
coalgebraic behavior analysis

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Duisburg-Essen Publications Online

https://core.ac.uk/display/33796956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

coalgebraic behavior analysis

From Qualitative to Quantitative Analyses

Von der Fakultät für Ingenieurwissenschaften,
Abteilung Informatik und Angewandte Kognitionswissenschaft

der Universität Duisburg-Essen

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation

von

henning kerstan

aus
Oberhausen

1. Gutachterin: Prof. Dr. Barbara König
2. Gutachter: Prof. Dr. Paolo Baldan

Tag der mündlichen Prüfung: 20. April 2016

Coalgebraic Behavior Analysis – From Qualitative to Quantitative Analyses
© 2016 Henning Kerstan. All rights reserved.

This thesis contains material from the following original publications.

. Chapter 3. Adjunctions and Automata:

[KKW14] Henning Kerstan, Barbara König, and Bram Westerbaan. Lifting Adjunctions
to Coalgebras to (Re)Discover Automata Constructions. In Coalgebraic Methods
in Computer Science. Marcello M. Bonsangue, editor. Volume 8446. In Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2014, pages 168–188.
doi:10.1007/978-3-662-44124-4_10.

. Chapter 4 Trace Semantics for Continuous Probabilistic Transition Systems:

[KK12b] Henning Kerstan and Barbara König. Coalgebraic Trace Semantics for Prob-
abilistic Transition Systems Based on Measure Theory. In CONCUR 2012 –
Concurrency Theory. Maciej Koutny and Irek Ulidowski, editors. Volume 7454.
In Lecture Notes in Computer Science. Springer Berlin Heidelberg, September
2012, pages 410–424. doi:10.1007/978-3-642-32940-1_29.

[KK13] Henning Kerstan and Barbara König. Coalgebraic Trace Semantics for Contin-
uous Probabilistic Transition Systems. Logical Methods in Computer Science, 9

[4:16](834), December 2013. doi:10.2168/LMCS-9(4:16)2013. arXiv:1310.7417v3
[cs.LO].

. Chapter 5 Behavioral Pseudometrics:

[BBKK14] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Behavioral
Metrics via Functor Lifting. In 34th International Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2014). Venkatesh
Raman and S. P. Suresh, editors. Volume 29. In Leibniz International Proceedings
in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2014, pages 403–415. doi:10.4230/LIPIcs.FSTTCS.2014.403. arXiv:1410.3385
[cs.LO].

[BBKK15] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Towards
Trace Metrics via Functor Lifting. In 6th Conference on Algebra and Coalgebra in
Computer Science (CALCO’15). Lawrence S. Moss and Paweł Sobociński, editors.
Volume 35. In Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, October 2015, pages 35–49. doi:
10.4230/LIPIcs.CALCO.2015.35. arXiv:1505.08105 [cs.LO].

Moreover, Chapter 5 serves as a basis for an invited submission to a special issue of the
journal Logical Methods in Computer Science.

http://doi.org/10.1007/978-3-662-44124-4_10
http://doi.org/10.1007/978-3-642-32940-1_29
http://doi.org/10.2168/LMCS-9(4:16)2013
http://arxiv.org/abs/1310.7417v3
http://doi.org/10.4230/LIPIcs.FSTTCS.2014.403
http://arxiv.org/abs/1410.3385
http://doi.org/10.4230/LIPIcs.CALCO.2015.35
http://doi.org/10.4230/LIPIcs.CALCO.2015.35
http://arxiv.org/abs/1505.08105

Abstract

In order to specify and analyze the behavior of systems (computer programs,
circuits etc.) it is important to have a suitable specification language. Although
it is possible to define such a language separately for each type of system, it is
desirable to have a standard toolbox that allows to do this in a generic way for
various – possibly quite different – systems.

Coalgebra, a concept of category theory, has proven to be a suitable framework
to model transition systems. This class of systems includes many well-known
examples like deterministic automata, nondeterministic automata or probabilistic
systems. All these systems are coalgebras and their behavior can be analyzed
via the notion of final coalgebra or other category theoretic constructions.

This thesis investigates how to improve and build upon existing results to
explore the expressive power of category theory and in particular coalgebra in
behavioral analysis. The three main parts of the thesis all have a different focus
but are strongly connected by the coalgebraic concepts used.

Part one discusses adjunctions in the context of coalgebras. Here, well-known
automata constructions such as the powerset-construction are (re)discovered as
liftings of simple and well-known basic adjunctions.

The second part deals with continuous generative probabilistic systems. It is
shown that their trace semantics can be captured by a final coalgebra in a
category of stochastic relations.

The final contribution is a shift from qualitative to quantitative reasoning.
Via the development of methods to lift functors on the category of sets and
functions to functors on pseudometric spaces and nonexpansive functions it is
possible to define a canonical, coalgebraic framework for behavioral pseudometrics.

v

Preface

In this thesis I will present most of the results of four years of research which
I conducted as a PhD student in the group of and under the supervision of
Barbara König at the University of Duisburg-Essen. Before doing so, I would
like to make some short remarks concerning the origins of this work as well as
some personal comments.

Origins of the Material

The main chapters (Chapters 3 to 5) of this thesis are based on prior publications,
which are the results of collaborations with other researchers. In all these
collaborations, I contributed a lot to the development of the ideas. Moreover,
the structure as well as the actual wording of the publications is to a major
extent my own work. Due to this I took the liberty of including a lot of text
verbatim from the referenced publications in the main chapters. However,
whenever I considered it to be inappropriate (e.g., if a text part was entirely
written by someone else and I had no part in it) I have either not included it or
explicitly marked it or replaced the respective part of the text by a new one.

After these general remarks, I will now separately comment on the three
main chapters and how they are related to the respective prior publications.

Adjunctions and Automata

The ideas connecting adjunctions and automata as presented in Chapter 3

arose out of discussions with several researchers. Together with Barbara König
and Bram Westerbaan, I worked out the details of the theory, its application to
examples and turned it into a conference paper [KKW14]. Chapter 3 contains
the results of this paper with the exception of the section on linear weighted
automata, which was entirely Bram’s work. I have added a few more examples
to the main text and some additional proofs and calculations for this chapter
can be found in Appendix A.1.

vii

Preface

Trace Semantics for Continuous Probabilistic Transition Systems

The line of work on probabilistic systems presented in Chapter 4 has its roots
in my diploma thesis [Ker11]. Together with Barbara König, I developed some
non-trivial extensions of the results, which were then accepted as a conference
paper [KK12b] and accompanied by a technical report [KK12a] containing the
proofs. Later, in a special issue journal version [KK13], we integrated the proofs
in the main text and demonstrated the theory on two sophisticated examples.
Chapter 4 is based on this journal version.

In Appendix A.2 I have added a simpler proof of one of the results (measur-
ability of the trace arrow) which was suggested to me by Ernst-Erich Doberkat
after I presented this work on the Bellairs Workshop on Probability in 2014.

Behavioral Pseudometrics

The coalgebraic framework for behavioral pseudometrics as presented in Chap-
ter 5 is a collaboration with Paolo Baldan, Filippo Bonchi and Barbara König. It is
a combination of two consecutive conference papers [BBKK14; BBKK15]. The
basis for Chapter 5 are the corresponding extended versions which are available
online on arXiv.org but in contrast to them I have integrated the appendices
with the proofs into the main text, added more explanations, improved several
of the results and worked out more examples in detail.

As a last remark on this chapter, I would like to add that, after the second
conference, we were invited to submit an article about our work on behavioral
pseudometrics to a special issue of the journal Logical Methods in Computer
Science. We will use this chapter as starting point for our submission.

Acknowledgements

While research is exciting and satisfying whenever one reaches a result (and
even more so, if this result is accepted and honored by other scientists), the
road to many of these results can be long and tedious. Fortunately there were
many wonderful people who have supported and accompanied me on this road
and who I want to mention here.

First of all, I would like to thank Barbara König for offering me the opportunity
to pursue a PhD under her supervision. Conducting research together with her
has always been an inspiring experience. She provided me with all the help I
needed but also with a lot of freedom to develop and pursue my own ideas.
Moreover, thanks to her I got to know many other researchers, was able to visit
them and work with them.

viii

http://arxiv.org

Preface

The most inspiring and interesting aspect of science today are the international
collaborations. Except from getting to know several nice and often sunny places,
I met fascinating and extraordinary people all around the world.

Among these people, I will first mention my coauthors Paolo Baldan, Filippo
Bonchi and Bram Westerbaan. It was and still is a pleasure not only to work with
them but also to discuss everyday life topics while enjoying a good meal.

Another person I would like to thank here is Alexandra Silva. She rendered it
possible to meet many other people of the coalgebraic community by inviting
me to several workshops in Nijmegen, Braga and – together with Prakash
Panangaden – to the Bellairs Research Institute on the amazing Caribbean island
of Barbados.

Coming back from the Caribbean sea to Duisburg, I would also like to
acknowledge my former and current colleagues Harsh Beohar, Christoph Blume,
Sander Bruggink, Mathias Hülsbusch, Dennis Nolte and Jan Stückrath for interesting
discussions and a good and friendly working environment.

A special thanks goes to my colleague Sebastian Küpper with whom I shared
my office and thus naturally had a lot of interesting conversations. In particular,
I am grateful for his helpful comments on many of my ideas including some
early drafts of this thesis.

Another person I would like to mention here is Tobias Heindel. In the very
beginning of my PhD, he invited me to a research visit to Paris and afterwards
I met him at various conferences and workshops. On all these occasions, it was
always interesting to discuss questions of science and everyday life.

Last but not least I would like to express my gratitude to those people who
have played a significant part throughout my whole life and still continue to do
that. I would not be who I am today, if it was not for the constant support I got
and get from you, my family and my friends.

Duisburg, December 2015 Henning Kerstan

ix

Contents

Abstract v

Preface vii

1 Introduction 1

1.1 Trace Equivalence versus Bisimilarity 2

1.2 Coalgebra as a Theory of Transition Systems 3

1.3 Structure of the Thesis 6

1.4 Contributions 7

2 Preliminaries 15

2.1 Foundation 15

2.1.1 Set Theoretic Assumptions 15

2.1.2 Notation and Basic Definitions 16

2.1.3 Ordinals and Transfinite Induction 18

2.2 Transition Systems and Automata 20

2.2.1 Labelled Transition Systems 20

2.2.2 Trace Equivalence and Bisimulation 21

2.2.3 Side Effects: From Nondeterminism To Probability 24

2.3 Category Theory 27

2.3.1 Basics 27

2.3.2 Functors 32

2.3.3 Limits and Colimits 34

2.3.4 Adjunctions and Monads 39

2.4 Coalgebra 48

2.4.1 Coalgebras are Transition Systems 48

2.4.2 Final Coalgebra 52

2.4.3 Trace Semantics 58

3 Adjunctions and Automata 65

3.1 Lifting Adjunctions 66

3.1.1 Motivating Example 66

3.1.2 Lifting an Adjunction to Coalgebras 67

xi

Contents

3.2 Nondeterministic Automata and Determinization 71

3.2.1 Automata as Coalgebras 72

3.2.2 Determinization of Nondeterministic Automata 73

3.2.3 Codeterminization of Nondeterministic Automata 75

3.3 Deterministic Join Automata 76

3.3.1 Complete Join Semilattices 77

3.3.2 Deterministic Join Automata 77

3.3.3 Determinization of Deterministic Automata 78

3.3.4 Codeterminization of Deterministic Join Automata 80

3.4 Checking Behavioral Equivalences 81

3.5 Conclusion 84

3.5.1 Open Questions and Future Work 84

3.5.2 Related Work 85

3.5.3 Final Remarks 85

4 Trace Semantics for Continuous Probabilistic Transition Systems 87

4.1 Measure Theoretic Basics 88

4.1.1 The Category of Measurable Spaces and Functions 91

4.1.2 Borel-Sigma-Algebras and the Lebesgue Integral 93

4.1.3 The Probability and the Subprobability Monad 95

4.1.4 A Category of Stochastic Relations 96

4.2 Coalgebraic Probabilistic Traces 97

4.2.1 Towards Measurable Sets of Words: Cones and Semirings 98

4.2.2 Measurable Sets of Words 100

4.2.3 The Trace Measure 102

4.2.4 The Trace Function is a Kleisli Arrow 109

4.2.5 The Trace Measure and Final Coalgebra 111

4.3 Examples 120

4.3.1 Completion and the Lebesgue Measure 120

4.3.2 Densities 121

4.3.3 Examples 121

4.4 Conclusion 125

4.4.1 Related Work 126

4.4.2 Future Work 127

5 Behavioral Pseudometrics 129

5.1 Motivation 129

5.1.1 Wasserstein and Kantorovich Distance 130

5.1.2 Behavioral Distance as Fixed Point 133

5.1.3 Structure of this Chapter 134

xii

Contents

5.2 Pseudometric Spaces 135

5.2.1 Calculating with (Extended) Real Numbers 136

5.2.2 Pseudometrics Categorically 137

5.3 Examples of Behavioral Distances 141

5.4 Lifting Functors to Pseudometric Spaces 144

5.4.1 The Kantorovich Lifting 145

5.4.2 The Wasserstein Lifting 150

5.4.3 Lifting Multifunctors 169

5.4.4 The Product and Coproduct Bifunctors 175

5.5 Bisimilarity Pseudometrics 183

5.6 Compositionality of Liftings 193

5.6.1 Compositionality for Endofunctors 194

5.6.2 Compositionality for Multifunctors 202

5.7 Lifting Natural Transformations and Monads 206

5.8 Trace Pseudometrics 209

5.8.1 Trace Pseudometric for Nondeterministic Automata 212

5.8.2 Trace Pseudometric for Probabilistic Automata 214

5.9 Conclusion, Related and Future Work 220

5.9.1 Related Work 221

5.9.2 Future Work 222

6 Conclusion 227

6.1 From Qualitative to Quantitative Analyses 227

6.2 Pros and Cons of the Coalgebraic Perspective 230

6.3 Related and Future Work 231

A Supplementary Material 233

A.1 Proofs and Calculations for Chapter 3 233

A.1.1 Determinization of Nondeterministic Automata 233

A.1.2 Codeterminization of Nondeterministic Automata 235

A.1.3 Determinization of Deterministic Automata 236

A.1.4 Codeterminization of Deterministic Join Automata 236

A.2 Borel-Measurability of the Trace Arrow Revisited 241

A.3 Distributive Law for Probabilistic Automata 242

Bibliography 249

List of Symbols 259

Index 263

xiii

1
Introduction

Transition systems are one of the most fundamental structures of
theoretical computer science. The underlying idea is that at every point
in time a digital system like a circuit or a program is in a clearly defined

state of a set of possible states and when time passes (in discrete time steps) the
system can make a transition from one state to another. We assume that our
model of such systems is sequential, i.e., we require that no transitions can occur
simultaneously.

The most prominent examples of such transition systems are perhaps the
well-known deterministic and nondeterministic finite automata which are used
to describe and study regular languages but also other automata in the realm
of formal languages like push-down automata or Turing machines are easily
identified to have an underlying transition system structure. Apart from that,
also process calculi like Robin Milner’s Calculus of Communicating Systems (ccs)
[Mil80] make use of transition systems: While syntactically a ccs-process is
merely a word of a formal language, it induces a unique transition system
which gives rise to its semantics.

The behavior of a transition system is defined in terms of the possible tran-
sitions between the states of the system. Depending on the respective system,
such a transition can be labelled with an action which can represent a user input
(e.g. pressing a button), an observable system output (a light or a display), a
weight (a probability) or a condition (a switch) that has to be satisfied for the
transition to be possible. In order to define the behavior of a system we usually
assume that we can observe these outputs or interact with the system but we
cannot see its internal state. Via the observations we make and the interactions
that are possible, we can then compare any two systems and say if they behave
similarly or not. Based on this, we can then characterize and analyze desired
or wanted behavior, by first defining a transition system which serves as our
specification and then comparing any given transition system to this specification
to verify or falsify the implementation of the wanted behavior.

Any comparison as above induces in an apparent way a relation between
transition systems. It is reasonable to assume that this relation is at least a

1

Chapter 1 Introduction

preorder: We want it to be reflexive so that each systems satisfies the specification
given by itself and also to be transitive such that if system A satisfies the
specification given by a system B which in turn satisfies the specification given
by a system C we want the system A to satisfy the specification given by C. For
our considerations we also require symmetry, i.e., we require that if a system A

satisfies a specification given by B then this system also satisfies the specification
given by A. This way we obtain an equivalence relation and thus a notion of
equality (in terms of behavior) of transition systems.

A comparison of various notions of such behavioral equivalences for transition
systems can be found in Rob van Glabbeek’s seminal paper The Linear Time –
Branching Time Spectrum [vGla90] along with an interpretation as button pushing
experiments. In this thesis we will focus on the two extreme ends of that spectrum.
We will consider the finest behavioral equivalence, bisimilarity, as well as the
coarsest one, trace equivalence, using a (co)algebraic approach. Moreover, we will
look into quantitative generalizations of both allowing us not only to say that
two systems are different but also to quantify the extent of their difference.

1.1 Trace Equivalence versus Bisimilarity

Let us recall one standard example which demonstrates the weakness of trace
equivalence and motivates bisimilarity. We imagine a vending machine offering
two products: coffee and tea. In order to get a beverage, we have to first insert
a coin and then choose which product we want. Thus the user actions are
coin, coffee, and tea whereas the machine can react by serving tea or coffee,
represented by the output actions tea or coffee. If we just consider the linear
behavior we want the machine to accept the sequences coin, coffee, coffee as
well as coin, tea, tea but it should not accept sequences like coin, coffee, tea
(wrong product served) or coin, coin, tea, tea (too much money payed) although
the latter would be nice for the operator of the machine (or even necessary if
the beverages’ prices were very high). However, this specification by traces is
not enough to get the desired result. Let us consider the two possible imple-
mentations given in Figure 1.1.1 which both satisfy our informal specification
by traces given before.

We assume that both machines are in their top states (x1 or y1) in the be-
ginning. The apparent difference is that the machine on the left hand side
nondeterministically chooses which of the two transitions (to x2 or to x3) to
take upon inserting a coin, so the user does not have a choice of a product any
more! Contrary to that, the machine on the right hand side implements the
correct behavior. In order to differentiate the two machines we will have to use

2

1.2 Coalgebra as a Theory of Transition Systems

x1

x2 x3

x4 x5

y1

y2

y3 y4

coin coin

tea coffee

tea coffee

coin

tea coffee

tea coffee

Figure 1.1.1: Two vending machines

an equivalence which is able to distinguish the branching structure of transition
systems. This is where bisimulations come into play. We will not explain this
important equivalence here but postpone its presentation to the Preliminaries
(Chapter 2) since we need a formal definition of transition systems for this.

However, we will use the above example to point out one more thing. From
the way we modelled our vending machines it is apparent that they could run
forever, accepting e.g. infinite repetitions of the sequence coin, tea, tea. While
this is practically unlikely it is yet a sensible abstraction because we simply
might not know how long the lifetime of such a vending machine will be. This
complicates matters a bit because one can show that, even if we restrict our
attention to the notion of traces, there are examples of transition systems which
only differ in their infinite traces while agreeing on each finite one. In this thesis
we will therefore consider both finite and infinite behavior.

1.2 Coalgebra as a Theory of Transition Systems

In recent years, the theory of coalgebras [JR97; Rut00] has proven to be a
versatile tool that allows one to model and analyze various systems which are
classically modelled as transition systems with possibly some side-effects like
nondeterminism, probability or weights. The benefit of the coalgebraic view is
that it provides the means for a uniform theoretic analysis of transition systems.
While traditionally for each new transition system one has to define proper
behavioral equivalences manually and argue why they are suitable, coalgebra
provides a framework to do this in a canonical fashion.

Although coalgebra is a concept of category theory [Mac98] which is highly
non-trivial and requires a lot of time to be understood properly, the basic ideas
of coalgebra can be understood very quickly by looking at familiar examples.

Let us, for instance, consider a deterministic finite automaton (dfa). It is

3

Chapter 1 Introduction

classically modelled as a quintuple (X,A, x0, δ, F) where X is a finite set of states,
A is a finite alphabet (regarded as inputs of the automaton), x0 ∈ X is the initial
state, δ : X×A→ X is the transition function and F ⊆ X is a set of final states.
Such an automaton starts in its initial state x0 and then, depending on the given
input signals, it changes its state according to the transition function until it
reaches a final state xf ∈ F. We think of it as accepting the word that is obtained
by concatenating the input signals that steered the automaton from its initial
state to the final state.

The important thing to notice is that the dynamics of the system is entirely
given by the transition function. If instead of the above function we had a
function δ : X×A→ PX, where PX denotes the set of all subsets of X, we would
obtain1 a nondeterministic finite automaton (nfa). Similarly, probabilistic
automata are essentially defined by a transition function of the form δ : X×A→
DX. Here DX is the set of all probability distributions on X, i.e., the set of all
functions p : X→ [0, 1] such that

∑
x∈X p(x) = 1. Thus the transition function δ

of a probabilistic automaton maps each state x ∈ X and each input a ∈ A to
the distribution δ(x,a) : X→ [0, 1]. The underlying intuition is, that if such an
automaton is in state x it reacts to the input a by choosing a successor state
x ′ ∈ X according to the probabilities given by δ(x,a).

Keeping the above observation in mind, it thus seems plausible to focus on
the transition structure of systems which is exactly what coalgebra does. If we
restrict our attention to the realm (or more precisely the category) of sets and
functions, a coalgebra is nothing but a function of shape X → FX where F is
a so-called functor, i.e., a special higher order function that maps sets to sets
and functions to functions. This functor F determines the branching type of
the system. For instance, deterministic automata can be modelled as functions
c = 〈o, s〉 : X→ 2×XA where 2 = {0, 1} and XA is the set of all functions from
A to X. Each state x ∈ X gets assigned a value o(x) ∈ 2 determining whether
it is final (o(x) = 1) or not (o(x) = 0) and a successor function s(x) : A → X.
To see that this is indeed a coalgebraic model of a deterministic automaton
we just have to remind ourselves that via currying/uncurrying the function
s : X → XA can equivalently by expressed as function δ : X×A → X and vice
versa. Moreover, one can indeed extend the function mapping the set X to
the set 2× XA to a functor. In a similar way, nondeterministic automata can
be modelled as coalgebras X → 2 × (PX)A and probabilistic automata are
coalgebras X→ 2× (DX)A.

The above examples provide already a small insight into the expressive power

1If we wanted to be very precise, we would also have to replace the initial state x0 by a set of
initial states I ⊆ X.

4

1.2 Coalgebra as a Theory of Transition Systems

of coalgebra and it should be imaginable that the definition is flexible enough
to encompass many more types of (labelled) transition systems. All we have
to do is to tweak our sole parameter – the functor F. Such a functor cannot
only be defined on the category of sets and relations as above but also on other
categories like the category of sets and relations. As simple example for this
we observe that the transition function δ : X×A → PX of a nondeterministic
automaton can equivalently be characterized by a relation R ⊆ X×A×X if we
define R := {(x,a, x ′) | x ′ ∈ δ(x,a)}.

Before continuing, we quickly point out a subtle peculiarity. When we look
again at the above coalgebras we can see that we have simply integrated the
notion of final state into the coalgebra. However, initial states are not part of the
coalgebra. This is not a mistake but it is common for the coalgebraic modelling
and we will discuss this issue in some more details once we have provided the
basic definitions in the Preliminaries (Chapter 2).

Let us now emphasize that coalgebra not only allows to model systems in
a unified way but also permits to define and analyze their behavior. The key to
this behavioral analysis is the observation that for some functors there exist
special coalgebras – so-called final coalgebras – which have the property (and
are defined uniquely via it) that every system has a unique mapping into it.

As example we remark that the set P (A∗) of all languages over A is a
deterministic (but unless A = ∅ certainly not finite) automaton. Its final states
are all the languages containing the empty word ε and for every state (a
language) L its a-successor is the a-derivative of L, i.e., the language La :=

{aw | w ∈ L}. Thus we also have a coalgebra of all languages z : P (A∗) → 2×
(P (A∗))A. This coalgebra is the final coalgebra for the underlying functor. For
any other deterministic automaton represented as a coalgebra c = 〈o, s〉 : X→
2×XA, we have a unique function [[·]] : X→ P (A∗) mapping each state x ∈ X to
the language it accepts. Since language equivalence and bisimilarity coincide
for deterministic systems, this map yields both of these notions: Two states x
and y are bisimilar (and apparently language equivalent) if and only if they are
mapped to the same state (language) in the final coalgebra, i.e., if [[x]] = [[y]].

We will later see that the behavioral equivalence which is induced by the
map into the final coalgebra in general corresponds to bisimilarity. It is thus
finer than language equivalence unless they coincide as in the example above.
If we now turn our attention to nondeterministic automata we are hence faced
with two challenges. On the one hand we will see that the final coalgebra for
these automata does not exist (we would have to restrict our attention to finitely
branching systems) and on the other hand if we are interested in the coarser
language equivalence, we will have to dig deeper into the coalgebraic theory to
find a satisfying answer.

5

Chapter 1 Introduction

Chapter 1
Introduction

Chapter 2
Preliminaries

Chapter 4
Trace Semantics
for Continuous

Probabilistic
Transition Systems

Chapter 6
Conclusion

Chapter 3
Adjunctions

and Automata

Chapter 5
Behavioral

Pseudometrics

Figure 1.3.1: Interdependencies of the chapters. An arrow indicates that the
chapter at the source of the arrow is a prerequisite of the chapter
at the arrow tip.

1.3 Structure of the Thesis

Equipped with at least the basic, example-guided understanding of coalgebra
from above we can now discuss the structure of this thesis and its contributions.
Its general aim is to continue the analysis of the expressive power of coalgebraic
methods in the analysis of labelled transition systems. This is done in a total of
six chapters whose interdependencies are depicted in Figure 1.3.1.

Apparently, the current introductory chapter serves to identify the coalgebraic
behavioral analysis as overall topic of the thesis. Moreover, it is intended as a
guide for the reader to understand the modular structure of this thesis.

The three main chapters (Chapters 3 to 5) are completely independent of each
other and can be read separately in any order. However, they share a common
mathematical background which is presented in Chapter 2.

A lot of effort has been put already into this mathematical background in
Chapter 2 to make it in principle possible to read this thesis without any prior
knowledge of category theory or coalgebra. Therefore, this chapter takes the
reader through a short but concise tour of all the basics from category theory,
transition system theory and coalgebra commonly needed for the later parts of
this thesis. Moreover, it always provides references to the literature where the
corresponding concepts are explained in more details.

6

1.4 Contributions

Of course, readers who are familiar with category theory and coalgebra can
skip this part but are nevertheless advised to at least give it a quick look because
all notational conventions will also be explained there. However, there is a quite
extensive List of Symbols and an Index at the end of the thesis so it is also
possible to look up the notation only when needed.

The thesis ends with a short chapter containing some concluding remarks in
Chapter 6. As visible in the diagram of Figure 1.3.1, these require the knowledge
of all main chapters.

1.4 Contributions

The contributions of this thesis are split into three chapters (Chapters 3 to 5)
which all have a similar basic setup. Each of them starts with an introductory
text explaining in more details the contributions of the chapter. While Chapter 3

does not require any additional mathematical background, Chapters 4 and 5 do,
so the introductory text is succeded by a section explaining further mathematical
preliminaries, which are just relevant for the respective chapter. All three
chapters end with a separate conclusion section in which their respective
contributions are summarized and put into the larger research context.

In the subsequent overview of these three chapters we will already use
some of the terminology and notation which is explained only later in the
Preliminaries (Chapter 2). However, even with just the ideas from above it
should be possible to get a general understanding of what will happen in the
chapters.

Chapter 3. Adjunctions and Automata

This chapter is a case study looking into adjunctions – one of the important
abstract concepts of category theory – in the context of several automata models
which are, of course, represented as coalgebras.

In order to get an idea of adjunctions, let us consider a standard example
which is easily understandable. We first recall that for any set A the set A∗

consists of all the finite words (also called strings or lists) of elements of A.
We can append a word v to another word w yielding the word wv which
gives rise to a concatenation operation conc : A∗ ×A∗ → A∗ where, of course,
conc(w, v) = wv. This operation is associative2 and the empty word ε serves
as both-sided neutral element3. Any set M together with such an associative

2For all w1,w2,w3 ∈ A∗ we have (w1w2)w3 = w1(w2w3).
3For all words w ∈ A∗ we have wε = εw = w.

7

Chapter 1 Introduction

operation ◦ : M2 →M and a both-sided neutral element e ∈M is called a monoid
and our monoid A∗ is given the special name free monoid because it satisfies a
so-called universal property: For any monoid (M, ◦, e) there is a bijection between
functions f : A→M and monoid homomorphisms4 h : (A∗, conc, ε)→ (M, ◦, e)
satisfying h(a) = f(a) for all a ∈ A. Explicitly, given a function f as above and
any string a1 . . . an we define hf(a1 . . . an) = f(a1) ◦ · · · ◦ f(an) and conversely
for any monoid homomorphism h as above and any element a ∈ A we define
fh(a) = h(a). Thus we can think of the free monoid construction as the most
efficient way to turn an arbitrary set into a monoid which includes that set.

In category theory this observation is formalized by the notion of adjunction.
The function mapping a set to its free monoid can easily be extended to a
functor (we just have to define how it transforms functions into monoid homo-
morphisms between free monoids) and apparently we can map any monoid
to its underlying set and a monoid homomorphism to the underlying function
which gives rise to another functor. Due to the above bijection we say that these
two functors are adjoint. We will explain this more thoroughly in Section 2.3.4.

In Chapter 3 we look at the well-known powerset construction which trans-
forms a nondeterministic automaton into an equivalent deterministic one from
a categorical perspective. It turns out that this construction is a functor which
happens to be the right adjoint to the inclusion functor from a category of
deterministic automata to a category of nondeterministic automata.

Since automata are coalgebras, this is just an adjunction between two cate-
gories of coalgebras: we consider deterministic automata as coalgebras in Set
and nondeterministic automata as coalgebras in Rel. Looking closely, one can
see that this adjunction between coalgebras arises out of a canonical adjunction
between the categories Set and Rel.

Taking this observation as leading idea, we first identify generic sufficient
conditions to lift an adjunction between two categories to an adjunction be-
tween coalgebras for functors on these categories. Moreover, we compare our
conditions with a more general 2-categorical result.

Afterwards we illustrate the applicability of this lifting technique in length.
While doing so, we recover several constructions on automata as liftings of
well-known basic adjunctions including

. the determinization of nondeterministic automata via the well-known power-
set construction,

. a similar construction we call codeterminization, which transforms a nondeter-
ministic automaton into a backwards deterministic automaton where each

4A monoid homomorphism between two monoids (M, ◦, eM) and (N, ∗, eN) is a function
h : M→ N such that h(eM) = eN and h(m1 ◦m2) = h(m1) ∗ h(m2) for all m1,m2 ∈M.

8

1.4 Contributions

state has a unique predecessor for each action symbol, and

. determinization of join-automata, a special class of automata whose state space
is a complete join semi-lattice and whose transition function respects this
structure.

As a final contribution, we show how the lifted adjunction can be used to
check behavioral equivalences. Proofs and some additional calculations are
provided in Appendix A.1.

Chapter 4. Trace Semantics for Continuous Probabilistic Transition Systems

As we have briefly discussed in the beginning, the behavioral equivalence
induced by the unique map into the final coalgebra is bisimilarity. Obtaining
the coarser notion of trace equivalence coalgebraically is possible but requires a
bit more effort.

In order to do so, let us first take a brief look at so-called monads and then
discuss how such a monad can be used to obtain traces. By reviving our
example of the free monoid construction which we used before to look at
adjunctions, we can also get an idea of a monad5. In presence of the free
monoid A∗ of a set A there are two useful functions. First of all, there is the
apparent inclusion ηA : A→ A∗ mapping an element a ∈ A to itself interpreted
as a one element word or string. If we denote each element w ∈ A∗ by enclosing
them in quotation marks we can thus write ηA(a) = “a”. Secondly, we have
a function µA : (A∗)∗ → A∗ which maps a list of words to the word we obtain
by concatenating all the words. Employing the quotation mark notation we
have µA

(
“ “w1”“w2” . . . “wn” ”

)
= “w1w2 . . . wn” for all w1,w2, . . . ,wn ∈ A∗.

Moreover, for any function f : A→ B we can define a function f∗ : A∗ → B∗ by
requiring f∗(“a1a2...an”) = “f(a1)f(a2)...f(an)”. This yields a functor T on the
category of sets and functions. The aforementioned functions and this functor
satisfy certain compatibility laws which is the reason why we call the triple
(T ,η,µ) the list monad. In fact, one can show that this notion coincides with the
monads used in functional programming languages such as Haskell. As in these
languages the strength of monads in the coalgebraic treatment of transition
systems is that they allow to hide side-effects in the branching structure. Thus
we can specify which branching is important (e.g. the user input or the system
output) and which branching can be condensed (e.g. nondeterministic or
probabilistic branching) for the behavioral analysis.

An approach by Ichiro Hasuo, Bart Jacobs and Ana Sokolova [HJS06] suggests

5This is not a coincidence. In fact, we will see in Chapter 2 that monads and adjunctions are
closely connected.

9

Chapter 1 Introduction

to interpret systems which are coalgebras of the shape X→ TFX where F is an
endofunctor and (T ,η,µ) a monad on Set as coalgebras in the Kleisli-category
of the monad. In there, the above coalgebra corresponds to a coalgebra X F̂X

for an extension F̂ of the original functor. If this functor admits a final coalgebra,
it gives rise to a notion of trace semantics which we will explain in Section 2.4.3.

The aforementioned approach encompasses a class of discrete probabilis-
tic systems which is slightly different from the probabilistic automata in the
beginning. Such a generative probabilistic transition system is a coalgebra
c : X→ D(A×X+ 1) in Set and it can be interpreted as a probabilistic genera-
tor for words. Whenever it is in a state x ∈ X it can either move with output
a ∈ A to a state x ′ and does this with probability c(x)(a, x ′) ∈ [0, 1] or it can
terminate and does this with probability c(x)(X) with X being the unique
element of the singleton 1. For each state x ∈ X of such a system its trace is a
probabilistic language, i.e., a probability distribution tr(x) : A∗ → [0, 1] which
arises as the unique Kleisli-arrow into the final coalgebra of the lifted functor.

In the above model of discrete probabilistic systems the support of the respec-
tive distributions is at most countable. As we will see in Chapter 4, this not
only excludes several interesting examples but it also prevents a treatment of
infinite traces since the set of infinite words Aω is uncountable. In order to treat
them properly, it is necessary to use concepts from measure theory.

In Chapter 4 we thus generalize the above approach for a coalgebraic def-
inition of traces to generative probabilistic transition systems, with arbitrary
(possibly uncountable) state spaces. We do so by moving to the category Meas
of measurable spaces and functions where we consider suitable generalizations
of the functors from above.

On this category, there are two known probabilistic monads, the sub-proba-
bility monad and the probability monad (Giry monad). Our main technical
contribution is that the existence of a final coalgebra in the Kleisli category of
these monads is closely connected to the measure-theoretic extension theorem
for sigma-finite pre-measures.

As a concrete result, we obtain a practical definition of the trace measure for
both finite and infinite traces of arbitrary generative probabilistic systems which
extends the result for discrete systems. In order to demonstrate the applicability
of our result, we finally consider two example systems with uncountable state
spaces and calculate their trace measures.

Chapter 5. Behavioral Pseudometrics

Especially in the presence of quantitative information like probabilities or other
numerical weights, it seems too strict to require that two states of a system

10

1.4 Contributions

behave exactly the same.
Let us elaborate on this by considering the probabilistic system depicted

below in Figure 1.4.1 (taken from [vBW06]). It is a purely probabilistic transition
system with state space X = {u, x,y, z} and an arbitrary ε ∈]0, 1/2[. The intuitive
understanding of such a system is, that in each state the system chooses a
transition (indicated by the arrows) to another state using the probabilistic
information which is given by the numbers on the arrows.

x

u z

y

X

1
2 − ε

1
2 + ε

1
2

1
2

1
1

Figure 1.4.1: A probabilistic transition system

The state z on the right hand side is a final state so the system terminates with
probability one (indicated by the arrow toX) when reaching that state. Contrary
to that, state u on the left hand side can be interpreted as a fail state which –
once reached – can never be left again and the system loops indefinitely in u.
Thus the behavior of these states is entirely different. If we now compare the
other two states x and y in this system it should be obvious that they are similar
for a small ε. However, unless ε is 0 (which we disallow), they will never behave
exactly the same, because in state x it is always a little bit more probable to go
to state z instead of u.

A situation as in this toy example could for instance arise, if the probabilities
come from (imprecise) measurements or simply if we have numerical errors
when implementing such a system using floating point calculations.

An obvious solution for our above problem is to consider behavioral distances
instead of behavioral equivalences. In this setting, we simply say that x and
y are ε apart (they are indeed if we take the proper behavioral distance) and
whenever ε is small enough, we might be satisfied with that.

In order to obtain such distances for probabilistic systems there are at least
three different possibilities:

. Firstly, one can consider ε-bisimulations, a quantitative variant of (probabilis-
tic) bisimulation and then define the distance of two states to be the smallest
ε such that they are ε-bisimilar (and 1 if they are not bisimilar) [GJS90].

. Secondly, we note that probabilistic bisimulation can be captured using a
simple modal logic without negation in the sense that two states are bisimilar
if and only if they satisfy the same formulae [DEP98]. Using a continuous

11

Chapter 1 Introduction

evaluation of these formulae, allowing real truth values ranging from 0 to
1, one can then define a distance by taking the largest difference of these
evaluations [DGJP99].

. Finally, using ideas from transportation theory [Vil09] it is possible to define
a distance as a fixed point of an equality which relies on a lifting of distances
on X to the set DX of distributions on it [vBW06].

While the latter two approaches already use a coalgebraic framework, up until
now they are specific to the probabilistic setting. In Chapter 5 we generalize the
third approach to study behavioral metrics in an abstract coalgebraic setting.
Given a coalgebra c : X → FX in Set we define a framework for deriving
pseudometrics on X which measure the behavioral distance of states.

A first crucial step is the lifting of the functor F on Set to a functor F in the
category PMet of pseudometric spaces. We present two different approaches
which can be viewed as generalizations of the Kantorovich and Wasserstein
pseudometrics for probability measures. We show that the pseudometrics
provided by the two approaches coincide on several natural examples, but in
general they differ.

Using the above lifting, a final coalgebra for an endofunctor F on Set can be
endowed with a behavioral distance resulting as the smallest solution of a fixed-
point equation, yielding the final F-coalgebra in PMet. The same technique,
applied to an arbitrary coalgebra c : X → FX in Set, provides a canonical
behavioral distance on X. Under some constraints we can prove that two states
are at distance 0 if and only if they are behaviorally equivalent.

As in the case of behavioral equivalences, the above approach yields bisimilar-
ity distances and it requires some additional effort to define trace distances. We
will obtain them by combining our framework with the so-called generalized
powerset construction [SBBR10].

This construction was suggested by Alexandra Silva, Marcello Bonsangue,
Filippo Bonchi and Jan Rutten as another approach to coalgebraic trace seman-
tics. It works for coalgebras c : X→ FTX on Set where F is an endofunctor and
(T ,η,µ) is a monad and requires a certain distributive law λ : TF ⇒ FT . The
basic observations is, that this distributive law induces a generic determiniza-
tion construction which transforms the above FT -coalgebra into a F̂-coalgebra
for a lifting F̂ of F to the Eilenberg-Moore category of the monad. We can then
embed the original system in its determinization using the unit η of the monad.
Moreover, a final F-coalgebra induces a final F̂ coalgebra which can then be
used to obtain trace semantics via finality.

In order to apply this construction in our setting, we generalize our technique
for systematically lifting functors from the category Set of sets to the category

12

1.4 Contributions

PMet of pseudometric spaces, by identifying conditions under which also
natural transformations, monads and distributive laws can be lifted.

If we are in such a setting, i.e., if we have a coalgebra c : X → FTX and a
distributive law λ : TF → FT such that the functor, the monad and this law
can be lifted to PMet and F has a final coalgebra we obtain trace semantics as
follows.

. First, we determinize the Set-coalgebra using the generalized powerset con-
struction in Set,

. then we equip the final F-coalgebra with its behavioral distance using our
lifting framework from above and

. finally we define the distance of two states to be the behavioral distance of
their image in the determinization via the unit of the monad.

Of course we also demonstrate how to use this procedure to obtain trace
distances for nondeterministic and probabilistic automata.

Summing up, this last chapter provides a generic, coalgebraic approach to
behavioral pseudometrics for all transition systems which can be modelled as
coalgebras in the category of sets and functions. Thus whenever we devise
a new type of transition system, it is now possible not only to automatically
obtain canonical behavioral equivalences in a unified way but also behavioral
pseudometrics which extend these equivalences in the sense that equivalent states
have distance 0.

13

2
Preliminaries

An important part of research is to communicate one’s own findings to
other researchers. In order to succeed, it is crucial to agree upon a
common basic knowledge.

Since this thesis combines several areas of computer science and mathemat-
ics, the purpose of this chapter is to provide the basic knowledge needed to
understand the results in the main parts of this thesis. However, it is of course
impossible to explain every bit of it so one has to rely on some assumptions.
The assumption made here is that the reader has a thorough mathematical and
computer science background (roughly at the level of an undergraduate degree
at a university). It is intended that the results in this thesis in principle are
accessible to anyone satisfying these minimal prerequisites although it will most
likely require some effort.

Readers who are familiar with the presented topics can of course skip this
chapter, immediately move on to (one of) the main parts of the thesis and just
consult this chapter whenever they are in need of an explanation. It should
be possible to quickly find definitions or notations by consulting the List of
Symbols or the Index.

2.1 Foundation

When starting to learn mathematics, one usually relies on an intuitive un-
derstanding of both propositional and predicate logic. This works quite well
because for many areas of mathematics such a basic understanding is sufficient.
The same holds true for one of the most fundamental structures in mathematics:
the notion of a set.

2.1.1 Set Theoretic Assumptions

A common naive understanding is that, given any “property” (e.g. a unary
predicate) Φ the “elements” satisfying this predicate constitute a set {X | Φ(X)}.

15

Chapter 2 Preliminaries

This understanding yields to the following, well-known paradox, which is
commonly attributed to Bertrand Russell. Suppose we wanted to define a set
whose elements are themselves sets. Let Φ(X) denote the property that X 6∈ X,
i.e., that the set X is not an element of itself. Then the set R := {X | Φ(X)} =

{X | X 6∈ X} of sets not containing themselves is properly defined according to
the intuitive understanding of a set. However, since R is itself a set, we may ask
whether R is an element of R. This leads to the contradiction R ∈ R ⇐⇒ R 6∈ R.

The problem that leads to this contradiction is the principle of unrestricted
comprehension, i.e., the idea that every property defines a set.

In order to avoid such problems, we will abandon the naive set theory and
work in a more rigorous, axiomatic set theory. For our purposes we thus
assume some set-theoretic foundation including the notion of (proper) classes,
i.e., entities that might be too large to be a set and sometimes even (possibly)
larger entities, called conglomerates (see e.g. the “Joy of Cats” textbook [AHS90,
p.13ff] for a detailed discussion of their properties). These notions form a (strict)
hierarchy, i.e., any set is a (non-proper) class but there are classes which are
not sets (the obvious example being the class of all sets) and similarly any class
is a conglomerate but there are conglomerates which are not classes (like the
conglomerate of all classes).

This formal setup can be achieved by requiring e.g. the von-Neumann-
Bernays-Gödel (NBG) axioms or the Zermelo-Fraenkel (ZFC) axioms and a
universe axiom in the style of Grothendieck (see e.g. [Gab62; Mac69] for more
details on universes). In any case we do assume an axiom of choice (although
we won’t usually make explicit use of it). In the remainder of this section
we will first introduce our notation for logical connectives, sets, classes and
conglomerates and constructions with them. The existence of the respective
entities has to be provided by our axiomatic (set theoretic) foundation.

2.1.2 Notation and Basic Definitions

For logical statements we will employ the symbols ∧ (conjunction/and), ∨

(disjunction/or), =⇒ (implication), ⇐⇒ (biconditional, bi-implication), ∃ (existential
quantification) and ∀ (universal quantification).

The membership relation of sets, classes (and even conglomerates, where appli-
cable) will all be denoted by the usual symbol ∈, i.e., we write x ∈ X to indicate
that x is an element of the set (or the class, or even the conglomerate) X and the
negation of membership is indicated by the symbol 6∈. For sets (or classes or
conglomerates) X, Y we write X = Y for equality, X := Y for assignment (equality
by definition), X ⊂ Y for strict inclusion and X ⊆ Y for non-strict inclusion.
Their negation is denoted by the symbols 6=, 6⊂ or 6⊆ respectively.

16

2.1 Foundation

The unique empty set, i.e., a set without any element, is denoted by the symbol
∅. By 1 we denote a singleton set and its unique element usually by X. Similarly
we write 2 for a two element set whose elements are (if not specified otherwise)
the integers 0 and 1.

Let for the remainder of this paragraph X and Y be classes. We write PX

or P (X) for the power class of X, i.e., PX = {S | S ⊆ X}. For relative comple-
ments we write X \ Y, i.e., X \ Y = {x ∈ X | x 6∈ Y}, for the intersection X ∩ Y =

{z | z ∈ X∧ z ∈ Y} and for the union X∪ Y = {z | z ∈ X∨ z ∈ Y}.
The cartesian product X× Y is the class {(x,y) | x ∈ X∧ y ∈ Y} of ordered pairs

which we write using parentheses (the same applies to other tuples).
The disjoint union X+ Y formally is the class {(x, 0), (y, 1) | x ∈ X,y ∈ Y}. If X

and Y are disjoint, i.e., X∩Y = ∅, the disjoint union coincides with (is isomorphic
to) the usual union X∪ Y in an obvious way. We will often silently assume that
this is the case and write e.g. x ∈ X+ Y instead of (x, 0) ∈ X+ Y.

We call any subclass R ⊆ X× Y a (binary) relation (from X to Y) and similarly
if Z is another class we call R ⊆ X× Y ×Z a ternary relation. For binary relations
we write xRy instead of (x,y) ∈ R.

If a binary relation f ⊆ X× Y satisfies the requirement that for any x ∈ X
there is a unique y ∈ Y with (x,y) ∈ f we call it a function (with domain X and
codomain Y), denote it by f : X → Y and given any x ∈ X we write f(x) ∈ Y for
the unique element satisfying

(
x, f(x)

)
∈ f.

For such a function and classes A ⊆ X, B ⊆ Y we write f[A] := {f(a) | a ∈ A}
for the image of A and f−1[B] := {x ∈ X | f(x) ∈ B} for the preimage of B. These
definitions yield in an obvious way the image function f[·] : PX → PY and the
preimage function f−1[·] : PY → PX. The restriction of f to A is the function
f|A := f∩A× Y and denoted by f|A : A→ Y.

A partial function is a relation f ⊆ X× Y such that (x,y) ∈ f and (x, z) ∈ f
imply y = z. In this case we write f : X⇀ Y. Certainly every function is a partial
function and conversely every partial function f yields a function f|A : A→ Y

by restricting f to the set A := {x ∈ X | ∃y ∈ Y.(x,y) ∈ f}.
The set of natural numbers (without 0) is denoted by N and we write N0

for the set N ∪ {0}. For the set of integers we use the symbol Z and for the
set of rational numbers we use Q. The set of real numbers is denoted by R and
by adding the symbols ∞ (infinity) and −∞ (minus infinity) together with
the requirement −∞ < r < ∞ for all r ∈ R we obtain the set of extended
reals R := R ∪ {±∞}. The sets R+ and R+ are their restrictions to the non-
negative subsets. Apart from obvious choices for addition involving ±∞, we
require 0 · ±∞ = ±∞ · 0 = 0. For a,b ∈ R we define the open interval]a,b[:={
r ∈ R | a < r < b

}
, the closed interval [a,b] :=

{
r ∈ R | a 6 r 6 b

}
and the half

open intervals]a,b] :=
{
r ∈ R | a < r 6 b

}
and [a,b[:=

{
r ∈ R | a 6 r < b

}
.

17

Chapter 2 Preliminaries

If Y ⊆ R and f,g : X→ Y are functions we write f 6 g if ∀x ∈ X : f(x) 6 g(x).
Moreover, the support of f is the set supp(f) := {x ∈ X | f(x) 6= 0}.

A subprobability distribution on a given set X is a function P : X → [0, 1] sat-
isfying

∑
x∈X P(x) 6 1 where for infinite X, the sum

∑
x∈X P(x) is defined as

the supremum sup
{∑

x∈X ′ P(x) | X
′ ⊆ X∧ |X ′| <∞}. Using this we moreover

define, for any set B ⊆ X, P(B) =
∑
x∈B P(x). If P(X) = 1 we call P a probability

distribution.
We will sometimes employ λ-abstraction in order to define functions. If T

is a term with free variable x, we will write λx.T to denote an “assignment
rule” from elements of a set x ′ ∈ X to a term T [x ′] where every occurrence of
x is replaced with the element x ′ of X. In contrast to the usual definition in
λ-calculus we implicitly assume some typing of all these terms T [x ′] in such
a way that they are elements of another set Y. Thus, for us λx.T denotes the
function f : X→ Y where f(x) = T [x].

2.1.3 Ordinals and Transfinite Induction

A well-known proof technique for statements about natural numbers is the
principle of induction. We will recall the basic ideas and then briefly explain a
generalization of this technique called transfinite induction, which we will use
in Chapters 4 and 5. For a more detailed, formal account of this, the reader is
referred e.g. to Paul Bernay’s System of Axiomatic Set Theory, Part II [Ber41].

Let us suppose we are given a unary predicate Φ on a set X containing the
natural numbers (i.e., N0 ⊆ X) which we can represent as a function Φ : X→ 2.
For any x ∈ X we say that the predicate is true if Φ(x) = 1 and it is false if
Φ(x) = 0. In order to show that Φ is true on every natural number, it suffices to
carry out two steps: As first step we prove that P(0) = 1 holds (this is called
the base case). Then we show that if P(n) = 1 holds for a natural number
n ∈ N0 (this hypothesis is called the induction hypothesis) also P(n+ 1) holds
(this implication is called the inductive step).

In order to generalize this, we first observe that the natural numbers can be
defined in set theory as follows.

0 := ∅,
1 := {∅}
2 := {∅, {∅}}
3 := {∅, {∅} , {∅, {∅}}}
...

n+ 1 := n∪ {n}

18

2.1 Foundation

With this inductive definition, which is due to John von Neumann [vNeu23],
we can see that each natural number n is the union of all its predecessors, i.e.,

n =
⋃
m⊆n

m .

Using the axioms of our suitably rich set theory we can deduce that there is a
smallest set which contains all the natural numbers as defined above. This is
the set N0 of all natural numbers which we also denote by ω in this context. It
satisfies

ω =
⋃
n⊆ω

n .

Using these observations as intuition, we can now proceed to give a definition
of the so-called ordinals, using the notation 0 := ∅ and α+ 1 := α∪ {α} for any
set α.

Definition 2.1.1 (Ordinal, [Ber41, p. 10]) A set α is an ordinal if

1. either 0 = α or 0 ∈ α, and

2. if a ∈ α then a+ 1 = α or a+ 1 ∈ α, and

3. if A ⊆ α then ∪A = α or there is an a ∈ α such that ∪A = a.

We call an ordinal β a successor (ordinal) if there is an ordinal α such that
β = α+ 1 and in this context we call α a predecessor of β. An ordinal γ without
predecessors is called a limit (ordinal). Clearly it satisfies γ = ∪α<γα.

Using this terminology, we can easily see that both 0 and ω are limit ordinals
whereas any natural number n > 0 is a successor ordinal. Moreover, we can
define new ordinals like ω + 1, ω + 2 := (ω + 1) + 1 and so on, as well as
ω+ω = ω · 2 = ∪n∈ω(ω+n). All ordinals considered so far are countable sets:
the natural numbers are finite sets and all the other ordinals α, starting with
ω, are countably infinite, i.e., there exists a bijective function f : ω → α. The
union of all countably infinite ordinals is again an ordinal, the first uncountable
ordinal ω1. By definition each ordinal is a set but it can be shown that the class
of all ordinals, denoted as Ord, is not a set.

If we want to prove a statement about ordinal numbers, we can use transfinite
induction. Suppose we are given a predicate Φ on a class X including ordinal
numbers, i.e., a function Φ : X→ 2 with Ord ⊆ X. If we can prove that

1. Φ(0) is true, and

2. if Φ(α) is true for an ordinal α, then so is Φ(α+ 1), and

19

Chapter 2 Preliminaries

3. if β is a limit ordinal and Φ(α) is true for all ordinals α < β then so is Φ(β)

we may conclude that Φ(α) = 1 holds for all ordinals α ∈ Ord.

2.2 Transition Systems and Automata

We assume that the reader is familiar with labelled transition systems and in
particular with automata theory. However, for reasons of clarity and to introduce
our notation we recall a few basics here. For more detailed information we
suggest e.g. the extensive textbook Principles of Model Checking by Christel Baier
and Joost-Pieter Katoen [BK08].

2.2.1 Labelled Transition Systems

First of all, let us recall the essential definitions of (labelled) transition systems
and some notational conventions.

Definition 2.2.1 (Transition System, Labelled Transition System) A transition
system is a pair (X, →) consisting of a set X of states and a binary relation
→⊆ X×X called the transition relation which is usually written in infix notation,
i.e., instead of (x,y) ∈→ we write x → y and we call y a successor (state) of x.
We write x 9 if there is no y ∈ X such that x → y.

Similarly, a labelled transition system (lts) is a triple (X,A, →), consisting
of a set X of states, a (usually finite) set A of actions or transition labels and a
ternary relation →⊆ X×A×X called the transition relation. As above, instead
of (x,a,y) ∈→ we write x a−→ y and we call y an a-successor of x. Moreover,
we write x a9 if there is no y ∈ X such that x a−→ y and finally x 9 if there is
no a ∈ A such that x a9 .

Our main interest in this thesis are labelled transition systems since our
aim is to compare behavior which is based on the labels which can be either
interpreted as input or output (we will discuss this in Section 2.2). In order to
work with labels, we need to talk about words and the free monoid construction.

