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Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten. Ohne
Genehmigung des Autors ist es nicht gestattet, dieses Heft ganz oder teilweise auf
fotomechanischem Wege (Fotokopie, Mikrokopie), elektronischem oder sonstigen Wegen
zu vervielfältigen.
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Abstract

This work models and simulates an inflation test for in vitro cardiac tissues in the frame-
work of the Finite Element Method (FEM). It focuses on the simulation of drug treat-
ment of autonomously beating cardiac tissue consisting of human-induced pluripotent
stem cell-derived cardiac myocytes and the validation based on in-house experimental re-
sults and on literature data. The ultra-thin composite material is modeled as a shell that
is coupled with Hodgkin-Huxley based systems of differential equations describing the
cellular electrophysiology. Additionally, the edge-based smoothed FEM is investigated
concerning its applicability to biomechanical plate problems. This method achieves a
higher accuracy than the standard FEM by smoothing the element-wise constant com-
patible strains over the edges of the finite element mesh. It is especially beneficial in the
computation of strongly distorted elements that are often created by automatic meshing
of anatomical structures.
The thesis starts by introducing the employed plate and FE theories, the electromechani-
cal basics of cardiac tissue as well as of drug treatment and corresponding computational
models. The model is then applied to the inflation test that serves as the validation basis
for the quality and the ability of the model to predict drug effects on cardiac tissue.

Zusammenfassung

In dieser Arbeit wird ein Aufblasversuch für in vitro Herzgewebe im Rahmen der Fi-
nite Elemente Methode (FEM) modelliert und simuliert. Ziel ist dabei insbesondere die
Simulation von Medikamentenwirkung auf auto-kontraktile Herzgewebe bestehend aus
von human-induzierten pluripotenten Stammzellen abgeleiteten Kardiomyozyten und
der Abgleich mit hausinternen experimentellen Resultaten und mit Literaturdaten. Für
das sehr dünne Kompositmaterial wird ein Schalenmodell aufgestellt und mit Hodgkin-
Huxley basierten Differentialgleichungssystemen gekoppelt, die die zelluläre Elektro-
physiologie beschreiben. Zusätzlich wird die kanten-basiert geglättete FEM auf ihre An-
wendbarkeit auf biomechanische Schalenprobleme hin untersucht. Diese Methode glättet
die elementweise konstanten, kompatiblen Dehnungen über Elementgrenzen hinweg und
erreicht so eine höhere Genauigkeit, als die Standard FEM. Darüberhinaus eignet sie
sich in besonderem Maße für die Berechnung auf stark verzerrten Elementen, die bei
automatischer Netzgenerierung für anatomische Strukturen häufig entstehen.
Zunächst werden die verwendeten Schalen- und FE-Theorien, die elektromechanischen
Grundlagen von Herzgeweben, sowie von Medikamentenwirkung und einschlägige Mo-
delle vorgestellt. Im Anschluß wird das Modell auf den Aufblasversuch angewandt, an
dem die Qualität und die Fähigkeit des Modells Medikamentenwirkung auf Herzgewebe
vorherzusagen, validiert und beurteilt werden.
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Abbreviations
CE contractile element
CM cardiomyocyte
DSG Discrete Shear Gap
ECM extracellular matrix
hiPSC human-induced pluripotent stem cell
hePSC human embryonic pluripotent stem cell
hiPSC-CM human-induced pluripotent stem cell-derived cardiomyocyte
FEM Finite Element Method
HMT Hunter-McCulloch-ter Keurs (model)
MNT McAllister-Noble-Tsien (model)
NHS Niederer-Hunter-Smith (model)
ODE ordinary differential equation
PE parallel element
Q4 4-noded quadrilateral (element)
SE series element
S-FEM Smoothed Finite Element Method
TnC troponin C
TT ten Tusscher (model)
T3, T4, T6, T7 3-, 4-, 6-, 7-noded triangular (element)
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Important symbols and notation

Indices

i ∈ {1, 2, 3}
α ∈ {1, 2}
I ∈ N0

Continuum Mechanics
ei, ei global coordinate vectors and components
ξi, ξi local coordinate vectors and components
X = (X1, X2, X3)

T position vector in reference configuration
x = (x1, x2, x3)

T position vector in current configuration
N0 normal vector in reference configuration
n normal vector in current configuration
θi contravariant curvilinear coordinates
d shell unit director in current configuration
h shell thickness in current configuration
u total displacement
v displacement of shell middle plane
w change of shell director
θα rotation about α-axis
χ change in thickness

(·)i,j =
∂(·)i
∂(·)j

derivative of component i with respect to coordinate j

(·),j directional derivative
I identity
H displacement gradient
F deformation gradient
C right Cauchy-Green tensor
b left Cauchy-Green tensor
E Green-Lagrangian strain
e Euler-Almansi strain
ε strain
εm shell membrane strain
εl linear shell membrane strain
εnl non-linear shell membrane strain
εb shell bending strain
εs shell transverse shear strain
γ12, γ13, γ23 shear strain components
σ Cauchy stress
P 1st Piola-Kirchhoff stress
S 2nd Piola-Kirchhoff stress
N in-plane stress resultants
M bending moments
Q transverse forces
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Constitutive equations

Ψ strain energy
II scalar invariant
λ, λi principal stretches
E Young’s modulus
ν poisson ratio
CIJ Ogden material parameters
p hydrostatic pressure
C constitutive tensor

FEM
Ω computational domain
Γ boundary of the computational domain
Γu,Γd Dirichlet (displacement) and Neumann (traction) boundary, respectively
(·) quantity expressed in context-related coordinates

(̃·) quantity expressed in global coordinates

(̂·) quantity expressed in element coordinates
(̄·) quantity expressed in smoothing domain coordinates
Ωe

I domain occupied by element I
Ωs

I domain occupied by smoothing domain I
Φ matrix of shape functions
Φenh matrix of enhanced shape functions
L1,L2 helper matrices
B strain-displacement matrix
Kt tangent stiffness matrix
K material stiffness matrix
G geometrical stiffness matrix
C material matrix
u global displacement vector
d local displacement vector
f internal force vector
NN total number of nodes in mesh
Ne total number of elements in mesh
Ns total number of smoothing domains in mesh
Nn number of nodes of a smoothing domain or an element (from context)
Bi

∗
local strain-displacement matrix of domain Ωi related to a certain kind of strain

Rα
∗I rotation matrix

Electrophysiology

Vm membrane action potential
I∗ ionic current
g∗ ionic gate
IC50 half-inhibitory constant
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1 Introduction

The human heart is a complex organ with a complicated anisotropic, heterogeneous mi-
croscopic and macroscopic structure. The complexity of the electromechanical processes
and working mechanisms at the macroscopic level is relatively well understood compared
to the microscopic level. Especially the electrophysiology of different types of native car-
diomyocytes (CM) has a level of intricacy such that the current knowledge in this field
must be viewed as incomplete. This limited knowledge is exemplarily illustrated by the
fact that multiple hypotheses are still discussed concerning which biochemical process
drives the autonomous pacemaking of the heart (Li et al. [90]). Although these pro-
cesses are of major interest since the beginning of cardiovascular research, it still cannot
be decided which one is preferable.

Despite this lack of knowledge in cardiac electrophysiology, the pharmaceutical industry
develops and sells medication that is supposed to change specific biochemical processes
more or less selectively in order to cure cardiac diseases. Regarding the fact that the
cellular electrophysiology is far from completely understood one has to conclude that
quantitative assessments, supposed selectivity and assumed compatibility of medication
needs to be viewed with caution.

As it is in the sense of the patient’s health, drug effects are investigated at the protein
level, at the cellular level, in cell clusters, at tissue level and at organ level using various
experimental setups and methods. All the setups and methods share the major issue that
it is close to impossible to perform experiments on healthy native human CM in vivo. In
the best case, diseased specimens from cadavers can be obtained in a very low sample size.
One remedy often was and still is to perform animal testing which is not only ethically
critical but mammalian cells of different species also differ in their electrophysiology which
questions the cross-species translation.

As a further remedy, in 2006, Takahashi and Yamanaka presented the breakthrough tech-
nology of reprogramming adult somatic, i.e. fully differentiated cells to embryonic-like cells
(Takahashi and Yamanaka [145]) which in general can be differentiated into any hu-
man cell. Since then, human-induced pluripotent stem cells (hiPSC) became a powerful
tool not only for drug screening. Although today there are some cell types that are difficult
to be derived from hiPS cells, hiPSC-derived cardiomyocytes (hiPSC-CM) are very com-
monly used in experimental setups all over the world because they are relatively cheap,
reliably and infinitely reproducible, ethically nearly uncritical and they reproduce the
prominent characteristics of native CM fairly well.

In the following years many groups started to investigate medicated hiPSC-CM
performing patch clamp experiments (e.g. Liang et al. [92]), fluorescent imaging
(e.g. Sirenko et al. [140]), using multi-electrode arrays (e.g. Harris et al. [68]) or
(electro-)mechanical testing (e.g. Grosberg et al. [64], Nawroth et al. [111] and
Agarwal et al. [2]). Mechanical testing of hiPSC-CM monolayers and tissues is also
performed in the Lab of Medical and Molecular Biology at Aachen University of Ap-
plied Sciences (Linder et al. [93]). There, the so-called CellDrum system, an inflatable
thin silicone membrane with cultivated myocardial tissue, provides mechanical quanti-
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ties that one can investigate and evaluate in order to determine the contractility of cells
and the effect of drugs on them (Trzewik et al. [152] and Trzewik [151]). This way
macroscopic information about the cardiac tissue being investigated is obtained. Even
more interesting than those information is the question: ‘How do the drugs act on the
gates that activate and inactivate cellular ion channels?’ because this is the level where
medication changes the cellular processes.

For this purpose this thesis aims to build and employ a computational model for car-
diac tissue and drug action. Simulating cardiac tissue or even the human heart is an
interdisciplinary task as special knowledge in biology, medicine, cardiology, chemistry,
biochemistry, cell culturing, microscopy, electrophysiology, mechanics, electromechanics,
neurology, computer science and mathematics is required. The need for computational
models in this field is evident due to multiple reasons:

� Experiments are very expensive, time consuming and they require a lot of manpower.
Often a long trial and error phase is needed to build an experimental setup and to
perform special experiments.

� Replacing some experiments by parametric simulations also reduces the amount of
unethical or at least ethically questionable animal testing.

� Besides experiments on hiPSC-CM, animal testing is the only way to produce data.
Of course the hearts of different animal species differ from that of a human. Trans-
ferring the results to a human heart can be facilitated by simulations.

� Simulations can enhance the information that is gathered from experiments and
thereby increase the benefit from each individual experiment.

� Simulations may help to understand individual differences or deviating behavior of
isolated cells, cell clusters, monolayers, 3D tissues and organs.

� Performing simulations prior to the construction of an experimental setup or the
conduction of experiments can reveal helpful advice how to build the setup or how
to perform the experiment.

� Simulations based on literature data serve as validation for own experimental results.

� In view of personalized medicine, computational models might be able to predict
the effects and side-effects of medical treatment on person-specific cardiac cells with
only very little experimental data that has to be determined.

There is a strong community currently building models for the electrophysiology of indi-
vidual cardiac cells (e.g. ten Tusscher and Panfilov [146], Chandler et al. [23]
and Paci et al. [122]), the electromechanical behavior of cardiac tissue (e.g.
Böl et al. [15], Göktepe and Kuhl [59] and Göktepe et al. [61]), the mechano-
electrical feedback, the pathologies of the heart (Genet et al. [58]), the electrical
propagation through the whole heart and tissues (e.g. Nash and Panfilov [110],
Göktepe and Kuhl [59] and Weise and Panfilov [156]) and drug action (e.g.



Introduction 3

Obiol-Pardo et al. [121]). All models suffer from the fact that reliable experimen-
tal data is difficult to obtain. Experimental results depend on a lot of influences like the
experimental setup, the cell type, the species, the cell production batch, the maturity of
the cells and their health condition. In total there are a lot of factors that can hardly be
measured, controlled or quantified during an experiment. Thus, developing or choosing
an appropriate model for a specific application often is very difficult and choices should
be made with caution.

This thesis builds and investigates a model for very thin cardiac tissue constructs, so-
called 2D tissue, that consist of a collagen matrix seeded with hiPSC-CM. All parts of the
finite element model are explained in detail. Concerning the employed experimental data,
be it own data or literature data, all choices become justified and explained including an
evaluation of the quality of the available data. Special attention is drawn on the compar-
ison of experimental data of drug action on a cardiac tissue construct from an inflation
test called CellDrum with simulations. This setup has been developed in the Lab of Med-
ical and Molecular Biology at Aachen University of Applied Sciences. The comparison
of experiments and simulations reveals modeling deficiencies that clearly show necessary
improvements. Nevertheless, the qualitatively good results presented in this thesis are
very promising regarding the prediction of the patient-specific response of cardiac tissue
to drug treatment.

Mathematically, the problem can be separated into a global and a local problem. The local
problem comprises the cellular electrophysiology and the excitation-contraction coupling
that are formulated in terms of systems of ordinary differential equations. The global
mechanical problem is stated in terms of a partial differential equation that is solved
numerically using the FEM. Within this thesis the standard FEM as well as the so-called
smoothed FEM are employed. The latter method proves to be very suitable for simulations
in biomechanical applications.

In section 2 the reader gets a quick introduction into continuum mechanics, existing plate
and shell theories and the nonlinear FEM. The following section 3 introduces into the
smoothed FEM that has been used for many of the simulations and that is especially
useful in future applications. Section 4 introduces into the electrophysiology of cardiac
cells before section 5 draws attention on the material modeling of cardiac tissue and
specifically on the proper modeling of the cellular electrophysiology of cardiomyocytes. In
section 6 the inflation setup is explained before the whole finite element model becomes
summed up in section 7. The final two sections 8 and 9 present implementational details
and results as well as a conclusion and outlook.
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2 Continuum Mechanics and FEM

This chapter is intended to introduce the basic ideas of continuum mechanics, plates and
the FEM as far as needed to explain the contents of this thesis. For details each section
refers to special literature on the respective topic. The notation that is used throughout
the thesis is also explained in the following sections. In this thesis both, the symbolic as
well as the index notation of tensors, are used.

2.1 Continuum Mechanics

This section mainly bases on the standard text book Holzapfel [72] and on the intro-
duction into Continuum Mechanics in Willner [157].

A material point X, as illustrated in fig. 2.1, can be referred to either with respect to the
reference (undeformed) configuration B0 using the coordinate vector

X = χ−1(x, t) , (2.1)

with χ being the movement of particle X and the time t or with respect to the current
(deformed) configuration B using

x = χ(X, t) , (2.2)

the coordinate vector to the current position of the particle in the physical space. The
displacement u(x, t) is simply defined by the difference of the position vectors of a particle
in both configurations

u = x−X . (2.3)

A basic deformation measure between B0 and B is the deformation gradient

F =
∂χ(X, t)

∂X
=

∂x

∂X
, (2.4)

that maps a line element dX in the reference configuration onto a line element dx in the
current configuration

dx = F dX . (2.5)

It can be expressed in terms of the displacement gradient as

F =
∂u

∂X
+ I = Gradu+ I , (2.6)

Based on eq. (2.5) one can derive that a reference area element dA can be mapped to a
current area element da by Nanson’s formula

da = nda = JF−TN0dA = JF−TdA , (2.7)

using the unit normal vectors N0 and n of the area elements in the reference and current
configuration, respectively and the determinant of F ,

J = detF . (2.8)
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The Jacobian determinant J (0 < J < ∞) determines the volume change between a
volume element dV in B0 and a volume element dv in B

dv = JdV . (2.9)

Equations (2.5),(2.7) and (2.9) are called the transport theorems for line, area and volume
elements, respectively and are illustrated in fig. 2.2.

Figure 2.1: Movement of a particle in mate-
rial and physical coordinates Figure 2.2: Transport theorems

2.1.1 Strain

As F is the most basic deformation measure, the other strain measures are defined on its
basis. The right Cauchy-Green tensor

C = F TF (2.10)

for instance determines the configurational change of the scalar product of two vectors x1

and x2,
dx1 · dx2 = dX1 · F

TF dX2 = dX1 ·CdX2 . (2.11)

The inverse operation is accomplished by b−1, where

b = FF T (2.12)

is the left Cauchy-Green tensor. For details on these and other kinematic tensors the
reader is directed to Bonet and Wood [18]. A commonly used, reference configuration
based strain measure is the Cauchy-Green strain tensor

E =
1

2
(F TF − I) =

1

2
(C − I) , (2.13)

which is often expressed in terms of the displacement gradient using eq. (2.6)

E =
1

2
(F TF − I) =

1

2
((Gradu+ I)T (Gradu+ I)− I)

=
1

2
(GradTu+Gradu+GradTuGradu) . (2.14)
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Ignoring the quadratic contribution in eq. (2.14) gives the linear part of the strain

LinE =
1

2
(GradTu+Gradu) = sym(Gradu) , (2.15)

which is the symmetric part of the displacement gradient. This part purely refers to
deformation whereas the additive skew-symmetric part refers to the rotational part of the
tensor.

Applying the so-called covariant push-forward operation F−T (•)F−1 that transforms a
quantity given in the reference configuration into the current configuration leads to the
Euler-Almansi strain tensor

e = F−TEF−1 =
1

2
(I − b−1) . (2.16)

The inverse operation to a covariant push-forward is the covariant pull-back operation
F T (•)F .

2.1.2 Stress

Cauchy’s fundamental lemma

t = σn (2.17)

states that the stress vector t is defined by a linear mapping of the outward normal vector
n, namely the Cauchy (or true) stress σ operating on n. Applying t to the area da leads
to

df = tda = σnda = σda , (2.18)

with df being a true force applied to the current area element da. The benefit of introduc-
ing σ is that it does not contain information about the orientation, like the stress vector.
Proper handling of the stress vector requires the knowledge of n, whereas the Cauchy
stress can be computed independent of the normal to the area element. From eq. (2.18)
one derives the first Piola-Kirchhoff stress tensor by using the transport theorem (2.7)

df = σJF−TdA . (2.19)

Thus the first Piola-Kirchhoff stress tensor

P = σJF−T (2.20)

can be interpreted as the actual force applied to an area element in the reference configu-
ration. Of course it is possible to transform the force itself to the reference configuration
too which leads to

S = F −1P = JF−1σF−T , (2.21)

the second Piola-Kirchhoff stress tensor that represents a force mapped to the reference
configuration and applied to the reference configuration. S is often preferred because it
is a symmetric tensor, unlike P .
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Stress and strain can be related via a fourth-order constitutive tensor C

Σ = C(t, T, ε,α)ε (2.22)

that might be dependent on the time t, the temperature T , the strain ε or other parameters
α. Throughout this thesis Voigt’s notation of symmetric stress and strain tensors will be
used, i.e.

Σ = (Σ11,Σ22,Σ33,Σ12,Σ13,Σ23)
T and (2.23)

ε = (ε11, ε22, ε33, 2ε12, 2ε13, 2ε23)
T (2.24)

= (ε11, ε22, ε33, γ12, γ13, γ23)
T , (2.25)

with γij being the shear strains and Σ and ε representing any conjugate stress and strain
tensors. A stress-strain pair (Σ, ε) is termed (work) conjugate if their double contraction
equals the internally stored energy Ψ:

Σ : ε = Ψ . (2.26)

In the given notation the fourth-order constitutive tensor C is a square matrix.

2.2 Plate and Shell Theories

Plate and shell models are used to describe the kinematics of very thin bodies, whose
lateral dimension l is much larger than its thickness h, i.e.

l >> h . (2.27)

A full three-dimensional discretization of such a plate either leads to very high length-
thickness ratios or an unreasonably large number of elements, depending on whether it
is a coarse or a fine mesh. In the former case one observes numerical locking whereas
the latter case leads to a highly increased number of degrees of freedom resulting in
increased computation time and increased memory consumption. In order to avoid those
circumstances one degenerates the three-dimensional model into a middle plane with a
thickness h. A local, generally curvilinear coordinate system ξ = [ξ1, ξ2, ξ3] is attached to
this middle plane as shown in fig. 2.3, with in-plane coordinates ξ1 and ξ2, and ξ3 being
the coordinate normal to the middle plane. If not otherwise stated, in this thesis, ξ is
always a Cartesian basis system because the developments herein are mainly based on
plane plate models. In the case of shells one would switch to local curvilinear coordinates
in order to properly take into account the curvature of the shell geometry.

Due to the contents of the thesis the term plate is used rather than the term shell although
all the concepts may be applied to shells too. The basic kinematic quantities of stan-
dard plate and shell formulations are shown in fig. 2.3. The displacement u(ξ1, ξ2, ξ3) =
[u1, u2, u3]

T of any point of the shell in general varies in thickness direction and depends
on the translation v(ξ1, ξ2) = [v1, v2, v3]

T of the shell middle plane E(ξ1, ξ2, ξ3 = 0) and
on its rotation in point (ξ1, ξ2, 0), termed w(ξ1, ξ2) = [w1, w2]

T = [θ2,−θ1]
T .
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2.2.1 Plate Models

In order to simplify the very general descripton of plates, different theories of varying
complexity have been introduced that are depicted in fig. 2.4 with respect to a beam
example (cross-section of a plate). The beam is clamped on its left end and on its right
end a moment M is applied.

Figure 2.3: Global and local coordinate sys-
tems e and ξ, displacements vi, rotations wα

and normal n Figure 2.4: Plate theories

First of all the Kirchhoff-Love theory assumes that lines that initially are normal to the
plate middle plane remain normal, i.e. the shell director d that is attached to the middle
plane remains normal, shear strains are zero and it assumes constant thickness. Allowing
for transverse shear strains leads to so-called Reissner-Mindlin plates that usually assume
a linearly varying displacement field in thickness direction ξ3

u = v + ξ3w , (2.28)

which can be written in detail for a local coordinate system ξ = [ξ1, ξ2, ξ3] tangential to
the plate middle plane,

u1(ξ1, ξ2, ξ3) = v1(ξ1, ξ2) + ξ3θ2(ξ1, ξ2) (2.29)

u2(ξ1, ξ2, ξ3) = v2(ξ1, ξ2) − ξ3θ1(ξ1, ξ2) (2.30)

u3(ξ1, ξ2, ξ3) = v3(ξ1, ξ2) . (2.31)

In both, the Kirchhoff-Love and the Reissner-Mindlin theory, the so-called Kirchhoff
constraint, ε33 = 0, leads to an inconsistency. Assuming plane stress, i.e. σ33 = 0, which is
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a common assumption for the thin plate limit, one normally would be able to determine
ε33 from the constitutive eq. (2.22). The resulting non-zero thickness strain contradicts
the Kirchhoff constraint.

Consequently the next step in complexity of the formulation is the drop of the con-
straint ε33 = 0 to get rid of this inconcistency. The so-called 7-parameter model in-
troduces two new parameters into the variational form, namely the constant thick-
ness strain χ and a strain component β33 that is linear in ξ3 to get a linearly vary-
ing thickness strain. The variational form then is a three-field Hu-Washizu functional
as described in sect. 2.3.4.1. As β33 is introduced using the Enhanced Assumed Strain
technique and therefore does not need to be compatible, its parameters can be elimi-
nated on element level. In fact the 7-parameter model ends up with a two-field func-
tional as described in sect. 2.3.4.2. Plate and shell formulations including thickness strain
have already been the topic of many researchers and detailed explanations of the con-
cept of 7-parameter models and the Enhanced Assumed Strain technique can be found
in Simo et al. [138], Simo and Armero [139], Büchter [21], Büchter et al. [22],
Roehl [129], Betsch et al. [11], Bischoff [13], Miehe and Schröder [106] and
Koschnick [85], to name only a selection. Those shell models share the benefit of being
able to use full three-dimensional constitutive laws for the shell without modification.

The last degree of complexity that is shown in fig. 2.4 is a nonlinear director d leading to
multilayer models. For details the reader is referred to Eckstein [46].

2.2.2 Reissner-Mindlin Plates in Detail

The Reissner-Mindlin plate theory is sufficiently accurate for the applications investigated
in this thesis. Figure 2.5 shows the stress resultants of a unit volume of a plate with respect
to this theory. The stress resultants are

N =





N11

N22

N12



 =

h
2∫

−
h
2





σ11

σ22

σ12



 dξ3 , (2.32)

M =





M11

M22

M12



 =

h
2∫

−
h
2

ξ3





σ11

σ22

σ12



 dξ3 , (2.33)

T =

(
T1

T2

)

=

h
2∫

−
h
2

(
σ13

σ23

)

dξ3 , (2.34)

with N ,M and T the axial forces, bending moments and transversal shear forces, re-
spectively.

Therefore the strains are introduced as follows

ε = (ε11, ε22, γ12, γ13, γ23)
T =

(
εm

0

)

+

(
ξ3ε

b

0

)

+

(
0
εs

)

, (2.35)



Continuum Mechanics and FEM 11

Figure 2.5: Axial forces, bending moments and transversal shear

where the membrane and bending parts, εm and εb, respectively, contribute to the in-
plane strain components and the transverse shear part εs determines γ13 and γ23. The
membrane strain part reads as

εm = εl + εnl =





v1,1
v2,2

v1,2 + v2,1



 +





1
2
(v3,1)

2

1
2
(v3,2)

2

v3,1v3,2



 , (2.36)

and in turn can be split into a linear and a nonlinear part. The nonlinear part accounts
for the geometrical nonlinearity that arises from the assumption of large displacements.
The linear bending and transverse shear parts read as

εb =





w1,1

w2,2

w1,2 + w2,1



 and εs =

(
v3,1 + w1

v3,2 + w2

)

. (2.37)

More details on plate and shell models and their applications in the FEM can be found
for instance in Chapelle and Bathe [24] and Zienkiewicz and Taylor [167].

2.3 Finite Element Method

The Finite Element Method (FEM) is the most widely used numerical method for
the simulation of a vast amount of - possibly coupled - field problems in mechanics,
acoustics, fluid mechanics, biomechanics, electro-magnetism, thermodynamics and many
more that can be described by partial differential equations, particularly by elliptic
and parabolic ones. In consequence the amount of books written on this topic is huge
and there are countless other publications concerning FEM. Some influential books on
FEM with respect to this thesis are Zienkiewicz [165], Crisfield [34], Crisfield [35],
Zienkiewicz and Taylor [166], Zienkiewicz and Taylor [167] and Bathe [6].
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2.3.1 The Principle of Virtual Displacements

In elasticity the problem to be solved is given in its differential form as

divσ + f = 0 in Ω , (2.38)

u = u0 on Γu , (2.39)

σn = t0 on Γd , (2.40)

where eq. (2.38) is called the global balance of momentum and states the equilibrium
of internal forces and external forces f . Both, f and the unknown displacement field u

need to be twice continuously differentiable. In addition, u has to fullfill the (essential)
Dirichlet boundary conditions (2.39) and the (natural) Neumann boundary conditions
(2.40). Robin (Newton) boundary conditions are a mixed kind and thus can be neglected
here for simplicity. Equivalent formulations of this problem are the variational formulation
and the herein employed principle of virtual displacements. Details on all formulations
can be found for instance in Bathe [6].

