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ABSTRACT 

DNA damage response (DDR) is a cellular network that comprises signaling from 

DNA lesions, including DNA double-strand breaks (DSBs), and their repair. ATM and 

ATR belong to the Phosphatidylinositol-3 kinase-related kinases (PIKK) family and 

are known as the master controllers of DDR signaling. It is generally accepted that 

ATM is activated by DSBs or chromatin modifications, while ATR operates in DNA 

replication and in response to DSBs becomes activated by single-stranded DNA 

regions at the DSB ends generated by DNA end resection. DNA-PK catalytic subunit 

(DNA-PKcs), a third member of the PIKK family, is an essential component of the 

classical non-homologous end joining (c-NHEJ) pathway of DSB repair. However, the 

catalytic function of DNA-PKcs in c-NHEJ has been extensively studied, while its role 

in DNA damage signaling still remains obscure. 

In this thesis, we provide evidence of a contribution of DNA-PKcs in the checkpoint 

response as well, particularly in cells irradiated in S and G2 phases of the cell cycle. 

The role of DNA-PKcs in this process appears to be specific as this effect is not 

observed with depletion of KU70/80, an essential factor for recruitment of DNA-PKcs 

at DSBs. Analysis of G2 arrest and evaluation of the mitotic index using H3pS10 

assay after exposure of cells to IR revealed that deficiency of DNA-PKcs or its 

chemical inactivation is linked with persistent G2 checkpoint; in cells irradiated in S 

phase this hyper-activated checkpoint is entirely dependent on ATR, while in cells 

sustaining DNA damage in G2 phase it relies on both ATM/ATR. 

The requirement of ATR for the prolonged G2 checkpoint in DNA-PKcs deficient 

background suggests extensive resection at DSB ends which could be visualized by 

immunostaining of RPA. Hence, the data demonstrate that DNA-PKcs may also 

contribute to DNA damage response via regulation of DNA end resection. 

Evaluation of the effects of ATM and ATR kinases on the G2 checkpoint and DNA 

end resection by using small molecule inhibitors point to a model where ATM, ATR 

and DNA-PKcs may work as a kinase module to effectively control the G2 checkpoint 

and the process of resection after exposure to ionizing radiation. 
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1. INTRODUCTION 

1.1. DNA damage induction by ionizing radiation 

The genomes of eukaryotic cells are continuously threatened by natural background 

irradiation, such as cosmic rays and decay of radioactive isotopes in terrestrial 

environment. The use of diagnostic medical imaging, radiation therapy and nuclear 

accidents provide another source of artificial background irradiation. 

Important feature of ionizing radiation (IR) is the localized release of large amounts of 

energy that is sufficient to eject orbital electrons from atoms and molecules, thereby 

ionizing them. The energy deposition per ionizing event is about 33 eV, which is 

enough to break a strong chemical bond (1). The direct action of IR refers to the 

absorption of energy directly by the target molecule and is characteristic for 

radiations with high linear energy transfer (LET) such as neutron or α-particles. In this 

thesis IR was generated artificially using X-rays. As a sparsely ionizing form of 

radiation (low LET), X-rays are predominantly causing cellular damage indirectly by 

interacting with other atoms or molecules in the cell, mainly water, as it represents 

80% of cellular content. The resulted free radicals are very unstable, because they 

carry an unpaired orbital electron in their outer shell, and react quickly with the target 

molecules. The chemical changes from the breakage of bonds in the molecules lead 

to biological effects (1). 

As a carrier of genetic information, nuclear DNA is the most critical target of IR where 

the formation of DNA double-strand breaks (DSBs) represents the most deleterious 

lesion with high probability to convert in heritable mutations or lethal events. 

Importantly, DSBs are also naturally occurring intermediates during programmed 

biological processes like V(D)J recombination and class switch recombination (CSR) 

that are required for the adaptive immune system (2). Recently, DSB formation as a 

physiological event has been reported to occur upon stimulation of neuronal activity 

(3). 

In a healthy cell, the severe effect of IR-induced DSBs and their misrepair have to be 

avoided in order to preserve genomic stability and, in extreme cases, to suppress 

cancer development (4, 5). However, IR as a DNA damaging agent is frequently 

used in cancer therapy to induce mitotic and less frequently apoptotic cell death in 
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tumor cells (6). Since tumor cells are actively dividing and therefore probably more 

radiosensitive that resting cells (G0), the cell cycle phase (described below) is of 

great importance for radiotherapy (7). 

As shown in Figure 1, exposure of cells to IR results in many types of DSBs, whose 

presence in the cell has to be detected. Sensor proteins that can detect each type of 

DSB (if any) remain undefined. 

 

 

Figure 1: Different types of DSBs. (A) DSB with a 5’- phosphate and a 3’-OH group 
generated by restriction endonucleases, (B) IR-induced DSB with common 
3’-phosphoglycolate and a 5’-OH at the ends, (C) Clustered lesions induced by clustered 
ionization events, where a DSB contains additional forms of DNA damage, (D) Indirect DSB 
converted from an initial single-stranded break (SSB) by enzymatic processing of opposing 
base damage, (E) Indirect DSB induced after temperature-sensitive chemical processing of 
sugar lesions opposite to a SSB, (F) Clustered DSBs that can affect chromatin stability by 
nucleosome loss or deletion of larger chromatin segments. Figure obtained from Schipler 
and Iliakis, 2013 (8). 
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Much is known about the sensor molecules that detect not the type of DSB but their 

conversion in common intermediates, for example, DNA discontinuity detected by 

KU70/80 and single-stranded DNA that becomes recognized by Replication Protein A 

(RPA). Such intermediates activate an intricate DNA repair machinery that is 

supported by signaling networks termed checkpoints. The checkpoint pathways 

interact with the cell-cycle control system by halting progression through G1, S or G2 

phase, and thus provide time for faithful repair or prevent cell proliferation of 

potentially mutated cells. 

1.2. Cell-cycle control system 

Cell cycle progression requires high degree of synchronization among numerous 

enzymes to ensure faithful transfer of the genetic information over generations (9). 

The duplication of the genome requires correct order of events carried out by the cell-

cycle control system. As a result, the initiation of each stage is dependent on the 

completion of the previous one (10). Before entering cell division, the cell requires 

metabolism and intake of nutrients, as well as duplication of its genome. This takes 

place in the interphase, which is the period between one M phase and the next 

(Figure 2). Cell division includes DNA replication occurring in S phase (S indicating 

synthesis), where each chromosome must be duplicated only once per cell cycle and 

with extreme precision to prevent development of heritable genetic aberrations in the 

daughter cell. Entry into mitosis is dependent on the completion of DNA replication 

(9). 

The cell cycle contains two gap phases; the first gap (G1) is before DNA replication 

and is the first phase within the interphase; it is known as growth phase, where the 

cell conducts all its metabolic activities and grows in size. The duration of G1 phase 

varies among species and under unfavorable extracellular conditions like reduced 

growth factors signaling, cells usually enter the non-dividing G0 state. Non-

proliferating and differentiated cells remain in G0 for long periods of time without 

resuming the cell cycle. Stem cells, in contrast, have the capacity to reenter the cell 

cycle and divide (9). 
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Figure 2: The cell-cycle control. Proper progression through the cell-cycle is ensured by 
three main checkpoints. Entry into S phase by overcoming the Restriction point 
(G1/S checkpoint) is driven by G1/S- and S-phase CDK-cyclin complexes. The different types 
of DNA replication checkpoint functioning throughout the S phase are not shown in the 
figure. Before onset of mitosis, which is triggered by M-phase CDK-cyclin complexes, cells 
undergo G2/M checkpoint. In the end, the spindle checkpoint guarantees the precise 
separation of the duplicated chromosomes and therewith the metaphase-to-anaphase 
transition associated with destruction of cyclins (9). The arrows indicate the expression of the 
corresponding cyclins and activation of different CDK-cyclin complexes. 

 

The second gap (G2) occurs after DNA synthesis and is characterized by rapid cell 

growth and protein synthesis (11). The G2 phase also provides additional time for the 

cell to correct replication errors during S phase. Hence, the major purpose of the gap 

phases in the cell cycle is to assist DNA replication and mitosis by monitoring 

whether the environmental conditions are suitable for entering the next phase. Some 

cells, particularly the early embryo of the frog Xenopus laevis, do not require gap 

phases in their cell cycle to prepare themselves for mitosis (9, 12). 
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In comparison to other cell cycle phases, the M phase is relatively short and is 

considered to be composed of nuclear division (mitosis), where the duplicated 

chromosomes are segregated and divided into daughter nuclei and cell division 

(cytokinesis) that allows distribution of cytoplasmic components into two individual 

daughter cells. In this way, each daughter cell obtains a complete and identical copy 

of the genome (9). 

Key regulators of the cell-cycle control system are the cyclin-dependent kinases 

(CDKs). CDKs are a family of enzymes that phosphorylate their protein substrates at 

serine/threonine residues. Cellular CDK levels remain constant but their activities 

oscillate as the cells progress through the cell cycle. CDKs are primarily regulated by 

different types of regulatory subunits called cyclins. This leads to formation of 

different CDK-cyclin complexes throughout the cell cycle (13, 14). Furthermore, 

CDKs can be activated by phosphorylation at a conserved threonine residue by CDK-

activating kinase (CAK). In higher eukaryotes, the main candidate for CAK is the 

CDK7/Cyclin H/ménage-à-trois 1 (MAT1) complex (13, 15, 16). Inactivation of CDK-

complexes involves ubiquitin-dependent proteolysis of cyclins, removing inhibitory 

phosphates from CDK active sites by CDC25 phosphatases or inhibitory tyrosine 

phosphorylation of CDK1 by Wee1 kinase. CDK-cyclin complexes can be also 

inactivated by inhibitory subunits like p21 and p27 (13, 17).  

Proper progression through the cell cycle is governed by control mechanisms called 

cell-cycle checkpoints (10, 18). In G1 checkpoint, when the conditions for cell 

proliferation are optimal, the S-phase CDK-cyclin complexes are activated, which 

then promote entry into S-phase by overcoming the restriction point. The second 

major checkpoint which allows entry into M phase is the G2/M checkpoint, also known 

as DNA damage checkpoint. The G2 checkpoint response prevents cells to enter 

mitosis with unfaithfully repaired DNA or incomplete DNA synthesis. The third major 

checkpoint is the spindle assembly checkpoint (SAC) in metaphase, which ensures 

proper mitosis and cytokinesis. Additionally, precise replication of the genome is 

ensured by different types of DNA replication checkpoint functioning throughout the S 

phase (19). In this thesis, the focus is placed on G2 checkpoint regulation after DNA 

damage induction by ionizing radiation. 
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As sentinels for cell cycle progression, the cell cycle checkpoints regulate genome 

stability and their dysfunction may lead to cell death, increased susceptibility to DNA 

damaging agents and carcinogenesis (20). 

1.3. Mammalian DNA damage checkpoint-control after exposure to IR 

Cellular DNA damage induction by ionizing radiation activates essential checkpoint 

networks that halt progression through G1 and G2 phases of the cell cycle and slow 

down DNA synthesis. This favors restoration of DNA integrity by the repair 

mechanisms and thus protects against mutations, chromosomal aberrations and 

predisposition to cancer (21, 22). 

DNA damage checkpoints are biochemical signaling pathways that sense various 

types of sequence alterations in the DNA. Checkpoint activation requires sensors of 

DNA damage, transducers and effectors (Figure 3). Transducer kinases amplify the 

damage signal from the sensor proteins by phosphorylating other kinases or 

downstream target proteins (effectors). At the effector level the DNA damage 

checkpoint connects with the cell-cycle control machinery (22). 

The most well characterized DNA damage sensors are MRE11-RAD50-NBS1 (MRN) 

complex, KU70/80 heterodimer and poly(ADP-ribose)-Polymerase 1 (PARP1) (23). 

Candidates for such sensor molecules are also the PCNA-like proteins RAD1, RAD9 

and HUS1, which were shown to form a DNA damage-responsive complex, and the 

RFC-like protein RAD17 (21, 24, 25). The breast cancer protein BRCA1 has also 

been linked to DNA damage sensing as a part of a large BRCA1-associated genome 

surveillance (BASC) complex together with ATM, MRN, Bloom’s helicase (BLM) and 

mismatch proteins (MSH2/6 and MLH2) (26). 

ATM and ATR serine/threonine kinases, both belonging to the phosphatidylinositol-3 

kinase-related (PIKK) family, are the key signaling factors involved in DNA damage 

response (DDR) (27, 28). ATM and ATR share sequence similarities and many 

phosphorylation substrates. ATM gene product is mutated in patients suffering from 

Ataxia telangiectasia (AT), a rare autosomal recessive disease characterized by 

immune deficiency, neurodegeneration and cancer predisposition (29). Cells lacking 

ATM show a slow DNA synthesis and a defective DNA damage response (30).  
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Figure 3: Mammalian DNA damage response pathways leading to cell cycle arrest. 
ATM and ATR kinases, both members of the PIKK family, are key components of the DNA 
damage signaling. In response to ionizing radiation ATM is activated by DSBs or changes in 
chromatin structure, while ATR responds to single-stranded DNA regions generated at DSB 
ends; therefore ATR is considered to have secondary function with reference to ATM in 
checkpoint development. Once activated, ATM and ATR phosphorylate many downstream 
targets that collectively promote cell-cycle arrest. See text for details. Figure obrained from 
Löbrich and Jeggo, 2007 (31). 

 

ATR was shown to be essential for cell survival (32-34) and has been linked with 

Seckel syndrome which is associated with impaired DNA damage response and 

genomic instability (35, 36). The prevailing view is that in response to IR, ATM is 

recruited primarily by DSBs or changes in chromatin structure through MRN complex 

(37, 38) and is thought to have central role in activating DNA damage checkpoints 

leading to cell cycle arrest (39). In contrast, ATR is believed to function in perturbed 

DNA replication, and its activation by DSBs requires ATR-interacting protein (ATRIP), 

9-1-1 complex (RAD9-HUS1-RAD1), TOPBP1, Claspin and the generation of ssDNA 

regions at DSB ends coated with RPA complexes, a process known as DNA end 
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resection (27, 40-44). Therefore, ATR is considered to have a secondary function 

with reference to ATM in checkpoint development and regulation (45, 46). Later on, 

the signal is amplified by mediator proteins like MDC1, 53BP1, MRN and BRCA1 and 

forwarded to the downstream effector kinases CHK1 and CHK2. 

Two ATM-dependent G1 checkpoints networks have been described. The fast 

response includes rapid phosphorylation of CHK2 by ATM leading to subsequent 

phosphorylation of CDC25A phosphatase, which in turn promotes proteolysis of 

CDC25A and therewith prevents activating dephosphorylation of CDK2 at Thr14 and 

Tyr15 (31). This fast branch of the G1 arrest represents the DNA-damage sensing 

mechanism and may delay DNA synthesis. The second component of G1/S 

checkpoint is slower since it utilizes transcriptional activation by the tumor suppressor 

p53 and protein synthesis of the CDK-inhibitor p21. Since p53 is involved in 

regulation of apoptosis and genomic integrity (47, 48), this aspect of the G1/S 

checkpoint may be important for eliminating cells sustaining DNA-damage by 

apoptosis. 

In S phase, collapsed or stalled replication forks activate ATR leading to 

phosphorylation of CHK1 and the subsequent degradation of CDC25A phosphatase. 

In this way the inhibitory phosphates masking the active site of CDK2 cannot be 

removed and inhibition of CDK2-Cyclin A/E complexes halts the entry into G2 phase. 

This checkpoint response in S phase, also known as intra-S phase checkpoint, 

prevents firing of new replication origins and therewith slows down DNA replication. 

DSBs in G2 phase can directly activate ATM which leads to subsequent activation of 

CHK2. This in turn promotes phosphorylation of CDC25C at Ser216 to block its 

function. A parallel pathway in G2 checkpoint is initiated by indirect activation of ATR 

via DSB end resection and subsequent phosphorylation of the checkpoint kinase 

CHK1. Phosphorylation of CDC25C phosphatase by CHK1 prevents removal of 

inhibitory phosphorylation of CDK1, which is essential for initiating mitosis (31, 49). 

In addition, the DNA damage response involves regulation of CDK1-cyclinB complex 

activity by regulating the mRNA levels of cyclin B and its translocation from the 

cytoplasm during S and G2 phases to the nucleus at the beginning of mitosis (50-52). 

Evidence also suggests the involvement of Never-in-mitosis A related protein 
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kinase 1 (NEK1) in checkpoint signaling, which was shown to function early in DNA 

damage checkpoint control independently of ATM and ATR signaling pathways (53, 

54). 