Words and the Free Monoid Construction

We recall that for any set A (not necessarily finite) the set A∗ consists of all
finite-length (possibly zero) strings of elements of A, called words. Explicitly,
let ε be a fresh (i.e. ε 6∈ A) symbol which is called the empty word (its length
is zero). We now define A0 := {ε}, A1 := A, An+1 := {wa | w ∈ An,a ∈ A} for
n ∈N which are the sets of finite words of length n. Then A∗ is the union of

20

2.2 Transition Systems and Automata

all these sets, i.e., A∗ := ∪n∈N0
An. Since the elements of A∗ are called words,

we usually call the elements of A letters and A itself an alphabet1.
Given two words v,w ∈ A∗ we can concatenate them simply by appending

all the letters of w to v, i.e., we obtain the new word vw ∈ A∗. This yields a
function · : A∗ ×A∗ → A∗ which we always write in infix notation (and usually,
we will even omit the dot). It is associative, i.e., (u · v) ·w = u · (v ·w) holds
for all u, v,w ∈ A∗ and the empty word serves as a both-sided neutral element,
i.e., u · ε = ε · u = u. Thus A∗ together with the concatenation is a monoid, the
so-called free monoid on A.

We denote the length of a word w ∈ A∗ as |w| ∈ N0. It will sometimes be
convenient to consider words up to a predefined length n ∈ N0, i.e., we will
consider the sets A6n := ∪ni=0An = {w ∈ A∗ | |w| 6 n}.

An infinite word is a function v : N0 → A and the set of all these words is
traditionally denoted2 by Aω. The set of all finite and infinite words is the
set A∞ := A∗ ∪Aω. We can obviously concatenate a finite word w ∈ A∗ and
an infinite one v ∈ Aω to obtain the infinite word wv = w · v ∈ Aω but it is
impossible to append w to v.

Having these definitions at hand, we can now extend the transition relation of
a labelled transition system to arbitrary words. First we extend →⊆ X×A×X
to a relation →∗⊆ X×A∗ × X. Certainly we want →⊆→∗ . Moreover, for
every state x ∈ X we define (x, ε, x) ∈→∗ . For states x,y ∈ X and a word
w = a0 . . . an ∈ A∗ of length n+ 1 with n > 1 we define x w−→∗ y if there are
states x0, . . . , xn+1 ∈ X such that x = x0, y = xn+1 and xi

ai−→ xi+1 for every
i ∈ {0, . . . ,n}. Naturally we write x w9∗ if there is no y ∈ X such that x w−→∗ y.
Finally, for infinite words w ∈ Aω we write x w−→ω if there exists a function
r : N0 → X mapping natural numbers to states such that r(0) = x and for all

n ∈N0 we have a transition xn
w(n)−→ xn+1. If such a function does not exist, we

also write x w9ω .

2.2.2 Trace Equivalence and Bisimulation

The two most prominent notions of behavior for labelled transition systems
are trace equivalence and bisimulation. The conceptually very simple notion
of language or trace equivalence will later turn out to be more difficult to handle
coalgebraically than the more complicated notion of bisimilarity. Let us quickly
recap their formal definitions.

1Later we will often require an alphabet to be at least countable or even finite.
2Of course, it is also legitimate to denote them by AN0 .

21

Chapter 2 Preliminaries

Definition 2.2.2 (Language/Trace of a State) Let (X,A, →) be an lts. For every
state x ∈ X we define the sets

L∗(x) :=
{
w ∈ A∗ | x w−→∗

}
⊆ A∗ , (2.2.1)

Lω(x) :=
{
w ∈ Aω | x

w−→ω
}
⊆ Aω , (2.2.2)

L∞(x) := L∗(x)∪Lω(x) ⊆ A∞ , (2.2.3)

which are called the the finite/infinite languages or traces of x. Two states
x,y ∈ X are called language equivalent or trace equivalent whenever L∗(x) = L∗(y)
(and analogously for the other two cases).

The traces induce relations R ⊆ X× X on the set of states, e.g. for L∗ we
define xRy :⇐⇒ L∗(x) = L∗(y). It is easy to see that such a relation is indeed
an equivalence relation, i.e., it is reflexive (xRx holds for all x ∈ X), symmetric
(xRy =⇒ yRx) and transitive (xRy∧ yRz =⇒ xRz), which justifies the name
trace equivalence.

Before continuing, let us illustrate traces with a standard example.

Example 2.2.3 We consider the labelled transition system depicted in Fig-
ure 2.2.1 with state space X = {x1, x2, x3, x4, x5,y1,y2,y3,y4} and alphabet A =

{a,b, c}. Obviously there are no infinite paths in these systems, so we just

x1

x2 x3

x4 x5

y1

y2

y3 y4

a a

b c

a

b c

Figure 2.2.1: A labelled transition system

consider finite traces where we have L∗(x4) = L∗(x5) = L∗(y3) = L∗(y4) = {ε},
L∗(x2) = {ε,b}, L∗(x3) = {ε, c}, L∗(y2) = {ε,b, c}, and L∗(x1) = {ε,a,ab,ac} =
L∗(y1). Thus x1 and y1 are trace equivalent.

Although the states x1 and y1 in the above example are trace equivalent, there
is an apparent difference between them. Suppose we wanted to do a two step
transition from either of them, then for sure the first action will have to be an
a. However, for x1 it is important to take the correct transition which depends

22

2.2 Transition Systems and Automata

on the second action (if it is a b we need to take the left branch, otherwise the
right one). For y1 this decision is delayed to the second action. This branching
difference can be captured by a finer equivalence relation on the state space, the
bisimilarity.

Definition 2.2.4 (Bisimulation, Bisimilar, Bisimilarity) Let (X,A,→) be a la-
belled transition system

1. A binary relation R ⊆ X×X is called a bisimulation if it satisfies the following
requirements for every pair (x,y) ∈ R and every action a ∈ A.

. For every x ′ ∈ X with x a−→ x ′ there is a y ′ ∈ X such that y a−→ y ′ and
(x ′,y ′) ∈ R.

. For every y ′ ∈ X with y a−→ y ′ there is an x ′ ∈ X such that x a−→ x ′ and
(x ′,y ′) ∈ R.

2. Two states x,y ∈ Y are bisimilar (denoted by x ∼ y) if there is a bisimulation
R such that (x,y) ∈ R. The resulting relation ∼ is called bisimilarity.

Let us look at the lts of Example 2.2.3 again and convince ourselves that
states x1 and y1 are not bisimilar. Let us assume they were, i.e., we assume that
there was a bisimulation relation R ⊆ X×X such that (x1,y1) ∈ R. Then, by the
definition of bisimulation, we would also need (x2,y2) ∈ R but this is impossible
since from y2 we have a c-transition (to y4) but there is no c-transition from x2.
Thus our assumption was false and x1 and y2 are indeed not bisimilar.

There are a few more remarks in order. First of all, a bisimulation is not
necessarily an equivalence. If we again consider the transition system of Ex-
ample 2.2.3, it is easy to check that {(x4, x5), (x5,y3)} is a bisimulation which
is neither reflexive, nor symmetric, nor transitive. However, we can quickly
convince ourselves that the identity relation idX := {(x, x) | x ∈ X} is a bisimu-
lation and for any bisimulation R also its inverse R−1 := {(x,y) | (y, x) ∈ R} is a
bisimulation. Moreover, given two bisimulations R1,R2 also their composition
R1R2 and their (set theoretic) union is again a bisimulation. Based on these
observations it is easy to conclude that the bisimilarity is an equivalence relation
and additionally that it is also the largest bisimulation with respect to set inclu-
sion. For finite transition systems the bisimilarity can thus be computed using
partition refinement starting with the largest equivalence relation ∼0 = X×X.

As a last remark we recall that bisimilarity is finer than trace equivalence in
the sense that if x and y are bisimilar they are also trace equivalent but the
converse is not necessarily true as the above transition systems show. However,
for deterministic systems language and trace equivalence can be shown to
coincide.

23

Chapter 2 Preliminaries

2.2.3 Side Effects: From Nondeterminism To Probability

If we interpret the labels of the transitions as input to which the system reacts, it
is more intuitive to rewrite the transition relation→ as a function δ : X×A→
PX. Thus for each state x ∈ X and each input a ∈ A the set δ(x,a) ⊆ X describes
the set of a-successors of x. The system reacts to the given input by choosing
nondeterministically a state y ∈ δ(x,a) and then moves to that state. Now if
we assume that both X and A are finite sets, specify a subset I ⊆ X of initial
states and another subset F ⊆ X of final states we recover the classical definition
of a nondeterministic finite automaton (nfa) which is then written as quintuple
A = (X,A, δ, I, F).

If we require for an lts that for each action a ∈ A there is always a unique
a-successor, we can write the transition relation as function δ : X×A→ X. Thus,
for each state x ∈ X and each input a ∈ A the system deterministically moves
from x to the state δ(x,a) ∈ X. By adding a distinct initial state x0 ∈ X and a set
F ⊆ X of final states and requiring finiteness of both X and A we recover the
classical definition of a deterministic finite automaton (dfa) which then is written
as quintuple A = (X,A, δ, x0, F).

For both deterministic and nondeterministic automata alike the final states
have to be taken into account for the behavioral analysis. In contrast to arbitrary
lts, the language of a state x ∈ X of an automaton is defined to be the set

L(x) :=
{
w ∈ A∗ | ∃y ∈ F.x w−→∗ y

}
⊆ A∗ (2.2.4)

of all finite words w ∈ A∗ for which there exists a path from x to a final state
y ∈ Y in the underlying transition systems whose labels are the letters of w.

Similarly, for a bisimulation relation R ⊆ X × X on the state space of an
automaton we need to add the requirement that xRy implies that either both
states are final or both are non-final.

Note that the initial states do not play a significant role in the definition or
comparison of behavior of states. They are only needed in order to talk about
the behavior of the whole automaton, which is just defined to be the behavior of
the initial state(s). This observation is important to understand the coalgebraic
view in which we will usually not specify initial states.

Probabilistic Systems

Let us finish this section with another type of automata. As said before, in
the case of a nondeterministic automaton we think of the system as reacting
to a given input a ∈ A by moving from its current state x ∈ X to one of the
states in the set δ(x,a). In this setting it can of course happen that there is no

24

2.2 Transition Systems and Automata

a-transition from x if δ(x,a) = ∅ and thus the system simply cannot accept an
a-input. However, a more interesting situation arises if there is more than one
possible a-successor. Here it is important to understand that a nondeterministic
choice does not model any information about the likelihood. We can neither
assume that one a-successor is more likely than another nor should we think of
them as being equally likely.

In order to make statements about this, we need to consider probabilistic
transition systems where we replace the nondeterministic choice by a probabilistic
one. Since there are many variants of these probabilistic system, let us make
explicit which definitions we are going to use. The first type of system regards
actions as inputs to which the system reacts [LS89, Definition 2.1].

Definition 2.2.5 (Reactive Probabilistic Transition System) A reactive proba-
bilistic transition system is a triple (X,A, δ) where X is a set of states, A is a set
of actions and δ : X×A→ DX is the probabilistic transition function mapping
pairs of a state and an action to a subdistribution satisfying3 δ(x,a)(X) ∈ {0, 1}.

If such a system is in a state x ∈ X and reads an input action a ∈ A it behaves
as follows: if δ(x,a)(X) = 1 the system chooses an a-successor according to the
probability distribution δ(x,a) : X→ [0, 1] and moves to that state. Otherwise, if
δ(x,a)(X) = 0 the system cannot accept the action a in that state.

Naturally, bisimulations for such systems need to take into account the
probabilities. For a detailed discussion of this the reader is referred to Kim G.
Larsen’s and Arne Skou’s papers [LS89; LS91] where probabilistic bisimulation
was first introduced. This is also the reason why it is sometimes called Larsen-
Skou bisimulation.

Definition 2.2.6 (Probabilistic Bisimulation [LS89, Definition 6.3]) An equiv-
alence relation R ⊆ X×X on the state space of a reactive probabilistic transition
system (X,A, δ) is called a probabilistic bisimulation if

δ(x,a)(S) = δ(x ′,a)(S)

holds for all (x, x ′) ∈ R, all a ∈ A and all equivalence classes S ∈ X/R.
Two states x, x ′ ∈ X are called probabilistically bisimilar if there is a probabilistic

bisimulation R such that (x, x ′) ∈ R. The resulting relation is called probabilistic
bisimilarity.

In contrast to ordinary bisimulations, the probabilistic variant only allows
equivalence relations to be bisimulations.

3Recall that δ(x,a) is a subdistribution, thus δ(x,a)(X) =
∑
x ′∈X δ(x,a)(x ′).

25

Chapter 2 Preliminaries

As explained above, the reactive probabilistic transition systems, also known
as Markov decision processes (MDP) (without rewards), react to an input a ∈ A
which has to be provided by a user or the environment. Thus we have no
information about the likelihood of the labels. If we want to have that as well,
we can consider systems whose transitions are slightly different. We will discuss
such systems in detail in Chapter 4 (but also confer to the referenced literature
by Ana Sokolova and Erik P. de Vink [SdV04; Sok05; Sok11] for an overview of
these and various other probabilistic systems).

Definition 2.2.7 (Generative Probabilistic Transition System) A generative pro-
babilistic transition system is a triple (X,A, δ), where X is a set of states, A is a
set of actions and δ : X→ D(A×X+ 1) is the transition function mapping each
state to a subprobability distribution on4 A×X+ 1.

For each state x ∈ X the function δ(x) : A × X + 1 → [0, 1] describes the
probability of termination (δ(x)(X)) and for each pair (a,y) of a label a ∈ A
and a state y ∈ X the probability of moving from state x to y while outputting
an a. The sum

∑
y∈X δ(x)(a,y) describes the total probability of traversing an

a-transition from x to another state, whereas the sum
∑
a∈A δ(x)(a,y) describes

the probability of traversing a transition from x to a fixed state y ∈ Y, irrespective
of the transition label. Since for these systems all the information about the
transitions is given, they are called generative probabilistic transition systems.
From any given state, they probabilistically generate a sequence of labels so it
makes sense to think of the labels as an output of the system. As for conventional
labelled transition systems we can consider the traces of these systems which are
words in A∗. Using the probabilistic information we have, we can not only say
which words are generated but also with what probability they are generated.

Definition 2.2.8 (Probabilistic Trace) The trace of a state x ∈ X of a generative
probabilistic system (X,A, δ) is the probability distribution tr(x) : A∗ → [0, 1]
given by

tr(x)(ε) = δ(x)(ε), (2.2.5)

∀a ∈ A.∀w ∈ A∗.tr(x)(aw) =
∑
y∈X

tr(y)(w) · δ(x)(a,y) (2.2.6)

which assigns to each word w ∈ A∗ the probability of being generated by the
given probabilistic transition system.

As final remark on probabilistic systems we note that the systems presented so
4Recall that + denotes the disjoint union of sets and 1 = {X}.

26

2.3 Category Theory

far are discrete systems, i.e., their probabilistic branching is limited to a countable
set: We recall that for infinite sets X and a function P : X→ [0, 1] we defined the
sum as

P(X) =
∑
x∈X

P(x) := sup

{∑
x∈X ′

P(x)

∣∣∣∣∣ X ′ ⊆ X and X is finite

}
.

It can be shown [Sok11] that the requirement P(X) 6 1 automatically implies
that the support of P, i.e., the set {x ∈ X | P(x) > 0} is countable. In order to
model arbitrary probabilistic system it is necessary to move to a much more
general, measure theoretic setting where it is possible to use integration. We
will take this route in Chapter 4 and use it to consider not only arbitrary
infinite systems but also infinite traces for probabilistic systems which cannot be
captured in the discrete setting.

2.3 Category Theory

Category theory is an abstract mathematical framework which tries to identify
the crucial properties of mathematical objects and get rid of specific details. It
can thus be understood as an attempt to unify the languages of different areas
of mathematics.

Note that this section has no immediate apparent connection to the previous
one but we will establish a connection when we discuss coalgebra in the
succeeding section. Moreover, this section does not (and is not meant to)
provide a complete introduction to this highly complex topic. We will just
provide the definitions and results needed later in this thesis, accompanied by
some very brief explanations. Therefore this section serves two purposes: It
makes the thesis self-contained so there is no (immediate) need to consult other
literature and it fixes the notation we will use in the later parts.

In order to learn more about category theory, the interested reader is invited to
look into Saunders Mac Lane’s classical Categories for the Working Mathematician
[Mac98], the freely available Abstract and Concrete Categories – The Joy of Cats by
Jir̆í Adámek, Horst Herrlich and George E. Strecker [AHS90] or Category Theory
[Awo06] by Steve Awodey to mention just a few.

2.3.1 Basics

Frequently, mathematical objects arise together with a notion of morphism
between them that respects the properties of these objects. For example, one
considers sets and functions, groups and group homomorphisms or vector

27

Chapter 2 Preliminaries

spaces and linear maps just to mention a few of them. In the most basic
definition of category theory – a category – we axiomatically state the essential
laws such a combination of objects and morphisms should satisfy.

In the literature there are several distinct but equivalent definitions. We will
start with the following definition and later briefly discuss some alternatives.

Definition 2.3.1 (Category) A category C consists of

. a class O whose elements are called objects,

. a class C (A,B) for all objects A,B ∈ O whose elements are called arrows or
morphisms,

. an identity arrow idA ∈ C (A,A) for each object A ∈ O, and

. a composition function ◦ : C (B,C)× C (A,B) → C (A,C) for all objects A, B,
C ∈ O which assigns to any arrow f ∈ C (A,B) and g ∈ C (B,C) their composite
gf := g ◦ f

such that

1. the classes of arrows are are disjoint, i.e. for all objects A,B,C,D ∈ O we
require that if (A,B) 6= (C,D), then C (A,B)∩ C (C,D) = ∅,

2. composition is associative, i.e. for all objects A,B,C,D ∈ O and all arrows
f ∈ C (A,B), g ∈ C (B,C), h ∈ C (C,D) we require h ◦ (g ◦ f) = (h ◦ g) ◦ f, and

3. the identities are neutral wrt. to the composition, i.e. for all objects A,B ∈ O

and all arrows f ∈ C (A,B) we require f ◦ idA = f = idB ◦ f.

In order to differentiate the object classes of different categories, we will some-
times use the notation O (C) or – by abuse of notation – frequently write A ∈ C

for A ∈ O (C).
The class of all arrows of C is the union A := ∪A,B∈OC (A,B). By Axiom 1 for

each element f ∈A there is a unique pair (A,B) ∈ O×O such that f ∈ C (A,B).
We call A the source or domain of f and denote it by dom(f) and B the target or
codomain of f and denote it by cod(f). As above we write A(C) if we want to
emphasize the category to which the arrows belong.

Note that Axiom 1 imposes no real restriction for if the classes of arrows
were not disjoint, we could simply define C ′ (A,B) := {A}× C (A,B)× {B} and
identify each f ∈ C (A,B) bijectively with (A, f,B) ∈ C ′(A,B). The axiom is
nevertheless useful since when we consider the class A of all arrows we have a
unique domain and codomain for each of its elements.

28

2.3 Category Theory

An alternative (but equivalent) way to define a category is to give the class
of objects O and the class of all morphisms A together with two functions
dom, cod : A→ O, a partial composition function ◦ : A×A ⇀ A which has to
be defined on exactly those pairs (g, f) ∈A×A where dom(g) = cod(f), and
an identity arrow idA ∈ A with dom(idA) = cod(idA) = A for each objects O

satisfying (obvious) equivalents to Axioms 2 and 3. Then one simply defines, for
all objects A,B the classes C (A,B) := {f ∈A | dom(f) = A∧ cod(f) = B}. For a
more detailed discussion on this we refer to the first chapter of Categories for the
Working Mathematician [Mac98]. We will freely switch between both definitions.

With a standard argument we can see that Axiom 3 implies that for each
object A there is a unique identity arrow idA. Indeed, for identity arrows
idA, id ′A ∈ C (A,A) the axiom tells us that id ′A = id ′A ◦ idA = idA. Thus we can
safely talk about the identity arrow of an object A and moreover, using this
bijective correspondence one can yet give another, “arrows only”-definition of a
category. Again we refer the reader to the text books given above for details.

Before we continue, we consider a few standard examples of categories
which we will use later. The smallest category is the empty category with no
objects and no morphisms. Other simple examples are given by (◦ → ◦ ← ◦)
or (◦ ← ◦ → ◦) which are categories with three objects and (apart from the
necessary identities) arrows as indicated by the graphical notation. The next
example is our first example of a category with infinitely many objects and
infinitely many arrows.

Example 2.3.2 (Category of Sets and Functions) The category Set has as ob-
jects the class of all sets and for all sets A,B the class Set (A,B) consists of
all functions f : A → B. The identity arrow on a set A is the identity function
idA : A→ A,a 7→ a and the composition of arrows is function composition.

This simple example shows the need for classes: The class of all sets is a
proper class and not a set. Certainly, this implies that also the class A of all
arrows of this category is a proper class. However, one can prove that each class
Set (A,B) of functions from a set A to a set B is itself a set which we will also
denote by BA. We will take these observations as a motivation for the following
definition.

Definition 2.3.3 (Large, Small, Locally Small, Discrete) We call a category C

1. large if O is a proper class,

2. small if O is a set,

3. locally small if for all A,B ∈ O the class C (A,B) is a set, or

29

Chapter 2 Preliminaries

4. discrete if for all A,B ∈ O we have C (A,B) = {idA} if A = B and C (A,B) = ∅
if A 6= B.

In this terminology, Set is a large and locally small category (but certainly
not discrete). Many of the categories in this thesis will be of this type. Let us
consider another example.

Example 2.3.4 (Category of Monoids and Monoid Homomorphisms) Recall
that a monoid is a triple (M, ◦, e) where

1. M is a set,

2. ◦ : M×M →M is an associative operation, i.e., for all m1,m2,m3 ∈M we
require (m1 ◦m2) ◦m3 = m1 ◦ (m2 ◦m3), and

3. e ∈M is a neutral element such that for all m ∈M we have m ◦ e = e ◦m = m.

A monoid homomorphism between two monoids (M, ◦, eM) and (N, ∗, eN) is a
function h : M → N such that h(eM) = eN and for all m1,m2 ∈ M we have
h(m1 ◦m2) = h(m1) ∗ h(m2). The monoids and the monoid homomorphism
form a category which we denote by Mon.

It is imperative to understand that – although this is true for many of our
examples – arrows are not necessarily “functions with structure”. A prototypical
example where this is not the case, is the following.

Example 2.3.5 (Category of Sets and Relations) The category Rel has as objects
all sets and for all sets A,B the class Rel (A,B) consists of all relations, i.e. all
subsets R ⊆ A × B. The identity arrow on a set A is the identity relation
idA = {(a,a) | a ∈ A} and given two relations R ∈ Rel (A,B) and S ∈ Rel (B,C)
their composition is the relation S ◦ R := {(a, c) | ∃b ∈ B.(a,b) ∈ R∧ (b, c) ∈ S}
which is usually denoted in reverse order and without the circle, i.e., as RS.

The focus of category theory is on the arrows, not on the objects of categories.
A crucial property of an arrow is invertibility as it shows when two objects are
almost identical.

Definition 2.3.6 (Isomorphism, Isomorphic) Let C be a category and A,B ∈ O.
We call an arrow f ∈ C (A,B) an isomorphism or short an iso if it is invertible, i.e.
if there is an arrow g ∈ C (B,A) such that f ◦ g = idB and g ◦ f = idA. We call A
and B isomorphic if there is an isomorphism f ∈ C (A,B).

A similar (simple) argument as the one used above to show uniqueness of the
identity arrows also proves uniqueness of the arrow g. Thus we can safely call

30

2.3 Category Theory

g the inverse to f and denote it by f−1. Isomorphisms play an important role in
many category theoretic definitions, because these definitions specify objects
(along with arrows) up to isomorphism. We will discuss this issue further in
Section 2.3.3. Here we just mention that in Set the isomorphisms are exactly
the bijective functions.

We can also give a categorical generalization of surjective and injective func-
tions, so-called epi- and monomorphisms.

Definition 2.3.7 (Epimorphism, Monomorphism) Let C be a category and
A,B ∈ O be objects. We call an arrow f ∈ C (A,B)

1. an epimorphism, short epi, if it is right-cancellative, i.e., if for any two arrows
g1,g2 ∈ C (B,C) the equality g1 ◦ f = g2 ◦ f implies g1 = g2.

2. a monomorphism, short mono, if it is left-cancellative, i.e., if for any two arrows
g1,g2 ∈ C (C,A) the equality f ◦ g1 = f ◦ g2 implies g1 = g2.

It is easy to see that every isomorphism is both an epimorphism and a
monomorphism. Moreover, if an arrow f ∈ C (A,B) has a right inverse, i.e., a
function g ∈ C (B,A) such that fg = idB, this arrow is an epi. In this case we
call f a split epi and similarly we call it a split mono if it has a left inverse.

For any category we can construct another category by simply turning the
arrows around.

Definition 2.3.8 (Dual Category, Opposite Category) Let C be a category. The
dual category (or opposite category), denoted Cop, has the same objects and iden-
tities as C and for all A,B ∈ O we define Cop (A,B) := C (B,A). Given arrows
f ∈ Cop (A,B), g ∈ Cop (B,C), their composition is defined by taking the corre-
sponding arrows f ′ ∈ C (B,A), g ′ ∈ C (C,B), composing them in C to the arrow
h ′ := f ′ ◦ g ′ ∈ C (C,A) and then taking the corresponding arrow h ∈ Cop (A,C)
as the composite g ◦ f.

The arrows of Setop are thus relations whose inverses are functions. Since the
inverse of a relation is also a relation, Rel is a so-called self-dual category, i.e.,
Relop is “essentially the same” as Rel. We will later (in Section 2.3.4) see how
this can be made precise.

Another way to construct a new category out of given ones is described in
the next definition. Apparently this definition can be extended to finitely many
categories.

Definition 2.3.9 (Product Category) Let C,D be categories. The product category
of C and D, denoted C×D, has as objects the class of all pairs (X, Y) of objects

31

Chapter 2 Preliminaries

X ∈ C, Y ∈ D and as arrows all pairs (f,g) of arrows f ∈A(C), g ∈A(D). The
identities are all the pairs of identity arrows and composition of arrows is done
componentwise, i.e., (f,g) ◦ (h,k) = (f ◦ h,g ◦ k).

2.3.2 Functors

Besides considering the arrows within a category, it is also natural to consider
arrows between categories, so-called functors.

Definition 2.3.10 (Functor) Let C and D be categories. A (covariant) functor
from C to D, denoted by F : C → D, consists of a function FO : O (C) → O (D)

and functions FA,B : C (A,B) → D(FOA, FOB) for all objects A,B ∈ O (C) such
that

1. identities are preserved, i.e., for all objects A ∈ O (C) we require that
FA,A(idA) = idFA, and

2. composition is preserved, i.e., for all objects A,B,C ∈ O (C) and all arrow
f ∈ C (A,B), g ∈ C (B,C) we require FB,C(g) ◦ FA,B(f) = FA,C(g ◦ f).

To simplify the notation we will write FA for FOA and Ff instead of FA,Bf. If
C = D we call F an endofunctor on C.

There are two obvious examples of functors. The first is an endofunctor, the
identity functor IdC : C→ C, also written as _ : C→ C which maps every object to
itself and every arrow to itself. Given an object D ∈ O (D) the constant D-functor
is the functor F : C→ D defined as FA = D for every object A ∈ O and Ff = idD
for every f ∈A(C). A more interesting example is the powerset functor.

Example 2.3.11 (Powerset Functors) The powerset functor P : Set → Set maps
each set A to its powerset PA := {S | S ⊆ A} and every function f : A → B to
the image function f[·] : PA → PB, f[S] := {f(a) | a ∈ S}. The finite powerset
functor Pf : Set → Set maps each set A to the set of all its finite subsets, i.e.
PfA := {S | S ⊆ A∧ |S| <∞}. On functions it is defined as the powerset functor.

We will encounter the powerset functor and its finite variant quite often in
this thesis. The same is true for the (probability) distribution functor.

Example 2.3.12 (Distribution Functors) The distribution functor D : Set → Set

maps each set A to the set of all probability distributions, i.e., the set

DA :=

{
p : A→ [0, 1]

∣∣∣∣∣∑
a∈A

p(a) = 1

}
, (2.3.1)

32

2.3 Category Theory

and every function f : A → B to the function Df which is defined, for all
distributions p ∈ DA and all b ∈ B, via

Df(p)(b) =
∑

a∈f−1[{b}]

p(a) . (2.3.2)

This functor can easily be modified by changing the set given in Equation (2.3.1).
On the one hand we can enlarge it by considering subdistributions, i.e., functions
p : A → [0, 1] where

∑
a∈A p(a) 6 1 and on the other hand we can make it

smaller by requiring that each (sub-)distribution has finite support, i.e., that the
set supp(p) := {a ∈ A | f(a) > 0} is finite. In analogy to the powerset functor
will denote the latter functor by Df.

Having seen these examples we quickly note that the composition of functors
is again a functor. The proof is easy and hence omitted.

Lemma 2.3.13 (Composed Functor) Let C, D and E be arbitrary categories and
F : C→ D and G : D→ E be functors. If we define HA := G(FA) for all C-objects
A and Hf := G(Ff) for all f ∈A(C) we obtain a functor H : C→ E. Instead of H
we also write G ◦ F or simply GF.

In the light of the previous result, we briefly remark that the small categories
and the functors between them give rise to a new category, which we denote by
Cat. Taking proper care of the involved sizes, we can even define a quasicate-
gory (which is essentially the same as a category but both objects and arrows
may be larger than a class, i.e., conglomerates) of all categories.

Each functor between two categories immediately induces another functor
between their dual categories, the so-called opposite functor.

Definition 2.3.14 (Opposite Functor) If F : C→ D is a functor, then its opposite
functor is the functor Fop : Cop → Dop given by the assignments FopA = FA for
all A ∈ Cop, and Fop

A,Bf = FB,Af for all f ∈ Cop (A,B).

Having seen this, we quickly remark that we will later – especially in Chap-
ter 5 – call a functor F : C×D→ E where C×D is the product category of C and
D (see Definition 2.3.9) a bifunctor. This naturally extends to functors whose
domain of definition is the product of finitely many categories. We will thus
call them multifunctors.

We close this section with some useful properties a functor can possess.

Definition 2.3.15 (Full, Faithful, Fully Faithful) We call a functor F : C→ D

1. faithful if for all C-objects A,B the function FA,B is injective.

33

Chapter 2 Preliminaries

2. full if for all C-objects A,B the function FA,B is surjective.

3. fully faithful if for all C-objects A,B the function FA,B is bijective.

2.3.3 Limits and Colimits

The strength of category theory lies in its abstraction from certain details. Many
categorical constructions thus make use of the concept of universal properties.
If we want to define something (usually an object together with some arrows)
we just say what properties it should satisfy and require that it does that in a
universal manner. Plenty of examples of such a definition arise as so-called
limits or dually colimits.

Basic Definitions

In order to define limits and colimits, it is helpful to introduce the concept of a
diagram, which is nothing but a new name for a functor.

Definition 2.3.16 (Diagram) Let I and C be arbitrary categories. A diagram of
type (or shape) I is a functor D : I → C. In this context, the category I is also
called index category. Moreover, we call D a small [finite] diagram if I is a small
[finite] category.

A diagram with index category (◦ ← ◦ → ◦) is called a span and a diagram
with index category (◦ → ◦ ← ◦) a cospan. Other diagrams which we will
consider in the sequel are e.g. the unique diagram ∅ → C and diagrams with
discrete index categories.

With this new name for functors we can now define cones and limits.

Definition 2.3.17 (Cone, Limit) Let D : I → C be a diagram. A cone (to D) is
a tuple (C,ψ) consisting of a C-object C together with a family of morphisms
ψi : C → D(i) for each object i of I such that each triangle (hence the name
cone) of the following form commutes for all I-objects i, j and every f ∈ I (i, j).

C

D(i) D(j)

ψi ψj

D(f)

We call a cone (L,ϕ) a weak limit (or weak limit cone) if it is weakly universal in
the sense that for any cone (C,ψ) there is an arrow u(C,ψ) : C→ L such that the

34

2.3 Category Theory

following diagram commutes for any i, j ∈ I and any f ∈ I (i, j).

C

L

D(i) D(j)

ψi ψj
u(C,ψ)

ϕi ϕj

D(f)

If (L,ϕ) is universal, i.e., if u(C,ψ) is always unique, we call it a limit (or limit cone).
Moreover, we call a (weak) limit small [finite] if I is a small [finite] category.

Before looking at examples of cones and limits, we dualize this notion, i.e., we
turn all the arrows around to obtain cocones and colimits.

Definition 2.3.18 (Cocone, Colimit) Let D : I → C be a diagram. A cocone
(from D) is a tuple (C,ψ) consisting of a C-object C together with a family of
morphisms ψi : D(i) → C for each object i of I such that each triangle of the
following form commutes for all I-objects i, j and every f ∈ I (i, j).

D(i) D(j)

C

ψi ψj

D(f)

We call a cocone (L,ϕ) a weak colimit (or weak colimit cocone) if it is weakly
universal in the sense that for any cocone (C,ψ) there is an arrow u(C,ψ) : L→ C

such that the following diagram commutes for any i, j ∈ I and any f ∈ I (i, j).

D(i) D(j)

L

C

ψi ψju(C,ψ)

ϕi ϕj

D(f)

35

Chapter 2 Preliminaries

If (L,ϕ) is universal, i.e., if u(C,ψ) is always unique, we call it a colimit (or colimit
cocone). Moreover, we call a colimit small [finite] if I is a small [finite] category.

Neither limits nor colimits need to exist. However, if they do, it is easy to see
that they are unique up to isomorphism. Categories in which all small limits
exist, are called complete and categories in which all small colimits exist are
called cocomplete. If a category is both complete and cocomplete, it is said to be
bicomplete. An example for such a bicomplete category is Set.

Instances of Limits and Colimits

Let us now look at a few special instances of limits and colimits.

Definition 2.3.19 (Initial, Terminal and Zero Objects) Let C be a category. We
call an object A

1. an initial object if for every C-object X there is a unique arrow iX : A→ X,

2. a final (or terminal) object if for every C-object X there is a unique arrow
fX : X→ A, or

3. a zero object if it is both an initial object and a terminal object.

This definition is indeed an example of both a limit and a colimit. If we
consider the diagram given by the unique, empty functor ∅ → C then the object
of its limit (if it exists) is precisely a final object of C and the object of the colimit
(if it exists) is an initial object.

Conversely, if for any given diagram D we consider the category Cone(D)

whose objects are cones to D and whose morphisms are cone morphisms (i.e.,
morphisms like u(C,ψ) in Definition 2.3.17 (Cone, Limit) making the respective
“triangles” commute) a limit is a final object in Cone(D). Analogously, a colimit
is an initial object in a category Cocone(D) of cocones fromD (consult the book
Category Theory [Awo06, p. 89ff] for a detailed analysis of these connections).

In the category Set there is one unique initial object, the empty set ∅, and the
final objects in Set are precisely the singletons. Thus there are no zero objects
in Set.

Another instance of a limit is a product in a category.

Definition 2.3.20 (Product) Let I be an arbitrary class, C be a category and
(Xi)i∈I be a family of objects of C indexed by I. We call an object X together
with a family of arrows (πi : X → Xi)i∈I a product of the Xi, if for every other
object Y together with a family of arrows (fi : Y → Xi)i∈I there is a unique arrow
f : Y → X such that πi ◦ f = fi holds for all i ∈ I. If a product exists, we usually

36

2.3 Category Theory

denote the object X by
∏
i∈I Xi, the unique arrow f by 〈. . . , fi, . . . 〉 and call the

πi projections. This situation is summarized in the diagram below.

Y

∏
i∈I Xi Xi

fi
f = 〈. . . , fi, . . . 〉

πi

We call a product small [finite] if I is a set [finite]. For finite products we also
write

∏n
i=1 Xi or X1 × · · · ×Xn instead of

∏
i∈{1,...,n} Xi.

We quickly check that this is indeed a limit. If we take the discrete category
I whose object class is I and the diagram D : I → C mapping i ∈ I to Xi ∈ C

(and identities to identities), a product is just a limit object of this diagram (if
it exists). Similarly, by considering the colimit (if it exists) of this diagram, we
obtain the dual notion of coproduct.

Definition 2.3.21 (Coproduct) Let I be an arbitrary class, C be a category and
(Xi)i∈I be a family of objects of C indexed by I. We call an object X together
with a family of arrows (ιi : Xi → X)i∈I a coproduct of the Xi, if for every other
object Y together with a family of arrows (fi : Xi → Y)i∈I there is a unique arrow
f : X→ Y such that f ◦ ιi = fi holds for all i ∈ I. If a coproduct exists, we usually
denote the object X by

∐
i∈I Xi, the unique arrow f by [. . . , fi, . . .] and call the ιi

injections. This situation is summarized in the diagram below.

Xi
∐
i∈I Xi

Y

ιi

[. . . , fi, . . .] = f
fi

We call a coproduct small [finite] if I is a set [finite]. For finite coproducts we
also write

∐n
i=1 Xi or X1 + · · ·+Xn instead of

∐
i∈{1,...,n} Xi.

As is the case with general limits/colimits, neither products nor coproducts
need to exist. In Set all small products and coproducts exist and correspond to
the usual cartesian products of sets and the disjoint union of sets respectively.
Also the product of two small categories as defined in Definition 2.3.9 is an
instance of a product in the category Cat of all small categories and functors
between them.

37

Chapter 2 Preliminaries

The last examples of limits/colimits we will consider are those of spans and
cospans. However, we will just give an explicit definition of the latter (since
only this is relevant for our purposes) and merely note, that the dual notion is
called a (weak) pushout.

Definition 2.3.22 (Pullback and Weak Pullback) Let C be a category. A weak
pullback of two arrows f : X→ Z, g : Y → Z is an object P together with arrows
p1 : P → X, p2 : P → Y satisfying f ◦ p1 = g ◦ p2 such that for any other object
Q along with arrows q1 : Q → X, q2 : Q → Y satisfying f ◦ q1 = g ◦ q2 there is
an arrow u : Q → P satisfying q1 = p1 ◦ u and q2 = p2 ◦ u. This situation is
depicted in the following diagram.

Q

P X

Y Z

q2

q1

u
p1

p2 f

g

If u is always unique we call (P,p1,p2) a pullback of f and g. In this case we
denote P by X×Z Y.

Since we will use them later, let us briefly consider pullbacks in Set.

Example 2.3.23 (Pullbacks in Set) Let X, Y,Z be sets and f : X → Z, g : Y → Z

be functions. The pullback of f and g is the set

X×Z Y := {(x,y) ∈ X× Y | f(x) = g(x)}

together with the restricted projections of the product πX|X×ZY and πY |X×ZY .

Limit and Colimit Preserving Functors

The last part of this section is devoted to functors that behave well with respect
to limits/colimits.

Definition 2.3.24 (Limit/Colimit Preserving) We say a functor F : C → D pre-
serves (weak) limits for diagrams of type I if for every (weak) limit (L,ϕ) to a di-
agram D : I→ C the cone5 (FL, Fϕ) is a (weak) limit to the diagram FD : I→ D.

5where Fϕ represents the family of arrows Fϕi : FL→ FD(i)

38

2.3 Category Theory

If for every limit (L,ϕ) to a diagram D : I→ C the cone (FL, Fϕ) is a weak limit
to the diagram FD : I→ D we say F weakly preserves limits of type I.

Dually, a functor F : C→ D preserves (weak) colimits for diagrams of type I if
for every (weak) colimit (L,ϕ) from a diagram D : I→ C the cocone (FL, Fϕ) is
a (weak) colimit from the diagram FD : I→ D. If for every colimit (L,ϕ) from
a diagram D : I → C the cocone (FL, Fϕ) is a weak colimit from the diagram
FD : I→ D we say F weakly preserves colimits of type I.

We will often be interested in functors that preserve (weak) pullbacks. In
such a situation the following results are useful.

Lemma 2.3.25 ([Gum01, Lemma 2.6]) Let C be a category in which all pullbacks
exist and let F : C→ C be a functor. Then the following are equivalent:

1. F preserves weak pullbacks.

2. F weakly preserves pullbacks.

Since clearly every pullback is also a weak pullback, we can easily deduce
another result.

Corollary 2.3.26 ([Rut00, Proposition A.4]) Let C be a category in which all
pullbacks exist and let F : C → C be a functor. If F preserves pullbacks then F
preserves weak pullbacks.

We conclude this section by remarking that the previous two results are
certainly applicable to Set – a property which we will use in Section 2.2.

2.3.4 Adjunctions and Monads

We will now proceed to some of the most important notions of category theory:
adjunctions and monads. In order to define these, we will first have to consider
so-called natural transformations.

Natural Transformations

Up until now we have considered categories and morphisms (functors) between
them. As a next step we will consider morphisms between functors.

Definition 2.3.27 (Natural Transformation) Let F,G : C → D be functors. A
natural transformation (from F to G), denoted α : F ⇒ G, consists of a D-arrow
αA : FA→GA for each C-object A such that the diagram below commutes for all
C-arrows f : A→ B.

39

Chapter 2 Preliminaries

FA FB

GA GB

Ff

αA αB

Gf

We call the αA components of α and if all of them are isomorphisms, we call α a
natural isomorphism.

A simple example of a natural transformation is the identity natural trans-
formation IdF from a functor F : C → D to itself. It consists of all the identity
morphisms idFA for every object A ∈ C. Clearly, this is an example of a natural
isomorphism. We will see more examples later.

Given two natural transformation, we can compose them to obtain a new one.

Lemma 2.3.28 (Composition of Natural Transformations) Let F, G, H : C→ D

be functors and α : F⇒ G, β : G⇒ H be natural transformations. We obtain a
natural transformation βα : F⇒ H by defining (βα)A := βA ◦αA : FA→ HA for
all C-objects A.

It is easy to see (and well-known) that this statement is true and moreover
that the functors from C to D together with the natural transformations between
them give rise to another quasicategory, the functor (quasi-)category [C,D]. It is a
category if both C and D are small and isomorphic to a category if A is small
and B is large [AHS90, Remark 6.16 (1)].

Whenever we have a natural transformation and an endofunctor we can
obtain new natural transformations as follows. The proof of this lemma is easy
and hence omitted.

Lemma 2.3.29 Let F,G : C→ D be functors, and α : F⇒ G a natural transforma-
tion.

1. For each functor C : C→ C we obtain a natural transformation αC : FC⇒ GC

by defining (αC)A = αCA for every C-object A.

2. For each functor D : D→ D we obtain a natural transformation Dα : DF⇒
DG by defining (Dα)A = DαA for every C-object A.

Adjunctions

We now introduce one of the most important concepts of category theory.
It describes a special relationship between two categories with two functors

40

2.3 Category Theory

between them in both directions. Before giving a formal definition we quickly
look at the free monoid construction again and its universal property that we
already mentioned in the Introduction. However, this time we will employ a
category theoretic approach.

Example 2.3.30 (Universal Property of the Free Monoid Construction) We
consider the categories Set and Mon of Examples 2.3.2 and 2.3.4. There is
an apparent forgetful functor R : Mon → Set which maps a monoid to its
underlying set. Moreover, there is also a functor L : Set → Mon in the other
direction which maps each set A to the free monoid (A∗, conc, ε) and each
function f : A→ B to the monoid homomorphism f∗ : A∗ → B∗ where f∗(ε) = ε
and f∗(a1 . . . an) = f(a1) . . . f(an) for all a1 . . . an ∈ A∗.

Remembering the discussion from the Introduction, we recall that for ev-
ery monoid (M, ◦, e) there is a bijection between functions f : A → M and
monoid homomorphisms h : (A∗, conc, ε)→ (M, ◦, e) satisfying h(a) = f(a) for
all a ∈ A. Explicitly, given a function f as above and any string a1 . . . an we
define hf(a1 . . . an) = f(a1) ◦ · · · ◦ f(an) and conversely for any monoid homo-
morphism h as above and any element a ∈ A we define fh(a) = h(a). From
this we drew the conclusion that the free monoid construction can be seen as
the most efficient way to turn an arbitrary set into a monoid which includes the
initial set.

Employing a category theoretic notation we have a bijection between the set6

Set (A,M) of functions and the set Mon ((A∗, conc, ε), (M, ◦, e)) of monoid ho-
momorphisms for all sets A and all monoids (M, ◦, e). Using the functors from
above we can write this as bijection Set (A,R(M, ◦, e)) ∼= Mon (LA, (M, ◦, e))
which is the reason why we call the functors L and R adjoint.

Contrary to what this example suggests, we will use a definition of ad-
joint functors which uses two natural transformations called unit and counit.
However, it can be shown that this definition induces a bijection as in the
example above and conversely such a bijection (which has to satisfy additional
constraints) yields the definition below [Awo06, Chapter 9].

Definition 2.3.31 (Adjunction, Adjoint Functors) Let C and D be categories.
An adjunction between C and D consists of

. a functor L : C→ D, called left adjoint,

. a functor R : D→ C, called right adjoint,

6Recall that Set is locally small so that we have indeed a set and not a proper class. The same
is true for Mon.

41

Chapter 2 Preliminaries

. a natural transformation η : IdC ⇒ RL, called unit, and

. a natural transformation ε : LR⇒ IdD, called counit,

such that the following two diagrams commute7.

L LRL

L

Lη

εL
IdL

R RLR

R

ηR

Rε
IdR

(2.3.3)

We denote such an adjunction by (L a R,η, ε) : C → D. A functor L : C → D

[R : D→ C] is a left adjoint [right adjoint] if it is the left adjoint [right adjoint] of
some adjunction (L a R,η, ε) : C→ D.

The convention of calling a functor left adjoint [right adjoint] without giving
the full adjunction is justified because one can prove that the functor determines
the other parts of the adjunction uniquely up to isomorphism. However, since
this is not trivial, we will always give the full adjunction.

In order to see that the free monoid construction of Example 2.3.30 is in-
deed captured by this definition we provide the unit and counit. As we
have briefly discussed in the Introduction, for any set A there is the func-
tion ηA : A→ A∗ mapping each letter a ∈ A to itself, interpreted as an element
of A∗. Moreover, for any monoid (M, ◦, e), we can define a monoid homomor-
phism ε(M,◦,e) : M

∗ →M by defining ε(M,◦,e)(ε) = e and ε(M,◦,e)(m1m2 . . .mn) =

m1 ◦m2 ◦ · · · ◦mn for all words m1m2 . . .mn ∈M∗.
Since we will encounter many other concrete examples of adjunctions in

Chapter 3 we just consider one other (standard) example.

Example 2.3.32 Let L : Set → Rel be the inclusion functor from Set to Rel
mapping each set X to itself and each function f : X→ Y to the corresponding
relation f : X↔ Y. Moreover, let R : Rel→ Set be the functor which maps each
set X to its powerset PX and each relation f : X↔ Y to the function

Rf : PX→ PY, (Rf)(S) = {y ∈ Y | ∃x ∈ S : (x,y) ∈ f} . (2.3.4)

We obtain an adjunction (L a R,η, ε) : Set→ Rel where the unit η : IdSet ⇒ P is

7In these diagrams we use the notation introduced in Lemma 2.3.29. A diagram involving
natural transformations obviously induces a family of diagrams by considering the compo-
nents of the natural transformation. Commutativity of such a diagram is thus given if and
only if each of these induced diagrams commutes.

42

2.3 Category Theory

given by the functions

ηX : X→ PX, ηX(x) = {x} (2.3.5)

for every set X and the counit ε : P⇒ IdRel consists of the relations

εX : PX↔ X (S, x) ∈ εX ⇐⇒ x ∈ S (2.3.6)

for every set X.

There are special instances of adjunctions which have their own names.

Definition 2.3.33 (Equivalence and Duality of Categories)

1. We call an adjunction (L a R,η, ε) : C→ D an equivalence (of categories) if both
η and ε are natural isomorphisms. Whenever such an equivalence exists, we
say that the categories C and D are equivalent.

2. We call an equivalence (L a R, ε,η) : C→ Dop a duality (of categories). When-
ever such an equivalence exists, we say that the categories C and D are dually
equivalent.

Monads

For the coalgebraic definition of traces we will need another categorical construct
that arises uniquely from an adjunction, a so-called monad.

Definition 2.3.34 (Monad) A monad on an arbitrary category C is a triple
(T ,η,µ) where T : C → C is an endofunctor and η : Id ⇒ T , µ : T2 ⇒ T are
natural transformations called unit (η) and multiplication (µ) such that the two
diagrams below commute.

T T2 T

T

ηT Tη

µ

T3 T2

T2 T

µT

Tµ µ

µ

We claimed that each adjunction (L a R,η, ε) : C→ D gives rise to a monad.
Indeed, one can check that the tuple (RL,η,RεL) satisfies the above axioms. If
we do this with our adjunction from Example 2.3.32, we obtain the powerset
monad.

43

Chapter 2 Preliminaries

Example 2.3.35 (Powerset Monad) The powerset functor P of Example 2.3.11

and its finite variants can be seen as a monad. The unit η consists of the functions
ηX : X → PX, ηX(x) = {x} and the multiplication is given by µX : PPX → PX,
µX(S) = ∪S.

Even though we did not consider an adjunction involving probability dis-
tributions, we can still check that also the distribution functors are part of a
monad.

Example 2.3.36 (Distribution Monad) The probability distribution functor D

of Example 2.3.12 and its variants can be seen as a monad: the unit η consists
of the functions ηX : X → DX, ηX(x) = δXx where δXx : X → [0, 1] is the Dirac
distribution (where δXx (y) = 1 if y = x and 0 otherwise) and the multiplication
is given by µX : DDX→ DX, µX(P) = λx.

∑
q∈DX P(q) · q(x).

The Kleisli Category

If we are in a case as in the previous example, where we are given a monad
(T ,η,µ) on a category C without an adjunction to start from, it is a legitimate
question to ask whether we can construct an adjunction giving rise to that
monad. For this we need a category D and an adjunction (L a R,η ′, ε) : C→ D

such that T = RL, η = η ′ and µ = RεL. With the proper notion of adjunction
morphism [Mac98, page 99] the adjunctions giving rise to the monad form
a (quasi-)category. This category has both initial and final objects [Mac98,
Theorem VI.5.3]. We start by describing the category belonging to the initial
object.

Definition 2.3.37 (Kleisli Category) Let (T ,η,µ) be a monad on a category C.
The Kleisli category of T , which we denote by K`(T), has the same objects as C.
For any two objects X and Y, a Kleisli arrow f : X Y is a C-arrow f : X→ TY,
i.e., we define K`(T) (X, Y) = C (X, TY). The identity arrow for any Kleisli object
X is ηX : X → TX. Composition of Kleisli arrows f : X → TY and g : Y → TZ is
defined as g ◦T f := µZ ◦ T(g) ◦ f.

Note that in this definition we used the same symbol f for both the Kleisli
arrow f : X Y as well as the underlying C-arrow f : X→ TX. We will do this
frequently in this thesis.

The adjunction between the base category C and the Kleisli-category K`(T)

which gives rise to the monad (T ,η,µ) is the following.

44

2.3 Category Theory

Definition 2.3.38 (Kleisli Adjunction) Let (T ,η,µ) be a monad. The Kleisli
adjunction (LT a RT ,η, ε) : C→ K`(T) is given by the following ingredients.

. The left adjoint LT : C → K`(T) maps each object to itself and an arrow
f : X→ Y to the Kleisli-arrow ηY ◦ f : X Y (i.e., the C-arrow ηY ◦ f : X→ TY).

. The right adjoint RT : K`(T)→ C, maps each Kleisli object X to TX and each
Kleisli-arrow f : X Y (i.e., a C-arrow f : X→ TY) to µY ◦ Tf : TX→ TY.

. The unit of the adjunction is the unit of the monad.

. The counit consists of the Kleisli arrows εY : TY Y which correspond to the
identities idTY : TY → TY for an arbitrary Kleisli object Y.

As an example we instantiate the above definition to the powerset monad.
We obtain the following category.

Example 2.3.39 (The Kleisli Category of the Powerset Monad) The Kleisli
category of the powerset monad has as objects the class of all sets and a
morphism X Y corresponds to a function f : X → PY. Any such func-
tion can equivalently be expressed as a relation Rf : X ↔ Y by defining Rf :=
{(x,y) | x ∈ X,y ∈ f(x)} and conversely any relation R : X ↔ Y can be turned
into the function fR : X → PY by defining fR(x) := {y ∈ Y | (x,y) ∈ R}. Thus
K`(P) is isomorphic to the category Rel of sets and relations.

The Eilenberg-Moore Category

Let us now consider the category belonging to the final object of the quasicate-
gory of adjunctions giving rise to a monad.

Definition 2.3.40 (Eilenberg-Moore Algebra and Eilenberg-Moore Category)
An Eilenberg-Moore algebra for a monad (T ,η,µ) on a category C is a C-arrow
a : TA → A making the left and middle diagram below commute. We will
sometimes call A the carrier of the algebra a and conversely call a the structure
(map) on A. Given two algebras a : TA→ A and b : TB→ B, a morphism from
a to b is a C arrow f : A→ B making the right diagram below commute.

A TA T2A TA TA TB

A TA A A B
idA

ηA

a

µA

aTa

a

Tf

ba

f

45

Chapter 2 Preliminaries

The Eilenberg-Moore algebras and their morphisms form a category which we
denote by EM(T).

It is easy to see that each component µX : TTX→ TX of the multiplication of
the monad is an example of an Eilenberg-Moore algebra. It is called the free
algebra (on X). As before, we consider the corresponding adjunction.

Definition 2.3.41 (Eilenberg-Moore Adjunction) Let (T ,η,µ) be a monad. The
Eilenberg-Moore adjunction

(
LT a RT ,η, ε

)
: C→ EM(T) is given by the following

ingredients.

. The left adjoint LT : C → EM(T) maps each object of C to its free algebra
µX : TTX → TX and an arrow f : X → Y to the algebra homomorphism
Tf : TX→ TY.

. The right adjoint RT : EM(T)→ C maps each algebra a : TA→ A to its carrier
A and each algebra homomorphism f : (a : TA → A) → (b : TB → B) to the
underlying C-arrow f : A→ B.

. The unit of the adjunction is the unit of the monad.

. The components of the counit are given by the assignment ε(a : TA→A) := a for
each algebra a : TA→ A.

Liftings and Extensions

For our later results we will have to define functors on Kleisli and Eilenberg-
Moore categories which are based on a functor F on the base category. We will
use the following terminology.

Definition 2.3.42 (Lifting, Extension) Let (L a R,η, ε) : C→ D be an adjunction
and F be an endofunctor on C. We call an endofunctor G on D

1. an extension of F if GL = LF,

2. a lifting of F if RG = FR.

This terminology can easily be understood if one has a forgetful functor as
right adjoint and a kind of embedding as left adjoint. Please note that many
authors do not differentiate between extensions and liftings and simply call
both a lifting.

In order to obtain liftings or extensions of functors, we can make use of
certain natural transformations which are called distributive laws.

46

2.3 Category Theory

Definition 2.3.43 (Distributive Laws) Let F be an endofunctor and (T ,η,µ) be
a monad on a category C.