The principle of virtual displacements can be derived from the differential form by mul-
tiplication with a test function δu and integration, i.e.

∫

Ω

divσ · δu dx+

∫

Ω

f · δu dx = 0 , (2.41)

which, using the symmetry of the stress tensor σ = σT , can be expanded to
∫

Ω

div(σ · δu) dx−

∫

Ω

σ · gradδu dx+

∫

Ω

f · δu dx = 0 . (2.42)

The test function δu := ǫη is called the variation of u and is a non-zero function that has
similar properties like u besides that it vanishes on Γ. In the limit case, by construction,

lim
ǫ→0

(u+ δu) = lim
ǫ→0

(u+ ǫη) = u , (2.43)

holds. Application of the divergence theorem to the first term in eq. (2.42) leads to
∫

Γd

σn · δu ds−

∫

Ω

σ · δε dx+

∫

Ω

f · δu dx = 0 , (2.44)

where the symmetry of the stress tensor has been used again to get the equality gradδu =
δε which is generally not true if σ were asymmetric. By rearranging one finally derives
the principle of virtual displacements or the weak form of the differential formulation as

∫

Ω

σ · δε dx =

∫

Ω

f · δu dx+

∫

Γd

σn · δu ds , (2.45)

Finally inserting the constitutive relation (2.22) between stress and strain, the Neumann
boundary condition (2.40) and switching to Voigt’s notation as introduced in sect. 2.1.2
leads to ∫

Ω

δεTCε dx =

∫

Ω

δuTf dx+

∫

Γd

δuT t0 ds . (2.46)
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The Dirichlet boundary conditions (2.39) are enforced globally and do not show up in the
weak form (2.46). The main difference of the weak form to the differential form is that
the unknown u needs to be only continuously differentiable now, i.e. u lies in the Sobolev
space

H1(Ω) = {u|Dαu ∈ L2(Ω), ||α|| ≤ 1}, (2.47)

with Dα the differential operator for all spatial dimensions indicated by α = {α1, ..., αn}
and the Hilbert space

L2(Ω) = {u|

∫

Ω

u2dΩ < ∞} (2.48)

of all square integrable functions. Summarizing this the function space of the solution is

S = {u|u ∈ H1(Ω),u|Γu
= u0,σn|Γd

= t0} . (2.49)

The function space of δu is similar but as already indicated, the function vanishes on
Γ. Due to the lower requirements, the principle of virtual displacements and variational
approaches are called weak forms whereas the differential form is called the strong form.

2.3.2 Variational Formulation

Although the formulations are fully equivalent, the variational formulation is shortly sum-
marized here in order to provide the basics to show the variational consistency of S-FEM
in sect. 3.2. Keeping in mind that the boundary conditions need to be fulfilled, the func-
tional Π, being an energy potential, for a general problem can be written in the form

Π(u) =

∫

Ω

f

(

x,u,
∂u

∂x

)

dx . (2.50)

It can be shown that the differential formulation is equivalent to the minimization of Π.
The necessary condition for the functional to be minimal is that its first variation equals
zero, i.e.

δΠ(u) =
d

dǫ
Π(u+ ǫη)

∣
∣
∣
∣
ǫ=0

= lim
ǫ→0

1

ǫ
(Π(u+ ǫη)− Π(u))

!
= 0 , (2.51)

where the test function ǫη appears again.

2.3.3 Discretization

In order to solve the global eq. (2.45) FEM discretizes the computational domain Ω into
NE finite elements Ωe

i , with i = 1, ..., NE based on NN nodes. For the derivation of the
element equations a linear two-dimensional problem is addressed in order to keep it simple.
The derivation of the equations for three-dimensional problems is straightforward and can
be found in Bathe [6]. The equations for plate problems will be shown in chap. 3.

Based on a discretization the local version of eq. (2.45) in Voigt’s notation reads as
∫

Ωe

δεTσ dx =

∫

Ωe

δuTf dx+

∫

Γe
d

δuT t0 ds . (2.52)
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By using the constitutive equation (2.22) as in eq. (2.46) and by switching to matrix
notation eq. (2.52) can be rewritten

∫

Ωe

δuTLTCLu dx =

∫

Ωe

δuT f dx+

∫

Γe
d

δuT t0 ds , (2.53)

with the differential operator

L =





∂
∂x1

0

0 ∂
∂x2

∂
∂x2

∂
∂x1



 (2.54)

and the constitutive matrix C.

Up to here the field u is an element of the function space Sh ⊂ S, cf. eq. (2.49), which
only contains the admissible functions regarding the discretization. Applying the Galerkin
method, specific nodal shape functions ΦI are chosen to avoid searching for a solution
in the whole space Sh. Denoting Nn the number of nodes of an element, the discrete
displacement field and its variation can then be written on element level

ue(x) =
Nn∑

I=1

ΦI(x)dI , (2.55)

δue(x) =
Nn∑

I=1

ΦI(x)δdI , (2.56)

where the nodal shape functions ΦI have compact support on the respective element
only and are applied to the respective nodal displacement vector dI . Summing up the
contributions of all NN nodes of the finite element mesh, one gets the global discrete
displacement field uh.

Herein the same shape functions for ue and δue are used (Bubnov-Galerkin method)
although this is generally not required (Petrov-Galerkin method). For convenience the
position vector xe is represented in the same way as ue using the same shape functions.
This approach is called the isoparametric concept. The application of the differential
operator L to obtain the local strain field is straightforward

εe = Lue(x) =
Nn∑

I=1

LΦI(x)dI =
Nn∑

I=1

BI(x)dI , (2.57)

with the nodal strain-diplacement matrix BI containing the derivates of the shape
functions. Using B = [B1, ...,BNn

], de = [d1, ...,dNn
]T , δde = [δd1, ..., δdNn

]T , Φ =
[Φ1, ...,ΦNn

] and the divergence theorem to integrate the boundary condition over the
boundary only, eq. (2.53) can be reexpressed as

(δde)T
∫

Ωe

BTCBde dx = (δde)T
∫

Ωe

ΦT f dx+ (δde)T
∫

Γd

ΦT t0 ds . (2.58)
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The element stiffness matrix Ke and the right hand side of the equation system, Fe, then
read as

Ke =

∫

Ωe

BTCB dx , Fe =

∫

Ωe

ΦT f dx+

∫

Γd

ΦT t0 ds (2.59)

and the global version of eq. (2.58) is given as

(δd)T






NE

A
i=1

∫

Ωe
i

BTCB dx




d = (δd)T

NE

A
i=1






∫

Ωe
i

ΦT f dx+

∫

Γd

ΦT t0 ds




 , (2.60)

where d = [d1, ...,dNN
]T , δd = [δd1, ..., δdNN

]T and the operator A assembles the nodal
contributions of elements into the global stiffness matrix and into the global internal force
vector. In short terms, eq. (2.60) can be expressed as

Kd = F , (2.61)

withK,d and F being the global counterparts ofKe,de and Fe, respectively. The Dirichlet
boundary conditions are not part of the assembly as they prescribe the solution at certain
degrees of freedom and therefore need not to be computed.

The integration on element level usually is carried out using Gaussian integration based
on a certain number of weighted Gaussian points that are distributed within the element.
The choice of the kind of Gaussian integration and the number of Gaussian points is
done with respect to the degree of the shape functions and the desired accuracy of the
solution. Moreover one usually performs the Gaussian integration on a parent element that
is defined in a natural coordinate system. Those details are not explained here because
they are not relevant for this thesis. Details can be found in each of the references named
in the introduction of this chapter.

2.3.4 Special Principles of Potential Energy

According to Willner [157] the complete representation of the considered energy poten-
tial is

Π(u) =
1

2

∫

Ω

σ · ε dx−

∫

Ω

f · u dx−

∫

Γu

u0 · t ds−

∫

Γd

t0 · u ds , (2.62)

with traction vector t and u0 and t0 given by boundary conditions. It is called a 1-
field functional because it solely depends on u. The necessary supplementary conditions
for fully defining the linear problem are the expression of the strain in terms of the
displacement gradient (2.15) and the constitutive equation (2.22).

There is a number of different energy potentials that directly integrate the supplementary
conditions into the potential thereby introducing more (Euler-Lagrange) differential equa-
tions. Those potentials are the functional basis for methods like the already mentioned
Enhanced Assumed Strain method or the Smoothed FEM (S-FEM) described in chap. 3.
Both of the following energy potential formulations can be viewed as a functional basis
of S-FEM, although chap. 3 only uses the 2-field de Veubeke functional.
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2.3.4.1 Hu-Washizu The 3-field Hu-Washizu functional integrates both supple-
mentary conditions (2.15) and (2.22) into the functional resulting in

Π(u, ε,σ) =
1

2

∫

Ω

σ · ε dx −

∫

Ω

f · u dx−

∫

Γu

u0 · t ds−

∫

Γd

t0 · u ds

−

∫

Ω

(

ε−
1

2
(∇Tu+∇u)

)

· σ dx . (2.63)

In this functional all three fields are treated as unknowns. Using the supplementary con-
dition (2.22) again to eliminate σ leads to the 2-field de Veubeke functional.

2.3.4.2 de Veubeke Using symmetry of the stress tensor and, for convenience,
the constitutive tensor in tensor notation, it reads as

Π(u, ε) =
1

2

∫

Ω

Cε · ε dx −

∫

Ω

f · u dx−

∫

Γu

u0 · t ds−

∫

Γd

t0 · u ds

−

∫

Ω

C

(

ε−
1

2
(∇Tu+∇u)

)

· ε dx

= −
1

2

∫

Ω

Cε · ε dx +

∫

Ω

C

(
1

2
(∇Tu+∇u)

)

· ε dx

−

∫

Ω

f · u dx−

∫

Γu

u0 · t ds−

∫

Γd

t0 · u ds . (2.64)

Willner [157] explains that this functional formerly has been called the Reissner prin-
ciple but that it should be named after de Veubeke. Liu and Nguyen [95] even call it
Hellinger-Reissner principle. Within this thesis a functional Π(u,σ) is called a Hellinger-
Reissner functional.

The variation of the de Veubeke potential energy

δΠ(u, ε) = −
1

2

∫

Ω

Cεδε dx +

∫

Ω

C

(
1

2
(∇Tu+∇u)

)

· δε dx

−

∫

Ω

f · δu dx−

∫

Γu

u0 · δt ds−

∫

Γd

t0 · δu ds (2.65)

delivers the principle of virtual displacements that is later used for the variationally con-
sistent derivation of S-FEM. The nonlinear variational form is straightforward and can
be found in Willner [157].

2.3.5 Nonlinear FEM

The derivation of the principle of virtual displacements for geometrically nonlinear three-
dimensional problems can be found in e.g. Crisfield [34] and Bathe [6], the latter of
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which is the foundation of this section. Geometrically nonlinear plate problems can be
viewed as a special case of a three-dimensional problem, thus here the principle for the
three-dimensional case is derived.

For the nonlinear case we rewrite the linear principle of virtual displacements (2.45), stay
in Voigt’s notation for convenience and seek for an incremental solution ut+∆t at time
t+∆t that satisfies ∫

Ω

δεTt+∆tσt+∆t dx = Rt+∆t , (2.66)

with Rt+∆t containing the body forces and the static boundary conditions. Assuming
that ε is nonlinear now, one has to linearize eq. (2.66) using Taylor series expansion at a
degree of freedom uj. With an incremental change, ∆uj, the linearization of the integrand
is given as

δεTt+∆tσt+∆t = δεTt σt +
∂
(
δεTt σt

)

∂uj

∆uj . (2.67)

From this notation it becomes apparent that in the incremental procedure, computable
quantities at time t are employed to compute the solution at time t+∆t. Moreover, due
to the nonlinearity of the problem, the accuracy of the solution strongly depends on the
time step ∆t. Keeping this in mind, in the sequel the time information is dropped for
compactness. Using the following property of a variation

δε =
∂ε

∂uj

δuj , (2.68)

the second term in eq. (2.67) can be differentiated and simplified as follows

∂
(
δεTσ

)

∂uj

∆uj =

(
∂δεT

∂uj

σ + δεT
∂σ

∂uj

)

∆uj

=

(

δuT
j

∂2εT

∂u2
j

σ + δuT
j

∂εT

∂uj

∂σ

∂ε

∂ε

∂uj

)

∆uj

= δuT
j

(
∂2εT

∂u2
j

σ +
∂εT

∂uj

C
∂ε

∂uj

)

∆uj , (2.69)

which leads to the linearized principle of virtual displacements

δuT
j

∫

Ω

∂εT

∂uj

σ dx+ δuT
j

∫

Ω

(
∂2εT

∂u2
j

σ +
∂εT

∂uj

C
∂ε

∂uj

)

dx∆uj = R (2.70)

or

δuT
j

∫

Ω

(
∂2εT

∂u2
j

σ +
∂εT

∂uj

C
∂ε

∂uj

)

dx∆uj = R− δuT
j

∫

Ω

∂εT

∂uj

σ dx . (2.71)

The second term on the left hand side is called the material stiffness as before. The
first term arises from the geometrical nonlinearity and therefore is called the geometrical
stiffness. On the right hand side an additional term appears in the nonlinear formulation
that can be identified with internal forces.
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The nonlinear global principle of virtual work can now be expressed using the matrices
known from the linear FEM. It reads as

(Km +Kg)d = R− F , (2.72)

with the global material and geometrical stiffness matrices Km and Kg, respectively, or
in more detail





∫

Ω

BTCB dx+

∫

Ω

GTSG dx



d = R−

∫

Ω

BTS dx , (2.73)

where B now is the nonlinear strain-displacement matrix related to the nonlinear strain
(2.14) and G contains derivatives of shape functions. Finally, S is a matrix of stress
components, such that the second term on the right hand side of eq. (2.73) represents the
internal forces. Detailed expressions of the respective matrices are omitted here because
for geometrically nonlinear plate problems they are given in sect. 3.4.

2.3.6 Finite Element Discretization of Plates and Shells

As it is apparent from the cited references, FE discretizations exist for any of the theories
shown in fig. 2.4. In this thesis the Reissner-Mindlin theory has been applied and two
different FE discretizations have been used. Both of them use triangular elements because
a robust automatic meshing is required for biomechanical applications in general, although
not necessarily for the particular model built here. In terms of standard FEM the shape
functions are of degree two whereas in the context of S-FEM only linear shape functions
are employed. In the latter case the disadvantages of constant strain triangular elements
are greatly reduced by S-FEM.

Both discretizations introduce six degrees of freedom per node, three of which are trans-
lational and two of which are rotational. The sixth degree of freedom does not have a
physical meaning and the related stiffness is chosen very small to only marginally influ-
ence the result but sufficiently large to avoid ill conditioning.
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3 Smoothed FEM

The FE modeling of biological tissue possesses some general difficulties:

� Mesh quality: First of all the mesh quality often is bad, i.e. one expects high aspect
ratios of the inner angles of at least some elements. With respect to soft biological
tissues there are some possible reasons for a bad mesh quality:

1. The considered geometries defined by the problem domain usually can not be
discretized with other elements than triangles or tetrahedrals because of their
complexity. Patient-specific geometrical data from X-Ray, MRI, CT, plasti-
nates or similar imaging procedures usually result in geometrical data where
most of the automatic meshing algorithms fail. Even requiring some manual
repairing, the only class of meshing algorithm that is able to reliably produce
a valid FE mesh, is triangulation in 2D and 3D. Besides the fact that a com-
mon triangulation in those cases usually produces some elements with high
aspect ratios between the inner angles of the triangle, in general triangular, as
well as tetrahedral meshes are known to have a worse performance than their
quadrilateral and hexahedral counterparts, respectively.

2. Even if the automatic and manual efforts result in a reasonable mesh quality,
difficulties arise during deformation. Soft biological tissues undergo large defor-
mations that again lead to high aspect ratios. Even more so if some elements
already have high aspect ratios that become even higher. Unfortunately one
badly shaped element already leads to computational problems or even abor-
tion of the computation. Remeshing is a possible but very expensive remedy
in terms of computation time.

3. The simulation of cutting soft tissues is done in real-time for surgical training
purposes. Cutting eventually produces badly shaped elements that have to be
handled with caution.

In the best case, if the computation does not abort due to a singularity, shear
locking might occur because of the distorted elements, resulting in highly inaccurate
deformation behaviour.

� Incompressibility: Biological soft tissues often are (quasi-)incompressible, i.e. J =
det(F ) ≈ 1, which leads to the volumetric locking phenomenon in a standard FE
setup. To overcome this problem some techniques already exist, like underintegrated
elements. A comprehensive and well-written overview of these techniques is given in
Koschnick [85]. In order to impose incompressibility the constitutive tensor can
be decomposed into a deviatoric and a volumetric part (cf. Holzapfel [72]).

� Transverse shear locking: With respect to the thin plate problem that is investi-
gated in this thesis another locking phenomenon occurs, namely the transverse shear
locking. It occurs in the computation of very thin structures and leads to inaccurate
deformation behaviour too. This locking phenomenon stiffens the system and the
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computed deformation is often much smaller than the real deformation. There are
advanced techniques to remedy this locking phenomenon like the Discrete Shear
Gap method presented in Bletzinger et al. [14].

Most of the named problems lead to some kind of locking. A very informative and
comprehensive thesis on locking phenomena and their treatment has been written by
Koschnick [85]. One way to overcome all the named problems at the same time is the
so-called smoothed FEM (S-FEM). S-FEM is a class of methods that bases on the idea
of strain smoothing. Chen et al. [25] started to apply this idea to avoid material in-
stabilities in meshless methods and Chen et al. [26] proposed to use strain smoothing
for stabilizing nodal integration. Since then, S-FEM has been developed and a collection
of S-FEM theory and computational examples can be found in Liu and Nguyen [95].
There is a large number of different kinds of S-FEM with different benefits and draw-
backs that are explained in detail in Liu and Nguyen [95] too. Some of them are
presented in sect. 3.3. Moreover there is a number of publications covering differ-
ent topics concerning S-FEM, like Cui et al. [36], Dai and Liu [39], Dai et al. [40],
Liu et al. [96] and Liu et al. [97] that construct S-FEM for various 2D prob-
lems, Cui et al. [38], Frotscher and Staat [50] and Nguyen-Xuan et al. [113]
that apply S-FEM on plates and shells, Bordas et al. [19], Chen et al. [27],
Liu et al. [94] and Nix et al. [118] where S-FEM is combined with the extended FEM
and for instance Nguyen-Thoi et al. [112] where the face-based S-FEM is introduced
for 3D problems.

Within this thesis the so-called edge-based Smoothed Finite Element Method (ES-FEM)
is applied to the nonlinear plate problems because this method shows a very good accuracy
when applied to linear triangular elements, it is insensitive to element distortion and it
overcomes shear locking naturally. Before the ES-FEM becomes explained in detail, the
idea of strain smoothing and the variational details for S-FEM are presented. Some parts
of this chapter already appeared in Frotscher et al. [54] and are repeated here with
some modifications.

3.1 Strain Smoothing

All different kinds of S-FEM share the idea of smoothing the strain over so-called smooth-
ing domains Ωs

i

ε̄i = ε̄(xi) =

∫

Ωs
i

W (xi − x)ε(x) dΩ , (3.1)

with ε being the usual, possibly known, (compatible) strain, W representing a scalar
weighting function and ε̄i being the smoothed strain in Ωs

i . In order to stay consistent
with the FEM the smoothing domains are non-overlapping, i.e. Ωs

i ∩ Ωs
j = ∅(i 6= j) but

fully cover the computational domain, i.e. Ωs
1 ∪ · · · ∪ Ωs

Ns
= Ω, where Ns is the total

number of smoothing domains. Usually W is chosen in the way that the smoothed strain
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in eq. (3.1) becomes an area-weighted average of the strains in the smoothing domain

W (xi − x) =

{ 1
As

i

, x ∈ Ωs
i

0, x 6∈ Ωs
i

, (3.2)

with As
i the area of the i-th smoothing domain. In the case of a plate problem we can

apply eq. (3.1) to each strain part separately using eq. (3.2) to get

ε̄li =
1

As
i

∫

Ωs
i

εli(x) dΩ , (3.3)

ε̄bi =
1

As
i

∫

Ωs
i

εbi(x) dΩ , (3.4)

ε̄si =
1

As
i

∫

Ωs
i

εsi (x) dΩ , (3.5)

ε̄nli =
1

As
i

∫

Ωs
i

εnli (x) dΩ , (3.6)

with ε̄li, ε̄
b
i , ε̄

s
i , ε̄

nl
i the smoothed linear membrane, bending, shear and nonlinear strain

parts, respectively.

In eqs. (3.1) and (3.3)–(3.6) a known strain ε becomes smoothed. One way of getting a
known strain field is to perform a standard FE computation and smooth the compatible
strain afterwards. In this case the S-FEM is boiled down to a simple averaging procedure.
As the reader will see below it is more advantageous to avoid the smoothing of the
compatible strain and compute the smoothed strain directly instead. The principle idea
of strain smoothing can easily be explained with respect to the smoothed linear membrane
strain and the same procedure can be applied to the other smoothed strain parts too. To
get to the discretized equations, first the compatible strain is replaced by an unknown
strain that can be computed using the differential operator Ld

ε̄l(xi) =

∫

Ωs
i

Ldū(x)W (xi − x) dΩ . (3.7)

Using integration by parts one can transform the domain integral in eq. (3.7) into an
integral over the boundary Γs

i of the smoothing domain

ε̄l(xi) =

∫

Γs
i

Ln(x)ū(x)W (xi − x) dΓ−

∫

Ωs
i

ū(x) Ẇ (xi − x)
︸ ︷︷ ︸

=0

dΩ

=
1

As
i

∫

Γs
i





n1 0
0 n2

n2 n1





︸ ︷︷ ︸

Ln(x)

ū(x) dΓ ∀x ∈ Ωs
i . (3.8)
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It is apparent that Ln contains the components of the outward normal vector on the
boundary of the smoothing domain and that the strains are no longer the symmetric part
of the displacement gradient because no derivatives of shape functions are involved in eq.
(3.8). The next step would be to derive the discretized equations but first the variational
basis of S-FEM is derived and further the smoothing domain creation is adressed.

3.2 Smoothed Galerkin Weak Form

Liu and Nguyen [95] derive the smoothed Galerkin weak form from the 2-field de
Veubeke variational principle although therein it is called the Hellinger-Reissner prin-
ciple. Assuming an admissible strain field ε̄ that can be obtained from the displacement
field ū the de Veubeke variational principle (cf. eq. (2.65)) degenerates into a 1-field
variational principle. Its variation in Voigt’s notation on smoothing domain Ωs

i reads as

δΠ(ū)|Ωs
i

= δ




−

1

2

∫

Ωs
i

ε̄i
T (ū)Cε̄i(ū) dx+

∫

Ωs
i

ε̄i
T (ū)C (Lū) dx






−

∫

Ω

δūTf dx−

∫

Γu

δt̄Tu0 ds−

∫

Γd

δūT t0 ds , (3.9)

with a differential operator L. Taking into account the assumption that the smoothed
strain ε̄ is constant within a smoothing domain leads to

∫

Ωs
i

ε̄i
T (ū)C (Lū) dx = ε̄i

T (ū)CAs
iLū =

∫

Ωs
i

ε̄i
T (ū)Cε̄i(ū) dx . (3.10)

Reinserting this into eq. (3.9) and using a similar assembly process as in standard FEM
to get the global discretized weak form one gets

δΠ(ū) = δ

Ns

A
i=1





1

2

∫

Ωs
i

ε̄i
T (ū)Cε̄i(ū) dx






−

∫

Ω

δūTf dx−

∫

Γu

δt̄Tu0 ds−

∫

Γd

δūT t0 ds . (3.11)

For the linear part of the smoothed strain one inserts eq. (3.8) into eq. (3.11), which leads
to

δΠ(ū) =

Ns

A
i=1






1

As
i

∫

Γs
i

(Lnδū)
T
C(Lnū) dx






−

∫

Ω

δūTf dx−

∫

Γu

δt̄Tu0 ds−

∫

Γd

δūT t0 ds . (3.12)
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This variational form can now be specialized for any kind of S-FEM by choosing the
respective smoothing domains. The most important message from this section is that
S-FEM methods are variationally consistent because they can be derived from the de
Veubeke variational form.

3.3 Smoothing Domains

So far the shape or creation of the smoothing domains have not been adressed. The basic
S-FEM kinds are the cell-based (CS-FEM), the node-based (NS-FEM) and the edge-based
(ES-FEM) S-FEM for 2D meshes and the face-based (FS-FEM) S-FEM for 3D meshes.
Those methods solely differ in the creation of the smoothing domains thereby creating
different advantages. Combinations of different kinds of S-FEM to get the benefits in the
part of the mesh where they are needed or direct combination of the methods on smoothing
domain level (αS-FEM) already have been developed by Liu and Nguyen [95].

All the methods have in common that they create their smoothing domains based on a
standard FE mesh constisting of linear elements, without the introduction of additional
nodes or degrees of freedom. Within the smoothing domains a constant strain is assumed.
Figure 3.1 depicts four possible ways of smoothing domain creation in the case of CS-
FEM. CS-FEM can be applied to quadrilateral elements by subdividing each element Ωe

i

into a number of smoothing cells Ωs
ie
, with ie depending on the respective element. Cell-

based smoothing domains are formed by taking the nodes of the finite element and virtual
nodes on the element boundary as well as inside the element as corner points of the cells.
The way of subdivision and the number of smoothing cells should be chosen with respect
to stability requirements. Regarding stability there is an optimal number of smoothing
cells per element. Figure 3.1 shows a quadrilateral element that has been subdivided into
1,2,3 and 4 smoothing cells.

Figure 3.2 shows that node-based smoothing domains are created around each node of the
FE mesh by taking the barycenters of the elements surrounding the respective node and
the midpoints of each edge connected to the node as the cornerpoints of the smoothing
domain. The special property of NS-FEM is that it is free of volumetric locking. Therefore
the selective combination of CS-FEM and NS-FEM to NCS-FEM is very beneficial to have
the stability and accuracy of CS-FEM and to get rid of the volumetric locking where it
occurs.

