt mice with amitriptyline delayed the death of the 

mice and the mice died between 50 and 85 h after infection. A very similar time course was 

observed for Asm-deficient mice that died between 50 and 80 h of infection. Treatment of wt 

mice with methicillin or vancomycin (1 and 9 h after infection and then twice daily) alone 

only rescued 50 % mice (11-day observation period). In contrast, the treatment of wt mice 

with a combination of amitriptyline and antibiotics rescued 100 % of infected wt mice, and no 

deaths were observed. Likewise, Asm-deficient mice under antibiotic intervention were also 

completely protected from sepsis-induced lethality (Figure 4.7.). 
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Figure 4.7. The pharmacological treatment of lung edema and bacterial burden protects from 

lethality of S. aureus sepsis  

 

Wild-type (wt) and Asm-deficient (Asm−/−) mice were infected intravenously with 5×106 CFU S. 

aureus. Mice were then left untreated or were pharmacologically treated with amitriptyline (Ami) (1 h 

after infection, then twice daily), methicillin (Methi), or vancomycin (Vanco) (1 and 9 h after infection 
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and then twice daily) or with a combination of amitriptyline and antibiotics. Survival was observed for 

up to 11 days. Data are shown in percent survival. Significance was determined by log-rank (Mantel–

Cox) test. 

 

In summary, these data indicate that the inhibition of lung edema in Asm-deficient or 

amitriptyline-treated mice together with a sufficient antibiotic treatment, which reduces the 

number of bacteria, is able to completely protect from lethality of S. aureus sepsis. 

 

4.8. Control studies 

4.8.1. Amitriptyline, Tiron or NAC has no effect on EOMA cells 

To eliminate the effect of the amitriptyline, Tiron or NAC on junctional proteins degradation 

in EOMA cells, we treated endothelial cells with 20 µM amitriptyline, 10 mM Tiron or 10 

mM NAC for 140 min and stained the cells with the antibodies against ZO1, ZO2, Occludin, 

and E-cadherin. We found that amitriptyline, Tiron or NAC alone is without effect on TJs 

degradation in EOMA cells (Figure 4.8.1.).     
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Figure 4.8.1. Effect of amitriptyline, Tiron or NAC on the distribution of ZO1, ZO2, Occludin 

and E-cadherin in EOMA cells 

 

EOMA cells were treated for 140 min with amitriptyline (20 µM), Tiron (10 mM) or NAC (10 mM). 

Immunoflourescence stainings were performed with antibodies against ZO1, ZO2, Occludin, or 

E-cadherin for determination of the degradation of these tight junction proteins. The presented pictures 

are representative of the results of at least three independent experiments (magnification, 40×). Scale 

bar is 25 µM. 

 

4.8.2. The drugs have no effect on lung parameters 

To eliminate the effect of the drugs on lung parameters in uninfected mice, amitriptyline or 

methicillin or vancomycin or a combination of amitriptyline and either methicillin or 

vancomycin were injected. The injection of methicillin or vancomycin was repeated after 8 

hrs. Control mice were left untreated. The mice were sacrificed 11 hrs after treatments. Lung 

sections were stained with Hematoxylin-Eosin (Figure 4.8.2.A.), anti-GR1 antibody (Figure 

4.8.2.B.) and anti-ZO1 (Figure 4.8.2.C.), anti-ZO2 (Figure 4.8.2.D.), anti-Occludin (Figure 

4.8.2.E.) or anti-E-cadherin (Figure 4.8.2.F.) antibodies. The stainings were analysed by 

confocal fluorescence microscopy. The studies confirmed that the drugs were without effect 

on lung parameters. 
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Figure 4.8.2. Effect of the drugs on lung parameters  

 

Wild-type mice were treated with an i.p. injection of amitriptyline (16 mg/kg), either methicillin or 

vancomycin (both 100 mg/kg) or with a combination of amitriptyline and Methicillin or vancomycin. 

Injection of the antibiotics was repeated after 8 hrs. After 11 hrs treatments, four mice per group were 

sacrificed and the left lungs were removed, fixed, dehydrated and embedded in paraffin for sectioning 

at a thickness of 6 µm. The lung sections were stained with Hematoxylin-Eosin (A) (scale bar is 100 

µM, magnification, 20×), Cy3-labeled anti-GR1 antibody (B) (scale bar is 50 µM, magnification, 

63×), or Cy3-labeled anti-ZO1 (C), anti-ZO2 (D), anti-Occludin (E) or anti-E-cadherin (F) antibodies 

(scale bar is 10 µM, magnification, 40×). Representative fluorescence images from three independent 

experiments are shown. 
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5. DISCUSSION 

5.1. Discussion of the Methods 

5.1.1. Determination of Asm activity in cell lysates 

Different methods are used to determine sphingomyelinase enzymatic activity, such as assays 

of pure enzyme and assays of cell extracts. In these assays the enzymatic activity of 

sphingomyelinase can be assayed by determining the conversion of sphingomyelin to 

ceramide and phosphorylcholine.  

 

For assaying purified sphingomyelinase, natural or synthetic sphingomyelin is prepared, pure 

or mixed with other lipids, in the form of extruded large unilamellar vesicles (LUVs) 

approximately 100 nm in diameter (Richards et al 1986). When LUVs are assayed with 

sphingomyelinase, ceramide production in the bilayers leads to vesicle aggregation, which in 

turn produces an increase in turbidity or light scattering in the suspension. Thus the reaction 

can be followed in real time just by measuring the increase in turbidity (absorbance at 500 

nm) or in light scattering (e.g. with a fluorometer with both the excitation and emission 

monochromators adjusted at 500nm). 