1. We call a natural transformation λ : TF⇒ FT an Eilenberg-Moore law or short
EM-law if the following diagrams commute.

F T2F TFT FT2

TF FT TF FT

Fη
ηF

λ

Tλ λT

µF

λ

Fµ

2. We call a natural transformation λ : FT ⇒ TF a Kleisli law or short K`-law if
the following diagrams commute.

F FT2 TFT T2F

FT TF FT TF

ηF

λ

Fη

λT Tλ

Fµ

λ

µF

If it is clear from the context which of the two above definitions is meant, we
will sometimes just call λ a distributive law.

As stated before, distributive laws are closely related to liftings and extensions
as the following, well-known result shows.

Theorem 2.3.44 (Distributive Laws, Extensions and Liftings) Let (T ,η,µ) be
a monad and F be an endofunctor on a common category C.

1. Extensions G : K`(T)→ K`(T) of F to the Kleisli category of the monad are
in one-to-one correspondence with K`-laws λ : FT → TF [Joh75, Lemma 1],
[JSS15, Proposition 1].

2. Liftings G : EM(T) → EM(T) of F to the Eilenberg-Moore category of the
monad are in one-to-one correspondence with EM-laws λ : TF→ FT [Mul94,
Theorem 2.2].

With this theoretical result in place we finish our short excursion to the
general category theoretical background needed for understanding this thesis.

47

Chapter 2 Preliminaries

2.4 Coalgebra

After our short recap of transition system theory and the earlier introduction
to category theory, we are now able to combine both and discuss coalgebra.
While the definition of a coalgebra itself is very simple, coalgebras and their
homomorphisms provide a suitable framework to model many kinds of transi-
tion systems. As before, we will just provide the basic definitions and results
needed to understand the subsequent parts of this thesis. The interested reader
is invited to read Bart Jacobs’ and Jan Rutten’s tutorial paper [JR97] as well as
Jan Rutten’s detailed fundamental study [Rut00] from which we have taken
some of the results.

2.4.1 Coalgebras are Transition Systems

Recall that in Definition 2.3.40 we have defined an algebra for a monad (T ,η,µ)
as an arrow a : TA → A satisfying additional commutativity requirements
involving the unit and counit of the monad. If we drop these requirements and
allow an arbitrary endofunctor F, we obtain the definition of an algebra for an
endofunctor. As the name suggests, a coalgebra is just the categorical dual to
this which we obtain by turning around the arrow.

Definition 2.4.1 (Coalgebra, Coalgebra Homomorphism) Let F be an endo-
functor on a category C. An F-coalgebra is a C-arrow a : A→ FA. Given another
F-coalgebra b : B → FB, an F-coalgebra homomorphism from a to b is a C-arrow
f : A→ B such that the diagram below commutes.

A B

FA FB

f

a

Ff

b

We use the same symbol f for both the F-coalgebra homomorphism f : a→ b

and the underlying C-arrow f : A→ B. Moreover, if the functor F is clear from
the context we will use the terms coalgebra and coalgebra homomorphism.

As a simple first example we consider the category of sets and functions and
the powerset functor P : Set→ Set of Example 2.3.11. A coalgebra s : X→ PX

of this functor corresponds to an unlabelled transition system. The function s
maps each state x ∈ X to the set s(x) ⊆ X of its successors.

48

2.4 Coalgebra

Apparently the function s : X → PX corresponds to an endorelation, i.e., a
relation R ⊆ X×X whose domain and codomain coincide. These relations are
the coalgebras for the identity functor IdRel : Rel→ Rel on the category of sets
and relations. Thus we have just found an alternative coalgebraic model of
unlabelled transition systems.

In order to model labelled transition systems, we introduce another functor,
the so-called input functor.

Example 2.4.2 (Input Functor) Let A be an arbitrary set. The input functor
F = _A : Set → Set maps a set X to the set XA of all functions A → X and a
function f : X→ Y to fA : XA → YA, fA(g) = f ◦ g.

A coalgebra s : X→ XA for this functor corresponds to a deterministic labelled
transition system where for each state x ∈ X and each input a ∈ A the function
s selects s(x)(a) ∈ X as unique a-successor of x.

In order to model arbitrary lts, we have to combine the input functor with
the powerset functor from Example 2.3.11. We need to consider coalgebras for
the functor (P_)A : Set → Set which is just the composition _A ◦ P of the two
functors. Indeed, a coalgebra c : X→ (PX)A is nothing but a labelled transition
system. For each state x ∈ X and each action a ∈ A the set c(x)(a) ∈ P (X)

is the set of all a-successors of x. We can recover the transition relation by
defining →:= {(x,a,y) | x ∈ X,a ∈ A,y ∈ c(x)(a)} and conversely any transition
relation →⊆ X×A×X can be transformed into such a coalgebra by defining
c(x)(a) := {y ∈ X | (x,a,y) ∈→}.

Using this example let us carefully examine which functions are coalgebra ho-
momorphisms8. Given an lts c : X→ (PX)A and another system d : Y → (PY)A,
a function f : X→ Y between their state spaces is a coalgebra homomorphism
provided that (f[·])A ◦ c = d ◦ f. A short and elementary calculation yields that
this is equivalent to{

f(x ′) | x
a−→ x ′

}
= f
[
c(x)(a)

]
= d

(
f(x)

)
(a) =

{
y ′ | f(x)

a−→ y ′
}

for every x ∈ X and every a ∈ A. Thus

1. for every transition x a−→ x ′ in the first system, we must have the transition
f(x)

a−→ f(x ′) in the second system, and conversely

2. for every transition f(x)
a−→ y ′ in the second system, we must have a

transition x a−→ x ′ in the first system with f(x ′) = y ′.

8Jan Rutten explained this for lts as coalgebras c : X→ P (A×X) [Rut00, Example 2.1].

49

Chapter 2 Preliminaries

Thus a coalgebra homomorphism is a function between the state spaces of two
systems that preserves and reflects the transition structure.

The aforementioned model is not the only coalgebraic model of labelled
transition systems. There is a formally completely equivalent alternative variant
which, however, changes the interpretation a bit. As we have already discussed
before, for an lts we can think of the actions as something that allows the
user to actively control the system, i.e., an action corresponds to something
like pressing a button. This is captured by the above model where we consider
coalgebras of the shape c : X→ (PX)A. Given a state x, the function c(x) : A→
PX describes how the system reacts to the inputs a ∈ A.

Alternatively we can also imagine that a labelled transition system has no
means of control (i.e., no input) but that its transitions are taken arbitrarily and
whenever the system traverses a transition it outputs the label a ∈ A of that
transition. With this interpretation in mind we introduce another functor, which
we thus call output functor.

Example 2.4.3 (Output Functor) Let A be a set. The functor A× _ : Set→ Set

maps a set X to FX = A×X and a function f : X→ Y to the function Ff = idA× f.

If we just consider the coalgebras of this functor, we obtain another version
of deterministic lts where from each state there is one unique transition.
Alternatively we may interpret a coalgebra c = 〈o, s〉 : X→ A×X as a transition
system without transition labels where every state x ∈ X has an output value (or
a state label) o(x) and a unique successor s(x) ∈ X.

As before we can combine this functor with the powerset functor from Exam-
ple 2.3.11 to model arbitrary lts . Here we consider coalgebras for endofunctor
P (A× _) = P ◦ (A× _) on Set. Given such a coalgebra c : X → P (A×X), the
set c(x) ⊆ A× X contains all the pairs of actions and states that are possible
from the state x. Of course, as above we can recover the transition relation of
the underlying transition system by defining→:= {(x,a,y) | (a, x) ∈ c(x)} and
conversely if we are given a transition relation we can define a coalgebra of the
above type by letting c(x) := {(a,y) | (x,a,y) ∈→}.

The underlying mathematical reason for why we can equivalently model
labelled transition systems as coalgebras of the shape X → (PX)A or of the
shape X → P (A×X) is a property of the powerset. We quickly summarize
some of these properties below.

Lemma 2.4.4 Let A,B be arbitrary sets. Then the following holds.

1. PA ∼= 2A, in particular P1 ∼= 21 ∼= 2

2. P (A+B) ∼= PA×PB

50

2.4 Coalgebra

3. P (A×B) ∼= (PA)B ∼= (PB)A

The proof of this lemma is a straightforward and simple calculation so we
omit it here. Instead, we pick up the discussion from above, where we compared
the two different ways of modelling a labelled transition system coalgebraically.
Summing up, the first view (based on the input functor) gave us a system that
responded to an input, while the second view (based on the output functor)
generated output. It certainly is a legitimate approach to combine both these
functors to obtain an input-output-machine.

Example 2.4.5 ((Moore) Machine Functor) Let A and B be arbitrary sets. The
machine functor with inputs from A and outputs in B is the endofunctor
M : Set→ Set where MX = B×XA for each set X and Mf = idB × fA for each
function f : X→ Y.

As the name suggests, a coalgebra c = 〈o, s〉 : X → B× XA of this functor
captures exactly the transition structure of a Moore machine [Moo56]. Given
a state x ∈ X the tuple c(x) = (o(x), s(x)) ∈ B× XA specifies an output value
o(x) of this state as well as a unique successor state s(x)(a) ∈ X for every input
a ∈ A. The only missing ingredient for a complete Moore machine is a distinct
initial state, which we can of course simply specify in addition to the coalgebra.
This is, however, common for the coalgebraic modelling – initial states are not
inherent but need to be defined separately.

If we consider the special case where B = 2, a coalgebra c : X → 2× XA is
simply a deterministic automaton (DA). For a state x ∈ X the Boolean value o(x)
now determines whether it is a final state (o(x) = 1) or not (o(x) = 0). Note that
we do not restrict the cardinality of the state space X so that in contrast to the
common theory of finite automata we are also able to define and work with
infinite ones which is important for the coalgebraic behavioral analysis.

In order to model nondeterministic automata (NA), we can combine the machine
functor where B = 2 with the powerset functor. Then NA are the coalgebras of
the form c = 〈o, s〉 : X → 2× (PX)A. Again, for a state x ∈ X the Boolean o(x)
determines whether it is final or not and the successor function s(x) : A→ PX

now assigns to each input action a ∈ A a set s(x)(a) ⊆ X of successor states.
By Lemma 2.4.4 we know that 2× (PX)A ∼= P1× P (A×X) ∼= P (A×X+ 1).

Thus if we are able to define an endofunctor _+ 1 on Set, we could equivalently
express nondeterministic automata as coalgebras X→ P (A×X+ 1).

Definition 2.4.6 (Termination Functor) Let A be a set. The termination functor
_+A : Set→ Set maps each set X to the set X+A and any function f : X→ Y to

51

Chapter 2 Preliminaries

the function f+ idA : X+A→ X+A which is defined as f+ idA((x, 0)) = f(x)
and f+ idA((a, 1)) = a for every x ∈ X and every a ∈ A.

A coalgebra c : X → X+A of this functor corresponds to a very restricted
type of deterministic transition system. For a state x ∈ X there can either be a
transition to another state y ∈ X (if c(x) = (y, 0)) or the system terminates at x
with an output a ∈ A (if c(x) = (a, 1)).

Coming back to nondeterministic automata, we now have indeed succeeded
in modelling them as coalgebras c : X → P (A×X+ 1) for the endofunctor
P ◦ (_ + 1) ◦ (A× _) on Set. Each state x ∈ X gets assigned a subset c(x) ⊆
A×X+ 1 and is final if and only if this subset contains the termination symbol
X ∈ 1. The possible transitions from x are given by the pairs (a,y) ∈ c(x).

We conclude our short survey of coalgebraic transition system models by a
brief look at probabilistic systems. Using essentially the same ideas as above,
we can see that a reactive system is a coalgebra c : X→ (DX)A and if we need
final states it is a coalgebra c : X→ 2× (DX)A. In Chapter 5 we will generalize
this a bit further by considering a probabilistic Moore machine with outputs in
[0, 1], i.e., a coalgebra c : X→ [0, 1]× (DX)A.

A generative probabilistic system is a coalgebra X→ D(A×X) or if we want
to have final states a coalgebra X→ D(A×X+ 1). We will look at these systems
in a more general setting in Chapter 4.

2.4.2 Final Coalgebra

The coalgebras of an endofunctor F and their morphisms constitute a category
which we denote by CoAlg (F). We will now study the final objects of this
category – if they exist – and see that they give rise to a notion of behavior.

Definition 2.4.7 (Final Coalgebra) Let F be an endofunctor on a category C. A
final F-coalgebra is a coalgebra z : Z → FZ such that for any other F-coalgebra
a : A→ FA there is a unique coalgebra morphism from a to z. We denote this
morphism and the underlying C-arrow from A to Z by [[·]]a or sometimes simply
by [[·]] if a is clear from the context.

As usual for final objects, a final coalgebra need not exist but if it does it is
unique up to isomorphism. A first trivial example for a final coalgebra is the
identity function id1 : 1 → 1 on the singleton set 1. It certainly is a coalgebra
for the identity functor IdSet on Set. Moreover, the singleton 1 is a final object
in Set so for each set X there is a unique function !X : X→ 1 given by !X(x) = X.
This function is a coalgebra homomorphism from any coalgebra c : X → X to
id1 so we can define [[·]]c := !X.

52

2.4 Coalgebra

Before looking at more examples of final coalgebras we provide an important
non-example. The powerset functor of Example 2.3.11 has no final coalgebra. In
order to see this, we cite a simple but useful result on final coalgebras.

Lemma 2.4.8 (Lambek’s Lemma [Lam68, Lemma 2.2]) Let F be an endofunctor
on an arbitrary category. Any final coalgebra z : Z→ FZ is an isomorphism.

The proof of this result is not very difficult and can be found e.g. in the cited
paper. Of course, this result rules out the possibility of a final coalgebra for
the powerset functor since this would imply the existence of a set X such that
there is an isomorphism between X itself and its powerset PX which cannot
exist because the cardinality of PX is strictly greater than that of X itself9. In
contrast to that, the finite powerset functor Pf has a final coalgebra [Wor05].

Behavior via Finality

Let us now come back to functors for which a final coalgebra exists and look at
these final coalgebras more closely as it will help to understand their expressive
power. First we consider the final coalgebra of the output functor (this is also
studied in the literature [Rut00, Example 9.4]).

Example 2.4.9 (Final Coalgebra for the Output Functor) We claim that a final
coalgebra for the output functor A× _ of Example 2.4.3 is given by the function
z = 〈h, t〉 : Aω → A×Aω which maps an infinite word w : N0 → A to the
tuple (h(w), t(w)). Here, h(w) = w(0) ∈ A is the first letter of w (the head) and
t(w) ∈ Aω is the rest of the word w (the tail) interpreted again as infinite word.
Formally it is defined as the function t(w) : N0 → A, t(w)(n) = w(n+ 1).

Let us now show that this is correct. Given a coalgebra c = 〈o, s〉 : X→ A×X
we need to define a unique function [[·]]c : X → Aω such that the following
diagram commutes.

X Aω

A×X A×Aω

[[·]]c

c = 〈o, s〉

F[[·]] = idA × [[·]]c

z = 〈h, t〉

9This is known as Cantor’s theorem and the original proof technique is called Cantor’s diagonal
argument, named after the German mathematician Georg Cantor who proved it in 1892

[Can92]. A set-theoretic proof of it can be found in a paper by Ernst Zermelo [Zer08, 32.
Satz von Cantor].

53

Chapter 2 Preliminaries

Commutativity of this diagram is equivalent to requiring the equality

〈h, t〉 ◦ [[·]]c = (idA × [[·]]c) ◦ 〈o, s〉

which can simply be rewritten as

〈h ◦ [[·]]c, t ◦ [[·]]c〉 = 〈o, [[·]]c ◦ s〉 .

If we plug in an element x ∈ X in this equation and use the above definition of
h and t we obtain the definition

[[x]]c(0) = o(x) and ∀n ∈N0 : [[x]]c(n+ 1) = [[s(x)]]c(n) . (2.4.1)

Thus the commutativity of the diagram has almost immediately provided us
with a unique, sound and complete definition of the coalgebra homomorphism
[[·]]c : X→ Aω for any coalgebra c : X→ A×X. Therefore z = 〈h, t〉 is indeed a
final coalgebra.

Based on this example let us analyze how a final coalgebra is related to
the behavior of transition systems. As we have discussed before, a coalgebra
c = 〈o, s〉 for the output functor is a deterministic transition system with state
labels. The unique coalgebra homomorphism [[·]]c into the final coalgebra as
defined in Equation (2.4.1) maps each state x ∈ X to an infinite word that
corresponds to the sequence of state labels that one can observe when the
system runs forever. In other words, [[x]]c is just the unique element of the set
Lω(x) of infinite traces of the state x.

As another standard example we consider again the machine functor M =

B× _A from Example 2.4.5 and its final coalgebra [JSS15, Lemma 3].

Example 2.4.10 (Final Coalgebra for the Machine Functor) A final coalgebra
for the machine functor M = B× _A from Example 2.4.5 is given by the function

z = 〈oz, sz〉 : BA
∗
→ B×

(
BA
∗
)A

which maps any function f : A∗ → B to the tuple z(f) = (oz(f), sz(f)). The
output value oz(f) is the value of f on the empty word, i.e., oz(f) = f(ε) and
the successor function sz(f) : A→ BA

∗
assigns to each letter a ∈ A the function

sz(f)(a) : A
∗ → B. Its value on a word w ∈ A∗ is equal to the value of f on the

word aw, formally sz(f) = λa.λw.f(aw).
For an arbitrary coalgebra c = 〈o, s〉 : X→ B×XA the unique homomorphism

[[·]]c : X→ BA
∗

into the final coalgebra is given by the functions [[x]]c : A
∗ → B for

every x ∈ X where

[[x]]c(ε) = o(x), ∀a ∈ A.∀w ∈ A∗.[[x]]c(aw) = [[s(x)]]c(w) . (2.4.2)

54

2.4 Coalgebra

This definition can be obtained using the same technique as above in Exam-
ple 2.4.9.

Again we aim at interpreting the homomorphism into the final coalgebra
as behavior of the system which is a deterministic Moore machine. For each
state x ∈ X the function [[x]]c : A

∗ → B maps any finite word w ∈ A∗ to the value
[[x]]c(w) ∈ B. This is just the state label of the unique state in the Moore machine
that can be reached when starting at x and traversing the system following the
transitions specified by the letters of the word w.

In the special case of deterministic automata (B = 2) both the final coalgebra
and the homomorphism into it can be interpreted in formal language theory
(for more details on this special case the interested reader is invited to look
into Jan Rutten’s paper “Automata and Coinduction (An Exercise in Coalgebra)”
[Rut98]). Recall that a formal language over an alphabet A is nothing but a
subset L ⊆ A∗. Given a letter a ∈ A the a-derivative of a language L ⊆ A∗ is
the language La := {w ∈ A∗ | aw ∈ L}. Using these derivatives, we can turn
the set P (A∗) of all languages over A into a coalgebra (an automaton) l =

〈ol, sl〉 : P (A∗) → 2× P (A∗)A. For any language L ⊆ A∗ we simply define
ol(L) = 1 if ε ∈ L and ol(L) = 0 else. Moreover, for each a ∈ A we define
sl(L)(a) = La. If we recall from Lemma 2.4.4 that P (A∗) ∼= 2A

∗
we can see

that this is exactly the same as the final coalgebra z defined in Example 2.4.10

(above). Moreover, for any deterministic automaton c : X→ 2×XA the unique
coalgebra homomorphism [[·]]c : X→ 2A

∗
maps each state x ∈ X to the language

[[x]]c : A
∗ → 2 it accepts.

Based on our observations in these two examples, we now formally define
behavioral equivalence for Set functors.

Definition 2.4.11 (Behavioral Equivalence for Set-Functors) Let F be an endo-
functor on Set for which a final coalgebra z : Z→ FZ exists. For any coalgebra
a : A→ FA we define two states x,y ∈ A to be behaviorally equivalent if they are
mapped to the same state in the final coalgebra, i.e., if [[x]]a = [[y]]a.

This definition can easily be adapted for categories which are similar to
Set in the sense that their objects are essentially sets with structure and their
arrows are functions with structure. Examples of such a category include the
category of measurable spaces and measurable functions, Meas, which we will
encounter in Chapter 4, the category of pseudometric spaces and nonexpansive
functions, PMet, which we will discuss in details in Chapter 5 and of course
also Kleisli-categories of Set-monads.

Moreover, in Chapter 3 we will discuss an alternative approach by considering

55

Chapter 2 Preliminaries

behavioral equivalences between arrows instead of states of a system.

Final Coalgebra and Bisimilarity

Let us now discuss what type of behavior is captured by the above definition.
Based on the examples we have considered so far, we might be tempted to think
that it is trace equivalence. However, this is a misleading thought. So far, all the
examples for which we looked at a final coalgebra were deterministic systems
for which trace equivalence and bisimilarity coincide. We will now show that
the unique map into the final coalgebra usually characterizes the equivalence
classes of a coalgebraic version of bisimilarity.

Definition 2.4.12 (Bisimulation for Set-functors [AM89]) Let F be an endo-
functor on Set and c : X→ FX be a coalgebra. A relation R ⊆ X×X is called an
F-bisimulation on c if there is a coalgebra r : R → FR such that the projections
π1,π2 : R→ X (which are the restrictions of the binary product projections to R)
are coalgebra homomorphisms, i.e., such that the following diagram commutes.

X R X

FX FR FX

π1 π2

Fπ1 Fπ2

c r c

Similarly, an F-bisimulation between two coalgebras c1 : X1 → FX1, c2 : X2 → FX2
is a relation R ⊆ X1 × X2 with a coalgebraic structure r : R → FR satisfying
ci ◦ πi = Fπi ◦ ci.

One can show [Rut00, Corollary 5.6] that the union of all F-bisimulations on
a coalgebra c : X→ FX is again an F-bisimulation and moreover an equivalence
relation. As for the usual notion of bisimulation, we will call it F-bisimilarity
and denote it by ∼c or simply by ∼.

The coalgebraic notion of F-bisimulation encompasses the original definition
of bisimulation if we instantiate it to the two Set-functors that we use to model
lts. We will show this for the coalgebras of the Set-functor (P_)A. In the litera-
ture this is usually described for the alternative model of an lts as coalgebra
c : X→ P(A×X) [RT93, Example 2.3], [Rut00, Example 2.1 (continued)].

Example 2.4.13 (LTS Bisimulation as Coalgebraic Bisimulation) For a co-
algebra c : X→ (PX)A we have a transition x a−→ x ′ if and only if x ′ ∈ c(x)(a).

56

2.4 Coalgebra

Using this notation, a bisimulation in the sense of Definition 2.2.4 is a binary
relation R ⊆ X×X such that for every (x1, x2) ∈ R and every a ∈ A we have that

. for every x ′1 ∈ c(x1)(a) there is an x ′2 ∈ c(x2)(a) with (x ′1, x
′
2) ∈ R, and

. for every x ′2 ∈ c(x2)(a) there is an x ′1 ∈ c(x1)(a) with (x ′1, x
′
2) ∈ R.

Given any such relation we get a new coalgebra r : R→ (PR)A by defining

r(x1, x2)(a) :=
{
(x ′1, x

′
2) ∈ R | x ′1 ∈ c(x1)(a)∧ x ′2 ∈ c(x2)(a)

}
for every x1, x2 ∈ X and every a ∈ A. Commutativity of the diagram

X R X

(PX)A (PR)A (PX)A

π1 π2

(π1[·])A (π2[·])A

c r c

is equivalent to the requirement that for all (x1, x2) ∈ R and all a ∈ A and
i ∈ {1, 2} the equality c(xi)(a) = πi[r(x1, x2)(a)] holds. We calculate

πi[r(x1, x2)(a)] =
{
x ′i ∈ X | (x ′1, x

′
2) ∈ R∧ x ′1 ∈ c(x1)(a)∧ x ′2 ∈ c(x2)(a)

}
and using the fact that R is a bisimulation and (x1, x2) ∈ R we easily see that
this is indeed equal to c(xi)(a).

Conversely let R ⊆ X × X be an F-bisimulation with transition structure
r : R→ (PR)A such that the diagram commutes. Now let (x1, x2) ∈ R and a ∈ A.
By commutativity of the diagram we know that c(x1)(a) = π1[r(x1, x2)(a)] so
for any x ′1 ∈ c(x1)(a) there is a pair (x ′1, x

′
2) ∈ r(x1, x2)(a) ⊆ R and moreover

x ′2 ∈ π2[r(x1, x2)(a)] = c(x2)(a). This works analogously to show the other
implication so we conclude that R is a bisimulation in the classical sense.

Now that we have seen that the coalgebraic definition of F-bisimulation
coincides with the classical notion for lts, we compare it with the unique map
into the final coalgebra. One property is very easy to show.

Theorem 2.4.14 ([RT93, Theorem 2.5]) Let F be an endofunctor on Set for which
a final coalgebra z : Z → FZ exists and c : X → FX be an arbitrary coalgebra.
Moreover, let [[·]]c : c→ z be the unique arrow into the final coalgebra. For all
x, x ′ ∈ X we have

x ∼c x
′ =⇒ [[x]]c = [[x ′]]c .

57

Chapter 2 Preliminaries

In order to also obtain the converse of the above implication it is sufficient to
require that the functor preserves weak pullbacks.

Theorem 2.4.15 ([Rut00, Theorem 9.3]) Let F be an endofunctor on Set for
which a final coalgebra z : Z → FZ exists and c : X → FX be an arbitrary
coalgebra. If F preserves weak pullbacks we have for all x, x ′ ∈ X that

x ∼c x
′ ⇐⇒ [[x]]c = [[x ′]]c .

Thus [[x]]c represents the ∼c-equivalence class of x.

Let us now interpret this result for labelled transition systems. First of all, it
is not applicable to all lts, since both coalgebraic models we have seen involve
the general powerset functor, so neither of them has a final coalgebra. However,
this technical problem can be remedied by considering only finitely branching
lts which can be modelled by replacing the powerset functor P with its finite
variant Pf.

The second conclusion we can draw from the result is that the coalgebraic
behavioral equivalence as defined in Definition 2.4.11 is not suitable to obtain
trace semantics for nondeterministic systems because for them bisimulation is
strictly finer than trace equivalence.

2.4.3 Trace Semantics

In light of our previous observations we now look for a coalgebraic method
to obtain trace semantics. This search has turned out to be a challenge for the
coalgebraic community and while several approaches have been suggested in
the past, this is still an area of active research (see e.g. [SBBR13; KMPS15; JSS15;
MPS15; UH15; KR15]) during the writing of this thesis.

Here, we will focus on two conceptually simple approaches that fit nicely into
the categorical framework and are the ones employed in the main parts of this
thesis. Both share the common prerequisite that the functor whose coalgebras
are to be considered allows a decomposition into an endofunctor and a monad
functor. However, there are two possible decompositions, namely

c : X→ TFX, or (2.4.3)
c : X→ FTX (2.4.4)

where T is the endofunctor of a monad (T ,η,µ) and F is an arbitrary endofunctor
on a common category C. The idea is that the monad models a side-effect, like
nondeterminism or probabilistic branching, whereas F models the explicit
branching of the system.

58

2.4 Coalgebra

We have already come across examples for both of these variants. First of
all, we have seen that nondeterministic automata are coalgebras of the form
X → 2× (PX)A which is indeed of the latter type by taking as monad the
powerset monad of Example 2.3.35 and as endofunctor the machine functor
2× _A of Example 2.4.5 with output set B = 2. Alternatively, we have modelled
NA as coalgebras X → P (A×X+ 1) which – using the same monad and the
endofunctor F = A× _ + 1 – clearly is of the first type.

If we substitute the powerset monad by the distribution monad of Exam-
ple 2.3.36 in the examples above, we conclude that generative probabilistic
systems fit into the first approach and reactive ones into the second.

Traces in the Kleisli Category

Let us now examine the first approach to trace semantics for TF-coalgebras as in
Equation (2.4.3) which is based on initial work by John Power and Daniele Turi
[PT99] and has more recently been promoted and extended by Ichiro Hasuo,
Bart Jacobs and Ana Sokolova [HJS06; HJS07] and which we will employ in
Chapter 4.

If we have a Kleisli-law λ : FT ⇒ TF as defined in Definition 2.3.43 we can by
Theorem 2.3.44 define an extension F̂ : K`(T)→ K`(T) of the endofunctor F to
the Kleisli-category of the monad.

By definition of the arrows in a Kleisli-category, a TF-coalgebra c : X→ TFX

can equivalently be seen as an F̂-coalgebra c : X F̂X in K`(T). If there is a final
F̂-coalgebra we can now define trace semantics for our TF-coalgebra using the
unique arrow into the final coalgebra.

Definition 2.4.16 (Trace Semantics in the Kleisli Category) Let (T ,η,µ) be a
monad and F be an endofunctor on a common category C and F̂ : K`(T)→ K`(T)

be an extension of F. Suppose that a final F̂-coalgebra z : Z → TFZ exists. For
any TF-coalgebra c : X→ TFX we define its trace semantics trc : X→ TZ to be the
unique C-arrow underlying the final coalgebra homomorphism [[·]]c : X Z.

One important thing to notice about this definition is that the side effects
specified via the monad (nondeterminism, probability) are now contained in
the unique map [[·]]c : X Z into the final coalgebra which corresponds to an
arrow [[·]]c : X→ TZ.

In order to apply the above definition we need to have a final coalgebra for
the lifted functor. The main contribution of [HJS06] is that in Set this final
coalgebra arises from an initial algebra provided that the monad has a suitable
order structure [HJS06, Theorem 3].

59

Chapter 2 Preliminaries

Since both the powerset monad and the subdistribution monad (but not
the distribution monad) satisfy these assumptions, we can obtain both the
traces of arbitrary lts and discrete generative probabilistic systems as given in
Equations (2.2.4) to (2.2.6).

As said in the beginning, we will employ this approach to trace semantics
in Chapter 4 but we will not be able to use the main result of [HJS06]. The
reason for this is that we will work in a category other than Set. Thus we will
just use the above definition of trace equivalence and define the necessary final
coalgebra by hand.

Traces via the Generalized Powerset Construction

Now we look at the second approach for FT -coalgebras as in Equation (2.4.4)
which is based on a coalgebraic view on determinization of nondeterministic
automata via the powerset construction [Rut00, Exercise 15.4]. It has been
systematically studied by Alexandra Silva, Filippo Bonchi, Marcello Bonsangue
and Jan Rutten as the generalized powerset construction [SBBR10; SBBR13]. Later
Bart Jacobs, Alexandra Silva and Ana Sokolova demonstrated that it can also
be extended to encompass the first approach presented above [JSS12; JSS15].
We will follow their presentation of how to obtain trace semantics via the
generalized powerset construction.

In presence of an EM-law λ : TF⇒ FT we can construct an F-coalgebra based
on an FT -coalgebra c : X→ FTX by defining

c] :=
(
TX TFTX FTTX FTX

)
.

Tc λTX FµX

We can interpret this to be the coalgebraic determinization of the original system.
The side effect that is specified by the monad now is not any longer part of the
transition structure X→ FTX but part of the new state space TX. Indeed, this
object is equipped with the free algebra structure µX : TTX→ TX.

Under the hood, the transformation of c into c] corresponds to applying a
functor L to c which is a lifting of the free algebra functor LT : C → EM(T) as
given in Definition 2.3.41 in the sense that it makes the diagram in Figure 2.4.1
commute [JSS15, Lemma 1]. In that diagram C is the category on which both the
endofunctor F and the monad (T ,η,µ) are defined, U and U ′ are the forgetful
functors mapping a coalgebra to its carrier and a coalgebra homomorphism to
the underlying arrow and F̂ is the unique lifting of F to the Eilenberg-Moore
category that arises from the EM-law λ by Theorem 2.3.44. The coalgebra c]

as defined above is the function underlying the F̂-coalgebra Lc : µX → F̂µX

60

2.4 Coalgebra

whose carrier is the free T -algebra µX on X, i.e., c] = UTLc : TX → FTX where
UT : EM(T)→ C is the forgetful functor mapping an algebra to its carrier.

CoAlg (FT) CoAlg
(
F̂
)

C EM(T)

L

U

LT

U ′

Figure 2.4.1: Lifting of the free algebra functor

If we now consider the category of F̂-coalgebras more carefully, we can see
that the EM-law permits to lift final F-coalgebras to final F̂-coalgebras.

Theorem 2.4.17 (Final Coalgebra Lifting [JSS15, Prop. 3]) Let (T ,η,µ) be a
monad and F be an endofunctor on a common category C and λ : TF⇒ FT an
EM-law. If F has a final coalgebra z : Z → FZ in C then Z carries a T -algebra
structure α : TZ→ Z obtained by finality as depicted in the diagram below.

TZ Z

TFZ FZ

α

λ ◦ Tz z

Fα

Moreover, z is a homomorphism of algebras z : α → F̂α which is the final
coalgebra for the lifted functor F̂ : EM(T)→ EM(T).

If a final F-coalgebra z : Z→ FZ exists one can thus define a semantic map for
the FT -coalgebra c into Z as follows.

Definition 2.4.18 (Trace Semantics via the Generalized Powerset Construc-
tion) Let (T ,η,µ) be a monad and F be an endofunctor on a common category
C and F̂ : EM(T) → EM(T) be a lifting of F. Suppose that a final F-coalgebra
z : Z→ FZ exists. For any FT -coalgebra c : X→ FTX we define its trace semantics
to be trc := [[·]]c] ◦ ηX : X → Z. The situation is summarized in the following
diagram.

61

Chapter 2 Preliminaries

X TX Z

FTX FZ

ηX [[·]]c]

c z

F[[·]]c]

c]

trc

This definition amounts to carrying out the following steps (see [JSS15, Defi-
nition 1]) for a given coalgebra c : X→ FTX.

1. First we determinize the system by applying L to obtain the F-coalgebra
c] = UTLc.

2. In the determinized system we can determine the behavioral equivalence via
finality, i.e., we consider the coalgebra map [[·]]c] .

3. In order to obtain the behavior of the original system, we embed it into its
determinization via the unit to obtain its trace semantics as [[·]]c] ◦ ηX.

We will employ this approach in the end of Chapter 5. Let us now quickly
illustrate it for the example of nondeterministic automata as already mentioned
in the beginning [Rut00, Exercise 15.4].

For this example, the base category C is Set, the functor F is the deterministic
automaton functor 2× _A and the monad is the powerset monad (P,η,µ) of
Example 2.3.35. As EM-law we use the following.

Definition 2.4.19 (EM-law for Nondeterministic Automata [JSS15, p. 867])
Let (P,η,µ) be the powerset monad from Example 2.3.35 and F = 2× _A be
the deterministic machine functor. The EM-law λ : P(2× _A) ⇒ 2× P(_)A is
defined, for any set X, as λX = 〈o, s〉 with o(S) = 1 if there is an s ′ ∈ XA such
that (1, s ′) ∈ S else o(S) = 0 and the successor functions

s(S) : A→ PX, s(A) =
{
s ′(a) | (o ′, s ′) ∈ S

}
for every S ∈ P

(
2×XA

)
Using the final coalgebra z : A∗ → P (A∗) of the machine functor as in Exam-

ple 2.4.10 the diagram of Definition 2.4.18 turns into the diagram in Figure 2.4.2
for a given nonderministic automaton c : X→ 2× (PX)A. Let us now carry out
the steps from above.

1. The determinization of the system by applying L yields the 2̂× _A-coalgebra

62

2.4 Coalgebra

X PX A∗

2× (PX)A P (A∗)

ηX [[·]]c]

c z

2× [[·]]Ac]

c]

trc

Figure 2.4.2: Usual trace semantics for nondeterministic automata via the gen-
eralized powerset construction

c] = UTLc which is just the usual powerset automaton. Thus for c = 〈o, s〉
we have c] = 〈o], s]〉. For a set S ⊆ X of states of the original automaton is
final (o](S) = 1) if and only if there is a final state x ∈ S, i.e., a state with
o(x) = 1. Moreover, the unique a-sucessor of that set of states is the union of
all a-successors of the states x ∈ S, i.e., the function s](S) : A→ PX given by
the assignment s](S)(a) = {s(x)(a) | x ∈ S}.

2. Since the powerset automaton is a deterministic automaton, the behavioral
equivalence induced via finality is simultaneously bisimilarity and language
equivalence. The final coalgebra map [[·]]c] : PX → A∗ maps a state of the
powerset automaton c] (i.e., a set of states of the original one) to the language
it accepts.

3. The behavior of a state x ∈ X of the original automaton c is now given by
considering the language of the corresponding singleton {x}. This is achieved
by precomposing the semantic map [[·]]c] with the unit ηX of the powerset
monad which maps each element to the corresponding singleton.

63

3
Adjunctions and Automata

When studying coalgebras in various categories a natural question to
ask is how to transform such coalgebras from one representation into
another. Our motivating examples come from the world of determin-

istic and nondeterministic automata where various forms of determinization
can be seen as functors which map coalgebras living in one category, into
coalgebras living in another category. For instance, nondeterministic automata
living in Rel can be transformed into deterministic automata in Set via the
powerset construction. In the other direction, a deterministic automaton in
Set can be trivially regarded as a nondeterministic automaton in Rel. It turns
out that the transformations together form an adjunction between categories
of coalgebras where the powerset construction is the right adjoint. In the same
vein various other determinization-like constructions arise as adjunctions.

In the following we will first show under which circumstances an adjunction
between two categories can be lifted to an adjunction between categories of
coalgebras. Part of the answer was already given by Claudio Hermida and Bart
Jacobs [HJ98] and we extend their characterization by giving another, equivalent,
condition. Then we study several examples in detail, especially various forms
of automata. Apart from the well-known deterministic and nondeterministic
automata, we consider codeterministic (or backwards-deterministic) automata
which arise during the application of Brzozowski’s minimization algorithm and
have been studied in more details as átomata [BT11]. Moreover, we look at
deterministic join automata, which are automata that have an algebraic structure
on the states, allowing to take the join of a given set of states. Such automata live
in the category JSL of join semilattices, which is the Eilenberg-Moore category of
the powerset monad on Set (whereas Rel is the Kleisli category of the powerset
monad) and have already been considered in [SBBR13]. In total we consider
four different adjunctions between such automata.

In order to explain what these adjunctions really mean in terms of behavioral
equivalence, we study a general notion of behavioral equivalence for arbitrary
categories. We first observe that the final coalgebra, if it exists, is preserved by
right adjoints and hence can be “inherited” from coalgebras living in a different

65

Chapter 3 Adjunctions and Automata

category. Furthermore we show how queries on behavioral equivalence can be
translated to equivalent queries on coalgebras in another category. This reflects
the well-known construction of determinizing a nondeterministic automaton
before answering questions about language equivalence.

Additional proofs and calculations for the provided results can be found in
Appendix A.1.

3.1 Lifting Adjunctions

Within this section we are first going to present a short, motivating example
which introduces our approach. Based on this, we then start to develop our
lifting theory which yields our main theoretical result (Theorem 3.1.2). The
result itself is not too surprising and, in fact, was discovered already earlier
by Claudio Hermida and Bart Jacobs [HJ98] in a different setting (we will
compare our approach with their result) and can be obtained using standard
(2-)categorical methods [KS74]. However, the focus of our work is not just the
theory itself but we are more interested in how this theory helps to understand
certain (algorithmic) constructions on automata by applying it to various types
of automata, modeled as coalgebras.

3.1.1 Motivating Example

Consider the (non-commutative) diagram of functors in Figure 3.1.1 where the
bottom part is the canonical Kleisli adjunction as given in Definition 2.3.38

between Set and Rel. Let A be an alphabet, i.e., a finite set of labels. We

DA = CoAlg
(
2× _A

)
⊥ CoAlg (A× _ + 1) = NA

Set ⊥ Rel

L (“consider as NA”)

R (“determinize”)
U V

2× _A

L (“consider as relation”)

R (“convert to function”)

A× _ + 1

Figure 3.1.1: Lifting of the Kleisli adjunction

have already seen in Section 2.4.1 that the coalgebras for the functor 2× _A on

66

3.1 Lifting Adjunctions

Set are the deterministic automata. (DA). Moreover, using the fact that the
Kleisli category of the powerset monad is isomorphic to Rel, nondeterministic
automata (NA) are coalgebras for a functor A× _ + 1 on Rel (we will discuss
this more thoroughly later in Section 3.2.1). We aim at finding the functors
L, R (dashed arrows on top) that form an adjunction which is a lifting of the
original adjunction and we will see that for this particular example everything
works out as planned and the lifted right adjoint R “performs” the well-known
powerset construction to determinize an NA.

3.1.2 Lifting an Adjunction to Coalgebras

The coalgebraic treatment of automata has provided several new views on
algorithms for minimization and (co)determinization [ABH+12; BBRS12; BKP12;
SBBR13; JSS15]. In all these publications the authors make use of certain
adjunctions of categories to obtain the minimization or determinization of
(various kinds of) automata.

We shall hereafter try to find and analyze a common and generic pattern on
how we can make use of an adjunction (L a R,η, ε) : C→ D to reason about and
to find constructions (algorithms) on automata modeled as coalgebras. For that
purpose let us fix two endofunctors F : C → C and G : D → D and look at the
(non-commutative) diagram of functors in Figure 3.1.2 where U : CoAlg (F)→ C

and V : CoAlg (G) → D are the forgetful functors mapping a coalgebra to its
carrier and a coalgebra homomorphism to the underlying arrow. The question

CoAlg (F) ⊥ CoAlg (G)

C ⊥ D

L

R
U V

F

L

R

G

Figure 3.1.2: Lifting an adjunction to coalgebras

we are interested in is whether we can in some canonical way obtain the functors
L and R as indicated by the dashed lines such that they form an adjunction
which “arises” from the initial adjunction. A precise definition for this is given
below. In several cases such adjoint functors transform coalgebras in a way that

67

Chapter 3 Adjunctions and Automata

we (re)discover algorithmic constructions on the modeled automata and we will
back this hypothesis by the examples given in the following sections.

Definition 3.1.1 (Lifting) Let C and D be categories, F : C → C, G : D → D be
endofunctors and U : CoAlg (F) → C and V : CoAlg (G) → D be the forgetful
functors mapping a coalgebra to its carrier and a coalgebra morphism to the
underlying arrow. Let (L a R,η, ε) : C→ D be an adjunction.

1. We call a functor L : CoAlg (F) → CoAlg (G) [R : CoAlg (G) → CoAlg (F)]

a lifting of L [R] if it satisfies the equality VL = LU [UR = RV].

2. We call an adjunction
(
L a R,η, ε

)
: CoAlg (F) → CoAlg (G) a lifting of the

adjunction (L a R,η, ε) : C→ D if L is a lifting of L, R is a lifting of R and we
have Uη = η and Vε = ε.

Although this definition is straightforward it has one setback: it does not tell
us how to construct a lifted adjunction. Let us therefore introduce a method for
handling this. If we had a natural transformation α : LF⇒ GL it is not hard to
see that we obtain a functor L : CoAlg (F)→ CoAlg (G) by defining

L
(
X

c−→ FX
)
=
(
LX

Lc−→ LFX
αX−→ GLX

)
, Lf = Lf (3.1.1)

for all F-coalgebras c : X → FX and all F-coalgebra homomorphisms f and
analogously, given a natural transformation β : RG ⇒ FR we can define a
functor R : CoAlg (G)→ CoAlg (F) by

R
(
Y

d−→ GY
)
=
(
RY

Rd−→ RGY
βY−→ FRY

)
, Rg = Rg (3.1.2)

for all G-coalgebras d : Y → GY and all G-coalgebra homomorphisms g. By
definition these functors are liftings and thus the only remaining question is
whether we obtain a lifting of the adjunction. The equation Uη = η can be
spelled out as the requirement that for all F-coalgebras c : X → FX the arrow
ηX : X→ RLX is an F-coalgebra homomorphism c→ RLc and likewise the equa-
tion Vε = ε translates to the requirement that for every G-coalgebra d : Y → GY

the arrow εY : LRY → Y is a G-coalgebra homomorphism LRd→ d. This is the
case if and only if the outer rectangles of the following two diagrams commute.

X FX

RLFX RGLX

RLX FRLX

c

ηX FηX

ηFX

RLc

RLc
RαX

βLX

1

2

3

LRY GLRY

LRGY LFRY

Y GY

LRd

LRd

εY GεY

d

LβY

εGY

αRY4

5

6

68

3.1 Lifting Adjunctions

These diagrams certainly commute if their inner parts commute: 1 commutes
because η is a natural transformation, 2 by definition of RLc and commuta-
tivity of 3 is equivalent to FηX = βLX ◦ RαX ◦ ηFX. Moreover, 4 commutes by
definition of LRd and 5 because ε is a natural transformation. Finally, the
commutativity of 6 is equivalent to εGY = GεY ◦αRY ◦ LβY .

With these observations at hand it is easy to spell out a sufficient condition
for the existence of a lifting which we will do in the following theorem.

Theorem 3.1.2 (Lifting an Adjunction to Coalgebras) Let C, D be catgories,
F : C → C and G : D → D be endofunctors and (L a R,η, ε) : C → D be an
adjunction. There is a lifting

(
L a R,η, ε

)
: CoAlg (F) → CoAlg (G) of the

adjunction if one of the following two equivalent conditions is fulfilled.

1. There are two natural transformations α : LF⇒ GL and β : RG⇒ FR satisfy-
ing the following equalities.

Fη = βL ◦ Rα ◦ ηF (3.1.3)
εG = Gε ◦αR ◦ Lβ (3.1.4)

2. There is a natural isomorphism β : RG⇒ FR. [HJ98, 2.15 Corollary]

If 1 holds, the adjoint mate α• of α, which is defined as

α• := RGε ◦ RαR ◦ ηFR (3.1.5)

is the inverse of β. Conversely, if 2 holds we can define α as the adjoint mate
(β−1)• of β−1 which is defined as

(β−1)• = εGL ◦ Lβ−1L ◦ LFη . (3.1.6)

In both cases L and R are defined by (3.1.1) and (3.1.2).

Proof. By the observations from above it should be quite clear, that (1) is suffi-
cient for a lifting to exist. The fact that the second condition (2) of this theorem is
also sufficient for the existence of a lifting is due to a result by Claudio Hermida
and Bart Jacobs [HJ98, 2.15 Corollary]. They derive this as a by-product from
a quite generic result in 2-categories using the fact that coalgebras are certain
inserters in the 2-category of categories, functors and natural transformations.
Thus in order to prove the theorem we just have to show that (1) and (2) are
equivalent using the provided definitions of β−1 (3.1.5) and α (3.1.6).

(1)⇒ (2): The equations βY ◦α•Y = IdFRY and α•Y ◦βY = IdRGY are equivalent to
commutativity of the outer rectangles of the following diagrams.

69

Chapter 3 Adjunctions and Automata

RLFRY RGLRY RGY

FRLRY

FRY FRY

RαRY RGεY

βLRY

βY
FRεY

ηFRY
FηRY

IdFRY = F(IdRY)

1 3

2

FRY RLFRY RGLRY

RLRGY

RGY RGY

ηFRY RαRY

RLβY

RGεY
RεGY

βY
ηRGY

IdRGY

4 6

5

The diagrams commute because their inner parts commute: For the left diagram
1 is (3.1.3) applied to X = RY, 2 is F applied to the second unit-counit equation

(2.3.3) and 3 is the natural transformation diagram for β. For the right diagram
we observe that 4 is the natural transformation diagram for η, 5 is the second
unit-counit equation (2.3.3) applied to GY and 6 is R applied to (3.1.4). Thus β
is indeed a natural isomorphism with inverse α•.

(2)⇒ (1): We have to show that α defined by (3.1.6) satisfies (3.1.3) and (3.1.4).
We first show (3.1.3): Let X be an arbitrary C-object. Then FηX = βLX ◦ RαX ◦

ηFX holds if and only if β−1
LX ◦ FηX = RεGLX ◦ RLβ−1

LX ◦ RLFηX ◦ ηFX holds which in
turn is equivalent to commutativity of the outer part of the following diagram.

FX FRLX RGLX

RLFX RLFRLX RLRGLX RGLX

FηX

ηFX

β−1
LX

ηFRLX
IdRGLX

ηRGLX

RLFηX RLβ−1
LX

RεGLX

1 2 3

1 and 2 commute because η is a natural transformation from IdC to RL,
functors preserve inverses and 3 is the second unit-counit equation (2.3.3)
applied to GLX.

Now we show (3.1.4): If Y is an arbitrary D-object εGY = GεY ◦ αRY ◦ LβY
holds if and only if εGY ◦ Lβ−1

Y = GεY ◦
(
εGLRY ◦ Lβ−1

LRY ◦ LFηRY
)

holds which in
turn is equivalent to commutativity of the outer part of the following diagram.

LFRY LFRLRY LRGLRY GLRY

LFRY LRGY GY

LFηRY

IdLFRY

Lβ−1
LRY

LFRεY

εGLRY

LRGεY

Lβ−1
Y

εGY

GεY4 5 6

70

3.2 NA and Determinization

4 commutes by applying LF to the second unit-counit equation (2.3.3) , 5 due
to the fact that β−1 is a natural transformation and 6 because ε is a natural
transformation.

Remark 3.1.3 We immediately make the following observations about Theo-
rem 3.1.2.

1. Due to the fact that CoAlg (F) ∼= Alg (Fop), where Fop is the opposite functor
to F, we can apply the theorem to obtain liftings to algebras.

2. If (L a R,η, ε) is an equivalence [a dual equivalence] of categories then(
L a R,η, ε

)
is an equivalence [a dual equivalence] of categories.

3.2 Nondeterministic Automata and Determinization

Within this section we will first shortly recall how deterministic (DA), nonde-
terministic (NA) and codeterministic (CDA) automata can be modeled as coal-
gebras in suitable categories. We will then consider adjunctions between these
categories and apply our theorem to obtain a lifting. Via this we will recover
the (co)determinization of an automaton via the powerset construction.

The content of this (and the following) section is summarized in the diagram
of categories and functors in Figure 3.2.1. While DA live in Set, NA can be seen
as arrows in Rel and CDA as arrows in Setop (see Section 3.2.1). Furthermore
in Section 3.3 we will in addition consider deterministic join automata (DJA)
which live in the category of complete join semilattices (JSL), see Sections 3.3.1
and 3.3.2. Between these categories of coalgebras there are four adjunctions,
which will be treated in the following sections.

Set ⊥ Rel

a a

JSL ⊥ Setop

1

3 2

4

2× _A A× _ + 1

2× _A A× _ + 1

Figure 3.2.1: Four basic adjunctions and automata endofunctors

For the rest of this and the following section let A denote an alphabet, i.e., a
finite set of labels. As pointed out before in a coalgebraic treatment of labeled

71

Chapter 3 Adjunctions and Automata

transition systems, one usually omits initial states and the state spaces are not
required to be finite.

3.2.1 Automata as Coalgebras

As we have discussed in the Preliminaries (in Section 2.4.1), some automata
have several different coalgebraic models where both the functor as well as the
underlying category may be different. Thus let us now first fix the coalgebraic
models we will use in this chapter.

Deterministic Automata. In the category Set of sets and functions, we model
deterministic automata as coalgebras for the functor 2× _A. We represent a
deterministic automaton with state space X and alphabet A as a coalgebra
c = 〈o, s〉 : X→ 2×XA where each state x ∈ X is mapped to a tuple (o(x), s(x))
in which the output flag o(x) ∈ {0, 1} determines whether x is final (o(x) = 1)
or not (o(x) = 0) and the successor function s(x) : A → X determines for
each letter a ∈ A the unique a-successor s(x)(a) ∈ X of the state x. We thus
define the category of deterministic automata and automata morphisms to be
DA := CoAlg

(
2× _A : Set→ Set

)
.

Nondeterministic Automata. We model a nondeterministic automaton by a
coalgebra for the functor1 A × _ + 1 in Rel. Given a set X of states, and a
coalgebra c : X↔ A×X+ 1, each state x ∈ X is in relation with X if and only
if it is a final state. For any letter a ∈ A the y ∈ X such that (x, (a,y)) ∈
c are the a-successor(s) (one, multiple or none) of x. We thus define the
category of nondeterministic automata and automata morphisms to be NA :=

CoAlg (A× _ + 1 : Rel→ Rel).

Codeterministic Automata. Given a set X of states, a codeterministic (back-
wards deterministic) automaton (CDA) is given by a function c : A×X+ 1→ X

where c(X) ∈ X is the unique final state and for each pair (a, x) ∈ A× X the
unique a-predecessor of x is c(a, x). Hence we can model them as coalgebras
for the functor A×X+ 1 on Setop and define the category of codeterministic
automata and their morphisms to be CDA = CoAlg (A× _ + 1 : Setop → Setop).

Note that Setop is equivalent to the category of all complete atomic boolean
algebras, with boolean algebra homomorphisms. So instead of thinking of these
automata as codeterministic, one could think of them as deterministic automata

1This functor arises as an extension in the sense of Definition 2.3.42 of the Set-functor A× _+1
to the Kleisli category of the powerset monad.

72

3.2 NA and Determinization

with a rich algebraic structure on the states, even richer than the deterministic
join automata introduced in Section 3.3.

Codeterministic automata have also been studied in the context of Brzo-
zowski’s minimization algorithm as átomata [BT11].

An example automaton is shown in Figure 3.3.1 (right).

3.2.2 Determinization of Nondeterministic Automata

Let us reconsider the Kleisli adjunction (adjunction 1 of Figure 3.2.1) between
Set and Rel which we presented in Example 2.3.32. We aim at applying
Theorem 3.1.2 to this adjunction to get a lifting and claim that this will yield the
well known powerset construction to determinize nondeterministic automata.