Figure 3.3 shows a middle plane of a plate that is meshed with three triangular elements
based on four nodes A, B, C and D. Two edge-based smoothing domains Ωs

k and Ωs
m

are highlighted here; the former one bases on edge k and the latter one on edge m of
the standard finite element mesh. Both are formed using the two corner nodes of the
respective edge and the barycenters of the element(s) connected to the respective edge.
Please note that, as in any of the S-FEM kinds, the barycenters are virtual nodes thus
they do not carry additional degrees of freedom. Concerning the discretization there is no
difference between 2D and plate problems despite from the number of degrees of freedoms.
The ES-FEM and its benefits are explained in detail in sect. 3.4 because it is the method
of choice with respect to the computation of soft biological tissues. The last basic S-FEM
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a) b)

c) d)

Figure 3.1: Cell-based smoothing domains

Node k

Figure 3.2: Node-based smoothing domains

Figure 3.3: Edge-based smoothing domains Figure 3.4: Face-based smoothing domains

kind is the FS-FEM, shown in fig. 3.4. It is the 3D equivalent of ES-FEM and basically
has the same properties.

3.4 Edge-based S-FEM for Nonlinear Plate Problems

Equation (3.12) reveals that the integration is now performed on smoothing domains in-
stead of elements. Besides the fact that the local quantities now lie on smoothing domains
the discretization of eq. (3.8) looks quite familiar:

ε̄l(xi) =
Nn∑

I=1

B̄
l

I(xi)d̄I , (3.13)

with Nn being the number of nodes related to the smoothing domain, B̄
l

I being the
respective smoothed strain-displacement matrix and d̄I being the nodal vector of degrees
of freedom at node I. For plate problems each nodal d̄I = [d̄I1, d̄I2, d̄I3, d̄I4, d̄I5]

T contains
two in-plane translational, one out-of-plane translational and two rotational degrees of
freedom according to the plate kinematics given by eqs. (2.29)–(2.31). Regarding the
example in fig. 3.3 Nn takes the values 3 for Ωs

m and 4 for Ωs
k. An inner smoothing
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domain like Ωs
k occupies space in two different elements thereby relating all the nodes of

both elements. As a consequence the local stiffness matrix on Ωs
k has an increased size

compared to standard FEM leading to an increased bandwidth of the global matrices.

Please note that for the computation of the global smoothed displacement field ū, the N
standard nodal shape functions are employed and that the isoparametric concept is still
used. N is the total number of nodes in the FE mesh. From eqs. (3.8) and (3.13) it is now
possible to construct

B̄
l

I(xi) =
1

As
i

∫

Γs
i

Ln(x)ΦI(x) dΓ =





b̄I1 0 0 0 0
0 b̄I2 0 0 0
b̄I2 b̄I1 0 0 0



 , (3.14)

with

Ln(x) =





n1(x) 0 0 0 0
0 n2(x) 0 0 0

n2(x) n1(x) 0 0 0



 (3.15)

containing the components of the outwards directed normal vector on the boundary of
the smoothing domain. The structure of Ln differs with respect to the respective part of
the strain (cf. eqs. (3.19)–(3.21)). The entries of the smoothed strain-displacement matrix
read as

b̄I(xi) =
1

As
i

∫

Γs
i

ΦI(x)ni(x) dΓ . (3.16)

Placing Gauss Points in the center of each boundary segment of the smoothing domain
(e.g. Γs

k and Γs
m in fig. 3.3) one discretizes the remaining boundary integral to get

b̄I(xi) =
1

As
i

Ns∑

k=1

ΦI(x
GP
k )ni(x

GP
k )lk , (3.17)

with Ns being the number of boundary segments, xGP
k the Gaussian Point at the center

of segment Γk, ni the outward normal vector and lk the length of segment Γk. Of course,
like in standard FEM the number of Gaussian Points and also their placement can vary.
Regarding the fact that the strain is assumed to be constant within a smoothing domain
the placement of one Gaussian Point at the center of each boundary segment is sufficient.
Concerning applications that have to deal with discontinuities (Smoothed X-FEM) more
Gaussian Points are used and differently distributed within the smoothing domain in order
to better resolve close to the discontinuity.

It has been mentioned earlier that computing the smoothed strain from eq. (3.13) rather
than using a known compatible strain field is beneficial. The first reason is that the
computation of B̄I does not require derivatives of shape functions. The shape functions
themselves are sufficient due to the boundary integral formulation. Secondly, with the
choice of linear triangular elements all quantities are computed in physical coordinates
thus isoparametric mappings are avoided.



26 Smoothed FEM

The given procedure applies to the other parts of B̄ too thus the smoothed strain-
displacement matrix for smoothing domain Ωs

i reads as

B̄i =





B̄
l

i + B̄
nl

i

B̄
b

i

B̄
s

i



 , (3.18)

with B̄i = [B̄1, ..., B̄Nn
]. B̄

l

I has already been given in eq. (3.14). The other parts of the
smoothed strain are

B̄
b

I =





0 0 0 0 b̄I1
0 0 0 −b̄I2 0
0 0 0 −b̄I1 b̄I2



 , (3.19)

B̄
s

I =







0 0 b̄I1
1
Nn

Nn∑

j=1

ΦI(xj) 0

0 0 b̄I2 0 1
Nn

Nn∑

j=1

ΦI(xj)







, (3.20)

B̄
nl

I =

Nn∑

J=1





b̄J1ω̄J 0
0 b̄J2ω̄J

b̄J2ω̄J b̄J1ω̄J





[
0 0 b̄I1 0 0
0 0 b̄I2 0 0

]

, (3.21)

with ω̄J the nodal deflection. The sum in eq. (3.21) represents the smoothed displacement
gradient. The smoothing of which is similar to that of the strain. Starting from

H̄(xi) =

∫

Ωs
i

∂u

∂x
W (xi − x) dx

=

∫

Γs
i

LnuW (xi − x) dx−

∫

Ωs
i

uẆ (xi − x) dx

=
1

As
i

∫

Γs
i

Lnu dx , (3.22)

the discretized smoothed displacement gradient applied to the deflection component only
reads as

H̄(xi) =

Nn∑

I=1

B̄Iw̄I . (3.23)

Figure 3.5 shows the different coordinate systems that are needed for the computation
besides the global coordinate system, i.e. the element coordinate systems ξ̂1 and ξ̂2 as
well as a smoothing domain coordinate system ξ̄1.

With respect to fig. 3.5 one can sum up the computation of B̄i as follows. Both smoothed
strain-displacement matrices B̂1 and B̂2 are computed on element level in the respective
element coordinate system and transformed into the smoothing domain coordinate system
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Figure 3.5: Element and smoothing domain coordinate systems

to add up the contributions to B̄i from both elements. Realizing that the case is even
simpler if the smoothing domain is built around a boundary edge of the computation
domain (cf. edge m in fig. 3.3) the smoothed strain-displacement matrix on smoothing
domain Ωs

i reads as

B̄
∗

i =
1

As
i

Ne∑

k=1

AkR̄
1
∗kR̂

2

∗kB̂
∗

kT̂k , (3.24)

with Ne the number of elements sharing edge i of the FE mesh, Ak the area of the
respective element and the asterisk indicating the applicability to each strain part. The
transformation matrices are

T̂k =









c1̂1 c1̂2 c1̂3 0 0
c2̂1 c2̂2 c2̂3 0 0
c3̂1 c3̂2 c3̂3 0 0
0 0 0 c1̂1 c1̂2
0 0 0 c2̂1 c2̂2









, (3.25)

the transformation matrix from global coordinates to element local coordinates,

R̂
2

∗k =











c2
1̂1

c2
1̂2

c2
1̂3

2c1̂1c1̂2 2c1̂1c1̂3 2c1̂2c1̂3
c2
2̂1

c2
2̂2

c2
2̂3

2c2̂1c2̂2 2c2̂1c2̂3 2c2̂2c2̂3
c2
3̂1

c2
3̂2

c2
3̂3

2c3̂1c3̂2 2c3̂1c3̂3 2c3̂2c3̂3
c1̂1c2̂1 c1̂2c2̂2 c1̂3c2̂3 c1̂1c2̂2 + c1̂2c2̂1 c1̂3c2̂1 + c1̂1c2̂3 c1̂2c2̂3 + c1̂3c2̂2
c1̂1c3̂1 c1̂2c3̂2 c1̂3c3̂3 c3̂1c1̂2 + c3̂2c1̂1 c3̂3c1̂1 + c3̂1c1̂3 c3̂2c1̂3 + c3̂3c1̂2
c2̂1c3̂1 c2̂2c3̂2 c2̂3c3̂3 c2̂1c3̂2 + c2̂2c3̂1 c2̂3c3̂1 + c2̂1c3̂3 c2̂2c3̂3 + c2̂3c3̂2











T

, (3.26)
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the rotation matrix from element to global coordinates and

R̄
1
∗k =











c21̄1 c21̄2 c21̄3 c1̄1c1̄2 c1̄1c1̄3 c1̄2c1̄3
c22̄1 c22̄2 c22̄3 c2̄1c2̄2 c2̄1c2̄3 c2̄2c2̄3
c23̄1 c23̄2 c23̄3 c3̄1c3̄2 c3̄1c3̄3 c3̄2c3̄3

2c1̄1c2̄1 2c1̄2c2̄2 2c1̄3c2̄3 c1̄1c2̄2 + c1̄2c2̄1 c1̄3c2̄1 + c1̄1c2̄3 c1̄2c2̄3 + c1̄3c2̄2
2c1̄1c3̄1 2c1̄2c3̄2 2c1̄3c3̄3 c3̄1c1̄2 + c3̄2c1̄1 c3̄3c1̄1 + c3̄1c1̄3 c3̄2c1̄3 + c3̄3c1̄2
2c2̄1c3̄1 2c2̄2c3̄2 2c2̄3c3̄3 c2̄1c3̄2 + c2̄2c3̄1 c2̄3c3̄1 + c2̄1c3̄3 c2̄2c3̄3 + c2̄3c3̄2











,

(3.27)
the rotation matrix from global to smoothing domain coordinates.

The global smoothed tangent stiffness matrix in the smoothing domain coordinate system
then is given by

K̄
t

IJ =

Ns∑

i=1

(
B̄i

)T

I
C
(
B̄i

)

J
As

i +

Ns∑

i=1

(
Ḡi

)T

I
N̆
(
Ḡi

)

J
As

i , (3.28)

with Ns the number of smoothing domains, i.e. edges in the mesh. The second term in
eq. (3.28) is the smoothed geometrical stiffness matrix and consists of

(
Ḡi

)

I
=

[
0 0 b̄I1 0 0
0 0 b̄I2 0 0

]

(3.29)

and the matrix of the membrane stress resultants

N̆ =

[
N11 N12

N12 N22

]

. (3.30)

According to eq. (2.73) the nodal force vector given in the coordinate system ξ̄ can be
computed from

F̄I =
Ns∑

i=1

(
B̄i

)T

I





N

M

T





I

, (3.31)

where N,M and T are the discrete axial forces, bending moments and transverse shear
forces (cf. eqs. (2.32)–(2.34)). Given that the boundary conditions are integrated as usual
(e.g. by elimination or by Lagrangian coefficients) the global system of equations that has
to be solved reads as

K̄
t
d = F̄ . (3.32)

The assembly process for the stiffness matrix and the internal force vector is similar to that
of standard FEM although some remarks are indicated. In this work the smoothed local
tangent stiffness matrices K̄

t

i are directly assembled into the global smoothed tangent

stiffness matrix. It should be noticed that K̄
t
∈ R5N×5N (five degrees of freedom per

node) has exactly the same size as the standard tangent stiffness matrix whereas the size

of the smoothed local tangent stiffness matrices K̄
t

i ∈ R5Nn×5Nn depends on whether the
respective smoothing domain is related to an inner edge or an edge on the boundary
of the FE mesh. For a mesh consisting of linear triangular elements, in the latter case
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K̄
t

i contributes to three nodes only, i.e. Nn = 3, whereas in the former one Nn = 4,

leading to an increased bandwidth of K̄
t
. The proposed smoothing domain-based assembly

necessitates a modification of the standard implementation of the assembly process. This
can be avoided by splitting up K̄

t

i into element-wise contributions as for instance done in
Cui et al. [37].

For completeness, the final remark concerns the sixth, unphysical degree of freedom at each
node, that was already mentioned in sect. 2.3.6. For numerical reasons it is also included
in the presented ES-FEM formulation but it has not been shown for compactness.

3.5 Involving the Discrete Shear Gap Method

It has already been shown in sect. 2.2.2 that each component of the shear strain,

εs =

(
v3,1 + w1

v3,2 + w2

)

, (3.33)

is computed from the sum of the first derivative of a displacement v and from a rotation
w. For plates one often states the so-called Kirchhoff constraint that requires

γ = v′ + w = 0 . (3.34)

However, this is usually in contradiction to the reality which becomes apparent if pure
bending is regarded. In the case of pure bending the transverse shear stresses vanish, i.e in
theory eq. (3.34) is satisfied but regarding a discretization this is usually not true. Usually
the displacements and the rotations are discretized using the same shape functions or at
least shape functions of equal degree. One can directly see that this violates the Kirchhoff
constraint because after discretization v′ is one degree lower than w, i.e.

γ = v′ + w 6= 0 . (3.35)

This discrepancy that causes transverse shear locking has been adressed by many different
approaches that are detailed and compared in Koschnick [85]. One of the most simple
approaches has been published in Bletzinger et al. [14] and is called the Discrete
Shear Gap (DSG) method. This method introduces a discretized shear gap field on element
level that later can be condensed in order to keep the number of degrees of freedom of
the element. In a linear triangular element, the discretized shear gap field removes the
linear part of the transverse shear which results from the discretization and makes it
constant. This way no parasitic shear stresses occur anymore and transverse shear locking
is effectively avoided. The DSG method has been generalized for other strain parts in
Koschnick et al. [86] and is called the Discrete Strain Gap method then.

The ES-FEM triangular plate element employed in this thesis is enhanced by the DSG
method. The only thing that changes on element level, is the computation of the shear
part of the strain-displacement matrix thus this method can be called a B-bar method.
The respective shear strain, εsDSG replaces the standard shear strain on element level. It
reads as

εsDSG = Bs
DSG[d1,d2,d3]

T , (3.36)
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with Bs
DSG that has already been presented in Nguyen-Xuan et al. [114] and

Cui et al. [37] and is shown here for the sake of completeness. Bs
DSG is composed of

three nodal parts, thus Bs
DSG = [Bs1

DSG,B
s2
DSG,B

s3
DSG], with

Bs1
DSG =

1

2Ak

[
0 0 b− d 0 Ak

0 0 c− a −Ak 0

]

(3.37)

Bs2
DSG =

1

2Ak

[
0 0 d − bd

2
ad
2

0 0 −c bc
2

−ac
2

]

(3.38)

Bs3
DSG =

1

2Ak

[
0 0 −b bd

2
− bc

2

0 0 a −ad
2

ac
2

]

. (3.39)

The parameters a = x2 − x1, b = y2 − y1, c = x3 − x1 and d = y3 − y1 are computed from
the nodal coordinates of the element and Ak is the area of the element. As this method is
a B-bar method, nothing changes in the smoothing of this strain part, i.e. eq. (3.24) can
be applied to get the respective smoothed strain-displacement matrix.
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4 Cardiac Cells and Tissue

This section is intended to provide an overview over human cardiac tissue and cardiac
cells as far as it is needed to understand their electrophysiology.

The human heart is an autonomously beating organ as depicted in fig. 4.1 and as most
biological tissues each tissue in the human heart consists of a collagen-based extracellular
matrix (ECM) and embedded cells. Both, the ECM and the respective cardiac cells are
under investigation because they fulfill different tasks. The ECMmainly provides a passive
stiffness of the tissue whereas the contribution of cells to the passive stiffness of the
tissue is negligible. Cardiac cells mainly provide an active contribution to the stiffness by
contraction, be it self-induced or triggered. This thesis investigates the contractile behavior
of cardiac cells and therefore the ECM is not explained in further detail. However, it
should be noticed that the composition of the ECM in fact strongly influences the overall
contractile strength of the tissue.

Figure 4.1: The anatomy of the human heart (Credits: Ties van Brussel, public domain)

Cardiac cells consist of overlapping actin and myosin filaments. They are attached via
so-called cross bridges. The overlap is strain dependent thus if the tissue is stretched the
actin and myosin myofilaments overlap less and the stress produced is higher.

The constituent of the heart that is responsible for generating the electrical stimulus is
called sinoatrial node (SA node), cf. fig. 4.2. The dominating cells in the SA node are
auto-contractile sinoatrial cells. The electrophysiology of SA cells is balanced in a way so
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that they autonomously beat with a certain frequency. The electrical conduction system
of the heart propagates the generated electrical stimulus through the whole heart.

Figure 4.2: Electrical conduction system of the human heart (Credits: J. Heuser, Patrick
J. Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist under Creative Commons
License 2.5 http://creativecommons.org/licenses/by/2.5/); 1 - Sinoatrial node, 2 -
Atrioventricular node

If the SA node is defective the atrioventricular node (AV node), cf. fig. 4.2, becomes
important. AV cells are self-contractile as well but they are beating with a slightly lower
frequency than SA cells. Consequently, a working SA node triggers the AV node before
the latter can send an own trigger signal. In case that the SA node does not work, the
AV node can keep the heart working for a certain time with a lower frequency.

This thesis focuses on self-contractile in vitro tissues. Therefore it is not necessary to
explain the electrical conduction system further. It is more important to understand the
electrophysiology on cell level to realize how an in vitro tissue can beat autonomously.
The electrophysiology of two kinds of cells will now be explained in detail: nodal cells and
ventricular cells. The development of an action potential can be described best for the
example of Purkinje cells. This cell type creates a ventricular-like action potential but it
has the nodal self-contractile characteristics.

It has to be emphasized that the real electrophysiology of any cell inside the human heart
is by far more complicated than described here and that it is not even entirely understood.
Of course all models have a limit in complexity and accuracy thus they are incomplete
with respect to reality.

Further there are many and partially strong differences in the electrophysiology of different
cardiomyocytes (CM). The electrophysiology of different native in vivo CM differs due to
the species of the mammalian, the heart region, the cell type, the health condition of the
organism and many more. Even more influences come into play when CM or hiPSC-CM
are investigated in vitro, among which are the temperature, the pH, the tissue dimension

http://creativecommons.org/licenses/by/2.5/
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(isolated cell, cell cluster, monolayer, 3D tissue) or other culture conditions.

To account for some of the differences, computational models of cardiac cells have been
established not only with respect to the different cell types within one heart but also with
respect to the species. Although they largely influence the cellular electrophysiology, the
countless environmental influences can hardly be quantified thus they are normally not
incorporated in the models.

In the following, as this thesis focuses on the investigation of human cardiac cells and
hiPSC-CM, all the details are related to the human heart if not otherwise stated.

4.1 Purkinje Cells

Purkinje fibers are located inside the ventricular walls, i.e. the walls of the right and
left ventricles shown in fig. 4.1. They belong to the pacemaker-conduction system and
play a major role in electrical conduction and propagation of impulses to the ventricular
muscle. Figure 4.3 schematically illustrates the cellular processes that take place during
cell contraction and relaxation. The contents of this figure are very closely related to the
computational model that is described later.

An action potential is the transient depolarization of a cell resulting from voltage- and
time-dependent currents across the membrane. At rest (phase 4), cardiac muscle cells
possess a negative membrane potential due to outward-directed potassium currents IK1.
The resting potential depends on the cell type and for purkinje cells it ranges between
-79 and -85 mV. Cells from the pacemaker-conduction system slowly depolarize due to
pacemaker currents until a threshold potential is exceeded, followed by a full action poten-
tial sequence. The rate of spontaneous depolarization determines the beating frequency
of the heart. Ventricular cells lack these pacemaker currents. Their action is initiated by
propagating electrical impulses from the pacemaker-conduction system.

After the threshold potential is actively exceeded, the upstroke (phase 0) of purkinje cells
is carried by a rapid inward sodium current INaf . When the cell is depolarized, a tran-
sient outward current ICl that is carried by chloride and potassium ions causes a quick
repolarization (phase 1). This is followed by a second inward current Isi which is mainly
carried by calcium ions and marginally carried by sodium ions. It counteracts the out-
ward directed slow and fast delayed rectifier potassium currents Ix1 and Ix2, leading to
a depolarized plateau (phase 2). The calcium influx during the plateau phase triggers a
massive release of calcium as indicated in the figure by ICaSR from the sarcoplasmic retic-
ulum. The sarcoplasmic reticulum is an intracellular calcium store. Some of the calcium
ions then bind to troponin C, thereby initiating the contraction process. Total action
potential repolarization (phase 3) to the resting state occurs when the L-type calcium
channels (Cav1.2) close. Further there are three background currents, a sodium current
INab, a potassium current IKb and a chloride current IClb that have only little influence on
the action potential. Ion pumps and exchangers, e.g. the sodium-calcium exchanger and
sodium-potassium ATPase, help regulating the ionic concentration gradients across the
membrane in order to allow action potential sequences to occur physiologically identically.



34 Cardiac Cells and Tissue

Figure 4.3: Electrophysiology of Purkinje cells, a typical action potential with phases 0–4
and major ion currents

4.2 Ventricular Cells

Ventricular cells are passively contractile cells of the mid wall of either the left or the
right ventricle. Each of the ventricular walls, cf. fig. 4.1, consists of an endocardium, a
myocardium and an epicardium, which are the inner, mid and outer wall, respectively. The
cellular processes are very similar to the processes shown in fig. 4.3. The most important
difference lies in the pacemaker current, that does not exist in this type of cell. The
activation of ventricular cells (as of any other passively contractile kind of cell) needs to
be triggered by electrical propagation of the action potential from the SA node through the
whole heart. As a consequence the positive slope in phase 4 does not exist in ventricular
cells.

4.3 Human-induced Pluripotent Stem Cell Derived Cardiomyocytes

Although they are not existing in a mammalian heart, human-induced pluripotent stem
cell derived cardiomyocytes (hiPSC-CM) today are a valuable tool for investigating cardiac
diseases, mutations and drug action. HiPS cells are cells that can be obtained by backwards
differentiation followed by reprogramming of adult human cells. They are pluripotent stem
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cells, meaning that they can be differentiated into any kind of cell existing in the human
body. Since there are ethical concerns in performing experiments on native animal or
human cells, the possibility of generating those cells from any cell, is brilliant and even
brought the Nobel prize to Takahashi and Yamanaka [145].

When this method has been developed, of course it was questionable by what extent
the hiPSC-CM functionally resemble native human cells. It has been shown that the
differentiation of human embryonic pluripotent stem cells (hePSC) leads to functionally
similar adult cells. However, again there are ethical concerns in obtaining ePSC. Thus,
hiPS cells are commonly used instead of hePSC. In fact, one major problem in using hiPS
cells is their immaturity or at least the unknown stage of maturity. This and the general
applicability of experimental results obtained for hiPS cells to native human cells will be
addressed at many points within this thesis.

Despite the known and unknown differences between native and differentiated induced
cells they are commonly used because they are ethically acceptable. Thus they are cur-
rently used as models for native human cardiomyocytes in the investigation of cardiac dis-
eases (Liang and Du [91]), of drug action (Liang et al. [92], Mehta et al. [104])
and the effect of mutations (Roden and Hong [128]).

4.4 Drug Action

The variety and the operating modes of known drugs are huge. Some drugs are acting
somewhere in the metabolism, thereby having some influence to the cardiovascular system.
Some other drugs occupy proteins in the cell membrane thus limit the availability of those
proteins to other drugs. Both operation modes are not part of the investigations in this
thesis. This work focuses on drugs that selectively influence specific ion channels with
different intensity and depending on their concentration. Those drugs can be inhibitory
and stimulating in the sense of blocking activation or inactivation gates (inhibition) or
in the sense of accelerating the activation or inactivation of specific gates (stimulation).
At the same time one drug can have an inhibitory behavior with respect to one gate
and a stimulating behavior with respect to another gate with different potency. Both
actions change the action potential, thus change the beating force and the heart rate
(beating frequency). In the following paragraphs the drugs and their ways of action that
are investigated within this thesis are explained.

4.4.1 Lidocaine

The common local anesthetic drug Lidocaine is clinically used as an antiarrhythmic drug
for emergency-treatment of ventricular arrhythmias. As a Class IB antiarrhythmic agent,
it binds to fast sodium channels (Nav1.5) in their inactivated state, thereby inhibiting
their activation. Its effectivity strongly rises with increased heart rate and therefore it has
a use-dependency. The block of fast sodium channels results in a decreased sodium influx
INa during depolarization that subsequently causes a lowered inner calcium concentration
in ventricular myocytes during the action potential plateau due to the reverse mode of
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the sodium-calcium-exchanger as reported by Saleh et al. [134]. Lidocaine thus lowers
ventricular contractile force.

Recent studies provide evidence for the inhibitory effect of Lidocaine on HCN channels
which are assumed to be responsible for the pacemaker current thus the drug lowers the
heart rate, Meng et al. [105].

4.4.2 Verapamil

Verapamil is a multi-ion-channel blocker classified as a class IV-antiarrhytmic agent. In
cardiac tissue, this agent especially inhibits calcium ion influx through L-type calcium
channels (Cav1.2) during the early plateau phase as well as potassium ion efflux through
rapidly activating delayed rectifier potassium channels (hERG) during the late plateau
and repolarization phases by dose-dependent blocking of the activation of the respec-
tive channels. This causes a slower repolarization-rate that in turn leads to an action
potential prolongation. The action potential prolongation leads to the expectation that
Verapamil induces a negative chronotropic effect, i.e. a reduction of the heart rate as
found by Arnold et al. [4]. The decreased calcium influx yields a negative inotropic
effect of Verapamil, i.e. a reduced beating force, since calcium ions play a major role in
the contraction process. Kramer et al. [87] reported that the drug additionally blocks
fast sodium channels (Nav1.5), but with a very low potency.

4.4.3 Veratridine

Veratridine is a sodium channel toxin that solely prolongates the permeability of fast
sodium channels (Nav1.5) by drug-induced inhibition of channel inactivation, resulting in
an increased inner sodium ion concentration as found by Brill and Wasserstrom [20]
and Honerjäger and Reiter [74]. Saleh et al. [134] found that this consequently
triggers an increase in intracellular calcium ions by stimulation of the sodium-calcium
exchange and to an increased beating force. By an extension of the plateau phase, Vera-
tridine additionally induces an action potential prolongation due to the lowered calcium
influx which results in a decreased beating frequency as found by Arnold et al. [4].