In summary, the widely held view is that the central players in DNA damage-induced 

checkpoints are ATM and ATR kinases, which initiate a phosphorylation signaling-

cascade to transmit the damage signal. This results in inhibition of CDK-cyclin 

complexes and ensures cell cycle arrest. This delay in cell cycle progression does 

not only provide time for repair in the cell cycle phase where lesions are induced. 

Moreover, the DNA damage checkpoint ensures initial processing of the lesion and 

its safe transition into a cell cycle phase where repair can proceed optimally (22). 

Therefore, the next section reviews DSB repair pathways and their dependence on 

cell cycle phase and checkpoint response. 

1.4. Eukaryotic DSB repair pathways and their dependence on cell cycle 

phase and checkpoints 

Two main repair pathways are capable of processing and rejoining DSBs and thus 

eliminating their adverse consequences – non-homologous end joining (NHEJ) and 

homologous recombination repair (HRR). 

The classical or canonical NHEJ (c-NHEJ) is a fast process successfully eliminating 

DSBs within 10-30 minutes that simply rejoins DNA ends without necessarily 

restoring the original sequence around the break (Figure 4). Therefore, it is also 

considered as error-prone repair pathway. The essential feature of c-NHEJ is 

DNA-dependent protein kinase (DNA-PK) comprising KU70/80 heterodimer and an 

evolutionary new catalytic subunit DNA-PKcs (cs indicating catalytic subunit). 

Synapses of two DNA-PK complexes at the two broken ends provides a platform for 

repair by recruiting XRCC4/XLF/DNA ligase IV complex (55). Other factors that 

contribute to DSB end processing include, 53BP1, H2AX, Artemis, polynucleotide 

kinase (PNK), and DNA polymerases λ and µ (56). Nevertheless, evidence suggests 

that XRCC4 and XLF could act as a complex also in the early step of end joining and 

independently of Ligase IV where the filamentous structure of XRCC4-XLF may hold 

the DSB ends together (57-59). Recently, a paralog of XRCC4 and XLF, named 
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PAXX, was identified as a novel component of NHEJ machinery whose interaction 

with KU promotes end joining (60, 61). 

C-NHEJ is not solely involved in repairing DSBs induced by IR; along with RAG-1 

and RAG-2 (recombination-activating genes), the enzymes of NHEJ have been 

shown to be essential for V(D)J recombination, where DSBs are natural events. This 

process occurs in lymphocytes and involves the rearrangement of variable (V), 

diversity (D) and joining (J) segments on ‘cut-and-paste’ basis. This leads to a 

diverse repertoire of immunoglobulins and T-cell receptors (62). C-NHEJ is also 

required for class switch recombination (CSR) in B cells,  a process that allows the 

change of antibody class from immunoglobulin M (IgM) to IgA/E/G (63). 

 

Figure 4: Schematic overview of classical 
non-homologous end joining (c-NHEJ). 
Crucial component of c-NHEJ is the 
enzymatically active DNA-PK complex, 
composed of a large catalytic subunit, termed 
DNA-PKcs, and DNA-binding factor 
KU70/KU80. As a heterodimer, KU70 and 
KU80 form a basket-shaped structure which 
enables the complex to slide along dsDNA 
with KU70 located proximal and KU80 distal to 
the end. The recruitment of DNA-PKcs guides 
KU70/80 to move inwards. After being 
processed, the ends are sealed by 
Ligase IV/XRCC4/XLF complex.  The 
indicated phosphorylation events represent 
the post-translational modifications of DNA-PK 
complex, which result in dissociation of 
DNA-PKcs from the ends. Removal of 
KU70/80 is possibly due to ubiquitination (64). 
Figure adapted from Dueva and Iliakis, 2013 
(65). 
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Although c-NHEJ is considered as error-prone repair pathway as it is associated with 

sequence alterations around the break, due to its high speed c-NHEJ is more 

efficient in suppressing translocations when compared to other alternative forms of 

end-joining operating with slower kinetics (described below) (65). Besides its high 

speed, Simsek and Jasin have further demonstrated that translocation formation is 

suppressed by the XRCC4/Ligase IV component of c-NHEJ (66). Therefore, c-NHEJ 

is considered a caretaker of genomic integrity and suppressor of tumor development 

(67, 68). C-NHEJ operates throughout the cell cycle and was shown to be 

independent of checkpoint response (69, 70). 

In comparison to c-NHEJ, HRR is a slow process but accurate in restoring the 

original sequence in the vicinity of the break since it requires a homologous template 

or a sister chromatid (Figure 5). As a consequence, HRR is limited to S and G2 

phases of the cell cycle. Critical step in HRR is homology search and strand invasion 

in the donor DNA, which requires 3’ single-stranded DNA (ssDNA) overhangs. The 

latter are produced by the combined action of DNA exonucleases and helicases 

which remove terminal nucleotides from the 5’ ends, a process known as DNA end 

resection (71, 72). MRN complex promotes initial processing of broken DNA ends 

(73). Essential role for this short-range resection (50-100 nt) have CtBP-interacting 

protein (CtIP), and the tumor suppressor protein BRCA1 while the long-range 

resection (several thousand nt) is continued by Exonuclease 1 (EXO1), DNA2 

helicase/nuclease and the Bloom helicase (BLM) (74-79). Hence, the MRN complex 

has two important roles in DDR – in checkpoint activation by recruiting ATM and in 

HRR initiation by promoting nucleolytic resection of DSB ends. The resulting long 

3’ ssDNA overhangs on both sides of the break are rapidly coated by RPA 

heterotrimer composed of RPA70, RPA32 and RPA14 subunits, where the binding 

size of one RPA molecule is ~30 nt (80, 81). Thereby, RPA stabilizes the ssDNA by 

preventing formation of secondary structures and protects it from nucleolytic 

cleavage. Notably, RPA-covered ssDNA serves as a platform for recruiting ATRIP 

and initiating ATR-CHK1 checkpoint signaling pathway and the 32-kDa subunit of 

RPA is a target of ATM, ATR and DNA-PKcs. In the following step, recombination 

mediators such as RAD52, RAD51 paralogs and the tumor suppressor BRCA2 assist 
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the displacement of RPA by RAD51 recombinase leading to the formation of RAD51-

ssDNA nucleoprotein filament.  

         

Figure 5: Schematic overview of homologous recombination repair (HRR). HRR relies 
on the formation of ssDNA-RPA intermediates generated by nucleolytic degradation of 
terminal nuleotides. Displacement of RPA by RAD51 recombinase ensures strand invasion 
with the template DNA sequence and homology search. Detailed description in text. Figure 
adapted from Dueva and Iliakis, 2013 (65). 
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The subsequent homology search and strand invasion into the template DNA 

sequence result in D-loop formation, where a polymerase starts synthesizing the 

complementary strand of ssDNA. The 3’-overhangs participate in the formation of 

Holliday junctions which in the last step of HRR become resolved resulting in 

restoration of the original sequence around the break with or without crossover (71). 

In addition to these standard repair processes, mounting evidence supports the role 

of a third pathway in cells of higher eukaryotes considered to be an alternative form 

of end joining (a-EJ) that is independent of KU70/80 and DNA-PKcs (Figure 6) (82-

85). It operates with slower repair kinetics than c-NHEJ and profits from 

microhomologies around the DNA ends, especially when the ends are processed by 

nucleases and end resection is initiated. This alternative form of end joining is 

considered as a backup non-homologous end joining (B-NHEJ) pathway, which 

becomes engaged at the DSB when either c-NHEJ or HRR fail to process the ends 

(65, 86). Throughout this thesis, the term a-EJ will be used to refer to this repair 

pathway. 

 

Figure 6: Alternative pathways of end joining (a-EJ) are considered highly inaccurate of 
restoring the original DNA sequence. See text for details. Figure adapted from Dueva and 
Iliakis, 2013 (65). 
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A-EJ has been characterized to be more error-prone than c-NHEJ with higher 

probability of deletions, sequence alterations around the break as well as with higher 

risk of translocation formation. Therefore, a-EJ is considered an ultimate source of 

genomic instability. Proteins implicated in a-EJ are Histone H1, PARP1, MRN, CtIP, 

as well as DNA ligase III or DNA ligase I that are involved in the rejoining step (87-

90). A-EJ has been shown to operate in all cell cycle phases but is functionally 

enhanced in S and G2 (91-93). Interestingly, data from our laboratory have shown 

that a-EJ is compromised in non-cycling (plateau phase) cells (94). 

In conclusion, the error-prone NHEJ is predominantly used to preserve DNA integrity 

in higher eukaryotes throughout the cell cycle. In G2 phase, however, HR additionally 

ensures DSBs repair in an error-free manner. The process of end resection is a 

crucial step during HR and once initiated, NHEJ factors cannot bind the ends and the 

DSB is committed to be repaired by HR. Therefore, the next chapter will focus on the 

factors coordinating initial processing of DNA ends. 

1.5. Regulation of damage-induced DNA-end resection 

Extensive processing of DNA ends by exonucleases leads to the formation of 

ssDNA-RPA intermediates that initiate ATR-dependent checkpoint signaling and 

engage homologous recombination to seal the break in S and G2 phase. As the 

resected DNA ends could not be repaired by c-NHEJ and possibly the extended DNA 

end resection suppress a-EJ (95), it is intuitive to speculate that  DNA end resection 

could be a critical step in repair pathway choice (96, 97). Moreover, the regulation of 

DNA end resection initiation is another important parameter of the repair pathway 

selection, which is controlled by a number of proteins (Figure 7) and requires 

extensive modifications of chromatin structure (98). 

KU70/80 heterodimer, the DNA-binding component of DNA-PK complex, has 

extremely high affinity for dsDNA and is believed to be the first protein that binds 

directly the DSB ends. The subsequent recruitment of DNA-PKcs primes the DSB 

ends for direct ligation by classical NHEJ (85). 
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Figure 7: Regulation of DSB end resection and its impact on DNA damage response. 
Resection, the formation of ssDNA, at DNA ends occurs as an intermediate structure during 
DNA repair and replication. ATM stimulates the nucleolytic processing of DSBs, where MRN 
complex has a crucial function of recruiting and activating ATM. In response to DNA damage, 
histone variant H2AX becomes phosphorylated at Ser139 (termed γH2AX) by ATM. γH2AX, 
MDC1 and ATM form a positive feedback loop, where MDC1 binds γH2AX and further 
expands the DNA damage signals. 53BP1 has a protective role on DSB ends from resection 
and therefore promotes repair by c-NHEJ in G1 phase. BRCA1 triggers HRR and suppresses 
53BP1-dependent c-NHEJ in G2 phase. The ssDNA regions, covered by RPA, serve as a 
substrate for checkpoint activation via ATR-Chk1 pathway. The hierarchical recruitment of 
resection factors is represented as precisely as possible. See text for details. 
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In comparison with KU70/80, MRN complex also has high affinity for DSB ends, and 

although KU70/80 seems to be the main opposing factor against mobilization of MRN 

to damaged chromatin (99), unpublished data from our laboratory suggest that KU 

and MRN possibly interact to fine-tune and control the fate of DSB. 

In undamaged cells ATM exists as an inactive dimer which is rapidly activated upon 

DNA damage-induction by auto-phosphorylation at Ser1981. This modification 

induces dissociation of the inactive ATM dimer into active ATM monomers (100). 

MRN complex has an essential function in stimulation of ATM kinase activity by 

enhancing the stable binding between ATM and its substrates (101, 102). MRN 

consists of MRE11 (nuclease component), RAD50 (ATPase activity) and the 

Nijmegen breakage syndrome factor NBS1/Nibrin (Xrs2 in yeast). NBS1 has yet 

unknown enzymatic activity but is responsible for the nuclear localization of RAD50 

and MRE11 (103). The retention of MRN to damaged chromatin is mediated through 

phospho-dependent interaction between NBS1 and Mediator of DNA damage 

checkpoint 1 (MDC1) (104). 

In response to DNA damage, a phosphorylation of the histone variant H2AX at 

Serine 139 results in the formation of γH2AX, which has a significant role in the 

recruitment of DNA-damage-response proteins NBS1, 53BP1 and BRCA1 (105-107). 

Although H2AX gene is not essential for cell survival, H2AX deficiency is associated 

with increased radiosensitivity and pronounced repair defects (106). H2AX is 

primarily phosphorylated by ATM (108), where phosphorylated H2AX initiates 

recruitment of MDC1 and MRN complex to further amplify and propagate the DNA 

damage signal by recruitment of more ATM molecules, thus creating a positive 

feedback loop (107, 109-111). Phosphorylated MDC1 also promotes accumulation of 

the E3 ubiquitin ligase RNF8 to the DSB, which in turn ubiquitylates histone H2A and 

enables the recruitment of 53BP1 and BRCA1 (112). 

RAD17 is a replication checkpoint clamp-loader that promotes ATR activation. 

Recently, Wang and colleagues have shown that RAD17 stimulates also ATM 

activation and DNA end resection by recruiting MRN complex to DSBs. RAD17 

depletion is associated with impaired phosphorylation of ATM as well as of its 

substrates CHK2, NBS1, and γH2AX (25). 
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Sartori et al. first reported about the role of human CtIP in end resection, where it 

functionally interacts with MRN to promote HR (74). CtIP exhibits endonuclease 

activity with specificity for 5’ flaps which is essential for cell survival in response to IR 

and topoisomerase poisons (113). Work by Sartori and colleagues demonstrated that 

the peptidyl-prolyl cis/trans isomerase 1 (PIN1) is involved in the regulation of DSB 

resection where PIN1 controls the stability of CtIP and its degradation (114). 

Recently, tetramerization of CtIP was shown to be required for proper DNA-end 

resection during homologous recombination (115). Another intriguing study by 

Jackson and colleagues provided evidence that the protein lysine deacetylase SIRT6 

promotes end resection by deacetylation of CtIP. RNAi-mediated depletion of SIRT6 

effectively reduces RPA foci number after camptothecin (CPT) treatment without 

affecting γH2AX foci formation (116). 

CtIP was shown to associate with BRCA1 in late S and G2 phases of the cell cycle, 

where CtIP-BRCA1 interaction depends on CDK-mediated phosphorylation of CtIP at 

Ser327 (79, 117). As an E3 ubiquitin ligase, BRCA1 also promotes ubiquitination of 

CtIP at multiple lysine residues without leading to its degradation, but by enhancing 

CtIP binding to chromatin after DNA damage-induction (118). A high-resolution assay 

to measure the extent of resection in eukaryotes, established by Huertas and 

colleagues, revealed that BRCA1 modulates the speed of CtIP-mediated resection, 

although the BRCA1-CtIP interaction is not essential for this process. Thus, under 

normal conditions BRCA1 increases the rate of end resection while abrogation of 

CtIP-BRCA1 interaction by CtIP-Ser327 mutation leads to shorter resected tracks 

(119). 

MDC1 was identified to control the formation of damage-induced 53BP1, BRCA1 and 

NBS1 foci formation. 53BP1 and MDC1 are placed upstream of ATM, where both 

proteins activate ATM through independent pathways (120-122). A breakthrough 

study by Nussenzweig and colleagues demonstrated that 53BP1 inhibits resection in 

BRCA1-deficient cells. Thus, in S phase BRCA1 downregulates NHEJ and allows 

end resection by promoting removal of 53BP1. The authors proposed that 53BP1 

and BRCA1 directly regulate repair pathway choice (123). In the same way, absence 

of 53BP1 is associated with ATM-dependent increase of end resection that favors the 

involvement of a-EJ pathways during class switch recombination (124). The 
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suppressive function of 53BP1 on end resection in G1 is assisted by RIF1, where 

RIF1 recruitment relies on ATM-dependent 53BP1 phosphorylation (125-128). The 

ubiquitin-binding protein RAP80 was reported to recruit BRCA1 to DNA damage 

sites, implicating the involvement of ubiquitin-dependent signaling pathway in DDR 

(129-131). In a model proposed by Jeggo and colleagues, 53BP1, RAP80 and 

ubiquitin chains serve as a barrier for the process of resection and therefore promote 

NHEJ. However, in G2 phase, BRCA1 is assisted by the de-ubiquitylating enzyme 

POH1 to fully remove 53BP1 from the break. The data suggest that BRCA1 alone is 

not sufficient for full clearance of 53BP1 (132). Once nucleolytic cleavage by MRN-

CtIP-BRCA1 complex is initiated and RPA binds ssDNA, EXO1, DNA2 and the BLM 

helicase are recruited to facilitate extensive resection. Simultaneously, the 32-kDa 

subunit of RPA undergoes extensive phosphorylation by ATM, ATR and DNA-PK. 