We will use Theorem 3.1.2 (2) to do so, because it is much easier to verify
than the first condition. Recall that, by Theorem 3.1.2 (2), for a lifting to exist it
is sufficient to define a natural isomorphism β : P (A× _ + 1)⇒ 2× (P_)A. We
define for every set X the function βX = 〈oX, sX〉 : P (A×X+ 1) → 2× (PX)A

where

oX(S) =

{
1, if X ∈ S
0, else

(3.2.1)

sX(S) : A→ PX, s(S)(a) = {x ∈ X | (a, x) ∈ S} (3.2.2)

for every set S ∈ P (A×X+ 1). The inverse function β−1
X : 2 × (PX)A →

P (A×X+ 1) is given by

β−1
X (o, s) := {X | o = 1}∪

⋃
a∈A

{a}× s(a) (3.2.3)

for every (o, s) ∈ 2× (PX)A. The proof that this is indeed a natural isomorphism
is a straightforward but lengthy calculation and can be found in Appendix A.1.
By Theorem 3.1.2.2 we obtain a lifting. We calculate the natural transformation
α : 2× (_)A ⇒ A× _ + 1 by using (3.1.6) to obtain for every set X the relation
αX : 2×XA ↔ A×X+ 1 given by

αX =
{(

(1, s) , X
)
,
(
(o, s) ,

(
a, s(a)

)) ∣∣∣ o ∈ 2, s ∈ XA,a ∈ A
}

. (3.2.4)

With these preparations at hand we can now construct the lifted functors.
The new left adjoint L : DA → NA maps a DJA c : X → 2× XA to the NA

73

Chapter 3 Adjunctions and Automata

L(c) : X↔ A×X+ 1 which is given by2

L(c) =

{
(x,X)

∣∣∣∣ x ∈ X
π1 ◦ c(x) = 1

}
∪
{(
x,
(
a,π2 ◦ c(x)(a)

)) ∣∣∣∣ x ∈ X

a ∈ A

}
(3.2.5)

which is simply the same automaton, but interpreted as a nondeterministic one.
The lifted right adjoint R : NA → DA maps a nondeterministic automaton

d : Y ↔ A×Y+ 1 to the deterministic automaton R(d) = 〈o, s〉 : PY → 2× (PY)A.
A state of this new automaton is just a set of states Q ∈ PY of the original
automaton. For each such Q the tuple R(d)(Q) = (o(Q), s(Q)) is given as
follows. We have

o(Q) =

{
1, if there is a q ∈ Q such that (q,X) ∈ d
0, else

(3.2.6)

i.e., Q is final if and only if one of the original states in Q is final. Moreover, the
unique successors of Q are given by

s(Q) : A→ PY, s(Q)(a) =
{
y ∈ Y | ∃q ∈ Q :

(
q, (a,y)

)
∈ d
}

which we can easily identify to be exactly the definition of the transition function
of the usual powerset automaton construction. Let us demonstrate this with a
concrete example.

Example 3.2.1 (Determinization of a Nondeterministic Automaton) We con-
sider the nondeterministic automaton with state space Y = {y1,y2} and input
alphabet A = {a,b} as depicted in Figure 3.2.2 on the left. In our coalgebraic

y1

y2

a

a

b

b

{y1} Y

∅ {y2}

a

b

a,b

a,b
a

b

Figure 3.2.2: An NA (left) and its determinization (right)

model in Rel this automaton is given by the relation d ⊆ Y × (A× Y + 1) where

d :=
{
(y1,X),

(
y1, (a,y1)

)
,
(
y1, (a,y2)

)
,
(
y2, (b,y2)

)
,
(
y2, (b,y1)

)}
.

2π1 : 2×XA → 2 and π2 : 2×XA → XA are the projections of the product.

74

3.2 NA and Determinization

If we construct its determinization as presented above, we obtain the deter-
ministic automaton depicted in Figure 3.2.2 on the right. Formally, this is the
coalgebra 〈o, s〉 := R(d) : PY → 2× (PY)A where o and s are defined as follows.

state x final state? o(x) a-successor s(x)(a) b-successor s(x)(b)
∅ 0 ∅ ∅

{y1} 1 Y ∅
{y2} 0 ∅ Y

Y 1 Y Y

3.2.3 Codeterminization of Nondeterministic Automata

Let us now consider adjunction 2 of Figure 3.2.1 between Rel and Setop which
we automatically obtain by dualizing the Kleisli adjunction between Set and
Rel from Example 2.3.32 and the fact that Rel is a self-dual category.

The left adjoint L : Rel→ Setop maps a set X to its powerset PX and a relation
f : X ↔ Y to the function Lf : PX ← PY given by, for every S ∈ PY, (Lf)(S) =

{x ∈ X | ∃y ∈ S : (x,y) ∈ f}. The right adjoint R : Setop → Rel is the inclusion,
i.e., it maps a set X to itself and a function f : X ← Y to the corresponding
relation f : X↔ Y. The unit η consists of all the relations ηX : X↔ PX defined
via (x,S) ∈ εX if and only if x ∈ S and the counit ε is given by all the functions
εX : PX← X mapping each x ∈ X to the singleton set {x}.

We proceed to define a lifting as before by specifying a natural isomorphism
β : A× _+ 1⇒ A× _+ 1. The obvious choice is to let βX be the identity relation
on A× X+ 1 which indeed yields a natural isomorphism. Moreover, using
(3.1.6) we obtain the natural transformation α : P (A× _ + 1) ⇒ A × P_ + 1
where for each set X the function αX : P (A×X+ 1)← A× PX+ 1 is given by
α(X) = 1 and α(a,S) = {a}× S for every (a,S) ∈ A×PX.

The lifted left adjoint L : NA → CDA performs codeterminization: Given
an NA c : X ↔ A× X+ 1 we obtain a CDA L(c) : PX ← A× PX+ 1 where X
is mapped to the set {x ∈ X | (x,X) ∈ c}, i.e., the unique final state of the new
automaton is the set of all final states of the original automaton. Given a set of
states S ∈ PX and a letter a ∈ A the a-predecessor of S is the set

L(c)(a,S) =
{
x ∈ X | ∃y ∈ S :

(
x, (a,y)

)
∈ c
}

(3.2.7)

containing all the a-predecessors of the states in S. We conclude that the
new automaton is indeed a codeterministic automaton which is (language)
equivalent to the original one.

While in the previous example the lifted left adjoint was trivial (as was
the original left adjoint), in this case we obtain a trivial lifted right adjoint

75

Chapter 3 Adjunctions and Automata

R : CDA → NA: it “interprets” a CDA d : Y ← A× Y + 1 as NA, i.e., as the
corresponding relation R(d) : Y ↔ A× Y + 1.

As before, we illustrate the non-trivial construction (this time the application
of the lifted left adjoint) on a concrete example.

Example 3.2.2 (Codeterminization of a Nondeterministic Automaton) We
consider the nondeterministic automaton with state space X = {x1, x2} and
input alphabet A = {a,b} as depicted in Figure 3.2.3 on the left. In our coalge-

x1

x2

a,b

b

a

{x1} X

∅ {x2}

b
b

a

a

a,b

b
a

Figure 3.2.3: An NA (left) and its codeterminization (right)

braic model in Rel this automaton is given by the relation c ⊆ X× (A×X+ 1)
where

c :=
{
(x2,X),

(
x1, (a, x2)

)
,
(
x1, (b, x1)

)
,
(
x1, (b, x2)

)
,
(
x2, (a, x1)

)}
.

If we construct its determinization as presented above, we obtain the codeter-
ministic automaton depicted in Figure 3.2.3 on the right. Formally, this is the
coalgebra d := L(c) : PX← A×PX+ 1 defined as in the following tabular.

state y final, i.e., c(X) = y a-predecessor d(a,y) b-predecessor d(b,y)
∅ no ∅ ∅

{x1} no ∅ {x1}

{x2} yes X {x1}

Y no X {x1}

While predecessors are by construction unique in this codeterminization, it is
clearly not a usual (forward) deterministic automaton.

3.3 Deterministic Join Automata

We will now try to take a different perspective to look at powerset automata
instead of just considering them to be determinized nondeterministic automata.
In order to do that we briefly recall the notion of complete join semilattices and
the corresponding category.

76

3.3 Deterministic Join Automata

3.3.1 Complete Join Semilattices

A complete join semilattice is a partially ordered set X such that for every
(possibly infinite) set S ∈ PX there is a least upper bound, called join and
denoted by tS. If Y is another join semilattice we call a function f : X→ Y join-
preserving if, for all S, it satisfies f(tS) = t {f(s) | s ∈ S}. The join semilattices
and the join-preserving functions form a category which we will denote by JSL.
It is easy to see that this category is isomorphic to the Eilenberg-Moore category
for the powerset monad on Set.

If we equip the set 2 = {0, 1} with the partial order 0 6 1, we get a complete
join semilattice with t∅ = 0, t {0} = 0, t {1} = 1 and t2 = 1.

The product of two join semilattices X and Y is the cartesian product of the
base sets equipped with a partial order given by (x1,y1) 6 (x2,y2) if and only
if x1 6 y1 and y1 6 y2 for all x1, x2 ∈ X, y1,y2 ∈ Y and analogously, given a set
X we can equip XA with a partial order based on a given one on X by defining
for f,g ∈ XA that f 6 g if and only if f(a) 6 g(a) for every a ∈ A. This is
a complete join semilattice if X is. Given a subset F ⊆ XA its join is given by
tF : A→ X,tF(a) = t {f(a) | f ∈ F}.

3.3.2 Deterministic Join Automata

We can interpret a coalgebra c : X→ 2×XA for the functor 2× _A on JSL as a
deterministic automaton just as we did before on Set. Since the arrows of JSL
are join-preserving functions, such an automaton possesses a certain additional
property. Given a set S ∈ PX of states, we know that there is a join-state
tS. By the join-preserving property of the transition function c we know that
c(tS) = t {c(x) | x ∈ S} and we conclude that tS is final if and only if one of the
states x ∈ S is final and moreover any transition of an x ∈ S can be “simulated”
(see below) by tS. We define the category DJA := CoAlg

(
2× _A : JSL→ JSL

)
and call its objects deterministic join automata.

Example 3.3.1 (A Simple Deterministic Join Automaton) Take a look at Fig-
ure 3.3.1. If we equip the set X = {⊥,u, x,y,>} with the partial order given
by the Hasse diagram on the left we obtain a complete join semilattice. The
diagram in the middle shows a deterministic join automaton on this join semi-
lattice. Note that the join of two final states is again final and that for every pair
of states and alphabet symbol a, the a-successor of the join of the states is the
join of the a-successors. This implies a general property of DJA that for every
subset of states there exists a state accepting the union of the languages of the
given states.

77

Chapter 3 Adjunctions and Automata

>

x y

u

⊥

x u y

>

⊥

a

b

b

a

a,b

a,b

a,b

x u y

>

⊥

b a

a,b
a,b a,b

a,b

Figure 3.3.1: Hasse diagram of a complete join semilattice, a deterministic join
automaton and its codeterminization (from left to right)

3.3.3 Determinization of Deterministic Automata

We will now consider adjunction 3 of Figure 3.2.1 in order to transform DJA

into DAs and vice versa. Given a conventional DA, a suitable algorithm to
obtain a DJA is (again) the powerset determinization construction – this time
employed to an already deterministic automaton. We will see that this is a
reasonable construction in the sense that it arises from an adjunction between
Set and JSL. As said before, the category of complete join semilattices is
isomorphic to the Eilenberg-Moore category for the powerset monad on Set.
The theory of adjunctions gives us a generic construction of an adjunction (see
Definition 2.3.41) which we will now spell out again using the aforementioned
isomorphism between EM(P) and JSL.

The left adjoint L : Set→ JSL maps any set X to PX which is partially ordered
by set inclusion. The join operation is set theoretic union and it is easy to
see that we indeed obtain a complete join semilattice. Any function f : X→ Y

is mapped to its image map f[.] : PX → PY which we can easily identify as
join- (i.e., union-)preserving function. The right adjoint R : JSL → Set takes a
complete join semilattice to its base set and forgets about the order and the
join operation. Analogously, a join-preserving function is just considered as a
function. The unit of the adjunction is given, for every set X, by the function
ηX : X → PX,ηX(x) = {x}. The counit consists of the join-preserving functions
ε(Y,t) : (PY,∪)→ (Y,t) mapping each set S ∈ PY to its join tS in Y.

In order to obtain the lifting we define β(X,t) : 2×XA → 2×XA to be the iden-
tity function on 2×XA for every join semilattice (X,t) which obviously yields a

78

3.3 Deterministic Join Automata

natural isomorphism β. Using (3.1.6) we construct the natural transformation α
where for each set X the join preserving function αX : P

(
2×XA

)
→ 2× (PX)A

is given by, for every S ∈ P
(
2×XA

)
,

αX(S) =
(⊔

{o | (o, s) ∈ S} ,
⊔

{s | (o, s) ∈ S}
)

. (3.3.1)

The lifted left adjoint L : DA → DJA performs the powerset construction on
a deterministic automaton: For a deterministic automaton c : X→ 2×XA the
deterministic join automaton L(c) : PX→ 2× (PX)A is given by, for all S ∈ PX,

L(c)(S) =
(⊔{

π1
(
c(x)

)
| x ∈ S

}
,
⊔{

π2
(
c(x)

)
| x ∈ S

})
. (3.3.2)

The lifted right adjoint R : DJA→ DA takes a DJA and interprets it as DA by
forgetting about its join property.

Again we illustrate our construction on a simple example.

Example 3.3.2 (Transforming a DA into a DJA) We consider the deterministic
automaton with state space X = {x1, x2} and input alphabet A = {a,b} as
depicted in Figure 3.3.2 on the left. In our coalgebraic model in Set this

x1

x2

b

a

a

b

{x1} X

∅ {x2}

a a,b

a,b

b

b

a

Figure 3.3.2: A DA (left) and its transformation to a DJA (right)

automaton is given by the function c = 〈oc, sc〉 : X → 2× XA with values as
presented in the tabular below.

state x final state? oc(x) a-successor sc(x)(a) b-successor sc(x)(b)
x1 0 x1 x2
x2 1 x2 x1

If we transform it into a DJA as presented above, we obtain the automaton
depicted in Figure 3.3.2 on the right. Formally, this is the function d = 〈od, sd〉 :=
L(c) : PX→ 2× (PX)A defined as in the following tabular.

79

Chapter 3 Adjunctions and Automata

state y final state? od(y) a-successor sd(y)(a) b-successor sd(y)(b)
∅ 0 ∅ ∅

{x1} 0 {x1} {x2}

{x2} 1 {x2} {x1}

X 1 X X

Apparently, the construction contains the original automaton and just adds the
join-states. However, these are not reachable from the singleton states.

3.3.4 Codeterminization of Deterministic Join Automata

Finally, we will describe a construction translating DJA into CDA, based on
adjunction 4 of Figure 3.2.1. The unit of the adjunction (which must be join-
preserving) maps every element to the complement (!) of its upward-closure
(more details are given below).

The left adjoint L : JSL→ Setop maps any join semilattice (X,t) to its base set
X and each join-preserving function f : (X,t)→ (Y,t) to the Setop-arrow

Lf : X← Y, Lf(y) =
⊔

{x ∈ X | f(x) v y} . (3.3.3)

The right adjoint R : Setop → JSL maps a set X to its powerset PX equipped
with the subset order, i.e., to the join semilattice (PX,∪) and each Setop-arrow
f : X ← Y to the reverse image f−1[.] : PX → PY. The unit of this adjunction is
given by the join-preserving functions

η(X,t) : (X,t)→ (P (X) ,∪) , x 7→ ↑ x =
{
x ′ ∈ X | x ′ 6w x

}
(3.3.4)

for every join semilattice (X,t) and the counit is given by, for every set X,

εX : PX← X, x 7→ {x} . (3.3.5)

We construct a natural isomorphism β : (P (A× _ + 1) ,∪)⇒
(
2× (P_)A,t

)
in

order to get a lifting. For every join semilattice (X,t) we take βX to be the same
function as defined by Equations (3.2.1) and (3.2.2) of our first example given
in Section 3.2.2 and claim that this is a join-preserving function: for two sets
Q1,Q2 ∈ P (A×X+ 1) let (o, s) := βX(Q1 ∪Q2) and (oi, si) = βX(Qi) for i ∈
{1, 2} then we have o = χQ1∪Q2(X) = max

{
χQ1(X),χQ2(X)

}
= max {o1,o2} =

o1 t o2 and for each a ∈ A we have

s(a) = {x ∈ X | (a, x) ∈ Q1 ∪Q2}
= {x ∈ X | (a, x) ∈ Q1}∪ {x ∈ X | (a, x) ∈ Q2} = s1(a)∪ s2(a)

which can be generalized to arbitrary unions.

80

3.4 Checking Behavioral Equivalences

We calculate α : 2× _A ⇐ A× _+ 1 where for every join semilattice (X,t) the
function α(X,t) is given by α(X,t)(X) = (0, (sX : A→ X, sX(a) = >)) and

α(X,t)((a, x)) =

(
1,

(
s(a,x) : A→ X, s(a,x)(a

′) =

{
x, a ′ = a

>, a ′ 6= a

))
. (3.3.6)

The lifted left adjoint L : DJA → CDA maps a DJA c : (X,t) →
(
2×XA,t

)
to

the CDA Lc : X← A×X+ 1 whose unique final state is the join of the non-final
states of the original automaton, i.e., Lc(X) =

⊔
{x ′ ∈ X | π1(c(x

′)) = 0}. For
every action a ∈ A and every state x ∈ X the unique a-predecessor of x is the
join of all the states of the original automaton whose a-successor is less or equal
to x, i.e., Lc((a, x)) =

⊔
{x ′ ∈ X | π2(c(x

′))(a) v x}.
The lifted right adjoint R : CDA→ DJAmaps a CDA d : Y ← A×Y+1 (which

can also be regarded as nondeterministic automaton) to its determinization
R(d) : (PY,∪) →

(
2× (PY)A,t

)
via the usual powerset construction, i.e., for

every S ∈ PY we have R(d)(S) = βY ◦ d−1[S]. Since the reverse image of any
function preserves arbitrary unions, this is indeed a DJA.

Example 3.3.3 (Codeterminization of a DJA) We take another look at Fig-
ure 3.3.1. The DJA of Example 3.3.1 (in the middle) is transformed into a CDA
with the same state set X = {⊥, x,y,u,>} (the diagram on the right). Its unique
final state is ⊥ (the join of the non-final states) and the unique a-predecessor
of a state is the join of the previous a-predecessors, for instance the new a-
predecessor of ⊥ is y (the join of ⊥,u,y). If we transfer this automaton into
a DJA with state set PX via the right adjoint the unit η(X,t) maps every state
to the complement of its upward-closure. For instance state x is mapped to
{⊥,u,y}.

3.4 Checking Behavioral Equivalences

In this final part we will now show how the results on adjunctions can be
used to check behavioral equivalences. Since our coalgebras do not necessarily
live in Set, where we could address elements of a carrier set (like we did in
Definition 2.4.11), we use the following alternative definition, where we specify
whether two arrows are behaviorally equivalent. This is reminiscent of equipping
a coalgebra with start states, similar to the initial states of an automaton.

Definition 3.4.1 (Behavioral Equivalence) Let C be a category, F : C→ C be an
endofunctor such that a final F-coalgebra ω : Ω→ FΩ exists. Furthermore let
c1 : X1 → FX1 and c2 : X2 → FX2 be two F-coalgebras and U be a C-object. We

81

Chapter 3 Adjunctions and Automata

say that two C-arrows x1 : U → X1, x2 : U → X2 are behaviorally equivalent (in
symbols x1 ∼

c1,c2
F x2), whenever the diagram below commutes.

X1 U X2

FX1 Ω FX2

FΩ

x1 x2

c1 c2
[[·]]1 [[·]]2

F[[·]]1 F[[·]]2
ω

In this diagram the arrows [[·]]1 : c1 → ω and [[·]]2 : c2 → ω are the unique
coalgebra homomorphisms into the final coalgebra.

In Set the choice for U will typically be a singleton set and then the problem
reduces to asking whether two given states are behaviorally equivalent.

Assume that we have an adjunction (L a R,η, ε) : C → D that is lifted to
coalgebras as specified in Definition 3.1.1. Since R is a right adjoint, it preserves
limits [Awo06, Proposition 9.14], specifically it preserves the final coalgebra.
Let us now take another look at the diagram in Figure 3.2.1 (page 71): It can
easily be determined that A∗, the set of all finite words, is the carrier of the
final coalgebra of A× _ + 1 in Setop. Via the right adjoint, this translates to the
carrier set A∗ in Rel, where the arrow [[·]] into the final coalgebra is a relation,
relating each state with the words that are accepted by it (this final coalgebra,
which captures trace semantics for nondeterministic automata, is used in the
Kleisli approach to trace semantics [HJS07]). The final coalgebra can also be
transferred into JSL and Set, where it has the carrier set P (A∗) of all languages
over A.

Hence, the adjunctions allow to construct final coalgebras and to transfer
results about final semantics from other categories. Furthermore, it is possible
to check behavioral equivalence in a different category, by translating queries
via the adjunction.

Theorem 3.4.2 Let C,D be categories, F : C→ C and G : D→ D be endofunctors,
(L a R,η, ε) : C → D be an adjunction together with a lifting in the sense
of Definition 3.1.1, i.e., an adjunction

(
L a R,η, ε

)
: CoAlg (F) → CoAlg (G).

Furthermore assume that a final G-coalgebra exists and that R is faithful.
Let d1 : Y1 → GY1, d2 : Y2 → GY2 be two G-coalgebras and let y1 : U → Y1,

y2 : U→ Y2 be two arrows in D. Then the following equivalence holds.

y1 ∼
d1,d2
G y2 ⇐⇒ Ry1 ∼

Rd1,Rd2
F Ry2

82

3.4 Checking Behavioral Equivalences

Proof. We show both implications separately.

⇒ Whenever y1 ∼
d1,d2
F y2 we have that [[·]]1 ◦ y1 = [[·]]2 ◦ y2. Applying R to the

diagram yields R[[·]]1 ◦ Ry1 = R[[·]]2 ◦ Ry2. Moreover, R[[·]]1 and R[[·]]2 are co-
algebra homomorphisms from Rd1,Rd2 to Rω, which is the final F-coalgebra,
and thus are unique with this property. Hence Ry1 ∼

Rd1,Rd2
F Ry2.

⇐ Assume Ry1 ∼
Rd1,Rd2
F Ry2. Then we have f1 ◦ Ry1 = f2 ◦ Ry2 where f1, f2 are

the unique coalgebra homomorphisms from Rd1,Rd2 to Rω. We apply the
left adjoint L and get Lf1 ◦ LRy1 = Lf2 ◦ LRy2.
We have to show that [[·]]1 ◦ y1 = [[·]]2 ◦ y2 and we prove commutativity
by prefixing with the counit εU : LRU → U. First, note that [[·]]1 ◦ εY1 is
a coalgebra homomorphism from LRd1 into the final coalgebra and so is
εΩ ◦ Lf1. Since such a morphism is unique we have [[·]]1 ◦ εY1 = εΩ ◦ Lf1.
Similarly [[·]]2 ◦ εY2 = εΩ ◦ Lf2. Hence

[[·]]1 ◦ y1 ◦ εU = [[·]]1 ◦ εY1 ◦ LRy1 = εΩ ◦ Lf1 ◦ LRy1 = εΩ ◦ L(f1 ◦ Ry1)
= εΩ ◦ L(f2 ◦ Ry2) = εΩ ◦ Lf2 ◦ LRy2 = [[·]]2 ◦ εY2 ◦ LRy1 = [[·]]2 ◦ y2 ◦ εU

The situation is depicted below.

LRU U

LRY1 LRY2 Y1 Y2

LRΩ Ω

εU

εY1

εΩ

εY2
LRy1 LRy2

Lf1

Lf2

y1 y2

[[·]]1
[[·]]2

Due to the right equation in (2.3.3) of Definition 2.3.31 we know that RεU is a
split epi and hence an epi. Epis are reflected by faithful functors and so εU is
an epi. We can conclude that [[·]]1 ◦ y1 = [[·]]2 ◦ y2, as required.

In all our examples the right adjoint R is faithful. If this is the case and
the final coalgebra exists, this allows us to check behavioral equivalence in a
different category, where this might be easier or more straightforward. The
classical example is of course the lifted adjunction between Set and Rel. In order
to check language equivalence for nondeterministic automata, the standard

83

Chapter 3 Adjunctions and Automata

technique is to determinize them via the right adjoint into Set. Then, language
equivalence can be checked on the powerset automaton, where it is bisimilarity.

3.5 Conclusion

We have identified and analyzed sufficient conditions which allow to lift an
adjunctions between two categories to an adjunctions between categories of
coalgebras. Moreover, we illustrated our theory by considering several examples
for such adjunction liftings where we rediscovered known algorithms and
constructions. Finally, we discussed how the fact that these constructions are
lifted adjoints can be used to transfer behavioral equivalence checks from one
category to another.

3.5.1 Open Questions and Future Work

Several open questions remain, concerning both the examples as well as the
general theory. First of all, our examples are of course strongly connected to the
two canonical adjunctions giving rise to the powerset monad: One adjunction
is just the Kleisli adjunction (Definition 2.3.38) and the other is the Eilenberg-
Moore adjunction (Definition 2.3.41) for this monad. In this specific case (due to
the fact that EM(P) = Rel is self-dual) we easily obtain two more adjunctions by
considering Setop, however this will not work for any monad. Still, it would be
interesting to investigate other monads and see which automata constructions
are hidden underneath the corresponding Kleisli/Eilenberg-Moore adjunction.

In presence of monads and the aforementioned adjunctions, it might also be
interesting to consider the comparison functor from the Kleisli to the Eilenberg-
Moore category, which however is not necessarily part of an adjunction. Never-
theless, it would be interesting to find out which behavioral information can be
transported over the comparison functor.

The adjunction between Rel and Setop has been used in order to characterize a
factorization structure that is employed for a minimization algorithm [ABH+12].
Hence, an obvious question is whether other adjunctions can be used for such
algorithmic purposes, for instance for minimizing a coalgebra in one category,
but using the structure of another category. It also seems plausible that up-to
techniques can be explained in this way, for instance by checking language
equivalence for nondeterministic automata in Rel, using the algebraic structure
of JSL via the comparison functor (similar to [BP13]).

Since we have seen in Theorem 3.4.2 how to transfer equivalence check-
ing queries through a faithful right adjoint an obvious question is if there is
something similar when considering the left adjoint.

84

3.5 Conclusion

Finally, the conditions in Theorem 3.1.2 (Lifting an Adjunction to Coalgebras)
are just sufficient conditions for the lifting to exist. However, it is unclear
whether they are necessary or whether one can define such necessary conditions.

3.5.2 Related Work

As mentioned above, the adjunction between Rel and Setop, transforming
nondeterministic automata into codeterministic automata has already been
considered to obtain canonical determinization/minimization constructions
[ABH+12] and also to obtain coalgebraic trace semantics [HJS07].

Another line of research which uses the adjunction beween Set and JSL or
more general the Eilenberg-Moore adjunction (Definition 2.3.41) is the generalized
powerset construction [SBBR13; JSS15] which gives a canonical determinization
procedure for coalgebras (we have seen this construction in Section 2.4.3). We
will elaborate on this a bit more in the Conclusion. Here we just note that in
their work a nondeterministic automaton specified by a function X→ 2× (PX)A in
Set. It is then translated into a join-preserving function PX→ 2× (PX)A using
a lifting of the free functor (the left adjoint of the Eilenberg Moore adjunction).
Hower in this setting one does not obtain a lifting of the whole adjunction.

3.5.3 Final Remarks

Summing up, many ideas of this chapter are not completely new, but have
already been used in various forms. However, presenting the theory strictly
from the point of adjunction lifting and to clearly spell out what it means to
preserve and reflect behavioral equivalences by adjoints might permit a fresh view
on these ideas. In particular, the application of our theory to examples has lead
us to studying the lifting of the adjunction between join semilattices and Setop,
which gives rise to the quite surprising and unusual construction transforming
a DJA into a CDA.

85

4
Trace Semantics for Continuous Probabilistic
Transition Systems

In the global Introduction (Chapter 1) and the Preliminaries (Chapter 2)
we have already discussed the Kleisli approach to trace semantics (Sec-
tion 2.4.3) as proposed by Ichiro Hasuo, Bart Jacobs and Ana Sokolova

[HJS06; HJS07]. We have seen that based on this approach one can obtain
trace semantics for generative probabilistic transition systems with termination.
These systems are exactly the coalgebras for the Set-functor D(A× _+ 1) where
D is the endofunctor of the of the subdistribution monad on Set. Using a Kleisli
law, the aforementioned approach views a coalgebra c : X → D(A×X+ 1) as
a coalgebra for an extension of the Set-endofunctor A× _ + 1 in the Kleisli
category of the subdistribution monad.

Since the subdistribution monad satisfies some non-trivial requirements, the
final coalgebra of the extended functor has as carrier the set A∗ of all finite
words over A since this is the carrier of the initial algebra of the Set-endofunctor
A× _ + 1. The unique map into the final coalgebra assigns to each state a
probability subdistribution on the set A∗ of finite words, which coincides with
the usual finite trace semantics of generative probabilistic systems [Sok05;
vGSST95].

The original Kleisli approach [HJS06; HJS07] is restricted to discrete probabilis-
tic systems, where the probability distributions always have at most countable
support [Sok11]. This might seem sufficient for practical applications at first
glance, but it has two important drawbacks:

. First, it apparently excludes any system that involves uncountable state spaces
(like the examples in Section 4.3 or examples in the literature [Pan09]).

. Second, it excludes the treatment of infinite traces, since the set of all infinite
traces is uncountable and hence needs measure theory to be treated appro-
priately. This is also an intuitive reason for the choice of the subdistribution
monad – instead of the distribution monad – in the original approach [HJS07]:
for a given state, it might always be the case that a non-zero probability mass

87

Chapter 4 Trace Semantics for PTS

is associated to the infinite traces leaving this state, which – in the discrete
case – cannot be specified by a probability distribution over all words.

In this chapter, we generalize the above results to continuous generative
probabilistic systems with uncountable state spaces. In order to do so, we
replace the category Set by the category Meas of measurable spaces and
measurable functions and analyze traces via the final coalgebra of an extension
of the Meas-endofunctor A× _ + 1 to the Kleisli category of the subprobability
monad.

Unlike in the original approach [HJS07] we do not derive the final coalgebra
via a generic construction (building the initial algebra of the functor), but we
construct it directly. Its carrier is the measurable space obtained by endowing
A∗ with the discrete sigma-algebra.

In a similar vein we also consider the Kleisli category of the probability
monad (Giry monad) and treat the case with (using the above endofunctor and
its extension) and without termination (using an extension of the Meas-functor
A× _). In the former case we obtain a coalgebra over a measurable space with
base set A∞ (finite and infinite traces over A) and in the latter with the set Aω

(infinite traces), both endowed with a non-trivial sigma algebra of cones. For
completeness we also consider the case of the subprobability monad without
termination, which results in the trivial final coalgebra over the empty set.
In all cases we obtain the natural trace measures as instances of the generic
coalgebraic theory.

Since there is no generic construction for such coalgebras, we construct the
respective final coalgebras directly and show their correctness by proving that
each coalgebra admits a unique homomorphism into the final coalgebra which
gives rise to the trace measure. For both the existence and the uniqueness of
this homomorphism we rely on the measure-theoretic extension theorem for
sigma-finite pre-measures and the identity theorem.

At the end of this chapter we will further compare our approach to the
original one [HJS07] and discuss why we took an alternative route.

4.1 Measure Theoretic Basics

Within this section we give a very brief introduction to measure theory and
integration which just encompasses the results we will need later. For a more
thorough treatment the interested reader is invited to read one of the many
standard textbooks on this topic [Ash72; Els11].

Measure theory generalizes the idea of length, area or volume. Its most basic
definition is that of a σ-algebra (sigma-algebra). Given an arbitrary set X we call

88

4.1 Measure Theoretic Basics

a set Σ of subsets of X a σ-algebra if and only if it contains the empty set and
is closed under complement and countable union. The tuple (X,Σ) is called
a measurable space. We will sometimes call the set X itself a measurable space,
keeping in mind that there is an associated σ-algebra which we will then denote
by ΣX. Two simple examples of a σ-algebra for any set X are the trivial σ-algebra
{∅,X} and the discrete σ-algebra PX.

For any subset G ⊆ P (X) we can always uniquely construct the smallest
σ-algebra on X containing G which is denoted by σX(G). We call G the generator
of σX(G), which in turn is called the σ-algebra generated by G. It is known (and
easy to show), that σX is a monotone and idempotent operator. The elements
of a σ-algebra on X are called the measurable sets of X. Among all possible
generators for σ-algebras, there are special ones, so-called semirings of sets.

Definition 4.1.1 (Semiring of Sets) Let X be an arbitrary set. A subset S ⊆ P (X)

is called a semiring of sets if it satisfies the following three properties.

1. S contains the empty set, i.e., ∅ ∈ S.

2. S is closed under pairwise intersection, i.e., for A,B ∈ S we always require
(A∩B) ∈ S.

3. The set difference of any two sets in S is the disjoint union of finitely many
sets in S, i.e., for any A,B ∈ S there is an N ∈N and pairwise disjoint sets
C1, . . . ,CN ∈ S such that A \B = ∪Nn=1Cn.

A trivial example of such a semiring of sets (for any set X) is the set {∅} and
we will encounter more interesting examples later in this chapter. Moreover, it
is easy to see that every σ-algebra is a semiring of sets but the reverse is false.
Please note that a semiring of sets is different from a semiring in algebra. In this
chapter we will use the term semiring solely as short form of the term semiring of
sets. For our purposes we will consider special semirings containing a countable
cover of the base set.

Definition 4.1.2 (Countable Cover, Covering Semiring) Let S be a semiring of
sets. A countable sequence (Sn)n∈N of sets in S such that ∪n∈NSn = X is called
a countable cover of X (in S). If such a countable cover exists we call S a covering
semiring (of sets).

With these basic structures at hand, we can now define pre-measures and
measures. A non-negative function µ : S→ R+ defined on a semiring S is called
a pre-measure on X if it assigns 0 to the empty set and is σ-additive, i.e., for a
sequence (Sn)n∈N of pairwise disjoint sets in S where (∪n∈NSn) ∈ S we must

89

Chapter 4 Trace Semantics for PTS

have

µ

(⋃
n∈N

Sn

)
=
∑
n∈N

µ (Sn) . (4.1.1)

A pre-measure µ is called σ-finite if there is a countable cover (Sn)n∈N of X in
S such that µ (Sn) < ∞ for all n ∈ N. Whenever S is a σ-algebra we call µ a
measure and the tuple (X, S,µ) a measure space. In that case µ is said to be finite
if and only if µ(X) < ∞ and for the special cases µ(X) = 1 (or µ(X) 6 1) µ is
called a probability measure (or subprobability measure respectively). Measures
are monotone, i.e., if A,B are measurable A ⊆ B implies µ(A) 6 µ(B) and
continuous, i.e., for measurable A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ . . . we always have
µ
(
∪∞n=1An) = limn→∞ µ(An) and for measurable B1 ⊇ B2 ⊇ . . . ⊇ Bn ⊇ . . .

with µ(B1) <∞ we have µ
(
∩∞n=1An) = limn→∞ µ(An) [Ash72, 1.2.5 and 1.2.7].

Given a measurable space (X,ΣX), a simple and well-known probability
measure, is the so-called Dirac measure, which we will use later. It is defined as
δXx : ΣX → [0, 1], and is 1 on S ∈ ΣX if and only if x ∈ S and 0 otherwise.

The most significant theorems from measure theory which we will use in
this chapter are the identity theorem and the extension theorem for σ-finite
pre-measures, for which a proof can be found in standard textbooks [Els11,
II.5.6 and II.5.7].

Theorem 4.1.3 (Identity Theorem) Let X be a set, G ⊆ P (X) be a set which
is closed under pairwise intersection and µ,ν : σX(G) → R+ be measures. If
µ|G = ν|G and G contains a countable cover (Gn)n∈N of X satisfying µ(Gn) =
ν(Gn) <∞ for all n ∈N then µ = ν.

Theorem 4.1.4 (Extension Theorem for σ-finite Pre-Measures) Let X be a set,
S ⊆ P (X) be a semiring of sets and µ : S→ R+ be a σ-finite pre-measure. Then
there exists a uniquely determined measure µ̂ : σX(S)→ R+ such that µ̂|S = µ.

As we are only interested in finite measures, we provide a result, which can
be derived easily from the identity theorem.

Corollary 4.1.5 (Equality of Finite Measures on Covering Semirings) Let X
be an arbitrary set, S ⊆ P (X) be a covering semiring and µ,ν : σX(S)→ R+ be
finite measures. Then µ = ν if and only if µ|S = ν|S.

Proof. Obviously we get µ|S = ν|S if µ = ν. For the other direction let (Sn)n∈N

be a countable cover of X. Then finiteness of µ and ν together with the fact
that measures are continuous (see above) and µ|S = ν|S yield µ(Sn) = ν(Sn) 6

90

4.1 Measure Theoretic Basics

ν(X) <∞ for all n ∈N. Since S is a semiring of sets, it is closed under pairwise
intersection which allows us to apply the identity theorem yielding µ = ν.

4.1.1 The Category of Measurable Spaces and Functions

Let X and Y be measurable spaces. A function f : X→ Y is called measurable if
and only if the pre-image of any measurable set of Y is a measurable set of X.
The category Meas has measurable spaces as objects and measurable functions
as arrows. Composition of arrows is function composition and the identity
arrows are the identity functions.

The product of two measurable spaces (X,ΣX) and (Y,ΣY) is the set X× Y en-
dowed with the σ-algebra generated by ΣX ∗ΣY , the set of so-called “rectangles”
of measurable sets which is {SX × SY | SX ∈ ΣX,SY ∈ ΣY}. It is called the product
σ-algebra of ΣX and ΣY and is denoted by ΣX ⊗ ΣY . Whenever ΣX and ΣY have
suitable generators, we can also construct a possibly smaller generator for the
product σ-algebra by taking only the “rectangles” of the generators.

Theorem 4.1.6 (Generators for the Product σ-Algebra) Let X, Y be arbitrary
sets and GX ⊆ P (X) ,GY ⊆ P (Y) such that X ∈ GX and Y ∈ GY . Then the
following holds:

σX×Y(GX ∗ GY) = σX(GX)⊗ σY(GY) .

A proof of this theorem can be found in many standard textbooks on measure
theory [Els11]. We remark that there are (obvious) product endofunctors on the
category of measurable spaces and functions.

Definition 4.1.7 (Product Functors) Let (Z,ΣZ) be a measurable space. The
endofunctor Z× _ : Meas → Meas maps a measurable space (X,ΣX) to the
measurable space (Z×X,ΣZ ⊗ ΣX) and a measurable function f : X→ Y to the
measurable function Z× f : Z×X→ Z× Y, (z, x) 7→ (z, f(x)). The functor _×Z
is constructed analogously.

The coproduct of two measurable spaces (X,ΣX) and (Y,ΣY) is the set X+ Y

endowed with ΣX ⊕ ΣY := {SX + SY | SX ∈ ΣX,SY ∈ ΣY} as σ-algebra, the disjoint
union σ-algebra. Note that in contrast to the product no σ-operator is needed
because ΣX ⊕ ΣY itself is already a σ-algebra whereas ΣX ∗ ΣY is usually not a
σ-algebra. For generators of the disjoint union σ-algebra we provide and prove
a comparable result to the one given above for the product σ-algebra.

Theorem 4.1.8 (Generators for the Disjoint Union σ-Algebra) Let X, Y be ar-
bitrary sets and GX ⊆ P (X) ,GY ⊆ P (Y) such that ∅ ∈ GX and Y ∈ GY . Then the

91

Chapter 4 Trace Semantics for PTS

following holds:

σX+Y(GX ⊕ GY) = σX(GX)⊕ σY(GY) . (4.1.2)

In order to prove this, we cite another result from the literature [Els11, I.4.5
Korollar].

Lemma 4.1.9 Let X be an arbitrary set, G ⊆ P (X) and S ⊆ X. Then σS(G|S) =
σX(G)|S where G|S is the set {G∩ S | G ∈ G} and analogously σX(G)|S is the set
{G∩ S | G ∈ σX(G)}.

Proof of Theorem 4.1.8. Without loss of generality we assume that X and Y are
disjoint. Hence for any subsets A ⊆ X, B ⊆ Y we have A ∩ B = ∅ and thus
A+ B ∼= A ∪ B. In order to prove Equation (4.1.2) we show both inclusions
separately.

⊆ We have GX⊕GY ⊆ σX(GX)⊕σY(GY) and thus monotonicity and idempotence
of the σ-operator immediately yield σX∪Y(GX ⊕ GY) ⊆ σX(GX)⊕ σY(GY).

⊇ Let G ∈ σX(GX)⊕ σY(GY). Then G = GX ∪GY with GX ∈ σX(GX) and GY ∈
σY(GY). We observe that GX = (GX ⊕ GY)|X and by applying Lemma 4.1.9
we obtain that σX∪Y(GX ⊕ GY)|X = σX(GX). Thus there must be a G ′Y ∈ P (Y)

such that GX ∪G ′Y ∈ σX∪Y(GX⊕ GY). Analogously there must be a G ′X ∈ P (X)

such that G ′X ∪GY ∈ σX∪Y(GX ⊕ GY). We have Y = ∅ ∪ Y ∈ σX∪Y(GX ⊕ GY) and
hence we also have X = (X∪ Y) \ Y ∈ σX∪Y(GX ⊕ GY). Thus we calculate

G = GX ∪GY =
(
(GX ∪G ′Y)∩X

)
∪
(
(G ′X ∪GY)∩ Y

)
∈ σX∪Y(GX ⊕ GY)

and hence can conclude that σX∪Y(GX ⊕ GY) ⊇ σX(GX)⊕ σY(GY).

As before we have endofunctors for the coproduct, the coproduct functors.

Definition 4.1.10 (Coproduct Functors) Let (Z,ΣZ) be a measurable space. The
endofunctor _ + Z : Meas → Meas maps a measurable space (X,ΣX) to the
measurable space (X+Z,ΣX ⊕ ΣZ) and a measurable function f : X→ Y to the
measurable function f+Z : X+Z→ Y +Z, (x, 0) 7→ (f(x), 0), (z, 1) 7→ (z, 1). The
functor Z+ _ : Meas→Meas is constructed analogously.

For isomorphisms in Meas we provide the following characterization which
we will need later for our main result.

Theorem 4.1.11 (Isomorphisms in Meas) Two measurable spaces X and Y are
isomorphic in Meas if and only if there is a bijective function ϕ : X→ Y such

92

4.1 Measure Theoretic Basics

that1 ϕ (ΣX) = ΣY . If ΣX is generated by a set S ⊆ P (X) then X and Y are
isomorphic if and only if there is a bijective function ϕ : X→ Y such that ΣY is
generated by ϕ (S). In this case S is a (covering) semiring of sets [a σ-algebra] if
and only if ϕ(S) is a (covering) semiring of sets [a σ-algebra].

Again, we need a result from measure theory for the proof. This auxiliary
result and its proof can be found in the referenced literature [Els11, I.4.4 Satz].

Lemma 4.1.12 Let X, Y be sets, f : X → Y be a function. Then for every subset
S ⊆ P (Y) it holds that σX(f−1(S)) = f−1 [σY(S)].

Proof of Theorem 4.1.11. Since the identity arrows in Meas are the identity func-
tions, we can immediately derive that any isomorphism ϕ : X → Y must be a
bijective function. Measurability of ϕ and its inverse function ϕ−1 : Y → X yield
ϕ (ΣX) = ΣY . The equality σY(ϕ(S)) = ϕ (σX(S)) follows from Lemma 4.1.12 by
taking f = ϕ−1. The last equivalence is easy to verify using bijectivity of ϕ and
ϕ−1.

4.1.2 Borel-Sigma-Algebras and the Lebesgue Integral

Before we can define the probability and the subprobability monad, we give
a crash course in (Lebesgue) integration2 loosely based on standard textbooks
[Ash72; Els11]. For that purpose let us fix a measurable space X and a measure
µ on X. We want to integrate numerical functions f : X → R and in order to
do that we need a suitable σ-algebra on R to define measurability of such
functions.

Recall that a topological space is a tuple (Y,T), where Y is a set and T ⊆ P (Y)

is a set containing the empty set, the set Y itself and is closed under arbitrary
unions and finite intersections. The set T is called the topology of Y and its
elements are called open sets. The Borel σ-algebra on Y, denoted B(Y), is the
σ-algebra generated by the open sets T of the topology, i.e., B(Y) = σY(T).
Thus the Borel σ-algebra provides a connection of topological aspects and
measurability. For the set of real numbers, it can be shown [Els11, I.4.3 Satz]
that the Borel σ-algebra B(R) is generated by the semiring of all left-open
intervals

B(R) = σR({ (a,b] | a,b ∈ R,a 6 b}).

1For a set S ⊆ P (X) and a function ϕ : X → Y we define ϕ(S) = {ϕ (SX) | SX ∈ S} =

{{ϕ(x) | x ∈ SX} | SX ∈ S}.
2For the purpose of this chapter, Riemann integration will not suffice but we will have to use

the Lebesque integral.

93

Chapter 4 Trace Semantics for PTS

With this definition at hand, we now equip the set R of extended reals with its
Borel σ-algebra which can be defined as

B(R) = σR({B∪ E | B ∈ B(R),E ⊆ {−∞,∞}}).

A function f : X→ R is called (Borel-)measurable if it is measurable with with re-
spect to this Borel σ-algebra. Given two Borel-measurable functions f,g : Y → R

and real numbers α,β also αf+βg is Borel-measurable [Els11, Satz III.4.7] and
thus are all finite linear combinations of Borel-measurable functions. More-
over, if (fn)n∈N is a sequence of Borel-measurable functions fn : X → R con-
verging pointwise to a function f : X → R, then also f is Borel-measurable
[Ash72, page 1.5.4]. In the remainder of this section we will just consider
Borel-measurable functions.

We call f simple if and only if it attains only finitely many values, say f(X) =
{α1, . . . ,αN}. The integral of such a simple function f is then defined to be
the µ-weighted sum of the αn, formally

∫
fdµ =

∑N
n=1 αnµ(Sn) where Sn =

f−1[αn] ∈ ΣX is measurable because {αn} is measurable and f is a measurable
function. Whenever f is non-negative we can approximate it from below using
non-negative simple functions. In this case we define the integral to be∫

fdµ := sup
{∫
sdµ | s non-negative and simple s.t. 0 6 s 6 f

}
.

For arbitrary Borel-measurable f we decompose it into its positive part f+ :=

max {f, 0} and negative part f− := max {−f, 0} which are both non-negative and
Borel-measurable. We note that f = f+ − f− and consequently we define the
integral of f to be the difference

∫
fdµ :=

∫
f+ dµ−

∫
f− dµ if not both integrals

on the right hand side are +∞. In the latter case we say that the integral does
not exist. Whenever it exists and is finite we call f a µ-integrable function or
simply an integrable function if the measure µ is obvious from the context.

For every measurable set S ∈ ΣX its characteristic function χS : X→ R, which
is 1 if x ∈ S and 0 otherwise, is µ-integrable and for µ-integrable f the product
χS · f is also µ-integrable and we write∫

S
fdµ :=

∫
χS · fdµ .

Instead of
∫
Sfdµ we will sometimes write

∫
Sf(x)dµ(x) or

∫
x∈Sf(x)dµ(x) which

is useful if we have functions with more than one argument or multiple integrals.
Note that this does not imply that singleton sets are measurable.

Some useful properties of the integral are that it is linear, i.e., for µ-integrable
functions f,g : X→ R and real numbers α,β we have∫

αf+βgdµ = α

∫
fdµ+β

∫
gdµ

94

4.1 Measure Theoretic Basics

and the integral is monotone, i.e., f 6 g implies
∫
fdµ 6

∫
gdµ. We will state one

result explicitly which we will use later in our proofs. This result and its proof
can be found e.g. in [Ash72, Theorem 1.6.12].

Theorem 4.1.13 (Image Measure) Let X, Y be measurable spaces, µ be a mea-
sure on X, f : Y → R be a Borel-measurable function and g : X → Y be a
measurable function. Then µ ◦ g−1 is a measure3 on Y, the so-called image-
measure and f is (µ ◦ g−1)-integrable if and only if f ◦ g is µ-integrable and in
this case we have

∫
Sfd(µ ◦ g−1) =

∫
g−1[S]f ◦ gdµ for all S ∈ ΣY .

4.1.3 The Probability and the Subprobability Monad

We will now introduce the probability monad (Giry monad) and the sub-
probability monad as presented in the literature [Gir82; Pan09]. First, we take a
look at the endofunctors of these monads.

Definition 4.1.14 (The Subprobability and the Probability Functor) The sub-
probability functor S : Meas → Meas maps a measurable space (X,ΣX) to the
measurable space

(
S(X),ΣS(X)

)
where S(X) is the set of all subprobability mea-

sures on ΣX and ΣS(X) is the smallest σ-algebra such that for all S ∈ ΣX the
evaluation maps:

pS : S(X)→ [0, 1], pS(P) = P(S) (4.1.3)

are Borel-measurable. For any measurable function f : X→ Y between measur-
able spaces (X,ΣX), (Y,ΣY) the arrow S(f) maps a probability measure P to its
image measure:

S(f) : S(X)→ S(Y), S(f)(P) := P ◦ f−1. (4.1.4)

If we take full probabilities instead of sub-probabilities we get another endo-
functor, the probability functor P, analogously.

Both the subprobability functor S and the probability functor P are functors
of monads with the following unit and multiplication natural transformations.

Definition 4.1.15 (Unit and Multiplication) Let T be either the subprobability
functor S or the probability functor P. We obtain two natural transformations

3This notation is a bit lax. If we wanted to be really precise we would have to write µ◦
(
g−1|ΣY

)
.

95

Chapter 4 Trace Semantics for PTS

η : IdMeas ⇒ T and µ : T2 ⇒ T by defining for every measurable space (X,ΣX):

ηX : X→ TX, ηX(x) = δ
X
x (4.1.5)

µX : T
2X→ TX, µX(P)(S) :=

∫
pS dP for S ∈ ΣX (4.1.6)

where δXx : ΣX → [0, 1] is the Dirac measure and pS is the evaluation map (4.1.3)
from above.

If we combine all the ingredients we obtain the following result which also
guarantees the soundness of the previous definitions.

Theorem 4.1.16 ([Gir82; Pan09]) (S,η,µ) and (P,η,µ) are monads on Meas.

4.1.4 A Category of Stochastic Relations

The Kleisli category of the subprobability monad (S,η,µ) is sometimes called
category of stochastic relations [Pan09] and denoted by SRel. Let us briefly analyze
the arrows of this category: Given two measurable spaces (X,ΣX), (Y,ΣY)
a Kleisli arrow h : X → SY maps each x ∈ X to a subprobability measure
h(x) : ΣY → [0, 1]. By uncurrying we can regard h as a function h : X× ΣY →
[0, 1]. Certainly for each x ∈ X the function S 7→ h(x,S) is a (sub)probability
measure and one can show that for each S ∈ ΣY the function x 7→ h(x,S) is Borel-
measurable. Any function h : X× ΣY → [0, 1] with these properties is called a
Markov kernel or a stochastic kernel and it is known [Dob07a, Proposition 2.7] that
these Markov kernels correspond exactly to the Kleisli arrows h : X→ SY.

We will later need the following, simple result about Borel-measurable func-
tions and Markov kernels:

Lemma 4.1.17 Let (X,ΣX) and (Y,ΣY) be measurable spaces, g : Y → [0, 1] be a
Borel-measurable function and h : X×ΣY → [0, 1] be a Markov kernel. Then the
function f : X→ [0, 1], f(x) :=

∫
y∈Yg(y)dh(x,y) is Borel-measurable.

Proof. If g is a simple and Borel-measurable function, say g(Y) = {α1, ...,αN},
then f(x) =

∑N
n=1 αnh(x,An) where An = g−1[{αn}] and hence f is Borel-

measurable as a linear combination of Borel-measurable functions. If g is an
arbitrary, Borel-measurable function we approximate it from below with simple
functions si, i ∈ N and define fi : X → [0, 1] with fi(x) =

∫
y∈Ysi(y)dh(x,y).

Then by the monotone convergence theorem [Ash72, page 1.6.2] we have

f(x) =

∫
y∈Y

lim
i→∞ si(y)dh(x,y) = lim

i→∞ fi(x) .

96

4.2 Coalgebraic Probabilistic Traces

As shown before, each of the fi is Borel-measurable and thus also the function f
is Borel-measurable as pointwise limit of Borel-measurable functions.

4.2 Coalgebraic Probabilistic Traces

There is a big variety of probabilistic transition systems [Sok11; vGSST95]. We
will deal with four slightly different versions of generative probabilistic transition
system (pts). The underlying intuition is that, according to a subprobability
measure, an action from the alphabet A and a set of possible successor states
are chosen. We distinguish between probabilistic branching according to sub-
probability and probability measures and furthermore we treat systems without
and with termination.

Definition 4.2.1 (Continuous Probabilistic Transition System) A (continuous)
probabilistic transition system (pts) is a triple (A,X,α) where A is a finite alphabet
(endowed with P (A) as σ-algebra), X is the state space, an arbitrary measurable
space with σ-algebra ΣX and α is the transition function which has one of the
following forms and determines the type of the pts.

Transition Function α Type � of the pts

α : X→ S(A×X) 0

α : X→ S(A×X+ 1) ∗
α : X→ P(A×X) ω

α : X→ P(A×X+ 1) ∞
For every symbol a ∈ A we define a Markov kernel Pa : X× ΣX → [0, 1] where

Pa (x,S) := α(x)({a}× S) . (4.2.1)

Intuitively, Pa (x,S) is the probability of making an a-transition from the state
x ∈ X to any state y ∈ S. Whenever X is a countable set and ΣX = P (X) we
call the pts discrete. The unique state X ∈ 1 – whenever it is present – denotes
termination of the system.

Note that we use the same abbreviation (pts) as we have used in the Prelimi-
naries for discrete systems modelled as coalgebras in Set. In this whole chapter
we will always assume a pts to be defined as above.

The reason for choosing the above symbols as type identifiers will only be
revealed much later in Theorem 4.2.33 (page 118). In that theorem we will show
that the coalgebraic traces of the respective systems are probability measures
on the empty set ∅ = A0, the set A∗ of all finite words, the set Aω of all infinite
words and the set A∞ of all words.

97

Chapter 4 Trace Semantics for PTS

Now we will first take a look at a small example pts with type∞ before we
continue with our theory.

Example 4.2.2 (Discrete PTS with Finite and Infinite Traces) Let A = {a,b},
X = {0, 1, 2}, ΣX = P (X) and α : X → P(A× X + 1) such that we obtain the
system depicted in Figure 4.2.1.

0 1

2

Xb, 1
b, 1/3

a, 1/3

1/3

a, 2/3
1/3

Figure 4.2.1: A discrete pts

As stated in the definition, X is the unique final state. It has only incoming
transitions bearing probabilities and no labels. These transitions describe the
termination probability in the respective source state. For example, in state 1
the system terminates with probability 1/3.

4.2.1 Towards Measurable Sets of Words: Cones and Semirings

In order to define a trace measure on these probabilistic transition systems we
need suitable σ-algebras on the sets of words. While the set of all finite words,
A∗, is rather simple – we will take P (A∗) as σ-algebra – the set of all infinite
words, Aω, and also the set of all finite and infinite words, A∞, needs some
consideration. For a word u ∈ A∗ we call the set of all infinite words that have
u as a prefix the ω-cone of u, denoted by uAω, and similarly we call the set of
all finite and infinite words having u as a prefix the∞-cone [Pan09, p. 23] of u
and denote it with uA∞. In the literature these sets are sometimes also-called
“cylinder sets” [BK08].