 

For assaying sphingomyelinase activity in cell lysates, sphingomyelin need to be labeled, 

radioactively, fluorescently or otherwise. In the present study, the enzymatic activity was 

measured as the degradation of radioactive [14C]-sphingomyelin to ceramide and 

[14C]-phosphorylcholine. Because [14C]-phosphorylcholine is soluble in water, it is easily 

separated from the substrate [14C]-sphingomyelin and ceramide, which remains in the organic 

phase following extraction. Sphingomyelin can serve as substrate for three forms of 

sphingomyelinases that manifest acid, neutral or basic pH optima for maximal enzyme 

activity (Hannun 1996). In the present study Asm activity was discriminated from the neutral 

or basic sphingomyelinase activity by performing the assay at pH 5.0. Because of the 

difficulty in bringing together the enzyme and substrate molecules in the presence of cell 

homogenates, a suitable detergent, such as Triton X-100 was used. It should be noted that, 
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apart from emulsifying the substrate, the detergents bind and modify the enzyme activity, thus 

detergent concentration and initial detergent:substrate ratio was kept constant for 

reproducibility of assays. Finally, it has been suggested that the Asm may be located in 

detergent-resistant/insoluble fractions; thus, for determination of Asm activity in whole-cell 

lysates, no centrifugation step was performed after lysis and sonication of the cells to prevent 

pelleting and loss of the Asm. 

 

5.1.2. Ceramide measurement by diacylglycerol (DAG) kinase assay 

The crucial role of ceramide in numerous cellular processes and particularly stress responses, 

has led to the necessity of developing rapid and quantitative assays for ceramide 

determination. In the literature, there are several methods reported for quantifying ceramide 

such as normal phase high performance liquid chromatography (HPLC) analysis after 

derivatization with a fluorescent tag (Couch et al 1997, Iwamori et al 1979, Previati et al 

1996, Yano et al 1998), evaporative lightscattering detection (McNabb et al 1999), high 

performance thin layer chromatography (HPTLC) analysis (Motta et al 1994), or using cells 

labeled with radioactive precursors   (Tepper et al 2000). Ceramide molecular species can 

be determined following hydrolysis and analysis of the liberated and derivatized sphingoid 

bases by means of HPLC (Nishimura et al 1985, Smith et al 1995) and fatty acids by means of 

GC/MS (Samuelsson et al 1969). New methods for quantitative analysis of ceramide 

molecular species have been developed and are based on HPLC or reversed phase HPLC 

(RP-HPLC) separation of their fluorescent analogs prepared after derivatization with anthroyl 

cyanide (Yano et al 1998), benzoyl chloride (Couch et al 1997), or benzoic anhydride  

(Iwamori et al 1979). Moreover, mass spectrometry methodologies have been developed for 

the detection of molecular species of ceramide (Couch et al 1997, Gu et al 1997, Kalhorn et al 

1999, Karlsson et al 1998, Liebisch et al 1999, Mano et al 1997, Watts et al 1999). However, 

most of these methods require long periods of processing and/or analysis. 

 

The DAG kinase assay is a widely used method for the rapid quantification of ceramide. The 

primary advantages of the DAG kinase assay are the measurement of total mass levels of 

ceramide; the use of crude lipid extracts in the assay; and the ability of process a large number 



DISCUSSION 

- 95 - 

of samples in a rapid manner. DAG kinase activity was originally reported by Hokin and 

Hokin (Hokin et al 1959). The enzyme was validated as an analytical tool in measuring 

diglyceride levels by the demonstration of a linear relationship between the amount of 

diglyceride added to an in vitro assay and the amount of product (phosphatidic acid) formed. 

Ceramides share structural similarities with diglycerides, and Schneider and Kennedy 

reported that bacterial DAG kinase can utilize ceramide as a substrate with a Km nearly five 

times greater than that for diglyceride (Schneider et al 1973). Early attempts to use DAG 

kinase to quantify ceramide revealed a linear but non-quantitative relationship between 

substrate added and product formed. Further modification of the assay demonstrated that 

DAG kinase could also be used for quantitative conversion of ceramide to 

ceramide-1-phosphate over a range of 25 pmol to 2 nmol (Van Veldhoven et al 1995). These 

refinements have required special emphasis on the protocol of lipid extraction, purity of the 

reagents used for the preparation of the mixed micelles and on the development of high levels 

of recombinant DAG kinase. 

 

The nonpolar properties of ceramide require that it be extracted from cells in organic solvents. 

Thus, the cells are lysed in a solution containing chloroform and methanol. Acidification of 

lysates with hydrochloric acid helps extraction of shorter acyl chain ceramide-1-phosphates or 

hydroxylated ceramides, thus being important to gain optimal usage of the exogenously added 

ceramides or internal standards. In the DAG kinase reaction, it is critical that the substrate is 

in a soluble form for optimal conversion to product by the enzyme. Mixed micelles containing 

a non-ionic detergent, such as n-octyl-β-glucopyranoside, and a phosholipid, such as 

cardiolipin, are utilized for this purpose. Of particular importance is the level of ceramide 

conversion to ceramide-1-phosphate. For the DAG kinase assay to yield reliable quantitative 

results, the reaction must go to completion with total conversion of DAG and ceramide. 

Otherwise, the results become sensitive to the effects of the efficiency of the reaction (Km and 

Vmax consideration of the DAG kinase) and to possible ‘competition’ between DAG and 

ceramide as substrates. In the present study, an excess of enzyme and ATP was used which 
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allowed linear and quantitative conversion and was sufficient for the phosphorylation of 

cellular ceramides as well as exogenously added ceramide. 