RPA-ssDNA structures promote HRR and serve as a platform for ATR-mediated 

checkpoint signaling by recruiting the ATR activator ATRIP, the adapter proteins 

TOPBP1 and Claspin, and the checkpoint clamp 9-1-1 (133, 134). Therefore, ATR 

activation is considered to be mediated through ATM-dependent resection and 

contributes to checkpoint maintenance. 

In summary, initiation of end resection is decisive for the repair pathway that will 

rejoin the DSB and influences the DNA damage response.  

It appears that the catalytic subunit of DNA-PK does not fit into checkpoint control 

and regulation of DNA end resection owing to its key role in c-NHEJ. However, 

accumulating data generate evidence about a dual role of DNA-PKcs on c-NHEJ and 

HR (135-138) but the exact mechanism by which DNA-PKcs regulates HR is still 

unclear. Since this is not the only exception regarding non-canonical roles of 

DNA-PKcs, besides its necessity in c-NHEJ, the following section will review the role 

of this kinase in the DNA damage response and beyond. 
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1.6. The role of DNA-PK holoenzyme in DSB repair and beyond 

1.6.1. The DNA-PK complex in DSB repair and its regulation 

The first indication about a DNA-activated protein kinase in human cells was reported 

in 1985 by Anderson and colleagues, where they present evidence about dsDNA-

dependent phosphorylation of multiple proteins in eukaryotic cells including the heat 

shock protein HSP90 (139). Now we know that DNA-dependent protein kinase (DNA-

PK) is composed of a large catalytic subunit (DNA-PKcs,  ~460 kDa, gene name 

PRKDC), and a dsDNA-binding component KU70/80 heterodimer (140). Originally, 

DNA-PKcs was termed p350 (indicating a ~350 kDa ATP-binding polypeptide) (141).  

Due to its size, the crystal structure of DNA-PKcs at 6.6 Å resolution was resolved 25 

years later, in 2010 (142). Despite the low resolution, the position of all known 

domains in a 3D model is now resolved (Figure 8). KU70/80 is a highly abundant 

protein complex initially identified as an autoimmune antigen. KU70/80 binds with 

high affinity dsDNA in a sequence independent manner and loads DNA-PKcs onto 

DNA (140, 143). The resulting association of KU70/80 with DNA-PKcs leads to the 

assembly of an enzymatically active complex with preference to phosphorylate 

SQ/TQ sequences (64, 143). 

DNA-PKcs alone has a weak kinase activity in the presence of dsDNA, but the 

presence of KU70/80 increases its kinase activity 5-10 fold and also stabilizes the 

formation of the DNA-PKcs-KU-DNA complex (64). In vitro experiments with highly 

purified DNA-PKcs and KU70/80 revealed that under low salt conditions DNA-PKcs 

is able to bind dsDNA ends in the absence of KU70/80, while under higher salt 

conditions activation of DNA-PKcs is dependent on KU70/80 (144). Once activated, 

DNA-PK phosphorylates itself as well as other factors involved in NHEJ apparatus 

such as both KU subunits and XRCC4 (143). 

DNA-PKcs belongs to the PIKK family together with ATM, ATR, mammalian target of 

rapamycin (mTOR), suppressor of morphogenesis in genitalia (SMG1) and 

transformation/transcription domain-associated protein (TRRAP) (145).  Despite the 

sequence similarities to the PI3K family of kinases, PIKK family members are not 

lipid kinases and are referred as atypical protein kinases (146, 147). 
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Figure 8: The structure of DNA-PK catalytic subunit: front (left) and side (right) view of 
the molecule. The many α-helical HEAT repeats (helix-turn-helix motifs), indicated with 
green, contribute to the formation of a ring structure. The head/crown region contains the 
C-terminal region that carries the FAT and FATC domains (magenta) and the kinase domain 
(yellow). Through the putative DNA-binding domain (cyan) DNA-PKcs may bind directly to 
DNA and become active independently of KU subunits. Figure obtained from Sibanda et al. 
2010, Nature (142). 

 

Unlike ATM and ATR, a clear DNA-PKcs homolog has not been identified in the 

genome of lower eukaryotes such as Saccharomyces cerevisiae. Interestingly, both 

KU70 and KU80 were shown to be present in distantly related organisms (from yeast 

to human) (148). However, rodents have much lower levels of both DNA-PKcs and 

KU than primate cells. The correlation between DNA-PK levels and species’ life-span 

suggests that the evolutionary breakthrough of DNA-PKcs is a mechanism to 

enhance genomic stability (143). 

Being involved in V(D)J recombination, loss of DNA-PKcs function leads to defective 

DSB repair and V(D)J recombination, and, thus, to hypersensitivity to IR and 

nonfunctional immune system. (149-153). This phenotype, defined as severe 
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combined immunodeficiency (SCID), has also been described in KU80-deficient mice 

(154, 155). 

As already outlined above, free dsDNA ends and the DNA-binding factor KU70/80 

represent the primary activators of DNA-PKcs. Another important mechanism of 

DNA-PK regulation is through posttranslational modifications. It has been reported 

that extensive auto-phosphorylation of DNA-PKcs results in inhibition of its kinase 

activity and release of DNA-PKcs from the breaks (156). Two major auto-

phosphorylation site clusters, ABCDE and PQR, have been analyzed, while the 

phosphorylation sites L and M as well as N and JK clusters still remain undefined 

(Figure 9) (56, 138, 157). There are reports consistent with the model of activating 

DNA-PKcs by intra-molecular (cis) auto-phosphorylation, as well as in trans by the 

synapsed opposing complex (158-161). As a highly dynamic molecule, a 

conformational change at its N-terminus may also regulate its kinase activity 

independently of DNA or KU70/80 (162). Additionally, dissociation of DNA-PKcs from 

the complex with DNA is also stimulated through phosphorylation of DNA-PKcs by 

c-Abl tyrosine kinase. The binding of c-Abl to the KU association site at the carboxy-

terminal domain of DNA-PKcs reveals antagonistic functions of KU and c-Abl toward 

DNA-PK activity (163, 164). 

 

 

Figure 9: Domains within DNA-PK catalytic subunit. Auto-phosphorylation sites are 

shown in red. LRR indicates the leucin-rich region. FAT domain is called after the three 
kinases sharing the domain FRAP/mTOR, ATM and TRRAP. PI3K and PRD designate PI3 
kinase domain and PI3K regulatory domain, respectively. FAT-C specifies the FAT domain at 
the extreme C-terminus. Figure obtained from Lieber, 2010 (56). 

DNA-PKcs is also an in vivo substrate of other PIKK kinases like ATM and ATR as 

reported by several studies (135, 165, 166). Another post-translational event that 
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stimulates DNA-PKcs activity in vitro is the association of Poly-adenosine 

diphosphate (ADP)-ribose by PARP-1, which seems to be independent of KU70/80 

(167). 

In addition to the post-translational modifications, it has been reported that DNA-PK 

activity can also be regulated through protein-protein interactions. An example in this 

regard is the human KU80 Autoantigen Related Protein-1 (KARP-1) gene product, 

which is expressed from the KU80 locus through an upstream promoter and 

additional exons. This 9-kDa extended derivative of KU80 was reported to modulate 

DNA-PK activity (168, 169). 

1.6.2. DNA-PKcs in the DNA damage checkpoint 

DNA-PKcs is considered as a crucial component of c-NHEJ pathway, which is 

independent of checkpoint activation. Therefore, the role of DNA-PKcs in checkpoint 

signaling has been discounted. Nevertheless, DNA-PKcs has been shown to 

phosphorylate proteins involved in checkpoint signaling pathways. 

A model was proposed, where DNA-PK together with ATM and ATR modulate p53 

activity via phosphorylation of its N-terminus, which results in disruption of 

MDM2/p53 interaction and subsequent stabilization of p53 (143). This links DNA-PK 

to the regulation of G1 checkpoint. 

As briefly mentioned above, the 32-kDa subunit of the ssDNA-binding RPA is a target 

of ATM, ATR and DNA-PK, where Ser4 and Ser8 residues have been described to 

be DNA-PK-specific (170, 171). RPA-coated ssDNA intermediates during HRR 

activate ATR and therewith the G2 checkpoint. In a proposed mechanism by Serrano 

et al. phosphorylation of RPA32 by DNA-PKcs and p53 by ATM and ATR leads to 

dissociation of p53-RPA complex and promotion of HR (172). 

Since DNA-PKcs phosphorylates several substrates involved in checkpoint 

activation, an early study from 1997 proposed that the IR-induced cell cycle arrest in 

human cells lacking DNA-PK activity is abrogated. On the contrary, the DNA-PKcs-

deficient cell line M059J not only did show proper G2/M cell cycle arrest but also 

twenty-four hours after irradiation the fraction of G2/M cells was significantly higher 

when compared to the DNA-PK-proficient cell line M059K (173). It has been 
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concluded that DNA-PKcs is not required for the activation of G2 checkpoint and 

although DNA-PKcs phosphorylates DNA damage sensing molecules, other kinases 

may compensate for its absence (173). 

Similar to G2-checkpoint activation, our laboratory showed that DNA-PKcs is required 

for the recovery of IR-induced S-phase checkpoint as measured by total DNA 

synthesis. This effect seems to be DNA-PKcs specific and independent of c-NHEJ 

abrogation since other c-NHEJ components examined, Ligase IV, XRCC4 and KU80, 

failed to establish the phenotype observed in DNA-PKcs deficient cells (174). 

Similarly, Oakley and colleagues reported that DNA-PKcs defect is associated with 

impaired replication checkpoint and that DNA-PKcs contributes to CHK1 activation in 

response to hydroxyurea, CPT or etoposide treatment (175). The phosphorylation of 

RPA32 at Ser4/Ser8 by DNA-PKcs seems to be of great importance for the 

regulation of replication stress checkpoint activation (171). 

Interestingly, a study by Tomimatsu et al. implicated DNA-PKcs in activating DNA 

damage response in ATM-deficient cells by phosphorylating DDR proteins involved in 

chromatin remodeling like KRAB-associated protein 1 (KAP-1) (176). 

Hence, DNA-PK catalytic subunit appears to be important contributor to the recovery 

of IR-induced S- and G2-checkpoints and its exact role in DNA damage signaling 

remains to be defined. 

1.6.3. Other functions of DNA-PK in the cell 

The kinase activity of DNA-PK has been extensively studied by virtue of its 

requirement for NHEJ and V(D)J recombination in mammalian cells (150, 177, 178). 

Nevertheless, accumulating data reveal damage-independent functions of DNA-PK, 

such as transcriptional modulation, viral infection, telomere protection and mitosis. 

DNA-PKcs was originally found as a kinase that phosphorylates transcription factor 

Sp1 upon binding to GC-rich promoter sequences (179). Another study reported a 

regulatory role of DNA-PK on RNA polymerase II, which catalyzes DNA transcription 

(180). DNA-PKcs/KU70/KU80 complex, together with Topoisomerase IIβ, is also 

recruited to active transcription units (181). A more recent study implicates 

DNA-PKcs as a transcription modulator in prostate cancer progression (182). Other 
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data also implies a role for DNA-PKcs in mitosis which might be independently of KU 

and DNA damage (183-185). 

DNA-PKcs was reported previously to suppress infection of cells with Herpes simplex 

virus by inhibiting viral replication (186, 187). Recently, DNA-PK activity has been 

implicated in HIV-1-induced CD4 lymphocyte death, which leads to 

immunodeficiency (188). 

DNA-PKcs is also required for maintenance of the chromosome ends (telomeres) 

(189-191). If left unprotected, telomeres can be recognized as DSBs and their ‘repair’ 

may result in chromosome fusions that may lead to genomic instability. 

All these findings define DNA-PKcs as a multifunctional kinase regulating many 

aspects of cellular physiology. This thesis focuses on the less-defined role of DNA-

PKcs in DNA damage signaling, particularly G2 checkpoint activation after ionizing 

radiation. 

  



 ______________________________________________________________________ AIMS OF THE THESIS 

 

26 

 

2. AIMS OF THE THESIS 

DNA-PKcs is an evolutionally new DNA repair enzyme functioning as an alignment 

protein for broken DNA ends. DNA-PKcs is an abundant protein, as it represents up 

to 1% of total soluble protein from HeLa nuclei (192). The presence of DNA-PKcs in 

eukaryotic genomes shifts the predominant repair pathway for DSBs from HRR in 

yeast to NHEJ in primates, i.e. with increasing genome size genome integrity 

becomes more crucial than error-free repair. Since DNA-PKcs requires the KU70/80 

heterodimer to be recruited to the break, one may ask why the cell has developed 

such a big protein (460 kDa) with auto-phosphorylation capacity, which is not capable 

to recognize a DNA break. The many phosphorylation sites of DNA-PKcs may lead to 

a series of conformational changes of the molecule and therewith to multiple 

functions in the cell beyond DSB repair. 

As a central component of c-NHEJ, the contribution of DNA-PKcs to DNA double-

strand repair is well characterized. DNA-PKcs’ role in signaling and checkpoint 

response has been discounted and therefore requires in depth studies. Recent 

experiments from our laboratory provide evidence for a role of DNA-PKcs in 

checkpoint response, particularly for cells irradiated during S and G2 phase of the cell 

cycle. The aim of this study is to contribute to this effort by investigating how DNA-

PKcs contributes to checkpoint activation and development. Additionally, the role of 

the master signaling kinases ATM and ATR and a possible cross-talk between 

ATM/ATR and DNA-PKcs has been scrutinized. 

To study the contribution of DNA-PKcs in checkpoint response the M059J cell line is 

commonly used, which fails to express the catalytic subunit of DNA-PK and is 

radiosensitive (193). Its paired and control counterpart cell line, which was isolated 

from the same tumor specimen, M059K, is relatively radioresistant, contains a 

functional catalytic subunit and expresses normal levels of DNA-PK activity (194). 

Asynchronously growing cells exposed to IR activate DNA damage checkpoints, 

which result in cell cycle delay. The resulting abnormal cell cycle distribution is easily 

analyzed by measuring the DNA content of individual cells by fluorescence-activated 

cell sorting (FACS). Increase of the G2 fraction of cells reflects activation of the G2 

checkpoint and cell cycle arrest in G2 phase. The associated delayed mitosis can be 
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studied more precisely by the combined staining of DNA and mitotic marker proteins 

such as phosphorylated histone H3 at Ser10 that allows estimation of the mitotic 

index (MI). Furthermore, we sought to expand previously published G2 arrest 

analyses (173) by using different doses of IR and multiple time-point intervals after 

irradiation. 

In regard to the requirement of end resection for activating DNA damage checkpoint 

in G2 phase, accumulation of RPA in the vicinity of the break was visualized as 

discrete foci by immunofluorescence (IF) and served as a marker for ongoing 

resection. With reference to G2 checkpoint, the kinetics of RPA foci formation is 

studied in G2 phase cells selected by appropriate staining. In an effort to unveil the 

contribution of each component of DNA-PK holoenzyme to the end resection 

process, we applied RNA interference (RNAi) to reduce the gene expression of 

KU70/80, combined with a specific inhibitor of DNA-PKcs. 