4.4.4 Bay K8644

In calf and guinea pig myocardial cells, Bay K8644 has been found to be a L-type cal-
cium channel agonist which increases the calcium concentration in the cell thus it is a
positively inotropic substance (Thomas et al. [149]). The drug not only increases the
open probability of the L-type calcium gates but also shifts the reversal potentials of the
activation and inactivation gates to more negative voltages and accelerates the decay of
this channel (Chen et al. [28]).

Kang et al. [82] and Ji et al. [80] found that Bay K8644 does not show the channel
activating behavior in the case of hiPSC-CM and hePSC-CM. As this statement is not
entirely true for all investigated cell cultures it is supposed that the lack of the effects in
stem cell-derived cardiomyocytes was due to an immaturity of the cells.
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5 Mechanical and Electrophysiological Modeling of Cardiac Tis-

sue

From the modeling point of view cardiac tissue can be described by the three-element
model of Hill [69] that has been established in 1938 and is shown in fig. 5.1. The model
assumes a passive elastic element (PE) that is in parallel to a serial elastic (SE) element
which is in series with a contractile element (CE). Although within this thesis it is ap-
plied to cardiac muscles only, Hill’s model is a general model that describes the passive
and active behavior of muscles, be they skeletal, smooth or cardiac muscles. The pas-
sive element mainly corresponds to the extracellular matrix (ECM) that provides passive
stiffness by collagen, elastin and other proteins. Besides its mechanical role the ECM
plays a huge role in shaping cells, it contains ions and regulates ion diffusion necessary for
proper cellular function and it serves as a biological scaffold for the cells (Humphrey [77],
Alberts et al. [3]). Its constituent collagen is a protein that, in an unloaded environ-
ment, is folded as can be seen in fig. 5.2. If the ECM, i.e. the tissue, is stretched, the
collagen proteins will unfold thus provide an anisotropic structure to the tissue and de-
velop an increasing stress. The corresponding nonlinear relationship between stress and
strain can be seen in fig. 5.2 too. For small strains this relationship is highly flexible be-
cause the protein is still unfolding but as soon as the collagen fibers are properly aligned
they produce an increasing stiffness.

Figure 5.1: Hill’s muscle model, Hill [69]
Figure 5.2: Collagen structure at rest and in
stretching

In Hill’s model the active component that is in parallel to the passive element also produces
a passive stress via the serial element. This element can be identified with the inherent
elasticity provided by cross-bridges that form during contraction. Cross-bridges are built
by overlapping actin and myosin filaments, that, the more they overlap, increase the
contraction force. This passive contribution of the active element usually is neglected
because the passive stress that solely results from the contraction of the cells is rather
small compared to the stress arising from the contractile component, i.e. the so-called
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active stress.

In general the constitutive modeling of soft tissue is very flexible as can be seen for instance
regarding the structural mechanically motivated approach presented in Böl et al. [16].
Therein a tetrahedral representative volume element has been created with truss elements
lying on the edges of the tetrahedron. The volumetric stress contribution of the cardiac
tissue is computed based on the tetrahedral element whereas the passive stress arising
from the collagen fibers is reflected by the truss elements. The active stress component is
also incorporated via fiber-oriented truss elements.

Computationally oriented discussions of skeletal, smooth and cardiac muscle structure
and more details on the interpretation of Hill’s model can be found in Spyrou [142].
Although cardiac muscle is in the focus of this thesis, the very clear and concise practical
introduction of Martins et al. [101] into the modeling of skeletal muscle using Hill’s
model is worth reading and nearly fully valid for cardiac muscle. The main difference
between skeletal and cardiac muscle cells is that some of the latter are able to beat
autonomously whereas the former cells need to be activated through the nerve system.

5.1 Active Stress Formulation

From the mechanical point of view there are the so-called active stress and the active strain
formulations. The majority today employs the former one. Following the suggestions in
the cited literature, the active stress formulation is used herein but the active strain
formulation is presented and discussed in the subsequent section. Therein the choice of
the active stress formulation for the purposes of this thesis is justified.

The active stress formulation bases on the assumption that passive and active stresses
occur separately and both lead to deformation, thus the Cauchy stress

σ = σp + σa = 2J−1b
∂Ψ(b)

∂b
− pI + T (t, b)a⊗ a (5.1)

is split up into a passive part σp and an active part σa. In eq. (5.1), in the framework of
hyperelasticity, the passive stress is expressed via the strain energy Ψ and the hydrostatic
pressure p. The active stress is given by a time- and strain-dependent scalar quantity
T (t, b) that acts in a certain fiber direction a.

Both, models for the passive and active stress contributions of cardiac muscles, have
been presented in the literature. A very famous and often employed model for σp

is a generalized version of the one shown in eq. (5.1). It has been proposed in
Holzapfel and Ogden [73] and for incompressible soft biological tissue reads as

σp = 2
∂Ψ

∂I1
b+ 2

∂Ψ

∂I2
(I1b− b2)− pI + 2

∂Ψ

∂I4a
a⊗ a + 2

∂Ψ

∂I4s
s⊗ s

+
∂Ψ

∂I8as
(a⊗ s+ s⊗ a) +

∂Ψ

∂I8an
(a⊗ n+ n⊗ a) . (5.2)

Therein a sheet direction s that lies in the fiber plane and is normal to a and a normal
direction n that is normal to both have been introduced and respective invariants I∗ have
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been formulated. This transversely isotropic stress formulation is much more sophisticated
than the isotropic ones used herein but in turn it requires information about fiber orien-
tation and the determination of many material parameters. It will become clear that for
the investigations in this thesis, the four terms in eq. (5.2) that are associated with the
anisotropy can be ignored. Nevertheless it should be mentioned that such a complex stress
formulation should be employed in whole heart simulations as the anisotropy significantly
influences the mechanical behavior.

The active stress contribution σa is detailed in sect. 5.4. The scalar T represents the
contractile stress and is determined by a system of ordinary differential equations (ODE)
that comprises ODEs describing the cellular electrophysiology, the action potential and the
so-called excitation-contraction coupling which is the actual electromechanical coupling.

5.2 Active Strain Formulation

The active strain formulation originates from Nardinocchi and Teresi [109] and
Cherubini et al. [29] who firstly proposed a multiplicative decomposition of the de-
formation gradient

F = FeFa , (5.3)

for the analysis of passive and active deformation. The idea is that the elastic part of
the deformation gradient Fe produces all the stress and that the active part Fa does not
deliver a stress contribution. The intermediate configuration that is created by Fa thus is
considered to be virtual.

Very recently the active strain formulation has been applied to whole-heart simulations,
like in Rossi et al. [131], Göktepe et al. [61] and Ruiz-Baier et al. [132] and
to the simulation of isolated cardiomyocytes, cf. Ruiz-Baier et al. [133]. Especially
Rossi et al. [131] theoretically compared multiple isotropic and anisotropic constitu-
tive laws in the active stress and active strain frameworks. It comes out that in the small
strain regime both are equivalent. In the finite strain regime though, they observe con-
siderable differences in the deformation behavior that even become more severe when the
constitutive law becomes more complicated. The main reason for this can be seen by
comparing the first Piola-Kirchhoff stress in the active stress formulation

P = µF + Ta⊗ a0 (5.4)

and the active strain formulation

P = µ(1 + γa)F + µg(γa)a⊗ a0 (5.5)

for the very simple isotropic neo-Hookean material law. Interpreting γa as the relative
displacement in the fiber axis one can clearly see that in eq. (5.5), in contrast to eq.
(5.4), this relative displacement not only influences the anisotropic stress contribution
but also the isotropic one by the factor of (1 + γa). This basically means that an active
contraction influences the passive material response as well, i.e. it modifies the stiffness
of the material. The authors of the cited references leave open whether the active stress
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or the active strain formulation is preferable. They suggest to conduct experiments that
lead to this decision but this is still an open issue.

As already pointed out, within this thesis the active stress formulation is applied. It is
preferable because it provides a disjunct split of passive and active stress contributions
which is in accordance with the assumptions made in the experiments that serve for the
parameterization of the employed models. It has to be mentioned though that the active
strain formulation might be able to cover microstructural effects at the macro-level that
would be disregarded in the active stress formulation. However, it seems to be much
simpler to regard passive and active stresses as fully disjunct, both experimental- and
interpretation-wise.

In the following sections the employed models for the passive stress are shown. The active
stress contribution is in the main focus of this thesis and is discussed in very detail in the
following sections as well.

5.3 Modeling the Passive Component

In soft tissue biomechanics the passive stress is usually represented by a hyperelastic con-
stitutive law. As already indicated in eq. (5.1), hyperelastic constitutive laws are defined
by a strain energy function Ψ that represents the energy stored in the material. Ψ can be
expressed with the help of any strain measure and its derivative with respect to a certain
strain measure leads to the dual (conjugate) stress. Therefore the first Piola-Kirchhoff
stress is given as

P =
∂Ψ(F )

∂F
(5.6)

and all other stress tensors can be derived using the transformation rules given in sect.
2.1.2. In terms of this thesis the second Piola-Kirchhoff stress

S = F−1∂Ψ(F )

∂F
(5.7)

and the Cauchy stress

σ = J−1∂Ψ(F )

∂F
F T (5.8)

are of special interest. In general Ψ can be anisotropic, i.e. dependent on a number of
fiber families, which is often the case for biological soft tissues like muscles (usually one
fiber family) or blood vessels (multiple fiber families).

A very common constraint on biological soft tissues is the incompressibility of the tissue,
i.e. J = det(F ) = 1. This constraint can be introduced into the strain energy function by
a Lagrangian multiplier p

Ψ = Ψ(F )− p(J − 1) , (5.9)

which is known to be the hydrostatic pressure. In the remainder of this work only incom-
pressible and isotropic materials will be examined. Although cardiac tissue in general is
anisotropic, it will be shown in sec. 6.1 (cf. fig. 6.3) that the herein investigated tissue is
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globally isotropic. Therefore a discussion of anisotropy and anisotropic models is beyond
the scope of this thesis.

More on hyperelasticity and related topics can be found in Holzapfel [72].

5.3.1 St. Venant-Kirchhoff

The St. Venant-Kirchhoff material is the generalization of Hooke’s law to geometri-
cally nonlinear problems. It is neither elliptic nor polyconvex (cf. e.g. Ebbing [44]
for proofs) which implies that existence and uniqueness of the solution can-
not be guaranteed (Marsden and Hughes [100]). Moreover it has been shown in
le Dret and Raoult [88] that this material should be avoided if high compression
is expected. The constitutive tensor in eq. (2.22) in matrix notation reads as

C =
E

(1 + ν)(1 − 2ν)











1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν











, (5.10)

with Young’s modulus E and Poisson ratio ν. The (quasi-)incompressible case is achieved
if ν tends to 0.5 and it leads to numerical problems because the denominator in eq. (5.10)
approaches zero. A possible remedy is a reformulation such that the strain energy for the
St. Venant-Kirchhoff material reads as

Ψ =
λ

2
(tr(E)2) + µtrE2 , (5.11)

with the Lamé constants λ and µ that are related to E and ν as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (5.12)

In order to take the derivative of eq. (5.11) with respect to the Green-Lagrangian strain
tensor it is important to know that

∂tr(E)

∂E
=

∂Eii

∂Ekl

= I . (5.13)

Using this the second Piola-Kirchhoff stress for St. Venant-Kirchhoff material can be
derived as

S =
∂Ψ(E)

∂E
= λtr(E)I + 2µE . (5.14)

Here, S is expressed in terms of the Green-Lagrangian strain but it can easily be shown
that this expression is equivalent to the original representation in terms of the deformation
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gradient (cf. eq. (5.7)),

S =
∂Ψ(E)

∂E
=

∂Ψ(E)

∂F

∂F

∂E
=

(
∂E

∂F

)
−1

∂Ψ(F )

∂F

=

(

1

2

∂
(
F TF − I

)

∂F

)
−1

∂Ψ(F )

∂F

= F−1∂Ψ(F )

∂F
. (5.15)

Herein the fact has been used that Ψ is defined in a way that it stays unchanged under
rotation, i.e. Ψ(F ) = Ψ(RF ). Consequently all the different functions

Ψ(F ) = Ψ(U) = Ψ(V ) = Ψ(C) = Ψ(b) = Ψ(E) (5.16)

have the same value. This originates from the fact that with the polar decompositions
F = RU and F = V R of the deformation gradient tensor into an orthogonal rotation
tensor R and a right and left stretch tensor U and V , respectively, the strain tensors

C = F TF = RUTRU = UTRTRU = UTU , (5.17)

b = FF T = V RV RT = V RRTV T = V V T and (5.18)

E =
1

2
(C − I) =

1

2
(UTU − I) (5.19)

can be expressed independently of the rotation tensor. Intuitively it is clear that, in statics,
rigid body rotation or translation does not cause any stress.

Taking the second derivative of Ψ with respect to E gives the constitutive tensor

C =
∂S

∂E
=

∂2Ψ(E)

∂E2
= λI ⊗ I + 2µI ⊗ I = (λ+ 2µ)S , (5.20)

where the symmetric fourth-order tensor S has the components

Sijkl =
1

2
(δikδjl + δilδjk) (5.21)

and replaces the fourth-order identity tensor because E and S are symmetric. Equation
(5.20) is equivalent to eq. (5.10). Both equations show that the St. Venant-Kirchhoff
material is isotropic and the material properties are strain-independent. Recapitulating
fig. 5.2, neither isotropy nor independence of strain can be assumed for cardiac tissue.
Nevertheless this material model is useful for describing material in the linear regime.
Regarding its limitations that already have been indicated above, the St.Venant-Kirchhoff
material model should only be used for boundary value problems with large rotations but
small strains.

It can be shown that if a polyconvex or a quasiconvex strain energy density is required
in the isotropic hyperelastic case, then the stress-strain relationship must be physically
nonlinear in the nonlinear strain measure.



Mechanical and Electrophysiological Modeling of Cardiac Tissue 43

5.3.2 Neo-Hookean

The Neo-Hookean material model is the simplest strain-dependent model and it can be
viewed as a special case of the general Ogden model

Ψ = Ψ(λ1, λ2, λ3) =
n∑

p=1

µp

αp

(λ
αp

1 + λ
αp

2 + λ
αp

3 − 3) , (5.22)

with the principal stretches λi, shear moduli µp and dimensionless parameters αp. Setting
N = 1 and α1 = 2 leads to

Ψ(λ1, λ2, λ3) =
µ1

2
(λ2

1 + λ2
2 + λ2

3 − 3) = C10(I1 − 3) = Ψ(I1) , (5.23)

with I1(C) = tr(C) the first invariant of the right Cauchy-Green tensor.

This hyperelastic strain energy function in terms of the first invariant or the principal
stretches is commonly used thus the passive stress contribution in eq. (5.1) has to be
reformulated in terms of λi too. Using the identities derived in sect. 5.3.1 one gets

σp = 2J−1b
∂Ψ(b)

∂b
− pI = 2J−1V V T ∂Ψ(V )

∂V

∂V

∂b
− pI

= 2J−1V V T ∂Ψ(V )

∂V

(
∂b

∂V

)
−1

− pI = J−1V V T ∂Ψ(V )

∂V
V −1 − pI

= J−1V
∂Ψ(V )

∂V
− pI . (5.24)

The final step is to simply replace the left stretch tensor by its eigenvalues because σp

shall be expressed in its principal directions. The passive stress contribution then reads
as

(σp)i = J−1λi

∂Ψ

∂λi

− pδii , (5.25)

with J = λ1λ2λ3. Of course there are many more different hyperelastic models for soft
tissues. Major benefits of the Neo-Hookean model are that it is polyconvex and that only
one parameter C10 needs to be determined by parameter fitting. On the other hand more
complex models allow a better approximation of the material curve if it has regions of
largely differing slopes, i.e. different degrees of nonlinearity. In the application that is
investigated within this thesis the material behavior can accurately be approximated by
the Neo-Hookean material thus more complex models are not required.

The problems that are investigated in this thesis are modeled with either the St. Venant-
Kirchhoff material for small deformation but large displacement or the Neo-Hookean ma-
terial for large deformation problems.

5.4 Modeling the Contractile Component

The modeling of the contractile element in Hill’s model is most important for this thesis.
This part of the model strongly depends on the type of muscle (skeletal, smooth or cardiac)
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and on the cell type because the action potentials of different cells in the heart, like AV
cells, SA cells, Purkinje cells or ventricular cells differ significantly. It has already been
explained that the main driver for the contractility of any cardiac cell is the concentration
of free inner calcium.

In standard tissue models one uses an electrophysiological model of a specific cell type in
order to create an action potential and to compute the free inner calcium concentration
[Ca2+]i, which then serves as input for the computation of the active stress contribution
σa in eq. (5.1).

There are different ways of modeling cell electrophysiology, cf. Ay and Arnosti [5], but
most commonly the electrophysiological processes across the cell membrane (cf. fig. 4.3)
are modeled by a system of ordinary differential equations in the form of

dVm

dt
=

1

Cm

(

Istim −
M∑

i=1

Ii(g1, g2, ..., gMi
)

)

(5.26)

dgj(Vm)

dt
= α+

j (Vm)(1− gj) + α−

j (Vm)gj , (5.27)

where Vm is the cell membrane potential, Cm is the electrical capacitance of the cell
membrane, Istim is an external (potentially zero) electrical stimulus, Ii are ionic currents
and M is the total number of ionic currents in the model. Each current depends on Mi

(usually one or two) gate variables gj that control the opening and closure of the ionic
channel i where ions diffuse through. α+

j and α−

j are experimentally determined opening
and closure rates of the respective gate. They depend on Vm, i.e. for each gate there are
threshold values for the membrane potential that determine the opening and closure of
the respective gate.

The membrane potential itself is determined by the difference of an externally applied cur-
rent Istim and the ionic currents that are governed by the gates. The idea for this very gen-
eral electrophysiological model for a single cell goes back to Hodgkin and Huxley [71].
Since then numerous special single-cell models have been developed based on an immense
amount of experiments to determine the electrical, mechanical and electromechanical
properties of cells and single ion channels. As the knowledge of cellular processes is still
incomplete but continuously increasing the quantification of the properties is work in
progress. Extensive overviews over electrophysiological cell models of different mammalian
and human cell types that also have been used to study the electrical propagation in car-
diac tissues are provided by Fenton and Cherry [49] and Nickerson [115]. Those
models have different complexity, ranging from two variables to very complex models
that consist of up to 60 variables. They are too numerous to name them all, i.e. only the
models that have been used in this work will be explained.

As already indicated in Ruiz-Baier et al. [132], currently there is no model that prop-
erly builds the bridge between the cell and tissue scales by means of homogenization.
Usually the micro-scale effects are directly transmitted to the macro-scale, i.e. concerning
the contractile behavior, the tissue is treated as if it would consist of cells only, with-
out an extracellular matrix. Those models are referred to as monodomain models. In
order to benefit from the detailed data on the cell level in tissue analysis, a switchover
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to bidomain models is important. The theoretical background of which can be found in
Nobile et al. [119].

5.4.1 Different Scales

At first one has to distinct between the modeling on different scales. There are approaches
of modeling optical effects on the Ångström to the nano-scale to achieve realistic multi-
scale behavior of the heart. Chemical processes like diffusion of ions through the ion
channels of the cell take place on the nano- to the micro-scale. Within this thesis chemical
processes are modeled at the cell level (micro-scale) ignoring the local effects that take
place at the nano-scale. The chemical and electrophysiological cellular processes are much
faster than the mechanical response of the tissue. Therefore the tissue which consists of
millions of cells is not only modeled on a coarser length scale but also on a coarser time
scale. Crossing the scales is rather simple in the model developed herein.

An even larger scale is the organ itself. For basic investigations like the simulation of
drug action on a tissue this scale is too large regarding the fact that cellular processes are
not entirely understood and that corresponding models are under current development.
Some research has been done in the simulation of the mechanics and the propagation of
the electrical potential through the human heart including mechano-electrical feedback,
likeGöktepe and Kuhl [59],Hunter et al. [79] and Smith et al. [141] but mostly
without crossing the scales to the cell level. An exception to that is the recently proposed
framework byGöktepe et al. [61] that allows for internal ordinary differential equation
systems describing the cellular electrophysiology.

Computational models at the tissue and organ level are often chosen for the investigation
of the electromechanics of the whole heart, i.e. when the organ deformation, the electrical
conduction system or mechano-electrical effects are of interest. Models at the cellular level
are employed when individual ion currents, specific gates or proteins, the cellular action
potential or the cellular communication via gap junctions are studied. Cellular models are
often used for the computational assessment of single cells, cell clusters or even tissue, like
in the present case. Fully bridging the scales from the cellular level up to the organ level
is very challenging and is discussed in the outlook section 9 as a current research topic.

5.4.2 Modeling Drug Action

Before starting to explain the chosen electrophysiological models, the general way of mod-
eling drug action within the Hodgkin-Huxley framework shall be clarified.

Different drugs typically have different effects on the membrane potential. First of all, a
drug may change the activation or inactivation gate of a certain channel or possibly multi-
ple gates in a varying amount. The two basic effects that are investigated are the blocking
and the stimulation of the activation or the inactivation of a certain gate, respectively.
The modeling approaches of both are different and strongly depend on the data that is
taken from experiments.
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5.4.2.1 Blocking Drugs In patch clamp experiments one quantifies an IC50 value
which is the half-blocking concentration of a drug with respect to a certain gate. In other
words the IC50 value is the concentration of the drug that is needed to slow down the
ion flux through the respective channel by 50%. Knowing the constant IC50 value that
for instance can be taken from literature and the actually applied drug concentration
D, Obiol-Pardo et al. [121] simply introduce a scaling factor into the respective gate
differential equation (5.27)

dgj(Vm; IC
d
50, D

d)

dt
=

1

1 + Dd

ICd
50

(
α+
j (Vm)(1− gj) + α−

j (Vm)gj
)
. (5.28)

Obviously this scaling factor equals 0.5 (half-blocking) if Dd = ICd
50, where the upper

index d indicates a specific drug. One has to be very careful in searching appropriate IC50

values. This experimentally determined parameter depends on the drug, the ion channel,
the cell type, the cell environment, stretch, etc. Depending on the numerous influences,
values from different publications that seem to be determined in a similar environment
often lie in a wide range.

5.4.2.2 Stimulating Drugs Stimulating effects of drugs are modeled in a dif-
ferent way. Experimentally one observes that either the opening rate α+

j or the closure
rate α−

j or both are affected by a drug. Those rates are often defined with respect to a
threshold potential. Thus if Vm reaches the threshold potential the gate opens. In patch
clamp experiments one can measure a shift of a test action potential with respect to the
drug concentration. The determined potential shifts ∆V +

j and ∆V −

j are added in order to
modify the threshold. Intuitively it is clear that if the gate becomes activated at a lower
potential, i.e. it opens earlier, and if the inactivation stays unchanged, then the gate will
be in the open state for a longer time, which has a positive effect on the ion flux. The
same is true for unchanged activation but later inactivation (at higher potentials). The
gate differential equation including the potential shift is introduced as

dgj(Vm)

dt
= α+

j (Vm +∆V +
j )(1− gj) + α−

j (Vm +∆V −

j )gj . (5.29)

Depending on the affected ion channel, a potential shift might result in a changing beating
force or beating frequency of the cell. Of course both effects can be seen at the same time,
especially if the drug acts on a specific calcium channel and on a specific potassium
channel, the latter of which often is called the pacemaker channel. Also, there is the well
known staircase effect that reveals a positive proportionality of cell beating force with
respect to the beating frequency.

From a modeling point of view one has to be very cautious about how the drug is supposed
to change the cellular processes and where in the model this effect can be introduced and
about the experimentally determined potential shifts that again underlie uncertainties.
The application of multiple drugs at the same time with opposing effects is possible in
general but has not been investigated in here.
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5.4.3 Electrophysiological Models

In order to understand how the choice of the proper cell models for the purposes of this
thesis have been made, it is necessary to provide an overview about the currently existing
models. Models for SA cells and ventricular cells are in the focus because those are the
investigated cell types.

The first model that has been implemented during this work is the Fenton-Karma model
Fenton and Karma [48] for ventricular cells representing a fast-inward, a slow-inward
and a slow-outward current. Each of those three currents represents an assembly of a
number of ion currents. In the view of simulation of drug action the level of detail of
the Fenton-Karma model is not sufficient because drugs selectively act on ion channels
and in order to simulate this appropriately the respective ion channels need to have a
separate representation. Moreover this model represents ventricular cells which are not
autonomously beating but which need a trigger from outside. In the human heart as well
as in the investigated tissues the stimulus originates from nodal cells, like SA cells.

For the sake of simplicity, models have been chosen that do not have much more than
20 unknowns in total. For the investigations in this thesis a higher degree of detail is not
necessary and may be even confusing. It is already difficult to find reliable experimental
data concerning action potentials of and drug action on different type of cells. The unre-
liability originates from different factors like the cell environment, species, uncertainty of
cell type, the influence of the respective experimental setup and whether the experiments
are performed on the level of single ion channels, single cells, tissues or organs. Especially
the herein investigated human-induced pluripotent stem cells (hiPSC) show considerably
different behavior depending on those and other factors because all over the world they
have a different origin. Given the fact that it is very difficult to select appropriate data
for hiPS cells from the literature, it is important to keep the models simple in order to
provide a certain range of applicable data instead of not being able to find any data.

Besides those concerns there is another one that has already been mentioned: the differ-
ence between hiPS cells and native human cells thus the applicability of results obtained
with hiPS cells. Although they provide a good and promising basis for ethically beneficial
experiments they are functionally different or immature. Recent experimental and simula-
tion studies like Ji et al. [80] and Hu et al. [75], respectively, show that currently it is
dangerous trying to transfer hiPSC results to native cells as largely significant functional
differences can be seen between different cell lines and even within one cell line.

In order to understand the basic properties of self-contractile cell models, two models
for Purkinje fiber cells have been implemented: the Noble model, Noble [120] and the
McAllister-Noble-Tsien (MNT) model, McAllister et al. [103]. The former one again
is a very simple model having only four variables and therefore is not well-suited for the
simulation of drug action. The MNT model was the first model that has been used herein
to simulate self-contractile tissue and drug action.