 

5.1.3. Detection of lung edema by Evans Blue Dye 

Evans Blue dye is widely used to study in vitro cellular permeability (Patterson et al 1992) 

and in vivo vascular leakage (Ferrero 2004). Historically, the dye was introduced for its utility 

in blood volume determinations by the dye dilution technique (Gibson et al 1937). Eventually, 

because the very high affinity of the dye for albumin was discovered (Freedman et al 1969, 

Rawson 1943), it began to be used as a surrogate marker for serum albumin flux across the 

luminal barrier in many in vivo experimental situations. Although subsequent investigations 

have revealed that the dye-albumin conjugate is not covalent in nature (Le et al 1947), it 

continues to be used today in situations where use of radioactively labeled albumin is not 

feasible or for histological examinations of injured tissue (Finck et al 1989, Moitra et al 2007, 

Saria et al 1983). 

 

In the present study, pulmonary vascular permeability was estimated by using the Evans blue 

method. Evans blue dye, which strongly binds to albumin, is a well-known marker of protein 

extravasation in models of acute lung injury (Turnage et al 1995). A critical point to detect 

lung edema is to allow Evans blue dye to circulate for some time, which can ensure that 

albumin-bound Evans blue moves into the lung parenchyma through compromised vascular 

barrier in the lung. The major problem in detection of vascular leakage is the possibility of 

intravascular Evans blue dye residual. This would lead to an amplification of the optical 

density signal a false-positive result. To avoid this artifact, the lungs were perfused free of 

blood with phosphate-buffered saline via the pulmonary artery. Another crucial point is that 

total amount of dye should be calculated by means of a standard calibration curve. In the 

present study, results were expressed as µg/g of wet tissue. 
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5.1.4. Measurement of production of ROS by Electron Spin Resonance (ESR) 

ROS formation and signaling are of major importance and regulate a number of processes in 

physiological conditions, which has led to the necessity of developing specific and sensitive 

assays for ROS determination. In the literature, there are several methods reported to allow 

measurement of generation and accumulation of different ROS, particularly H2O2, O2
.–, and 

NO, in cells and/or organisms, such as fluorescent ROS dye technologies (Chen et al 2010, 

Zielonka et al 2010), genetically encoded ROS reporters (Ostergaard et al 2001, 

Schwarzlander et al 2011), nanoparticle delivery systems (Koo et al 2007, Lee et al 2009), 

and nanotube ROS probes (Kim et al 2011, Leeuw et al 2007). However, there are two major 

problems associated with even the most recently developed ROS fluorescent probes that still 

persist: reversibility and reaction rate. 

 

ESR was first observed in Kazan State University by Soviet physicist Yevgeny Zavoisky in 

1944, and was developed independently at the same time by Brebis Bleaney at the University 

of Oxford. ESR spectroscopy is a technique for studying materials with unpaired electrons. 

The basic concepts of ESR are analogous to those of nuclear magnetic resonance (NMR), but 

it is electron spins that are excited instead of the spins of atomic nuclei. ESR is the most direct 

technique and an effective and unique way to detect free radicals in biological samples. ESR 

spectroscopy is particularly useful for studying organic radicals.  

 

Although unpaired electrons of species such as NO, ·OH, or O2·
– are too low in concentration 

and short-lived to be directly detected by ESR in biological systems, this dilemma can be 

circumvented by ESR measurement of more stable secondary radical species formed by 

adding exogenous spin-traps—molecules that react with primary radical species to give 

longer-lasting radical adducts with characteristic ESR signatures that can accumulate to levels 

permitting detection (Blodig et al 1999, Chen 2008). As we known, the concentration of ROS 

is very low and this would lead to the difficulty for detecting by ESR. To avoid this artifact, 

enough cells need to be prepared. Finally, since superoxide dismutase (SOD) catalyzes the 

dismutation of superoxide radicals (O2
.- + O2

.- + 2H+ -- O2 + H2O2) (McCord et al 1969). In 

the present study, SOD-inhibited fraction of the signal was used to calibrate the system. 
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5.1.5. Asm-deficient animals 

To determine the crucial role of Asm in the present study, Asm-deficient mice were used. The 

Asm knock-out mouse was originally generated in the laboratory of Dr. E. Schuchman 

(Horinouchi et al 1995) and has been proven to be a valuable tool in investigating the role of 

Asm in different cellular processes. Unfortunately, a study from Nix and Stoffel (2000) 

reported marked biochemical alterations and membrane dysfunction in cells derived from 

their line of Asm knock-out mice such as: increase of sphingomyelin and gycosphingolipids 

in the plasma membrane of hepatocytes, reduction of caveolin levels in embryonic fibroblasts, 

reduced signalling through tyrosine kinases in T lymphocytes, lymphopenia, the absence of 

proliferation of T cells in response to anti-CD3, reduced expression of the anti-apoptotic 

adapter FLIP, and a paradoxical increase in apoptosis of anti-CD3 pre-treated splenocytes 

upon activation of CD95 (Nix et al 2000). Therefore, the authors concluded that the 

previously reported apoptotic abnormalities in Asm-deficient cells and tissues  (Cifone et al 

1995, Lin et al 2000, Morita et al 2000, Pena et al 2000, Perez et al 1997, Santana et al 1996, 

Zundel et al 1998, Zundel et al 2000) did not result merely from Asm deficiency, but rather 

were impacted by disruption of membrane microdomains in response to altered sphingolipid 

metabolism (Nix et al 2000). 