A cone can be visualized in the following way: For a given alphabet A 6= ∅
we consider the undirected, rooted and labelled tree given by T := (V ,E, ε, l)
with infinitely many vertices V := A∗, edges E := {{u,ua} | u ∈ A∗,a ∈ A}, root
ε ∈ A∗ and edge-labeling function l : E→ A, {u,ua} 7→ a. For A = {a,b, c} the
first three levels of the tree can be depicted as shown in Figure 4.2.2. Given a
finite word u ∈ A∗, theω-cone of u is represented by the set of all infinite paths4

4Within this chapter a path of an undirected graph (V ,E) is always considered to be simple,
i.e., any two vertices in a path are different.

98

4.2 Coalgebraic Probabilistic Traces

ε

a b c

aa ab ac ba bb bc ca cb cc

a
b

c

a
b

c a
b

c a
b

c

Figure 4.2.2: Visualization of Cones

that begin in ε and contain the vertex u and the∞-cone of u is represented by
the set of all finite and infinite paths that begin in ε and contain the vertex u
(and thus necessarily have a length which is greater or equal to the length of u).

Definition 4.2.3 (Cones of Words) Let A be a finite alphabet and let v⊂ A∗ ×
A∞ denote the usual prefix relation on words. For u ∈ A∗ we define its ω-
cone to be the set uAω := {v ∈ Aω | u v v} and analogously we define uA∞ :=

{v ∈ A∞ | u v v}, the∞-cone of u.

With this definition at hand, we can now define the semirings we will use to
generate σ-algebras on ∅, A∗, Aω and A∞.

Definition 4.2.4 (Semirings of Sets of Words) Let A be a finite alphabet. We
define

S0 := {∅} ⊂ P (∅) ,
S∗ := {∅}∪ {{u} | u ∈ A∗} ⊂ P (A∗) ,
Sω := {∅}∪ {uAω | u ∈ A∗} ⊂ P (Aω) ,
S∞ := {∅}∪ {{u} | u ∈ A∗}∪ {uA∞ | u ∈ A∗} ⊂ P (A∞) .

For the next theorem the fact that A is a finite alphabet is crucial.

Theorem 4.2.5 The sets S0, S∗, Sω and S∞ are covering semirings of sets.

Proof. For S0 = {∅} nothing has to be shown. Obviously we have ∅ ∈ S∗ and for
elements {u} , {v} ∈ S∗ we remark that {u}∩ {v} is either {u} if and only if u = v or
∅ else. Moreover, {u} \ {v} is either ∅ if and only if u = v or {u} else. We proceed
with the proof for S∞, the proof for Sω can be carried out almost analogously (in
fact, it is simpler). By definition we have ∅ ∈ S∞. An intersection uA∞ ∩ vA∞
is non-empty if and only if either u v v or v v u and is then equal to vA∞
or to uA∞ and thus an element of S∞. Similarly an intersection uA∞ ∩ {v} is
non-empty if and only if u v v and is then equal to {v} ∈ S∞. As before we have

99

Chapter 4 Trace Semantics for PTS

{u}∩ {v} = {u} for u = v and {u}∩ {v} = ∅ else. For the set difference uA∞ \ vA∞
we note that this is either ∅ (iff v v u) or uA∞ (iff v 6v u and u 6v v) or otherwise
(u v v) the following union5 of finitely many disjoint sets in S∞:

uA∞ \ vA∞ =

 ⋃
v ′∈A|v|\{v},uvv ′

v ′A∞
∪

 ⋃
v ′∈A<|v|, uvv ′

{
v ′
} .

As before we get {u} \ {v} = ∅ if and only if u = v and {u} \ {v} = {u} else. For
{u} \ vA∞ we observe that this is either {u} if and only if v 6v u or ∅ else. Finally,
uA∞ \ {v} is either uA∞ (iff u 6v v) or (u v v) the following union of finitely
many disjoint sets in S∞:

uA∞ \ {v} =

 ⋃
v ′∈A|v|\{v},uvv ′

v ′A∞
∪

 ⋃
v ′∈A<|v|, uvv ′

{
v ′
}∪(⋃

a∈A
vaA∞

)

which completes the proof that the given sets are semirings. The countable (and
even disjoint) covers are: ∅ = ∅, A∗ = ∪u∈A∗ {a}, Aω = εAω andA∞ = εA∞.

We remark that many interesting sets turn out to be measurable in the σ-
algebra generated by the sets given in Definition 4.2.4. The singleton-set {u}
is measurable for every u ∈ Aω because {u} =

⋂
vvu vA

ω =
⋂
vvu vA

∞ which
are countable intersections, and (for∞-cones only) the set A∗ = ∪u∈A∗ {u} and
consequently also the set Aω = A∞ \A∗ is measurable. The latter will be useful
to check to what “extent” a state of a∞-pts accepts finite or infinite behavior.

4.2.2 Measurable Sets of Words

Let us now take a closer look at the σ-algebras generated by the semirings
which we defined in the last section. We obviously obtain the trivial σ-algebra
σ∅(S0) = {∅}. Since A is finite, A∗ is countable and we can easily conclude
σA∗(S∗) = P (A∗). The other two cases need a more thorough treatment. For
the remainder of this section let thus � ∈ {ω,∞}. We will use the concepts of
transfinite induction (as presented in the preliminaries) to extend the semi-ring
S� to the σ-algebra it generates. A similar construction is well-known and
presented in the literature [Els11]. Usually this explicit construction is not
needed but for our proofs it will turn out to be useful. An alternative proof
technique for which this explicit construction is not needed can be found in
Appendix A.2 .

5For n ∈N we define A<n := {u ∈ A | |u| < n}.

100

4.2 Coalgebraic Probabilistic Traces

Definition 4.2.6 For any set X and G ⊆ PX let U (G) and I (G) be the closure of
G under countable unions and intersections. We define

R�(0) :=
{
∪Nn=1Sn | N ∈N,Sn ∈ S� disjoint

}
,

R�(α+ 1) := U (I (R�(α))) for every ordinal α and,
R�(γ) := ∪α<γR�(α) for every limit ordinal γ.

Obviously we have R�(α) ⊆ R�(β) for all ordinals α < β. Since S� is a
semiring of sets, is easy to see that R�(0) is an algebra (of sets), i.e., it contains
the base set A�, is closed under complement and binary (and hence all finite)
unions and intersections.

Lemma 4.2.7 S ∈ R�(γ) =⇒ A� \ S ∈ R�(γ) for every limit ordinal γ.

Proof. We will show that S ∈ R�(α) =⇒ A� \ S ∈ I (R�(α)) for every ordinal
α. This is true for the algebra R�(0). Now let α be an ordinal satisfying the
implication and let S ∈ R�(α+ 1). Then S = ∪∞m=1 ∩∞n=1 Sm,n with Sm,n ∈ R�(α)
and by deMorgan’s rules A� \ S = ∩∞m=1 ∪∞n=1 A� \ Sm,n where by hypothesis
A� \ Sm,n ∈ I (R�(α)), thus ∪∞n=1A� \ Sm,n ∈ U (I (R�(α))) = R�(α + 1) and
therefore A� \ S ∈ I (R�(α+ 1)). Finally, let γ be a limit ordinal and suppose the
implication holds for all ordinals α < γ. For any S ∈ R�(γ) there is an α < γ
such that S ∈ R�(α). Hence we haveA� \S ∈ I (R�(α)) ⊆ R�(α+1) ⊆ R�(γ).

Lemma 4.2.8 S, T ∈ R�(α) =⇒ S∪ T ,S∩ T ∈ R�(α) for every ordinal α.

Proof. This is true for the algebra R�(0). Let α be an ordinal satisfying the
implication and S, T ∈ R�(α+ 1), then S = ∪∞k=1 ∩∞l=1 Sk,l and T = ∪∞m=1 ∩∞n=1
Tm,n with Sk,l, Tm,n ∈ R�(α). Obviously S ∪ T = ∪∞k,m=1 ∩∞l,n=1 (Sk,l ∪ Tm,n) and
S∩ T = ∪∞k,m=1 ∩∞l,n=1 (Sk,l ∩ Tm,n) where by hypothesis Sk,l ∪ Tm,n,Sk,l ∩ Tm,n ∈
R�(α) and thus S ∪ T ,S ∩ T ∈ R�(α+ 1). Finally, let γ be a limit ordinal and
suppose the statement is true for all ordinals α < γ and let S, T ∈ R�(γ). There
must be ordinals α,β < γ such that S ∈ R�(α) and T ∈ R�(β). Without loss
of generality we assume α 6 β then, since R�(α) ⊆ R�(β) we have S ∈ R�(β),
hence S∪ T ,S∩ T ∈ R�(β) ⊆ R�(γ) which completes the proof.

Lemma 4.2.9 S, T ∈ I (R�(α)) =⇒ S∪ T ∈ I (R�(α)) for every ordinal α.

Proof. Let S, T ∈ I (R�(α)) then S := ∩∞m=1Sm and T := ∩∞n=1Tn with Sm, Tn ∈
R�(α). Then S ∪ T = ∩∞m,n=1(Sm ∪ Tn) where Sm ∪ Tn ∈ R�(α) by Lemma 4.2.8
and thus S∪ T ∈ I (R�(α)).

101

Chapter 4 Trace Semantics for PTS

Theorem 4.2.10 (Explicit Construction of the Generated Sigma-Algebra) Let
ω1 be the smallest uncountable limit ordinal then σA�(S�) = σA�(R�(0)) =

R�(ω1).

Proof (adapted from [Els11]). By definition of the set R�(0) we have the inclusions
S� ⊆ R�(0) ⊆ σA�(S�). Using the monotonicity of the σ-operator, we conclude
that σA�(S�) ⊆ σA�(R�(0)) ⊆ σA�(S�) so all of them must be equal.

For the second equality we first show R�(ω1) ⊆ σX(R�(0)). We know that
R�(0) ⊆ σX(R�(0)). For an ordinal α with R�(α) ⊆ σX(R�(0)) let S ∈ R�(α+ 1).
Then S = ∪∞m=1 ∩∞n=1 Sm,n with Sm,n ∈ R�(α) yielding S ∈ σX(R�(0)). If γ is
a limit ordinal with R�(α) ⊆ σX(R�(0)) for all ordinals α < γ then for any
S ∈ R�(γ) there must be an ordinal α < γ such that S ∈ R�(α) and hence
S ∈ σX(R�(0)). In order to show R�(ω1) ⊇ σX(R�(0)) it suffices to show that
R�(ω1) is a σ-algebra. We have X ∈ R(0) ⊆ R(ω1) and Lemma 4.2.7 yields
closure under complements. Let Sn ∈ R�(ω1) for n ∈N. Then for each Sn we
have an αn such that Sn ∈ R�(αn). Since ω1 is the first uncountable ordinal, we
must find an α < ω1 such that αn < α for all n ∈N. Hence we have Sn ∈ R�(α)
for all n ∈N. Thus ∪∞n=1Sn ∈ R�(α+ 1) ⊆ R�(ω1).

4.2.3 The Trace Measure

We will now define the trace measure which can be understood as the behavior
of a state: it measures the probability of accepting a set of words. Later we will
prove that this can be captured by the unique map into a final coalgebra in the
Kleisli category of the probability/probability monad.

Definition 4.2.11 (The Trace Measure) Let (A,X,α) be a �-pts. For every state
x ∈ X we define the trace (sub)probability measure tr(x) : σA�(S�) → [0, 1] as
follows: In all four cases we require tr(x)(∅) = 0. For � ∈ {∗,∞} we define

tr(x)({ε}) = α(x)(1) (4.2.2)

and

tr(x)
(
{au}

)
:=

∫
x ′∈X

tr(x ′)({u})dPa
(
x, x ′

)
(4.2.3)

for all a ∈ A and all u ∈ A∗. For � ∈ {ω,∞} we define

tr(x)(A�) = 1 (4.2.4)

and

tr(x)
(
auA�

)
:=

∫
x ′∈X

tr(x ′)(uA�)dPa
(
x, x ′

)
(4.2.5)

102

4.2 Coalgebraic Probabilistic Traces

for all a ∈ A and all u ∈ A∗.

We need to verify that everything is well-defined and sound. In the next
theorem we explicitly state what has to be shown.

Theorem 4.2.12 For all four types � ∈ {0, ∗,ω,∞} of pts the equations in
Definition 4.2.11 yield a σ-finite pre-measure tr(x) : S� → [0, 1] for every x ∈
X. Moreover, the unique extension of this pre-measure is a (sub)probability
measure.

Before we prove this theorem, let us try to get a more intuitive understanding
of Definition 4.2.11 and especially equation (4.2.3). First we check how the
above definition reduces when we consider discrete systems.

Remark 4.2.13 Let (A,X,α) be a discrete6 ∗-pts, i.e., X is a countable set with
σ-algebra P (X) and the transition probability function is α : X→ S(A×X+ 1).
Then tr(x)(ε) := α(x)(X) and (4.2.3) is equivalent to

tr(x)(au) :=
∑
x ′∈X

tr(x ′)(u) · Pa
(
x, x ′

)
(4.2.6)

for all a ∈ A and all u ∈ A∗ which in turn is equivalent to the discrete trace
distribution for the sub-distribution monad D on Set [HJS06].

Having seen this coincidence with known results, we proceed to calculate the
trace measure for our example (Example 4.2.2) which we can only do in our
more general setting because this ∞-pts is a discrete probabilistic transition
system which exhibits both finite and infinite behavior.

Example 4.2.14 (Example 4.2.2 continued) We calculate the trace measures for
the ∞-pts from Example 4.2.2 (page 98) and claim that tr(0) = δA

∞
bω . First of

all we show by induction that tr(0)(bkA∞) = 1 holds. This is immediate for
k = 0 by equation (4.2.4) of Definition 4.2.11. If we assume that our hypothesis
holds for a given k ∈N, we can use the fact that in our example Pb(0, _) = δX0
and thus by equation (4.2.5) of Definition 4.2.11 we have tr(0)(bk+1A∞) =

tr(0)(bbkA∞) =
∫
x ′∈Xtr(x

′)(bkA∞)dPb (0, x ′) = tr(0)(bkA∞) = 1. With this
preparation at hand we compute

tr(0)({bω}) = tr(0)

(∞⋂
k=0

bkA∞
)

= tr(0)

(
A∞ \

∞⋃
k=0

(
A∞ \ bkA∞))

6If Z is a countable set and µ : P (Z)→ [0, 1] is a measure, we write µ(z) for µ({z}).

103

Chapter 4 Trace Semantics for PTS

= tr(0) (A∞) − tr(0)
(∞⋃
k=0

(
A∞ \ bkA∞))

> 1−
∞∑
k=0

tr(0)
(
A∞ \ bkA∞)

= 1−

∞∑
k=0

(
1− tr(0)

(
bkA∞)) = 1−

∞∑
k=0

(1− 1) = 1 .

Thus we have tr(0) = δA
∞

bω and therefore tr(0)(A∗) = tr(0) (∪u∈A∗ {u}) = 0

and tr(0)(Aω) = 1. Again by induction we can show that tr(2)(
{
ak
}
) =

(1/3) · (2/3)k and thus tr(2)(A∗) = 1 because

1 > tr(2)(A∗) = tr(2)

(∞⋃
u∈A∗

{u}

)
> tr(2)

(∞⋃
k=0

{
ak
})

=
1

3
·
∞∑
k=0

(
2

3

)k
= 1

and hence we conclude tr(2)(Aω) = 0. Furthermore we calculate tr(1)({bω}) =
1/3, tr(1)(aA∞) = 1/3 and tr(1)({ε}) = 1/3 yielding tr(1)(A∗) = 2/3 and
tr(1)(Aω) = 1/3.

After this small example, we remember that we still have to prove Theo-
rem 4.2.12. In order to simplify this proof, we provide a few technical results
about the sets S∗, Sω, S∞. For all these results remember again that A is required
to be a finite alphabet. This is a crucial point, particularly in the next lemma.

Lemma 4.2.15 (Countable Unions) Let (Sn)n∈N be a sequence of pairwise
disjoint sets in Sω or in S∞ such that their union, ∪n∈NSn, is itself an element
of Sω or S∞. Then Sn = ∅ for all but finitely many n.

Proof. We have several cases to consider.
Case 1: If ∪n∈NSn = ∅ ∈ S� for � ∈ {ω,∞}, we have Sn = ∅ for all n ∈N.
Case 2: If ∪n∈N = {u} ∈ S∞ with suitable u ∈ A∗ we get Sn = ∅ for all but one
n ∈N since the Sn are disjoint.
Case 3: Let ∪n∈NSn = uA� with a suitable u ∈ A∗ for � ∈ {ω,∞}. Suppose there
are infinitely many n ∈N such that Sn 6= ∅. Without loss of generality we can
assume Sn 6= ∅ for all n ∈N and thus there is an infinite set U := {un | n ∈N}

of words such that for each n ∈N we either have Sn = {un} (only for � =∞) or
Sn = unA

� (for � ∈ {ω,∞}). Necessarily we have u v un for all n ∈N. We will
now revive our tree metaphor from Section 4.2.1: The prefix-closure pref(U) =
{v ∈ A∗ | ∃n ∈N : v v un} of U is the set of vertices contained in the paths from
the root ε (via u) to un. We consider the subtree T ′ = (pref(U),E ′, ε, l|E ′) with

104

4.2 Coalgebraic Probabilistic Traces

E ′ = {{u,ua} | a ∈ A,u,ua ∈ pref(U)}. Since the set U and hence also pref(U)
is infinite, we have thus constructed an infinite, connected graph where every
vertex has finite degree (because A is finite). By König’s Lemma [Kon36, Satz
3] there is an infinite path starting at the root ε. Let v ∈ Aω be the unique,
infinite word associated to that path (which we get by concatenating all the
labels along this path). Since u @ v we must have v ∈ uA�. Moreover, we know
that uA� = ∪n∈NSn and due to the fact that the Sn are pairwise disjoint we
must find a unique m ∈ N with v ∈ Sm. This necessarily requires Sm to be a
cone of the form Sm = umA

� with um ∈ U and um @ v. Again due to the fact
that the Sn are disjoint we know that there cannot be a u ′ ∈ U with um @ u ′

and hence there also cannot be a u ′ ∈ pref(U) with um @ u ′. Thus the vertex
um is a leaf of the tree T ′ and therefore the finite path from ε to um is the only
path from ε that contains um. This contradicts the existence of v because this
path is infinite and contains um. Hence our assumption must have been wrong
and there cannot be infinitely many n ∈N with Sn 6= ∅.

Lemma 4.2.16 Any map µ : S∗ → R+ where µ(∅) = 0 is σ-additive and thus a
pre-measure.

Proof. Let (Sn)n∈N be a family of disjoint sets from S∗ with (∪n∈NSn) ∈ S∗, then
we have Sn = ∅ for all but at most one n ∈N.

Lemma 4.2.17 A map µ : Sω → R+ where µ(∅) = 0 is σ-additive and thus a
pre-measure if and only if the following equation holds for all u ∈ A∗.

µ (uAω) =
∑
a∈A

µ (uaAω) (4.2.7)

We omit the proof of this lemma as it is very similar to the proof of the following
lemma.

Lemma 4.2.18 A map µ : S∞ → R+ where µ(∅) = 0 is σ-additive and thus a
pre-measure if and only if the following equation holds for all u ∈ A∗.

µ (uA∞) = µ ({u}) +∑
a∈A

µ (uaA∞) (4.2.8)

Proof. Obviously σ-additivity of µ implies equality (4.2.8). Let now (Sn)n∈N be
a family of disjoint sets from S∞ with (∪n∈NSn) ∈ S∞. Using Lemma 4.2.15 we
know that we can assume that there is an N ∈N such that Sn 6= ∅ for 1 6 n 6 N
and Sn = ∅ for n > N. For non-trivial cases (trivial means Sn = ∅ for all but
one set) there must be a word u ∈ A∗ such that uA∞ =

(
∪Nn=1Sn

)
. Because u is

105

Chapter 4 Trace Semantics for PTS

an element of uA∞ there must be a natural number m with u ∈ Sm which is
unique because the family is disjoint. Without loss of generality we assume that
u ∈ S1. By construction of S∞ and the fact that ∪Nn=1Sn = uA∞ there are two
cases to consider: either S1 = {u} or S1 = uA∞. The latter cannot be true since
this would imply Sn = ∅ for n > 2 which we explicitly excluded. Thus we have
S1 = {u}. We remark that

⋃
a∈A

uaA∞ = uA∞ \ {u} =

(
N⋃
n=2

Sn

)
.

Again by construction of S∞ we must be able to select sets Sak ∈ {Sn | 2 6 n 6 N}

for all a ∈ A and all k where 1 6 k 6 Ka < N for a constant Ka such that
∪Kak=1S

a
k = uaA∞. This selection is unique in the following manner: For a,b ∈ A

where a 6= b and 1 6 k 6 Ka, 1 6 l 6 Kb we have Sak 6= Sbl . Additionally it
is complete in the sense that

{
Sak | a ∈ A, 1 6 k 6 Ka

}
= {Sn | 2 6 n 6 N}. We

apply our equation (4.2.8) to get

µ

(
N⋃
n=1

Sn

)
= µ (uA∞) = µ (S1) +∑

a∈A
µ

(
Ka⋃
k=1

Sak

)

and note that we can repeat the procedure for each of the disjoint unions ∪Kak=1S
a
k .

Since Ka < N for all a this procedure stops after finitely many steps yielding
σ-additivity of µ.

Using these results, we can now finally prove Theorem 4.2.12.

Proof of Theorem 4.2.12. We will look at the different types of pts separately.
For � = 0 nothing has to be shown because σ∅({∅}) = {∅} and tr(x) : {∅}→ [0, 1]
is already uniquely defined by tr(x)(∅) = 0. For � = ∗ Lemma 4.2.16 yields
immediately that the equations define a pre-measure. For � = ∞ we have
to check validity of equation (4.2.8) of Lemma 4.2.18. We will do so using
induction on the length of the word u ∈ A∗ in that equation. We have

tr(x)(εA∞) = 1 = α(x)(A×X+ 1) = α(x)(1) +
∑
a∈A

Pa (x,X)

= tr(x)({ε}) +
∑
a∈A

∫
x ′∈X

1dPa
(
x, x ′

)
= tr(x)({ε}) +

∑
a∈A

∫
x ′∈X

tr(x ′)(εA∞)dPa
(
x, x ′

)
= tr(x)({ε}) +

∑
a∈A

tr(x)(aεA∞) = tr(x)({ε}) +∑
a∈A

tr(x)(εaA∞)

106

4.2 Coalgebraic Probabilistic Traces

for all x ∈ X. Now let us assume that for all x ∈ X and all words u ∈ A6n of
length less or equal to a fixed n ∈N the induction hypothesis

tr(x)(uA∞) = tr(x)({u}) +∑
b∈A

tr(x)(ubA∞)
is fulfilled. Then for all x ∈ X, all a ∈ A and all u ∈ A6n we calculate

tr(x)(auA∞) = ∫
x ′∈X

tr(x ′)(uA∞)dPa
(
x, x ′

)
=

∫
x ′∈X

(
tr(x ′)({u}) +

∑
b∈A

tr(x ′)(ubA∞)
)

dPa
(
x, x ′

)
=

∫
x ′∈X

tr(x ′)({u})dPa
(
x, x ′

)
+
∑
b∈A

∫
x ′∈X

tr(x ′)(ubA∞)dPa
(
x, x ′

)
= tr(x)({au}) +

∑
b∈A

tr(x)(aubA∞)
and hence also for au ∈ A6n+1 equation (4.2.8) is fulfilled and by induction we
conclude that it is valid for all u ∈ A∗. The only difficult case is � = ω where
we will, of course, apply Lemma 4.2.17. Let u = u1 . . . um with uk ∈ A for every
k ∈ N with k 6 m, then multiple application of the defining equation (4.2.3)
yields

tr(x)
(
uAω

)
=

∫
x1∈X

. . .

∫
xm∈X

1dPum (xm−1, xm) . . .dPu1 (x, x1)

and for arbitrary a ∈ A we obtain analogously:

tr(x)
(
uaAω

)
=

∫
x1∈X

. . .

∫
xm∈X

Pa (xm,X) dPum (xm−1, xm) . . .dPu1 (x, x1) .

All integrals exist and are bounded above by 1 so we can use the linearity and
monotonicity of the integral to exchange the finite sum and the integrals. Using
the fact that∑

a∈A
Pa (xm,X) =

∑
a∈A

α(xm)({a}×X) = α(xm)(A×X) = 1

we obtain that indeed the necessary and sufficient equality

tr(x)
(
uAω

)
=
∑
a∈A

tr(x)
(
uaAω

)

107

Chapter 4 Trace Semantics for PTS

is valid for all u ∈ A∗ and thus Lemma 4.2.17 yields that also tr(x) : Sω → R+

is σ-additive and thus a pre-measure.
Now let us check that the pre-measures for � ∈ {∗,ω,∞} are σ-finite and

that their unique extensions are (sub)probability measures. For � ∈ {ω,∞}

this is obvious and in these cases the unique extension must be a probability
measure because by definition we have tr(x)(Aω) = 1 and tr(x)(A∞) = 1

respectively. For the remaining case (� = ∗) we will use induction. We have
tr(x)({ε}) = α(x)(1) 6 1 for every x ∈ X. Let us now assume that for a fixed but
arbitrary n ∈N the inequality tr(x)({u}) 6 1 is valid for all x ∈ X and all words
u ∈ A6n with length less or equal to n. Then for any word u ′ ∈ An+1 of length
n+ 1 we have u ′ = au with a ∈ A and u ∈ An. We observe that

tr(x)({au}) =

∫
x ′∈X

tr(x ′)({u})︸ ︷︷ ︸
61

dPa
(
x, x ′

)
6
∫
1dPa

(
x, x ′

)
= Pa (x,X) 6 1

and conclude by induction that tr(x)({u}) 6 1 is valid for all u ∈ A∗ and all
x ∈ X. Due to the fact that A∗ = ∪u∈A∗{u} this yields that tr is σ-finite.

Again by induction we will show that tr is bounded above by 1 and thus
a subprobability measure. We have tr(x)

(
A60

)
= tr(x)({ε}) 6 1 for all x ∈ X.

Suppose that for a fixed but arbitrary n ∈N the inequality tr(x)
(
A6n−1

)
6 1

holds for all x ∈ X. We conclude with the following calculation

tr(x)
(
A6n

)
= tr(x)

(
∪u∈A6n{u}

)
=
∑

u∈A6n

tr(x) ({u})

= tr(x)({ε}) +
∑
a∈A

∑
u∈A6n−1

tr(x) ({au})

= α(x)(1) +
∑
a∈A

∑
u∈A6n−1

∫
tr(x ′) ({u})dPa

(
x, x ′

)
= α(x)(1) +

∑
a∈A

∫ ∑
u∈A6n−1

tr(x ′)({u})dPa
(
x, x ′

)
= α(x)(1) +

∑
a∈A

∫(
tr(x ′)

(
A6n−1

))
︸ ︷︷ ︸

61

dPa
(
x, x ′

)
6 α(x)(1) +

∑
a∈A

∫
1dPa

(
x, x ′

)
= α(x)(1) +

∑
a∈A

Pa (x,X)

= α(x)(1) +
∑
a∈A

α(x)({a}×X) = α(x)(A×X+ 1) 6 1

using the linearity and monotonicity of the integral which can be applied here
since A is finite which in turn implies that A6n−1 is finite and all the integrals

108

4.2 Coalgebraic Probabilistic Traces

∫
tr(x ′) ({u})dPa (x, x ′) exist because tr(x ′) ({u}) is bounded above by 1. By

induction we can thus conclude that

∀x ∈ X ∀n ∈N0 : tr(x)
(
A6n

)
6 1

which is equivalent to

∀x ∈ X sup
n∈N0

(
tr(x)

(
A6n

))
6 1 .

Since tr(x) is a measure (and thus non-negative and σ-additive), the sequence
given by

(
tr(x)

(
A6n

))
n∈N0

is a monotonically increasing sequence of real
numbers bounded above by 1. Furthermore, tr(x) is continuous from below as
a measure and we have A6n ⊆ A6n+1 for all n ∈N0 and thus we obtain

tr(x) (A∗) = tr(x)

(∞⋃
n=1

A6n

)
= lim
n→∞ tr(x)

(
A6n

)
= sup
n∈N0

tr(x)
(
A6n

)
6 1 .

4.2.4 The Trace Function is a Kleisli Arrow

Now that we know that our definition of a trace measure is mathematically
sound, we remember that we wanted to show that it is “natural”, meaning that
it arises from the final coalgebra in the Kleisli category of the (sub)probability
monad.

We start by showing that the function tr : X → TA� we get from Defini-
tion 4.2.11 is a Kleisli arrow by proving that it is a Markov kernel. Since tr(x)
is a subprobability measure for each x ∈ X by Theorem 4.2.12 we just have to
show that for each S ∈ σA�(S�) the function x 7→ tr(x)(S) is Borel-measurable.
This is easy for elements S of the previously defined semirings:

Lemma 4.2.19 For all S ∈ S� the function x 7→ tr(x)(S) is measurable.

Proof. For � = 0 nothing has to be shown. For the other cases we will use induc-
tion on the length of a word u. For � ∈ {∗,∞} measurability of x 7→ tr(x)({ε})

follows from measurability of x 7→ α(x)(1) and for � ∈ {ω,∞} the function
x 7→ tr (x)(εA�) is the constant function with value 1 and thus is measurable.
Suppose now that for an n ∈ N we have established that for all u ∈ An the
functions x 7→ tr(x)({u}) and x 7→ tr(x)(uA�) (whenever they are meaningful)
are measurable. Then for all a ∈ A and all u ∈ An we have tr(x)({au}) =∫
x ′∈Xtr(x

′)({u})dPa (x, x ′) and also tr(x)(auA�) =
∫
x ′∈Xtr(x

′)(uA�)dPa (x, x ′)
and by applying Lemma 4.1.17 we get the desired measurability.

109

Chapter 4 Trace Semantics for PTS

Without any more complicated tools we get the complete result for any ∗-pts:

Theorem 4.2.20 For all S ∈ P (A∗) the function x 7→ tr(x)(S) is measurable.

Proof. We know from Lemma 4.2.19 that x 7→ tr(x)(S) is measurable for every
S ∈ S∗. Recall that σA∗(S∗) = P (A∗) and every S ∈ P (A∗) is at most countably7

infinite, say S := {u1,u2, . . .} and we have the trivial, disjoint decomposition
S = ∪∞n=1 {un}. If we define TN := ∪Nn=1 {un} we get an increasing sequence
of sets converging to S. Hence by continuity of the subprobability measures
S ′ 7→ tr(x)(S ′) we get tr(x)(S) = limN→∞ tr(x)(TN) = limN→∞∑N

n=1 tr(x, {un}).
Thus x 7→ tr(x)(S) is the pointwise limit of a finite sum of measurable functions
and therefore measurable.

From here until the rest of this subsection we restrict � to be either ω or∞ if
not indicated otherwise. As before, we will rely on transfinite induction for our
proof.

Lemma 4.2.21 For every S ∈ R�(0) the function x 7→ tr(x)(S) is measurable.

Proof. We know from Lemma 4.2.19 that x 7→ tr(x)(S) is measurable for every
S ∈ S�. Let S ∈ R�(0) then S = ∪Nn=1Sn with Sn ∈ S� disjoint for 1 6 n 6 N ∈N.
We have tr(x)(S) =

∑N
n=1 tr(x,Sn) which is measurable as a finite sum of

measurable functions.

Lemma 4.2.22 Let α be an ordinal s.t. the function x 7→ tr(x)(S) is measurable
for each S ∈ R�(α). Then x 7→ tr(x)(S) is measurable for each S ∈ I (R�(α)).

Proof. Let S ∈ I (R�(α)) then S = ∩∞n=1Sn with Sn ∈ R�(α). We define TN :=

∩Nn=1Sn for all N ∈N, then TN ∈ R�(α) by Lemma 4.2.8. We have TN ⊇ TN+1 for
all N ∈N and S = ∩∞N=1TN. Continuity of S ′ 7→ tr(x)(S ′) for every x ∈ X yields
tr(x)(S) = limN→∞ tr(x) (TN). Hence x 7→ tr(x)(S) is measurable as pointwise
limit of measurable functions.

Lemma 4.2.23 Let α be an ordinal such that the function x 7→ tr(x)(S) is
measurable for each S ∈ I (R�(α)). Then x 7→ tr(x)(S) is measurable for each
S ∈ R�(α+ 1).

Proof. Let S ∈ R�(α + 1) then S = ∪∞n=1Sn with Sn ∈ I (R�(α)). We de-
fine TN := ∪Nn=1Sn for all N ∈ N. Then we know that TN ∈ I (R�(α)) by
Lemma 4.2.9. We have TN ⊆ TN+1 for all N ∈ N and S = ∪∞N=1TN. Continu-

7For finite S the proof works analogously but simpler!

110

4.2 Coalgebraic Probabilistic Traces

ity of the subprobability measures S ′ 7→ tr(x)(S ′) yields for every x ∈ X that
tr(x)(S) = limN→∞ tr (x)(TN). Hence the function x 7→ tr(x)(S) is measurable
as pointwise limit of measurable functions.

Lemma 4.2.24 Let γ be a limit ordinal such that for all ordinals α < γ the
function x 7→ tr(x)(S) is measurable for each S ∈ R�(α). Then x 7→ tr(x)(S) is
measurable for each S ∈ R�(γ).

Proof. Let S ∈ R�(γ), then there is an α < γ such that S ∈ R�(α) and hence
x 7→ tr(x)(S) is measurable for this S.

By using the characterization σA�(S�) = R�(ω1) of Theorem 4.2.10 and com-
bining the four preceding lemmas we get the desired result:

Theorem 4.2.25 For all S ∈ σA�(S�) the function x 7→ tr(x)(S) is measurable.

Finally, combining this result with Theorem 4.2.12 and the fact that Markov
kernels are in one-to-one correspondence with Kleisli arrows [Dob07a, Proposi-
tion 2.7] yields:

Theorem 4.2.26 Let � ∈ {0, ∗,ω,∞} and (T ,η,µ) be the (sub)probability monad.
Then the function tr : X→ TA� given by Definition 4.2.11 is a Kleisli arrow.

4.2.5 The Trace Measure and Final Coalgebra

Before stating the next theorem which presents a close connection between the
unique existence of the map into the final coalgebra and the unique extension of
a family of σ-finite pre-measures, we first give some intuition: in order to show
that a coalgebra is final it is enough to show that every other coalgebra admits
a unique homomorphism into it. Commutativity of the square underlying
the homomorphism and uniqueness have to be shown for every element of a
σ-algebra and one of our main contributions is to reduce the proof obligations
to a smaller set of generators, which form a covering semiring. This theorem
will later be applied to our four types of transition systems by using the
semirings defined earlier and showing that there can be only one way to assign
probabilities to their elements.

Theorem 4.2.27 Let (T ,η,µ) be either the subprobability monad (S,η,µ) or the
probability monad (P,η,µ), F be an endofunctor on Meas with a Kleisli law
λ : FT ⇒ TF and (Ω, κ) be an F-coalgebra where ΣFΩ = σFΩ(SFΩ) for a covering
semiring SFΩ. Then the following statements are equivalent:

111

Chapter 4 Trace Semantics for PTS

1. (Ω, κ) is a final F-coalgebra in K`(T).

2. For every F-coalgebra (X,α) in K`(T) there is a unique Kleisli arrow tr : X→
TΩ satisfying the following condition:

∀x ∈ X,∀S ∈ SFΩ :

∫
Ω
pS ◦ κdtr(x) =

∫
FX
pS ◦ λΩ ◦ F(tr)dα(x) . (4.2.9)

Proof. We consider the final coalgebra diagram in K`(T).

X FX

Ω FΩ

α

tr F(tr) = λΩ ◦ F(tr)

κ

By definition (Ω, κ) is final if and only if for every F-coalgebra (X,α) there is a
unique Kleisli arrow tr : X→ TΩ making the diagram commute. We define

g := µFΩ ◦ T(κ) ◦ tr (down, right) and h := µFΩ ◦ T
(
F(tr)

)
◦α (right, down)

and note that commutativity of the final coalgebra diagram is equivalent to

∀x ∈ X, ∀S ∈ SFΩ : g(x)(S) = h(x)(S) (4.2.10)

because SFΩ is a covering semiring and for all x ∈ X both g(x) and h(x) are
subprobability measures and thus finite measures which allows us to apply
Corollary 4.1.5. We calculate

g(x)(S) = (µFΩ ◦ T(κ) ◦ tr)(x)(S) = µFΩ (T(κ)(tr(x))) (S)

= µFΩ

(
tr(x) ◦ κ−1

)
(S) =

∫
pS d

(
tr(x) ◦ κ−1

)
=

∫
pS ◦ κdtr(x)

and if we define ρ := F(tr) = λΩ ◦ F(tr) : FX→ TFΩ we obtain

h(x)(S) = (µFΩ ◦ T(ρ) ◦α)(x)(S) = µFΩ (T(ρ)(α(x))) (S) = µFΩ

(
α(x) ◦ ρ−1

)
(S)

=

∫
pS d

(
α(x) ◦ ρ−1

)
=

∫
pS ◦ ρdα(x) =

∫
pS ◦ λΩ ◦ F(tr)dα(x)

and thus (4.2.10) is equivalent to (4.2.9).

We immediately obtain the following corollary.

112

4.2 Coalgebraic Probabilistic Traces

Corollary 4.2.28 Let in Theorem 4.2.27 κ = ηFΩ ◦ ϕ, for an isomorphism
ϕ : Ω → FΩ in Meas, and let SΩ ⊆ P (Ω) be a covering semiring such that
ΣΩ = σΩ(SΩ). Then equation (4.2.9) is equivalent to

∀x ∈ X,∀S ∈ SΩ : tr(x)(S) =

∫
pϕ(S) ◦ λΩ ◦ F(tr)dα(x) . (4.2.11)

Proof. Since ϕ is an isomorphism in Meas we know from Theorem 4.1.11 that
ΣFΩ = σFΩ(ϕ(SΩ)). For every S ∈ SΩ and every u ∈ Ω we calculate

pϕ(S) ◦ κ(u) = pϕ(S) ◦ ηFΩ ◦ϕ(u) = δFΩϕ(u)(ϕ(S)) = χϕ(S)(ϕ(u)) = χS(u)

and hence we have
∫
pϕ(S) ◦ κdtr(x) =

∫
χS dtr(x) = tr(x)(S).

Since we want to apply this corollary to sets of words, we now define the
necessary isomorphism ϕ using the characterization given in Theorem 4.1.11.

Theorem 4.2.29 Let A be an arbitrary alphabet and let

ϕ : A∞ → A×A∞ + 1, ε 7→ X, au 7→ (a,u) . (4.2.12)

Then ϕ, ϕ|A∗ : A∗ → ϕ(A∗) and ϕ|Aω : Aω → ϕ(Aω) are isomorphisms in Meas
because they are bijective functions8 and we have

σA×Aω(ϕ(Sω)) = P (A)⊗ σAω(Sω) , (4.2.13)
σA×A∗+1(ϕ(S∗)) = P (A)⊗ σA∗(S∗)⊕P (1) , (4.2.14)
σA×A∞+1(ϕ(S∞)) = P (A)⊗ σA∞(S∞)⊕P (1) . (4.2.15)

Proof. Bijectivity is obvious. We will now show validity of (4.2.15), the other
equations can be verified analogously.9 Let SA := {∅}∪ {{a} | a ∈ A}∪ {A}, then
it is easy to show that we have σA(SA) = P (A) and Theorems 4.1.6 and 4.1.8
yield that

P (A)⊗ σA∞(S∞)⊕P (1) = σA×A∞+1(SA ∗ S∞ ⊕P (1)) .

We calculate ϕ (∅) = ∅, ϕ ({ε}) = 1, ϕ (εAω) = A×Aω, ϕ (εA∞) = A×A∞ +

1, and for all a ∈ A and all u ∈ A∗ we have ϕ ({au}) = {(a,u)} and also
ϕ (auA∞) = {a}× uA∞. This yields

ϕ(S∞) = {∅, ∅+ 1,A×A∞ + 1}∪ {{a}× {u}+ ∅, {a}× uA∞ + ∅ | a ∈ A,u ∈ A∗}

8Note that we restrict not only the domain of ϕ here but also its codomain.
9For proving (4.2.14) we can use Theorem 4.1.6 because σA∗(S∗) = σA∗(S∗ ∪ {A∗}).

113

Chapter 4 Trace Semantics for PTS

and furthermore we have

SA ∗ S∞ ⊕P (1) = {∅, ∅+ 1}∪ {{a}× {u}+ ∅, {a}× uA∞ + ∅ | a ∈ A,u ∈ A∗}
∪ {{a}× {u}+ 1, {a}× uA∞ + 1 | a ∈ A,u ∈ A∗}
∪ {A × {u}+ ∅,A × uA∞ + ∅ | u ∈ A∗}
∪ {A × {u}+ 1,A × uA∞ + 1 | u ∈ A∗} .

Due to the fact thatA×A∞+1 = A×εA∞+1 we haveϕ(S∞) ⊆ SA ∗S∞⊕P (1)
and the monotonicity of the σ-operator yields

σA×A∞+1(ϕ(S∞)) ⊆ σA×A∞+1(SA ∗ S∞ ⊕P (1)) .

For the other inclusion we remark that

{a}× {u}+ 1 = ({a}× {u}+ ∅)∪ (∅+ 1)

{a}× uA∞ + 1 = ({a}× uA∞ + ∅)∪ (∅+ 1)

and together with the countable decomposition A = ∪a∈A {a} it is easy to see
that

SA ∗ S∞ ⊕P (1) ⊆ σA×A∞+1(ϕ(S∞))
and monotonicity and idempotence of the σ-operator complete the proof.

We recall that – in order to get an extension of an endofunctor on Meas – we
also need a Kleisli law for the functors and the monads we are using to define
pts. In order to define such a law we first provide two technical lemmas.

Lemma 4.2.30 Let A be an alphabet and (X,ΣX) be a measurable space.

1. The sets P (A) ∗ ΣX and P (A) ∗ ΣX ⊕P (1) are covering semirings of sets.

2. P (A)⊗ ΣX = σA×X(P (A) ∗ ΣX).
3. P (A)⊗ ΣX ⊕P (1) = σA×X+1(P (A) ∗ ΣX ⊕ 1).

Proof. Showing property (1) is straightforward and will thus be omitted. The
rest follows by Theorems 4.1.6 and 4.1.8.

Lemma 4.2.31 (Product Measures) Let A be an alphabet, a ∈ A and (X,ΣX) be
a measurable space with a subprobability measure P : ΣX → [0, 1]. Then the
following holds:

114

4.2 Coalgebraic Probabilistic Traces

1. The product measure δAa ⊗ P : P (A) ⊗ ΣX → R+ of δAa and P which is the
unique extension of the pre-measure satisfying

(δAa ⊗ P)(SA × SX) := δAa (SA) · P(SX) (4.2.16)

for all SA × SX ∈ P (A) ∗ ΣX is a subprobability measure on A× X. If P is
a probability measure on X, then also δAa ⊗ P is a probability measure on
A×X.

2. The measure δAa � P : P (A) ⊗ ΣX ⊕ P (1) → R+ which is defined via the
equation

(δAa � P)(S) := (δAa ⊗ P) (S∩ (A×X)) (4.2.17)

for all S ∈ P (A)⊗ ΣX ⊕P (1) is a subprobability measure on A×X+ 1. If P
is a probability measure on X, then also δAa � P is a probability measure on
A×X+ 1.

Proof. Before proving the statement, we check that the two equations yield
unique measures.

1. Existence and uniqueness of the product measure is a well known fact from
measure theory and follows immediately by Theorem 4.1.4 because (4.2.16)
defines a σ-finite pre-measure on P (A) ∗ ΣX which by Lemma 4.2.30 is a
covering semiring of sets and a generator for the product-σ-algebra.

2. We obviously have non-negativity and (δAa � P)(∅) = 0. Let (Sn)n∈N be a
family of pairwise disjoint sets in P (A)⊗ ΣX ⊕ P (1). Then the following
holds

(δAa � P)

(⋃
n∈N

Sn

)
= (δAa ⊗ P)

(⋃
n∈N

(Sn ∩ (A×X))

)
=
∑
n∈N

(δAa ⊗ P)(Sn ∩ (A×X)) =
∑
n∈N

(δAa � P) (Sn)

and hence δAa � P as defined by equation (4.2.17) is σ-additive and thus a
measure.

For the proof of the Lemma we observe that

(δAa � P)(A×X+ 1) = (δAa ⊗ P)(A×X) = δAa (A) · P(X) = P(X)

which immediately yields that both measures are subprobability measures and
if P is a probability measure they are probability measures.

115

Chapter 4 Trace Semantics for PTS

With the help of the preceding lemmas, we can now state and prove the Kleisli
laws for the endofunctors A× _, A× _ + 1 on Meas and the subprobability
monad and the probability monad.

Theorem 4.2.32 (Kleisli Laws for the Probability Monads) Let (T ,η,µ) be
either the subprobability monad (S,η,µ) or the probability monad (P,η,µ) and
A be an alphabet with σ-algebra P (A).

1. Let F = A× _ : Meas→Meas. For every measurable space (X,ΣX) we define

λX : A× TX→ T(A×X), (a,P) 7→ δAa ⊗ P . (4.2.18)

Then λ : FT ⇒ TF is a Kleisli law.

2. Let F = A× _ + 1 : Meas →Meas. For every measurable space (X,ΣX) we
define

λX : A× TX+ 1→ T(A×X+ 1)

(a,P) 7→ δAa � P, X 7→ δA×X+1
X . (4.2.19)

Then λ : FT ⇒ TF is a Kleisli law.

Proof. In order to show that the given maps are Kleisli laws we have to check
commutativity of the following three diagrams

FTY TFY FX FTX FT2X TFTX T2FX

FTX TFX TFX FTX TFX

λY

FTf TFf

λX

FηX

λXηFX

λTX TλX

FµX

λX

µFX

for all measurable spaces (X,ΣX), (Y,ΣY) and all measurable functions f : Y → X.
By Lemma 4.2.30 we know that P (A) ∗ ΣX and P (A) ∗ ΣX ⊕P (1) are covering
semirings of sets and that they are generators for the σ-algebras P (A)⊗ΣX and
P (A)⊗ΣX ⊕P (1). Moreover, we know from Lemma 4.2.31 that the measures
assigned in equations (4.2.18) and (4.2.19) are subprobability measures and thus
finite. We can therefore use Corollary 4.1.5 to check the equality of the various
(sub)probability measures. We will provide the proofs for the second Kleisli law
only, the proofs for the first law are simpler and can in fact be derived from the
given proofs. Let S := SA × SX + S1 ∈ P (A) ∗ ΣX ⊕P (1).

116

4.2 Coalgebraic Probabilistic Traces

1. Let f : Y → X be a measurable function. For (a,P) ∈ A× TY we calculate

(TFf ◦ λY)(a,P)(S) = (δAa � P)
(
(Ff)−1[S]

)
= (δAa � P)(SA × f−1[SX] + S1)

= δAa (SA) · P
(
f−1[SX]

)
= (δAa � (P ◦ f−1))(SA × SX + S1)

= (λX ◦ FTf)(a,P)(S)

and analogously we obtain

(TFf ◦ λY)(X)(S) = δA×Y+1
X

(
(Ff)−1[S]

)
= δA×Y+1

X

(
SA × f−1[SX] + S1

)
= δA×X+1

X (S) = (λX ◦ FTf)(X)(S) .

2. For (a, x) ∈ A×X we calculate

ηFX(a, x)(S) = δFX(a,x)(SA × SX + S1) = δ
A
a (SA) · δXx (SX)

= (δAa � δXx)(S) = λX(a, δXx)(S) =
(
λX ◦ FηX

)
(a, x)(S)

and also

ηFX(X) = δ
FX
X = λX(X) = λX (FηX(X)) =

(
λX ◦ FηX

)
(X) .

3. For (a,P) ∈ FT2X we calculate

(λX ◦ FµX) (a,P)(S) = (λX (a,µX(P))) (S) =
(
δAa � µX(P)

)
(S)

= δAa (SA) · µX(P)(SX) = δAa (SA) ·
∫
pSX dP

and

(µFX ◦ TλX ◦ λTX)(a,P)(S) = µFX
((
δAa � P

)
◦ λ−1X

)
(S)

=

∫
TFX
pS d

((
δAa � P

)
◦ λ−1X

)
=

∫
λ−1X (TFX)

pS ◦ λX d
(
δAa � P

)
=

∫
{a}×TX

pS ◦ λX d
(
δAa � P

)
=

∫
P ′∈TX

(
δAa ⊗ P ′)(S)dP(P ′)

=

∫
P ′∈TX

δAa (SA) · P ′(SX)dP(P ′) = δAa (SA) ·
∫
pSX dP .

Analogously we obtain

(λX ◦ FµX) (X) = λX(X) = δA×X+1X

117

Chapter 4 Trace Semantics for PTS

and

(µFX ◦ TλX ◦ λTX) (X)(S) = µFX
(
δA×TX+1
X ◦ λ−1X

)
(S)

=

∫
TFX
pS d

(
δA×TX+1
X ◦ λ−1X

)
=

∫
λ−1X (TFX)

pS ◦ λX dδA×TX+1
X

= (pS ◦ λX)(X) = δA×X+1
X (S)

which concludes the proof.

With this result at hand we can finally apply Corollary 4.2.28 to the measurable
spaces ∅, A∗, Aω, A∞, each of which is of course equipped with the σ-algebra
generated by the covering semirings S0, S∗, Sω, S∞ as defined in Theorem 4.2.5,
to obtain the final coalgebra and the induced trace semantics for pts as pre-
sented in the following theorem.

Theorem 4.2.33 (Final Coalgebra and Trace Semantics for PTS) Let (T ,η,µ)
be either the subprobability monad (S,η,µ) or the probability monad (P,η,µ)
and F be either A× _ or A× _ + 1. A pts (A,X,α) is an F-coalgebra (X,α) in
K`(T) and vice versa. In the following table we present the (carriers of) final
F-coalgebras (Ω, κ) in K`(T) for all suitable choices of T and F (depending on
the type of the pts).

Type � Monad T Endofunctor F Carrier Ω
0 S A× _

(
∅, {∅}

)
∗ S A× _ + 1

(
A∗,σA∗(S∗)

)
ω P A× _

(
Aω,σAω(Sω)

)
∞ P A× _ + 1

(
A∞,σA∞(S∞))

For � ∈ {∗,ω,∞} we have κ = ηFΩ ◦ϕ where ϕ is the isomorphism as defined
in Theorem 4.2.29 and for � = ∅ we take κ = ηF∅ ◦ϕ with ϕ being the empty
function ϕ : ∅ → ∅. The unique arrow into the final coalgebra is the map
tr : X→ TΩ given by Definition 4.2.11.

Proof. For the whole proof we always assume that the combinations of the type
� of the pts, the monad T , the endofunctor F and the carrier (Ω,ΣΩ) are chosen
as presented in the table given in the corollary. Thus e.g. � = ∗ automatically
yields T = S, F = A× _ + 1, Ω = A∗, ΣΩ = σA∗(S∗) and we automatically
work in the Kleisli category K`(S) of the subprobability monad. The first
statement of the theorem is obvious by construction of the transition function
α. For � ∈ {∗,ω,∞} we remark that the preconditions of Corollary 4.2.28

118

4.2 Coalgebraic Probabilistic Traces

are fulfilled and aim at applying this corollary, and especially at evaluating
equation (4.2.11) for the covering semirings S∗, Sω, S∞. Let us carry out these
calculations in various steps to obtain all the equations of Definition 4.2.11. For
all (b, x ′) ∈ A×X we calculate

(
λΩ ◦ F(tr)

)
(b, x ′) =

{
δAb ⊗ tr(x ′), � = ω
δAb � tr(x ′), � ∈ {∗,∞} .

Now suppose S is chosen as S = {au}, S = auAω or S = auA∞ respectively
for an arbitrary a ∈ A and an arbitrary u ∈ A∗. Then ϕ(S) = {a}× S ′ with
S ′ = {u}, S ′ = uAω or S ′ = uA∞ respectively and hence we obtain(

pϕ(S) ◦ λΩ ◦ F(tr)
)
(b, x ′) = δAb ⊗ tr(x ′)({a}× S ′)

= δAb ({a}) · tr(x ′)(S ′) = χ{a}×X(b, x ′) · tr(x ′)(S ′) .

Using this, we evaluate equation (4.2.11) of Corollary 4.2.28 for these sets and
get

tr(x)(S) =

∫
(b,x ′)∈{a}×X

tr(x ′)(S ′)dα(x) =
∫
x ′∈X

tr(x ′)(S ′)dPa
(
x, x ′

)
which yields Equations (4.2.3) and (4.2.5) of Definition 4.2.11. For � ∈ {∗,∞} we
calculate (

λΩ ◦ F(tr)
)
(X) = δA×Ω+1

X

and conclude that for z ∈ A×X+ 1 we have (pϕ({ε}) ◦ λΩ ◦ F(tr))(z) = 1 if and
only if z = X. Hence evaluating equation (4.2.11) in this case yields

tr(x)({ε}) =

∫
pϕ({ε}) ◦ λΩ ◦ F(tr)dα(x) =

∫
χ1 dα(x) = α(x)(1)

which is equation (4.2.2). For � ∈ {ω,∞} we have tr(x)(A�) = 1 due to the
fact that tr(x) must be a probability measure. This is already equation (4.2.4)
because A� = εA�. Moreover ϕ(εA�) = ϕ(Ω) = FΩ and since also λΩ ◦ F(tr)
must be a probability measure evaluating (4.2.11) yields the same:

tr(x)(εA�) =

∫
pϕ(εA�) ◦ λΩ ◦ F(tr)dα(x) =

∫
1dα(x) = α(x)(FX) = 1 .

Finally, for � = 0 we remark that the K`(S)-object (∅, {∅}) is the unique final
object of K`(S): Given any K`(S)-object (X,ΣX), the unique map into the final
object is given as f : X→ S(∅) = {(p : {∅}→ [0, 1],p(∅) = 0)} mapping any x ∈ X

119

Chapter 4 Trace Semantics for PTS

to the unique element of that set. Moreover, (∅, {∅}) together with κ = ηF∅ ◦ϕ,
where the mapϕ : ∅ → A×∅ is the obvious and unique isomorphism (∅,P (∅)) ∼=
(A× ∅,P (A)⊗P (∅)), is a F-coalgebra and thus final.

In all cases we have obtained exactly the equations from Definition 4.2.11

which by Theorem 4.2.12 yield a unique function tr : X → TA�. From Theo-
rem 4.2.26 we know that this function is indeed a Kleisli arrow.