The outcome of these experiments should clarify the role of DNA-PKcs on DNA 

damage response. 
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3. MATERIALS AND METHODS 

3.1. Materials 

3.1.1. Major laboratory apparatuses 

Laboratory apparatus Model Provider 

Cell and Particle Counter 
Z2 Coulter 
Counter® 

Beckman Coulter Inc., USA 

Cell culture CO2 incubators  MCO-18AC(UV) Sanyo, Japan 

Centrifuge MultifugeTM 3S-R Heraeus, Germany 

Centrifuge (tabletop) Biofuge FrescoTM Heraeus, Germany 

Confocal laser scanning 
microscope 

TCS SP5 Leica Microsystems, Germany 

Electroporation device NucleofectorTM I 
Lonza Cologne GmbH, 
Germany 

Flow cytometer  GalliosTM Beckman Coulter Inc., USA 

Laminar flow cabinet HERAsafeTM Heraeus, Germany 

Imaging scanner Typhoon 9400 GE Healthcare, USA 

Infrared imaging system Odyssey® LI-COR Biosciences, Germany 

Inverted phase contrast 
microscope  

Motic AE31 Motic, China 

NanoDropTM 

spectrophotometer 
ND-1000 Thermo Scientific, Germany 

pH meter InoLab® WTW GmbH, Germany 

SDS-PAGE equipment  Bio-Rad, USA 

UV/VIS  Spectrophotometer UV-2401PC Shimadzu, Japan 

Wet transfer system  Bio-Rad, USA 

X-ray machine, Isovolt 320 
HS 

 
General Electric, 
Pantak/Seifert 

 

3.1.2. Cell lines 

Name Characteristics Cell type Growth media 

Human cell lines 

82-6 hTERT wt fibroblast MEM + 1% NEAA 

M059K repair-proficient malignant glioblastoma DMEM 

M059J DNA-PKcs deficient malignant glioblastoma DMEM 

Mouse cell lines 

Exo1 wt Exo1 proficient mouse fibroblasts DMEM 

Exo1-/- Exo1 knock-out mouse fibroblasts DMEM 
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3.1.3. Plasmids 

Name Characteristics Provider 

GFP expression vector pEGFP-N1 vector Clontech 

 

3.1.4. Antibodies for immunofluorescence microscopy 

Name Specificity Host / Type Dilution Provider 

Primary antibodies 

Cyclin B1 (H433) Human Rabbit polyclonal 1/150 Santa Cruz 

RPA70 
Human, 
mouse 

Mouse 
monoclonal 

1/300 
Kenny et al., 
1990 (195) 

Secondary antibodies 

AlexaFluor®488  Mouse IgG Goat polyclonal 1/400 Invitrogen 

AlexaFluor®568 Rabbit IgG Goat polyclonal 1/400 Invitrogen 

 

3.1.5. Antibodies for western blot 

Name Specificity Host / Type Dilution Provider 

Primary antibodies 

KU70 (529) Human 
Mouse 
monoclonal 

1/4.000 GeneTex 

KU86 (H-300) Human, mouse, rat Rabbit polyclonal 1/5.000 Santa Cruz 

CtIP (D76F7) Human 
Rabbit 
monoclonal 

1/1.000 Cell Signaling 

MRE11 Human, mouse, rat Rabbit polyclonal 1/5.000 
Novus 
Biologicals 

NBS1 Human, mouse Rabbit polyclonal 1/1.000 
Novus 
Biologicals 

GAPDH Human, mouse, rat 
Mouse 
monoclonal 

1/10.000 
Merck 
Millipore 

α-Tubulin 
(AA13) 

Human, mouse, rat 
Mouse 
monoclonal 

1/10.000 Sigma-Aldrich 

Secondary antibodies 

IRDye® 
680LT 

Mouse IgG Goat polyclonal 1/10.000 LI-COR Biosc. 

IRDye® 
680LT 

Rabbit IgG Goat polyclonal 1/10.000 LI-COR Biosc. 

IRDye® 
800CW 

Mouse IgG Goat polyclonal 1/10.000 LI-COR Biosc. 

IRDye® 
800CW 

Rabbit IgG Goat polyclonal 1/10.000 LI-COR Biosc. 
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3.1.6. Antibodies for flow cytometry 

Name Specificity Host / Type Dilution Provider 

Primary antibody 

Histone H3 (pS10) Human, mouse Rabbit polyclonal 1/5000 Abcam 

Secondary antibody 

AlexaFluor®488 Rabbit IgG Goat polyclonal 1/400 Invitrogen 

 

3.1.7. Software 

Software Provider Application 

Adobe® Creative Suite® 6 Adobe Systems Inc., USA Graphic design 

EndNote® X7 Thomson Reuters, USA Reference management 

ImarisXT® 7.0 
Bitplane Scientific 
Solutions, Switzerland 

Immunofluorescence 
image analysis 

Kaluza® 1.2 for Gallios 
Beckman Coulter Inc., 
USA 

Flow cytometry analysis 

Leica Application Suite 
Advanced Fluorescence 
(LAS AF) 

Leica Microsystems, 
Germany 

Confocal microscopy  
image acquisition 

Microsoft Office® 2010 Microsoft, USA 
Word processing (Word), 
Data analysis and 
calculation (Excel) 

WinCycle AV 
Phoenix Flow Systems, 
USA 

Cell cycle analysis 

SigmaPlot® 11.0 Systat Software Inc., USA 
Graphical presentation of 
data 
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3.1.8. Chemicals 

Name        Provider  

Aluminium sulfate, Al2(SO4)3    Roth  

Ammonium persulfate (APS)     Roth  

Beta (β)-mercaptoethanol      Merck  

Bromphenol blue       Sigma-Aldrich  

Bovine serum albumin (BSA) fraction V   Roth 

Calcium nitrate, Ca(NO3)2      Roth 

CHK2i        Calbiochem 

Coomassie brilliant blue G-250     Serva 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES)      Roth 

4’,6-diamidino-2-phenylindole (DAPI)    Serva  

Dimethyl sulfoxide (DMSO)     Sigma-Aldrich 

Disodium hydrogen phosphate, Na2HPO4  Roth 

Ethanol absolute       Sigma-Aldrich  

Ethylenediaminetetraacetic acid (EDTA)  Roth 

Gelatin from cold water fish skin     Sigma-Aldrich  

Glucose        Roth  

Glycerol        Roth  

Glycine        Roth 

Hydrochloric acid, HCl     Roth 

KU55933        Calbiochem 

L-lactic acid       AppliChem 

Magnesium chloride, MgCl2     Sigma-Aldrich 

Methanol absolute       Sigma-Aldrich  

Mirin        Santa Cruz Biotechnology 

Monosodium phosphate, NaH2PO4   Roth  

Non-fat dry milk       Roth 

NU7441        Tocris Bioscience 

Paraformaldehyde (PFA)     Roth 

Phosphoric acid, H3PO4     Roth  

Potassium chloride, KCl      Roth 
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Potassium dihydrogen phosphate, KH2PO4  Roth 

Potassium hydroxide, KOH    Roth 

PromoFluor Antifade Reagent    PromoKine 

Propidium iodide (PI)     Sigma-Aldrich 

Protease inhibitor cocktail     Thermo Scientific 

RIPA buffer        Thermo Scientific  

RNasa A        Sigma-Aldrich 

Rotiphorese® Gel 30 (37,5:1), 

30% acrylamide/bis-acrylamide solution   Roth  

Sodium chloride, NaCl      Roth  

Sodium hydroxide, NaOH      Roth  

Sodium dodecyl sulfate (SDS)     Roth 

Sorbitol       Fluka 

Tetramethylethylanediamine (TEMED)    Fluka  

Tris(hydroxymethyl)aminomethane (Tris)   Roth  

Triton X-100        Roth 

Tween®-20 (polysorbate 20)     Roth 

UCN01       Calbiochem 

VE821       Haoyuan Chemexpress 

 

3.1.9. Cell culture consumables 

Name        Provider  

Dulbecco’s Modified Eagle Medium (DMEM)  Sigma-Aldrich 

Fetal bovine serum (FBS)     Gibco Life Sciences 

McCoy’s 5A (Modified) Medium    Sigma-Aldrich 

Minimum essential medium (MEM)   Sigma-Aldrich 

Non-essential amino acids (NEAA)   Merck Millipore / Biochrom 

Penicillin       Sigma-Aldrich 

Phosphate-buffered saline (PBS)    Roth 

Streptomycin       Sigma-Aldrich 

Trypsin       Biochrom 
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3.2. Methods 

3.2.1. Cell cultivation 

Cell lines were maintained at 37 °C in a humidified incubator with 5 % CO2. Cells 

were cultured as monolayers in 100 mm cell culture dishes with 15 ml of growth 

medium supplemented with 10 % fetal bovine serum (FBS), 100 μg/ml penicillin and 

100 μg/ml streptomycin. The growth medium used for 82-6 hTERT was 

supplemented additionally with 1% non-essential amino acids (NEAA). Exponentially 

growing human cells were plated into 100 mm dishes at concentrations of 

0.5-1.2x106 cells per dish and passaged every two days. Faster growing cells of 

other species were seeded in lower numbers. 

For passaging or harvesting the cells, growth media was removed, the cell 

monolayer was washed once with 1x phosphate buffered saline (PBS) and 

subsequently with 2 ml of 0,05 % Trypsin-EDTA. To let the cells detach from the 

surface, the culture dishes were incubated for 3 min at 37°C. Trypsin was then 

inactivated by adding fresh growth media and cells were resuspended to avoid cell 

aggregation. For determination of the cell number an electronic particle counter 

(Beckman Coulter) was used. 

Cells were discarded after approximately 30 passages to avoid genetic drift. After 

thawing frozen cells, the initial two passages were not used for experiments. All cells 

used in experiments were in the exponential phase of growth. Corresponding growth 

media and other supplements for cell culture are listed in 3.1.2. 

3.2.2. Cryopreservation of cells 

For long-term storage, living cells were maintained at low temperatures using the 

protocol of Borrelli et al. 1987 with dimethylsulfoxid (DMSO) as a cryoprotective 

agent (196). This freezing protocol ensures adequate recovery after thawing with no 

reduction in plating efficiency or delayed cell growth. 

After trypsinization approximately 4x106 exponentially growing cells were centrifuged 

at 4°C and the pellet was gently resuspended in 250 µl of cold freezing solution A, 

containing 5 mM KH2PO4, 25 mM KOH, 30 mM NaCl, 0.5 mM MgCl2, 20 mM L-lactic 

acid, 5 mM glucose, and 0.2 M sorbitol. Cells were further kept on ice. After addition 
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of 250 µl freezing solution B, which is identical to freezing solution A but 

supplemented with 20 % DMSO, cells were mixed thoroughly and immediately frozen 

at -150°C in cryovials. 

The thawing procedure included rapid thawing of cells and their dilution in pre-

warmed (37°C) growth medium at a density of ~2 x 106 cells per 100 mm cell culture 

dish. On the day after thawing the cells, the growth media was changed to remove 

DMSO. 

3.2.3. X-ray irradiation 

Irradiation of cells was carried out at room temperature (RT) using X-ray machine 

(GE Healthcare), operated at a maximum energy of 320 kV, 10 mA with 1.65 mm 

aluminium filter. To achieve an optimal dose rate, the distance between X-ray tube 

and irradiation table was adjusted according to the cell culture vessel. Thereby, 

30-60 mm diameter cell-culture dishes and 25 cm2 flasks were irradiated at a 

distance of 50 cm, while 100 mm diameter dishes and 75 cm2 flasks were exposed to 

IR at 75 cm distance from the irradiation source. Additionally, rotation of the 

irradiation table during exposure reduced intensity fluctuations within the irradiation 

field. Different X-ray doses were applied to induce various numbers of DSBs. The 

dose rates at 50 cm and 75 cm distance were ~2.6 Gy/min and ~1.2 Gy/min, 

respectively. Controls were not exposed to irradiation. In order to avoid temperature 

fluctuations while performing H3pS10 assay, cells were irradiated on a thin-walled 

aluminium box filled with pre-warmed water. 

3.2.4. Drug treatments 

For treatments with kinase inhibitors, fresh and pre-warmed growth medium 

supplemented with each drug was added to the cells 1 hour before irradiation. Final 

concentrations of the drugs are listed below. Control cells were treated with the 

corresponding concentrations of DMSO. For the H3pS10 assay specifically, the 

growth media was not exchanged; rather the kinase inhibitors were dissolved in a 

small volume of media and distributed to each cell culture flask to reach the desired 

final concentration. After irradiation, as well as treatment with kinase inhibitors, the 

cells were returned in the incubator or in the warm-room for the specified time 

intervals. 
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All experiments for determination of mitotic index were performed in a warm-room 

located close to the irradiation source and specifically designed for highly sensitive 

assays susceptible to temperature fluctuations. 

Table 1: Used drugs 

Drug Drug description Designation 
Working 
concentration 

CHK2i Specific inhibitor of CHK2  400 nM 

KU55933 Specific inhibitor of ATM ATMi 10 µM 

Mirin Inhibits MRE11 nuclease activity  75 µM 

NU7441 Specific inhibitor of DNA-PKcs DNA-PKi 5 µM 

UCN01 Specific inhibitor of CHK1 CHK1i 100 nM 

VE821 Specific inhibitor of ATR ATRi 5 µM 

 

3.2.5. Transfection of cells with siRNA 

RNA interference (RNAi) is a conserved adaptive response where RNA molecules 

suppress post-translational gene expression by degradation of the target mRNA 

(197). As a research tool, RNAi via transfection is used to introduce double-stranded 

short interfering RNA (siRNA) molecules into cells in order to prevent gene 

expression. 

Transfection is a non-viral method that enables the introduction of any naked nucleic 

acid molecules into cultured cells. In this thesis, transfection of siRNA duplexes into 

cultured eukaryotic cells was performed using Nucleofector® Technology (Lonza). 

This electroporation-based method developed by Amaxa® applies short electric 

pulses to temporarily destabilize the cell membrane and thus make it permeable. In 

this way, siRNA oligonucleotides in the surrounding media move into the cytoplasm. 

Two days before transfection cells were seeded on 100 mm dishes. To avoid cell 

mortality and resistance to uptake macromolecules after transfection, cells were 

maintained in the log phase of growth. Cell density (confluency) at the time of 

nucleofection® was between 40-70% depending on the cell line. 

siRNA duplexes were purchased from Eurogentec (if not stated otherwise). The 

constructs consisted of ~19 base pairs with 2-base deoxynucleotide overhangs 

(Table 3). Cells were harvested by trypsinization and centrifuged at 1200 rpm for 3 

min. Up to 4 x 106 cells were resuspended in 100 μl of custom transfection buffer 

(80 mM NaCl, 5 mM KCl, 12 mM glucose, 25 mM HEPES, 40 mM 
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Na2HPO4/NaH2PO4, 20 mM MgCl2, 0.4 mM Ca(NO3)2) and 200 pmol siRNA was 

added. Cells were then quickly transferred into an Ingenio® cuvette and subjected to 

nucleofection® with the corresponding program (Table 2). The sample was 

immediately removed from the cuvette and transferred into freshly prepared pre-

warmed (37 °C) growth medium. The untreated control sample (mock-transfection) 

was comprised of cells that were not treated with siRNA but subjected to 

nucleofection® procedure. For immunofluorescence experiments, cells were directly 

plated in 30 mm dishes with glass coverslips and directly returned to the incubator. 

The transfected cells were used for experiments 48 hours after transfection. For 

western blot analysis cells were plated in 100 mm dishes and protein detection was 

performed 24 to 72 hours post transfection. Delivery efficiency of siRNA was 

confirmed using Green Fluorescent Protein (GFP) expression vector, where green 

fluorescence was measured by flow cytometry 24 hours after transfection. Thereby, 

the transfection efficiency is defined as the percentage of cells in the population 

expressing GFP protein. 

Table 2: Nucleofector® programs 

Cell line Program 

82-6 hTERT X-23 

M059K X-01 

M059J X-01 

Table 3: siRNA sequences 

Target 
mRNA 

siRNA sequence (5’→3’) Provider/Reference 

CtIP GCUAAAACAGGAACGAAUCdTdT 
Yu and Chen, 2004 (117) 
Sartori et al., 2007 (74) 

DNA2 #9: AGACAAGGUUCCAGCGCCAdTdT 
Peng et al., 2012 (198) 

DNA2 #11: AAGCACAGGUGUACCGAAAdTdT 

EXO1 CAAGCCUAUUCUCGUAUUUdTdT Gravel et al. 2008, (199) 

EXO1  #1 
FlexiTube GeneSolution 
siRNA (Product no. 
1027416), Qiagen 

EXO1  #2 

EXO1 #7 

EXO1 #8 

KU70 GAGUGAAGAUGAGUUGACAdTdT Britton et al., 2013 (200) 

MRE11 GGAGGUACGUCGUUUCAGAdTdT 
Yuan and Chen, 2010 
(201) 

NBS1 #1:UAACCUUGUUGGCCUGAAGUAGAUG 
Shiotani et al., 2013 (202) 

NBS1 #2: CCAACUAAAUUGCCAAGUAUU 
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3.2.6. Flow cytometry analyses 

3.2.6.1. Cell cycle analysis by flow cytometry 

Flow cytometry analysis of cell suspensions stained with fluorescent dyes that bind to 

DNA enables the measurement of DNA content of individual cells. Propidium iodide 

(PI) has a red fluorescence and can be excited with an Argon laser (488 nm). PI 

stains all double-stranded nucleic acids; therefore the PI solution contains RNAase 

which clears away all dsRNA so that the bound PI reflects only the amount of DNA. 

Prior to cell cycle analysis, cells were harvested, fixed in pre-chilled 70 % ethanol 

and stored at least over night at 4°C. Cells were then spun down, ethanol was 

aspirated and the cell pellet was resuspended in PI staining solution. After 15 min-

incubation at 37°C in a water bath, cells were subjected for measurement of the DNA 

content on a Beckman Coulter Gallios® flow cytometer with a 620 nm bandpass filter. 

PI solution was not removed during measurement, where 10.000-20.000 events per 

condition were analyzed. Proper gating based on forward and side scattering was 

ensured to detect the cells of interest. Cell cycle analysis was performed using 

WinCycleTM software. 