 

However, Lozano and co-workers pointed out that the phenotype of the Asm-deficient mouse 

line used in the study of Nix and Stoffel was different from the mouse line generated in the 

laboratory of Dr. Schuchman, which displayed, up to a certain age (12-16 weeks), only a 

minimal increase in sphingomyelin content, unchanged levels of caveolin-1, normal 

MAP-kinase signalling and tyrosine phosphorylation patterns, no lymphopenia, normal T 

cells proliferation and no decrease in FLIP levels (Lozano et al 2001). Furthermore, the life 

expectancy of around 9-10 months (Pena et al 2000, Santana et al 1996) was in contrast with 

that of the mice generated by Stoffel and co-workers, who reported that the life span of their 

Asm-deficient mice was maximally 4 months, with mice succumbing to advanced 

Niemann-Pick disease type A(Otterbach et al 1995). The mice used in the present study show 
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the earliest clinical manifestation of Niemann-Pick disease type A between 12-16 weeks of 

age; therefore, all the Asm-deficient mice involving in our experiments were carried out with 

animals younger than 10 weeks of age, before any biochemical, histological or clinical 

manifestations of Niemann-Pick disease type A were apparent. This excluded that the effects 

observed in the Asm-deficient cells were due to altered cellular processes (as described 

above) but instead, were completely dependent on the lack of Asm. 

 

5.2. Discussion of the Results 

5.2.1. Role of the Asm/ceramide system in redox signaling 

Our findings indicate that infecting endothelial cells with S. aureus activates Asm and thereby 

triggers the release of ceramide. Asm leads to the production of ROS by endothelial cells. 

Asm plays a critical role in S. aureus-triggered ROS release. S. aureus induces ROS 

accumulation in endothelial cells. These events were all absent in amitriptyline-treated mice 

that have a reduced Asm activity or in mice lacking the Asm genetically. Consistently, 

Reinehr and co-workers demonstrated that inhibiting Asm blocks the release of ROS, a 

finding suggesting that ROS functions downstream of Asm in hepatocytes (Reinehr et al 

2006). Similarly, inhibiting Asm attenuates the ceramide and ROS production induced by 

histone deacetylase/perifosin (Rahmani et al 2005), fenretinide (Lovat et al 2004), sodium 

nitroprusside (Sanvicens et al 2006), or P. aeruginosa (Manago et al 2015, Zhang et al 2007, 

Zhang et al 2008). Taken together, these data confirmed the notion that Asm activation and 

ceramide production are upstream signals of ROS production. 

 

NADPH oxidases (Nox), which are localized to various cellular membranes, are classically 

known as important ROS producers (Geiszt et al 2000, Lambeth 2004, Suh et al 1999). 

Ceramide induces the activation of ROS-generating enzymes, including NADPH oxidase, 

xanthine oxidase, NO synthase, and the mitochondrial respiratory chain (Corda et al 2001, 

Lecour et al 2006). In particular, ceramide has been shown to activate NADPH oxidase and to 

increase the production of ROS in a variety of mammalian cells, including human aortic 

smooth muscle cells (Bhunia et al 1997), endothelial cells (Zhang et al 2007), macrophages 
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(Zhang et al 2008) and erythrocytes (LaRocca et al 2014). The precise mechanism that how 

ceramide activates NADPH oxidase is not well understood. Because many stimuli activate 

NADPH oxidase by translocation and aggregation, it has been proposed that ceramide 

mediates the fusion of small raft domains to ceramide-enriched membrane platforms, which 

facilitate the aggregation of subunits of NADPH oxidase and enhances interactions between 

subunits of NADPH oxidase, thereby stimulating the production of ROS (Figure 5.2.1.)   

(Boini et al 2010, Jin et al 2008, Li et al 2007, Zhang et al 2006). Yi and colleagues 

demonstrated that ceramide in platforms may also directly enhance NADPH oxidase activity 

by activating small G protein Rac1/2 by activation of guanine nucleotide exchange factors 

(GEFs) such as Vav2 (Figure 5.2.1.)  (Li et al 2007, Yi et al 2007). 

 

 

Figure 5.2.1. A hypothetic model showing lipid rafts (LRs) and LRs clustering to form a 
redox signaling platform 
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Under resting condition, individual LRs with attached receptors are present in the membrane 
of ECs (panel for resting cells). These individual LRs are dynamic microdomains and carry 
several membrane-bound or attached proteins or enzymes such as G-proteins, protein kinases, 
or the subunits of NADPH oxidase gp91phox and p47phox. When ligands or agonists bind to 
their receptors on individual LRs, the clustering is activated to form a number of LR 
macrodomains or platforms with aggregation or recruitment of receptors, NADPH oxidase 
subunits, and other proteins such as Rac GTPase. Clustering of these proteins and enzymes 
leads to activation of NADPH oxidase and production of O2

.-, which results in a prominent 
amplification of the transmembrane signal (panel for stimulated cells) (Li et al 2007). 
 
 
5.2.2. Role of ROS in Asm activation 

Our findings demonstrated that pretreating endothelial cells with the antioxidants 

N-acetylcysteine (NAC) and Tiron substantially inhibited Asm activation and the signaling 

events downstream of Asm activation, such as junctional proteins degradation induced by 

systemic S. aureus infection, thus indicating that ROS release is required for Asm activation. 

Moreover, several recent studies have indicated that the generation of ROS may be involved 

in the activation of Asm in response to various stimuli (Charruyer et al 2005, Dumitru et al 

2006, Scheel-Toellner et al 2004), which seems to conflict with the above conclusion that 

Asm activation results in ROS production. This conundrum is discussed below and an 

amplifying concept is presented. 

 

Scheel-Toellner and colleagues demonstrated that Asm activation, ceramide generation, and 

CD95 clustering play a crucial role in the spontaneous apoptosis of neutrophils; apoptosis was 

substantially delayed in Asm-deficient mice (Scheel-Toellner et al 2004). These events were 

pretreated by antioxidants indicating the dependence of the Asm on ROS. In accordance, 

pretreatment with the antioxidant pyrrolidine dithiocarbamate (PDTC) abolished Asm 

activation by ultraviolet (UV)-C light in U937 cells, a finding suggesting that ROS functions 

downstream of Asm (Charruyer et al 2005).  