4.3 Examples

In this section we will define and examine two truly continuous probabilistic
systems and calculate their trace measures or parts thereof. However, in order
to deal with these systems, we first need to provide some additional measure
theoretic results and tools. At first, we will explain the counting measure on
countable sets and also the Lebesgue measure as this is the standard measure on
the reals. Afterwards we will take a quick look into the theory of measures with
densities. With these tools at hand we can finally present the examples. All of
the presented results should be contained in any standard textbook on measure
and integration theory. We use Jürgen Elstrodt’s german textbook Maß- und
Integrationstheorie [Els11] as our primary source for this short summary.

Definition 4.3.1 (Counting Measure) Let X be a countable set. The counting
measure on the measurable space (X,PX) is the cardinality map

: PX→ R+, A 7→ |A| (4.3.1)

assigning to each finite subset of X its number of elements and∞ to each infinite
subset of X. It is uniquely defined as the extension of the σ-finite pre-measure
on the set of all singletons (and ∅) which is 1 on every singleton and 0 on ∅.

4.3.1 Completion and the Lebesgue Measure

The (one-dimensional) Lebesgue-Borel measure is the unique measure λ ′ on the
reals equipped with the Borel σ-algebra B(R) satisfying λ ′ ((a,b]) = b − a

for every a,b ∈ R, a 6 b. In order to obtain the Lebesgue measure, we will
refine both the measure and the set of measurable sets by completion. We call a
measure space (X,Σ,µ) complete if every subset of a µ-null-set (i.e., a measurable
set S ∈ Σ such that µ(S) = 0) is measurable (and necessarily also a µ-null-set).
For any measure space (X,Σ,µ) there is always a smallest complete measure
space (X, Σ̃, µ̃) such that Σ ⊆ Σ̃ and µ̃|Σ = µ called the completion [Els11, II. §6].
The completion of the Lebesgue-Borel measure yields the Lebesgue σ-algebra L

120

4.3 Examples

and the Lebesgue measure10 λ : L → R. For the Lebesgue measure we will use
the following notation for integrals:∫b

a
fdx :=

∫
[a,b]

fdλ .

4.3.2 Densities

When dealing with measures on arbitrary measurable spaces – especially in
the context of probability measures – it is sometimes useful to describe them
using so-called densities. We will give a short introduction into the theory of
densities here which is sufficient for understanding the upcoming examples.
Given a measurable space (X,ΣX) and measures µ,ν : ΣX → R+ we call a
Borel-measurable function f : X→ R satisfying

ν(S) =

∫
S
fdµ (4.3.2)

for all measurable sets S ∈ ΣX a µ-density of ν. In that case µ(S) = 0 implies
ν(S) = 0 for all measurable sets S ∈ ΣX and we say that ν is absolutely continuous
with respect to µ and write ν � µ. Densities are neither unique nor do they
always exist. However, if ν has two µ-densities f,g then f = g holds µ-almost
everywhere, i.e., there is a µ null set N ∈ ΣX such that for all x ∈ X \N we have
f(x) = g(x). Moreover, any such µ-density uniquely defines the measure ν. If
µ = λ, i.e., µ is the Lebesgue-measure, and (4.3.2) holds for a measure ν and a
function f, then f is called Lebesgue density of ν. For our examples we will make
use of the following result [Els11, IV.2.12 Satz].

Theorem 4.3.2 (Integration and Measures with Densities) Let (X,ΣX) be a
measurable space and let µ,ν : ΣX → R+ be measures such that ν has a µ-
density f. If g : X→ R+ is ν-integrable, then

∫
gdν =

∫
gfdµ.

4.3.3 Examples

With all the previous results at hand, we can now present our two continuous
examples using densities to describe the transition functions.

Example 4.3.3 We will first give an informal description of this example as
a kind of one-player-game which is played in the closed real interval [0, 1].

10This is the second meaning of the symbol λ in this chapter. Until here, λ was used as symbol
for a Kleisli law.

121

Chapter 4 Trace Semantics for PTS

The player, who is in any point z ∈ [0, 1], can jump up and will afterwards
touch down on a new position x ∈ [0, 1] which is determined probabilistically.
After a jump, the player announces, whether he is left “L” or right “R” of
his previous position. The total probability of jumping from z to the left is z
and the probability of jumping to the right is 1− z. In both cases, we have a
continuous uniform probability distribution. As we are within the set of reals,
the probability of hitting a specific point x0 ∈ [0, 1] is always zero. Let us now
continue with the precise definition of our example. Let A := {L,R}. We consider
the pts ({L,R} , [0, 1],α) where [0, 1] is equipped with the Lebesgue σ-algebra of
the reals, restricted to that interval denoted L([0, 1]). The transition probability
function α : [0, 1]→ P([0, 1]) is given as

α(z)(S) =

∫
S
fz d(#⊗ λ)

for every z ∈ [0, 1] and all sets S ∈ P ({L,R})⊗L([0, 1]) with the (#⊗ λ)-densities

fz : {L,R}× [0, 1]→ R+, (a, x) 7→ χ{L}×[0,z](a, x) + χ{R}×[z,1](a, x) .

We observe that for every real number z ∈ [0, 1] the functions S 7→ PL (z,S),
S 7→ PR (z,S) : L([0, 1])→ R+ thus have Lebesgue-densities

PL (z,S) =
∫
S
χ[0,z] dλ =

∫
S
χ[0,z](x)dx, PR (z,S) =

∫
S
χ[z,1] dλ =

∫
S
χ[z,1](x)dx .

with the following graphs (in the real plane)

1

0 z 1

χ[0,z]

χ[z,1]

χ[z,1]

χ[0,z]

Evaluating these measures on [0, 1] yields

PL (z, [0, 1]) =
∫ z
0
1dx = z, PR (z, [0, 1]) =

∫1
z
1dx = 1− z .

122

4.3 Examples

With these preparations at hand we calculate the trace measure on some cones.

tr(z)(εAω) = 1

tr(z)(LAω) =

∫
[0,1]
1dPL

(
z, z ′

)
= PL (z, [0, 1]) = z

tr(z)(RAω) =

∫
[0,1]
1dPR

(
z, z ′

)
= PR (z, [0, 1]) = 1− z

tr(z)(LLAω) =

∫
[0,1]
xdPL (z, x) =

∫1
0
x · χ[0,z](x)dx =

∫ z
0
xdx =

[
1

2
x2
]z
0

=
1

2
z2

tr(z)(LRAω) =

∫
[0,1]
1− xdPL (z, x) =

∫ z
0
(1− x)dx =

[
x−

1

2
x2
]z
0

= z−
1

2
z2

tr(z)(RLAω) =

∫
[0,1]
xdPR (z, x) =

∫1
0
x · χ[z,1](x)dx =

∫1
z
xdx =

1

2
−
1

2
z2

tr(z)(RRAω) =

∫
[0,1]
1− xdPR (z, x) =

∫1
z
(1− x)dx =

1

2
− z+

1

2
z2

Thus for any word u ∈ A∗ of length n there is a polynomial pu ∈ R[Z] in one
variable Z with degree deg(pu) = n. Evaluating this polynomial for an arbitrary
z ∈ [0, 1] yields the value of the trace measure tr(z) on the cone uAω generated
by u, i.e., tr(z)(uAω) = pu(z).

While the previous example provides some understanding on how to describe
a continuous pts and also on how to calculate its trace measure, we are
interested in trace equivalence. The second example will thus be a system
which is trace equivalent to a finite state system.

Example 4.3.4 As before, we will give an informal description as a kind of
one-player-game first. There is exactly one player, who starts in any point z ∈ R,
jumps up and touches down somewhere on the real line announcing whether
he is left “L” or right “R” of his previous position or has landed back on his
previous position “N”. The probability of landing is initially given via a normal
distribution centered on the original position z. Thus, the probability of landing
in close proximity of z, i.e., in the interval [z− ε, z+ ε], is high for sufficiently
big ε ∈ R+ \ {0} whereas the probability of landing far away, i.e., outside of that
interval, is negligible. The player has a finite amount of energy and each jump
drains that energy so that after finitely many jumps he will not be able to jump
again resulting in an infinite series of “N” messages. Before that the energy
level determines the likelihood of his jump width, i.e., the standard deviation of
the normal distributions. Now let us give a formal description of such a system.

123

Chapter 4 Trace Semantics for PTS

Recall that the density function of the normal distribution with expected value11

µ ∈ R and standard deviation σ ∈ R+ \ {0} is the Gaussian function

ϕµ,σ : R→ R+, ϕµ,σ(x) =
1

σ
√
2π
· exp

(
−
1

2

(
x− µ

σ

)2)

with the following graph (in the real plane), often called the “bell curve".

z

ϕ

Let now the finite “energy level” or “time horizon” (which is the maximal
number of jumps) T ∈ N, T > 2 be given. We consider the pts with alpha-
bet A := {L,N,R}, state space (N0 ×R,P (N0)⊗ L) and transition probability
function α : N0 ×R → P (A×N0 ×R) which we define in two steps. For all
(t, z) ∈ N0 ×R with t < T and all measurable sets S ∈ P (A)⊗ P (N0)⊗L we
set

α(t, z)(S) :=
∫
S
f(t,z) d(#⊗ #⊗ λ)

where the (#⊗ #⊗ λ)-density f(t,z) is f(t,z) : A×N0 ×R→ R+, given by

f(t,z)(a, t ′, x) =

χ(−∞,z](x) ·ϕz,1/(t+1)(x), a = L∧ t ′ = t+ 1

χ[z,+∞)(x) ·ϕz,1/(t+1)(x), a = R∧ t ′ = t+ 1

0, else.

Thus in the first two cases the density is the left (or right) half of the Gaussian
density function with expected value µ = z and standard deviation σ = 1/(t+ 1)

and the constant zero function in all other cases. For the remaining (t, z) ∈
N0 ×R with t > T we define the transition probability function to be

α(t, z) := δA×N0×R

(N,t+1,z) .

11This is the third meaning of µ. Until here, µ was used as symbol for a measure and also as a
symbol for the multiplication natural transformation of a monad.

124

4.4 Conclusion

We observe that for (t, z) ∈N0 ×R with t < T we have PN ((t, z), N0 ×R) = 0

and

PL ((t, z), N0 ×R) =

∫ z
−∞ϕz,1/(t+1)(x)dx =

1

2

=

∫∞
z
ϕz,1/(t+1)(x)dx = PR ((t, z), N0 ×R) .

For t > T we have PN ((t, z), N0 ×R) = 1, PL ((t, z), N0 ×R) = 0 and also
PR ((t, z), N0 ×R) = 0. Once we combine these results we obtain the trace
measure. For t < T we get

tr(t, z) =
∑

u∈{L,R}T−t

(
1

2

)T−t
· δA

ω

uNω

and for t > T the trace measure is tr(t, z) = δA
ω

Nω . Obviously the trace mea-
sure does not depend on z, i.e., tr(t, z1) = tr(t, z2) for all t ∈ N and all
z1, z2 ∈ R. Moreover, there is a simple finite state system which is trace equiv-
alent to this system. The finite system has the same alphabet A, its state
space is ({0, . . . , T } ,P ({0, . . . , T })), and the transition function α : {0, . . . , T } →
P (A × {0, . . . , T }) is given as follows

0 1 2 T − 1 T

L, 1/2

R, 1/2

L, 1/2

R, 1/2

L, 1/2

R, 1/2

N, 1

i.e., for t < T we define

α(t) =
1

2
·
(
δ
A×{0,...,T }
(L,t+1) + δ

A×{0,...,T }
(R,t+1)

)
and for t = T we define α(t) = δA×{0,...,T }

(N,T) .

4.4 Conclusion

We have shown how to obtain coalgebraic trace semantics for generative prob-
abilistic transition systems in a general measure-theoretic setting, thereby al-
lowing not only systems with uncountable state spaces but also the treatment
of infinite trace semantics. In particular, we have presented final coalgebras
for two functors (with or without termination) on the Kleisli categories of the
subprobability and the probability monads yielding a total of four different
types of probabilistic systems along with their traces.

125

Chapter 4 Trace Semantics for PTS

4.4.1 Related Work

There is a huge body of work on Markov processes and probabilistic transition
systems, but only part of it deals with behavioral equivalences, as in our setting.
Even when the focus is on behavioral equivalences, usually bisimilarity and
related equivalences are studied (see for instance [LS89; LS91]) instead of the
very natural notion of trace equivalence. Furthermore many papers restrict to
countable state spaces and discrete probability theory.

Our work is clearly inspired by the Kleisli approach to trace semantics
[HJS07], which we generalized to a measure-theoretic setting and considered
four slightly different types of systems. Different from the route we took in this
chapter – we defined the final coalgebras manually – another option might have
been to extend the general theorem of the aforementioned publication [HJS07,
Theorem 3.3]. As explained in the Preliminaries (in Section 2.4.3), this theorem
gives sufficient conditions under which a final coalgebra in a Kleisli category
of a Set-monad arises out of an initial algebra in the underlying category Set.
Apart from the fact that the theorem only is stated for Set, it requires that
the Kleisli category is cppo-enriched, i.e., that each homset carries a complete
partial order with bottom and some additional conditions hold. Thus it is
highly non-trivial to generalize. First, it would be necessary to extend it to
the category Meas and second – even more importantly – the requirement
of the Kleisli category being cppo-enriched is quite restrictive. For the case
of the subprobability monad a bottom elements exist (the arrow which maps
everything to the constant 0-measure), but this is not the case for the probability
monad, which is the more challenging part, giving rise to infinite words. Hence
we would require a different theorem, which can also be seen by the fact that in
the case of the probability monad the final coalgebra is not the initial algebra in
Meas.

The study of probabilistic systems using coalgebra is of course not a new
approach. Ana Sokolova’s extensive survey on the coalgebraic treatment of
discrete systems [Sok11] includes an overview of various different types of
transition systems containing probabilistic effects alongside user-input, non-
determinism and termination, extensions that we did not consider in this
chapter (apart from termination).

The coalgebraic treatment of arbitrary probabilistic systems is the topic of
two text books, one by Ernst-Erich Doberkat [Dob07b] and the other one
by Prakash Panangaden [Pan09]. Both give a very thorough and general
overview of properties of labelled Markov processes including the treatment
of probabilistic bisimilarity and its connection to probabilistic temporal logics.
Using these logics it is then even possible to define a notion of bisimilarity

126

4.4 Conclusion

distance [Pan09] for such systems. However, both books do not cover the topic
of trace equivalences. Moreover, many of the results only can be shown for
Polish or analytic spaces instead of general measurable spaces.

Coalgebras for functors on the category Meas of measurable spaces and
measurable functions have been studied extensively by Ignacio Viglizzo [Vig05b;
Vig05a]. In particular, he proves that final coalgebras for measure polynomial
functors functors onMeas exist [Vig05a]. However, since all these are coalgebras
in Meas and not in the Kleisli category over a suitable monad, the obtained
behavioral equivalence is probabilistic Larsen-Skou [LS89] bisimilarity instead
of trace equivalence and the results do not apply to our setting.

Infinite traces in a general coalgebraic setting have already been studied by
Corina Cîrstea [Crs10]. However, this generic theory, once applied to probabilis-
tic systems, is restricted to coalgebras with countable carrier while our setting,
which is undoubtedly specific and covers only certain functors and branching
types, allows arbitrary carriers for coalgebras of probabilistic systems.

4.4.2 Future Work

As we already pointed out above, we constructed our final coalgebras manually,
so one apparent yet likely difficult question is whether there more general
approaches to obtain coalgebras in the Kleisli categories of the Giry monads.

Another possible future work could be to apply a generic minimization
algorithm for coalgebras [ABH+12] and adapt it to this general setting by
working out the notion of canonical representatives for probabilistic transition
systems. In this case it should be interesting to compare them to the canonical
representatives for weak and strong bisimilarity presented recently [EHS+13].

Finally, it might be fruitful to also study probabilistic trace distances coalge-
braically as has been done for bisimilarity distances [vBW01b]. This is done
for discrete systems in the next chapter but not for the general type of system
considered here. Moreover, in this context one could also try to find algorithms
for approximating and calculating this distance, perhaps similar to what has
been proposed for probabilistic bisimilarity [vBW06; CvBW12] including a
recent on-the-fly algorithm [BBLM13].

127

5
Behavioral Pseudometrics

In this final main chapter of the thesis, we aim at taking the coalgebraic
behavior analysis one step further by moving from a qualitative analysis
to a quantitative one. Thus, instead of considering behavioral equivalences

coalgebraically, we will develop a coalgebraic framework to obtain canonical
definitions for behavioral pseudometrics.

Since our approach is heavily influenced by ideas borrowed from trans-
portation theory [Vil09] let us first recall the example from the Introduction
(Chapter 1) and discuss how this is related to questions of transportation.

5.1 Motivation

The transition system in Figure 5.1.1 (taken from a paper by Franck van Breugel
and James Worrel [vBW06]) is a purely probabilistic transition system with state
space X = {u, x,y, z} and an arbitrary ε ∈]0, 1/2[. An intuitive understanding of
such a system is that in each state the system chooses a transition (indicated by
the arrows) to another state using the probabilistic information which is given
by the numbers on the arrows.

x

u z

y

X

1
2 − ε

1
2 + ε

1
2

1
2

1
1

Figure 5.1.1: A probabilistic transition system

The state z on the right hand side of Figure 5.1.1 is a final state so the system
terminates with probability one (indicated by the arrow to X) when reaching
that state. Contrary to that, state u on the left hand side can be interpreted as a
fail state which – once reached – can never be left again and the system loops
indefinitely in u. Thus the behavior of these states is entirely different.

129

Chapter 5 Behavioral Pseudometrics

Comparing the behavior of x and y is a bit more complicated – they both have
probabilistic transitions to u and z but in state x there is always a bias towards
the final state z which is controlled only by the value of ε. In the Introduction
we claimed that due to this x and y are certainly not behaviorally equivalent
but similar in the sense that their behavioral distance is ε.

Let us now analyze how we can formally draw that conclusion. First note
that we can define a distance between the states u and z based solely on the
fact that z is final while u is not. Though we do not yet give it an explicit
numerical value, we consider them to be maximally apart. Then, in order to
compare x and y we need to compare their transitions which (in this example)
are probability distributions1 Px,Py : {u, z} → [0, 1]. Thus the underlying task
is to define a distance between probability distributions based on a distance on their
common domain of definition.

Let us now tackle this question with a separate, more illustrative example.
We will come back to our probabilistic transition system afterwards (in fact, we
will even discuss it more thoroughly throughout the whole chapter).

5.1.1 Wasserstein and Kantorovich Distance

Suppose we are given a three element set X = {A,B,C} along with a distance
function2 d : X×X→ [0, 1] where

d(A,A) = d(B,B) = d(C,C) = 0,
d(A,B) = d(B,A) = 3,
d(A,C) = d(C,A) = 5, and
d(B,C) = d(C,B) = 4 .

Based on this function we now want to define a distance on probability distri-
butions on X, i.e., a function dD : DX×DX → [0, 1], so we need to define its
value dD(P,Q) for all probability distributions P,Q : X→ [0, 1]. As a concrete
example, let us take the distributions

P(A) = 0.7, P(B) = 0.1, P(C) = 0.2,
Q(A) = 0.2, Q(B) = 0.3, and Q(C) = 0.5 .

In order to define their distance, we can interpret the three elements A, B, C as
places where a certain product is produced and consumed (imagine the places

1They are actually probability distributions on X with support {u, z}. We will discuss this issue
later.

2In general we will consider pseudometrics. Here we even have a proper metric.

130

5.1 Motivation

are coffee roasting plants3, each with an adjacent café where one can taste the
coffee). For reasons of simplicity, we assume that the total amount of production
equals the amount of consumption4. The places are geographically distributed
across an area and the distance function just describes their physical distance.
Moreover, the above distributions model the supply (P) and demand (Q) of the
product in per cent of the total supply or demand. We have illustrated this
situation graphically in Figure 5.1.2.

A

B

C

3

5

4

0.7

0.1

0.2

0.2

0.3

0.5

Figure 5.1.2: Lifting example – the numbers on the edges indicate the distance
between the places A, B, C whereas the numbers on the nodes
indicate supply P (upper value) and demand Q (lower value).

The interpretation given above allows us to find two economically motivated
views of defining a distance between P and Q based on the notion of transporta-
tion which is studied extensively in transportation theory [Vil09]. The leading
idea is that the product needs to be transported so as to avoid excess supply
and meet all demands. As an owner of the three facilities we have two choices:
do the transport on our own or find a logistics firm which will do it for us.

If we are organizing the transport ourselves, transporting one unit of our
product from one place to another costs one monetary unit per unit of distance
travelled. As an example, transporting ten units from A to B will cost 10 · 3 = 30
monetary units. Formally, we will have to define a function t : X× X → [0, 1]
where t(x,y) describes (in %) the amount of goods to be transported from place
x to y such that

3Transportation theory was described already in 1781 by the French scientist Gaspard Monge
[Mon81]. In his description, an amount of earth which was extracted from the soil (déblais)
has to transported to be used somewhere else (remblais). More recently, mines and factories
or bakeries and cafés [Vil09] are used to describe the problem.

4If this was not the case we could introduce a dummy place representing either a warehouse
(overproduction) or the amount of the product that needs to be bought on the market
(underproduction).

131

Chapter 5 Behavioral Pseudometrics

. supplies are used up: for all x ∈ X we must have
∑
y∈X t(x,y) = P(x), and

. demand is satisfied: for all y ∈ X we must have
∑
x∈X t(x,y) = Q(y).

In probability theory, such a function is as a joint probability distribution with
marginals P andQ and is therefore called a coupling of P andQ. In our economic
perspective we will just call it a transportation plan for supply P and demand Q
and write T(P,Q) for the set of all such transportation plans.

If M ∈ R+ denotes the total supply (= total demand), the total transportation
cost for any transportation plan t ∈ T(P,Q) is given by the linear functional cd
which is parametrized by the distance function d and defined as

cd(t) :=
∑
x,y∈X

(
M · t(x,y)

)
· d(x,y) =M ·

∑
x,y∈X

t(x,y) · d(x,y) .

Since we want to maximize our profits, we will see to it that the total transporta-
tion cost is minimized, i.e., we will look for a transportation plan t∗ ∈ T(P,Q)

minimizing the value of cd (it can be shown that such a t∗ always exists). Using
this, we can now define the distance of P and Q to be the relative costs cd(t∗)/M
of such an optimal transportation plan, i.e.,

d ↓D(P,Q) := min

∑
x,y∈X

t(x,y) · d(x,y)
∣∣∣∣ t ∈ T(P,Q)

 .

This distance between probability distributions is called the Wasserstein distance
and it can be shown that this distance is a pseudometric if d is a pseudometric
(and we will recover this result later). In our concrete example of Figure 5.1.2,
the best solution is apparently to first use the local production (zero costs) at
each facility and then transport the remaining excess supply of 50% in A to the
remaining demands in B (20%) and in C (30%). Thus we obtain

d ↓D(P,Q) = 0.2 · d(A,B) + 0.3 · d(A,C) = 0.2 · 3+ 0.3 · 5 = 0.6+ 1.5 = 2.1

as distance between P and Q yielding an optimal (absolute) transportation cost
of 2.1 ·M monetary units.

If we decide to let a logistics firm do the transportation instead of doing it
on our own, we assume that for each place they set up a price for which they
will buy a unit of our product (at a place with overproduction) or sell it (at a
place with excess demand). Formally it will do so by giving us a price function
f : X→ R+. We will only accept competitive price functions which satisfy

|f(x) − f(y)| 6 d(x,y)

132

5.1 Motivation

for all places x,y ∈ X. This amounts to saying that if we sell one unit of our
product at place x to the logistics firm and buy one at y it does not cost more
than transporting it ourselves from x to y. If d is a pseudometric, we will later
call this requirement non-expansiveness of the function f. Here, we will denote
the set of all these functions by C(d).

The logistics firm is interested in its own profits which are given by the linear
functional gd which is again parametrized by d and defined as

gd(f) :=
∑
x∈X

f(x) ·
((
M ·Q(x)

)
−
(
M · P(x)

))
=M ·

∑
x∈X

f(x) ·
(
Q(x) − P(x)

)
for all competitive price functions f ∈ C(d). If in this formula the value
Q(x) − P(x) is greater than 0, there is underproduction so the logistics firm can
sell goods whereas if Q(x) − P(x) < 0 it will have to buy them. Naturally, the
logistics firm will want to maximize its profits so it will look for a competitive
price function f∗ ∈ C(d) maximizing the value of gd. Based on this we can now
define another distance between P and Q to be the relative profit gd(f∗)/M, i.e.,

d ↑D(P,Q) := max

{∑
x∈X

f(x) ·
(
Q(x) − P(x)

) ∣∣∣ f ∈ C(d)} .

One can show that for our example it will be best if we give our product to the
logistics firm for free5 in A, i.e., the logistic firm defines the price f∗(A) = 0.
Moreover, we need to buy it back at B for three monetary units (f∗(B) = 3) and
for five monetary units at C (f∗(C) = 5). This yields as distance

d ↑D(P,Q) =
∑
x∈X

f∗(x) ·
(
Q(x) − P(x)

)
= 0 · (0.2− 0.7) + 3 · (0.3− 0.1) + 5 · (0.5− 0.2) = 2.1

which is exactly the same as the one obtained earlier. In fact, one can prove
that d ↑D(P,Q) 6 d ↓D(P,Q) so whenever we have a transportation plan t∗ and
a competitive price function f∗ so that cd(t∗) = gd(f∗) we know that both are
optimal yielding d ↑D(P,Q) = d ↓D(P,Q) = cd(t

∗). As final remark we note that
if X is a finite set such a pair (t∗, f∗) will always exist and can be found e.g.
using the simplex algorithm from linear programming [Sch99].

5.1.2 Behavioral Distance as Fixed Point

Now that we have finished our little excursion to transportation theory, let
us come back to the original example where we wanted to define a distance

5Apparently, this is only reasonable in presence of a contract that prohibits the logistics firm
to use our product or sell it to anyone else.

133

Chapter 5 Behavioral Pseudometrics

between the two states x and y of the probabilistic transition system in Fig-
ure 5.1.1. Since we consider u and z to be maximally apart, we could formally
set d(u, z) = d(z,u) = 1 and d(u,u) = d(z, z) = 0 so we obtain as distance
function d : {u, z}× {u, z}→ [0, 1] the discrete 1-bounded metric on the set {u, z}.
Using this, we could then define the distance of x and y to be the distance of
their transition distributions Px,Py : {u, z} → [0, 1] yielding indeed a distance
d ′(x,y) = d ↓D(Px,Py) = d ↑D(Px,Py) = ε as claimed in the beginning.

However, the remaining question we need to answer is how the above pro-
cedure gives rise to a proper behavioral distance in the sense that we obtain a
sound and complete definition of a distance function on the whole set X, i.e., a
pseudometric d : X×X→ [0, 1]. In order to do that, we just need to observe that
the definition of d ′(x,y) yields the following fixed point characterization

d(x1, x2) = dD
(
Px1 ,Px2

)
(5.1.1)

for all x1, x2 ∈ X where dD is one of the equivalent distances (Wasserstein or
Kantorovich) defined above. A known approach for probabilistic systems as the
one above is to define its behavioral distance to be a fixed point d∗ : X×X→ [0, 1]
of the above equation [vBW06; vBSW08]. It is not difficult to see that due to the
special structure of the above system, one obtains d∗(u, z) = d∗(z,u) = 1 and
d∗(x,y) = d ′(x,y) = ε which finally validates our initial claim that the distance
of x and y is indeed ε.

5.1.3 Structure of this Chapter

Summing up, we have seen that in order to obtain behavioral distances for
probabilistic systems we had to

. provide a technique to lift distances from a set X to the set DX of probability
distributions on it, and

. solve a fixed point equation involving this lifting on the complete lattice of
pseudometrics.

Based on these observations, we will now define a coalgebraic framework
to obtain behavioral distances for a large variety of transition systems, not
only probabilistic ones. After some preliminary theory on pseudometrics
(Section 5.2) and a quick look at some motivating examples (Section 5.3) we will
first generalize the Kantorovich/Wasserstein distances: for a given endofunctor
F on Set we define how to obtain a pseudometric dF on FX based on a given
pseudometric d on a set X, which will result in a lifting of a Set endofunctor
F to an endofunctor F on the category PMet of pseudometric spaces and
nonexpansive functions (Section 5.4).

134

5.2 Pseudometric Spaces

Then we will prove that we can use a fixed point approach to define a
pseudometric on the carrier Z of a final F-coalgebra z : Z→ FZ which yields the
final F-coalgebra dZ (Section 5.5). For any coalgebra c : X → FX we can then
define the behavioral distance of two states x,y to be

bdc(x,y) := dZ
(
[[x]]c, [[y]]c

)
thus equipping its carrier X with a canonical pseudometric structure. Moreover,
we show that if the lifted functor F preserves isometries this pseudometric can
directly be computed using a fixed point approach.

As we have discussed extensively in the Preliminaries, the behavioral equiva-
lence induced by the unique homomorphism into the final coalgebra is bisimi-
larity. Thus it is apparent that our approach described so far yields bisimilarity
pseudometrics. The remainder of the chapter is therefore devoted to obtaining
trace pseudometrics via the generalized powerset construction. For this we first
study compositionality of our lifting approaches (Section 5.6) and then the lifting
of natural transformations and monads (Section 5.7). Using these results, we can
then employ the generalized powerset construction to obtain trace pseudometrics
and show how this applies to nondeterministic and probabilistic automata (Sec-
tion 5.8). Finally, we will of course discuss related and future work (Section 5.9).

5.2 Pseudometric Spaces

Contrary to the usual definitions, our distances assume values in a closed
interval [0,>], where > ∈]0,∞] is a fixed maximal element6 (for our examples
we will use > = 1 or > =∞). Thus our distances are functions d : X×X→ [0,>].
In this way the set of (pseudo)metrics over a fixed set X is a complete lattice
(since [0,>] is) with respect to the pointwise order, i.e., for d1,d2 : X×X→ [0,>]
we define d1 6 d2 if and only if d1(x, x ′) 6 d2(x, x ′) holds for all x, x ′ ∈ X. We
will see later (cf. to Theorem 5.2.8) that the join of a set of pseudometrics is
obtained by taking the pointwise supremum of all these functions, whereas the
meet cannot be defined in this way (the infimum of a set of pseudometrics need
not be a pseudometric). Apart from the completeness, we also ensure that the
category whose objects are pseudometric spaces is complete and cocomplete.

Definition 5.2.1 (Pseudometric, Pseudometric Space) Let > ∈]0,∞] be a fixed
maximal distance and X be a set. We call a function d : X × X → [0,>] a
>-pseudometric on X (or a pseudometric if > is clear from the context) if it satisfies

6Traditionally distances assume values in [0,∞[.

135

Chapter 5 Behavioral Pseudometrics

1. d(x, x) = 0 (reflexivity),

2. d(x,y) = d(y, x) (symmetry), and

3. d(x, z) 6 d(x,y) + d(y, z) (triangle inequality)

for all x,y, z ∈ X. If additionally d(x,y) = 0 implies x = y, d is called a >-metric
(or a metric). A (pseudo)metric space is a pair (X,d) where X is a set and d is a
(pseudo)metric on X.

A trivial example of a pseudometric is the constant 0-function on any set
whereas a simple example of a metric is the so-called discrete metric which can
be defined on any set X as d(x, x) = 0 for all x ∈ X and d(x,y) = > for all
x,y ∈ X with x 6= y.

5.2.1 Calculating with (Extended) Real Numbers

By de : [0,>]2 → [0,>] we denote the ordinary Euclidean metric on [0,>], i.e.,
de(x,y) = |x−y| for x,y ∈ [0,>] \ {∞}, and – where appropriate – de(x,∞) =∞
if x 6=∞ and de(∞,∞) = 0. Addition is defined in the usual way, in particular
x+∞ =∞ for x ∈ [0,∞].

In the following lemma we rephrase the well-known fact that for a,b, c ∈
[0,∞) we have |a− b| 6 c ⇐⇒ a− b 6 c ∧ b− a 6 c to include the cases
where a,b, c might be∞.

Lemma 5.2.2 For a,b, c ∈ [0,∞] we have the following equivalence:

de(a,b) 6 c ⇐⇒ (a 6 b+ c) ∧ (b 6 a+ c) .

Proof. This equivalence is obvious for a,b, c ∈ [0,∞). In the cases a,b ∈ [0,∞],
c =∞ or a = b =∞, c ∈ [0,∞] both sides of the equivalence are true whereas
for the cases a =∞, b, c ∈ [0,∞) or b =∞, a, c ∈ [0,∞) both sides are false.

We continue with another simple calculation involving this extended Eu-
clidean distance which will turn out to be useful in the later proofs.

Lemma 5.2.3 For a finite set A and functions f,g : A→ [0,∞] we have

1. de
(

maxa∈A f(a), maxa∈A g(a)
)
6 maxa∈A de

(
f(a),g(a)

)
, and

2. de
(∑

a∈A f(a),
∑
a∈A g(a)

)
6
∑
a∈A de

(
f(a),g(a)

)
.

Proof. We show both statements separately.

136

5.2 Pseudometric Spaces

1. Let af ∈ arg maxa∈A f(a) and ag ∈ arg maxa∈A g(a), i.e., af = maxa∈A f and
ag = maxa∈A g. If f(af) = g(ag) the left hand side of the above inequality
is 0 and so the inequality is satisfied. From here we assume without loss
of generality that f(af) > g(ag). Now if f(af) = ∞, the left hand side
is ∞ but also maxa∈A de

(
f(a),g(a)

)
> de

(
f(af),g(af)

)
= ∞. Finally, for

f(af) <∞we have g(af) 6 g(ag) and thus de
(
f(af),g(ag)

)
= f(af)−g(ag) 6

f(af) − g(af) 6 maxa∈A de
(
f(a),g(a)

)
.

2. Let sf :=
∑
a∈A f(a) and sg :=

∑
g∈A f(a). If sf = sg the left hand side

is 0 and the inequality is satisfied. From here we assume without loss
of generality sf > sg. Now if sf = ∞, the left hand side is ∞ but we
also must have an a ′ ∈ A such that f(a ′) = ∞ (otherwise sf < ∞) and
thus

∑
a∈A de

(
f(a),g(a)

)
> de

(
f(a ′),g(a ′)

)
= ∞. Finally, for sf < ∞ we

have de(sf, sg) = sf − sg =
∑
a∈A f(a) −

∑
a∈A g(a) =

∑
a∈A

(
f(a) − g(a)

)
6∑

a∈A |f(a) − g(a)| =
∑
a∈A de

(
f(a),g(a)

)
.

Another helpful tool for calculation with the usual (non-extended) reals is
the following discrete variant of the Minkowski inequality which arises out
of the general version [Ash72, p. 83] by using the counting measure (see
Definition 4.3.1) on a finite set.

Theorem 5.2.4 (Minkowski Inequality for Sums) Let p,n ∈ N be natural
numbers. Then the inequality(

n∑
k=1

|ak + bk|
p

) 1
p

6

(
n∑
k=1

|ak|
p

) 1
p

+

(
n∑
k=1

|bk|
p

) 1
p

holds for all real numbers ak,bk ∈ R (1 6 k 6 n).

5.2.2 Pseudometrics Categorically

Having established these few intermediary results, we recall that we want to
work in a category whose objects are pseudometric spaces. In order to do so we
need to define the arrows between them. While there are other, topologically
motivated possibilities (e.g. taking the continuous or even absolutely continuous
functions with respect to the pseudometric topology), we require that our
functions do not increase distances.

Definition 5.2.5 (Nonexpansive Function, Isometry) Let > ∈]0,∞] be an ex-
tended real number and (X,dX) and (Y,dY) be >-pseudometric spaces. We call
a function f : X→ Y nonexpansive if

dY ◦ (f× f) 6 dX . (5.2.1)

137

Chapter 5 Behavioral Pseudometrics

In this case we write f : (X,dX) → (Y,dY). If equality holds in (5.2.1), f is called
an isometry.

Note that in this definition we have used a category theoretic mind-set and
written (5.2.1) in an “element-free” version as it will be easier to use in some
of the subsequent results. Of course, this inequality is equivalent to requiring
dY
(
f(x), f(x ′)

)
6 dX(x, x ′) for all x, x ′ ∈ X. Simple examples of nonexpansive

functions – even isometries – are of course the identity functions on a set.
Apparently, if these functions shall be the arrows of a category, we will have

to check that nonexpansiveness is preserved by function composition.

Lemma 5.2.6 (Composition of Nonexpansive Functions) Let > ∈]0,∞], and
(X,dX), (Y,dY) and (Z,dZ) be >-pseudometric spaces. If f : (X,dX) → (Y,dY)
and g : (Y,dY) → (Z,dZ) are nonexpansive, then so is g ◦ f : (X,dX) → (Z,dZ).

Proof. Using nonexpansiveness of g and f we immediately conclude that

dZ ◦
(
(g ◦ f)× (g ◦ f)

)
= dZ ◦ (g× g) ◦ (f× f) 6 dY ◦ (f× f) 6 dX

which is the desired nonexpansiveness of g ◦ f.

With this result at hand we now give our category a name. Please note that
the definition below actually defines a whole family of categories, parametrized
by the chosen maximal element > of the codomain of the pseudometric. Despite
of this, we will just speak of the category of pseudometric spaces and keep in
mind that there are (uncountably) many with the same properties.

Definition 5.2.7 (Category of Pseudometric Spaces) Let > ∈]0,∞] be a fixed
maximal element. The category PMet has as objects all pseudometric spaces
whose pseudometrics have codomain [0,>]. The arrows are the nonexpansive
functions between these spaces. The identities are the (isometric) identity
functions and composition of arrows is function composition.

This category is complete and cocomplete which in particular implies that it
has products and coproducts. We will later see that the respective product and
coproduct pseudometrics also arise as special instances of our lifting framework
(see Lemmas 5.4.56 and 5.4.60).

Theorem 5.2.8 PMet is bicomplete, i.e., it is complete and cocomplete.

Proof. Let D : I → PMet be a small diagram, and define (Xi,di) := D(i) for
each object i ∈ I. Obviously UD : I → Set is also a small diagram. We show

138

5.2 Pseudometric Spaces

completeness and cocompleteness separately.

Completeness: Let (fi : X → Xi)i∈I be the limit cone to UD in Set. We define
the function d := supi∈I di ◦ (fi × fi) : X2 → [0,>] and claim that this is a
pseudometric on X. Since all di are pseudometrics, we immediately can derive
that d(x, x) = 0 and d(x,y) = d(y, x) for all x,y ∈ X. Moreover, for all x,y, z ∈ X:

d(x,y) + d(y, z) = sup
i∈I

di
(
fi(x), fi(y)

)
+ sup

i∈I
di
(
fi(y), fi(z)

)
> sup

i∈I

(
di
(
fi(x), fi(y)

)
+ di

(
fi(y), fi(z)

))
> sup

i∈I
di
(
fi(x), fi(z)

)
= d(x, z) .

With this pseudometric all fj are nonexpansive functions (X,d) → (Xj,dj). In-
deed we have for all j ∈ I and all x,y ∈ X

dj
(
fj(x), fj(y)

)
6 sup

i∈I
di
(
fi(x), fi(y)

)
= d(x,y) .

Moreover, if
(
f ′i : (X

′,d ′) → (Xi,di)
)
i∈I is a cone to D, (f ′i : X

′ → Xi)i∈I is a cone
toUD and hence there is a unique function g : X ′ → X in Set satisfying fi ◦g = f ′i
for all i ∈ I. We finish our proof by showing that this is a nonexpansive function
(X ′,d ′) → (X,d). By nonexpansiveness of the f ′i we have for all i ∈ I and all
x,y ∈ X ′ that di(f ′i(x), f

′
i(y)) 6 d

′(x,y) and thus also

d
(
g(x),g(y)

)
= sup

i∈I
di

(
fi
(
g(x)

)
, fi
(
g(y)

))
= sup

i∈I
di
(
f ′i(x), f

′
i(y)

)
6 sup

i∈I
d ′(x,y) = d ′(x,y) .

We conclude that
(
fi : (X,d) → (Xi,di)

)
i∈I is a limit cone to D.

Cocompleteness: Let (fi : Xi → X)i∈I be the colimit co-cone from UD in Set and
MX be the set of all pseudometrics dX : X2 → [0,>] on X such that the fi are
nonexpansive functions (Xi,di) → (X,dX). We define d := supdX∈MX dX and
claim that this is a pseudometric. Since all dX are pseudometrics, we can derive
immediately that d(x, x) = 0 and d(x,y) = d(y, x) for all x,y ∈ X. Moreover, for
all x,y, z ∈ X we have:

d(x,y) + d(y, z) = sup
dX∈MX

dX(x,y) + sup
dX∈MX

dX(y, z)

> sup
dX∈MX

(
dX(x,y) + dX(y, z)

)
> sup
dX∈MX

dX(x, z) = d(x, z) .

139

Chapter 5 Behavioral Pseudometrics

With this pseudometric all fj are nonexpansive functions (Xj,dj) → (X,d). In-
deed we have for all j ∈ I and all x,y ∈ Xj

d
(
fj(x), fj(y)

)
= sup
dX∈MX

dX
(
fj(x), fj(y)

)
6 sup
dX∈MX

dj(x,y) = dj(x,y) .

Moreover, if
(
f ′i : (Xi,di) → (X ′,d ′)

)
i∈I is a co-cone from D, (f ′i : Xi → X ′)i∈I is

a co-cone from UD and hence there is a unique function g : X → X ′ in Set
satisfying g ◦ fi = f ′i for all i ∈ I. We finish our proof by showing that this is
a nonexpansive function (X,d) → (X ′,d ′). Let dg := d ′ ◦ (g× g) : X2 → [0,>],
then it is easy to see that dg is a pseudometric on X. Moreover, for all i ∈ I and
all x,y ∈ Xi we have

dg
(
fi(x), fi(y)

)
= d ′

(
g
(
fi(x)

)
,g
(
fi(y)

))
= d ′

(
f ′i(x), f

′
i(y)

)
6 di(x,y)

due to nonexpansiveness of f ′i : (Xi,di) → (X ′,d ′). Thus all fi are nonexpansive
if seen as functions (Xi,di) → (X,dg) and we have dg ∈ MX. Using this we
observe that for all x,y ∈ X we have

d ′
(
g(x),g(y)

)
= dg(x,y) 6 sup

dX∈MX
dX(x,y) = d(x,y)

which shows that g is a nonexpansive function (X ′,d ′) → (X,d). We conclude
that

(
fi : (Xi,di) → (X,d)

)
i∈I is a colimit co-cone from D.

For our purposes it will turn out to be useful to consider the following
alternative characterization of the triangle inequality using the concept of
nonexpansive functions.

Lemma 5.2.9 A reflexive and symmetric function d : X2 → [0,>] satisfies the
triangle inequality if and only if for all x ∈ X the function d(x, _) : X→ [0,>] is
a nonexpansive function d(x, _) : (X,d)→ ([0,>],de).

Proof. We show both implications for all x,y, z ∈ X.

⇒ Using the triangle inequality and symmetry we know that d(x,y) 6 d(x, z) +
d(y, z) and d(x, z) 6 d(x,y) + d(y, z). With Lemma 5.2.2 we conclude that
de(d(x,y),d(x, z)) 6 d(y, z).

⇐ Using reflexivity of d, the triangle inequality for de and nonexpansive-
ness of d(x, _) we get d(x, z) = de(d(x, x),d(x, z)) 6 de(d(x, x),d(x,y)) +
de(d(x,y),d(x, z)) 6 d(x,y) + d(y, z).

140

5.3 Examples of Behavioral Distances

5.3 Examples of Behavioral Distances

Equipped with this basic knowledge about our pseudometrics, let us now
take a look at a few examples which we will use throughout the chapter to
demonstrate our theory. All the claims we make in these examples will be
justified by our results. Our first example are the purely probabilistic systems
like the system in Figure 5.1.1 in the beginning.

Example 5.3.1 (Probabilistic Systems and Behavioral Distance [vBW06]) We
consider purely probabilistic transition systems without labels as coalgebras
of the form α : X → D(X+ 1), where D is the probability distribution functor
of Example 2.3.12. Thus α(x)(y), for x,y ∈ X, is the probability of a transition
from a state x to y and α(x)(X) gives the probability of terminating in x.

Franck van Breugel and James Worrell [vBW06] introduced a metric for a
continuous version of these systems by considering a discount factor c ∈]0, 1[.
Instantiating their framework to the discrete case we obtain the behavioral
distance d : X2 → [0, 1], defined as the least solution (with respect to the order
d1 6 d2 ⇐⇒ ∀x,y ∈ X.d1(x,y) 6 d2(x,y)) of the equation

d(x,y) = d
(
α(x),α(y)

)
for all x,y ∈ X. The lifted pseudometric d : (D(X+ 1))2 → [0, 1] is defined in
two steps:

. First, d̂ : (X + 1)2 → [0, 1] is defined as d̂(x,y) = c · d(x,y) if x,y ∈ X,
d̂(X,X) = 0 and d̂(x,y) = 1 otherwise.

. Then, for all P1,P2 ∈ D(X+ 1), d(P1,P2) is defined as the supremum of all
values

∑
x∈X+1 f(x) ·

∣∣P1(x) − P2(x)∣∣, with f : (X+ 1, d̂) → ([0, 1],de) being an
arbitrary nonexpansive function. This pseudometric is usually called the
Kantorovich pseudometric.

Our concrete example from Figure 5.1.1 is an instance of such a system and
if we employ the aforementioned approach the behavioral distance of u and z
is d(u, z) = 1 and hence d(x,y) = c · ε. We will see in Example 5.5.12 that this
example can be captured by our framework. Moreover, we will also see that it
is possible to set c = 1 resulting in d(x,y) = ε.

It is easy to see that also the state space of a deterministic automaton can
be equipped with a pseudometric which arises as solution of a fixed point
equation.

Example 5.3.2 (Bisimilarity Pseudometric for Deterministic Automata) We
consider deterministic automata as coalgebras 〈o, s〉 : X → 2× XA in Set as

141

Chapter 5 Behavioral Pseudometrics

discussed after Example 2.4.5. Given a pseudometric d : X2 → [0,>], we obtain a
new pseudometric dF on 2×XA by defining, for every (o1, s1), (o2, s2) ∈ 2×XA,

dF
(
(o1, s1), (o2, s2)

)
= max

{
d2(o1,o2), c ·max

a∈A
d
(
s1(a), s2(a)

)}
,

where c ∈]0, 1] a discount factor and d2 is the discrete 1-bounded metric on 2.
Using our coalgebra 〈o, s〉 : X → 2× XA we get a fixed point equation on the
complete lattice of pseudometrics on X by requiring, for all x1, x2 ∈ X,

d(x1, x2) = max
{
d2
(
o(x1),o(x2)

)
, c ·max

a∈A
d
(
s(x1)(a), s(x2)(a)

)}
.

If we take any fixed point of this equation, the distance of two states x1 and x2
will be > if one state is final and the other is not. Otherwise their distance is
the c-discounted maximal distance of their successors.

Let us finally consider so-called metric transition systems as introduced by
Luca de Alfaro, Marco Faella and Mariëlle Stoelinga [dAFS09]. Each state of
such a system comes equipped with a function which maps elements of a set of
so-called propositions to a kind of non-discrete truth value in a pseudometric
space.

Example 5.3.3 (Branching Distance for Metric Transition Systems [dAFS09])
Let Σ = {r1, . . . , rn} be a finite set of propositions where each proposition r ∈ Σ is
associated with a pseudometric space (Mr,dr) which is bounded, i.e., we must
have a finite > ∈]0,∞[such that dr : M2

r → [0,>]. A valuation of Σ is a function
u : Σ → ∪r∈ΣMr that assigns to each r ∈ Σ an element of Mr, i.e., we require
u(r) ∈ Xr. We denote the set of all these valuations by U[Σ] and remark that
it is apparently isomorphic to the set M1 × · · · ×Mn by means of the bijective
function which maps a valuation u to the tuple

(
u(r1), . . . ,u(rn)

)
.

A metric transition system [dAFS09, Definition 6] is a tuple (S, τ,Σ, [·]) with a
set S of states, a transition relation τ ⊆ S× S, a finite set Σ of propositions and
a function [·] : S→ U[Σ] assigning a valuation [s] to each state s ∈ S. We define
τ(s) := {s ′ ∈ S | (s, s ′) ∈ τ} and require that τ(s) is finite.

The (directed) propositional distance between two valuations u, v ∈ U[Σ] is
given by [dAFS09, Definition 10]

pd(u, v) = max
r∈Σ

dr
(
u(r), v(r)

)
.

The (undirected) branching distance d : S× S → R+
0 is defined as [dAFS09,

Definition 13] the smallest fixed-point of the following equation, where s, t ∈ S:

d(s, t) = max
{

pd([s], [t]), max
s ′∈τ(s)

min
t ′∈τ(t)

d(s ′, t ′), max
t ′∈τ(t)

min
s ′∈τ(s)

d(s ′, t ′)
}

(5.3.1)

142

5.3 Examples of Behavioral Distances

Note that, apart from the first argument, this coincides with the Hausdorff
distance between the successors of s and t.

x1 0

x2 0.4 x30.7

y1 0

y2 0.5 y31

Figure 5.3.1: A metric transition system

We consider the concrete example system in Figure 5.3.1 [dAFS09, Fig. 1] with
a single proposition r ∈ Σ, where Mr = [0, 1] is equipped with the Euclidean
distance de. Since the states x2, x3,y2,y3 only have themselves as successors,
computing their distance according to (5.3.1) is easy: we just have to take the
propositional distances of the valuations. This results in d(x2,y2) = |0.4− 0.5| =
0.1, d(x2,y3) = 0.6, d(x3,y2) = 0.2, d(x3,y3) = 0.3.

Moreover, pd([x1], [y1]) = 0 and thus d(x1,y1) equals the Hausdorff distance
of the reals associated with the sets of successors which is 0.3 (since this is the
maximal distance of any successor to the closest successor in the other set of
successors, here: the distance from y3 to x3; we will provide the details of this
computation in Example 5.4.32, page 167).

In order to model such transition systems as coalgebras we consider the
product multifunctor P : Setn → Set where P(X1, . . . ,Xn) = X1 × · · · ×Xn. Then
coalgebras are of the form c : S → P(Mr1 , . . . ,Mrn)× Pf(S), where Pf is the
finite powerset functor and c(s) =

(
[s][r1], . . . , [s][rn], τ(s)

)
. As we will see later

in Example 5.5.13, the right-hand side of (5.3.1) can be seen as lifting of a
pseudometric d on X to a pseudometric on P(Mr1 , . . . ,Mrn)×Pf(X).

We will later see that in all the examples above, we obtain a coalgebraic bisim-
ilarity pseudometric: For any coalgebra c : X → FX let us denote the respective
least fixed point of Equation (5.1.1) (page 134) by bdc : X2 → [0,>]. If a final
F-coalgebra z : Z→ FZ exists and some additional conditions hold (which is the
case for our examples) we have

bdc(x,y) = 0 ⇐⇒ [[x]]c = [[y]]c ⇐⇒ x ∼c y

for all x,y ∈ X where [[·]]c : X→ Z is the map into the final coalgebra and ∼c is
the F-bisimilarity as defined in Definition 2.4.12.

143

Chapter 5 Behavioral Pseudometrics

5.4 Lifting Functors to Pseudometric Spaces

Generalizing from our examples, we now establish a general framework for
deriving behavioral distances. The crucial step is to find, for an endofunctor F
on Set, a way to transform a pseudometric on X to a pseudometric on FX. This
induces a lifting of the functor F in the following sense.

Definition 5.4.1 (Lifting to Pseudometric Spaces) Let U : PMet → Set be the
forgetful functor which maps every pseudometric space to its underlying set.
A functor F : PMet → PMet is called a lifting of a functor F : Set → Set if the
diagram below commutes.

PMet PMet

Set Set

F

U

F

U

In this case, for any pseudometric space (X,d), we denote by dF the pseudomet-
ric on FX which we obtain by applying F to (X,d).

Such a lifting is always monotone on pseudometrics in the following sense.

Theorem 5.4.2 (Monotonicity of Lifting) Let F : PMet → PMet be a lifting of
F : Set→ Set and d1,d2 : X×X→ [0,>] be pseudometrics on X. Then d1 6 d2
implies dF1 6 d

F
2.

Proof. Since d1 6 d2 the identity function on the set X can be regarded as
a nonexpansive function f : (X,d2) → (X,d1) because we have for all x,y ∈
X that d1

(
f(x), f(y)

)
= d1(x,y) 6 d2(x,y). By functoriality of F we know

that also Ff : (FX,dF2) → (FX,dF1) is nonexpansive, i.e., for all t1, t2 ∈ FX we
have dF1

(
FUf(t1), FUf(t2)

)
6 dF2(t1, t2) and moreover dF1

(
FUf(t1), FUf(t2)

)
=

dF1(FidX(t1), FidX(t2)) = d
F
1(idFX(t1), idFX(t2)) = dF1(t1, t2) and thus dF1 6 d

F
2.

In order to define a lifting to PMetwe will just use one simple tool, a so-called
evaluation function which describes how to transform an element of F[0,>] to a
real number.

Definition 5.4.3 (Evaluation Function & Evaluation Functor) Let F be an endo-
functor on Set. An evaluation function for F is a function evF : F[0,>] → [0,>].
Given such a function, we define the evaluation functor to be the endofunctor F̃ on

144

5.4 Lifting Functors

Set/[0,>], the slice category7 over [0,>], via F̃(g) = evF ◦ Fg for all g ∈ Set/[0,>].
On arrows F̃ is defined as F.

We quickly remark that by definition of F̃ on arrows, it is immediately clear
that one indeed obtains a functor so the name is justified.

5.4.1 The Kantorovich Lifting

Let us now consider an endofunctor F on Set with an evaluation function
evF. Given a pseudometric space (X,d), our first approach to lift d to FX
will be to take the smallest possible pseudometric dF on FX such that, for all
nonexpansive functions f : (X,d) → ([0,>],de), also F̃f : (FX,dF) → ([0,>],de) is
nonexpansive again, i.e., we want to ensure that for all t1, t2 ∈ FX we have
de
(
F̃f(t1), F̃f(t2)

)
6 dF(t1, t2). This idea immediately leads us to the following

definition which corresponds to the maximization of the logistic firm’s prices in
the introductory example.

Definition 5.4.4 (Kantorovich Function) Let F : Set→ Set be a functor with an
evaluation function evF. For every pseudometric space (X,d) the Kantorovich
function on FX is the function d ↑F : FX× FX→ [0,>], where

d ↑F(t1, t2) := sup
{
de

(
F̃f(t1), F̃f(t2)

)
| f : (X,d) → ([0,>],de)

}
for all t1, t2 ∈ FX.

Note that a nonexpansive function f : (X,d) → ([0,>],de) always exists. If
X = ∅ it is the unique empty function and for X 6= ∅ every constant function is
nonexpansive. Moreover, it is easy to show that d ↑F is a pseudometric.