3.2.6.2. Bivariate flow cytometry 

The histogram obtained with PI staining does not show the cells in mitosis (M), which 

have the same DNA content as cells in G2 phase. Therefore, two-parameter 

(bivariate) flow cytometry was used for simultaneous analysis of DNA content and 

phospho-histone H3 (Ser10) staining as a marker of mitotic cells (203). In order to 

avoid temperature fluctuations, the cell harvesting procedure was performed with 

pre-warmed solutions in a warm-room with constant temperature of 37°C. On the day 

before the experiment, the caps of the cell culture flasks were closed to ensure 

steady state CO2 atmosphere and the flasks were relocated from the incubator to the 

warm-room. 

Cells were first washed briefly with PBS. Since mitotic cells are rounded up and can 

be easily detached mechanically from the surface, aspiration was avoided and the 

PBS solution was transferred to the 15 ml-Falcon® tube. Cells were then harvested 

by trypsinization and centrifuged for 5 min at 1200 rpm at 4°C. After fixation in pre-
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chilled 70 % ethanol, cells were stored over night at -20°C. For immunofluorescent 

staining, cells were incubated for 5 min on ice with 500 μl of cold PBS containing 

0.25 % Triton X-100 and centrifuged for 5 min at 4°C. After one-hour incubation at 

RT in 1 ml blocking buffer (PBG), the cells were stained with 100 μl of primary 

antibody (see 3.1.6) diluted in blocking buffer on a shaker for 1 h at RT. 

Subsequently, the cells were spun down for 3 min at 1200 rpm and the supernatant 

with unbound antibody was aspirated. The cell pellet was washed once with 1 ml 

PBS and stained with secondary antibody as outlined above, but in the dark for 1 h. 

Finally, the cells were washed once with PBS, stained with propidium iodide and 

subjected to analysis. Totally 20.000 cells per condition were analyzed. Further 

acquisition of H3pS10-AlexaFluor® 488 signal was achieved by gating the fraction of 

diploid cells based on DNA-PI. Compensation was not applied for this kind of 

measurement. Data analysis was performed using Kaluza 1.2 software. The mitotic 

index was determined as the fraction of cells in mitosis. 

Importantly, not more than 1 x 106 cells per sample were used for staining and 

minimum volume of PBS was used for washing, where ~50 µl of supernatant was left 

during aspiration in order to avoid losing cells after each centrifugation step. 

Table 4: Solutions for flow cytometry 

 

 

 

 

 

 

 

 

 

Name Compounds 

PBG 
0.2 % gelatin 
0.5 % BSA (fraction V) 
1x PBS pH 7,4 

Permeabilization solution 
0.25 % Triton X-100 
PBS pH 7,4 

Propidium iodide (PI) staining 
 

40 µg/ml propidium iodide 
62 µg/ml RNaseA 
 
Buffer for RNaseA, pH 7.6  
10 mM Tris 
100 mM EDTA 
50 mM NaCl 
 
Buffer for PI staining 
0.1 M Tris 
0.1 M NaCl 
5 mM  MgCl2 
0.05 % Triton X-100 



 _________________________________________________________________ MATERIALS AND METHODS 

 

39 

 

3.2.7. Immunofluorescent staining 

For immunofluorescent detection of IR-induced foci (IRIF), cell were plated on 20 mm 

glass coverslips in 30 mm cell culture dishes and grown for two days. 82-6 hTERT 

cells were plated in a concentration of 80 000 cells per dish, while M059K and M059J 

cells were seeded in a concentration of 100 000 and 200 000 cells/dish, respectively. 

Prior to antibody staining, cells were transferred in fixative solution (PFA, 2% 

paraformaldehyde) for 15 min, washed once with PBS and then permeabilized with 

P-solution (100 mM Tris pH 7.4, 50 mM EDTA pH 8.0, 0.5 % Triton X-100) for 5 min 

at RT. Subsequently, cells were washed with PBS and blocked with phosphate-

buffered gelatin (PBG: 0.2 % gelatin, 0.5 % bovine serum albumin, PBS) overnight at 

4°C or at least 1 h at RT. For cell cycle analysis, the remaining cells were collected 

and fixed with pre-chilled 70 % ethanol. 

All antibodies used for immunofluorescent staining were diluted in PBG (see 3.1.4). 

For every coverslip 80-100 µl of antibody solution was added on a parafilm sheet. 

Coverslips were gently inverted with the cells facing down onto the drop of antibody 

solution. After incubating with primary antibodies 1.5 h at RT, cells were washed 

three times with PBS for 5 min and incubated with AlexaFluor®-conjugated secondary 

antibodies in dark for 1 h. To visualize nuclei, the cells were counterstained with 

25 ng/ml 4’,6-diamidino-2-phenylindole (DAPI) dissolved in PBS for 15-20 min at RT. 

Finally, cells were washed with PBS (3 times for 5 min) and mounted on microscopic 

slides using PromoFluor Antifade Reagent (PromoKine) diluted 1:1 with distilled 

water. After solidification of the mounting media in dark at RT, 3D-images were 

captured using confocal microscope (Leica Microsystems). 

Table 5: Solutions for immunofluorescence 

Name Abbreviation Compounds 

4’,6-diamidino-2-phenylindole DAPI 
25 ng/ml DAPI 
1x PBS pH 7,4 

Phosphate buffered gelatin 
(Blocking buffer) 

PBG 
0.2 % gelatin 
0.5 % BSA (fraction V) 
1x PBS pH 7,4 

2% paraformaldehyde PFA 2 % PFA in Milli-Q H2O 

Permeabilization solution P-Solution 
100 mM Tris pH 7,4 
50 mM EDTA 
0.5 % Triton X-100 
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3.2.8. Laser Scanning Confocal Microscopy 

One of the most important advantages of laser scanning confocal microscopy 

(LSCM) toward conventional wide-field fluorescence microscopy is optical 

sectioning – the ability to obtain high-resolution pseudo 3D-images of a thin 

specimen at multiple depths. This eliminates the need for a microtome sectioning, 

which is usually used for epifluorescence microscopy. 

The term ‘confocal’ refers to the focus of the final image which corresponds to the 

point of focus in the specimen. The elimination of out-of-focus information is obtained 

by a pinhole aperture situated in a conjugate plane in front of the detector 

(a photomultiplier, PMT) (Figure 10). 

 

Figure 10: Schematic overview of confocal microscopy. Figure obtained from ‘Laser 
Scanning Confocal Microscopy’ from Claxton, Fellers and Davidson 

The pinhole regulates the diameter of the light beam and thus filters the unfocused 

background signal for the final image. Hence, the detector can detect only light that 

has passed through the pinhole (in-focus portion of light). Since the pinhole greatly 

reduces the amount of light in the final image, increase of signal intensity is achieved 

by a laser as an excitation source and a highly-sensitive PMT for better detection of 

the emission light. In contrast to the traditional mercury arc lamp, the laser generates 
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strong monochromatic light with a specific wavelength which can excite more 

fluorophores per fraction of time.  

The laser beam in a LSCM system passing through a light source aperture is 

reflected by a dichroic mirror, recollected by an objective lens and directed to a 

fluorescently labeled specimen in a defined focal plane. The fluorescent emission 

from the specimen in the same focal plane passes back through the dichroic mirror 

and is transmitted to the PMT. Detection with PMT allows signal acquisition of one 

pixel per time. Therefore, the LSCM is equipped with motorized scanning mirrors 

(galvanometric scanner) which scan the horizontal laser beam across the specimen 

in a consecutive manner; one of the scanning mirrors moves the beam along the 

x-axis and the other in y direction. As a result, an optical section from the sample is 

generated that represents the image obtained from a single focal plane (z-section). 

Movement of the sample in the z-axis by a piezoelectric stage allows to collect series 

of multiple z-optical sections (z-stack) which then serve for digital reconstruction of 

the 3D structure by the provided software. This final image of the specimen contains 

only the in-focus information. Additionally, the use of multiple fluorescent dyes and 

lasers with different spectral characteristics (i.e. emission and excitation 

wavelengths) enables simultaneous detection of more than one target molecules 

within the same biological material. 

3.2.9. Image acquisition and foci analysis 

For IRIF analysis, immunofluorescently-stained cells were visualized with LAS AF 

software provided with the LCSM system (Leica).  

In all experiments, a scanning step of 0.5 µm along the z-axis through the whole 

nuclei was set to obtain a z-stack (~10 µm). For each sample 5 to 10 fields were 

scanned to obtain an average of 30 G2 phase cells per sample. The settings for each 

parameter are listed below. Parameters like laser intensity, PMT gain and offset 

varied between individual experiments but were kept constant within a single 

experiment. To avoid ‘spillover’ between different channels during simultaneous 

detection of multiple fluorescent dyes, each channel was scanned sequentially. 

Foci analysis was performed by Imaris® software (Bitplane). Fluorescent spots with a 

diameter above 0.5 µm within each nucleus were determined as foci. Threshold 
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values of the pattern recognition parameters were kept constant during the whole 

analysis process. For data presentation were used 2D projections of the 3D 

renderings of all image stacks. 

Table 6: Settings for image acquisition of Leica TCS-SP5 

Parameter Settings / Value 

Objective HCX PL APO lambda blue; 63.0x1.4 OIL UV 

Pinhole 95.55 µm 

Pixel size 200 nm 

Resolution 1024 x 1024 

Scan direction bidirectional 

Sequential scan between stacks 

Speed 400 Hz 

Zoom factor 1.2 

z-step size 0.5 µm 

 

Table 7: Parameters for detection of fluorescent dyes by LSCM 

Dyes Excitation Filter range 

DAPI 405 nm 410-550 nm 

AlexaFluor® 488 488 nm 495-550 nm 

AlexaFluor® 568 594 nm 575-650 nm 

 

3.2.10. Bradford protein assay 

Bradford assay is a quick and sensitive colorimetric assay for quantitative analysis of 

total protein in solution in the range of 1 – 1500 mg/ml. The assay, first described by 

Marion Bradford in 1976 (204), is based on absorbance shift of the dye Coomassie 

Brilliant Blue G-250 when bound to proteins. 

The unbound form of Coomassie (cationic) is reddish/brown and has a maximum 

absorption at 470 nm. Under acidic conditions, the dye binds to proteins, 

preferentially to basic amino acid residues (arginine, lysine and histidine), and the 

protein-bound dye becomes anionic and blue. The protein-dye complex results in a 

shift in the absorption spectrum from 470 to 595 nm, where the increase of 

absorption is proportional to the amount of bound dye, i.e. concentration of protein in 

the sample. Standard protein (BSA) in a linear concentration range from 0.1 to 

2.0 mg/ml was used for calibration. Protein concentration was determined with 

UV-Vis spectrophotometer. 
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Table 8: Bradford reagent 

Components 5x concentrate 

Coomassie Brilliant Blue G-250 0.05 % (w/v) 

Methanol / Ethanol 25 % (v/v) 

Phosphoric acid (H3PO4) 45 % (v/v) 

 

3.2.11. SDS-PAGE and immunoblotting 

Conventional immunoblotting was applied to detect proteins of interest by separating 

them according to their molecular weight. Proteins from whole cell lysates were 

prepared with radioimmunoprecipitation assay (RIPA) buffer supplied with protease 

inhibitor cocktail according to manufacturer’s instructions (Themo Scientific). 

Thereby, 1x106 trypsinized human cells were lysed with 50-100 µl of RIPA buffer. 

10-50 μg of the protein extracts were mixed 1:1 with 2x Laemmli sample buffer 

(LSB). Before loading on gels, the samples were denatured for 5 min at 96°C and 

spun down for 30 sec at 13.000 rpm. Protein extracts were resolved on 10 % sodium 

dodecyl sulfate (SDS) polyacrylamide gel with a constant voltage of 8,3 V/cm, a 

procedure termed SDS-polyacrylamide gel electrophoresis (SDS-PAGE). 

For western blotting, the separated proteins from the SDS-polyacrylamide gel were 

transferred onto an Odyssey® 0.22 µm nitrocellulose membrane (LI-COR 

Biosciences) for 1h at 100 V by using wet transfer apparatus. Temperature of 4°C 

was kept constant during the entire transfer procedure. The membrane was blocked 

with 5 % non-fat dry milk in TBS-T (0.05 % Tween®-20 in 1x PBS) for 2 hours at RT 

and thereafter incubated with primary antibodies over night at 4°C. Primary 

antibodies were diluted in 2,5 % non-fat dry milk in PBS-T (1:1 dilution of WB 

blocking buffer with PBS-T) as listed in 3.1.5. After washing 3 times (10 min each) 

with PBS-T, the membrane was incubated for 1 h at RT with secondary antibodies 

diluted in PBS-T. Prior to detection, the membrane was washed again as described 

above and let dry. For detecting the proteins of interest Odyssey® Infrared Imaging 

System (LI-COR Biosciences) was used. 
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Table 9: Solutions for SDS-PAGE and western blot wet transfer 

 

Name Abbreviation Compounds 

Solutions for SDS-PAGE 

Rotiphorese® Gel 30 (37,5:1) 

4x Stacking Gel buffer 
pH 6.8 

SGB 
0.5 M Tris-HCl 
0.4 % SDS 

4x Resolving Gel 
buffer, pH 8.8 

RGB 
1.5 M Tris-HCl 
0.4 % SDS 

1x Running buffer 
 

0.025 M Tris-HCl 
0.192 M glycine 
0.1 % SDS 

2x Laemmli sample 
loading buffer pH 6.8 

LSB 

0.065 M Tris-HCl 
0.01 M EDTA 
20 % glycerol 
3 % SDS 
0.02 % bromophenol blue 
5 % β-mercaptoethanol 

5 % Stacking gel 

 

5 %  Rotiphorese® Gel 30 
0.125 M 4x SGB 
0.1 % SDS 
0.1 % APS 
0.2 % TEMED 

10 % Resolving gel 

 

10 %  Rotiphorese® Gel 30 
0.37 M 4x RGB 
0.1 % SDS 
0.1 % APS 
0.1 % TEMED 

Sensitive Coomassie 
solution for staining of 
SDS-PAGE gels 

 

5 % aluminium sulfate 
0.02% Coomassie Brilliant Blue G250 
2 % (w/v) phosphoric acid 
10 % ethanol 

Solutions for western blot wet transfer  

4x Electrode buffer, 
pH 8.3 

 
0.1 M Tris-HCl 
0.7 M glycine 

Western blot transfer 
buffer 

WB-TB 
25% 4x Electrode buffer 
20 % methanol 

Phosphate-buffered 
saline- Tween®-20 
pH 7.6 

PBS-T 
1x PBS 
0.05 %  Tween®-20 

Blocking buffer 
 

5 % non-fat dry milk 
PBS-T 
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4. RESULTS 

Part 1: How does DNA-PKcs contribute to G2 checkpoint response? 

4.1. Persistent G2 checkpoint associated with DNA-PKcs deficiency is ATR-

dependent 

First reports discounted the involvement of DNA-PKcs in G2 phase checkpoint and 

therefore did not consider it as a DSB signaling molecule (173). Rather, DNA-PKcs is 

thought to be exclusively implicated in DSB repair by c-NHEJ, where together with 

KU70/80 heterodimer comprise the DNA-PK holoenzyme. However, previous 

experiments from our laboratory indicate a possible role for DNA-PKcs in checkpoint 

regulation in cells irradiated in S and G2 phase of the cell cycle (205). The 

contribution of DNA-PKcs to the G2 checkpoint was investigated by utilizing two 

isogenic glioblastoma cell lines M059K and M059J isolated from the same tumor 

specimen (194). M059K cell line expresses normal level of DNA-PKcs activity, while 

M059J cells lack p350, the catalytic component of DNA-PK because of a frameshift 

mutation in PRKDC (DNA-PKcs gene) (193, 206, 207). 

G2 arrest after ionizing radiation can be investigated by one-parameter flow cytometry 

analysis using propidium iodide (PI) staining. PI is a fluorescent dye that binds to 

dsDNA and thus enables the measurement of DNA content (Figure 11 A). Another 

approach to study specifically cells sustaining damage in G2 phase is the two-

parameter flow cytometry, combining PI and phospho-histone H3 (H3pS10) staining 

(Figure 11 B). Histone H3 is phosphorylated at Serine 10 during mitosis and staining 

with antibody against phospho-histone H3 ensures discrimination between G2 and 

mitotic cells, where the reduction of the mitotic index is a direct indicator of the G2 

checkpoint response (203). A corresponding confocal image of Histone H3pS10 

stained cells is shown on Figure 12. 