During data evaluation it appeared that the calcium dynamics needed to be simulated
in much more detail than it has been done in this first setup. In addition to that the
investigated tissues consist of multiple different cell types: nodal, atrial and ventricular CM
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as well as fibroblasts. Taking this into account two more recent models have been selected
and implemented. The model of Stewart et al. [143] is a Purkinje fiber model, just like
the MNT model. This model has been chosen because it models the calcium dynamics in
much more detail and because it is parameterized based on data of human Purkinje fiber
cells in contrast to the MNT model that is mostly based on rabbit and canine data. In the
finite element model the Stewart model serves as the pacemaker without a geometrical
representation. In turn, the human ventricular model of ten Tusscher et al. [147] and
ten Tusscher and Panfilov [146] (TT) is applied everywhere to simulate the cardiac
action potential.

Choosing a Purkinje fiber model instead of a proper nodal model seems to be arbitrary.
During the work on the thesis the MNTmodel for Purkinje cells has been chosen because of
its limited number of ionic currents such that basic electrophysiological effects are clearly
represented. Later, when a human model was required, the differences to the MNT model
should be as little as possible in order to be able to keep track of the changes in the
results. Thus, in order to keep the cell type, a consequent choice was the Stewart model
for human Purkinje cells. It will be pointed out in sections 5.4.5 and 9.2.2 that human
SA models have been chosen for further investigations that extend this thesis.

The three models, MNT, Stewart and TT, that have been used in the simulations are
explained in the following paragraphs.

5.4.3.1 McAllister-Noble-Tsien The MNT model proposed in
McAllister et al. [103] consists of ten variables and therefore it is sufficiently
complex to appropriately simulate drug action but not too complex to be confusing
concerning the adjustable parameters. Here, the equations and parameters of the original
model are shown. If different parameters have been used (Nickerson [115] shows some
minor differences) it is explicitly stated. The following equations form a model for the
cellular processes that have been described with the help of fig. 4.3 and the action
potential one can compute from this model is shown in fig. 5.3. The different phases of
the AP have been explained in sect. 4.1 and it shall be emphasized here that one can
clearly observe a rising of the AP before depolarization and after the beat. Consequently,
the model will reach its threshold potential on its own and beats with a frequency of
about 0.77 s−1.

Disregarding the units in eqs. (5.30–5.38) for compactness, the ion currents in the MNT
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Figure 5.3: Action potential of the McAllister model

model are

INa = cNag
3
mgh(Vm − V Na

m ) , (5.30)

Isi = csigdgf(Vm − V si
m ) + c∗si

(

1 + exp

(

−
Vm + 40

6.667

))
−1

(Vm − V si
m ) , (5.31)

IK2 = 0.028gs
exp

(
Vm−V K

m

25

)

− 1

exp
(
Vm+60
12.5

)
+ exp

(
Vm+60

25

) , (5.32)

Ix1 = 0.012gx1
exp

(
Vm+95

25

)
− 1

exp
(
Vm+45

25

) , (5.33)

Ix2 = gx2(0.25 + 0.00385Vm) , (5.34)

Iqr = cqrgqgr(Vm − V Cl
m ) , (5.35)

IK1 =




IK2

2.8
+ 0.002

Vm − V K1
m

1− exp
(

−Vm−V K1
m

25

)



 , (5.36)

INab = cNab(Vm − V Na
m ) , (5.37)

IClb = cClb(Vm − V Cl
m ) , (5.38)

with cNa = 1.5mSmm−2, V Na
m = 40mV , csi = 0.008mSmm−2, c∗si = 0.0004mSmm−2,

V si
m = 70mV , V K

m = −110mV , cqr = 0.05mSmm−2, V Cl
m = −70mV , V K1

m = −30mV ,
cNab = 0.00105mSmm−2 and cClb = 0.0001mSmm−2. The interpretation of those cur-
rents can be found in fig. 4.3 with the difference that therein, INaf and INas correspond to
INa and Isi, respectively, in the MNT model. From those naming conventions one major
drawback of the MNT model can already be seen. The slow inward current Isi represents
the sum of slow sodium and calcium processes (sodium influx, sodium-calcium-exchanger,
calcium-induced calcium release of the SR) thereby hiding and averaging important parts
of the cellular process. As this model is balanced in a way such that it is self-contractile
with a certain frequency no external stimulus is needed. The beating frequency depends
on the parameterization of the model and can indirectly be changed for instance by drug
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application or other parameter adjustments. By setting Cm = 0.1µF mm−2 the currents
(5.30)–(5.38) determine the time course of the membrane potential, eq. (5.26).

To complete the model the activation and inactivation parameters of the nine gates of
this model are shown. Again, the units are ommited:

α+
m =

Vm + 47

1− exp
(
−Vm+47

10

) α−

m = 9.86exp

(

−
Vm + 47
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)

(5.39)
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h = 1.13 · 10−7exp
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)
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−1

(5.40)
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d = 0.02exp
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−
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α+
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α+
x2 = 1.27 · 10−4
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x2 = 3 · 10−4 exp
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1 + exp
(
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Each gate is expressed in the form of eq. (5.27). In order to couple this model to the models
of contraction described in sect. 5.4.4, another ordinary differential equation needs to be
introduced that determines the inner calcium concentration. In the model of contraction
the calcium concentration at a certain time serves as direct input. Unlike other models the
MNTmodel does not provide such a differential equation but inBeeler and Reuter [9]
the differential equation

∂[Ca2+]i
∂t

= −1.848 · 10−4Isi + 0.07(10−4 − [Ca2+]i) (5.48)

has been proposed that uses Isi as input. Here it has already been scaled to a minimum
calcium concentration of 0.1µM and a maximum calcium concentration of 1µM. Any
other scaling is also possible depending on the cell type to model.

5.4.3.2 ten Tusscher et al. This model of human ventricular cells consists of 17
variables that are explained in detail in ten Tusscher and Panfilov [146]. The time
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course of the membrane potential is determined by a total of 12 ion currents and a possi-
ble stimulus. As ten Tusscher et al. [147] and ten Tusscher and Panfilov [146]
are very detailed, within this thesis only some ion currents and some specific gates are
explained depending on whether they are influenced by a drug. However, all the differen-
tial equations are shown here because they slightly differ from those shown in the cited
papers due to minor mistakes that have been corrected in Niederer and Smith [116].
Each of the gate differential equations is written in the form

∂gj(Vm)

∂t
=

ginfj − gj

τgj
, (5.49)

with time constants

τgj = α+
gj
α−

gj
+ β−

gj
(5.50)

for most of the gates except for the j- and h-gates for which

τgj =
1

α+
gj
+ α−

gj

. (5.51)

Avoiding the units in the equations of this section as well, the activation and inactivation
constants α+

gj
, α−

gj
and β−

gj
for each gate are given as follows

α+
m =

1

1 + exp
(
−Vm+60

5

) α−

m =
0.1

1 + exp
(
Vm+35

5

) +
0.1

1 + exp
(
Vm−50
200

)

β−

m = 0 minf =
1

(
1 + exp

(
−Vm+56.86

9.03

))2

α+
d =

1.4

1 + exp
(
−Vm+35

13

) + 0.25 α−

d =
1.4

1 + exp
(
Vm+5

5

)

β−

d =
1

1 + exp
(
50−Vm

20

) dinf =
1

1 + exp
(
−Vm+8

7.53

)

α+
x1 =

450

1 + exp
(
−Vm+45

10

) α−

x1 =
6

1 + exp
(
Vm+30
11.5

)

β−

x1 = 0 x1inf =
1

1 + exp
(
−Vm+26

7

)

α+
x2 =

3

1 + exp
(
−Vm+60

20

) α−

x2 =
1.12

1 + exp
(
Vm−60

20

)

β−

x2 = 0 x2inf =
1

1 + exp
(
Vm+88

24

)

α+
xs =

1400
√

1 + exp
(
5−Vm

14

) α−

xs =
1

1 + exp
(
Vm−35

15

)

β−

xs = 80 xsinf =
1

1 + exp
(
−Vm+5

14

)



52 Mechanical and Electrophysiological Modeling of Cardiac Tissue
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For the remaining f -, f2-, fCaSS-, s- and r-gates the inferior values and the time constants
are given as follows
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To complete the set of equations the differential equations for the concentrations of free
inner calcium [Ca2+]i, the calcium in the sub-space [Ca2+]SS and in the sarcoplasmic
reticulum [Ca2+]SR as well as the one for R̄ are shown. R̄ is the portion of closed channels
that are related to the calcium-induced calcium release of the sarcoplasmic reticulum. In
order to avoid another extensive list of parameters that need not to be detailed here, their
values are directly inserted into the differential equations:

∂[Ca2+]i
∂t

=
1

1 + 2·10−4

([Ca2+]i+0.001)2

(0.066691051(Ileak − Iup) + Ixfer

−5.8443 · 10−5(Ibca + Ipca − 2INaCa)
)

(5.52)

∂[Ca2+]SS
∂t

=
−0.017532825ICaL + 20.007315289Irel − 300Ixfer

1 + 10−4

([Ca2+]SS+0.00025)2

(5.53)

∂[Ca2+]SR
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=
1

1 + 10·0.3
([Ca2+]SR+0.3)2

(Iup − (Irel + Ileak)) (5.54)

∂R̄
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2.5−

1.5

1 +
(

1.5
[Ca2+]SR

)2




 [Ca2+]SSR̄ + 0.005(1− R̄) .(5.55)

The subspace is the space between the SR and the cell wall. In this subspace there are so-
called ryanodine receptors which sense an increase in calcium concentration that happens
due to a fast calcium ion influx. Those ryanodine receptors are represented via Irel and
induce the calcium release from the SR which provides the major portion of calcium.

Figure 5.4: Action potential of the TT model

Figure 5.4 shows the AP that is produced by the TT model. The following important
differences can directly be seen by comparing it to the AP of the McAllister model (fig.
5.3):

� There is a distinct slow depolarization phase after the quick repolarization following
the hyperpolarization in the TT model which is typical for ventricular cells.
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� The AP of the TT model is more bulgy which is typical for ventricular cells and
atypical for nodal or Purkinje cells.

� The TT model does not show a rise of the AP during the resting state. It represents a
ventricular cell thus it needs to be paced from outside by either an external stimulus
or another cellular model that provides one.

5.4.3.3 Stewart The Stewart model resembles the TT model in many parts. The
most important difference between those models is the introduction of a so-called funny
current

If = If,K + If,Na , (5.56)

that is responsible for the repolarization phase and serves as the pacemaker. It is driven
by two sub-currents that result from potassium and sodium ion fluxes, respectively. They
are governed by the membrane potential and a newly introduced gate y and read as

If,K = cf,Ky(Vm − EK) (5.57)

If,Na = cf,Nay(Vm − ENa) , (5.58)

with conductivities cf,K = 0.0234346nSpF−1 and cf,Na = 0.0145654nSpF−1 and equi-
librium potentials Ef,K = −86.3596773mV and Ef,Na = 74.51577033mV . The y gate is
defined by

α+
y = exp(−2.9 − 0.04Vm) α−

y = exp(3.6 + 0.11Vm) (5.59)

τy =
4000

α+
y + α−

y

yinf =
1

1 + exp
(
Vm+80.6

6.8

) . (5.60)

Compared to the TT model there are slight changes in the r- and s-gates and in the
currents to account for human Purkinje fiber cells instead of ventricular cells. Further
details of this model can be found in Stewart et al. [143].

Figure 5.5: Action potential of the Stewart model

Figure 5.5 shows the AP of the Stewart model and again some differences become apparent
with respect to the other two models:
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� The AP shape looks like a mixture of both previous models. This is due to the fact
that the Stewart model just alters the TT model and adds the funny current that
provides Purkinje cell characteristics.

� The AP duration is a little bit shorter than in the McAllister model because the
Stewart model is parameterized for human rather than for rodent Purkinje cells.

� The beating frequency of both, the McAllister and the Stewart model, is about
0.77 s−1.

5.4.4 Models of Contraction

In this section suitable models for the description of the active stress component in eq.
(5.1) are explained and evaluated. Therein the scalar quantity T (t, b) depends on the
time and the left Cauchy-Green tensor b. Current models that describe the active stress
of cardiac muscles are formulated one-dimensionally with respect to the stretch λ in fiber
direction. To the authors knowledge there is no two-dimensional model of the contractile
stress. Therefore, within this thesis, T (t, b) is simplified to T (t, λ1) = T (t, λ2) = T (t, λ),
such that the principal stretches λ1 and λ2 are assumed to be equal. This assumption
is valid because the circular specimen to be studied is in an equibiaxial strain state.
Moreover the specimen is isotropic (cf. sec. 6.1), thus principal stretches are taken for the
’fiber stretches’.

T (t, λ) implicitly depends on [Ca2+]i. In the original publications that present the follow-
ing models, a time course of [Ca2+]i is usually prescribed. As in this work the calcium
concentration in the cytoplasm is determined by a model of cell electrophysiology, [Ca2+]i
is the interface between the models of cell electrophysiology and of mechanical stress
development.

5.4.4.1 Hunter-McCulloch-ter Keurs The Hunter-McCulloch-ter Keurs
model (HMT) proposed in Hunter et al. [78] was the first choice because of its
relative simplicity. In its original version all model parameters have been taken from
animal testing. The application to human cardiac cells is questionable but as experimental
data for humans were and are quite rare this model is still one of the best choices. An
improved version of this model including some model parameters that then have been
derived from human cardiac cells is given in the next paragraph.

The HMT model assumes the active stress to be determined by

T (t, λ, [Ca2+]i) = Tref(1 + β0(λ− 1))z(t, λ, [Ca2+]i), (5.61)

with β0 being a measure of how cooperatively neighboring myofilaments interact, the
reference tension of a cell Tref and z being an activation variable. If there is no interaction
of neighboring myofilaments, β0 = 1 and the length-dependent tension development would
result from the changing myofilament overlap only.

The activation variable z represents the tropomyosin kinetics that result from the binding
of [Ca2+]i to troponin C (TnC). With 0 ≤ z ≤ 1 it equals the portion of available actin
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sites. The system of ordinary differential equations to describe the activation state of the
cardiac muscle is given as

∂z

∂t
= α0

((
[Ca2+]b
[Ca2+]50b

)n

(1− z)− z

)

(5.62)

∂Cab
∂t

= ρ0[Ca2+]i([Ca2+]max
b − [Ca2+]b)− ρ1

(

1−
Tcb

γTref

)

[Ca2+]b , (5.63)

with the concentration of bound calcium Cab, the half maximal calcium concentration

[Ca2+]50i = 106−(p[Ca2+]50refi (1+β2(λ−1))) (5.64)

and the Hill coefficient
n = nref(1 + β1(λ− 1)) . (5.65)

An active crossbridge binding (Tcb > 0) slows down the unbinding and it can even stop the
unbinding when, at maximum, Tcb = γTref . Due to a very little influence and to reduce
the model complexity, crossbridge binding is neglected here, thus one chooses Tcb = 0.

The time course of [Ca2+]i is given by the electrophysiological model. A summary and
description of the model parameters as well as their values is given in table 5.1. More
details about this model and explanations where the experimental data have been taken
from is given in Hunter et al. [78].

Table 5.1: Parameters of the original HMT model

Parameter Value Interpretation
ρ0 0.1 µM−1ms−1 binding rate TnC-Ca2+

ρ1 0.163 ms−1 unbinding rate TnC-Ca2+

γ 2.6 effect of tension on ρ1
[Ca2+]max

b 2.26 µM saturation [Ca2+]b
α0 0.002 ms−1 activation and inactivation rate (actin sites)
nref 6.9 reference Hill coefficient for cooperativity of actin sites

p[Ca2+]50refi 6.2 exponential reference half-maximal [Ca2+]i
Tref 100 kPa tension at resting SL
β0 1.45 tension-length dependency of T
β1 1.95 tension-length dependency of n
β2 0.31 tension-length dependency of [Ca2+]50b

It has to be emphasized that the reference tension of a cell, Tref = 100kPa in table 5.1
does not have any relevance as in this thesis it is determined by a parameter fitting. The
fitted value might be differently interpreted as a reference tension of the overall tissue and
therefore it is four to five orders of magnitude lower.

5.4.4.2 Niederer et al. The Niederer-Hunter-Smith model (NHS) can be found
in Niederer et al. [117]. It improves the HMT model by adding more details and by
fitting some of the parameters to human cardiac cells. One major difference between
the two models is the introduction of the parameter zmax that represents the maximum
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portion of available actin binding sites. It is incorporated because it is assumed that even
at full activation not all actin sites are available. The muscle tension then reads as

T = Tref(1 + β0(λ− 1))
z

zmax

. (5.66)

The differential equation describing the concentration of bound calcium again is eq. (5.63)
but z is now determined by

∂z

∂t
= α0

(
[Ca2+]b
[Ca2+]50b

)n

(1− z)− αr1z − αr2
znr

znr +Knr

Z

, (5.67)

thus binding as well as slow and fast unbinding processes of calcium to and from TnC are
separated. The algebraic equations to compute the maximum portion of available actin
sites and the half-maximal concentrations of bound and free inner calcium, respectively,
are

zmax =

α0([Ca2+]max
b )

n

([Ca2+]50
b )

n −K2

αr1 +K1 +
α0([Ca2+]max

b )
n

([Ca2+]50
b )

n

(5.68)

K1 =
αr2z

nr−1
p nrK

nr

Z
(
znr
p +Knr

Z

)2 (5.69)

K2 = αr2

znr
p

znr
p +Knr

Z

(

1−
nrK

nr

Z

znr
p +Knr

Z

)

(5.70)

[Ca2+]50b = [Ca2+]max
b

[Ca2+]50i

[Ca2+]50i +
ρ
ref
1

ρ0

(

1− 0.5(1+β0(λ−1))
γ

) (5.71)

[Ca2+]50i = [Ca2+]50refi (1 + β1(λ− 1)) . (5.72)

The original parameter values are given in table 5.2. Again, Tref will be re-
placed by an experimentally determined value. In Niederer and Smith [116] and
Weise and Panfilov [156] this model has been used to simulate human cardiac tis-
sue. Therein the myocyte relaxation rates αr1 = 0.01s−1 and αr2 = 0.025s−1 are modified
in order to achieve a faster relaxation. Also Tref = 125kPa and p[Ca2+]50refi = 6.5 have
been adopted.

The cross-bridge binding kinetics, i.e. the history-dependent relaxation that has been
proposed in the NHS model have been implemented as well but as this does not affect
the results too much, it is not detailed here but can be found in Niederer et al. [117].

5.4.5 Excitation-Contraction Coupling

The presented HMT and NHS models require the time course of free intra-cellular calcium
as input. In its original version the MNT model does not provide a differential equation
for [Ca2+]i thus the coupling differential equation (5.48) needs to be implemented.
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Table 5.2: Parameters of the original NHS model

Parameter Value Interpretation
ρ0 0.1 µM−1ms−1 binding rate TnC-Ca2+

ρ1 0.2 ms−1 reference unbinding rate TnC-Ca2+

γ 2 effect of tension on ρ1
[Ca2+]max

b 70 µM saturation [Ca2+]b
α0 0.008 ms−1 activation rate (actin sites)
αr1 0.002 ms−1 slow relaxation rate (actin sites)
αr2 0.00175 ms−1 fast relaxation rate (actin sites)
n 3 Hill coefficient for cooperativity of actin sites
KZ 0.15 fitted relaxation parameter (actin sites)
nr 3 fitted relaxation parameter (actin sites)
zp 0.85 point of Taylor expansion for z
β1 -4 SL dependency of [Ca2+]50i
[Ca2+]50refi 1.05 µM reference half-maximal [Ca2+]i
Tref 56.2 kPa tension at resting SL
β0 4.9 tension-length dependency of T

The combined HMT-MNT model has one major drawback. The ion current Isi comprises
multiple cellular processes like the sodium-calcium exchanger and the calcium induced
calcium release of the sarcoplasmic reticulum, the latter of which is known to deliver the
largest portion of calcium. Thus the calcium dynamics which are most important for the
development of contractile force are not represented in sufficient detail. Especially in the
modeling of drug action those dynamics need to be represented in more detail because
drugs act very specifically on certain gates and processes.

Thus in the second step the MNT model has been replaced by the TT model that fulfills
the named requirement. This model is then coupled to the NHS model. Coupling just
means combining all the differential equations of both models into one system.

The TT model is a model for ventricular cells that provides more detailed calcium dynam-
ics such that the differential equation (5.48) is replaced by multiple differential equations
describing the free inner calcium concentration, the calcium concentration in the sar-
coplasmic reticulum and in the sub-space. As it is a model of ventricular cells, this model
is not self-contractile and needs to be paced from outside by a prescribed stimulus. For
the simulation of autonomously beating tissue the Stewart model has been chosen as a
pacemaker, although it is a Purkinje fiber cell model, because it is one of the rare hu-
man models, and because it is as complex as the TT model. A similar complexity of
both models is necessary to allow for comparable drug application in both models. In the
simulations, the stimulus that is autonomously created by the Stewart model is directly
applied to the TT model for 1ms.

As an extension of this thesis the human sinoatrial models of Seemann et al. [137]
and Chandler et al. [23] are studied in Frotscher et al. [56] in terms of their
applicability to the herein investigated cardiac tissue construct. Therein they re-
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place the Stewart model. Both models are modified versions of the atrial model in
Courtemanche et al. [33].

5.5 Remarks on Viscoelasticity

Both, the ECM and the cells, in reality behave viscoelastically. The time-dependent behav-
ior of both has been investigated and modeled in Abney [1] and Zahalak et al. [161].
This chapter closes with some remarks on the viscoelastic behavior of cardiac tissues.

Regarding stress only, viscoelasticity means that under constant strain the tissue relaxes
with a certain time rate until it reaches a certain stress level. In the experiments, the
drugs are applied to the tissue at constant strain but at that time the strain was held
constant for a long time already thus there should be only neglectable viscoelastic effects.
If there would be some, one could observe it in the experiments. As this observation is
negative the viscoelastic effect of the ECM is disregarded in the model.

At the cellular level strong viscoelastic effects occur thus after a contraction it is not only
the decay in calcium concentration inside the cell that recovers the resting state but also
viscoelastic effects in the sliding filaments. Especially in cells without automaticity this
effect is quite strong. The half-relaxation time has been measured to be approximately
0.7s, which is in the range of physiological heart beats. Nevertheless this effect is dis-
regarded in the herein presented finite element model because firstly this would further
complicate this comprehensive model. Secondly, additional experiments would be required
for the determination of the viscoelastic parameters that could not be conducted during
the thesis.
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6 Experimental Setup

The main purposes of the developed model and its parts are the interpretation of mechan-
ical and electrophysiological experiments as well as, in a future perspective, their partial
replacement by validated models. The main focus lies on the simulation of cardiac tissues
and the respective drug treatment.

For the development of the whole model and its validation, experimental data are of
high importance. Experiments to determine the mechanical properties of cardiac cells,
like their passive stress-strain behavior, the orientation of fibers and the influence of
the stretch of sarcomeres to the active stress have been conducted in different works,
e.g. Yamada [159], Guccione et al. [65], Trzewik et al. [152], Trzewik [151],
Grosberg et al. [64], Nawroth et al. [111] and Agarwal et al. [2]. Also differ-
ent ways to determine the electrical properties of cardiac cells and tissues exist. In patch
clamp experiments one measures the action potential of the cellular membrane or the elec-
trical properties of a single ion channel. Using multi-electrode arrays (MEAs) one can mea-
sure the cell action potential and the speed of the electrical propagation through a tissue.
Recent approaches are heading to combine mechanical and electrical measurements using
the concept of stretchable MEAs like in Pakazad et al. [123], Pakazad et al. [124]
and Pakazad et al. [125].

In summary there is a vast amount of measurements of forces and stresses, membrane
potential, electrical propagation, drug action on ion channels, conductivity of single ion
channels, ion concentrations, etc. for different cell types of different species. Studying the
literature reveals that those data often are very difficult to compare due to the different
experimental setups, the biological and mechanical environment of the cells, the way
of cell cultivation, the age and the maturity of the cells. Thus literature data varies
significantly and should be verified by own experiments if possible. An important collection
of electrophysiological data of cardiac cells can be found in Niederer et al. [117].

The experimental setup which is explained in the next section delivers some mechanical
data that, in conjunction with electrophysiological data from the literature, serves as input
for the model.

6.1 CellDrum

Since its invention in 2001 there have been a number of publications concerning the ex-
perimental device called CellDrumTM , e.g. Linder et al. [93], Trzewik et al. [152]
and Trzewik [151]. It is basically an inflation test of a circular, 4µm thin silicone mem-
brane with a diameter of 1.6cm = 16000µm. On top of the membrane hiPSC-CM are
cultivated in a collagen monolayer of about 4µm thickness that is chemically attached.
The cells are produced by Axiogenesis AG in Cologne, Germany who is a project partner.
A regularly refreshed culture medium keeps the cells alive and as in the real heart the
tissue is autonomously beating. This results from the fact that in the Cor.4U® cell line
approximately 10% of the cells are nodal cells. The nodal cells have a repolarization phase
thus no external stimulus is needed for cell contraction. A total number of 2 · 105 cells is
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equally distributed in the tissue.

This composite material is clamped in a fixed ring like the one shown in fig. 6.1. The
CellDrumTM then can be placed into an inflation setup, named Tissue Tension Analyzer,
as depicted in fig. 6.2. The inflation setup generates a pressure and therefor inflates the
composite tissue. The corresponding deflection is measured using a laser triangulation
sensor in the membrane chamber resulting in a nonlinear pressure-deflection curve as
shown in the same figure.

Figure 6.1: Seven CellDrums
Figure 6.2: Schematic drawing of the infla-
tion experiment

Currently the investigations are limited to so-called 2D or monolayered tissue with an
approximate thickness of around 4µm although in general the experimental setup allows
for 3D tissue with a thickness of hundreds of microns. In a three-dimensional tissue the
cells can distribute better and they are less restricted in their shape which both leads to
a more realistic imitation of native cardiac tissue. Making the CellDrum available for 3D
tissues is ongoing research that focuses on a sufficiently strong attachment of the tissue
to the membrane.

Due to the circular shape of the tissue the myocytes do not align in a common preferred
direction as can be seen in fig. 6.3. That gives rise to the assumption that the tissue is
statistically isotropic and the global state is equibiaxial.

Figure 6.4 shows the deflection of the composite in time at constant pressure. In this
case the cells are beating with a frequency of approximately 1Hz and during contraction
they change the deflection of the composite by approximately 37µm. Depending on the
medication that is applied to the tissue, the amplitude will be different and the beating
frequency might change because the action potential of the cells differs from the normal
situation. A detailed discussion of the experimental and simulation results will follow in
sect. 8.