 

In addition, Dumitru and colleagues also demonstrated the involvement of ROS in 

TNF-related apoptosis-inducing ligand (TRAIL)-induced activation of Asm and apoptosis 

(Dumitru et al 2006). Stimulation with TRAIL/DR5 led to activation of Asm and the 
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subsequent formation of ceramide-enriched membrane platforms, DR5 clustering, and 

consequent apoptosis. Pretreatment with antioxidants NAC and Tiron substantially inhibited 

TRAIL-induced Asm activation, ceramide/DR5 clustering, and apoptosis, demonstrating that 

ROS play a crucial role in TRAIL-induced Asm/ceramic activation (Dumitru et al 2006). 

Finally, studies investigating the cellular effects of Cu2+ showed that Cu2+ also promotes the 

ROS-dependent activation of Asm and leads to the death of hepatocytes (Lang et al 2007). It 

was shown that the accumulation of Cu2+, as occurred in Wilson disease, activates Asm in 

hepatocytes and triggers the release of ceramide in these cells. This process leads to 

Cu2+-induced hepatocyte death, which can be prevented by a deficiency in Asm (Lang et al 

2007). 

 

In summary, these studies demonstrate that Asm activity is regulated by ROS upon systemic 

S. aureus infection, but the enzyme also stimulates ROS release. Therefore, we proposed a 

positive feed-back loop and a vicious cycle of–induced Asm activation and ROS release. In 

this amplification model, initial activation of Asm results in ROS production, which further 

enhance activation of Asm thus forms a feed-forward loop for ROS production. This finding 

is similar to the results of previous studies showing a positive feedback loop between the Asm 

and ROS after infection of macrophages with P. aeruginasa (Zhang et al 2008). 

 

5.2.3. Role of the Asm/ceramide system and ROS for lung edema induced by systemic S. 
aureus infection 

The results of the present study demonstrate that genetic deficiency or pharmacologic 

inhibition of the Asm/ceramide system in mice protects against lung edema induced by 

systemic S. aureus infection. The Asm/ceramide system triggered the formation of ROS, 

resulting in degradation of tight junction proteins and neutrophil trafficking, followed by lung 

edema. Pretreatment of mice or treatment of already infected mice with amitriptyline, a potent 

functional inhibitor of Asm, both protected mice from lung edem caused by systemic S. 

aureus infection. All the data presented above indicate that Asm/ceramide is a novel key 

molecule for the induction of lung edema by systemic S. aureus infection. Furthermore, 

pretreatment of mice with the antioxidants N-acetylcysteine (NAC) and Tiron substantially 
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inhibited the events downstream of Asm activation, such as junctional proteins degradation, 

neutrophil trafficking and lung edema, thus indicating that ROS release is also required for 

lung edema induced by systemic S. aureus infection.  

 

It has been speculated that membrane rafts (MRs) and ROS may constitute an amplification 

system of redox signals and ceramide signaling cell membranes, which insures the efficiency 

of signal transduction (Li et al 2013a). The formation of such feed forward amplifying loop 

for MR redox and ceramide signaling may also be responsible for the temporospatial 

regulation of a complex signalosome that precisely and efficiently control cell function. If the 

activity of this regulatory loop is excessively enhanced, excessive production of both ROS 

and ceramide may result in the progress and development of different diseases or pathological 

processes (Li et al 2013a). 

 

With respect to the role of these domains for the regulation of vascular endothelial functions, 

it has been described by numerous studies. Zhang and colleagues demonstrated that 

transfection of Asm siRNA markedly attenuated CD95 ligand in isolated small bovine 

coronary arteries, and induced inhibition of endothelium-dependent vasorelaxation (a 

response to bradykinin) by 60 % (Zhang et al 2007). The results suggest that Asm, the release 

of ceramide, and MR-derived ceramide-enriched membrane platforms are involved in the 

activation of NADPH oxidase in response to cytokines in coronary ECs, consequently leading 

to endothelial dysfunction (Jin et al 2007, Zhang et al 2006, Zhang et al 2007). 

 

Moreover, the MR redox signaling platform associated with NADPH oxidase has been 

demonstrated to be responsible for endothelial dysfunction induced by various stimuli such as 

death receptor activation, homocysteine, cytokines, or adipokines (Jin et al 2008, Xia et al 

2011, Zhang et al 2006). As a commonly used functional study, endothelium-dependent 

vasodilation (EDVD) response in isolated perfused arteries was tested. It was found that 

various stimulations which led to the formation of MR redox signaling platforms such as 

CD95 ligand, endostatin, homocysteine, and visfatin all led to impairment of EDVD. This 
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impairment was homeostatically recovered by NADPH oxidase inhibition using apocynin, or 

Asm siRNA, suggesting that MR redox signaling platforms with NADPH oxidase participate 

in the impairment of endothelial function (Jin et al 2008, Zhang et al 2007).  

 

In addition, platelet-activating factor (PAF), lipopolysaccharide (LPS) or acid instillation 

treatment induces Asm-dependent production of ceramide and results in pulmonary edema 

and has a key role in ALI. Agents that interfere with PAF-induced ceramide release, such as 

steroids or the xanthogenate D609, attenuate pulmonary edema formation induced by PAF, 

endotoxin or acid instillation. These results identify Asm and ceramide as possible therapeutic 

targets in acute lung injury (Goggel et al 2004). 

 

During sepsis, ALI results from activation of innate immune cells and endothelial cells by 

endotoxins, leading to systemic inflammation through pro-inflammatory cytokine 

overproduction, oxidative stress, and intracellular Ca2+ overload. Recent data by Gandhirajan 

and co-workers indicate that ROS-driven Ca2+ signaling promotes vascular barrier 

dysfunction and induce pulmonary edema (Gandhirajan et al 2013). 

 

All the experiments confirmed the notion that feed forward amplifying loop of Asm/ceramic 

and ROS is involved in systemic S. aureus–induced pulmonary edema. 