Exposure of actively proliferating cells to IR leads to accumulation of cells at the G2/M 

border, which resembles the increased G2 fraction on the cell cycle histogram 6 

hours after irradiation with 2Gy  (Figure 11 A). 
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Figure 11: G2 checkpoint assays. G2 checkpoint can be studied by (A) staining the DNA 
with propidium iodide (PI) and measuring the percentage of cells in G2 phase of the cell 
cycle. For a precise analysis of cell cycle distribution was used Multicycle AVTM software. 
Time frame of experiment is 0h to 24h post IR treatment. G2 checkpoint activated specifically 
in cells irradiated in G2 phase (B) can be studied by combined DNA (x axis) and 
phosphorylated Histone H3 at Ser10 (y axis) staining that allows discrimination between G2 
and mitotic cells and thus determination of the mitotic index (MI; percentage of cells in 
mitosis against total number of cells). Time frame of H3pS10 assay is 0-8 h post IR. The 
cells used as an example are actively growing 82-6 normal human fibroblasts immortalized 
with hTERT. 

 

 

Figure 12: Confocal image of mitotic cells using Histone H3 (phospho S10) staining in 
ethanol-fixed M059J cells. Secondary antibody was conjugated to Alexa Fluor® 488. Nuclei 
were counterstained with propidium iodide (PI). 
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Since the accumulation of cells in G2 phase arises through progression of cells from 

S phase, the increase of the G2 fraction above the levels of unirradiated cells 

represents primarily the cells irradiated in S phase. Irradiation of asynchronous cell 

culture also results in delayed mitosis. As shown on Figure 11 B, the percentage of 

mitotic cells (represented in the gates) is decreased 2 hours after irradiation with 1Gy 

and reaches normal levels at the 6-hour time point. 

As shown on Figure 13, exposure of cells to ionizing radiation causes a time-

dependent increase in the fraction of G2 cells. The G2 arrest is also dose-dependent, 

as the fraction of G2 cells rises with increasing doses of IR. Repair-proficient M059K 

cells irradiated with 1Gy show a slight increase of the G2 fraction at the 3-hour time 

point, while the higher fraction of G2 cells induced with 2Gy persists until 12 hours 

post IR. In both cases, the G2 fraction of cells exposed to IR reaches the level of non-

irradiated cells at 15 h. Notably, DNA-PKcs deficient cells show a more pronounced 

G2 arrest after irradiation with the same doses when compared to the cell line with 

competent DNA-PKcs. Thereby, the increase in G2 fraction and the maximum of G2 

percentage appears at later times. Slower recovery is observed at lower doses 

(0,5Gy and 1Gy IR), while with increasing the dose the cells fail to recover from the 

checkpoint-mediated arrest until 30 hours later. As outlined above, this response 

reflects activation of the G2 checkpoint response predominantly in cells sustaining 

damage in S phase of the cell cycle. 

 

Figure 13: DNA-PKcs deficiency is associated with pronounced G2 arrest. Exponentially 
growing M059K and M059J cells were exposed to different doses of IR and harvested every 
3 hours. Cell cycle distribution was analyzed by single-parameter flow cytometry. The 
percentage of cells in G2 is represented as a function of time. Data are compiled from two 
independent experiments (± SD). 
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This observation is also confirmed with the phospho-histone H3 assay (Figure 14). 

M059K cells show a rapid decrease in the normalized mitotic index almost to zero at 

1h after IR, which reflects a stop in cell progression from G2 into M phase. 

Progression to mitosis continues after the 2-hour time point and reaches control 

levels at 4 hours. This response represents induction of the G2 checkpoint specifically 

in cells irradiated in G2 phase, as predominantly G2 cells reach M-phase within the 

timeframe of the experiment. In marked contrast to repair-proficient cells, the 

recovery from the G2 checkpoint in DNA-PKcs deficient cells remains incomplete at 

the same times after irradiation suggesting DNA-PKcs dependence for the 

checkpoint response activation. This data are in agreement with another study, 

where the lack of DNA-PKcs is associated with persistent S phase checkpoint (174). 

Interestingly, the deficiency of several other components of classical NHEJ 

(Ligase IV, XRCC4 and KU80) fail to reproduce the phenotype of DNA-PKcs deficient 

cells (174). Since all of these mutants have a strong DNA repair defect, the lack of 

recovery in DNA-PKcs deficient cells cannot be explained exclusively by the repair 

deficiency. 

1Gy

Time after IR (h)

0 2 4 6 8

M
ito

tic
 in

d
e
x 

(%
)

0

50

100

150

M059K

M059J

 

Figure 14: DNA-PKcs is required for recovery from G2/M checkpoint after IR. The 

percentage of mitotic cells positive for H3pS10 normalized to the non-irradiated control is 
represented as a function of time after exposure to IR. Data from two independent 
experiments are presented (± SD). 
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The nature of DNA-PKcs activation and its role at DSB ends to orchestrate DNA 

repair raises a question whether chemical inhibition of DNA-PKcs kinase activity in 

M059K cells would have the same response as DNA-PKcs deficiency in M059J cells. 

DNA-PKcs inactivation on cellular level is achieved by using specific small molecule 

inhibitors. Early generation of classical non-specific PI3K inhibitors involves 

Wortmannin, which is a non-competitive inhibitor that binds covalently to the kinase 

active site and was widely used in prior publications (208).  Novel ATP-competitive 

inhibitors like NU7026 and NU7441 were found to be highly specific for DNA-PKcs 

(209-211). 

For the experiments in this thesis, NU7441, a selective inhibitor of DNA-PKcs (to be 

referred as DNA-PKi), was used. The results shown on Figure 15 A clearly 

demonstrate that chemical inactivation of DNA-PKcs also results in persistent G2 

checkpoint indicating the essential function of DNA-PKcs kinase activity in the 

recovery from IR-induced cell cycle arrest (Figure 15 A, left panel). The off-target 

effect of DNA-PKi was ruled out by the experiment with M059J cells where NU7441 

is ineffective (Figure 15 A, right panel). 

The activation of the damage induced G2 checkpoint is associated with the activity of 

ATM or ATR protein kinases. To elucidate which one of the remaining PIKK kinases 

is involved in the hyper-activated G2 checkpoint in DNA-PKcs deficient cells, specific 

ATM (KU55933) and ATR (VE821) small molecule inhibitors were used (to be 

referred as ATMi and ATRi, respectively). Although ATMi prolongs the checkpoint in 

DNA-PKcs proficient M059K cells irradiated in S-phase, it shows no effect in M059J 

cells (Figure 15 B). The results with this inhibitor indicate that ATM is not involved in 

the maintenance of the prolonged checkpoint in DNA-PKcs deficient cells and implies 

the contribution of ATR. As expected, ATRi completely abrogated the G2 checkpoint 

in M059J cells, as well as in DNA-PKcs proficient M059K cells irradiated in S-phase 

(Figure 15 C). 
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Figure 15: Effect of PIKK inhibitors on the G2 arrest in M059K and M059J cells after 
exposure to IR. Actively growing M059K and M059J cells were pre-treated with different 
PIKK inhibitors 1 h prior to IR and maintained in the medium for the duration of the 
experiment (24 hours). Cells were harvested every 3 hours until 12 h following IR treatment 
and subjected to cell cycle analysis by flow cytometry. (A) 5 µM DNA-PKcs inhibitor NU7441, 
(B) 10 µM ATM inhibitor KU55933, (C) 5 µM ATR inhibitor VE821. Data presented from one 
experiment. 
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These observations reveal a possible cross-talk between DNA-PKcs and ATR in 

checkpoint signaling. Furthermore, the effect of DNA-PKcs deficiency, as well as 

DNA-PKcs inhibition seems to be stronger than that of ATM, which is thought to be a 

master conductor of the G2 checkpoint response after induction of DNA damage by 

IR exposure. Interestingly, loss of ATR activity triggers normal progression of the 

cells through the cell cycle after IR. These results suggest that DNA-PKcs augments 

recovery from checkpoint arrest after exposure to IR and thus implicates DNA-PKcs 

in the regulation of checkpoint signaling together with ATM and ATR. 

4.2. ATR regulates the G2 checkpoint by integrating inputs from ATM and 

DNA-PKcs 

Since M059K and M059J are both malignant glioma-derived cell lines, the effects of 

PIKK inhibitors on G2/M checkpoint were next studied in the normal human fibroblast 

cell line 82-6 immortalized with hTERT (human telomerase reverse transcriptase) 

expression vector. This experiment was designed not only to answer the question 

whether these effects are cell type-specific, but also to verify the unexpected role of 

ATR on IR-induced checkpoint response in non-cancer cells. Another parameter 

included in this experimental setup was the applied dose (DSB-load), where cells 

were exposed to low (i.e. 2Gy) and high doses (i.e. 10Gy) of IR. 

The results reveal that incubation of normal cells with DNA-PKi delays the recovery 

from the G2 checkpoint after IR, while ATM inhibition leads to abrogation of the G2 

arrest at early time points post irradiation and moderate but persistent reduction of 

the mitotic index at later times. At 1 to 2h after IR, ATRi has similar effect to ATMi, 

but in contrast to ATMi, at later times ATRi results in control levels of mitotic cells, 

suggesting complete abrogation of the checkpoint response (Figure 16 A). These 

results are in line with the effects observed in M059K cells (Figure 15). Combinations 

of the PIKK inhibitors show that the DNA-PKi effect is abrogated either by ATMi or by 

ATRi indicating that the hyper-activated checkpoint due to the DNA-PKcs deficiency 

is abolished when ATM and/or ATR are inactive (Figure 16 B). Furthermore, 

combined treatment with ATRi and ATMi reveals that DNA-PKcs alone is not able to 

sustain IR-induced checkpoint. Interestingly, the ATM inhibitor shows a dose-

dependent effect on checkpoint activation, as the higher dose of 10Gy further 

influences the outcome observed after irradiation with 2Gy (Figure 16 A, C). The 
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same response is observed with the combined treatment of DNA-PKi and ATMi 

(Figure 16 B, D). After 10Gy of irradiation, ATR inhibition results in a small initial 

drop followed by rapid increase in the mitotic index above normal levels, which may 

be explained by accumulation of cells at the G2/M border due to the higher dose and 

their subsequent progression as an ensemble into mitosis. At a higher dose, either 

ATM or ATR alone are capable of activating moderately the G2 checkpoint response 

(Figure 16 D, green and red lines respectively). The data suggest that the other 

remaining kinases ATM and DNA-PKcs cannot contribute to checkpoint development 

without ATR since they both remain active when ATRi is applied. 
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Figure 16: Multiple drugs effects on G2/M progression of normal human fibroblasts 
after IR. Cells were treated with 5 µM NU7441 (DNA-PKcsi), 10 µM KU55933 (ATMi) and 
5 µM VE821 (ATRi) 1 hour prior to IR. Cells were harvested at different time intervals after 
exposure to IR. Data obtained from two independent experiments (± SD). 
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All these results also suggest that ATR is not a minor contributor to G2 checkpoint 

development and implicate the essential role of ATR for the manifestation of the G2 

checkpoint in cells sustaining damage in G2 phase.  Furthermore, the data imply that 

all three PIKK kinases may work as a module to regulate the DNA damage signaling 

and checkpoint response following exposure of cells to IR. In line with the above 

postulate, chemical inactivation of the kinase activity of the entire module leads to 

completely abrogated G2 checkpoint independent of the radiation dose (Figure 16 

B, D).  

Further confirmation of the importance of the ATR arm of the G2 checkpoint activation 

came from the results with inhibitor of the ATR-downstream kinase CHK1, UCN-01 

(referred as CHK1i). As shown on Figure 17, inhibition of CHK1 results in a 

remarkable, although no complete, reduction of G2 checkpoint, which suggests a 

cross-talk between ATR and CHK2. On the other hand, CDC25 may also become 

phosphorylated since the ATM-CHK2 arm is still active. However, this residual 

checkpoint could not be completely abrogated by inhibiting CHK2, although it was 

entirely reversed by ATM inhibition at a low dose (Figure 17, left panel). The same 

response was observed in M059J cell line (Figure 18). 
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Figure 17: Multiple drugs effects on G2/M progression of normal human fibroblasts 
after IR. Cells were pre-treated with 100nM Chk1i (UCN-01), 400nM Chk2i and 10 µM ATMi 
(KU55933). Data presented from one experiment. 
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Figure 18: Multiple drugs effects on G2/M progression of M059J cells after IR. Cells 
were treated with 100nM Chk1i (UCN-01), 400nM Chk2i and 10 µM ATMi (KU55933) 1 hour 
prior to irradiation. Data obtained from two independent experiments (± SD). 

 

Since the hyper-activated G2 checkpoint in DNA-PKcs-deficient cells is dependent on 

ATR activity and ATR requires DNA end resection at IR-generated DSBs, the 

hypothesis arose that under basal conditions resection is downregulated by 

DNA-PKcs. This implies that absence of DNA-PKcs leads to hyper-resection, which 

provokes ATR hyper-activation. Therefore, the next part of the thesis focuses on the 

role of DNA-PKcs in the process of DNA-end resection. 
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Part 2: Contribution of DNA-PK to the regulation of DNA-end resection 

4.3. DNA-PKcs deficiency is associated with enhanced DNA end resection in 

G2 phase 

Next, to test the above hypothesis, the rate of DNA-end resection was studied in 

DNA-PKcs deficient cell line M059J and its counterpart M059K. RPA accumulation at 

the ssDNA overhangs was used as a read-out for ongoing DNA end resection. RPA 

foci were visualized in a population of irradiated G2 cells selectively discriminated by 

Cyclin B1 staining. It is well documented that the Cyclin B level oscillates throughout 

the cell cycle with a maximum in S/G2 phase and during mitosis, where Cyclin B1 is 

localized at the microtubules (212). Analysis of DNA end resection by IF revealed 

that the RPA70 foci number in DNA-PKcs deficient cell line is greatly increased as 

compared to the repair proficient cells (Figure 19). 

A        B 

     

Figure 19: Immunofluorescence analysis of RPA70 foci number in M059K and M059J 
cells. (A) Kinetics of RPA70 foci formation in Cyclin B1 positive cells following exposure to 
4Gy IR. Foci were scored in >30 nuclei per slide. (B) Representative immunofluorescence 
images of RPA70 foci (green) in Cyclin B1 positive cells (red). Nuclei were counter-stained 
with DAPI (blue). Representative data from one out of two independent experiments (± SE). 

This observation indicates that under default conditions, DNA-PKcs may suppress 

DSB end resection in G2 phase of the cell cycle. Therefore, in cells with DNA-PKcs 

deficient background the balance of DSB repair may be shifted toward HRR and a-EJ 

pathways that profit from resected DNA. 
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4.4. The role of KU heterodimer on end resection in M059K and M059J cells 

KU70/80 binds directly DSB ends and serves as an anchor point for NHEJ proteins. 

Therefore, multiple previous studies assign functions to KU heterodimer, which 

include suppression of DNA end resection (213, 214). As KU70/80 is an integral part 

of the DNA-PK holoenzyme, we wished to investigate whether KU70/80 deficiency 

provokes similar responses as DNA-PKcs on DNA end resection. To investigate the 

role of KU heterodimer in the process of DNA end resection, we used siRNA-

mediated depletion of KU70 in M059K and M059J cells. 

As shown in Figure 20 C, the expression of KU70 can be reduced significantly by 

specific siRNA targeting KU70 mRNA. Both M059K and M059J cells transfected with 

siRNA against KU70 show reduced level of KU70 protein up to 48 hours after 

nucleofection® when compared to the control. However, the results from an 

immunofluorescent experiment with repair-proficient M059K cells do not show a 

significant increase of RPA foci number in KU70-depleted cells when compared with 

the mock-transfected control (Figure 20 A, left panel). This result does not resemble 

the effect of DNA-PKcs deficiency on RPA foci formation and argues against the 

negative role of KU70/80 on initiation of DNA end resection. Similarly, siRNA-

mediated depletion of KU70 on top of DNA-PKcs deficiency (Figure 20 A, right 

panel) did not further increase RPA foci number at any of the time points following 

exposure to IR. In addition to RPA foci formation, the RPA foci intensity did not differ 

significantly between mock and siKU70-treatments in both cell lines, but the higher 

number of RPA foci in M059J cells is associated with a slightly increased foci 

intensity when compared to M059K cells (Figure 20 B). 

In summary, these results show that KU70/80 alone is not sufficient to suppress the 

initiation of end resection under normal conditions and reinforce the notion that 

DNA-PKcs suppresses end resection independently of KU heterodimer. 
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Figure 20: Effect of KU70 knock-down on DNA end resection. Analysis of RPA70 foci 
number (A) and intensity (B) in M059K and M059J cells. Foci number from the 
corresponding unirradiated controls at each time point was subtracted. In the mock-treated 
control cells were subjected to Nucleofection® in the absence of siRNA. The dashed lines 
serve to show the different levels of intensity values between the two cell lines. (C) 
Verification of KU70 knock-down by western blot 48 h after nucleofection®. 10 µg and 20 µg 
of total protein were loaded. Data obtained from one experiment (± SE). 
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4.5. DNA-PKcs actively regulates resection and G2 checkpoint 

To study the contribution of each component of the DNA-PK holoenzyme to the end 

resection process in more detail, an experiment in repair-proficient cell line M059K 

was designed applying RNA interference (RNAi) to reduce the gene expression of 

KU combined with a specific inhibitor of DNA-PKcs. This approach could answer the 

question whether the catalytic function of DNA-PKcs alone is necessary to suppress 

end resection. For a better comparison of the foci number in M059K cells, the dose of 

IR was increased from 2Gy in the previous experiment (Figure 20) to 4Gy. The 

remaining cells from each time point were analyzed by flow cytometry to monitor the 

G2 arrest. 