The total thickness of a monolayer composite is 8µm. The silicone membranes are accu-
rately produced with a thickness of 4µm. Before the cultivation each silicone membrane
is tested by putting 500µl on top of the membrane and checking whether its resulting
deflection is about 1.22mm. Additionally the average monolayer thickness can be deter-
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Figure 6.3: 1mm × 1mm microscopic
cutout of the tissue showing isotropy

Figure 6.4: Cyclic deflection due to contrac-
tion (incl. noise)

mined using a laser scanning microscope (LSM) and has been found to be 4µm for the
cell monolayers investigated here. The monolayer thickness can also be computed from
the tissue volume that is known. However, the monolayer thickness can only be an av-
erage value because of the heterogeneity of the tissue and differences in cell shape. In
Quintão Júnior et al. [127] 718 ventricular CM have been measured and the aver-
age cell length and width were approximately 160µm and 21.7µm, respectively. Given a
cross-sectional area of CM of about 191µm2 reported in Bersell et al. [10] the normal
cell height is approximately 8.8µm. These dimensions already show that the cell shape in
a native environment strongly differs from the one in a cardiac monolayer if therein the
cells have a height of approximately 4µm only. As the cells are considerably deformed in
the monolayer, its thickness is very heterogeneous.

The CellDrum is intended to be used for the determination of passive and active mechan-
ical stresses in cardiac and other tissue and for the investigation of drug treatment as
reported in Goßmann et al. [63].

6.2 Discussion and Critique

In the remainder of this section the experimental setup is discussed in order to clarify its
capabilities.

The CellDrum delivers purely mechanical information. Employing the herein described
finite element model it is possible to evaluate the experimental results on ion channel
level, i.e. computationally it is possible to determine the electrophysiology of the cells in
the tissue.

As the tissue layer is chemically attached to the silicone membrane this influences the
behavior of the cardiac monolayer in two ways. Firstly, the passive material properties of
the composite of course depend on the silicone membrane. In the case that the passive
stress of the cardiac tissue is of interest, one could perform inflation experiments with
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the membrane only and with a composite that is chemically prevented from beating,
respectively. An additive and volume-weighted split into passive tissue and membrane
stresses leads to the accurate passive stress of the cardiac tissue. Secondly, the cells form
adhesions not only to neighboring cells and to the ECM but also to the silicone membrane
which not only changes the cell morphology but also its contractile behavior. Currently
there is no way to quantify how the silicone membrane influences the tissue behavior.
Qualitatively one can say that cells form more and stronger adhesions to a stiff substrate
than to a soft substrate. Consequently the silicone substrate is constructed as soft and
thin as possible in order to have a little influence on the contractile behavior of the cells.
Having in mind that the next goal is the cultivation of 3D tissue on the silicone membranes
the importance of these limitations will decrease.

The general applicability to 3D tissue has already been mentioned. Investigating 3D tissue
is very important because it is known that cells behave differently in a monolayer and in
a 3D tissue. In fact, currently there are difficulties concerning a strong attachment of the
3D tissue, i.e. during experiments a 3D tissue would detach from the silicone membrane
due to a comparably weak fibronectin binding between the tissue and the membrane. The
investigation of 3D tissue in the CellDrum is part of an ongoing PhD thesis.

As it is apparent from fig. 6.3, the tissue is globally isotropic. The different regions of the
human heart show anisotropy and of course anisotropic tissue again behaves different from
an isotropic tissue equivalent. One major work could be to change the circular membrane
to a different shape such that an anisotropy can evolve.

Currently the Tissue Tension Analyzer is very expensive because a laser triangulation
sensor is utilized for the measurement of the membrane deflection. Within a Master thesis
(Bayer [8]) and a PhD thesis in progress (Bayer [7]) a new capacitive Tissue Tension
Analyzer is under construction. This approach decreases the costs for a single setup by a
factor of 100.

As will be seen in the results section, both the beating frequency and the beating force
greatly vary with respect to different cell cultures. The reasons for that are manifold and
interconnected as an enforced change in the beating frequency of a cardiac cell induces
a change in the beating force too because the free inner calcium concentration is altered
within some seconds after the frequency change. Therefore it is currently impossible to
even try to exactly reproduce the experimental data. Consequently, in the investigation
of the drug action one needs to focus on qualitative observations.
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7 Modeling of Cardiac Tissue Constructs

In general the models and model parts that have been described in chap. 5 are applicable
to 2D, 3D and plate problems. Due to the central experimental setup, the CellDrum, the
focus in this work lies on plate problems. The length-thickness ratio of the tissue composite
exceeds 2000 and therefore any attempt to model the CellDrum with 3D volume elements
would lead to huge computational costs because the need of an unreasonably large number
of finite elements.

Due to isotropy and symmetry of the problem only a quarter of the CellDrum is modeled.
Rotational symmetry is not used because noncircular membranes and anisotropic tissues
should not be excluded in later studies. Appropriate symmetry boundary conditions are
applied as depicted in fig. 7.1. The geometry is usually discretized with a relatively large
number of triangular plate elements. The fineness of the discretization is mainly due
to the extremely large deflection of the CellDrum which is in the range of 1.2–3mm.
The simulations are performed in a physically and geometrically nonlinear framework
inside the FE software Code Aster of the French power utility EDF. The computationally
demanding problem requires a large number of time steps in order to achieve convergence
in the Newton-Raphson algorithm.

Figure 7.1: Symmetry and clamping boundary conditions for the quarter CellDrum model

7.1 Choosing Appropriate Finite Elements

The choice of appropriate plate finite elements is problem dependent. They need to be
highly performant in the case of large displacements and to handle incompressible mate-
rial. Both possible choices, the smoothed plate finite element described in sect. 3.4 and
the Code Aster shell element called COQUE 3D (engl.: 3D shell), are capable of solving
this problem. The ES-FEM plate element needs a finer discretization as it uses 3-noded
triangular elements only, compared to the COQUE 3D element that employs a hybrid
approach. 7-noded triangular serendipity elements are used for the interpolation of the
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rotational degrees of freedom and 6-noded triangular Lagrange elements are used for the
translational degrees of freedom. The performance of those two elements obviously is quite
different as they use interpolation functions of different degree and as the COQUE 3D
elements employ a corotational framework. For the current problems, that are supposed
to often show below 5% or at most 10% strain, both elements produce nearly equal results.
The ES-FEM plate element is expected to perform better if the geometry becomes more
complex and if the strains become larger because it is comparably insensitive to element
distortion that is likely to occur in those cases.

7.2 Parameter Fitting

Currently we model the passive material response with the Neo-Hookean material. Its
strain energy function Ψ in terms of the principal stretches λ = (λ1, λ2, λ3)

T reads as

Ψ(λ1, λ2, λ3) = C10(λ
2
1 + λ2

2 + λ2
3 − 3) , (7.1)

with its material constant C10 that defines the slope of the nonlinear stress-strain curve.
Taking into account the active component of the constitutive law one can specialize eq.
(5.1) using eq. (5.61) to

S11 = 2C10 − p
1

λ2
1

+ Tref(1 + β0(λ1 − 1))
1

λ2
1

, (7.2)

at maximum activation z = 1. Of course eq. (5.61) of the HMT model can be replaced
by the NHS version, eq. (5.66). The main mechanical parameters in this model are the
Neo-Hookean material constant C10 and the tissue tension at rest Tref , both determined
by a parameter fitting. To this end we minimize

2C10 +
1

λ2
1

(1 + β0(λ1 − 1))Tref − p
1

λ2
1

− Se → Min , (7.3)

with respect to C10 and Tref with the stress Se obtained from the experiments. The
experimental stress values can be determined by simple geometric considerations that are
illustrated in fig. 7.2. It is obvious that for the circular isotropic membrane the stretch is
equibiaxial and

λ1 = λ2 = λ =
d2
d1

(7.4)

holds with d1 being the initial diameter of the membrane and d2 the arc length in the
deflected state. λ3 = λ−2 can be obtained from the incompressibility condition J = 1 that
has been introduced in eqs. (7.2) and (7.3). The arc length can be computed from the
center deflection u3 via

d2 =
arctan

(
2u3

d1

)

(4u2
3 + d21)

2u3
. (7.5)

An expression for the experimentally determined 2nd Piola-Kirchhoff stress can been de-
rived like for instance in Schomburg [136]. The balance of the pressure-induced vertical
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Figure 7.2: Illustration of the deflected CellDrum

force F P
3 and the vertical component F F

3 of the force that is acting on the clamping frame
as shown in fig. 7.2 reads as F P

3 = F F
3 . Replacing F P

3 by the pressure acting on the circu-
lar membrane and representing F F

3 by the membrane (experimental) stress Se acting on
the whole circumference of the frame and on the membrane thickness h, the balance of
vertical forces is given by

F P
3 = Pπ

(
d2
2

)2

= F F
3 = Seh · 2π

d2
2

dw

dr

∣
∣
∣
∣
r=

d2
2

. (7.6)

The derivative of the deflection w in radial direction is included in order to get the vertical
portion of F F . Given the approximation that the inflated membrane has a parabolic shape,
its deflection w can be represented by

w(r) = u3

(

1−
4r2

d22

)

. (7.7)

Carrying out the differentiation in eq. (7.6) leads to

Pπ

(
d2
2

)2

= Seh · 2π
d2
2
u3

4

d2
(7.8)

and reorganizing delivers the experimentally determined 2nd Piola-Kirchhoff stress

Se =
P
(
d2
2

)2

4hu3
. (7.9)

As usual in soft tissue biomechanics the poisson ratio ν is assumed to be close to 0.5.

With respect to the described parameter fitting the data for the membrane-tissue compos-
ite yields C10 = 0.0838284 and Tref = 0.058kPa. A parameter fitting for measurements of
the silicone membrane alone revealed C10 = 0.1840321. Thus, in the small strain regime
the membrane is approximately twice as stiff as the composite which proves that it in-
fluences the contractility of the cardiac cells as discussed in sect. 6.2. This influence even
grows when large strains occur which is not the case for the results presented here, though.
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Another limitation of the parameter fitting is the assumption of a homogeneous and
isotropic stretch although the local stretch of course depends on the tissue composition, a
local anisotropy and the activation state. In the fitting procedure these local differences are
disregarded and the average stretch λ is used instead. The assumption of global isotropy
has been verified in sect. 6.1.

Finally it should be mentioned that fig. 7.2 implies that the membrane inflates like a
freely supported plate and is shaped like a sphere segment. From fig. 7.1 it is apparent
that the membrane is actually fully clamped and consequently the model in eq. (7.9) is
only an approximation.

7.3 Constitutive Tensor

In order to compute the stiffness matrices the constitutive tensor is needed. The stress
can be split up into three parts and so can the constitutive tensor

C = Cdev + Cvol + Ca . (7.10)

The deviatoric and volumetric parts of the constitutive tensor need not be derived here as
they represent the passive response of the material that is not in the focus of this thesis.
Those derivations can be found in Holzapfel [72]. It is still necessary to derive Ca

Ca = 2
∂Sa

∂C
= 2

∂Sa

∂λ
⊗

∂λ

∂C
, (7.11)

the part of the constitutive tensor that arises from the cellular contraction. With

λ2 = a0 ·Ca0 = C · (a0 ⊗ a0) (7.12)

the derivative of the stretch with respect to the right Cauchy-Green tensor can be com-
puted as follows

∂λ

∂C
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1

2
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−
1

2
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2
(a0 ·Ca0)

−
1

2
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=
1

2
λ−1∂C
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=
1

2
λ−1(a0 ⊗ a0) . (7.13)

In terms of the herein investigated circular membrane one can ideally assume that λ1 =
λ2 = λ and λ3 = 1. Using the spectral decomposition of C,

C =

3∑

i=1

λ2
iai ⊗ ai, (7.14)
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leads to

C = λ2(a1 ⊗ a1 + a2 ⊗ a2) = λ2R (7.15)

C−1 = λ−2RT = λ−2R. (7.16)

with R orthogonal and symmetric. The derivative of the active part of the 2nd Piola-
Kirchhoff stress tensor with respect to the stretch then reads as

∂Sa

∂λ
=

∂(T (t, λ)λ−2R)

∂λ

=

(
∂T (t, λ)

∂λ
λ−2 − 2λ−3T (t, λ)

)

R

=
(
Trefβ0zλ

−2 − 2λ−3Tref(1 + β0(λ− 1))z
)
R

= Trefz
(
β0λ

−2 − 2λ−3 − 2λ−2β0 + 2λ−3β0

)
R

= Trefzλ
−2(2λ−1(β0 − 1)− β0)R . (7.17)

In the given isotropic application, R = I and one arrives at

Ca = 2
∂Sa

∂λ
⊗

∂λ

∂C
(7.18)

= λ−3Trefz(2λ
−1(β0 − 1)− β0)I ⊗ I . (7.19)

7.4 Model Summary

In order to facilitate the understanding of this multi-component model, fig. 7.3 depicts the
basic steps. Inflation experiments and drug testing are performed in the Lab of Medical
and Molecular Biology at Aachen University of Applied Sciences. These data can be used
to construct the model and to fit the mechanical model parameters.

The two systems of ordinary differential equations are solved at each time step at the level
of the constitutive equations. The models of cellular processes are parameterized solely
using electrophysiological literature data. The nodal model provides the stimulus for the
ventricular model, thereby being the pacemaker.
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Figure 7.3: Model summary
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8 Implementation, Validation and Numerical Results

8.1 Implementations

8.1.1 Data Acquisition and Processing

The data acquisition from the CellDrum is implemented in LabView and further analytics
of the results is made through MS Excel or its non-commercial equivalent Libre Office
Calc. The parameter fittings have been implemented in the software Scilab and statistical
analysis of the pressure-deflection curves has been implemented in the statistics software
R.

8.1.2 Finite Element Framework

As already indicated, the FE software in use is Code Aster which is developed by the
French utility EDF. It is an open source software whose core is written in FORTRAN77
until version 11.x. Most of the implementations have been done in Code Aster version
10.6 and have been successfully tested in version 11.4 too. Starting from version 12.0 the
core of Code Aster is written in FORTRAN90 and the material subroutines written in
this thesis have been successfully converted to FORTRAN90 and tested in Code Aster
version 12.1. The administrative and configuration files as well as the user interfaces of
Code Aster are written in Python.

The pre- and post-processor that has been employed is called SALOME and also comes
from EDF. Geometry creation and modification, meshing and graphical analysis of the
results can all be done in this software.

In order to prepare a simulation using Code Aster one needs to define a so-called command
file. In this Python interpreted command file the mesh can be read in and modified, the
material definitions are made, the boundary conditions are established, the solver can be
chosen and configured and the results can be processed to prepare post-processing.

8.1.2.1 ES-FEM For the implementation of the plate smoothed FEM the so-
called discrete Kirchhoff triangular (DKT) element of Code Aster has been modified. The
implementation of the DKT element provides all the structures that are required in order
to be able to implement the plate ES-FE. The DKT element is a three-noded triangular
plate element with three translational and three rotational degrees of freedom at each
node. The only change to the element definition that has to be made is an increase of the
bandwidth of the stiffness matrix because edge-based smoothing domains generally span
over two elements. The computation of the strain-displacement matrix and the stiffness
matrix is made on element level by replacing the standard computation of the DKT
element.

Besides some work-around implementations to fit into the complex framework of
Code Aster the whole implementational work is limited to the element subroutine. It is
ongoing work to properly integrate the implementation into the Code Aster distribution
making it available to the community.
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8.1.2.2 Material Model The passive-active model for cardiac tissue is imple-
mented on the level of the constitutive equation. The standard hyper-elastic material
model is used and the active part is additionally implemented. Within those subroutines
the systems of ordinary differential equations are implemented that describe the cellular
electrophysiology of different cell types. Depending on the given problem the ventricular
cell model can either be solved on each Gaussian point or only once. The nodal cell model
is always solved only once per time step as it has no influence to the beating force but
only serves as a pacemaker for the ventricular cells.

Some configuration files have been written in order to let the Code Aster distribution
know the material model.

The nonlinear equation systems are solved using a Newton-Raphson algorithm with a
relative error of erel = 10−6 at discrete times ti. At each Gaussian point the stiff system
of ODEs is solved with an adaptive time stepping scheme in the way that the Newton-
Raphson time interval [ti, ti+1] is further divided into m time steps because the electrical
processes are much faster than the mechanical response. A fourth order singly-diagonal
implicit Runge-Kutta solver with adaptive time stepping (Hairer and Wanner [67])
which has been shown to be unconditionally A-stable is used for the solution of the system
of ODEs.

8.2 Validation of S-FEM Implementation

Firstly the ES-FEM implementation for plate problems is validated for some aca-
demic plane stress and plain strain problems that already have been presented in
Frotscher and Staat [50]. They show the abilities of the ES-FEM in general and
the application to geometrically and materially nonlinear plates. Secondly the ES-FEM
implementation is applied to the CellDrum problem and performs well despite the extreme
slenderness of the membrane.

8.2.1 Square Plate with Circular Hole

The first problem to be examined is a linear plane strain problem shown in fig. 8.1. It
illustrates a quarter of a square plate of size 10m× 10m with a circular hole of 1m radius
and the applied symmetry and traction boundary conditions. Its thickness is t = 1m. The
material has been chosen with E = 1000N/m2 and ν = 0.3. The problem domain has
been discretized with three-noded triangular elements as can be seen in fig. 8.2.

Figures 8.3 and 8.4 show the displacements u1 and u2 on the symmetry lines x2 = 0 and
x1 = 0, respectively. The ES-FEM results achieved with linear triangular elements (ES-
FEM-T3) are compared with the results achieved with standard FEM using triangular
elements (FEM-T3, i.e. constant strain) and quadrilateral elements (FEM-Q4). The latter
serves as the reference solution. It is obvious that the ES-FEM-T3 solution is nearly equal
to the FEM-Q4 solution whereas FEM-T3 shows deficiencies. Especially with x1 → 1 and
x2 → 1, i.e. next to the hole, the FEM-T3 solution differs significantly from the two other
solutions.
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Figure 8.1: Geometry and boundary condi-
tions of plate with hole

Figure 8.2: Discretization with triangular el-
ements

Figure 8.3: Displacement u1 of the bottom
symmetry line of the plate with a hole

Figure 8.4: Displacement u2 of the left sym-
metry line of the plate with a hole

Here, the T3 and Q4 meshes were built on a similar number and a similar set of nodes.
It can be observed that if both meshes are built on the same set of nodes the ES-FEM-
T3 solution is as good as the FEM-Q4 solution. To use the same set of nodes is a very
difficult task in practical applications but the more general observation that ES-FEM-T3
and FEM-Q4 perform similarly for meshes of similar complexity is remarkable. Especially
in biomechanics the investigated structures often have a quite complex and irregular
geometry thus an automatic discretization with quadrilaterals usually fails. Being able to
use a method that allows the usage of T3 elements (or T4 for 3D problems) without loss
of accuracy is very beneficial.

8.2.2 L-shaped 2D Solid

Now, neo-Hookean material is applied to the plane stress problem shown in fig. 8.5 using
C10 = 2MPa and ν = 0.4999999 to represent soft incompressible material. Figure 8.6
shows the very good accuracy of ES-FEM-T3. Comparing the strains in tension direction
at the traction line, i.e. at x1 = −25mm, the ES-FEM-T3 results are nearly equal to the
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FEM-Q4 results whereas FEM-T3 again shows deficiencies. Especially in the vicinity of
(x1, x2) = (−25, 50)mm FEM-T3 becomes inaccurate.

Figure 8.5: L-Shaped solid with boundary
conditions

Figure 8.6: Strain in 1-direction at traction
line

In table 8.1 the tangential strains on the horizontal middle line of the solid, i.e. at x2 = 0,
are compared. Having in mind that a singularity appears at the reentrant corner at x1 =
25, one can observe that the normal strains in direction x1 produced by ES-FEM-T3 are
closer to those produced by FEM-Q4 than those produced by FEM-T3. This is a result
of the strain smoothing and shows the main benefit of ES-FEM.

Table 8.1: ε11 at horizontal middle line

x1 FEM-T3 FEM-Q4 ES-FEM-T3
-25 0.07974 0.07716 0.07838
-20 0.07994 0.0803 0.07925
-15 0.08729 0.08789 0.08763
-10 0.09705 0.09795 0.09772
-5 0.10899 0.11023 0.11018
0 0.12289 0.12459 0.12478
5 0.13854 0.14095 0.14157
10 0.15569 0.15932 0.16051
15 0.17445 0.18097 0.18268
20 0.20137 0.21098 0.20469
25 0.26564 0.38176 0.28432

Those first two examples of course are academic test cases but they already show that
ES-FEM-T3 is superior to FEM-T3 and that the results are more accurate. One more very
important property of S-FEM for the application in biomechanics is their insensitivity to
element distortion that is illustrated in the following section.



Implementation, Validation and Numerical Results 75

Figure 8.7: Cantilever beam with boundary
conditions (drawing is not true to scale)

Figure 8.8: Displacement u2 of the beam line
discretized with distorted T3 elements

8.2.3 Cantilever Beam

Within this thesis the applications mainly are thin plates and shells consisting of soft
biological material that possibly undergo large deformations. These problems lead to
largely distorted meshes that are difficult to handle using standard FEM because shear
locking occurs. To show the strong abilities of ES-FEM it is applied to the long cantilever
beam shown in fig. 8.7 (Liu et al. [97]). The cantilever beam has a length-thickness
ratio of 40 and is loaded with P = −1N such that the parabolic shear distribution

σ12 = −
P

I

(
D2

4
− x2

1

)

(8.1)

is achieved at the free end with the moment of inertia

I =
D3

12
. (8.2)

It is discretized with distorted triangular elements with an aspect ratio of 6.11. As one can
see in fig. 8.8, FEM-T3 has a very poor performance whereas ES-FEM-T3 is very close
to the exact solution. This demonstrates that ES-FEM-T3 naturally overcomes the shear
locking problem. Its ability to compute problems discretized with a largely distorted mesh
with high accuracy is especially very beneficial when it comes to large deformation. These
problems often are solved incorporating remeshing procedures that are not necessary with
ES-FEM. The locking is reduced due to the fact that the matrix bandwidth is increased
by employing smoothing domains and thus the strain approximation is better. Element
distortion has a minor influence in S-FEM in general because no derivatives occur in
the finite element formulation for the computation of the strain-displacement matrix and
because the isoparametric mapping can be avoided. The Gaussian integration is performed
on the boundary of each smoothing domain in the physical coordinate system.
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Figure 8.9: 4µm thick membrane seeded with 100µm thick tissue

8.3 Simulation of Cardiac Monolayers

The CellDrum setup described in sect. 6 up to now has been used for the investigation
of cardiac monolayers that have a thickness of about 4µm. As the current plate ES-FEM
implementation does not incorporate a handling of large rotations, like for instance the
corotational approach, it converges very slowly when the deflection of the membrane be-
comes very large. Thus for the current application we usually employ the Code Aster shell
element named COQUE 3D that has been mentioned in sect. 7.1 already. One drawback of
those elements are stress oscillations close to regions where Dirichlet boundary conditions
are applied. Those oscillations do not appear for the ES-FEM-T3 elements.

As already indicated, both elements produce similar results and this is shown in fig. 8.9.
For large rotations the ES-FEM-T3 element shows a much worse convergence behaviour
concerning the Newton iterations (although it always converges). ES-FEM-T3 is the el-
ement of choice for so-called three-dimensional tissue layers with a thickness of about
100µm. For 3D tissue layers the CellDrum problem is still a plate problem with a diame-
ter to thickness ratio of 160.

Based on the implementations that have been done in this thesis, materially and geo-
metrically nonlinear FS-FEM-T4 elements have been implemented in another PhD thesis
(Duong [42]). As FS-FEM is the 3D equivalent of ES-FEM those tetrahedral elements
have very similar properties. Those elements can be employed when - apart from the
investigation of the CellDrum experiments - 3D tissue simulations need to be performed.

Due to isotropy and symmetry the model only represents a quarter of the CellDrum
and the applied appropriate boundary conditions are depicted in fig. 7.1. The fineness of
the discretization mainly depends on the slenderness and the expected deflection of the
CellDrum. It has a diameter of 16mm and in the case of a cell monolayer it has a thickness
of only 0.008mm. Therefore we have to deal with radius-thickness ratios of about 1000 and
a maximum deflection of the membrane in the range of 2.5–3mm. This computationally
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demanding situation requires a large number of time steps. The maximum pressure is
150Pa and it is applied with an initial step size of 1.5 · 10−4Pa that adaptively increases
to a step size of 2.7Pa that is then constant in the range of 15Pa to 150Pa.

All experimental data that is shown in this section has been measured in the course of a
PhD thesis (Goßmann [62]) and serves as a unique data set for model validation.

8.3.1 Simulation of Pressure-deflection Curves

Firstly the model is validated by simulating the experimental pressure-deflection curves.
The contraction of the cells produces an active stiffness contribution that reduces the
deflection of the membrane as observed in fig. 6.4. This change in deflection ∆uc

3 due to
contraction is in the range of 10–40µm and therefore is much smaller than the usual deflec-
tions of 1–2mm at which the membrane is investigated. Consequently in those simulations
the electrophysiological cell processes are not computed but maximum activation of the
cells is assumed (i.e. z = 1). Figure 8.10 shows seven experimental pressure-deflection
curves of 4µm thick silicone membranes with a 4µm thick monolayer of cultivated car-
diac tissue. Those curves are employed for the parameter fitting and with the resulting
parameters the shown pressure-deflection curve can be simulated that perfectly fits the
experimental results.

Figure 8.10: Comparison of seven experimental and simulation (continuous line with mark-
ers) results

The accurate simulation of the passive reaction of the tissue strongly depends on a good
estimation of C10 and parameter fittings should be repeated regularly. This is especially
true if the amount of fibroblasts, the ratio of fibroblasts to CM, the thickness of the
cardiac tissue or of the silicone membrane change. Not only by construction but also
due to remodeling processes in the lifetime of an engineered cardiac tissue the ratio of
fibroblasts to CM changes. Consequently, besides drug testing, it is necessary to regularly
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repeat the plain inflation experiments in order to be able to properly parameterize the
models. On the other hand the computational model can be improved by incorporating
the amount of fibroblasts directly as discussed in sect. 9.2.5.

8.3.2 Simulation of Cell Contraction

To simulate single or multiple contractions one can start the contraction process at a cer-
tain point of the simulation result in fig. 8.10. This starting point can be chosen depending
on the experimental results as follows.