 

5.2.4. Role of junctional proteins degradation for lung edema induced by systemic S. 
aureus infection  

As we known endothelial barrier dysfunction occurs during stimulation by inflammatory 

agents, pathogens, activated blood cells, or disease states. The pathophysiology is 

characterized by excessive flux of plasma across the exchange micro-vessel wall into the 

surrounding tissues. Traditionally, compromised endothelial cell–cell junctional integrity is 

considered to account for the leak response. 

 

A principal hallmark of lung edema is degradation of junctional proteins, which induces the 

disruption of endothelial cell barrier, followed by excessive flux, neutrophil trafficking and 
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consequently lung edema. Clinicians have long recognized the problem of vascular leak but 

had no tools to reverse it. 

 

Out data presented here indicate that systemic S. aureus infection induces lung edema via 

degradation of junctional proteins. Genetic deficiency of the Asm/ceramide system in mice 

protects against junctional proteins degradation and reduces lung edema induced by systemic 

S. aureus infection.  Furthermore, pre-treatment of the mice or treatment of already infected 

mice with amitriptyline both protected mice from junctional proteins degradation and reduces 

lung edema. Likewise, pretreatment of mice with the antioxidants N-acetylcysteine (NAC) 

and Tiron substantially inhibited junctional proteins degradation and reduces lung edema.  

 

The experiments further suggest, on one hand, the feed forward amplifying loop for 

Asm/ceramide and ROS is required for degradation of junctional proteins induced by 

systemic S. aureus infection; on the other hand, junctional proteins degradation is responsible 

for lung edema induced by systemic S. aureus infection. This concept is consistent with 

findings that superoxide can directly down-regulate TJ proteins and indirectly activate matrix 

metalloproteinases (MMPs) that contribute to disrupt the integrity of endothelial cell layers 

(Gu et al 2011). Moreover, superoxide directly activates several inflammatory cytokines, 

which in turn activate MMPs (Abdul-Muneer et al 2015, Gu et al 2011, Rochfort et al 2014). 

Furthermore, in some pathological conditions, ROS induce the degradation of tight junctional 

proteins, following by vascular leakage and neutrophil trafficking with consequent pulmonary 

edema (Catanzaro et al 2015, Naik et al 2014). 

 

All the data presented above indicate that antidepressant amitriptyline and antioxidants 

N-acetylcysteine (NAC) and Tiron might be very useful for future therapies for lung edema 

induced by degradation of junctional proteins. At the same time, the development of agents or 

mediators that reinforce intercellular junctional proteins should be a goal of drug research. 
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5.2.5. Role of neutrophil recruitment for lung edema induced by systemic S. aureus 
infection  

Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils 

into the interstitium and broncheoalveolar space. Neutrophils are considered to play a key role 

in the progression of ALI/ARDS since activation and transmigration of neutrophils is a 

hallmark event in the progression of ALI/ARDS (Abraham 2003).  

 

The importance of neutrophils in ALI/ARDS is affirmed by clinical data and animal models. 

In patients with ARDS, the concentration of neutrophils in the bronchoalveolar lavage (BAL) 

fluid correlates with severity of ARDS and outcome (Matthay et al 1984, Parsons et al 1985, 

Steinberg et al 1994). Furthermore, depletion of neutrophil in mice reduces the severity of 

lung injury (Abraham et al 2000). Interestingly, blocking interleukin-8 (IL-8), a major 

chemoattractant for neutrophils, protects rabbits from acid aspiration-induced lung injury 

(Folkesson et al 1995). Further to emigration, neutrophils are irreplaceable in bacterial 

clearance, much of which is mediated by phagocytosis and intracellular bacterial killing 

(Soehnlein 2009). Even so, ALI/ARDS can occur in children and adults with neutropenia 

(Laufe et al 1986, Ognibene et al 1986, Sivan et al 1990), which indicates that 

neutrophil-independent mechanisms alone allow for development of ALI/ARDS under 

specific conditions. Despite that, a multitude of experimental and clinical data point at the 

causative role of neutrophils in lung injury. 

 

The present study indicates that neutrophil trafficking plays a key role in lung edema induced 

by systemic S. aureus infection. Genetic deficiency of the Asm/ceramide system in mice 

reduces neutrophils trafficking, consequently protects the mice against lung edema induced by 

systemic S. aureus infection.  Furthermore, pre-treatment of the mice or treatment of already 

infected mice with amitriptyline both protected mice from neutrophil trafficking and reduces 

lung edema. Furthermore, pretreatment of mice with the antioxidants N-acetylcysteine (NAC) 

and Tiron substantially inhibited neutrophils trafficking and reduces lung edema.  
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The experiments further suggest, on one hand, the feed forward amplifying loop for 

Asm/ceramide and ROS is required for neutrophil trafficking induced by systemic S. aureus 

infection; on the other hand, neutrophil trafficking is involved in lung edema induced by 

systemic S. aureus infection. Consistently, it has recently been shown that recruitment of 

neutrophils is a key event in development of ALI, linking to plasma leakage and deterioration 

of oxygenation (Grommes et al 2011, Ware et al 2000). LPS inhalation mimics human 

Gram-negative ALI, inducing neutrophil recruitment, pulmonary edema and finally 

impairment of gas exchange (Matute-Bello et al 2008). Moreover, the importance of 

neutrophils in ALI is supported by studies where lung injury is abolished or reversed by 

depletion of neutrophils (Looney et al 2006, Soehnlein et al 2008). 

 

Hence, antidepressant amitriptyline and antioxidants N-acetylcysteine (NAC) and Tiron might 

be very useful for future therapies for lung edema induced by neutrophils trafficking. At the 

same time, the development of agents or mediators that decrease neutrophils recruitment 

should be a goal of drug research.  