Theorem 5.4.5 (Kantorovich Pseudometric) For every pseudometric space
(X,d) the Kantorovich function d ↑F is a pseudometric on FX.

Proof. Reflexivity and symmetry are an immediate consequence of the fact that
de is a metric. We now show the triangle inequality. Let t1, t2, t3 ∈ FX, then

d ↑F(t1, t2) + d ↑F(t2, t3)

= sup
f : (X,d) → ([0,>],de)

de

(
F̃f(t1), F̃f(t2)

)
+ sup
f : (X,d) → ([0,>],de)

de

(
F̃f(t2), F̃f(t3)

)
7The slice category Set/[0,>] has as objects all functions g : X→ [0,>] where X is an arbitrary

set. Given g as before and h : Y → [0,>], an arrow from g to h is a function f : X → Y

satisfying h ◦ f = g.

145

Chapter 5 Behavioral Pseudometrics

> sup
f : (X,d) → ([0,>],de)

(
de

(
F̃f(t1), F̃f(t2)

)
+ de

(
F̃f(t2), F̃f(t3)

))
> sup
f : (X,d) → ([0,>],de)

de

(
F̃f(t1), F̃f(t3)

)
= d ↑F(t1, t3)

where the first inequality is a simple property of the supremum and the second
inequality follows again from the fact that de is a metric.

Using this pseudometric we can now immediately define our first lifting.

Definition 5.4.6 (Kantorovich Lifting) Let F : Set → Set be a functor with an
evaluation function evF. We define the Kantorovich lifting of F to be the functor
F : PMet→ PMet, F(X,d) = (FX,d ↑F), Ff = Ff.

Since F inherits the preservation of identities and composition of morphisms
from F we just need to prove that nonexpansive functions are mapped to
nonexpansive functions to obtain functoriality of F.

Theorem 5.4.7 The Kantorovich lifting F is a functor on pseudometric spaces.

Proof. F preserves identities and composition of arrows because F does. More-
over, it preserves nonexpansive functions: Let f : (X,dX) → (Y,dY) be nonexpan-
sive and t1, t2 ∈ FX, then

d
↑F
Y

(
Ff(t1), Ff(t2)

)
= sup
g : (Y,dY) → ([0,>],de)

de

(
F̃(g ◦ f)(t1), F̃(g ◦ f)(t2)

)
6 sup
h : (X,dX) → ([0,>],de)

de

(
F̃(h)(t1), F̃(h)(t2)

)
= d ↑FX (t1, t2)

due to the fact that since both f and g are nonexpansive also the composition
(g ◦ f) : (X,dX) → ([0,>],de) is nonexpansive.

With this result at hand we are almost done: The only remaining task is to
show that F is a lifting of F in the sense of Definition 5.4.1 but this is indeed
obvious by definition of F.

An important property of this lifting is that it preserves isometries, which
is a bit tricky to show. While one might be tempted to think that this is
immediately true because functors preserve isomorphisms, it is easy to see
that the isomorphisms of PMet are the bijective isometries. However, there are
of course also isometries which are not bijective and thus no isomorphisms.
Simple examples for this arise by taking the unique discrete metric space (1,d1)

and mapping it into any other pseudometric space (X,d) with |X| > 1. Any
function 1→ X is necessarily isometric but certainly not bijective.

146

5.4 Lifting Functors

Theorem 5.4.8 The Kantorovich lifting F of a functor F preserves isometries.

Proof. Let f : (X,dX) → (Y,dY) be an isometry, i.e., f must be a function such that
dY ◦ (f× f) = dX. Since the Kantorovich lifting F is a functor on pseudometric
spaces, we already know that Ff is nonexpansive, i.e., we know that d ↑FY ◦
(Ff× Ff) 6 dFX thus we only have to show the opposite inequality. We will do
that by constructing for every nonexpansive function g : (X,dX) → ([0,>],de)
a nonexpansive function h : (Y,dY) → ([0,>],de) such that for every t1, t2 ∈ FX
we have equality de(F̃h(Ff(t1)), F̃h(Ff(t2))) = de(F̃g(t1), F̃g(t2)), because then
we have

d
↑F
Y ◦ (Ff× Ff)(t1, t2)

= sup
{
de

(
F̃h(Ff)(t1), F̃h(Ff)(t2)

)
| h : (Y,dY) → ([0,>],de)

}
> sup

{
de

(
F̃g(t1), F̃g(t2)

)
| g : (X,dX) → ([0,>],de)

}
= d ↑FX (t1, t2) .

We construct h as follows: For each y ∈ f[X] we choose a fixed xy ∈ f−1[{y}] and
define

h(y) :=

g(xy), if y ∈ f[X]
inf

y ′∈f[X]
h(y ′) + dY(y

′,y), else.

Let us first verify that this definition is independent of our choice of the xy.
Given x1, x2 ∈ X with f(x1) = f(x2) = y we get dX(x1, x2) = dY(f(x1), f(x2)) =
dY(y,y) = 0 using the fact that f is an isometry. Thus by nonexpansiveness
of g we necessarily have de(g(x1),g(x2)) 6 dX(x1, x2) = 0 and because de
is a metric this yields g(x1) = g(x2). With the same reasoning we obtain
(h ◦ f)(x) = h(f(x)) = g(xf(x)) = g(x) for all x ∈ X and therefore the desired
equality

de

(
F̃h
(
Ff(t1)

)
, F̃h
(
Ff(t2)

))
= de

(
F̃(h ◦ f)(t1), F̃(h ◦ f)(t2)

)
= de

(
F̃g(t1), F̃g(t2)

)
.

It remains to show that h is nonexpansive, which we will do by distinguishing
three cases.

1. Let y1,y2 ∈ f[X], then there are x1, x2 ∈ X with f(xi) = yi. We calculate

de
(
h(y1),h(y2)

)
= de

(
g(x1),g(x2)

)
6 dX(x1, x2)
= dY

(
f(x1), f(x2)

)
= dY(y1,y2)

using nonexpansiveness of g and the fact that f is an isometry.

147

Chapter 5 Behavioral Pseudometrics

2. Let without loss of generality8 y1 ∈ f[X] (so there is x1 ∈ X with f(x1) = y1)
and y2 ∈ Y \ f[X], then by Lemma 5.2.2 we have the equivalence:

de
(
h(y1),h(y2)

)
6 dY(y1,y2)

⇐⇒ h(y1) 6 h(y2) + dY(y1,y2) ∧ h(y2) 6 h(y1) + dY(y1,y2)

We will show these inequalities separately. The second one is easy:

h(y1) + dY(y1,y2) > inf
y ′∈f[X]

(
h(y ′) + dY(y

′,y2)
)
= h(y2)

because y1 ∈ f[X]. For the first one we calculate

h(y2) + dY(y1,y2) = inf
y ′∈f[X]

(
h(y ′) + dY(y

′,y2)
)
+ dY(y1,y2)

= inf
y ′∈f[X]

(
h(y ′) + dY(y

′,y2) + dY(y2,y1)
)

> inf
y ′∈f[X]

(
h(y ′) + dY(y

′,y1)
)
= h(y1)

using symmetry and the triangle inequality for dY . Observe that the last
equality is not true by definition because y1 ∈ f[X]. Certainly we have
h(y1) = h(y1) + 0 = h(y1) + dY(y1,y1) > infy ′∈f[X] (h(y ′) + dY(y ′,y1)). If we
assume this inequality was strict, then there would be y ′ ∈ f[X] such that
h(y1) > h(y

′) + dY(y
′,y1) which, using Lemma 5.2.2, yields the inequality

de(h(y1),h(y ′)) > dY(y1,y ′). This contradicts nonexpansiveness of h for
elements of f[X]. Thus our assumption must have been wrong and the
inequality must be an equality.

3. Let y1,y2 ∈ Y \ f[X]. As in the previous case we use Lemma 5.2.2, however,
this time the two inequalities can be shown using exactly the same reasoning.
Hence we only show the first one (which in turn is similar as in the prove
above):

h(y2) + dY(y1,y2) = inf
y ′∈f[X]

(
h(y ′) + dY(y

′,y2)
)
+ dY(y1,y2)

= inf
y ′∈f[X]

(
h(y ′) + dY(y

′,y2) + dY(y2,y1)
)

> inf
y ′∈f[X]

(
h(y ′) + dY(y

′,y1)
)
= h(y1)

The main difference to the proof above is that the last equality now holds by
definition because y1 6∈ f[X].

8For the case y1 ∈ Y \ f[X], y2 ∈ f[X] we can simply use symmetry of de and dY .

148

5.4 Lifting Functors

With this result in place, let us quickly discuss the name of our lifting. We
chose the name Kantorovich because our definition is reminiscent of the Kan-
torovich pseudometric in probability theory. If we take the proper combination
of functor and evaluation function, we can recover that pseudometric (in the
discrete case) as the first instance of our framework.

Example 5.4.9 (Kantorovich Lifting of the Distribution Functor) We take > =

1 and the probability distribution functor D of Example 2.3.12 (or any of its
variants). As evaluation evD : D[0, 1] → [0, 1] we define, for each P ∈ D[0, 1],
ev(P) to be the expected value of the identity function on [0, 1], i.e., evD(P) :=
EP[id[0,1]] =

∑
x∈[0,1] x · P(x). Then for any function g : X → [0, 1] and any

distribution (or subdistribution) P ∈ DX we have

D̃g(P) = evD ◦Dg(P) = EDg(P)[id[0,1]] =
∑
r∈[0,1]

r ·Dg(P)(r)

=
∑
r∈[0,1]

(
r ·

∑
x∈g−1[{r}]

P(x)

)
=
∑
r∈[0,1]

∑
x∈g−1[{r}]

r · P(x)

=
∑
r∈[0,1]

∑
x∈g−1[{r}]

g(x) · P(x) =
∑
x∈X

g(x) · P(x) .

Using this we calculate, for any nonexpansive function f : (X,d) → ([0, 1],de)
and (sub)probability distributions P1,P2 ∈ DX,

D̃f(P1) − D̃f(P2) =
∑
x∈X

f(x)
(
P1(x) − P2(x)

)
.

Thus, for every pseudometric space (X,d) we obtain the Kantorovich pseudo-
metric d ↑D : (DX)2 → [0, 1], where

d ↑D(P1,P2) = sup

{∑
x∈X

f(x) ·
∣∣P1(x) − P2(x)∣∣ ∣∣∣∣ f : (X,d) → ([0, 1],de)

}
for all (sub)probability distributions P1,P2 : X→ [0, 1].

Let us now consider the question whether the Kantorovich lifting preserves
metrics, i.e., we want to check whether the Kantorovich pseudometric d ↑F is
a metric for a metric space (X,d). The next example shows that this is not
necessarily the case.

Example 5.4.10 (Kantorovich Lifting of the Squaring Functor) The squaring
functor on Set is the functor S : Set→ Set where SX = X×X for each set X and
Sf = f× f for each function f : X→ Y [AHS90, Example 3.20 (10)].

149

Chapter 5 Behavioral Pseudometrics

We take > = ∞ as maximal element and consider the evaluation function
evS : [0,∞]× [0,∞]→ [0,∞], evS(r1, r2) = r1 + r2.

For a metric space (X,d) with |X| > 2 take t1 = (x1, x2) ∈ SX with x1 6= x2
and define t2 := (x2, x1). Clearly t1 6= t2 but for every nonexpansive function
f : (X,d) → ([0,>],de) we have S̃f(t1) = f(x1) + f(x2) = f(x2) + f(x1) = S̃f(t2)

and thus d ↑S(t1, t2) = 0.

5.4.2 The Wasserstein Lifting

We have seen that our first lifting approach bears close resemblance to the
original Kantorovich pseudometric on probability measures. We will now also
define a generalized version of the Wasserstein pseudometric and compare it
with our generalized Kantorovich pseudometric. To do that we first need to
define generalized couplings, which can be understood as a generalization of
joint probability measures.

Definition 5.4.11 (Coupling) Let F : Set→ Set be a functor and n ∈N. Given
a set X and ti ∈ FX for 1 6 i 6 n we call an element t ∈ F(Xn) such that
Fπi(t) = ti a coupling of the ti (with respect to F). We write ΓF(t1, t2, . . . , tn) for
the set of all these couplings.

Using these couplings we now want to proceed to define an alternative
pseudometric on FX.

Definition 5.4.12 (Wasserstein Function) Let F : Set → Set be a functor with
evaluation function evF. For every pseudometric space (X,d) the Wasserstein
function on FX is the function d ↓F : FX× FX→ [0,>] given by

d ↓F(t1, t2) := inf
{
F̃d(t)

∣∣ t ∈ ΓF(t1, t2)} . (5.4.1)

for all t1, t2 ∈ FX.

In contrast to the Kantorovich function, where the respective set cannot be
empty because nonexpansive functions always exist, here it might be the case
that no coupling exists and thus d ↓F(t1, t2) = inf ∅ = >. Without any additional
conditions we cannot even prove that ΓF(t1, t1) 6= ∅ which we would certainly
need for reflexivity and thus we do not automatically obtain a pseudometric.
The only property we get for free is symmetry.

Lemma 5.4.13 (Symmetry of the Wasserstein Function) For all pseudometric
spaces (X,d) the Wasserstein function d ↓F is symmetric.

150

5.4 Lifting Functors

Proof. Let t1, t2 ∈ FX and let σ := 〈π2,π1〉 be the swap map on X × X, i.e.,
σ : X×X→ X×X, σ(x1, x2) = (x2, x1).

If there is a coupling t12 ∈ ΓF(t1, t2) we define t21 := Fσ(t12) ∈ F(X×X) and
observe that it satisfies Fπ1(t21) = Fπ1(Fσ(t12)) = F(π1 ◦ σ)(t12) = Fπ2(t12) = t2
and analogously Fπ2(t21) = t1, thus t21 ∈ ΓF(t2, t1). Moreover, due to symmetry
of d (i.e., d ◦ σ = d), we obtain F̃d(t21) = evF

(
Fd(t21)

)
= evF

(
Fd(Fσ(t12)

)
=

evF
(
F(d ◦ σ)(t12)

)
= evF

(
Fd(t12)

)
= F̃d(t12) which yields the desired symmetry.

If no coupling of t1 and t2 exists, there is also no coupling of t2 and t1 because
otherwise we would get a coupling of t1 and t2 using the above method. Thus
d ↓F(t1, t2) = > = d ↓F(t2, t1) which concludes the proof.

In order to be able to guarantee the other two properties of a pseudometric
we will restrict our attention to well-behaved evaluation functions.

Definition 5.4.14 (Well-Behaved Evaluation Function) Let evF be an evalua-
tion function for a functor F : Set→ Set. We call evF well-behaved if it satisfies
the following conditions:

W1. F̃ is monotone, i.e., for f,g : X→ [0,>] with f 6 g, we have F̃f 6 F̃g.

W2. For any t ∈ F([0,>]2) we have de
(
evF(t1), evF(t2)

)
6 F̃de(t) for ti := Fπi(t).

W3. ev−1F
[
{0}
]
= Fi

[
F{0}

]
where i : {0} ↪→ [0,>] is the inclusion map.

While condition W1 is quite natural, for conditions W2 and W3 some expla-
nations are in order. Condition W2 ensures that F̃id[0,>] = evF : F[0,>]→ [0,>]
is nonexpansive once de is lifted to F[0,>] (recall that for the Kantorovich
lifting we require F̃f to be nonexpansive for any nonexpansive f). By defi-
nition of the evaluation functor F̃ and the ti, we have de

(
F̃π1(t), F̃π2(t)

)
=

de
(
evF ◦ Fπ1(t), evF ◦ Fπ2(t)

)
= de

(
evF(t1), evF(t2)

)
so Condition W2 can equiva-

lently be stated as de
(
F̃π1(t), F̃π2(t)

)
6 F̃de(t).

Condition W3 requires that exactly the elements of F{0} are mapped to 0 via
evF. This ensures the reflexivity of the Wasserstein pseudometric.

Lemma 5.4.15 (Reflexivity of the Wasserstein Function) Let F be an endo-
functor on Set with evaluation function evF. If evF satisfies Condition W3

of Definition 5.4.14 then for any pseudometric space (X,d) the Wasserstein
function d ↓F is reflexive.

Proof. Let t1 ∈ FX. To show reflexivity we will construct a coupling t ∈ ΓF(t1, t1)
such that F̃d(t) = 0. In order to do that, let δ : X → X2, δ(x) = (x, x) and
define t := Fδ(t1). Then Fπi(t) = F(πi ◦ δ)(t1) = F(idX)(t1) = t1 and thus

151

Chapter 5 Behavioral Pseudometrics

t ∈ ΓF(t1, t1). Since d is reflexive, d ◦ δ : X→ [0,>] is the constant zero function.
Let i : {0} ↪→ [0,>], i(0) = 0 and for any set X let !X : X → {0} , !X(x) = 0. Then
also i◦!X : X→ [0,>] is the constant zero function and thus d ◦ δ = i◦!X. Using
this we can conclude that

F̃d(t) = F̃d
(
Fδ(t1)

)
= F̃(d ◦ δ)(t1) = F̃(i◦!X) = evF

(
Fi
(
(F!X)(t1)

))
= 0

where the last equality follows from the fact that F!X(t1) ∈ F{0} and Condi-
tion W3 of Definition 5.4.14.

Before we continue our efforts to obtain a Wasserstein pseudometric, we
convince ourselves that well-behaved evaluation functions exist but not every
evaluation function is well-behaved.

Example 5.4.16 (Evaluation Function for the Powerset Functor) We take > =∞ and consider the powerset functor P of Example 2.3.11. First, we show that
the evaluation function sup : P[0,∞]→ [0,∞] where sup ∅ := 0 is well-behaved.

W1. Let f,g : X→ [0,∞] with f 6 g. Let S ∈ PX, i.e., S ⊆ X. Then we have

P̃f(S) = sup f[S] = sup {f(x) | x ∈ S}

6 sup {g(x) | x ∈ S} = supg[S] = P̃g(S) .

W2. For any subset S ⊆ [0,∞]2 we have to show the inequality

de
(

supπ1[S], supπ2[S]
)
6 supde[S] . (5.4.2)

For S = ∅ this is true because sup ∅ = 0 and thus both sides of the
inequality are 0. Otherwise we define si := supπi[S]. Clearly, if s1 = s2
then the left hand side of (5.4.2) is 0 and thus the inequality holds. Without
loss of generality we now assume s1 < s2 and distinguish two cases:

1. If s2 < ∞ then for any ε > 0 we can find a pair (t1, t2) ∈ S such that
s2 − ε < t2 because s2 is the supremum of π2[S]. Moreover, t1 6 s1 and
if ε < s2 − s1 also t1 6 t2. By combining these inequalities, we conclude
that for every ε ∈]0, s2 − s1[we have a pair (t1, t2) ∈ S such that

de(s1, s2) − ε = s2 − s1 − ε 6 s2 − t1 − ε
= s2 − ε− t1 < t2 − t1 = de(t1, t2) .

Since ε can be arbitrarily small, we thus must have (5.4.2).

152

5.4 Lifting Functors

2. If s2 = ∞ then de(s1, s2) = ∞. However, s2 = ∞ also implies that
for every non-negative real number r ∈ R+ we can find an element
(t1, t2) ∈ S such that t2 > r. Especially, for r > s1 we have t2 > r >

s1 > t1 and thus de(t1, t2) = t2 − t1 > t2 − s1 > r− s1. Since r can be
arbitrarily large, we thus must have supde[S] = ∞ and thus (5.4.2) is
an equality.

W3. We have Pi[P{0}] = Pi[{∅, {0}}] = {i[∅], i[{0}]} = {∅, {0}} = sup−1[{0}].

Whenever we work with the finite powerset functor Pf we can of course use
max instead of sup with the convention max ∅ = 0.

In contrast to the above, inf : P([0,∞])→ [0,∞] is not well-behaved. It neither
satisfies Condition W2, nor Condition W3: infde[S] > de

(
infπ1[S], infπ2[S]

)
fails for S = {(0, 1), (1, 1)} and {0, 1} ∈ inf−1[{0}].

Staying with Condition W3 for a while we remark that it can be expressed as
a weak pullback diagram, thus fitting nicely into a coalgebraic framework.

Lemma 5.4.17 (Weak Pullback Characterization of Condition W3) Let F be
an endofunctor on Set with evaluation function evF and i : {0} ↪→ [0,>] be
the inclusion function. For any set X we denote the unique arrow into {0}

by !X : X → {0}. Then evF satisfies Condition W3 of Definition 5.4.14, i.e.,
ev−1F [{0}] = F[F{0}] if and only if the diagram below is a weak pullback.

F {0} {0}

F[0,>] [0,>]

!F{0}

Fi i

evF

Proof. Commutativity of the diagram is equivalent to ev−1F [{0}] ⊇ Fi[F {0}]. Given
a set X and a function f : X→ F[0,>] as depicted below, we conclude again by
commutativity (i◦!X = evF ◦ f) that f(x) ∈ ev−1F [{0}] for all x ∈ X.

X

F {0} {0}

F[0,>] [0,>]

!X

f

ϕ
!F{0}

Fi i

evF

153

Chapter 5 Behavioral Pseudometrics

Now we show that the weak universality is equivalent to the other inclusion.
First suppose that ev−1F [{0}] ⊆ Fi[F {0}] then for f(x) ∈ ev−1F [{0}] we can choose
a (not necessarily unique) x0 ∈ F {0} such that f(x) = Fi(x0). If we define
ϕ : X → F {0} by ϕ(x) = x0 then clearly ϕ makes the above diagram commute
and thus we have a weak pullback.

Conversely if the diagram is a weak pullback we consider the set X = ev−1F [{0}]

and the function f : ev−1F [{0}] ↪→ F[0,>], f(x) = x. Now for any x ∈ ev−1F [{0}] we
have Fi(ϕ(x)) = (Fi ◦ϕ)(x) = f(x) = x, hence – since ϕ(x) ∈ F {0} – we have
x ∈ Fi[F {0}]. This shows that indeed ev−1F [{0}] ⊆ Fi[F {0}] holds.

The only missing step towards the Wasserstein pseudometric is the observa-
tion that if F preserves weak pullbacks we can define new couplings based on
given ones.

Lemma 5.4.18 (Gluing Lemma) Let F be an endofunctor on Set, X a set,
t1, t2, t3 ∈ FX, t12 ∈ ΓF(t1, t2), and t23 ∈ ΓF(t2, t3) be couplings. If F preserves
weak pullbacks then there is a coupling t123 ∈ ΓF(t1, t2, t3) such that

F〈π1,π2〉(t123) = t12 and
F〈π2,π3〉(t123) = t23

where πi : X3 → X are the projections of the ternary product. Moreover, t13 :=
F〈π1,π3〉(t123) is a coupling of t1 and t3, i.e., we have t13 ∈ ΓF(t1, t3).

Proof. Let τi : X×X be the projections of the binary product. We first observe
that the following diagram is a pullback square.

X×X×X

X×X X×X

X

〈π1,π2〉 〈π2,π3〉

τ2 τ1

Given any set P along with functions p1,p2 : P → X×X satisfying the condition
τ2 ◦ p1 = τ1 ◦ p2 the unique mediating arrow u : P → X× X× X is given by
u = 〈τ1 ◦ p1, τ2 ◦ p1, τ2 ◦ p2〉 = 〈τ1 ◦ p1, τ1 ◦ p2, τ2 ◦ p2〉.

Now let us look at the following diagram.

154

5.4 Lifting Functors

F(X×X×X)

F(X×X) F(X×X)

FX FX FX

F〈π1,π2〉 F〈π2,π3〉

Fτ2 Fτ1

Fτ1 Fτ2

Since F preserves weak pullbacks, the square in the middle of this diagram
is a weak pullback. We recall that t12 ∈ ΓF(t1, t2) and t23 ∈ ΓF(t2, t3) so we
have Fτ2(t12) = t2 = Fτ1(t23). Using this, we can use the (weak) universality of
the pullback to obtain9 an element t123 ∈ F(X×X×X) which satisfies the two
equations of the lemma and moreover Fπ1(t123) = F

(
τ1 ◦ 〈π1,π2〉

)
(t123) = Fτ1 ◦

F〈π1,π2〉(t123) = Fτ1(t12) = t1 and analogously Fπ2(t123) = t2, Fπ3(t123) = t3
yielding t123 ∈ ΓF(t1, t2, t3).

For t13 := F〈π1,π3〉(t123) we calculate Fτ1(t13) = Fτ1
(
F〈π1,π3〉(t123)

)
= F
(
τ1 ◦

〈π1,π3〉
)
(t123) = Fπ1(t123) = t1 and analogously Fτ2(t13) = t3 so we have

t13 ∈ ΓF(t1, t3) as claimed.

With the help of this lemma we can now finally give sufficient conditions
to guarantee that the Wasserstein function satisfies the triangle inequality.
Apparently, since we use the above lemma, this will work only for weak
pullback preserving functors and we will also need Conditions W1 and W2 of
Definition 5.4.14 for the proof.

Lemma 5.4.19 (Triangle Inequality for the Wasserstein Function) Let F be an
endofunctor on Set with evaluation function evF. If

1. F preserves weak pullbacks and

2. evF satisfies Conditions W1 and W2 of Definition 5.4.14

then for any pseudometric space (X,d) the Wasserstein function d ↓F satisfies
the triangle inequality.

Proof. We will use the characterization of the triangle inequality given by
Lemma 5.2.9 (page 140). Hence, given any pseudometric space (X,d) we just
have show that for every t1 ∈ FX the function d ↓F(t1, _) : (FX,d ↓F) → ([0,>],de)

9Explicitly: Consider {t2} with functions p1,p2 : {t2} → F(X× X) where p1(t2) = t12 and
p2(t2) = t23, then by the weak pullback property there is a (not necessarily unique) function
u : {t2}→ F(X×X×X) satisfying F(〈π1,π2〉) ◦ u = p1 and F(〈π2,π3〉) ◦ u = p2. We simply
define t123 := u(t2).

155

Chapter 5 Behavioral Pseudometrics

is nonexpansive, i.e., that the inequality

de
(
d ↓F(t1, t2),d ↓F(t1, t3)

)
6 d ↓F(t2, t3) (5.4.3)

holds for all t2, t3 ∈ FX. We will show this in several steps.
First of all we consider the case where no coupling of t2 and t3 exists. In

this case the right hand side of (5.4.3) is > and it is easy to see that the the left
hand side can never exceed that value because d ↓F is non-negative. Thus in the
remainder of the proof we only consider the case where ΓF(t2, t3) 6= ∅.

As next step we observe that if ΓF(t1, t2) = ΓF(t1, t3) = ∅ the left hand side of
(5.4.3) is 0 and the right hand side is non-negative. Thus we are left with the
cases where ΓF(t1, t2) 6= ∅ or ΓF(t1, t3) 6= ∅.

Let us first assume that ΓF(t1, t2) 6= ∅ and recall that we required ΓF(t2, t3) 6=
∅. With the Gluing Lemma (Lemma 5.4.18) we can then conclude that also
ΓF(t1, t3) 6= ∅. Similarly, if ΓF(t1, t3) 6= ∅ we can use the swap map as in the proof
of Lemma 5.4.13 to see that ΓF(t3, t1) 6= ∅. As above the Gluing Lemma yields
ΓF(t2, t1) 6= ∅ and again using the swap map we conclude that ΓF(t1, t2) 6= ∅.
Thus the sole remaining case is the case where all couplings exists, i.e., we have
ΓF(t1, t2) 6= ∅, ΓF(t2, t3) 6= ∅ and ΓF(t1, t3) 6= ∅.

As intermediary step we recall that for all x ∈ X the function d(x, _) is
nonexpansive (see Lemma 5.2.9, page 140). Using the projections πi : X3 → X of
the product this can be formulated as the inequality

de ◦ (d× d) ◦
〈
〈π1,π2〉, 〈π1,π3〉

〉
6 d ◦ 〈π2,π3〉

and the monotonicity of F̃ (Condition W1) implies that also the inequality

F̃
(
de ◦ (d× d) ◦

〈
〈π1,π2〉, 〈π1,π3〉

〉)
6 F̃(d ◦ 〈π2,π3〉) (5.4.4)

holds. We will now use this inequality to prove (5.4.3) for the remaining case in
which all couplings exists.

As already pointed out before, for any t12 ∈ ΓF(t1, t2) and t23 ∈ ΓF(t2, t3) the
Gluing Lemma (Lemma 5.4.18) yields a t123 ∈ ΓF(t1, t2, t3) and a coupling t13 :=
F(〈π1,π3〉)(t123) ∈ ΓF(t1, t3). Plugging in t123 in the inequality (5.4.4) above
yields F̃de (F(d× d)(t12, t13)) 6 F̃d(t23). Using well-behavedness (Condition W2)
of evF on the left hand side we obtain the following, intermediary result:

de

(
F̃d(t12), F̃d(t13)

)
6 F̃d(t23) . (5.4.5)

If we define dij := d ↓F(ti, tj) we can express (5.4.3) as de(d12,d13) 6 d23. This is
obviously true for d12 = d13 so without loss of generality we assume d12 < d13

156

5.4 Lifting Functors

and claim that for all ε > 0 there is a coupling t12 ∈ ΓF(t1, t2) such that for all
couplings t13 ∈ ΓF(t1, t3) we have

de(d12,d13) 6 ε+ de
(
F̃d(t12), F̃d(t13)

)
. (5.4.6)

To prove this claim, we recall that the Wasserstein distance is defined as an
infimum, so we have d13 6 F̃d(t13) for all couplings t13. Moreover, for the
same reason we can pick, for every ε > 0, a coupling t12 ∈ ΓF(t1, t2), such that
F̃d(t12) − d12 6 ε which can equivalently be stated as F̃d(t12) 6 d12 + ε. With
this fixed coupling we now proceed to establish (5.4.4) for all t13 ∈ ΓF(t1, t3).

If d13 = ∞ we have de(d12,d13) = ∞ but also F̃d(t13) = ∞ and F̃d(t12) 6
d12 + ε <∞+ ε =∞ and therefore de

(
F̃d(t12), F̃d(t13)

)
=∞ and thus (5.4.6) is

valid. For d13 <∞ we have

de(d12,d13) = d13 − d12 6 F̃d(t13) −
(
F̃d(t12) − ε

)
= ε+

(
F̃d(t13) − F̃d(t12)

)
6 ε+

∣∣ F̃d(t13) − F̃d(t12)∣∣ 6 ε+ de(F̃d(t12), F̃d(t13))
where the last inequality is due to the fact that F̃d(t12) < ∞. Hence we have
established our claimed validity of (5.4.6). Using this, (5.4.5) and the fact that –
as above – given ε > 0 we have a coupling t23 such that F̃d(t23) 6 d23 + ε we
obtain the inequality

de(d12,d13) 6 ε+ de
(
F̃d(t12), F̃d(t13)

)
6 ε+ F̃d(t23) 6 2ε+ d23

which also proves de(d12,d13) 6 d23. Indeed if de(d12,d13) > d23 then we
would have de(d12,d13) = d23 + ε ′ and we just take ε < ε ′/2 which yields the
contradiction de(d12,d13) 6 2ε+ d23 < ε ′ + d23 = de(d12,d13).

Combining this result with our previous considerations we finally obtain
the desired result which guarantees that the Wasserstein function is indeed a
pseudometric.

Theorem 5.4.20 (Wasserstein Pseudometric) Let F be an endofunctor on Set
with evaluation function evF. If

1. F preserves weak pullbacks and

2. evF is well-behaved

then for any pseudometric space (X,d) the Wasserstein function d ↓F is a pseu-
dometric.

157

Chapter 5 Behavioral Pseudometrics

Proof. Reflexivity is given by Lemma 5.4.15, symmetry by Lemma 5.4.13 and
the triangle inequality by Lemma 5.4.19.

With this result in place we can now finally study the Wasserstein lifting of a
functor. Of course, our requirements on F and evF are just sufficient conditions
to prove that the Wasserstein function is a pseudometric so it might be possible
to give a more general definition. However, we will always work with weak
pullback preserving functors and well-behaved evaluation functions so the
following definition suffices.

Definition 5.4.21 (Wasserstein Lifting) Let F be a weak pullback preserving
endofunctor on Set with well-behaved evaluation function evF. We define the
Wasserstein lifting of F to be the functor F : PMet → PMet, F(X,d) = (FX,d ↓F),
Ff = Ff.

Of course, we will have to check the functoriality. Its proof relies on Condi-
tion W1 of Definition 5.4.14, the monotonicity of F̃.

Theorem 5.4.22 The Wasserstein lifting F is a functor on pseudometric spaces.

Proof. F preserves identities and composition of arrows because F does. More-
over, it preserves nonexpansive functions: Let f : (X,dX) → (Y,dY) be nonex-
pansive and t1, t2 ∈ FX. Every t ∈ ΓF(t1, t2) satisfies Ff(ti) = Ff

(
Fπi(t)

)
=

F(f ◦ πi)(t) = F
(
πi ◦ (f× f)

)
(t) = Fπi

(
F(f× f)(t)

)
. Hence we can calculate

d
↓F
X (t1, t2) = inf

{
F̃dX(t) | t ∈ ΓF(t1, t2)

}
> inf

{
F̃dX(t) | t ∈ F(X×X), Fπi

(
F(f× f)(t)

)
= Ff(ti)

}
(5.4.7)

> inf
{
F̃dY

(
F(f× f)(t)

)
| t ∈ F(X×X), Fπi

(
F(f× f)(t)

)
= Ff(ti)

}
(5.4.8)

> inf
{
F̃dY(t

′) | t ′ ∈ ΓF
(
Ff(t1), Ff(t2)

)}
= d ↓FY

(
Ff(t1), Ff(t2)

)
. (5.4.9)

In this calculation the inequality (5.4.7) is due to our initial observation. Fur-
thermore, (5.4.8) holds because f is nonexpansive, i.e., dX > dY ◦ (f× f) and
applying the monotonicity (Condition W1 of Definition 5.4.14) of F̃ yields
F̃dX > F̃(dY ◦ (f× f)) = F̃dY ◦ F(f× f). The last inequality, (5.4.9), is due to the
fact that there might be more couplings t ′ than those obtained via F(f× f).

Let us now study the properties of the Wasserstein lifting. As was the case
for the Kantorovich lifting, also the Wasserstein lifting preserves isometries.

158

5.4 Lifting Functors

Theorem 5.4.23 The Wasserstein lifting F of a functor F preserves isometries.

Proof. Let f : (X,dX) → (Y,dY) be an isometry. Since F is a functor, Ff is non-
expansive, i.e., for all t1, t2 ∈ FX we have d ↓FX (t1, t2) > d

↓F
Y

(
Ff(t1), Ff(t2)

)
.

Now we show the opposite direction, i.e., that for all t1, t2 ∈ FX we have
d
↓F
X (t1, t2) 6 d

↓F
Y

(
Ff(t1), Ff(t2)

)
.

If ΓF
(
Ff(t1), Ff(t2)

)
= ∅ we have d ↓FY

(
(Ff(t1), Ff(t2)

)
= > > d ↓FX (t1, t2). Oth-

erwise we will construct for each coupling t ∈ ΓF
(
Ff(t1), Ff(t2)

)
a coupling

γ(t) ∈ ΓF(t1, t2) such that F̃dX
(
γ(t)

)
= F̃dY(t) because then we have

d
↓F
X (t1, t2) = inf

t ′∈ΓF(t1,t2)
F̃dX(t

′) 6 inf
t∈ΓF
(
Ff(t1),Ff(t2)

) F̃dX(γ(t))
= inf
t∈ΓF
(
Ff(t1),Ff(t2)

) F̃dY(t) = d ↓FY (Ff(t1), Ff(t2))
as desired. In this calculation the inequality is due to the fact that γ(t) ∈
ΓF(t1, t2) is a coupling and there might be other couplings which are not in the
image of γ.

In order to construct γ : ΓF
(
Ff(t1), Ff(t2)

)
→ ΓF(t1, t2), we consider the dia-

gram below where π1 : X× Y → X, π2 : Y × X → X, and τi : Y × Y → Y are the
respective projections of the products.

X×X

X× Y Y ×X

X Y × Y X

Y Y

idX × f f× idX

f× idY idY × f
π1 π2

f τ1 τ2 f

This diagram consists of pullbacks: it is easy to check that the diagram com-
mutes. The unique mediating arrows are constructed as follows.

. For the lower left part let P be a set with p1 : P → X, p2 : P → Y × Y such that
f ◦ p1 = τ1 ◦ p2, then define u : P → X× Y as u := 〈p1, τ2 ◦ p2〉.

. Analogously, for the lower right part let P be a set with p1 : P → Y × Y,
p2 : P → X such that τ2 ◦ p1 = f ◦ p2, then define u : P → X × Y as u :=

〈τ1 ◦ p1,p2〉.

159

Chapter 5 Behavioral Pseudometrics

. Finally, for the upper part let P be a set with p1 : P → X× Y, p2 : P → Y × X
such that (f× idY) ◦ p1 = (idY × f) ◦ p2, then define u : P → X× X as u :=

〈π1 ◦ p1,π2 ◦ p2〉.
We apply the weak pullback preserving functor F to the diagram and obtain the
following diagram which hence consists of three weak pullbacks.

F(X×X)

F(X× Y) F(Y ×X)

FX F(Y × Y) FX

FY FY

F(idX × f) F(f× idX)

F(f× idY) F(idY × f)
Fπ1 Fπ2

Ff Fτ1 Fτ2 Ff

Given a coupling t ∈ ΓF
(
Ff(t1), Ff(t2)

)
⊆ F(Y × Y) we know Fτi(t) = Ff(ti) ∈ FY.

Since the lower left square in the diagram is a weak pullback, we obtain an
element10 s1 ∈ F(X× Y) with Fπ1(s1) = t1 and F(f× idY)(s1) = t. Similarly,
from the lower right square, we obtain s2 ∈ F(Y × X) with Fπ2(s2) = t2 and
F(idY × f)(s2) = t. Again by the weak pullback property we obtain our γ(t) ∈
F(X×X) with F(idX × f)

(
γ(t)

)
= s1, F(f× idX)

(
γ(t)

)
= s2.

We convince ourselves that γ(t) is indeed a coupling of t1 and t2: Let
π ′i : X×X→ X be the missing projections. Using π1 ◦ (idX × f) = π ′1 we have

Fπ ′1
(
γ(t)

)
= F
(
π1 ◦ (idX × f)

)(
γ(t)

)
= Fπ1 ◦ F(idX × f)

(
γ(t)

)
= Fπ1(s1) = t1

and analogously

Fπ ′2
(
γ(t)

)
= F
(
π2 ◦ (f× idX)

)(
γ(t)

)
= Fπ2 ◦ F(f× idX)

(
γ(t)

)
= Fπ2(s2) = t2 .

Moreover, using f× f = (f× idY) ◦ (idX × f) and functoriality we have

F(f× f)
(
γ(t)

)
= F
(
(f× idY) ◦ (idX × f)

)(
γ(t)

)
= F(f× idY) ◦ F(idX × f)

(
γ(t)

)
= F(f× idY)(s1) = t

and thus F̃dY(t) = F̃dY(F(f× f)(γ(t))) = F̃(dY ◦ (f× f))(t) = F̃(dX(t)) as desired.
Note that the last equality is due to the fact that f is an isometry.

In contrast to the Kantorovich lifting, we can prove that metrics are preserved
by the Wasserstein lifting in certain situations.

10See the proof of Lemma 5.4.18 for the explicit constructions.

160

5.4 Lifting Functors

Theorem 5.4.24 (Preservation of Metrics) Let F be a weak pullback preserving
endofunctor on Set with well-behaved evaluation function evF and (X,d) be
a metric space. If for all t1, t2 ∈ FX where d ↓F(t1, t2) = 0 there is an optimal
F-coupling γ(t1, t2) ∈ ΓF(t1, t2) such that 0 = d ↓F(t1, t2) = F̃d

(
γ(t1, t2)

)
then d ↓F

is a metric and thus F(X,d) = (FX,d ↓F) is a metric space.

Proof. Let (X,d) be a metric space. We know from Theorem 5.4.20 that d ↓F is a
pseudometric. Thus we just have to show that for any t1, t2 ∈ FX the fact that
d ↓F(t1, t2) = 0 implies t1 = t2.

Since d is a metric the preimage d−1[{0}] is the set ∆X = {(x, x) | x ∈ X}.
Hence the square on the left below is a pullback and adding the projections
yields π1 ◦ e = π2 ◦ e where e : ∆X ↪→ X× X is the inclusion. Furthermore, by
Lemma 5.4.17 we know that due to Condition W3 of Definition 5.4.14 the square
on the right is a weak pullback.

∆X {0} F {0} {0}

X X×X [0,>] F[0,>] [0,>]

!∆X

e i
dπ1

π2

!F{0}

Fi i
evF

Since F preserves weak pullbacks, applying it to the first diagram yields a weak
pullback. By combining this diagram with the right diagram we obtain the
diagram below where the outer rectangle is again a weak pullback.

F∆X F {0} {0}

FX F(X×X) F[0,>] [0,>]

F!∆X

Fe Fi
FdFπ1

Fπ2

!F{0}

i
evF

F̃d

Let t := γ(t1, t2) ∈ F(X×X), i.e., d ↓F(t1, t2) = F̃d(t) = 0. Since we have a weak
pullback, we observe that there exists t ′ ∈ F∆X with Fe(t ′) = t. (Since Fe is
an embedding, t ′ and t actually coincide.) This implies that t1 = Fπ1(t) =

Fπ1
(
Fe(t ′)

)
= Fπ2

(
Fe(t ′)

)
= Fπ2(t) = t2.

Apparently, Theorem 5.4.24 admits the following simple corollary.

Corollary 5.4.25 Let F be a weak pullback preserving endofunctor on Set

with well-behaved evaluation function evF and (X,d) be a metric space. If

161

Chapter 5 Behavioral Pseudometrics

the infimum in (5.4.1) is always a minimum then d ↓F is a metric and thus
F(X,d) = (FX,d ↓F) is a metric space.

Please note that a similar restriction for the Kantorovich lifting (i.e., requiring
that the supremum in Definition 5.4.4 is a maximum) does not yield preservation
of metrics: In Example 5.4.10 the supremum is always a maximum but we do
not get a metric. Let us now compare both lifting approaches.

Lemma 5.4.26 Let F be an endofunctor on Set with evaluation function evF
and (X,d) be a pseudometric space. If evF satisfies Conditions W1 and W2 of
Definition 5.4.14 then for all t1, t2 ∈ FX, all t ∈ ΓF(t1, t2) and all nonexpansive
functions f : (X,d) → ([0,>],de) we have de

(
F̃f(t1), F̃f(t2)

)
6 F̃d(t).

Proof. We have that de ◦ (f × f) 6 d since f is nonexpansive. Now, due to
monotonicity of the evaluation functor (Condition W1) we obtain F̃de ◦F(f× f) =
F̃
(
de ◦ (f× f)

)
6 F̃d. Furthermore:

de
(
F̃f(t1), F̃f(t2)

)
= de

(
F̃f
(
Fπ1(t)

)
, F̃f
(
Fπ2(t)

))
= de

(
F̃(f ◦ π1)(t), F̃(f ◦ π2)(t)

)
= de

(
F̃
(
π1 ◦ (f× f)

)
(t), F̃

(
π2 ◦ (f× f)

)
(t)
)

= de

(
F̃π1
(
F(f× f)(t)

)
, F̃π2

(
F(f× f)(t)

))
6 F̃de

(
F(f× f)(t)

)
= F̃
(
de ◦ (f× f)

)
(t) 6 F̃d(t)

where the first inequality is due to Condition W2, the second due to the above
observation which was based on Condition W1.

Using this result we can see that under certain conditions the Wasserstein
function is an upper bound for the Kantorovich pseudometric.

Theorem 5.4.27 (Comparison of the two Liftings) Let F be an endofunctor on
Set. If evF satisfies Conditions W1 and W2 of Definition 5.4.14 then for all
pseudometric spaces (X,d) we have d ↑F 6 d ↓F.

Proof. Let t1, t2 ∈ FX. We know (see the discussion after Definition 5.4.4)
that a nonexpansive function f : (X,d) → ([0,>],de) always exists but (see the
discussion after Definition 5.4.12) couplings do not have to exist, so we have to
distinguish two cases. If ΓF(t1, t2) = ∅ we have d ↓F(t1, t2) = > and clearly d ↑F 6
>. Otherwise we can apply Lemma 5.4.26 to obtain the desired inequality.

This inequality can be strict as the following example shows.

162

5.4 Lifting Functors

Example 5.4.28 (Wasserstein Lifting of the Squaring Functor) It is easy to
see11 that the squaring functor S : Set→ Set, SX = X×X, Sf = f× f preserves
weak pullbacks. We now first convince ourselves that the evaluation function
evS : S[0,∞] → [0,∞], evS(r1, r2) = r1 + r2 given in Example 5.4.10 is well-
behaved.

W1. Let f,g : X→ [0,∞] be given with f 6 g, then for all t = (a,b) ∈ SX = X×X
we have S̃f(t) = f(a) + f(b) 6 g(a) + g(b) = S̃g(t).

W2. For any t = (r1, r2, r3, r4) ∈ S([0,∞]2) we have S̃π1(t) = r1 + r3, S̃π2(t) =
r2 + r4 and S̃de(t) = de(r1, r2) + de(r3, r4). We need to show the inequality
de(r1 + r3, r2 + r4) 6 de(r1, r2) + de(r3, r4). Apparently this is true if r1 +
r3 = r2 + r4 so without loss of generality we assume r1 + r3 < r2 + r4 (the
symmetrical case can be handled similarly). We distinguish two cases.

. Suppose r2 + r4 =∞ then clearly r2 =∞ or r4 =∞ whereas r1, r3 <∞.
Thus we have d(r1, r2) =∞ or d(r3, r4) =∞ and hence also d(r1, r2) +
d(r3, r4) =∞ = de(r1 + r3, r2 + r4).

. Otherwise, if r2 + r4 < ∞ we have r1, r2, r3, r4 < ∞ and thus de(r1 +
r3, r2 + r4) = |r1 + r3 − r2 − r4| = |r1 − r2 + r3 − r4| 6 |r1 − r2|+ |r3 − r4| =

de(r1, r2) + de(r3, r4).

W3. Finally, ev−1S [{0}] = {(0, 0)} = (i× i)({0}× {0}) = Si[S{0}].

We now continue Example 5.4.10 where we considered a metric space (X,d)
with at least two elements, chose an element t1 = (x1, x2) ∈ SX = X × X
with x1 6= x2 and defined t2 = (x2, x1). The unique coupling t ∈ ΓS(t1, t2) is
t =

(
(x1, x2), (x2, x1)

)
. Using that d is a metric we conclude that d ↓S(t1, t2) =

S̃d(t) = d(x1, x2) + d(x2, x1) = 2d(x1, x2) > 0. However, in Example 5.4.10 we
calculated d ↑S(t1, t2) = 0.

Whenever the inequality in Theorem 5.4.27 can be replaced by an equality we
will in the following say that the Kantorovich-Rubinstein duality or simply duality
holds. In this case we obtain a canonical notion of distance on FX for any given
pseudometric space (X,d).

In order to show that the duality holds and simultaneously to calculate
the distance of t1, t2 ∈ FX it is enough to find a nonexpansive function
f : (X,d) → ([0,>],de) and a coupling t ∈ ΓF(t1, t2) such that de

(
F̃f(t1), F̃f(t2)

)
=

11It also follows from the fact that the product bifunctor preserves weak pullbacks, which we
will show later in Lemma 5.4.53.

163

Chapter 5 Behavioral Pseudometrics

F̃de(t). Then, due to Theorem 5.4.27, this value equals d ↑F(t1, t2) = d ↓F(t1, t2).
We will often employ this technique for the upcoming examples.

Example 5.4.29 (Duality for the Identity Functor) We consider the identity
functor Id with the identity function as evaluation function, i.e., evId = id[0,>].
For any t1, t2 ∈ X, t := (t1, t2) is the unique coupling of t1, t2. Hence,
d ↓F(t1, t2) = d(t1, t2). With the function d(t1, _) : (X,d) → ([0,>],de), which
is nonexpansive due to Lemma 5.2.9, we obtain duality because we have
d(t1, t2) = de

(
d(t1, t1),d(t1, t2)

)
6 d ↑F(t1, t2) 6 d ↓F(t1, t2) = d(t1, t2) and thus

equality. Similarly, if we define evId(r) = c · r for r ∈ [0,>], 0 < c 6 1, the
Kantorovich and Wasserstein liftings coincide and we obtain the discounted
distance d ↑F(t1, t2) = d ↓F(t1, t2) = c · d(t1, t2).

Example 5.4.30 (Duality for the Distribution Functors) It is known that the
probability distribution functor D of Example 2.3.12 and its variants preserve
weak pullbacks [Sok11, Proposition 3.3]. Let us now first show that the evalua-
tion function evD : D[0, 1]→ [0, 1], evD(P) = EP[id[0,1]] =

∑
x∈[0,1] x · P(x) which

we have defined in Example 5.4.9 is well-behaved for all variants of the distri-
bution functor (i.e., distributions and subdistributions with countable or finite
supports).

W1. This is just the monotonicity of the expected value. For f,g : X → [0, 1]
with f 6 g and any (sub)probability distribution P : X→ [0, 1] we have

F̃f(P) =
∑
x∈X

f(x) · P(x) 6
∑
x∈X

g(x) · P(x) = F̃g(P) .

W2. In order to prove Condition W2 we assume any probability or sub-
probability distribution P : [0, 1]2 → [0, 1] and calculate

de

(
D̃π1(P), D̃π2(P)

)
= |EP[π1] − EP[π2]| =

∣∣∣ ∑
x1,x2∈[0,1]

(x1 − x2) · P(x1, x2)
∣∣∣

6
∑

x1,x2∈[0,1]
|x1 − x2| · P(x1, x2)

=
∑

x1,x2∈[0,1]
de(x1, x2) · P(x1, x2) = EP[de] = D̃de(P) .

W3. Let us first assume we are dealing with proper probability distributions,
not subdistributions. We denote for any set X with 0 ∈ X, by δX0 ∈ DX

the Dirac distribution δX0 : X → [0, 1] with δX0 (0) = 1 and δX0 (x) = 0 for

164

5.4 Lifting Functors

x ∈ X \ {0}. We observe that D{0} = {δ
{0}
0 } and thus we can easily see that

also Condition W3 holds: ev−1D [{0}] = {δ
[0,1]
0 } = Di[D{0}].

If we consider subprobability distributions, we have D{0} = [0, 1]{0} and
ev−1D [{0}] = {P : [0, 1]→ [0, 1] | ∀x ∈]0, 1].P(x) = 0} = Di[D{0}] which con-
cludes the proof of Condition W3.

With this well-behaved evaluation function we thus recover the usual Wasser-
stein pseudometric, i.e., for any (sub)probability distributions P1,P2 : X→ [0, 1]
we have

d ↓D(P1,P2) = inf

 ∑
x1,x2∈X

d(x1, x2) · P(x1, x2) | P ∈ ΓD(P1,P2)

and – for proper distributions only – the Kantorovich-Rubinstein duality [Vil09]
from transportation theory for the discrete case. Moreover, in this case it is
easy to see that for finite supports the above infimum is always a minimum:
Let supp(P1) ∪ supp(P2) = {s1, . . . , sn} be the union of the finite supports of
P1 and P2. We define the following finitely many real numbers p1i := P1(si),
p2j := P2(sj), dij := d(si, sj). Then the distance of P1 and P2 can be equivalently
expressed as the following linear program:

minimize
∑

16i,j6n

dij · xij

subject to
∑
16j6n

xij = p1i, 1 6 i 6 n∑
16i6n

xij = p2j, 1 6 j 6 n

0 6 xij 6 1, 1 6 i, j 6 n

The feasible region is nonempty (xij := p1i · p2j is in it) and bounded. Thus
we indeed get an optimal solution x∗ij and can define the optimal coupling as
P∗(si, sj) := x∗ij.

In the case of subdistributions we do not have duality: Let P,Q : 1 → [0, 1]
be subdistributions on the singleton set 1, i.e., P(X) = p and Q(X) = q with
p,q ∈ [0, 1]. The only pseudometric on 1 is the discrete metric d so any function
f : 1 → [0, 1] is nonexpansive and we have D̃f(P) = f(X) · P(X). Hence the
Kantorovich distance of P and Q is achieved for the function f where f(X) = 1
and equals d ↑F(P,Q) = |p− q|. However, if p 6= q it is easy to see that there are
no couplings of P and Q so d ↓F(P,Q) = 1. Thus for any p,q where |p− q| < 1

we do not have equality.

165

Chapter 5 Behavioral Pseudometrics

Example 5.4.31 (The Hausdorff Pseudometric for Finite Sets) Similar to Ex-
ample 5.4.16 we assume > =∞ but here we just consider the finite powerset
functor Pf with evaluation function max : Pf([0,∞]) → [0,∞] with max ∅ = 0.
We claim that in this setting we obtain duality and both pseudometrics are
equal to the Hausdorff pseudometric dH on Pf(X) which is defined as, for all
X1,X2 ∈ PfX,

dH(X1,X2) = max
{

max
x1∈X1

min
x2∈X2

d(x1, x2), max
x2∈X2

min
x1∈X1

d(x1, x2)
}

.

Note that this distance is∞, if either X1 or X2 is empty.
We show our claim by proving that if X1,X2 are both non-empty there ex-

ists a coupling and a nonexpansive function that both witness the Hausdorff
distance. Assume that the first value maxx1∈X1 minx2∈X2 d(x1, x2) is maximal
and assume that y1 ∈ X1 is the element of X1 for which the maximum is
reached. Furthermore let y2 ∈ X2 be the closest element in X2, i.e., the element
for which d(y1,y2) is minimal. We know that for all x1 ∈ X1 there exists xx12
such that d(x1, x

x1
2) 6 d(y1,y2) and for all x2 ∈ X2 there exists xx21 such that

d(xx21 , x2) 6 d(y1,y2). Specifically, xy12 = y2. We use the coupling T ⊆ X× X
with

T =
{
(x1, x

x1
2) | x1 ∈ X1

}
∪
{
(xx21 , x2) | x2 ∈ X2

}
.

Indeed,we obviously have Pfπi(T) = Xi and Pfd(T) contains all distances be-
tween the elements above, of which the distance d(y1,y2) = dH(X1,X2) is
maximal. We now define a nonexpansive function f : (X,d) → ([0,>],de) as
follows: f(x) = minx2∈X2 d(x, x2). It holds that

maxPff(X1) = max f[X1] = max
x1∈X1

min
x2∈X2

d(x1, x2) = dH(X1,X2)

and maxPff(X2) = max f[X2] = 0. Hence, the difference of both values is
dH(X1,X2). It remains to show that f is nonexpansive. Let x,y ∈ X and let
x2,y2 ∈ X2 be elements for which the distances d(x, x2),d(y,y2) are minimal.
Hence

d(x, x2) 6 d(x,y2) 6 d(x,y) + d(y,y2)
∧ d(y,y2) 6 d(y, x2) 6 d(y, x) + d(x, x2) .