From the experiments one is able to extract the deflection of the membrane when the cells
are inactivated. For clarity fig. 8.11 shows an experimental result that has a deflection
at rest of 1.23mm and compares it to a simulation result. Even with an equal pressure a
different membrane will have a different deflection at rest in the order of approximately
0.05mm because it is not possible to accurately reproduce the biological tissues. To provide
a good accuracy of the simulations one can select a time step of the pressure-deflection
simulation in sect. 8.3.1 at which the membrane has a deflection that is close to the one
shown in the experiments. If that does not provide sufficient accuracy one can simulate
up to a pressure such that the proper deflection at rest is achieved in the simulation. It
can be seen in fig. 8.10 that it is generally possible to simulate any membrane deflection
in the experimental range.

Starting from this resting state when the cells are inactive. One can now simulate one or
multiple contractions using all parts of the model, i.e. computing the electrophysiological
processes on cell level and use the resulting free inner calcium concentration as an input
to the mechanical part of the constitutive model at time ti. The time steps ∆ti = ti+1− ti
need to be chosen in the way so that the mechanical response of the model is sufficiently
accurate. The electrophysiological processes are much faster and therefore are computed
in adaptively subdivided time steps.

Figure 8.11 compares one contraction of the CellDrum with two simulation results. It
is obvious that the change in deflection is nearly the same in all the cases. Thus the
contractility of the cells can be captured very well by the model.

One also observes that the duration of the deflection, i.e. the contraction time is much
shorter in the simulation where the MNT Purkinje fiber model has been used in conjunc-
tion with the HMT model (0.2s vs. 0.6s). This effect leads to the assumption that the
mechanical response of the applied model is too fast. Possible reasons have been identified
that explain the discrepancy:

� Depending on the specific cell type the speed of development of free intra-cellular
calcium concentration is different. As the literature data provides a wide range of
results the parameter set of the system of ODEs might have to be adjusted according
to the respective cell type. Currently there are a lot of uncertainties concerning the
actual cell types that are represented in the monolayer, their degree of maturity, the
cell environment and literature data is often very specific and does not fully fit.

� The time rate of muscle activation ż (cf. eq. (5.67)) depends on the free intra-
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cellular calcium concentration. Again, it might be the rate constants that need to
be adjusted to the cell type.

� It has been mentioned in Ruiz-Baier et al. [132] that today’s models directly
use cellular models on tissue level without properly scaling or averaging the cellular
contributions to the passive or active stress in the tissue with respect to cell volume
portion or cell distribution. Necessarily, the mechanical reaction of the tissue on the
electrophysiological processes is much more direct than it would be with a so-called
homogenization that is discussed in sect. 9.2.7.

� The current model assumes that all the cells in the monolayer contract syn-
chronously. In reality the action potential is transmitted through the monolayer
via gap junctions that connect neighboring cells to each other. This again would
lead to a slower mechanical response.

Figure 8.11: Comparison of MNT-HMT
(blue continuous line with square markers)
and TT-NHS (yellow continuous line with
triangular markers) simulations with exper-
imental results (red dashed line) with re-
spect to ∆uc

3

Figure 8.12: Comparison of simulations
paced with a current density of 52pA · pF−1

at 1Hz (blue continuous line with square
markers) and 0.7Hz (red continuous line
with diamond markers) with respect to ∆uc

3

The second simulation curve has been computed using the TT human ventricular model
in conjunction with the NHS excitation-contraction coupling. It can clearly be seen that
the duration of the contraction, i.e. the shape of the curve agrees much better with the
experimental findings. This is more due to the changes made in the NHS model with
respect to the HMT model as explained in sect. 5.4.4.2 rather than due to the different
electrophysiological model that is employed. Especially the splitting of the tropomyosin
relaxation into slow and fast terms is supposed to drive those differences.

It has to be mentioned that there even seems to be a quantitative agreement between the
curves in fig. 8.11. The question that arises is whether this is generally true and it can only
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be answered partially by this thesis as the amount of available experimental data is quite
low. However, the following results indicate that a quantitative agreement is achieved. In
the following section some experimental results are shown for drug action on the CellDrum
tissue and in the experimental results one recognizes strong differences in the beating
frequencies of the control groups. It has already been mentioned that a so-called staircase
effect exists that stands for positive relation between beating frequency and contractile
force, i.e. if the beating frequency increases, the contractile force increases too and vice
versa. In fig. 8.12 the TT model has been paced externally at two different frequencies and
after a 60s pre-equilibration phase the contractile force is considerably different between
the two simulations. The pre-equilibration phase is necessary because the model needs
some time to adjust to the new beating frequency just like real cells. Accounting for the
staircase effect indeed gives a fairly good quantitative agreement between the experimental
and simulated change in deflection as can be seen from table 8.2.

Table 8.2: Comparison of experimental (m = 3) and simulated maximum change in de-
flection at different beating frequencies in mm

f = 0.5Hz f = 1.0Hz
Experiment 0.00913 0.02735
Simulation 0.00462 0.02764

Nevertheless, respecting the given data, it currently is not possible to reliably compare
effects quantitatively. Therefore the following results are partially normalized to facilitate
the interpretation of the results. However, the results are not normalized in some diagrams
if quantitative differences are important to be shown.

8.3.3 Drug Action

This section shows simulation results for the drugs named in sect. 4.4 and discusses them
by comparison to CellDrum results and to findings from literature. Most of the results
have already been published in Frotscher et al. [53; 54].

The results need to be regarded with respect to the fact that, although a lot of electro-
physiological experiments have been performed all over the world for measuring the action
potential of single cells, the action potential conduction through cell clusters, individual
currents as well as intra- and extracellular ion concentrations, the gathered information
varies. The experimental data strongly depend on the cell type, their maturity, the pro-
duction batch, the investigated species, the experimental setup, the environment of the
cells and many more. Therefore the data differ in the reported beating force, cell stresses,
beating frequency, action potential shifts and IC50 values. The data are selected such
that it fits the CellDrum experimental setup the most but often even this very care-
fully selected information varies quite much. In some cases reliable data could not be
found for human induced pluripotent stem cells. Thus data from different cells need to
be taken. Even under relatively well-controlled and well-known conditions the mechanical
CellDrum results themselves vary for the named reasons. Currently there are only few se-
tups that measure mechanical parameters like the CellDrum, e.g. Grosberg et al. [64],
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Nawroth et al. [111], Agarwal et al. [2] and Pakazad et al. [125] but so far
they have not been regarded for comparison because of the aforementioned uncertain-
ties.

In the following all the results are collected comparing experimental and simulation re-
sults of drug action on cardiac monolayers. If not stated otherwise, the inotropic and
chronotropic drug effects have been simulated with the TT-NHS model and the Stewart
model, respectively. For each respective drug the employed data for modeling the drug
action, as described in sect. 5.4.2, are summarized in a table including the source where
it has been obtained from.

8.3.3.1 Lidocaine Figures 8.13 and 8.14 show the simulated influence of Lido-
caine to the change in deflection of the membrane and to the beating frequency of the
cells at different concentrations and corresponding experimental results obtained from
CellDrum experiments. According to table 8.3 an IC50 value of 50µM is applied to both,
the activation gate of the fast sodium channel and the activation gate of the pacemaker
current.

Table 8.3: IC50 values for Lidocaine

IC50 Ion channel Species and cell type Reference
11.2µM Nav1.5 HiPSc-derived cardiomyocytes Sirenko et al. [140]
70µM Nav1.5 HiPSc-derived cardiomyocytes Terasawa [148]
20µM Sodium Mouse eSc-derived cardiomyocytes Stoelzle et al. [144]
61µM Sodium Freshly isolated rat cardiac myocytes Hill et al. [70]
20–70µM HCN Xenopus laevis Oocytes Meng et al. [105]

Figure 8.13: Lidocaine affecting contractibil-
ity in experiment (dashed) and simulation
(continuous); sample size m = 3

Figure 8.14: Lidocaine affecting beating fre-
quency in experiment (dashed) and simula-
tion (continuous); sample size m = 3

Clearly both, the simulated dose-dependent change in beating force and in heart rate, are
in good agreement with the experimental results. Within the range of 0–100µM of applied
Lidocaine, the beating force seems to be linearly dose-dependent. The model even captures
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the nonlinear slope of the experimental curve for the influence of Lidocaine on the beating
frequency shown in fig. 8.14. Although, qualitatively, the simulation results show a good
agreement with the experiments, the untreated cells (0µM of Lidocaine) show half of the
change in deflection of the membrane and half of the beating frequency the cells have
had in standard pressure-deflection experiments. The multiply addressed force-frequency
relationship (FFR) or staircase effect leads to the expectation that if the model beating
frequency is reduced to the experimental beating frequency, the beating force and thus the
change in deflection reduces as well. The influence of the FFR has been investigated within
a master thesis (Koch [84]) and the results are published in Frotscher et al. [56].
Computational results on the FFR can be found in there and are repeated here only
exemplarily. The FFR is still under investigation because the mechanism how to adopt
the model remains unclear. Unfortunately, intentionally prescribing or altering the beating
frequency of a cellular model that has been parameterized for a different frequency (here:
1Hz) does not reflect the unknown underlying differences in the cell electrophysiology.
In the master thesis we showed that an external pacing which results in an adjustment
of the change in deflection according to the staircase effect, potentially alters the model
response to drug treatment. In fig. 8.15 one can observe a saturation effect for high
Lidocaine concentrations if the model is externally paced at the experimentally determined
frequencies given in fig. 8.14. The saturation results from the fact that the observed beating
frequency of the model is approximately halved by the external pacemaking. Consequently,
the negative effect on the beating force is huge and the effect of a treatment with Lidocaine
will clearly be different, even qualitatively.

Figure 8.15: Effect of external pacing on model response to Lidocaine application. Beating
frequencies taken from fig. 8.14 (triangular markers); the other curves are the normalized
versions of those in fig. 8.13

As a result we gain the understanding that the differences in the experimentally observable
beating frequencies need to be accounted for in a more sophisticated way. Most probably
they result from differences in ion channel expression depending on for instance maturity,
cell production batch or donor. Modeling such influences is very challenging but can
be approached with increasing amount, level of detail and quality of experimental data.
Related recent approaches and ideas are discussed in the final chapter of this work.
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8.3.3.2 Verapamil To appropriately model Verapamil we take IC50 = 40µM to
modify the activation gate of the fast inward sodium channel, according to table 8.4.
The secondary inward channel of the model is, amongst others, responsible for calcium
influx during the plateau phase. Its activation is modified by IC50 = 0.1µM . Lastly the
activation of the delayed rectifier potassium current needs to be modified by IC50 =
0.14µM .

The simulation and experimental results are shown in figs. 8.16 and 8.17. The

Table 8.4: IC50 values for Verapamil

IC50 Ion channel Species and cell type Reference
40µM Nav1.5 HiPSC derived cardiomyocytes Kramer et al. [87]
0.14µM hERG HiPSC derived cardiomyocytes Kramer et al. [87]
0.19µM hERG Human embryonic kidney cells Liang et al. [92]
0.1µM Cav1.2 HiPSC derived cardiomyocytes Kramer et al. [87]
0.25µM Cav1.2 Wistar rat isolated ventr. myoc. Zahradńıková et al. [162]

Figure 8.16: Verapamil affecting con-
tractibility in experiment (dashed) and sim-
ulation (continuous); sample size m = 3

Figure 8.17: Verapamil affecting beating fre-
quency in experiment (dashed) and simula-
tion (continuous); sample size m = 3

experimental results show concentration-dependent negative inotropic and positive
chronotropic effects. The negative inotropic effect of Verapamil confirms recent find-
ings Mehta et al. [104], Rosen [130], Yokoo et al. [160] and the increase in con-
tractibility for very low concentrations of Verapamil has also been observed in
Mehta et al. [104] leading to the suspicion that Verapamil affects further ion channels
or that non-investigated actions take place. Despite this effect the model appropriately
reproduces the negative inotropic effect.

Comparing fig. 8.18 with fig. 8.16 reveals that a replacement of the MNT model with
the TT model directly yields a much different model response to Verapamil. From the
experimental data shown in both figures it is merely impossible to tell which of the two
is more correct, especially in conjunction with the mentioned uncertainties.
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Figure 8.18: Different effect of Verapamil when using the TT-NHS model (square markers)

The positive chronotropic effect of Verapamil, i.e. the increase in beating frequency, ob-
tained in CellDrum experiments (monolayer), is contradictory to recent findings on stem-
cell derived cardiomyocyte clusters (hiPSC-EBs and hESC-EBs), cf.Yokoo et al. [160],
Mehta et al. [104] and Sirenko et al. [140]. The simulation shows a negative
chronotropic effect that qualitatively fits the experimental findings for monolayers in the
literature (Guo et al. [66] and Harris et al. [68]), although the increasing nonlin-
earity for Verapamil concentrations above 180 nM cannot be verified due to a lack of
data.

8.3.3.3 Veratridine Veratridine is entirely accounted for effecting fast sodium
channels and its half maximal inhibitory concentration for modeling the inhibition of
the fast sodium inactivation is IC50 = 0.4µM , according to table 8.5. The increased
calcium influx due to a reversal mode of the sodium-calcium-exchanger is considered
by the inhibition of the opening transition rate of the slow inward inactivation gate by
IC50 = 1.2µM .

Table 8.5: IC50 values for Veratridine

IC50 Ion channel Species and cell type Reference
7.7µM Sodium Human embryonic kidney cells Felix et al. [47]
0.4µM Sodium Guinea pig purkinje fibers Honerjäger and Reiter [74]

The simulations for Veratridine show dose-dependent positive inotropic and negative
chronotropic effects, as shown in figs. 8.19 and 8.20, respectively. The simulation results
fit the expectations that arise from the description of the drug effects in sect. 4.4.3: an
increased calcium concentration leads to a higher beating force and the prolonged action
potential reduces the beating frequency.

In the simulation result in fig. 8.19 there seems to be some saturation effect as the change
in deflection stays nearly constant for Veratridine concentrations larger than 0.5µM. This
observation is misleading as in fact it can be explained by inappropriate parametrizations
of eq. (5.48) and the Hunter model. The point of reference for the maximum inner calcium
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Figure 8.19: Veratridine affecting con-
tractibility in experiment (dashed) and sim-
ulation (continuous); sample size m = 3

Figure 8.20: Veratridine affecting beating
frequency in experiment (dashed) and sim-
ulation (continuous); sample size m = 3

concentration is set to 1µM although more than 10µM can be reached. Thus the maximum
activation is already reached for comparably low Veratridine concentrations.

Figure 8.21: Disappearance of the inotropic saturation effect of Veratridine when using
the TT-NHS model (square markers)

In fig. 8.21 this is proven by using the TT-NHS instead of the HMT-MNT model. Unlike
the latter one, the former models ion dynamics in detail and is thus more appropriate.
As a result the saturation effect disappears and the drug response in the model is quali-
tatively comparable to the experimental one. As a ventricular model, the TT-NHS model
is externally paced at 1Hz by 52pA · pF−1.

The experimentally determined negative chronotropic effect can be simulated as shown in
figure 8.20. Here the major reason for the different slopes is supposed to be an inaccurate
IC50 value.

8.3.3.4 Bay K8644 Modeling the effects of Bay K8644 differs from the other
drugs because Bay K8644 does not block but stimulates activation and inactivation of
the L-type calcium channels. Therefore potential shifts are introduced into the activation
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(d-gate) and inactivation (f-gate) gate models as explained in sect. 5.4.2.2. Both, the
half-maximal (in-)activation voltages V50 and the slope of (in-)activation S are changed
according to experimental results found in Sanguinetti [135]. Therein the change of
test potentials according to drug actions has been investigated and some data points of
the curves have been used for a parameter fitting. Table 8.6 summarizes how the two
parameters should be changed with respect to the drug concentration.

Table 8.6: ∆V x
50 and ∆Sx for channel activation (x = a) and inactivation (x = i) through

Bay K8644

Bay K8644 concentration ∆V a
50 ∆Sa ∆V i

50 ∆Si

30nM -6.60mV 0.00mV -0.56mV 0.62mV
60nM -8.44mV 0.00mV -1.13mV 1.22mV
90nM -9.51mV 0.00mV -1.70mV 1.82mV
120nM -10.27mV 0.00mV -2.27mV 2.42mV
150nM -10.86mV 0.00mV -2.84mV 3.02mV

Figure 8.22 apparently is very similar to fig. 8.19 although here we can hardly see an
increase in the deflection. Zooming in, one can observe a small inotropic effect and a
saturation just like in the case of Veratridine, though.

Figure 8.22: Bay K8644 affecting con-
tractibility in experiment (dashed) and sim-
ulation (continuous); sample size m = 5

Figure 8.23: Bay K8644 affecting beating
frequency in experiment; sample size m = 5

Again, the rudimentary calcium dynamics in the HMT-MNT model have been identified to
be responsible for this behavior. Performing simulations with the TT-NHS model improves
the results a lot and relaxes the saturation. This is shown in fig. 8.24.

Although the literature does not report about a significant influence of Bay K8644 on the
beating frequency, experimental evidence is shown in fig. 8.23 that one exists in the case
of the herein investigated hiPSc-derived cardiomyocytes. Thus this effect might be due
to an immaturity of the cells. Similar differences between hiPSc-derived cardiomyocytes
of heterogeneous origin and native cardiomyocytes have been found in Ji et al. [80]
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Figure 8.24: Disappearance of the inotropic saturation effect of Bay K8644 when using
the TT-NHS model (square markers)

although beating frequency effects are not mentioned in there. Due to this disagreement
and the resulting lack of supporting literature data, no simulations have been performed
on the chronotropic effect of Bay K8644.

8.4 Discussion

In the previous section the results have been discussed already from a qualitative point
of view. In summary these are:

� In the figures 8.13 and 8.14 one could clearly see that the presented model is able
to qualitatively capture the negative inotropic and negative chronotropic effects of
Lidocaine on hiPSC-CM.

� The same holds for the positive inotropic and negative chronotropic effects of Ve-
ratridine (cf. figures 8.21 and 8.20) although the inotropic effect initially was not
captured due to a saturation in the Hunter excitation-contraction coupling. Re-
placing the Hunter model by the NHS model and using the TT model with more
sophisticated ion dynamics instead of a combination of the MNT and Beeler-Reuter
models solved this.

� From the figures 8.16 and 8.18 one could conclude that the negative inotropic effect
of Verapamil is captured although the experimental curve is far from being linear
like the simulation result. This might be due to the low sample size (m = 3) or due
to unknown or unexplained effects.

� The positive inotropic effect of Bay K8644 could be simulated using the TT-NHS
model as well (cf. fig. 8.24) including a decay in deflection for drug concentrations
above 90nM .

� The chronotropic effects of neither Verapamil nor Bay K8644 could not be cap-
tured. In the case of Verapamil the literature data on single cells suggest a negative
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chronotropic effect whereas in monolayers the effect is positive. Of course the single
cell MNT and TT models are not able to capture this effect without major modifi-
cation (cf. fig 8.17). In the case of Bay K8644 no chronotropic effects are reported
in the literature at all whereas a negative chronotropic effect could be observed in
the CellDrum experiments (cf. 8.23).

� Including the FFR into the model is promising (see also Frotscher et al. [56])
but with an external pacing there is an overreaction of the model. An alternative
will be discussed in sec. 9.2.2.

From a quantitative point of view one can state that in the control groups, i.e. without
drug treatment, neither the simulated contractile change in deflection nor the beating
frequency are equal to the experimental values. The reasons are quite manifold but the
two major reasons are the FFR and the immaturity of the hiPSC-CM. Respecting the FFR
in an appropriate way, i.e. by reparameterization of the model according to experimentally
observed beating frequencies will adjust the beating force and thus the contractile change
in deflection as well. First investigations in Frotscher et al. [56] show that the FFR
indeed has a strong effect and should be regarded in modeling.

The immaturity of the hiPSC-CM though is a generic term for the lack of knowledge on the
phenotypical expression of the individual ion channels in hiPSC-CM compared to native
mammalian and human CM. The in vitro differentiation processes do not entirely reflect
the in vivo processes and therefore some channels might express differently. Moreover the
maturity of the cells depends on how long after the day of cultivation the experiments are
performed. For this influence to be included in the model many patch clamp and MEA
experiments are required. This way one could clearly specify the differences between the
investigated hiPSC-CM and native CM and derive better predictions of drug effects.
Computational models could support this by parameter studies that help to find the ion
channels in question.

8.5 Simulation of Cardiac 3D Tissue

The heart of course is a 3D structure and it is well known that cells behave differently
depending on their environment. This is especially true for a cell monolayer in which
the cells are not organized in a 3D tissue. In a monolayer they can only communicate
with each other in a 2D plane. Moreover the mechanical environment is influenced by the
surface of the silicone membrane and the cells are flat in a monolayer whereas their shape
is significantly different in a 3D tissue. Nevertheless, investigating cell monolayers first
is a reasonable approach as this simplification leads to much more basic results. During
this thesis no 3D tissues (t > 100µm) have been investigated on the CellDrum which is
mainly due to manufacturing problems. The chemical fixation of the tissue containing the
hiPSc-derived cardiac myocytes at this time was not strong enough to reliably connect a
3D tissue to the silicone membrane. Thus, lacking experimental data for 3D tissue it was
necessary to focus on simulations of 2D tissue and the respective drug action.

First attempts to create 3D tissue consisting of hiPSC-CM and to investigate it in an
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experimental setup have been successful as for instance inMathur et al. [102]. Therein
the authors built a microfluidic device to measure the beating rate of the tissue based on
computational motion-tracking in control conditions and with the option to apply drugs.

Surely the model can be applied to 3D tissues in the CellDrum setup as well although
some changes will have to be made then:

� First of all the problem formulation will be three-dimensional and replace the plate
formulation. This requires the usage of different finite elements. Regarding the re-
sults obtained by Duong [42], a face-based smoothed finite element might be a
good choice.

� The implemented material models and especially the electrophysiological models
are implemented for a 2D domain. Those models need to be extended to the third
dimension.

� In a larger piece of tissue than the one investigated here, the propagation of the
membrane potential through the tissue has a large effect on the mechanical behavior.
Moreover the heart only works if the electrical propagation works appropriately.
Thus this needs to be modeled appropriately and also in three dimensions.
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9 Summary and Conclusion

The central goal of this work was the computational investigation of drug action on
cardiac tissue. Regarding the complexity of the human heart on each length scale, a
simplifying inflation test, called CellDrum, has been chosen to measure beating forces
and frequencies of cardiac monolayers. The system provides mechanical data for a cardiac
monolayer consisting of hiPSC-derived cardiomyocytes, fibroblasts and an ECM that is
chemically fixed on an ultra-thin silicone membrane.

The mechanical experimental data has been used as input and validation data for a FE
based computational model. The shell FE model is able to capture the mechanics of
the system and appropriate cellular electrophysiology models including the excitation-
contraction coupling have been introduced on the level of the constitutive equations.

In the previous chapter the reader could see the capabilities of the model and the pur-
pose of the following sections is mainly to point out necessary and nice-to-have model
improvements and to point into rewarding future directions of research, especially con-
cerning patient-specific investigation of drug action.

9.1 ES-FEM in Soft Tissue Mechanics

The edge-based S-FEM has been applied to the presented biomechanical plate problem.
This method smooths a compatible, element-wise constant strain field across the edges of
a standard FE mesh. Converting the integrals over smoothing domains to boundary in-
tegrals, the derivatives of shape functions and the isoparametric concept can be avoided.
It has been shown that the ES-FEM-T3 element is superior to the standard FEM-T3
element and can be as accurate as the standard FEM-Q4. The only drawback is an in-
crease in matrix bandwidth that is more than compensated by the gain in accuracy and
the following properties of the method. For both, plate and three-dimensional applica-
tions (FS-FEM), it is a method that facilitates the handling of volumetric locking, mesh
distortion, shear locking and that avoids remeshing.

Today, geometrical models of anatomical structures are very often created from
MRI data, plastinates or other image processing methods, for instance for the
heart (Jiang et al. [81]) and for pelvic floor structures (Bhattarai et al. [12] and
van der Giessen et al. [153]). Especially in these non-generic models, automatic
meshing algorithms often produce highly distorted elements from the image processing
data. ES-FEM and FS-FEM do not only improve the accuracy of T3 and T4 elements,
respectively, which might lead to the preference of T3 and T4 elements over T6 and T8
elements in some applications. Maybe even more importantly they avoid a singularity of
the system matrix for very large aspect ratios. To demonstrate this the cantilever beam
shown in figure 8.7 has been stretched to a length of 4800m and the tip load has been
modified by P = 0.001N . The elements show aspect ratios greater than 50 and table
9.1 shows that standard FEM can hardly produce a solution different from zero and for
slightly larger aspect ratios it will give a singular system matrix. ES-FEM on the other
hand keeps two more decimal places and thus is able to handle much higher aspect ra-
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tios than standard FEM. One can conclude that although the result will be inaccurate
in the respective element, at least the computation is successful, whereas the standard
FEM simply fails. Moreover, the result obtained with ES-FEM will still produce accurate
results in regions that are not in the vicinity of this element.

Table 9.1: Beam tip deflection with aspect ratios above 50

Method Beam tip deflection
Analytical −0.00853m

FEM −0.00007m
ES-FEM −0.00188m

Not only in cardiovascular applications but for simulations anywhere in the human body
this method proves to be beneficial. Very recently a selective S-FEM using both ES-
FEM and NS-FEM has been successfully applied to the homogenization of incompressible
materials in Li et al. [89]. Homogenization is a key topic in further modeling of cardiac
tissue as pointed out in section 9.2.7.

The three-dimensional equivalent to ES-FEM, FS-FEM, as well has been applied in a
selective setup to an anisotropic large deformation problem in Jiang et al. [81]. Therein
the passive deformation behavior of a MRI-based heart geometry of a rabbit has been
simulated.

9.2 Model Improvements

The presented simulation results for the pressure-deflection curves and the drug action
on the CellDrum tissue show the capabilities of the proposed finite element model. In the
results section it has been shown that a qualitatively correct simulation of drug action on
cardiac tissue is fairly possible. However, there is a number of possible model improvements
that shall become discussed here.

9.2.1 Shell and Finite Element Model

The currently employed plate and shell models are appropriate for the given task if
techniques are applied that avoid transverse shear and volumetric locking. However,
recent research on NURBS-based discretizations reveal great potentials for shell ele-
ment development. Replacing the FEM with the Isogeometric Analysis that has been
introduced by Hughes et al. [76] in 2005 and developed since then, as apparent
from Cottrell et al. [32], introduces smooth and generally more continuous basis
functions that can be used for the approximation of the geometry and the solution.
Very recently an elegant isogeometric shell element formulation has been introduced by
Echter et al. [45]. Due to its purely displacement-based formulation the shear gap
method (cf. sect. 3.5) and related methods are obsolete because these isogeometric ele-
ments are shear locking-free by construction. The authors even state that each and every
locking effect can be removed by relatively simple considerations that have to be made in



Summary and Conclusion 93

the near future. The simplicity of the proposed isogeometric shell elements makes them
a good choice for more complex thin tissue constructs that might become investigated in
the CellDrum setup in the future where the currently used elements might fail.