The results indicate that the level of KU70 stays relatively low even 72h after 

transfection with specific siRNA. Additionally, the knock-down of KU70 is associated 

with decreased expression of KU80 (Figure 21 B). The foci kinetics show a 

maximum RPA foci number at 6 hours after irradiation with 4Gy, and that the 

absence of KU70/80 does not significantly increase RPA foci number at later times 

post IR (Figure 21 A). This indicates that KU70/80 does not impair DNA end 

resection by blocking the DSB ends. Inactivation of DNA-PK catalytic subunit by 

NU7441 does not completely replicate the phenotype observed in M059J cell line in 

terms of RPA foci number. However, the DNA-PKcs inhibitor augments the RPA foci 

formation at later time points following exposure to radiation. Treatment with 

DNA-PKcs inhibitor on top of KU70/80 knock-down did not further alter RPA foci 

kinetics. Since in this experimental setup DNA-PKcs is present but catalytically 

inactive, these findings suggest that DNA-PKcs may actively regulate the end 

resection process through its catalytic function. This observation is confirmed by RPA 

foci kinetics in kinase-deficient CHO cells (unpublished data from our laboratory). 

Once bound to the DSB ends, DNA-PKcs needs phosphorylation in order to detach 

from the break. Therefore, the delayed increase in RPA foci number in the presence 

of DNA-PKcs inhibitor implies that other kinases may contribute to the initial 

phosphorylation of DNA-PKcs. A possible candidate is ATM, which was shown to 

mediate DNA-PKcs phosphorylation at the Thr-2609 cluster (165). 
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Figure 21: The role of DNA-PK holoenzyme on end resection in repair-proficient cells. 
(A) Kinetics of RPA70 foci formation in Cyclin B1 positive cells. Mock-transfected cells were 
subjected to nucleofection® program X-01 in the absence of siRNA and a fraction of these 
cells was treated with 5µM DNA-PKcs inhibitor NU7441. The foci number from the 
corresponding unirradiated controls at each time point was subtracted. (B) Western blot 
analysis of KU70 knock-down efficiency associated with decreased expression of KU80. 
Protein extracts were isolated on the day of experiment, 48h after nucleofection®. (C, D) G2 
arrest analysis by flow cytometry. Representative data from one out of two independent 
experiments. 

 

Since KU70/80 appears to not regulate negatively resection under our experimental 

conditions, we speculated the effect of DNA-PKcs deficiency on G2 checkpoint is 

DNA-PKcs-specific and not the result of c-NHEJ deficiency. Therefore, the remaining 
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cells from each sample were subjected to flow cytometry analysis to confirm that the 

G2 checkpoint is not abrogated by KU70/80 depletion. 

As shown on Figure 21 C, D, depletion of KU heterodimer does not affect the 

accumulation of cells in G2 phase. In contrast, inhibition of DNA-PKcs results in 

prolonged G2 arrest in non-depleted as well as in KU70/80-depleted cells. 

In summary, the results in this section further support the notion that the catalytic 

subunit of DNA-PK may work independently of KU70/80 to regulate end resection 

and G2 checkpoint development through its catalytic function. 

4.6. Contribution of ATM and ATR to DSB end resection in the absence of 

DNA-PKcs 

The unexpected role of ATR in G2 checkpoint activation in response to ionizing 

radiation implies that ATR is dominantly involved in DNA damage recognition and 

checkpoint along with ATM and only not partially as frequently assumed. Another 

indication supporting this hypothesis comes from M059J cells, where the ATM level is 

reported to be post-transcriptionally reduced due to over-expression of miR-100 

(microRNA 100) (215). Under these conditions, ATR may play a more prominent role 

in regulating resection. However, ATM signaling in M059J cells was shown to be 

intact (unpublished data from our laboratory). 

To further study the sequence of PIKK kinase contribution to end resection, an 

experiment was designed, where M059J cells were treated with ATMi and ATRi 

1 hour before or 30 minutes after IR and RPA foci formation was monitored up to 9 

hours after damage induction. The results show that RPA foci reach their maximum 

3-6 hours after irradiation (Figure 22). Pre-treatment with ATMi delays significantly 

RPA70 foci formation after IR indicating the essential function of ATM in the initiation 

of DNA-end resection (Figure 22 A, left panel). Although the level of ATM in 

DNA-PKcs deficient cells is low, ATM activity is evidently sufficient to trigger this 

process. This result also shows that ATR alone is not capable to initiate end 

resection at IR-induced DSBs in G2 irradiated cells. Nevertheless, inactivation of ATR 

also reduces RPA70 foci number at the initial times after IR (1-3 hour window) 

implicating ATR also in initiation of the DNA-end resection. Chemical inhibition of 
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both ATM and ATR on top of DNA-PKcs deficiency provides the same response on 

RPA foci kinetics as ATMi alone. 

Treatment with ATMi 30 min after exposure of cell to IR does not affect RPA foci 

number indicating that even after this short time after damage induction, the ATM-

dependent contribution to signaling and resection regulation is completed. In 

contrast, inactivation of ATR 30 min post-IR diminishes significantly the number of 

RPA foci (Figure 22 A, right panel). These results show the key role of ATM for 

triggering the DNA damage signaling cascade and the response of ATR to ssDNA-

RPA structures. 
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Figure 22: Effect of PIKK kinase inhibitors on RPA foci formation in M059J cells. Cells 
were treated with inhibitors 1 hour before (left panel) and 30 minutes after irradiation (right 
panel). ATM and ATR kinase activity was inhibited by 10µM KU55933 and 5µM VE821, 
respectively, and the inhibitors were left in the media for the duration of the experiment. (A) 
Kinetics of RPA70 foci formation in Cyclin B1 positive cells following exposure to 2Gy. Foci 
were scored in >30 nuclei per slide. (B and C, see below) Representative 
immunofluorescence images of RPA70 foci (green) in Cyclin B1 positive cells (red). Nuclei 
were counter-stained with DAPI (blue). Data obtained from two independent experiments 
(± SD). 
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Figure 22B: Representative immunofluorescence images of RPA70 foci corresponding 

to Figure 22A, left panel 
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Figure 22C: Representative immunofluorescence images of RPA70 foci corresponding 

to Figure 22A, right panel 
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4.7. ATR is required for resection in G2 phase in normal cells 

Based on the observations that ATR may have a central role in G2 checkpoint 

development under normal conditions, its activation by ssDNA-RPA structures must 

be essential. 

To further explore the potential role of ATR in regulating the generation of ssDNA-

RPA intermediates under normal conditions, similar experiments were performed 

with normal human fibroblast cell line 82-6 immortalized with hTERT using ATRi 

(Figure 23). Normal cells exposed to 4Gy of IR show similar response in terms of 

RPA foci kinetics as M059J cells exposed to 2Gy (Figure 20). 

2.5µM ATRi does not affect RPA foci formation, whereas 5µM and 10µM of ATRi 

show similar response to that observed in M059J cells, with RPA foci numbers being 

reduced by a factor of 2. Pre-treatment with 20µM ATRi completely abolishes RPA 

foci formation. These results clearly show the attenuation of RPA foci formation with 

increasing concentrations of ATRi reflecting abrogated signaling at DSB ends in 

absence of ATR catalytic activity despite the presence of ATM activity. Data from our 

laboratory have shown that the number and intensity of phospho-ATM foci, as well as 

phosphorylation of CHK2 on Thr68, remain unaffected by ATRi or CHK1i. Seckel 

syndrome cells also exhibit intact ATM function (216). 
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B 

 

Figure 23: Effect of ATR inhibition on RPA foci formation in normal human fibroblasts. 
82-6 cells were pre-treated with different concentrations of ATR inhibitor VE821 1h before 
exposure to IR and the inhibitor was left in the media for the duration of the experiment. Cells 
were collected at different time intervals after damage induction. The foci number from the 
corresponding unirradiated controls at each time point was subtracted. Data obtained from 
one experiment. (A) Kinetics of RPA70 foci formation in Cyclin B1 positive cells following 
exposure to 4Gy IR. (B) Representative immunofluorescence images of RPA70 foci (green) 
in Cyclin B1 positive cells (red). Nuclei were counter-stained with DAPI (blue). 
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4.8. Identifying factors involved in the elevated DSB end resection in DNA-

PKcs deficient cells 

To find out whether DNA-PKcs regulates the activity of enzymes responsible for DSB 

end resection, a screening of knockdowns of proteins involved in this process was 

performed – it comprised CtIP, MRN, EXO1 and DNA2. As repair-proficient cells in 

this experimental design we used normal human fibroblasts 82-6 hTERT. 

CtIP has been implicated in initiating DSB end resection, homologous recombination 

and checkpoint signaling (74). The results show that depletion of CtIP (Figure 24) 

significantly reduces RPA70 foci formation in both cell lines (Figure 25). 

 

Figure 24: Western blot analysis of siRNA-treated M059J cells. Verification of CtIP (A), 
MRE11 (B) and NBS1 (C) knock-down efficiency 48 hours after transfection with siRNA. 
Equal amounts of total protein were loaded per lane (50µg for CtIP, 20µg for MRE11 and 
30µg for NBS1 detection). Mock-transfected cells were subjected to nucleofection® program 
X-01 in the absence of siRNA. For siRNA-mediated depletion of NBS1 were tested two 
siRNA sequences. Samples were separated on 10% SDS polyacrylamide gel. 

 

The MRN complex is engaged in sensing and signaling of DSBs and has been 

shown to operate in cooperation with CtIP (217). MRE11 has exo- and endonuclease 

activity. Therefore, we next sought to knock-down MRE11 and NBS1. The data show 

that although a sufficient level of knock-down of NBS1 was achieved (Figure 24) 

RPA70 foci formation was decreased in 82-6 hTERT, but not in M059J cells Figure 

26). 

Similarly, the level of MRE11 depletion was efficient, but did not affect RPA70 foci 

number in any of the cell lines. However, indicative results were achieved when using 

the MRE11 inhibitor Mirin in combination with siMRE11, where pronounced effects 

on resection were recorded (Figure 26 A, B). 
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Figure 25: Effect of siRNA-mediated knock-down of CtIP on RPA foci formation. (A) 
RPA foci were scored in 82-6 hTERT and M059J cells positive for Cyclin B1 staining. Mock-
nucleofection® was performed in the absence of siRNA. RPA foci formation was followed at 
48 hours after transfection. Representative data from one experiment (82-6 hTERT) and one 
out of two (M059J) experiments (± SE). (B) Representative immunofluorescence images of 
RPA70 foci (green) in Cyclin B1 positive cells (red). Nuclei were counter-stained with DAPI 
(blue). 
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A possible explanation for MRE11 depletion alone results is that residual activity is 

sufficient for the observed effect. The double knock-down of MRE11 and NBS1 did 

not further affect RPA foci number (Figure 26 B, lower panel). 

These observations identify MRN complex and CtIP as potential targets of DNA-PK 

catalytic subunit in the regulation of end resection under normal conditions. Next, we 

examined long-range resection mediated by EXO1 and DNA2. 
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Figure 26: Contribution of MRN complex to DSB end resection. To evaluate the effect of 
MRN complex on RPA foci formation was applied mRNA interference targeting MRE11 and 
NBS1, as well as MRE11 inhibitor Mirin (75 mM). RPA foci were scored in 82-6 hTERT (A) 
and M059J (B) cells positive for Cyclin B1 staining. Mock-treated cells were exposed to 
nucleofection® in the absence of siRNA. Cells were irradiated 48 hours after transfection 
with siRNA. Data obtained from one experiment (± SE). 

 

RPA70 foci formation was not attenuated in M059J cells transfected with different 

siRNA sequences against EXO1, rather RPA foci number becomes higher at the 
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6-hour time point after IR. Due to technical difficulties, EXO1 and DNA2 knockdowns 

could not be validated by western blotting. The effect of EXO1 depletion could be 

demonstrated in repair-proficient cells, where RPA foci were diminished (Figure 

27 A). 
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Figure 27: Effect of siRNA-mediated knock-down of EXO1 (A) and DNA2 (B) on RPA 
foci formation. RPA foci were scored in 82-6 hTERT and M059J cells positive for Cyclin B1 
staining 48 hours after transfection with siRNA (± SD). Mock-nucleofection® was performed 
in the absence of siRNA. Data obtained from one experiment (± SE). 

A similar effect is observed in Exo1-deficient cells (Figure 28), where RPA foci follow 

similar kinetics as observed in EXO1-depleted cells. In contrast, siRNA-mediated 

knockdown of DNA2 leads to very strong effect on RPA foci number in both 82-6 

hTERT and M059J cells Figure 27 B. 

In summary, CtIP, MRN complex and DNA2 stand out as strong candidates to be 

regulated/phosphorylated by DNA-PKcs. 
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In conclusion, our results provide evidence that DNA-PKcs regulates actively the G2 

checkpoint response and end resection, a function that does not require the KU70/80 

DNA binding factor. 

 

Cells with foci

Time after IR, h

0 2 4 6 8 10

R
P

A
7

0
B

 f
o

c
i 
n
u
m

b
e

r 
p

e
r 

c
e

ll

0

5

10

15

20

25

30
4Gy wt

4Gy Exo1 -/-

 

Figure 28: Effect of Exo1 deficiency on RPA foci kinetics. Insertion of Hygromycin 
cassette between exons 4 and 5 leads to disruption of Exo1 gene locus in mouse embryonic 
fibroblasts (MEF) cells (218). Immunofluorescent Cyclin B1 staining in mouse cells was not 
successful, therefore the analysis of this this experiment were considered only cells with foci. 
Data obtained from one experiment (± SE). 

 

In addition, our data suggest that in G2 phase cells both ATM and ATR are required 

to sustain the checkpoint in response to DSBs since loss of either ATM or ATR 

causes its abrogation. At higher doses, this dependency is not present. Even more, 

ATR might not be a passive responder to ssDNA, rather ATR also regulates the end 

resection process. 

Collectively, these data point to a kinase module consisting of ATM, ATR and DNA-

PKcs, which regulates and fine-tunes the DNA damage response. 
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5. DISCUSSION 

5.1. Contribution of DNA-PKcs to G2 checkpoint response 

DNA-PKcs is considered a key factor for c-NHEJ but not a component of checkpoint 

signaling. Our results, however, show that DNA-PKcs deficiency or chemical 

inactivation results in a hyper-activated checkpoint in cells sustaining damage in both 

S and G2 phase of the cell cycle suggesting that DNA-PKcs plays an important role in 

checkpoint recovery. Inhibition of DNA-PKcs activity has even higher impact on G2 

arrest and decrease of the mitotic index than that of ATM inactivation in both S and 

G2 phase cells. In DNA-PKcs deficient cells, the recovery from the checkpoint at 

0.1Gy and 0.5Gy is possible although the checkpoint is dramatically prolonged. 

Interestingly, lack of recovery is observed with increasing radiation dose (i.e. at 1Gy 

and 2Gy). This means that at higher doses of IR the ATM/ATR component is over-

activated, which is consistent with the observation that the hyper-activated G2 

checkpoint in DNA-PKcs deficient cells is ATR-dependent in S phase cells, and 

ATM/ATR dependent in G2 phase irradiated cells.  

Checkpoint activation in G2 provides additional time for repair. In contrast to HRR, 

c-NHEJ is not considered to benefit from checkpoint signaling (69, 70). Our 

observations imply that DNA-PKcs does not control directly checkpoint activation 

through downstream kinases; rather under normal conditions DNA-PKcs forestalls 

the process of DNA end resection which triggers ATR and checkpoint activation. This 

is consistent with the major role of ATR in G2 checkpoint response. DNA-PKcs 

deficiency, however, could prolong the time required for repair, as more breaks are 

resected and would require HR or a-EJ. This would be an indirect contribution of 

DNA-PKcs to G2 checkpoint control. 