 

5.2.6. Clinical significance of combination of amitriptyline and antibiotic 

S. aureus is a leading cause of septic infections, and S. aureus–induced sepsis is one of the 

most serious infections acquired in hospitals or in the community. However, even with the use 

of appropriate antibiotics, fatal lung edema often develops (Cortes Garcia et al 2012, Moore et 

al 2011, Moore et al 2012). Despite many clinical trials, no FDA-approved drug is available 

for use in sepsis, a lack that underscores the importance of future sepsis research. 

Interestingly, our studies with wt and Asm-deficient mice seem to mimic the situation in 

hospitals showing a high lethality in septic S. aureus infections even if adequately treated 

with antibiotics (Cortes Garcia et al 2012, Moore et al 2011, Moore et al 2012). 

 

Our findings demonstrate that treating mice with amitriptyline 1 or 2 h after infection reduces 

S. aureus–induced pulmonary edema and also inhibits myeloid cell trafficking and the 

degradation of junctional proteins. The reduced capacity of mice treated with amitriptyline or 

Asm-deficient mice to kill S. aureus is consistent with the previous notion that myeloid cells 
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lacking Asm are unable to cluster and activate NADPH oxidases resulting in a defect of the 

production of superoxide and a reduced killing of pathogens. Finally, amitriptyline-treated or 

Asm-deficient mice died by the inability to eliminate the bacteria. In contrast, antibiotics kill 

the bacteria, but did not reduce lung edema. Thus, the combination of amitriptyline and 

antibiotics combines the advantages of inhibiting lung edema and eliminating systemic 

bacteria, protecting mice from lethality. 

 

It is very interesting that Goggel and co-workers demonstrate that steroids or the 

xanthogenate D609, which can interfere with PAF-induced ceramide synthesis, inhibit 

pulmonary edema formation induced by platelet-activating factor (PAF), lipopolysaccharide 

(LPS) or acid instillation (Goggel et al 2004). These results indicate that Asm/ceramide 

signaling plays an important role in pulmonary edema induced by PAF instillation. 

 

However, the molecular mechanisms how the Asm/ceramide system induces lung edema is 

largely unknown. According to previous studies, eNOS/eNO might be involved in this role. It 

has been reported that pharmacological inhibition of the Asm pathway with imipramine, 

D609 or dexamethasone blocks the PAF-induced increase of caveolin-1 and eNOS in 

caveolae, and the decreases in eNO production and edema formation in rat lung (Yang et al 

2010).  These results suggest that inhibition of eNOS/eNO signaling decreases PAF-induced 

lung edema. 

 

More recently, Samapati and colleagues indicate PAF increases lung edema and endothelial 

Ca2+. This response is abrogated by inhibitors of Asm or in Asm-deficient mice, and 

replicates by lung perfusion with exogenous Asm or C2-ceramide. Further experiments 

demonstrate that PAF increases the caveolar abundance of TRPC6 channels via Asm 

activation, subsequently induces increases in lung endothelial Ca2+, vascular filtration 

coefficient, and edema formation , which were attenuated by the TRPC inhibitor SKF96365 

and in TRPC6-deficient mice, whereas direct activation of TRPC6 replicated the Ca2+ and 

edema response to PAF. The exogenous NO donor PapaNONOate or the cyclic guanosine 
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3′,5′-monophosphate analog 8Br-cGMP blocked the endothelial Ca2+ and permeability 

response to PAF (Samapati et al 2012).  

 

According to our data, the Asm/ceramide system induces lung edema by junctional proteins 

degradation and neutrophil trafficking, which is a novel viewpoint to explain how the 

Asm/ceramide system induces lung edema upon systemic S. aureus infection. 

 

5.2.7. Possible additional roles of Asm as activator of ADAM 10 

S. aureus expresses multiple toxins, such as alpha-toxin, Panton-Valentine leukocidin, and 

enterotoxin B and A, which cause membrane damage, infiltration of myeloid cells and 

macrophages, cytokine production, and increased vascular permeability resulting in severe 

pulmonary edema and lung injury (Bhakdi et al 1984, Diep et al 2010, Mattix et al 1995, 

Menoret et al 2012).  

 

 Pore-forming cytotoxins (PFTs) are a family of bacterial virulence factors that cause 

eukaryotic cell injury and death (Gonzalez et al 2008). S. aureus encodes multiple PFTs, the 

best-studied being α-hemolysin (Hla), which is expressed by almost all strains (Tomita et al 

1997). Hla is involved in the pathogenesis of skin infections, pneumonia, corneal infection 

and toxic shock syndrome (Brosnahan et al 2009, Bubeck Wardenburg et al 2007a, Bubeck 

Wardenburg et al 2007b, Kennedy et al 2010, O'Callaghan et al 1997), including those caused 

by MRSA.  

 

Both of the S. aureus strains used in our study produce several hemolysins. It is possible that 

S. aureus toxins mediate the activation of the Asm observed in the present study after 

infection of endothelial cells with S. aureus. However, at present, it is unknown whether 

purified alpha-toxin activates the Asm in human and mouse monocytic cells. Recently, it was 

reported that the binding of Hla to its eukaryotic receptor A-disintegrin and metalloprotease 

10 (ADAM10) leads to the up-regulation of ADAM10 activity, which is required for 

Hla-induced cytotoxicity (Inoshima et al 2011, Powers et al 2012, Wilke et al 2010). 
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Increased ADAM10 activity in epithelial and endothelial cells and following signaling 

cascades disrupts the cell barrier function, and this disruption contributes to the pathogenesis 

of lethal lung edema. However, it is unknown whether the Asm and ADAM10 function in the 

same signaling cascade or are independent pathways that are both required for the cellular 

effects of alpha-toxin.  