9.2.2 Electrophysiology

It is well known that the cardiac tissue construct investigated in here, consists of a mixture
of cells of the Cor.4U cell line of Axiogenesis AG, Cologne, approximately 60% ventricular,
30% atrial and 10% nodal cells. In the latest model at least two different cell types have
been modeled. The Stewart model represents a human Purkinje fiber cell and serves as
a pacemaker. The TT model, as a model of a human ventricular cell, is employed in the
whole computational domain to drive the active tissue behavior.

In Frotscher et al. [56], the Stewart model has been replaced by models of
human sinoatrial nodal cells. Therein the model of Chandler et al. [23] and
Seemann et al. [137] has been employed that both have a complexity that is similar to
that of the TT model. They are based on the atrial model ofCourtemanche et al. [33].
Modifications on the ion channels and ion concentrations are made to match nodal
characteristics and nodal ion currents are introduced based on recent data that
have been published in Zhang et al. [164] and Verkerk et al. [154]. Further even
more recent results on the funny current and the calcium dynamics in SAN cells
(Verkerk et al. [155]) could be integrated in the nodal model. The Courtemanche
model itself can serve as a human model of atrial cells.

Employing those three electrophysiological models would have the benefits of modeling
purely human cells and of closely matching the cell types that are actually occuring on
the CellDrum. In addition to that the models have very similar complexity, i.e. they all
model round about 20 unknowns.

So far it has been difficult to adjust the frequency of the pacing model to the experimen-
tally observed beating frequency of the cardiac tissue. The range of which is approximately
0.5–1.2Hz. In order to get the chronotropic effects of drugs right, it is reasonable to try to
adjust the frequency of the new pacing model although it is parameterized appropriately
for human nodal cells. The exemplary parameter study in fig. 9.1 shows that an adjust-
ment of the maximal conductivity of the funny current, cf can be made in order to get
different beating frequencies.

From the cited literature it becomes apparent that this approach is reasonable. Neverthe-
less it should be regarded with caution as there are some inaccuracies:

� The funny current is not the only current that has an influence to the beating
frequency. As it is a hyperpolarization-actived current that is active during phase 4
of the action potential one can assume that it is mainly responsible for the beating
frequency. Nevertheless it is necessary to keep in mind that there are other currents
that for instance shorten or lengthen the action potential or background currents
that have a comparably strong influence during phase 4.

In a Master thesis (Muanghong [108]), parameter studies similar to the one shown
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Figure 9.1: Influence of cf on the beating frequency of the Stewart model

in fig. 9.1 are performed with respect to the Chandler SAN model. As can be seen
in fig. 9.2, it has been found that the sodium-driven funny current If,Na, the inward
rectifier potassium current IK1, the transient outward current Ito and the T-type
calcium current ICaT have a strong influence on the beating frequency of the model.
Currently, computational drug testing is performed on isolated cells in combina-
tion with modified conductance values in order to match the experimental beating
frequencies. The goal is to construct hypotheses that can better explain the experi-
mentally observed chronotropic effects of Lidocaine, Verapamil, Veratridine and Bay
K8644 and that lead to assumptions concerning the ion channel expressions in the
investigated cardiac monolayer.

Figure 9.2: Influence of cf,Na (blue square markers), cK1 (red diamond markers), cto (yellow
upside down triangular markers) and cCaT (green triangular markers) on the beating
frequency of the Chandler model

� It is an ongoing debate, whether there exists a funny current at all or whether
the contractile behavior of cardiac myocytes is driven by a so-called calcium clock
(DiFrancesco [41], Li et al. [90]).
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� Often the funny current is split up into a potassium- and a sodium-mediated part
with separate maximum channel conductances. Applying the explained quite phe-
nomenological approach requires equal maximum conductances if the funny current
is split up. Otherwise there would be an infinite number of combinations leading to
the same beating frequency.

� The experimental range of frequencies between 0.5Hz and 1.2Hz is quite large
compared to what one would expect for healthy cells in a normal environment. This
huge range might result from the fact that the hiPSC-CM are immature, i.e. not fully
differentiated. Consequently there are lots of possible reasons for these differences
and one has to keep in mind that a model of adult human cells is not fully valid for
perhaps immature hiPSC-CM.

9.2.3 Model Adjustment to HiPSC-derived Cardiac Myocytes

This directly leads to the task of modeling hiPSC-CM instead of adult human cells.
Although there are attempts of building models for those cells (Paci et al. [122]), in
the author’s opinion this is questionable for the given application for three main reasons:

1. It has been reported by Ji et al. [80] that there are huge quantitative and qual-
itative differences in the normal behavior and in the pharmacological response of
hiPSC-CM coming from different cell cultures and vendors.

2. The immaturity of the cells is an uncontrollable issue that challenges any modeling
attempt.

3. Stem cell researchers have the goal to better control the differentiation of hiPSC-
CM in order to reproducibly get patient-specific cells that are functionally closer to
their native counterparts (Liang and Du [91]). Consequently the cellular function
of hiPSC-CM will change which always requires a model adaptation.

With the goal of simulating patient-specific drug treatment, it seems to be a better ap-
proach to use models for native human cells and, if necessary, to modify them according
to the known functional differences of hiPSC-CM. Due to the named issues, it is currently
impossible to build a globally valid model for hiPSC-CM but it is possible for native cells.

9.2.4 Passive Material Modeling

It is less a suggestion than more an obvious necessity that the passive material response
needs to be modeled and parameterized appropriately. For the currently investigated
tissue constructs the Neo-Hookean strain energy function sufficiently models the passive
tissue behavior. Nevertheless the material parameter needs to be adjusted according to
the mixture of different tissues and cells in the tissue construct that consists of different
cardiomyocytes, fibroblasts, silicone and an ECM. Depending on the mixture ratio of the
constituents the passive material behavior will change, i.e. the parameter fitting should
be repeated.
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9.2.5 ECM-dependent Model of Contraction

The mixture of cells mentioned in the previous section also has an influence on the over-
all contractile behavior of the tissue. It is well-known and has been investigated exper-
imentally and computationally that the ratio between fibroblasts and cardiomyocytes
Θ influences the contractile force (Xie et al. [158], Marquez et al. [99], Abney [1],
Zhan et al. [163]). CellDrum experiments currently being in progress support this influ-
ence for the given monolayers. One could therefore suggest a modification of the reference
tension Tref(Θ) such that the contractibility of the cells directly depends on the portion
of fibroblasts. Abney [1] shows that one might even be able to simply relate the passive
stiffness to the fibroblast-to-cardiomyocyte ratio which allows for the interpretation that,
up to a certain ratio, a stiffer cellular environment leads to more contraction due to an
improved cell adhesion. Both, the fibroblast-to-cardiomyocyte ratio and the passive stiff-
ness are known a-priori and from parameter fitting, respectively such that the model to
be constructed can easily be verified.

9.2.6 Excitation-Contraction Coupling

The coupling of the cellular free inner calcium concentration to the active stress contri-
bution is currently done using the NHS model. One suggestion is to split the active stress
contribution

Ta(Θ) = rvTa,v(Θ) + raTa,a(Θ) + rnTa,n(Θ) (9.1)

into weighted contributions Ta,v, Ta,a and Ta,n from the ventricular, atrial and nodal cells,
respectively. The weights are the volume ratio of the respective cell type with respect to
the total amount of cells thus they fulfill

rv + ra + rn = 1 . (9.2)

Moreover, eq. (9.1) respects the fact that the different cell types show different contrac-
tile forces and that the respective change in contractile force depends differently on the
fibroblast-to-cardiomyocyte ratio. It is an open issue how the differences in contractibil-
ity could be integrated in the model. Although the electrophysiological models compute
different time courses of free inner calcium, the available models of excitation-contraction
coupling do not further distinct cardiomyocytes. Possibly the actin-myosin kinetics and
the binding of calcium to troponin C also differ for different types of cardiomyocytes.
The cell type-specific parameterization of the NHS model could be attempted as in
Tøndel et al. [150], where an approach is presented how to consider the inter-species
dependency of the model parameters.

9.2.7 Homogenization

As pointed out by Ruiz-Baier et al. [132], bridging the scales via homogenization cur-
rently is not common in computational cardiac electromechanics. The current model is not
an exception, it does not take into account the micro-structure of the tissue as generated
by the mixture of cell types, local anisotropies or local cell-cell and the previously men-
tioned cell-ECM interactions. Global anisotropies, as given by the orientation of cardiac
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muscles might be handled with macroscopic anisotropic constitutive laws as described in
Holzapfel [72], for instance. In order to incorporate the local effects induced by cell-cell
and cell-ECM interaction though, one has to perform a homogenization using a framework
like the one presented and investigated in Miehe et al. [107]. A future work could con-
sider these local effects by introducing a representative volume element of the micro-scale
and a map to the macro-structure, like recently proposed in Keip et al. [83]. Problems
like instabilities can arise from such a homogenization as pointed out in the cited paper.
However, a homogenization framework as described therein, immensely increases the level
of model detail and introduces some more model flexibility and local heterogeneity that
is necessary to have when modeling living tissue. On the other hand one has to be careful
because introducing more detail is computationally costly thus perhaps not all features of
a chosen homogenization framework can be used. A first average-based homogenization
approach avoiding reference volumes has been presented in Frotscher and Staat [51].

9.2.8 Modeling Drug Action, Diseases and Mutations

Especially with respect to the modeling of drug action, cardiac diseases and mutations
the Hodgkin-Huxley (HH) models show a clear deficit because they lack heterogeneity.
Heterogeneity of ion channels or protein function and cellular function also occurs in
normal tissues. It means that, in contradiction to what is the outcome of a HH model, an
ion channel shows a specific behavior, i.e. is in a state, with a certain probability. As a
consequence a portion of ion channels of a given kind might be in the open state whereas
another portion is in an inactivation state.

As already discussed in Frotscher et al. [55] a more recent approach is to use
Markovian processes to model the ion channel expression rather than its phenotype
(Clancy and Rudy [30]). In the cited paper a Markovian model of the fast sodium
current INa that contributes to the depolarization phase of the membrane potential has
been suggested. Therein it replaces the standard Hodgkin-Huxley representation of this
current in the Luo-Rudy model (Luo and Rudy [98]). Figure 9.3 illustrates the model.
Six different states have been modeled, namely three different closed states C1–C3, fast
and slow inactivation states, IF and IS and an open state O. There is a certain probability

IF ⇄ IS

⇄ ⇄

C3 ⇄ C2 ⇄ C1 ⇄ O

Figure 9.3: Markovian model of INa

for an ion channel to be in one of the states. The probabilities of being in a certain state
are computed by solving the associated system of ordinary differential equations. In the
end there will be a certain probability ONa of a fast sodium channel being in the open
state and the corresponding ion current is computed as usual by

INa = GNaONa(Vm −ENa) . (9.3)
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In HH models ONa is replaced by a product of gate variables which govern opening and
closure. The Markovian way of modeling shows some clear benefits:

� Replacing parts of an HH model by Markovian processes does not change the general
type of the mathematical problem. The system to solve on cellular level still is a
system of ordinary differential equations.

� The opening, closure, activation and inactivation kinetics of an ion channel can
be modeled in very detail by introducing more states. Separation of slow and fast
inactivation, for instance, is rather simple.

� The heterogeneity of ion channels within one cell is directly reflected by the states
in which they can be with a certain probability. This way ion channel expression is
modeled rather than its phenotype.

Related to that is the individualization of the Markovian ion channel model. One way of
individualization is the adjustment of the transition rates between the states. For instance,
Bondarenko et al. [17] succeeded in reparameterizing the Markovian model of INa in
Clancy and Rudy [30] to match mouse data.

Another way of individualization is the introduction of additional states as for instance in
Clancy and Rudy [30] and Clancy et al. [31]. In the former one the model shown
in fig. 9.3 has been supplemented by four additional states to model the changes in pro-
tein function arising from the ∆KQP mutation in the SCN5A gene that causes long-QT
syndrome. In the latter one the authors clearly showed the benefit of Markovian models
being able to reflect heterogeneity. Therein the INa model has been amended again by
four states and some transition rates have been adjusted to account for the 1795insD
mutation in SCN5A. This mutation causes both, a long-QT syndrome and a Brugada
syndrome which result in an enhanced and a reduced function of the fast sodium channel
at the same time. Being able to model those opposing effects is important to distinct both
effects from each other and to get the appropriate cellular response.

Those are only some examples one can find in the literature. The same arguments apply for
heterogeneity in general and for drug or disease modeling in particular. Markovian models
simply introduce much flexibility that is necessary for proper patient-specific simulation
of cellular response.

9.2.9 Action Potential Conduction

The conduction of the action potential through the tissue has been ignored
in this thesis and total synchrony of all cells has been assumed instead. The
computational investigation of action potential conduction through the heart
is a wide and important field and has been investigated a lot already, e.g.
by Nash and Panfilov [110], Seemann et al. [137], Cherubini et al. [29],
Pathmanathan and Whiteley [126], Göktepe and Kuhl [59],
Göktepe et al. [61], Weise and Panfilov [156] and many many more. Respecting



Summary and Conclusion 99

the conduction, the systems of ordinary differential equations are formulated locally and
are solved as an integral part of a globally parabolic system

∇ · (D(C)∇V ) = C(C)
∂V

∂t
+ Im(C, t) , (9.4)

with a strain-dependent conductivity tensor D(C), the potential V and capaci-
tance C. The electrical source current Im still results from the local cellular pro-
cesses. This parabolic system is then coupled to the purely mechanical problem de-
scribed by an elliptic differential equation. Such a framework is thoroughly described
in Göktepe and Kuhl [60] and is schematically depicted in fig. 9.4. The nonlinear
parabolic system that determines the action potential, provides activation characteristics
that are forwarded to the nonlinear mechanical elliptic system. Therein, the activation
drives the active stress component and the deformed structure is computed. Using map-
ping algorithms the electrical mesh is modified accordingly and the mechanical strain is
projected onto the electrical mesh serving as input to the computation of the action po-
tential. Both, the mechanical and the electrical model are solved by a Newton-Raphson
algorithm due to their nonlinear nature. The nonlinearity of the parabolic system arises
from the source term Im on the right hand side of eq. (9.4). The source term is strongly
varying in time and determined by a stiff system of ordinary differential equations.

Figure 9.4: Flowchart of the incremental algorithm, the nonlinear mechanical and electrical
model

Electrical conduction through cardiac tissue and the influence of the cellular environment
on the cellular action potential, the action potential propagation and the active stress
development are wide fields. It is well known that the mechanical behavior of cardiac cells
in general and their contractile behavior in particular strongly defer whether they are iso-
lated, in a cell cluster, in a monolayer or in a 3D tissue. Therefore, the modeling work done
in this thesis should be incorporated in the larger framework of eq. (9.4), which already
has been started as reported in Frotscher and Staat [52], Frotscher et al. [57]
and Duong et al. [43]. Especially when patient-specific simulations should not only be
performed on monolayers but on 3D tissues or even on the whole organ, this is essential.
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9.3 Future Prospects

The CellDrum, the herein presented computational model, experimental setups and com-
putational models all over the world in general share their future prospects because they
have common goals. Research work at different length and time scales, be it experimental
or computational, needs to be combined in order to reach the ultimate goals of patient-
specific evaluation of drug action, patient-specific avoidance or treatment of cardiovascular
diseases, patient-specific evaluation and perhaps control of mutations, reduction of animal
and human experiments, safety of proposed treatments and patient-specific production of
cardiovascular implants. The investigation of tissue that is mainly composed of hiPSC-
derived cardiomyocytes is only one necessary step to reach these goals. With increasing
amount and quality of data the computational models on all scales will help to better
understand the inner workings of cardiomyocytes, the interaction of cardiomyocytes with
the ECM, the electrical conduction through cardiac tissue and the effect of drugs on the
whole heart of one specific human. It will be possible to perform only very few laboratory
experiments on a piece of artificially created or stem cell-derived tissue and use the assis-
tance of computational models to derive an individualized treatment of a cardiac disease.
Contemporary computational models are strong and quite detailed but in the authors
opinion there are two main challenges left with respect to this work.

Firstly, the amount of available experimental data is comparably low and it is obvious that
the cellular behavior strongly depends on the cell or tissue environment. It seems as if a
good approach would be to try to reproduce the cell environment that exists in the human
heart as accurately as possible to be able to measure data that is valid for the actual heart
tissue of a patient. In fact, this has been a central task in the development of experimental
setups for a long time and currently available microfluidic devices connecting lung, heart,
kidney and other organs are heading to this direction. The development of a true in vitro
heart will take some time though due to the complexity of this organ. However, cultivation
techniques are quite advanced already. Some research groups successfully cultivate ureter,
skin and vascular tissue. It is only a matter of time when full organs can be created in
vitro.

The second challenge that is faced at the current stage of knowledge is model flexibility.
The experimental data in the cardiovascular field will always vary a lot due to the en-
vironment, temperature, pH, the donor’s or patient’s condition, differences in genetics,
different ion channel expression, diseases and the external stress the tissue is experienc-
ing. Cardiac cells and tissue are highly flexible in order to adopt to all kinds of external
influences thus the models of cardiac cells, tissue or the heart need to show the same flex-
ibility and heterogeneity to produce an outcome that is valid. Probabilistic modeling like
the mentioned Markovian modeling will become very important when the patient-specific
application of computational models will finally reach a state in which it is useful in daily
practice. Deterministic models may hardly be sufficient to reflect the variety of responses
that cardiac cells are able to give.
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[7] R. Bayer. Entwicklung eines Gefäßmodells zur biomechanischen Analyse von blut-
drucksenkenden Medikamenten. Phd thesis in progress (preliminary title), Univer-
sität Duisburg-Essen.

[8] R. Bayer. Development of a multi-channel Tissue Tension Analyzer based on ca-
pacitive proximity sensor. Master thesis, Aachen University of Applied Sciences,
2014.

[9] B. Y. G. W. Beeler and H. Reuter. Reconstruction of the action potential of ven-
tricular myocardial fibres. Journal of Physiology, 268:177–210, 1977.

[10] K. Bersell, S. Arab, B. Haring, and B. Kühn. Neuregulin1/ErbB4 signaling induces
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tion of electro-elasticity at finite strains. Computer Methods in Applied Mechanics
and Engineering, 278:62–79, Aug. 2014. doi: 10.1016/j.cma.2014.04.020.

[84] J.-P. Koch. Modeling and simulation of the effects of cardioactive drugs on beating
cardiomyocytes. Master thesis, Aachen University of Applied Sciences, 2014.

[85] F. Koschnick. Geometrische Locking-Effekte bei finiten Elementen und ein allge-
meines Konzept zu ihrer Vermeidung. PhD thesis, Technische Universität München,
2004.

[86] F. Koschnick, M. Bischoff, N. Camprub́ı, and K.-U. Bletzinger. The discrete strain
gap method and membrane locking. Computer Methods in Applied Mechanics and
Engineering, 194(21-24):2444–2463, June 2005. doi: 10.1016/j.cma.2004.07.040.

[87] J. Kramer, C. A. Obejero-Paz, G. Myatt, Y. A. Kuryshev, A. Bruening-Wright,
J. S. Verducci, and A. M. Brown. MICE models: superior to the HERG model in
predicting Torsade de Pointes. Scientific Reports, 3:2100, Jan. 2013. doi: 10.1038/
srep02100.

[88] H. le Dret and A. Raoult. The quasiconvex envelope of the Saint Venant-Kirchhoff
stored energy function. In P. G. Ciarlet, L. Trabucho, and J. M. Viano (Ed.), Asymp-
totic Methods for Elastic Structures: Proceedings of the International Conference,
Lisbon, Portugal, October 4-8, 1993, pages 171–180. De Gruyter, 1995.

[89] E. Li, Z. Zhang, C. Chang, G. Liu, and Q. Li. Numerical homogenization for
incompressible materials using selective smoothed finite element method. Composite
Structures, 123:216–232, 2015. doi: 10.1016/j.compstruct.2014.12.016.

[90] P. Li, G. T. Lines, M. M. Maleckar, and A. Tveito. Mathematical models of cardiac
pacemaking function. Frontiers in Physics, 1(October):1–13, 2013. doi: 10.3389/
fphy.2013.00020.



References 109

[91] P. Liang and J. Du. Human induced pluripotent stem cell for modeling cardio-
vascular diseases. Regenerative Medicine Research, 2(1):4, 2014. doi: 10.1186/
2050-490X-2-4.

[92] P. Liang, F. Lan, A. S. Lee, T. Gong, V. Sanchez-Freire, Y. Wang, S. Diecke, K. Sal-
lam, J. W. Knowles, P. J. Wang, P. K. Nguyen, D. M. Bers, R. C. Robbins, and J. C.
Wu. Drug screening using a library of human induced pluripotent stem cell-derived
cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation, 127
(16):1677–91, May 2013. doi: 10.1161/CIRCULATIONAHA.113.001883.
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storfer, F.G. (Eds.), CD-ROM Proceedings of the 6th European Congress on Compu-
tational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna,
2012. Vienna University of Technology, Austria.

[119] F. Nobile, A. Quarteroni, and R. Ruiz-Baier. An active strain electromechanical
model for cardiac tissue. International Journal for Numerical Methods in Biomedical
Engineering, 28(1):52–71, Jan. 2012. doi: 10.1002/cnm.1468.

[120] D. Noble. A modification of the Hodgkin–Huxley equations applicable to Purkinje
fibre action and pace-maker potentials. The Journal of Physiology, 160:317–52, Feb.
1962.

[121] C. Obiol-Pardo, J. Gomis-Tena, F. Sanz, J. Saiz, and M. Pastor. A multiscale simu-
lation system for the prediction of drug-induced cardiotoxicity. Journal of Chemical
Information and Modeling, 51(2):483–92, Feb. 2011. doi: 10.1021/ci100423z.

[122] M. Paci, J. Hyttinen, K. Aalto-Setälä, and S. Severi. Computational models
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functional Materials, J. Schröder, D.C. Lupascu, D. Balzani
(Ed.), Tagungsband, 2007.

Nr. 6 (2008) Zur Modellierung und Simulation diskreter Rissausbre-
itungsvorgänge, O. Hilgert, Dissertation, 2008.

Nr. 7 (2009) Least-Squares Mixed Finite Elements for Solid Mechanics,
A. Schwarz, Dissertation, 2009.

Nr. 8 (2010) Design of Polyconvex Energy Functions for All Anisotropy
Classes, V. Ebbing, Dissertation, 2010.

Nr. 9 (2012) Modeling of Electro-Mechanically Coupled Materials on Mul-
tiple Scales, M.-A. Keip, Dissertation, 2012.

Nr. 10 (2012) Geometrical Modeling and Numerical Simulation of Heteroge-
neous Materials, D. Brands, Dissertation, 2012.

Nr. 11 (2012) Modeling and simulation of arterial walls with focus on dam-
age and residual stresses, S. Brinkhues, Dissertation, 2012.

Nr. 12 (2014) Proceedings of the Second Seminar on the Mechanics of Multi-
functional Materials, J. Schröder, D.C. Lupascu, M.-A. Keip,
D. Brands (Ed.), Tagungsband, 2014.

Nr. 13 (2016) Mixed least squares finite element methods based on inverse
stress-strain relations in hyperelasticity, B. Müller, Disserta-
tion, 2016.

Nr. 14 (2016) Electromechanical Modeling and Simulation of Thin Cardiac
Tissue Constructs, R. Frotscher, Dissertation, 2016.


	Introduction
	Continuum Mechanics and FEM
	Continuum Mechanics
	Strain
	Stress

	Plate and Shell Theories
	Plate Models
	Reissner-Mindlin Plates in Detail

	Finite Element Method
	The Principle of Virtual Displacements
	Variational Formulation
	Discretization
	Special Principles of Potential Energy
	Hu-Washizu
	de Veubeke

	Nonlinear FEM
	Finite Element Discretization of Plates and Shells


	Smoothed FEM
	Strain Smoothing
	Smoothed Galerkin Weak Form
	Smoothing Domains
	Edge-based S-FEM for Nonlinear Plate Problems
	Involving the Discrete Shear Gap Method

	Cardiac Cells and Tissue
	Purkinje Cells
	Ventricular Cells
	Human-induced Pluripotent Stem Cell Derived Cardiomyocytes
	Drug Action
	Lidocaine
	Verapamil
	Veratridine
	Bay K8644


	Mechanical and Electrophysiological Modeling of Cardiac Tissue
	Active Stress Formulation
	Active Strain Formulation
	Modeling the Passive Component
	St. Venant-Kirchhoff
	Neo-Hookean

	Modeling the Contractile Component
	Different Scales
	Modeling Drug Action
	Blocking Drugs
	Stimulating Drugs

	Electrophysiological Models
	McAllister-Noble-Tsien
	ten Tusscher et al.
	Stewart

	Models of Contraction
	Hunter-McCulloch-ter Keurs
	Niederer et al.

	Excitation-Contraction Coupling

	Remarks on Viscoelasticity

	Experimental Setup
	CellDrum
	Discussion and Critique

	Modeling of Cardiac Tissue Constructs
	Choosing Appropriate Finite Elements
	Parameter Fitting
	Constitutive Tensor
	Model Summary

	Implementation, Validation and Numerical Results
	Implementations
	Data Acquisition and Processing
	Finite Element Framework
	ES-FEM
	Material Model


	Validation of S-FEM Implementation
	Square Plate with Circular Hole
	L-shaped 2D Solid
	Cantilever Beam

	Simulation of Cardiac Monolayers
	Simulation of Pressure-deflection Curves
	Simulation of Cell Contraction
	Drug Action
	Lidocaine
	Verapamil
	Veratridine
	Bay K8644


	Discussion
	Simulation of Cardiac 3D Tissue

	Summary and Conclusion
	ES-FEM in Soft Tissue Mechanics
	Model Improvements
	Shell and Finite Element Model
	Electrophysiology
	Model Adjustment to HiPSC-derived Cardiac Myocytes
	Passive Material Modeling
	ECM-dependent Model of Contraction
	Excitation-Contraction Coupling
	Homogenization
	Modeling Drug Action, Diseases and Mutations
	Action Potential Conduction

	Future Prospects

	References