Given the c-NHEJ deficiency of M059J cells, one may speculate that the enhanced 

G2 checkpoint activation in these cells is not coupled with DNA-PKcs-deficiency itself; 

rather this mirrors the extended repair time required by HRR and a-EJ and the higher 

DSB load shunted in these repair pathways. However, reduced levels of KU70/80 in 

repair-proficient M059K cells did not affect checkpoint development. Iliakis and 

colleagues also have shown that the lack of recovery of IR-induced replication arrest, 
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representing the activation of the S-phase checkpoint, is DNA-PKcs-specific as it is 

not observed with other components of c-NHEJ (174). 

Since DNA-PKcs deficiency is associated with reduced expression of ATM (219), it 

might be that the enhanced G2 checkpoint on DNA-PKcs deficient background is due 

to the low level of ATM. Yet, the ATM level in M059J cells seems to be sufficient for 

signaling since DNA end resection is significantly abrogated by treatment with ATM 

inhibitor. In addition, combined treatment of 82-6 fibroblasts with DNA-PKcs and ATM 

inhibitors completely abrogated the persistent checkpoint induced by DNA-PKcs 

inhibitor alone, as measured by H3pS10 assay. Moreover, Tomimatsu et al. 

demonstrated the contribution of DNA-PKcs to the development of ATR-mediated 

checkpoint in ATM-deficient cells, where DNA-PKcs was shown to phosphorylate 

proteins involved in chromatin remodeling like KAP-1 (176). 

Alternatively, DNA-PKcs may contribute actively to G2 checkpoint regulation through 

direct interactions with ATM/ATR. Evidence suggests that in response to replication 

stress DNA-PKcs is required for optimal ATR-CHK1 signaling by regulating CHK1 

protein expression and stability of CHK1-Claspin complex (220). In vitro studies by 

Vidal-Eychenie et al. also describe interactions between DNA-PKcs and ATR. In their 

proposed model KU mediates the recruitment of DNA-PKcs to the break, which in 

turn phosphorylates RPA and promotes ATR activation (221). Hence, abrogation of 

RPA phosphorylation sites by Alanine residues or treatment with DNA-PKcs inhibitor 

would affect ATR activation and therewith the checkpoint response, which is indeed 

not in line with all of our observations. This speculation needs to be carefully 

examined in vivo. 

ATM was also shown to be required for the full phosphorylation-mediated activation 

of DNA-PKcs upon IR where ATM is critical for the phosphorylation of Thr-2609 

cluster of DNA-PKcs (165). Whether abrogation of this phosphorylation event 

influences the G2 checkpoint activation and maintenance by affecting DNA-PKcs 

activity deserves further investigation. 

In summary, the prolonged checkpoint response observed under DNA-PKcs 

deficiency in cells sustaining damage in S phase is dependent on ATR. In contrast, 

this checkpoint activation in G2 phase cells is abrogated by either ATM or ATR 
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inhibition, as well as by inactivation of the downstream kinases CHK1 and CHK2. 

These observations, combined with the data in the literature, suggest a functional 

crosstalk between DNA-PKcs and ATM/ATR in order to effectively control the G2 

checkpoint. The coordination within the module is abrogated by inhibition of any of 

these kinases, where only DNA-PKcs deficiency results in prominent G2 checkpoint 

arrest - an effect that seems not to be coupled with c-NHEJ deficiency. 

5.2. DNA-PKcs influences the G2 checkpoint activation and maintenance 

through regulation of DNA end resection 

Absence of DNA-PKcs in M059J cells shuttles the DSBs into HRR or a-EJ, which 

operate with slower kinetics that c-NHEJ. Therefore, the hyper-activated checkpoint 

response in absence of DNA-PKcs would be favorable for repair pathways that need 

time. RPA foci analysis by immunofluorescence is an established method for 

measuring the accumulation of RPA to ssDNA, which is used as a readout for DNA 

end resection during homologous recombination, and also activates the ATR/CHK1 

signaling pathway. Interestingly, the increased resection in M059J system correlates 

with the enhanced G2 checkpoint response. 

The higher number of RPA foci in DNA-PKcs deficient cells suggests that under 

normal conditions DNA-PKcs suppresses end resection in G2 phase and therewith 

homologous recombination. This agrees with a study by Nickoloff and colleagues, 

showing that DNA-PKcs suppresses HR as measured by HR substrates containing 

I-SceI sites in DNA-PKcs defective Chinese hamster ovary (V3) cells and isogenic 

derivatives complemented with human DNA-PKcs cDNA. Complementation of DNA-

PKcs resulted in lower levels of both DSB-induced and spontaneous HR frequencies 

(222). Moreover, DNA-PK’s ability to suppress HR was shown to be dependent on its 

kinase activity, where its phosphorylation status is thought to help define the repair 

pathway choice. Thereby, phosphorylation of the ABCDE cluster seems to be of 

great importance for promoting HR, while phosphorylation of the PQR cluster would 

inhibit it (135, 138).  

Moreover, unpublished data from our laboratory have shown that RAD51 foci in 

DNA-PKcs deficient M059J cell line also increase, when compared to repair-

proficient M059K cells, and remain unresolved at later time points after IR, meaning 
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that HR in M059J cells could be aberrant. A study by Dip and Naegeli has shown that 

DNA-PKcs can recognize and associate with synthetic four-way Holliday junctions 

independently of KU70/80 and DNA ends (223). Given the higher residual number of 

RAD51 foci in M059J cells, this suggests that DNA-PKcs deficiency may be 

associated with abrogation of homologous recombination at the step of Holliday 

junction resolution. It is therefore plausible that DNA-PKcs may also regulate proteins 

involved in branch migration or Holliday junction resolution during homologous 

recombination. Hence, in cells with DNA-PKcs deficient background the persistent 

RPA foci may result from branch migration in the wrong direction. 

Since HR requires extensive chromatin modifications, it is also possible that HR is 

abrogated in the absence of DNA-PKcs because more breaks are committed to be 

repaired by HR and chromatin opens up which may destabilize it. This assumption is 

supported by the higher residual number of γH2AX foci associated with DNA-PKcs 

deficiency (unpublished data from our laboratory). 

The kinetics of RPA foci formation in repair-proficient M059K cells treated with the 

DNA-PKcs inhibitor does not completely resemble the phenotype observed in M059J 

cells where DNA-PKcs is absent.  Increase of RPA foci number is observed at later 

times, which may be explained by NU7441 preventing DNA-PK’s auto-

phosphorylation and therewith its dissociation from the ends. Blocking the DNA ends 

in turn may hamper not only NHEJ but also HR by restricting the function of 

exonucleases. Nevertheless, the data from this experiment further imply that the 

catalytic activity of DNA-PKcs suppresses extensive resection of the DSB ends. 

The experiments with siRNA-mediated KU70 knockdown in M059K cells provide 

evidence that DNA-PKcs may be activated in the absence of its regulatory subunit 

KU70/80, which is believed to recruit DNA-PKcs to DNA ends. Together, these 

results lead to a possible model shown on Figure 29 (1), where under normal 

conditions DNA-PKcs downregulates resection independently of KU70/80. 

Nevertheless, it could be that despite the marked reduction of KU70/80 expression 

by approximately 90 %, very low level of KU70/80 is needed to secure recruitment of 

DNA-PKcs to DSBs. Indeed, this model is further supported by the evidence 

suggesting that under low salt conditions DNA-PKcs is capable of binding DNA ends 
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and becomes activated independently of KU70/80 (144). Meek et al. also reported a 

strong enzymatic activation of DNA-PKcs independently of DNA and KU70/80 

through a conformational change of its N-terminus (162). 

(2) The substantial increase of RPA foci in DNA-PKcs deficient cells leads to a 

second hypothesis suggesting that once KU70/80 is bound to DNA, the absence of 

DNA-PKcs may be favorable for the recruitment of other DNA repair factors. There is 

data suggesting that the KU-MRE11 interaction after IR is stronger under these 

conditions (224), although other studies show the opposing results (99). It is 

therefore conceivable that loss of DNA-PKcs may potentiate the interaction between 

KU and the MRN complex, which then can recruit ATM and CtIP to initiate resection. 

Whether this possible interaction of KU-MRN is sufficient for initiating resection in the 

absence of DNA-PKcs needs to be consolidated. 

 

Figure 29: Two possible models for downregulation of DNA end resection by DNA-PK 
catalytic subunit. (1) Under basal conditions, DNA-PKcs may regulate end resection in G2 
phase independently of KU70/80. (2) Resection factors might gain profit from the absence of 
DNA-PKcs. 
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Nevertheless, the KU heterodimer was reported to negatively regulate HRR by 

blocking the ends for resection (214, 225). Moreover, KU deficiency was shown to be 

associated with remarkably increased DSB-induced HR when compared to cells 

lacking DNA-PKcs, as measured using the DR-GFP reporter (226). The data from 

our experiments do not support the role of KU-binding factor alone in suppressing 

initiation of resection and HR, not only under normal conditions but also in cells with 

deficient DNA-PKcs. However, this conclusion could not be reached with mouse cells 

depleted of KU70, where deficiency of KU70 results in marked increase of RPA and 

RAD51 foci number in comparison to the control (unpublished data from our 

laboratory).  

While this work was in progress, an in vitro study by Zhou and Paull demonstrated 

that DNA-PKcs, together with MRN and ATM, regulates resection, where MRN can 

overcome the inhibitory activity of DNA-PKcs on EXO1 (227). Our data also link 

DNA-PKcs to MRN and CtIP in initiating resection since knockdown of either CtIP or 

abrogation of MRN activity in M059J cells reduces RPA foci number. However, the 

nuclease responsible for the long-range resection in M059J cells appears to be 

DNA2. Transfection of M059J cells with two different siRNA sequences against 

DNA2 resulted in a significant decrease of RPA foci number, while depletion of EXO1 

showed a prominent effect on RPA foci number in 82-6 fibroblasts but not in M059J 

cells. 

In conclusion, hyper-resection in DNA-PKcs deficient M059J cells shunts DSBs in G2 

phase toward HRR or a-EJ, which also explains the higher number of translocations 

in DNA-PKcs deficient cells (unpublished data from our laboratory). Our observations 

suggest that DNA-PKcs regulates the process of DNA resection, thus implicating its 

enzymatic activities in both c-NHEJ and HRR. 

5.3. DNA-PKcs-deficiency does parallel its chemical inactivation 

Our results clearly indicate that in case of G2 checkpoint small molecule DNA-PKcs 

inhibitor has identical effect on G2 arrest as the absence of DNA-PKcs protein. 

However, at the resection level, chemical inactivation of DNA-PKcs does not 

completely parallel the effect on RPA foci observed in DNA-PKcs deficient cells. The 

latter implies that enzymatically inactive DNA-PKcs associated with the break has an 
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inhibitory effect on HR by suppressing resection. This result is reminiscent of a study 

describing  an ‘interactive competition’ between HR and NHEJ by using another 

specific DNA-PK inhibitor (136). 

Consequently, DNA-PKcs may regulate checkpoint response independently of 

KU70/80. Thus, the hyper-activated checkpoint after treatment with the DNA-PKcs 

inhibitor, or DNA-PKcs deficiency, provides time for repair by HRR or a-EJ, but 

resection of DSB ends originally directed to c-NHEJ is limited since exonucleases 

have no access to the ends. This may explain why in the case of DNA-PKcs’ 

chemical inhibition in M059K checkpoint activation does not correlate with the rate of 

resection as observed in M059J cells. 

5.4. A model integrating ATR, ATM and DNA-PKcs to effectively control G2 

checkpoint and DNA end resection 

ATM is thought to be central to DNA damage signaling (39). The sequential 

engagement of ATM and ATR in DNA damage response is well described in the 

literature where ATM is believed to be the primary kinase initiating end resection 

(228, 229). It is therefore not surprising that in normal cells deficiency of ATM leads 

to abrogated checkpoint in cells sustaining damage in G2 phase. With increasing the 

DSB load, the role of ATM in sustaining the checkpoint becomes more prominent. 

ATM deficiency or inactivation of ATM activity by specific inhibitors is also associated 

with delayed formation of RPA foci. 

DSB repair by HR requires resection of the ends, which then triggers ATR activation. 

Since in higher eukaryotes only ~10-20% of the DSBs are thought to be repaired by 

HR (230), the contribution of ATR in checkpoint development in response to DSBs is 

typically thought to be limited. Although ATR is assigned to DNA replication stress 

and requires ssDNA for activation in response to DSBs, our data provide compelling 

evidence that ATR is also essential for checkpoint activation and maintenance in 

response to IR. This observation places the role of ATR beyond the replication 

checkpoint control. 

Moreover, the reduction of RPA foci number in the presence of ATR inhibitor in both 

82-6 fibroblasts and M059J cells implies that ATR may not be a passive responder to 



 _____________________________________________________________________________ DISCUSSION 

 

78 

 

resection; rather ATR might actively regulate the initiation of end resection process. 

Kousholt et al. have shown that the rapid activation of ATR downstream target CHK1 

precedes initiation of resection. In addition, CtIP-mediated end resection was shown 

to be required for the sustained checkpoint signaling but not for its initiation, which 

leads to the assumption that checkpoint activation is independent of end resection 

and points to the above indicated role of ATM (231). 

Furthermore, CHK1 inhibition results in residual checkpoint activation at the early 

time points after IR. Despite this small initial drop of the mitotic index, ATR seems to 

be involved in G2 checkpoint activation and maintenance predominantly through 

CHK1 (232). 

Since both ATM and ATR promote end resection in G2 phase and checkpoint 

response, inhibition of each of them results in abrogation of both G2 checkpoint 

response and of end resection. Unlike ATM and ATR, DNA-PKcs deficiency results in 

enhanced G2 checkpoint activation combined with excessive DSB end resection. This 

suggests that ATM/ATR and DNA-PKcs have opposing roles in the process of 

resection. Under normal conditions DNA-PKcs prevents ATR upregulation and over-

resection that may be unfavorable for c-NHEJ. The upregulation of ATR activity in 

DNA-PKcs deficient background but also in ATM deficient cells (233) suggests that 

ATM and ATR cannot substitute DNA-PKcs for the recovery from the checkpoint. 

Together, our data demonstrate the contribution of DNA-PKcs to G2 checkpoint and 

end resection suggesting that DNA-PKcs is involved in a functional kinase module 

together with ATM/ATR in order to effectively control the DNA damage response and 

optimize end processing. Based on our observations, if the DNA-PKcs component of 

this module is missing, which is also associated with reduced ATM level, the cell tries 

to ‘compensate’ for its absence via up-regulation of ATR. In addition, under normal 

conditions DNA-PKcs may regulate homologous recombination through ATR. 

Although the view about ‘mechanistic/direct competition between NHEJ and HR’ in 

DSB repair is strengthened by many publications (135, 222, 226, 234, 235), we 

suggest that pathway choice is not only dictated by the cell cycle phase and 

chromatin status; rather it is a highly regulated process by all three PIKK kinases. In 
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this module ATR seems to have a complete control on G2 checkpoint response and 

also to regulate resection. The exact mechanism remains to be elucidated. 
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6. SUMMARY 

The data from our experiments revealed that DNA-PKcs deficiency is associated with 

persistent G2 checkpoint that in cells sustaining damage in S phase of the cell cycle 

is dependent on ATR, while in cells irradiated in G2 phase it strongly relies on both 

ATM/ATR. The hyper-activation of the G2 checkpoint seems to be DNA-PKcs-specific 

as it is not observed after depletion of KU70/80, and is associated with enhanced 

resection at IR-generated DSBs as analyzed by RPA foci formation. However, 

chemical inactivation of DNA-PKcs does not completely replicate the increased level 

of RPA foci observed in DNA-PKcs deficient cells. Nevertheless, this result suggests 

that the DNA-PKcs’ catalytic function may be essential in order to actively regulate 

the process of DNA end resection. 

To identify potential targets of DNA-PKcs in DSB end resection, we applied RNAi 

screening and found that CtIP, MRN complex and DNA2 nuclease/helicase are good 

candidates to be regulated by DNA-PKcs kinase activity.  Subsequent in vitro, as well 

as immunoprecipitation experiments are needed to confirm the interaction of 

DNA-PKcs with the proposed targets. 

Administration of specific ATM and ATR kinase inhibitors as well as inhibitors of their 

downstream targets CHK1 and CHK2 revealed that ATM inactivation is associated 

with less enhanced G2 checkpoint activation and significant decrease of DNA end 

resection following exposure to IR in comparison to elimination of DNA-PKcs activity. 

Interestingly, the data also point to contribution of ATR in the regulation of G2 

checkpoint and DNA end resection through CHK1 not only in DNA-PKcs deficient but 

also in normal cells, suggesting that ATR does not only passively respond to ssDNA 

but may actively regulate the initial steps of these processes. 

Collectively, these results link DNA-PKcs to checkpoint response activation via 

regulation of DNA end resection and imply a cross-talk between the three PIKK 

kinases ATM, ATR and DNA-PKcs. 
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