 

5.2.8. Possible additional roles of Asm as activator of the Nalp3 inflammasome 

Microorganisms that invade the cytosol can be recognized by cytoplasmatic 

pattern-recognition receptors (PRRs), most notably the nucleotide-binding and 

oligomerization domain, leucine-rich repeat (also known as NOD-like receptors, both 

abbreviated to NLR) (Kawai et al 2010, Schroder et al 2010). NLRs, which detect microbial 

components in the cytosol and trigger the assembly of large caspase-1-activating complexes 

termed inflammasomes, are further subcategorized based on differences in the N-terminal 

domains (Schroder et al 2010, Stutz et al 2009). Amongst the various inflammasomes, the 

NALP3 inflammasome is particularly qualified to response to various activators, leading to 

caspase activation. NLRP3 inflammasome activation induces caspase-1 activation, which 

causes the processing of the pro-inflammatory cytokines IL-1β and IL-18 and triggers the 

inflammatory stress (Schroder et al 2010, Stutz et al 2009). IL-1 β is an early cytokine in ALI 

patients and induces alveolar permeability and causes production of other cytokines such as 

IL-6 and TNF-a (Ganter et al 2008). 

 

S. aureus is a potent activator of the inflammasome in macrophages resulting in upregulation 

of caspase-1 upon its interaction with Asc and NALP3 (Mariathasan et al 2006). Moreover, 

α-hemolysin activates the NALP3-inflammasome during S. aureus pneumonia, inducing 

necrotic pulmonary injury. Moreover, Nalp3-/- mice have less-severe pneumonia (Kebaier et 

al 2012). In addition, purified α-hemolysin activates the NALP3-inflammasome, ultimately 

leading to the secretion of the pro-inflammatory cytokines IL-1β and IL-18 and the resultant 

tissue necrosis and inflammation (Craven et al 2009). 
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Recently, it was reported that the inflammasome protein complex activates caspase-1 to 

promote the processing and secretion of IL-1β, which is responsible for alveolar epithelial 

permeability. In addition, it is shown that inflammasome inhibition blocks hyperoxia-induced 

alveolar permeability and cytokine production (Kolliputi et al 2010). Later, Kolliputi and 

colleagues further reveal that ceramide causes NALP3-inflammasome activation, induction of 

caspase-1, IL-1β cleavage, release of pro-inflammatory cytokines, and ultimately alveolar 

epithelial permeability. Short-hairpin RNA silencing of NALP3-inflammasome components 

abrogated ceramide-induced secretion of pro-inflammatory cytokines and abolished 

ceramide-induced alveolar epithelial permeability in in vitro (Kolliputi et al 2012). However, 

the role of inflammasome in relation to S. aureus-induced Asm/ceramide activation and 

inflammatory cytokine production leading to endothelial permeability remains unknown.  

 

5.2.9. Significances and perspectives 

In the present study, we demonstrated that the combination of amitriptyline and antibiotics 

effectively protects mice from lung edema and bacteremia during sepsis. Amitriptyline is a 

well-known antidepressant that has been widely used in clinical practice for more than 50 

years and is associated with only mild adverse effects at therapeutic doses. Thus, the major 

significance of the research work in this dissertation is to indicate that inhibition of the 

Asm/ceramide system in combination with antibiotics could be a novel approach to treat 

severe systemic and often lethal infections and to inhibit lung injury in patients with incipient 

sepsis. The results presented in this dissertation increases our understanding of the signaling 

mechanisms responsible for the acute ROS response in endothelial cells during host-pathogen 

interaction and link the function of Asm with ceramide redox signaling. The notion that Asm 

deficiency or antioxidants prevent S. aureus-induced Asm/ceramide activation, ROS release, 

junctional proteins degradation, neutrophil trafficking and lung edema, which may contribute 

to the understanding how systemic S. aureus infections induce lung edema. This may direct 

the development of new therapeutic strategy for treatment of this disease. 
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6. SUMMARY 

Pulmonary edema associated with increased vascular permeability is a severe complication of 

S. aureus–induced sepsis and an important cause of human pathology and death. Antibiotics 

alone are often insufficient to cure patients with S. aureus–induced sepsis. Although treatment 

with effective doses of bactericidal antibiotics indeed prevents the bacterial burden, 

antibiotics often fail to prevent fatal lung edema after septic infection with S. aureus. 

 

The present study investigated the role of the Asm/ceramide system in the development of 

lung edema caused by S. aureus. Furthermore, the present study identified signaling 

mechanisms responsible for lung edema caused by S. aureus. Most importantly, the present 

study identifies a novel approach to patients with S. aureus-induced sepsis with bactericidal 

antibiotics applied in combination with amitriptyline. The major findings are: 

 

 S. aureus rapidly activates Asm and induces ceramide release in the plasma 

membranes. 

 The Asm/ceramide system mediates S. aureus-induced ROS production. 

 The Asm/ceramide system and ROS form a positive feedback loop. 

 Asm and ceramide activation are crucial for S. aureus-induced lung edema. 

 ROS is essential for S. aureus-induced lung edema. 

 The Asm/ceramide system and ROS activation lead to junctional proteins 

degradation. 

 The Asm/ceramide system and ROS activation lead to neutrophil trafficking. 

 Both junctional proteins degradation and neutrophil trafficking contribute to lung 

edema induced by S. aureus infections. 

 Genetic deficiency or pharmacologic inhibition of the Asm/ceramide system in mice 

protects against lung edema induced by systemic S. aureus infection. 
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 Pretreating endothelial cells with the antioxidants N-acetylcysteine (NAC) or Tiron 

substantially inhibited Asm activation and the signaling events downstream of Asm 

activation. 

 The combination of antibiotics and amitriptyline reduced both pulmonary edema and 

bacteremia protecting mice from lethal sepsis and lung dysfunction. 

 

Therefore, the proposed signaling pathway is depicted as bellow: 
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