Lemma 5.2.2 implies that d(x,y) > de
(
d(x, x2),d(y,y2)

)
= de

(
f(x), f(y)

)
.

If X1 = X2 = ∅, we can use the coupling T = ∅ = ∅ × ∅ and any function f. If,
instead X1 = ∅, X2 6= ∅, no coupling exists thus d ↓F = ∞ and we can take the
constant∞-function to show that also d ↑F =∞ is attained.

166

5.4 Lifting Functors

To illustrate the Hausdorff pseudometric, we quickly provide the example
calculation which yields the distance given in Example 5.3.3 (page 142).

Example 5.4.32 For the set of real numbers we take the usual Euclidean distance
and want to compute the Hausdorff distance between the set {0.4, 0.7} and the
set {0.5, 1}. Here we have

max
x1∈{0.4,0.7}

min
x2∈{0.5,1}

|x1 − x2| = max
{

min {0.1, 0.6} , min {0.2, 0.3}
}

= max {0.1, 0.2} = 0.2

and similarly

max
x2∈{0.5,1}

min
x1∈{0.4,0.7}

|x1 − x2| = max
{

min {0.1, 0.2} , min {0.6, 0.3}
}

= max {0.1, 0.3} = 0.3

resulting in dH({0.5, 1}, {0.4, 0.7}) = max {0.2, 0.3} = 0.3 as claimed in Exam-
ple 5.3.3 (page 142).

It would also be interesting to consider the countable powerset functor,
use the supremum as (well-behaved) evaluation function and consider the
resulting Wasserstein lifting. However, in this case we cannot use the same proof
technique as above because the Hausdorff pseudometric for countable sets (with
supremum/infimum replacing maximum/minimum) does not preserve metrics.
If we take the Euclidean metric and consider the sets X1 = {0}∪ {1/n | n ∈N}

and X2 = {1/n | n ∈N} then their Hausdorff distance is 0 although clearly X1
and X2 are different sets. Thus, due to Theorem 5.4.24 (Page 161), there cannot
be an optimal coupling for X1 and X2.

As another example of our lifting approaches, we consider the input functor
_A of Example 2.4.2. It is known that the input functor even preserves pullbacks
[Rut00]. Nevertheless we provide a proof here.

Lemma 5.4.33 Let A be an arbitrary set. The input functor _A : Set → Set of
Example 2.4.2 preserves pullbacks.

Proof. We look at the following diagram.

P X1 PA XA1

X2 Y XA2 YA

p1

p2 f1

f2

pA1

pA2 fA1

fA2

167

Chapter 5 Behavioral Pseudometrics

If we have a pullback in Set as indicated in the left part of the diagram, we have
to show that also the right diagram is a pullback. The diagram on the right
commutes because for all g ∈ PA we know from the commutativity of the left
diagram that fA1 ◦ pA1 (g) = f1 ◦ p1 ◦ g = f2 ◦ p2 ◦ g = fA2 ◦ pA2 (g). Moreover, if Q
is a set along with functions qi : Q→ XAi satisfying fA1 ◦ q1 = fA2 ◦ q2, for each
a ∈ A the induced functions qi(·)(a) : Q→ Xi satisfy f1 ◦q1(·)(a) = f2 ◦q2(·)(a).
Thus, since the left diagram is a pullback, for each a ∈ A there is a unique
function fa : Q → P such that pi ◦ fa = qi(·)(a). We define f : Q → PA via the
assignment f(q)(a) := fa(q). Then we have pAi ◦ f(q)(a) = pi ◦ fa(q) = qi(q)(a)
for all q ∈ Q and all a ∈ A and thus pAi ◦ f = qi. Moreover, this is the only
function satisfying these equalities. Any f ′ : Q → PA which satisfies them
induces functions f ′a : Q→ P via the assignment f ′a(q) := f ′(q)(a) and each of
these must be equal to the unique function fa and thus f ′ = f.

For the input functor we will consider two different well-behaved evaluation
functions and the resulting Wasserstein pseudometrics.

Example 5.4.34 (Wasserstein Lifting for the Input Functor) We consider the
input functor _A : Set→ Set of Example 2.4.2 with finite input set A and claim
that the evaluation functions evF : [0,>]A → [0,>] which are listed in the table
below are well-behaved and yield the given Wasserstein pseudometric on XA

for any pseudometric space (X,d).

maximal distance > evF(s) d ↓F(s1, s2)
> ∈]0,∞] max

a∈A
s(a) max

a∈A
d
(
s1(a), s2(a)

)
> =∞ ∑

a∈A
s(a)

∑
a∈A

d
(
s1(a), s2(a)

)
> ∈]0,∞[|A|−1

∑
a∈A

s(a) |A|−1
∑
a∈A

d
(
s1(a), s2(a)

)
In order to show this we first observe that for any f : X→ [0,>] we have F̃f =
evF ◦ fA so applying it to s ∈ XA yields either maxa∈A f

(
s(a)

)
or
∑
a∈A f

(
s(a)

)
or |A|−1

∑
a∈A f

(
s(a)

)
. With this we proceed to show well-behavedness.

W1. For f1, f2 : X→ [0,>] with f1 6 f2 we obviously also have F̃f1 6 F̃f2.

W2. Let s ∈ ([0,>]2)A and si := πAi (t), i.e., necessarily s = 〈s1, s2〉. We have
to show the inequality de

(
evF(s1), evF(s2)

)
6 F̃de(s) where the right hand

side evaluates to evF
(
dAe (s)

)
= evF(de ◦ s) = evF(de ◦ 〈s1, s2〉). Using this

we can see that the inequality is an immediate consequence of Lemma 5.2.3
(page 136) by taking f = s1, g = s2 or, in the last case, f = |A|−1s1 and
g = |A|−1s2.

168

5.4 Lifting Functors

W3. We have ev−1F [{0}] = {s : A→ [0,>] | evF(s) = 0}. Clearly for all functions
this is the case only if s is the constant 0-function. Since {0} is a final object
in Set, there is a unique function z : A → {0}. Thus Fi[F {0}] = iA[{0}A] ={
iA(z)

}
= {i ◦ z} and clearly i ◦ z : A→ [0,>] is also the constant 0-function.

Now if we have s1, s2 ∈ XA their unique coupling is s := 〈s1, s2〉 : A → X×
X. Moreover F̃d(s) = evF

(
dA(s)

)
= evF

(
d ◦ 〈s1, s2〉

)
and using the different

evaluation functions we obtain the pseudometrics given in the table above.
Finally, using a similar argument as in Example 5.4.28, we can show that the

duality does not hold: Suppose both X and A have more than one element and
d is a metric on X. Let s1 ∈ XA such that there are a1,a2 with s1(a1) 6= s1(a2).
We define s2(a1) = s1(a2), s2(a2) = s1(a1) and s2(a) = s1(a) for all remaining
a ∈ A \ {a1,a2}. Clearly s1 6= s2 but F̃f(s1) = F̃f(s2) for every nonexpansive
function f : (X,d) → ([0,>],de) yielding d ↑F(s1, s2) = 0 whereas d ↓F(s1, s2) > 0
since d ↓F is a metric by Theorem 5.4.24 (page 161).

We conclude our list of examples with the Wasserstein lifting of the machine
functor which we will use several times in the remainder of this chapter.

Example 5.4.35 (Wasserstein Lifting of the Machine Functor) We equip the
machine functor MB = B× _A with the evaluation function evMB : B× [0,>]A →
[0,>], (o, s) 7→ c · evI(s) where c ∈]0, 1] is a discount factor and and evI is
one of the evaluation functions for the input functor from Example 5.4.34.
For any pseudometric space (X,d) we can easily see that for two elements
(o1, s1), (o2, s2) ∈ B× XA we have a unique coupling if and only if o1 = o2,
namely (o1, 〈s1, s2〉) (for o1 6= o2 no coupling exists at all). Thus the Wasserstein
function on any two elements as above is given by

d ↓M2
(
(o1, s1), (o2, s2)

)
=

{
1, if o1 6= o2
c · evI(d ◦ 〈s1, s2〉), else

where the latter is either c ·maxa∈A d
(
s1(a), s2(a)

)
or
∑
a∈A d

(
s1(a), s2(a)

)
de-

pending on the choice of evI.

5.4.3 Lifting Multifunctors

While the functors we considered so far can be nicely lifted using our theory,
there are other functors that require a more general treatment. For instance,
consider the output functor F = B× _ for some fixed set B (see Example 2.4.3,
page 50). As in Example 5.4.35 we have a coupling for t1, t2 ∈ FX = B×X with
ti = (bi, xi) if and only if b1 = b2. Consequently, if b1 6= b2 then irrespective

169

Chapter 5 Behavioral Pseudometrics

of the evaluation function we choose and of the distance between x1 and x2 in
(X,d), the lifted Wasserstein pseudometric will always result in d ↓F(t1, t2) = >.
This can be counterintuitive, e.g., taking B = [0, 1], X 6= ∅ and t1 = (0, x) and
t2 = (ε, x) for a small ε > 0 and an x ∈ X. The reason is that we think of
B = [0, 1] as if it were endowed with a non-discrete pseudometric, like e.g. the
Euclidean metric de, plugged into the product after the lifting.

This intuition can be formalized by considering the lifting of the product seen
as a functor from Set× Set into Set. More generally, it can be seen that the def-
initions and results introduced so far for endofunctors in Set straightforwardly
extend to multifunctors on Set, i.e., to functors F : Setn → Set on the product
category Setn for any natural number n ∈ N. The only difference is that we
start with n pseudometric spaces instead of one. Due to this, the definitions and
results are technically a bit more complicated than in the endofunctor setting
but they capture exactly the same ideas as before.

For clarity we provide all the multifunctor results here but it is safe to skip
the results at a first read, continue with studying the product and coproduct
bifunctors in Section 5.4.4 (page 175) – they will play an important role for
the later development of our theory – and only look at the exact multifunctor
definitions when necessary.

The formal definition of multifunctor lifting is a straightforward extension of
Definition 5.4.1 with only a little bit of added technical complexity.

Definition 5.4.36 (Lifting of a Multifunctor) Let U : PMet → Set be the for-
getful functor which maps every pseudometric space to its underlying set and
denote by Un : PMetn → Setn the n-fold product of U with itself, i.e., the func-
tor mapping the product of n pseudometric spaces to the product of their base
sets. A functor F : PMetn → PMet is called a lifting of a functor F : Setn → Set

if it satisfies U ◦ F = F ◦Un.

We quickly note that these multifunctor liftings can be used to obtain endo-
functor liftings.

Lemma 5.4.37 (Multifunctor Lifting Induces Endofunctor Lifting) Let n ∈N,
n > 2 and i ∈ {1, . . . ,n}. Moreover, let F : PMetn → PMet be a lifting of a
functor F : Setn → Set. If we fix all but the i-th component and consider the
endofunctor Fi : PMet→ PMet where

Fi(X,d) := F
(
(X1,d1), . . . , (Xi−1,di−1), (X,d), (Xi+1,di+1), . . . (Xn,dn)

)
Fif := F

(
idX1 , . . . , idXi−1 , f, idXi+1 , . . . idXn

)

170

5.4 Lifting Functors

then this is a lifting of the endofunctor Fi : Set→ Set, where

FiX := F(X1, . . . ,Xi−1,X,Xi+1, . . . Xn),
Fif := F

(
idX1 , . . . , idXi−1 , f, idXi+1 , . . . idXn

)
,

in the sense of Definition 5.4.1.

Proof. We just have to use the property U ◦ F = F ◦Un to obtain

U ◦ Fi(X,d) = U ◦ F
(
(X1,d1), . . . , (Xi−1,di−1), (X,d), (Xi+1,di+1), . . . (Xn,dn)

)
= F ◦Un

(
(X1,d1), . . . , (Xi−1,di−1), (X,d), (Xi+1,di+1), . . . (Xn,dn)

)
= F(X1, . . . ,Xi−1,X,Xi+1, . . . Xn

)
= Fi ◦U(X,d)

for any pseudometric space (X,d). Completely analogously one can prove that
this equality holds for arrows which yields U ◦ Fi = Fi ◦U.

As in the endofunctor case any multifunctor lifting is monotone in the follow-
ing sense.

Theorem 5.4.38 (Monotonicity of Multifunctor Lifting) Let F : Setn → Set be
a multifunctor and F : PMetn → PMet be a lifting of F. For pseudometric spaces
(X1,d1), . . . , (Xn,dn) let (d1, . . . ,dn)F denote the pseudometric on F(X1, . . . ,Xn)
which we obtain by applying F to (X1,d1), . . . , (Xn,dn). Then F is monotone
on pseudometrics in the following sense: If we have pseudometrics di 6 ei on
common sets Xi we also have (d1, . . . ,dn)F 6 (e1, . . . , en)F.

Proof. Since for all i ∈ {1, . . . ,n} we have di 6 ei the identity function idi :=
idXi : Xi → Xi can be regarded as a nonexpansive function fi : (X, ei) → (X,di)
because we have for all x,y ∈ Xi that

di
(
fi(x), fi(y)

)
= di(x,y) 6 ei(x,y) .

By functoriality of F also

F(f1, . . . , fn) :
(
F(X1, . . . ,Xn), (e1, . . . , en)F

)
→
(
F(X1, . . . ,XN), (d1, . . . ,dn)F

)
is nonexpansive, i.e., for all t1, t2 ∈ F(X1, . . . ,Xn) we have

(d1, . . . ,dn)F
(
F(Uf1, . . . ,Ufn)(t1), F(Uf1, . . . ,Ufn)(t2)

)
6 (e1, . . . en)F(t1, t2)

and the left hand side evaluates to

(d1, . . . ,dn)F
(
F(Uf1, . . . ,Ufn)(t1), F(Uf1, . . . ,Ufn)(t2)

)
= (d1, . . . ,dn)F

(
F(id1, . . . , idn)(t1), F(id1, . . . , idn)(t2)

)
= (d1, . . . ,dn)F

(
idF(X1,...,Xn)(t1), idF(X1,...,Xn)(t2)

)
= (d1, . . . ,dn)F(t1, t2)

171

Chapter 5 Behavioral Pseudometrics

and thus we have indeed (d1, . . . ,dn)F 6 (e1, . . . , en)F.

It is not too surprising that the line of argument in the above proof is exactly
the same as used in the proof of Theorem 5.4.2 (page 144). One just has to take
proper care of putting the universal quantification (for all 1 6 i 6 n) in the right
place. Thus for many of the following theorems there will be just a reference to
the corresponding endofunctor result and the simple (but admittedly tedious)
calculations are omitted.

The really useful feature of considering multifunctor liftings is based on
the fact that we have a slightly different domain of definition for evaluation
functions which will also help us to solve the problems we described initially.

Definition 5.4.39 (Multifunctor Evaluation Function and Evaluation Functor)
Let F : Setn → Set be a functor. An evaluation function for F is any function

evF : F([0,>], . . . , [0,>])→ [0,>] .

Given such an evaluation function, the evaluation functor is the functor

F̃ : (Set/[0,>])n → Set/[0,>]

where F̃(g1, . . . ,gn) := evF ◦ F(g1, . . . ,gn) for all gi ∈ Set/[0,>] and on arrows F̃
coincides with F.

Using this function, we immediately get the Kantorovich pseudometric and
the corresponding lifting.

Definition 5.4.40 (Kantorovich Function for Multifunctors) Let F : Setn → Set

be a functor with evaluation function evF : F([0,>], . . . , [0,>]) → [0,>] and
(X1,d1), . . . , (Xn,dn) be pseudometric spaces. The Kantorovich function is the
function (d1, . . . ,dn) ↑F :

(
F(X1, . . . ,Xn)

)2 → [0,>], where

(d1, . . . ,dn) ↑F(t1, t2) := sup
fi : (Xi,di) → ([0,>],de)

de

(
F̃(f1, . . . , fn)(t1), F̃(f1, . . . , fn)(t2)

)
for all t1, t2 ∈ F(X1, . . . ,Xn).

By adapting the proof of Theorem 5.4.5 (page 145) we immediately obtain.

Theorem 5.4.41 For all pseudometric spaces (X1,d1), . . . , (Xn,dn) the Kan-
torovich function (d1, . . . ,dn) ↑F is a pseudometric on F(X1, . . . ,Xn).

Thus we can define the Kantorovich lifting as follows.

172

5.4 Lifting Functors

Definition 5.4.42 (Kantorovich Lifting for Multifunctors) Let F : Setn → Set

be a functor with evaluation function evF : F([0,>], . . . , [0,>])→ [0,>]. The Kan-
torovich lifting of F is the functor F : PMetn → PMet, F((X1,d1), . . . , (Xn,dn)) =
(F(X1, . . . ,Xn),d) with the pseudometric d = (d1, . . . ,dn) ↑F, and Ff = Ff.

By adapting the proof of Theorem 5.4.7 (page 146) we can guarantee the
soundness of this definition.

Theorem 5.4.43 The Kantorovich lifting is a functor PMetn → PMet.

Also the Wasserstein lifting can be transferred to the multifunctor setting. For
this we first need to define couplings.

Definition 5.4.44 (Coupling) Let F : Setn → Set be a functor and m ∈ N.
Given sets X1, . . . ,Xn and elements tj ∈ F(X1, . . . ,Xn) for 1 6 j 6 m we call an
element t ∈ F(Xm1 , . . . ,Xmn) such that F(π1,j, . . . ,πn,j)(t) = tj a coupling of the
tj (with respect to F) where πi,j are the projections πi,j : Xmi → Xi. We write
ΓF(t1, t2, . . . , tm) for the set of all these couplings.

Using these couplings we can then again define a Wasserstein function.

Definition 5.4.45 (Wasserstein Function for Multifunctors) Let F : Setn → Set

be a functor with evaluation function evF : F([0,>], . . . , [0,>]) → [0,>] and
(X1,d1), . . . , (Xn,dn) be pseudometric spaces. The Wasserstein function is the
function (d1, . . . ,dn) ↓F :

(
F(X1, . . . ,Xn)

)2 → [0,>], where

(d1, . . . ,dn) ↓F(t1, t2) := inf
t∈ΓF(t1,t2)

F̃(d1, . . . ,dn)(t).

for all t1, t2 ∈ F(X1, . . . ,Xn).

As before, we will use well-behaved evaluation functions along with pullback
preserving functors to obtain a Wasserstein pseudometric.

Definition 5.4.46 (Well-Behaved Multifunctor Evaluation Function) We call a
multifunctor evaluation function evF : F([0,>], . . . , [0,>])→ [0,>] well-behaved if
it satisfies the following three properties.

W1. F̃ is monotone, i.e., given fi,gi : Xi → [0,>] with fi 6 gi for all 1 6 i 6 n,
we also have F̃(f1, . . . , fn) 6 F̃(g1, . . . ,gn).

W2. Let πi : [0,>]2 → [0,>] be the projections of the product. For all couplings

173

Chapter 5 Behavioral Pseudometrics

t ∈ F([0,>]2, . . . , [0,>]2) we require

de

(
F̃(π1, . . . ,π1)(t), F̃(π2, . . . ,π2)(t)

)
6 F̃(de, . . . ,de)(t) .

W3. We have ev−1F [{0}] = F(i, . . . , i)[F({0}, . . . , {0})] where i : {0} ↪→ [0,>] is the
inclusion map.

Of course, also the Gluing Lemma, Lemma 5.4.18, has a natural generalization
to multifunctors.

Lemma 5.4.47 (Gluing Lemma for Multifunctors) Let F : Setn → Set be a weak
pullback preserving multifunctor, X1, . . . ,Xn be sets, t1, t2, t3 ∈ F(X1, . . . ,Xn),
t12 ∈ ΓF(t1, t2) and t23 ∈ ΓF(t2, t3) be couplings. For i ∈ {1, . . . ,n} and j ∈ {1, 2, 3}
we denote by πi,j : X3i → Xi the projections of the respective ternary products.

There exists a coupling t123 ∈ ΓF(t1, t2, t3) such that

F
(
〈π1,1,π1,2〉, . . . , 〈πn,1,πn,2〉

)
(t123) = t12, and

F
(
〈π1,2,π1,3〉, . . . , 〈πn,2,πn,3〉

)
(t123) = t23 .

Moreover, t13 := F
(
〈π1,1,π1,3〉, . . . , 〈πn,1,πn,3〉

)
(t123) is a coupling of t1 and t3,

i.e., we have t13 ∈ ΓF(t1, t3).

Using this lemma and well-behavedness we can prove sufficient conditions for
the Wasserstein function to be a pseudometric just as we did in Theorem 5.4.20.

Theorem 5.4.48 Let F : Setn → Set be a functor with evaluation function evF. If

1. F preserves weak pullbacks and

2. evF is well-behaved

then the Wasserstein function is a pseudometric.

This result then gives rise to the Wasserstein lifting for multifunctors.

Definition 5.4.49 (Wasserstein Lifting for Multifunctors) Let F : Setn → Set

be a weak pullback preserving functor with well-behaved evaluation func-
tion evF : F([0,>], . . . , [0,>]) → [0,>]. We define the Wasserstein lifting of the
functor F to be the functor F : PMetn → PMet, F

(
(X1,d1), . . . , (Xn,dn)

)
=(

F(X1, . . . ,Xn),d
)

with the pseudometric d = (d1, . . . ,dn) ↓F and Ff = Ff.

This definition is justified by adapting the proof of Theorem 5.4.22 (page 158)
to obtain the following result.

174

5.4 Lifting Functors

Lemma 5.4.50 The Wasserstein lifting is a functor PMetn → PMet.

With these results at hand we quickly summarize a few of the properties for
the multifunctor liftings which arise as natural generalizations of Lemma 5.4.26

and theorems 5.4.8, 5.4.23, 5.4.24 and 5.4.27.

Theorem 5.4.51 Let F : Setn → Set be a functor with evaluation function evF.

1. Both liftings preserve isometries.

2. If the evaluation function satisfies Conditions W1 and W2 of Definition 5.4.46

then (d1, . . . ,dn) ↑F 6 (d1, . . . ,dn) ↓F holds for all pseudometric spaces (Xi,di).

3. If F preserves weak pullbacks, evF is well-behaved and for all t1, t2 ∈
F(X1, . . . ,Xn) with (d1, . . . ,dn) ↓F(t1, t2) = 0 there is an optimal coupling
γ(t1, t2) ∈ ΓF(t1, t2) s.t. 0 = (d1, . . . ,dn) ↓F(t1, t2) = F̃(d1, . . . ,dn)

(
γ(t1, t2)

)
then (d1, . . . ,dn) ↓F is a metric for all metric spaces (Xi,di).

Whenever the two pseudometrics coincide for a functor and an evaluation
function, we say that the Kantorovich-Rubinstein duality or short duality holds.

5.4.4 The Product and Coproduct Bifunctors

We conclude our section on multifunctors by considering two important exam-
ples in length, the product and the coproduct bifunctor.

Definition 5.4.52 (Product Bifunctor) The product bifunctor is the bifunctor
F : Set2 → Set where F(X1,X2) = X1×X2 for all sets X1,X2 and F(f1, f2) = f1× f2
for all functions fi : Xi → Yi.

This functor fits nicely into our theory since it preserves pullbacks. Although
the proof is simple and, of course, similar to the one for the input functor
(Lemma 5.4.33) we provide it here.

Lemma 5.4.53 The product bifunctor preserves pullbacks.

Proof. If we have pullbacks in Set as indicated in the left of the diagram below
(i ∈ {1, 2}), then we have to show that the right diagram is a pullback.

Pi Ai P1 × P2 A1 ×A2

Bi Ci B1 ×B2 C1 ×C2

ai

bi fi

gi

a1 × a2

b1 × b2 f1 × f2

g1 × g2

175

Chapter 5 Behavioral Pseudometrics

Commutativity of the right diagram is immediate by commutativity of the
left diagrams because (f1 × f2) ◦ (a1 × a2) = (f1 ◦ a1)× (f2 ◦ a2) = (g1 ◦ b1)×
(g2 ◦ b2) = (g1 × g2) ◦ (b1 × b2). Moreover, for any set Q along with functions
a : Q → A1 ×A2, b : Q → B1 × B2 satisfying (f1 × f2) ◦ a = (g1 × g2) ◦ b we
take the projections πi : A1 ×A2 → Ai, τi : B1 × B2 → Bi and observe that we
have

(
f1 ◦ (π1 ◦ a)

)
×
(
f2 ◦ (π2 ◦ a)

)
= (f1 × f2) ◦ a = (g1 × g2) ◦ b =

(
g1 ◦ (τ1 ◦

b)
)
×
(
g2 ◦ (τ2 ◦ b)

)
. Thus there are unique functions pi : Q → Pi such that

ai ◦ pi = πi ◦ a and bi ◦ pi = τi ◦ b and we conclude that (a1× a2) ◦ 〈p1,p2〉 = a
and (b1 × b2) ◦ 〈p1,p2〉 = b. Moreover, it is unique because for any function
〈q1,q2〉 : Q→ P1 × P2 we must have qi = pi by uniqueness of the pi.

Let us now discuss possible evaluation functions for this functor. They are
similar to the ones for the input functor in Example 5.4.34 but we add some
additional parameters (this could be done analogously for the input functor).

Lemma 5.4.54 (Evaluation Functions for the Product Bifunctor) Let F be the
product bifunctor. The evaluation functions evF : [0,>]2 → [0,>] presented in
the table below are well-behaved.

Maximal Distance > Other Parameters evF(r1, r2)
> ∈]0,∞] c1, c2 ∈]0, 1] max {c1r1, c2r2}
> =∞ c1, c2 ∈]0,∞[, p ∈N (c1x

p
1 + c2x

p
2)
1/p

> ∈]0,∞[c1, c2 ∈]0, 1], c1 + c2 6 1, p ∈N (c1x
p
1 + c2x

p
2)
1/p

Proof. Apparently the only difference between the second and the third row is
the range of the parameters. It ensures that evF(r1, r2) ∈ [0,>].

We proceed by checking all three conditions for well-behavedness:

W1. Let fi,gi : Xi → [0,>] with fi 6 gi be given. For the maximum we have

F̃(f1, f2) = max {c1f1, c2f2} 6 max {c1g1, c2g2} = F̃(g1,g2)

and for the second evaluation function, we also obtain

F̃(f1, f2) =
(
c1 · fp1 + c2 · f

p
2

)1/p
6
(
c1 · gp1 + c2 · g

p
2

)1/p
= F̃(g1,g2)

due to monotonicity of all involved functions since c1, c2 > 0.

W2. Let πi : [0,>]2 → [0,>] be the projections of the product and define t :=
(x11, x21, x12, x22) ∈ F([0,>]2, [0,>]2) = [0,>]2 × [0,>]2. We have to show

176

5.4 Lifting Functors

the inequality

de

(
F̃(π1,π1)(t), F̃(π2,π2)(t)

)
6 F̃(de,de)(t) . (5.4.10)

To do this, we first observe that the right hand side of this inequality eval-
uates to F̃(de,de)(t) = evF

(
de(x11, x21),de(x12, x22)

)
. Moreover, we have

F̃(πi,πi)(t) = evF(xi1, xi2) so if we define zi = evF(xi1, xi2) the left hand
side of (5.4.10) can be rewritten as de(z1, z2). Thus (5.4.10) is equivalent to

de (z1, z2) 6 evF
(
de(x11, x21),de(x12, x22)

)
. (5.4.11)

If z1 = z2 this is obviously true because de(z1, z2) = 0 and the right
hand side of (5.4.11) is non-negative. We now assume z1 > z2 (the other
case is symmetrical). For ∞ = z1 > z2 inequality (5.4.11) holds because
then x11 = ∞ or x12 = ∞ and x21, x22 < ∞ (otherwise we would have
z2 = ∞) so both the left hand side and the right hand side are ∞. Thus
we can now restrict our attention to ∞ > z1 > z2 where necessarily
also x11, x12, x21, x22 < ∞ (otherwise we would have z1 = ∞ or z2 = ∞).
According to Lemma 5.2.2 (page 136), the inequality (5.4.11) is equivalent
to showing the two inequalities

z1 6 z2 + evF
(
de(x11, x21),de(x12, x22)

)
, and

z2 6 z1 + evF
(
de(x11, x21),de(x12, x22)

)
.

By our assumption (∞ > z1 > z2) the second of these inequalities is
satisfied, so we just have to show the first.

1. For the discounted maximum as evaluation function we have zi =

max {c1xi1, c2xi2}. If for z1 the maximum is attained for the first element,
i.e., if z1 = c1x11, we can conclude that

z2 + max {c1de(x11, x21), c2de(x12, x22)} > z2 + c1de(x11, x21)
= z2 + c1|x11 − x21| > z2 + c1(x11 − x21)

= z2 + c1x11 − c1x21 = z2 + z1 − c1x21

= z1 + (z2 − c1x21) > z1

because z2 = max {c1x21, c2x22} > c1x21 and therefore (z2 − c1x21) > 0.
The same line of argument can be applied if z1 = c2x12.

2. For the second evaluation function we aim at using the Minkowski
Inequality for Sums (Theorem 5.2.4, page 137) which tells us that(

|a1|
p + |a2|

p
)1/p

+
(
|b1|

p + |b2|
p
)1/p

>
(
|a1 + b1|

p + |a2 + b2|
p
)1/p

177

Chapter 5 Behavioral Pseudometrics

holds for all real numbers a1,a2,b1,b2. Specifically, if we define the
non-negative real numbers

a1 := c
1/p
1 x21, a2 := c

1/p
2 x22

and the real numbers

b1 := c
1/p
1 · (x11 − x21), b2 := c

1/p
2 · (x12 − x22) .

we obtain the following parts:(
|a1|

p + |a2|
p
)1/p

=
(
c1x

p
21 + c2x

p
22

)1/p
= evF(x21, x22) = z2(

|b1|
p + |b2|

p
)1/p

=
(
c1|x11 − x21|

p + c2|x12 − x22|
p
)1/p

=
(
c1de(x11, x21)p + c2de(x12, x22)p

)1/p
|a1 + b1|

p =
∣∣∣c1/p1 x21 + c

1/p
1 · (x11 − x21)

∣∣∣p = c1|x11|p = c1xp11
|a2 + b2|

p =
∣∣∣c1/p2 x22 + c

1/p
2 · (x12 − x22)

∣∣∣p = c2|x12|p = c2xp12
and thus the Minkowski inequality yields

z2 +
(
c1de(x11, x21)p + c2de(x12, x22)p

)1/p
>
(
c1x

p
11 + c2x

p
12

)1/p
= z1

which concludes the proof.

W3. Both evaluation functions satisfy Condition W3 of Definition 5.4.39, be-
cause we have

F(i, i)[F({0} , {0})] = (i× i)[{0}× {0}] = {(0, 0)}

and for both evaluation functions apparently ev−1F [{0}] = {(0, 0)}.

Using these well-behaved evaluation functions we can now lift the product
bifunctor using our multifunctor lifting framework.

Lemma 5.4.55 (Product Pseudometrics) Let F be the product bifunctor of Def-
inition 5.4.52. For the evaluation functions presented in Lemma 5.4.54 the
Kantorovich-Rubinstein duality holds and the supremum [infimum] of the
Kantorovich [Wasserstein] pseudometric is always a maximum [minimum].
Moreover, for all pseudometric spaces (X1,d1), (X2,d2) we obtain the lifted
pseudometrics (d1,d2)F : (X1 ×X2)2 → [0,>] as given in the table below.

178

5.4 Lifting Functors

evF(r1, r2) (d1,d2)F
(
(x1, x2), (y1,y2)

)
max {c1r1, c2r2} max {c1d1(x1,y1), c2d2(x2,y2)}(
c1x

p
1 + c2x

p
2

)1/p (
c1d1(x1,y1)p + c2d2(x2,y2)p

)1/p
Proof. We have already seen that the product bifunctor preserves weak pullbacks
and that the given evaluation functions are well-behaved. We now first prove
(for both evaluation functions) that the product functor satisfies the Kantorovich-
Rubinstein duality and simultaneously that the supremum (in the Kantorovich
pseudometric) is a maximum and the infimum (of the Wasserstein pseudometric)
is a minimum.

Let (X1,d1), (X1,d2) be pseudometric spaces, πi : X21 → X1 and τi : X22 → X2 be
the projections and let t1 = (x1, x2), t2 = (y1,y2) ∈ F(X1,X2) = X1 ×X2 be given.
We define t := (x1,y1, x2,y2) ∈ F(X21,X22) and observe that F(π1, τ1)(t) = t1,
F(π2, τ2)(t) = t2 and thus t ∈ ΓF(t1, t2) is a coupling of t1 and t2. In the fol-
lowing we will construct nonexpansive functions fi : (Xi,di) → ([0,>],de) such
that de

(
F̃(f1, f2)(t1), F̃(f1, f2)(t2)

)
= F̃(d1,d2)(t) holds. Due to Theorem 5.4.51

(page 175) we can then conclude that duality holds and both supremum and
infimum are attained.

1. For the first evaluation function in the table above we have F̃(d1,d2)(t) =

max {c1d1(x1,y1), c2d2(x2,y2)} and assume without loss of generality that
c1d1(x1,y1) is the maximal element. We define f1 := d1(x1, _), which is
nonexpansive due to Lemma 5.2.9 (page 140), and f2 to be the constant
zero-function which is obviously nonexpansive as a constant function. Then
we have:

de

(
F̃(f1, f2)(t1), F̃(f1, f2)(t2)

)
= de

(
max {c1f1(x1), c2f2(x2)} , max {c1f1(y1), c2f2(y2)}

)
= de

(
max {c1f1(x1), 0} , max {c1f1(y1), 0}

)
= de

(
c1f1(x1), c1f1(y1)

)
= c1d1(x1,y1) = max {c1d1(x1,y1), c2d2(x2,y2)} = F̃(d1,d2)(t)

The case where c2d2(x2,y2) is the maximal element is treated analogously.

2. For the second evaluation function we define f1 := d1(x1, _) and f2 :=

d2(x2, _) which are nonexpansive by Lemma 5.2.9 and obtain

de

(
F̃(f1, f2)(t1), F̃(f1, f2)(t2)

)
= de

((
c1f

p
1(x1) + c2f

p
2(x2)

)1/p ,
(
c1f

p
1(y1) + c2f

p
2(y2)

)1/p)
= de

(
0,
(
c1d

p
1(x1,y1) + c2d

p
2(x2,y2)

)1/p)

179

Chapter 5 Behavioral Pseudometrics

=
(
c1d

p
1(x1,y1) + c2d

p
2(x2,y2)

)1/p
= F̃(d1,d2)(t)

which completes the proof.

While all the product pseudometrics which we can obtain as lifting of the
product functor by Lemma 5.4.55 are well-known, we point out a specifically
interesting one, the undiscounted maximum pseudometric.

Lemma 5.4.56 (Binary Products in PMet) If we set c1 = c2 = 1 for the first eval-
uation function in Lemma 5.4.55 we obtain for two given pseudometric spaces
(X1,d1), (X2,d2) as lifted pseudometric the function d∞ : (X1 × X2)2 → [0,>],
d
(
(x1, x2), (y1,y2)

)
= max {d1(x1,y1),d2(x2,y2)}. The resulting pseudometric

space (X1 ×X2,d∞) is exactly the categorical product of (X1,d1) and (X2,d2) in
PMet.

Proof. This follows immediately from Theorem 5.2.8 (page 138) by taking I = 2
as index category, and fi = πi : X1 ×X2 → X.

In a completely analogous way as for the product bifunctor, we will now
introduce and study the coproduct bifunctor.

Definition 5.4.57 (Coproduct Bifunctor) The coproduct bifunctor is the functor
F : Set2 → Set, where F(X1,X2) = X1 + X2 for all sets X1, X2 and F(f1, f2) =

f1 + f2 for all functions f1 : X1 → Y1, f2 : X2 → Y2. Explicitly12, the function
f1 + f2 : X1 +X2 → Y1 + Y2 is given via the assignment f1 + f2(x, i) =

(
fi(x), i

)
.

As for the product bifunctor, we can show that this bifunctor preserves
pullbacks.

Lemma 5.4.58 The coproduct bifunctor preserves pullbacks.

Proof. If we have pullbacks in Set as indicated in the left of the diagram below
(i ∈ {1, 2}), then we have to show that the right diagram is a pullback.

Pi Ai P1 + P2 A1 +A2

Bi Ci B1 +B2 C1 +C2

ai

bi fi

gi

a1 + a2

b1 + b2 f1 + f2

g1 + g2

12Remember that X1 +X2 ∼= X1 × {1}∪X2 × {2}.

180

5.4 Lifting Functors

Commutativity of the right diagram is immediate by commutativity of the left
diagrams because for any (x, i) ∈ P1 + P2 we have (f1 + f2) ◦ (a1 + a2)(x, i) =
fi ◦ ai(x) = gi ◦ bi(x) = (g1 + g2) ◦ (b1 + b2)(x, i). Moreover, for any set Q
along with functions a : Q → A1 +A2, b : Q → B1 + B2 satisfying (f1 + f2) ◦
a = (g1 + g2) ◦ b we define the sets Qi := {x ∈ Q | ∃y ∈ Y.a(x) = (y, i)} =

{x ∈ Q | ∃y ∈ Y.b(x) = (y, i)} and observe that we obtain a disjoint partition ofQ,
i.e., Q1 ∩Q2 = ∅ and Q = Q1 ∪Q2. Additionally, we have fi ◦ a|Qi = gi ◦ b|Qi so
there are unique functions pi : Qi → Pi such that ai ◦pi = a|Qi and bi ◦pi = b|Qi .
We define the function

p : Q→ P1 + P2, p(x) =

{
p1(x), if x ∈ Q1
p2(x), if x ∈ Q2

and conclude that (a1+a2) ◦p = a and (b1+b2) ◦p = b. Moreover, it is unique
because for any function q : Q→ P1× P2 we must have q|Qi = pi by uniqueness
of the pi.

For this functor we will just consider one type of evaluation function whose
only parameter is the maximal element >.

Lemma 5.4.59 (Evaluation Function for the Coproduct Bifunctor) Let F be the
coproduct bifunctor. The evaluation function evF : [0,>] + [0,>]→ [0,>], where
evF(x, i) = x, is well-behaved.

Proof. We show the three properties of a well-behaved evaluation function.

W1. Let f1, f2,g1,g2 : X → [0,>] with f1 6 g1, f2 6 g2 and (z, i) ∈ F(X1,X2) =
X1 +X2. We have

F̃(f1, f2)(z, i) = evF
(
F(f1, f2)(z, i)

)
= fi(z) 6 gi(z) = evF

(
F(g1,g2)(z, i)

)
= F̃(g1,g2)(z, i) .

W2. Let t =
(
(x,y), i

)
∈ F([0,>]2, [0,>]2) = [0,>]2 × {1, 2}. We obtain equality:

F̃(de,de)(t) = evF
(
de(x,y), i

)
= de(x,y)

= de
(
evF(x, i), evF(y, i)

)
= de

(
F̃(π1,π1)(t), F̃(π2,π2)(t)

)
.

W3. Let i : 0 ↪→ [0,>] be the inclusion function. We have Fi[F({0} , {0})] =

(i+ i)[{0}+ {0}] = {0}× {1, 2} = ev−1F [{0}].

With this evaluation function we can now employ our multifunctor lifting
framework to obtain the following coproduct pseudometric.

181

Chapter 5 Behavioral Pseudometrics

Lemma 5.4.60 (Coproduct Pseudometric) For the coproduct bifunctor of Def-
inition 5.4.57 and the evaluation function of Lemma 5.4.59 the Kantorovich-
Rubinstein duality holds, the supremum of the Kantorovich pseudometric is
always a maximum, the infimum of the Wasserstein pseudometric is a minimum
whenever a coupling exists and we obtain the coproduct pseudometric

d+ : (X1 +X2)
2 → [0,>], d+

(
(x1, i1), (x2, i2)

)
=

{
di(x1, x2), if i1 = i2 = i
>, else

.

Proof. We already know that the coproduct functor preserves weak pullbacks
and that the evaluation function is well-behaved. Now we show that the pair of
functor and evaluation function evF satisfies the Kantorovich-Rubinstein duality
and simultaneously that the supremum (in the Kantorovich pseudometric) is a
maximum and the infimum (of the Wasserstein pseudometric) is a minimum if
and only if there exists a coupling of the two given elements.

Let (X1,d1), (X1,d2) be pseudometric spaces, πi : X21 → X1 and τi : X22 → X2 be
the projections and and t1, t2 ∈ F(X1,X2) = X1 +X2, say t1 = (z, i), t2 = (z ′, i ′).
We distinguish two cases.

1. For i = i ′ we define t =
(
(z, z ′), i

)
and observe that F(π1, τ1)

(
(z, z ′), i

)
= t1,

F(π2, τ2)
(
(z, z ′), i

)
= t2, thus t ∈ ΓF(t1, t2). Furthermore F̃(d1,d2)(t) =

di(z, z ′). If i = i ′ = 1 we define f1 := d1(z, _) : (X1,d1) → ([0,>],de) which is
nonexpansive according to Lemma 5.2.9 and consider an arbitrary nonexpan-
sive function f2 : (X2,d2) → ([0,>],de) (e.g. the constant zero-function). Then
we have:

de

(
F̃(f1, f2)(t1), F̃(f1, f2)(t2)

)
= de

(
F̃(f1, f2)(z, 1), F̃(f1, f2)(z ′, 1)

)
= de

(
f1(z), f1(z ′)

)
= de

(
0,d1(z, z ′)

)
= d1(z, z ′) = di(z, z ′) .

The case i = i ′ = 2 can be treated analogously.

2. In the case where i 6= i ′, there is no coupling that projects to (z, i) and (z ′, i ′),
thus (d1,d2) ↓F(t1, t2) = >. We show that also (d1,d2) ↑F(t1, t2) = >. We
define f1 to be the constant 0-function and f2 the constant >-function. We
have:

de

(
F̃(f1, f2)(t1), F̃(f1, f2)(t2)

)
= de

(
F̃(f1, f2)(z, i), F̃(f1, f2)(z ′, j)

)
= de

(
fi(z), fj(z ′)

)
= de(0,>) = >

which completes the proof.

182

5.5 Bisimilarity Pseudometrics

We conclude this section by the observation that – as before – this yields the
categorical coproduct.

Lemma 5.4.61 (Binary Coproducts in PMet) The pseudometric space (X1 +

X2,d+) where d+ is the pseudometric given in Lemma 5.4.60 is exactly the
categorical coproduct of (X1,d1) and (X2,d2) in PMet.

Proof. This follows immediately from Theorem 5.2.8 by taking I = 2 as index
category, and fi = ιi : Xi → X1 +X2.

5.5 Bisimilarity Pseudometrics

In this section we now want to use our lifting framework to derive bisimilarity
pseudometrics. We assume an arbitrary lifting F : PMet → PMet of an endo-
functor F on Set and, for any pseudometric space (X,d), we write dF for the
pseudometric obtained by applying F to (X,d). Such a lifting can be obtained as
an endofunctor lifting, by taking a lifted multifunctor and fixing all parameters
apart from one as in Lemma 5.4.37, or by the composition of such functors.

Our first result ensures that if z : Z → FZ is a final F-coalgebra, then there
is also a final F-coalgebra which is constructed by simply enriching Z with a
suitable pseudometric dZ.

Theorem 5.5.1 (Final Coalgebra Construction for Liftings) Let the functor
F : PMet→ PMet be a lifting of a functor F : Set→ Set. We require that F has
a final coalgebra z : Z→ FZ. For every ordinal i we construct a pseudometric
di : Z×Z→ [0,>] as follows:

. d0 := 0 is the zero pseudometric,

. di+1 := d
F
i ◦ (z× z) for all ordinals i and

. dj = supi<j di for all limit ordinals j.

This sequence converges for some ordinal θ, i.e, we reach a fixed point dθ =

dFθ ◦ (z× z). Moreover, the resulting isomorphism z : (Z,dθ) → (FZ,dFθ) is the
final F-coalgebra.

Proof. It can be easily shown that each of the di is a pseudometric, since the
supremum of pseudometrics is again a pseudometric. Since dθ is a fixed-point,
z is an isometry and hence nonexpansive. Furthermore the chain converges
once we reach an ordinal whose cardinality is larger than the cardinality of the
lattice of pseudometrics on Z. We now proceed to show that we obtain the final
coalgebra for F.

183

Chapter 5 Behavioral Pseudometrics

Let c : (X,d) → F(X,d) be any F-coalgebra. Obviously there is an underlying
F-coalgebra c : X → FX in Set. Since z is the final F-coalgebra, there exists a
unique function f : X → Z such that z ◦ f = Ff ◦ c. It is left to show that f is a
nonexpansive function (X,d) → (Z,dθ).

For each ordinal i we define a pseudometric ei : X×X→ [0,>] as follows:

. e0 is the constant zero-pseudometric,

. ei+1 := e
F
i ◦ (c× c) and

. ej := supi<j ei if j is a limit ordinal.

We show that ei 6 d: Obviously e0 6 d and furthermore ei+1 = eFi ◦ (c× c) 6
dF ◦ (c× c) 6 d where the first inequality is due to the fact that the lifting
preserves the order on pseudometrics (see Theorem 5.4.2, page 144) and the
second is nonexpansiveness of c. If we take the limit ej = supi<j ei, we know
that ei 6 d for each i < j and hence also ej 6 d.

As an auxiliary step we will prove that all f : (X, ei) → (Z,di) are nonex-
pansive. This holds for i = 0 since for all x,y ∈ X we have e0(x,y) = 0 =

d0
(
f(x), f(y)

)
. For i+ 1 we have

di+1
(
f(x), f(y)

)
= dFi ◦ (z× z)

(
f(x), f(y)

)
= dFi

(
(z ◦ f)(x), (z ◦ f)(y)

)
= dFi

(
(Ff ◦ c)(x), (Ff ◦ c)(y)

)
= dFi

(
Ff
(
c(x)

)
, Ff
(
c(y)

))
6 eFi

(
c(x), c(y)

)
= ei+1(x,y) .

The inequality above holds since if f : (X, ei) → (Z,di) is a nonexpansive function
also Ff : (FX, eFi) → (FZ,dFi) is nonexpansive. Whenever j is a limit ordinal we
obtain:

dj
(
f(x), f(y)

)
= sup

i<j

di
(
f(x), f(y)

)
6 sup

i<j

ei(x,y) = ej(x,y) .

Finally, we combine this result with the result from above (ei 6 d for all ordinals
i) to obtain the inequality dθ

(
f(x), f(y)

)
6 eθ(x,y) 6 d(x,y) which shows that

f : (X,d) → (Z,d) is nonexpansive. Thus, if we equip Z with dθ it is indeed the
final F-coalgebra.

We remark that the above construction apparently defines dθ as least fixed
point (with regard to the pointwise order of pseudometrics) of the equation

dθ = d
F ◦ (z× z) .

As a first simple example of this construction we consider the machine functor.
We will look at more examples at the end of this section.

184

5.5 Bisimilarity Pseudometrics

Example 5.5.2 (Final Coalgebra for the Lifted Machine Functor) We consider
the machine endofunctor M2 = 2× _A. As maximal distance we take > = 1 and
as evaluation function we use evM2 : [0, 1]× [0, 1]A → [0, 1] with evM2(o, s) =

c ·maxa∈A s(a) for 0 < c < 1 as in Example 5.4.35 (page 169).
We recall from Example 2.4.10 (page 54) that the carrier of the final M2-

coalgebra is 2A
∗
. Moreover, from Example 5.4.35 we know that for any

pseudometric d on 2A
∗

we obtain as Wasserstein pseudometric the function
d ↓F :

(
2× (2A

∗
)A
)2 → [0, 1] where, for all (o1, s1), (o2, s2) ∈ 2× (2A

∗
)A,

d ↓F
(
(o1, s1), (o2, s2)

)
= max

{
d2(o1,o2), c ·max

a∈A
d
(
s1(a), s2(a)

)}
with the discrete metric d2 on 2. Thus the fixed-point equation induced by
Theorem 5.5.1 is given by, for L1,L2 ∈ 2A

∗
,

d(L1,L2) = max
{
d2
(
L1(ε),L2(ε)

)
, c ·max

a∈A
d
(
λw.L1(aw), λw.L2(aw)

)}
.

Now because d2 is the discrete metric with d2(0, 1) = 1 we can easily see that
d2A∗ as defined below is indeed the least fixed-point of this equation and thus
(2A

∗
,d2A∗) is the carrier of the final M2-coalgebra.

d2A∗ : 2A
∗
× 2A

∗
→ [0, 1], d2A∗ (L1,L2) = c

inf{n∈N|∃w∈An.L1(w) 6=L2(w)} .

Thus the distance between two languages L1,L2 : A∗ → 2 can be determined by
looking for a word w of minimal length which is contained in one and not in
the other. Then, the distance is computed as c|w|. This is similar to a standard
ultrametric between traces [BN80].

We already noted in the beginning of this chapter that for any set X, the set
of pseudometrics over X, with pointwise order, is a complete lattice. Moreover,
by Theorem 5.4.2 the lifting F induces a monotone function _F which maps any
pseudometric d on X to dF on FX. If, additionally, such function isω-continuous,
i.e., if it preserves the supremum of ω-chains, the construction in Theorem 5.5.1
will apparently converge in at most ω steps, i.e., dθ = dω. It is easy to see that
this is the case in Example 5.5.2 and we show below13 that the liftings induced
by the finite powerset functor and the probability distribution functor with
finite support are ω-continuous.

Theorem 5.5.3 (ω-continuity of the liftings of Pf and Df) Let F be the finite
powerset functor Pf of Example 2.3.11 or the distribution functor Df (with
13Theorem 5.5.3 and its proof were developed entirely by Paolo Baldan. It was published in the

extended version of our first paper on behavioral metrics [BBKK14, Proposition P.6.1].

185

Chapter 5 Behavioral Pseudometrics

finite support) of Example 2.3.12. For any set X the function _F mapping
a pseudometric d on X to the pseudometric14 dF = d ↑F = d ↓F on FX is ω-
continuous, i.e., for any increasing chain of pseudometrics (di)i∈N on X, we
have (supi di)

F = supi d
F
i .

Proof. Let X be a fixed set. By Theorem 5.4.2 (page 144), we know that for any
lifting, the function _F is monotone, i.e., whenever d1 6 d2 it holds that dF1 6 d

F
2.

Given an increasing chain of pseudometrics (di)i∈N over X, simply by mono-
tonicity of _F we can deduce that supi d

F
i 6 (supi di)

F because for any i ∈N we
apparently have di 6 supi di.

We next prove that for the Wasserstein/Kantorovich liftings of either Pf or Df
also the converse inequality holds. We proceed separately for the two functors.

1. Finite powerset: Let d := supi di. We have to show dPf 6 supi d
Pf
i . Let X1,X2 ∈

Pf(X) be finite subsets of X. Since X1 and X2 are finite and d = supi di, for
any ε > 0 we can find an i ∈ N such that for any x1 ∈ X1, x2 ∈ X2 and all
j > i we have d(x1, x2) − dj(x1, x2) 6 ε. According to the definition of the
Wasserstein lifting for Pf we get for all j > i:

d ↓Pf(X1,X2) = inf
{

max
(x1,x2)∈W

d(x1, x2)
∣∣W ∈ ΓPf(X1,X2)}

6 inf
{

max
(x1,x2)∈W

(
dj(x1, x2) + ε

) ∣∣W ∈ ΓPf(X1,X2)}
= inf

{
max

(x1,x2)∈W
dj(x1, x2)

∣∣W ∈ ΓPf(X1,X2)}+ ε = d ↓Pfj (X1,X2) + ε

Therefore, dPf(X1,X2) 6 supi d
Pf
i (X1,X2) + ε. Given that ε can be arbitrarily

small, we deduce that indeed dPf(X1,X2) 6 supi d
Pf
i (X1,X2), as desired.

2. Finitely supported distributions. Let us denote d = supi di. We have to show
dDf 6 supi d

Df
i . Let P1,P2 ∈ DfX and let X1, X2 be the corresponding finite

supports of P1 and P2, namely Xi = {x ∈ X | Pi(X) > 0}. As before, since X1
and X2 are finite and d = supdi, for any ε > 0 we can find an i ∈ N such
that for any x1 ∈ X1, x2 ∈ X2 and j > i we have d(x1, x2) − dj(x1, x2) 6 ε.
Using the definition of the Wasserstein lifting for the functor Df, we get for
all j > i:

d ↓Df(X1,X2) = inf

{ ∑
x1,x2∈X

d(x1, x2) · P(x1, x2) | P ∈ ΓDf(P1,P2)

}
14Recall that by Examples 5.4.30 and 5.4.31 the duality holds for both functors, i.e., the

Wasserstein and Kantorovich lifting coincide.

186

5.5 Bisimilarity Pseudometrics

since for any (x1, x2) ∈ X×X, if (x1, x2) 6∈ X1 ×X2 necessarily P(x1, x2) = 0

= inf

{ ∑
(x1,x2)∈X1×X2

d(x1, x2) · P(x1, x2)
∣∣∣ P ∈ ΓDf(P1,P2)

}

6 inf

{ ∑
(x1,x2)∈X1×X2

(
dj(x1, x2) + ε

)
· P(x1, x2)

∣∣∣ P ∈ ΓDf(P1,P2)
}

= inf

{ ∑
(x1,x2)∈X1×X2

dj(x1, x2) · P(x1, x2) + ε ·
∑

x1,x2∈X
P(x1, x2)

∣∣∣ P ∈ ΓDf(P1,P2)
}

= inf

{ ∑
(x1,x2)∈X1×X2

dj(x1, x2) · P(x1, x2) + ε
∣∣∣ P ∈ ΓDf(P1,P2)

}

= inf

{ ∑
(x1,x2)∈X1×X2

dj(x1, x2) · P(x1, x2)
∣∣∣ P ∈ ΓDf(P1,P2)

}
+ ε

= inf

{ ∑
x1,x2∈X

dj(x1, x2) · P(x1, x2)
∣∣∣ P ∈ ΓDf(P1,P2)

}
+ ε = d ↓Dfj (X1,X2) + ε

Therefore, dDf(X1,X2) 6 supi d
Df
i (X1,X2) + ε. Given that ε can be arbitrarily

small, we deduce that indeed dDf(X1,X2) 6 supi d
Df
i (X1,X2), as desired.

The lifting of the final F-coalgebra to a final F-coalgebra, which is provided
by Theorem 5.5.1, allows us to move from a qualitative to a qualitative behavior
analysis: Instead of just considering equivalences, in PMet we can now measure
the distance of behaviors using the final coalgebra.

Definition 5.5.4 (Bisimilarity Pseudometric) Let F : PMet→ PMet be a lifting
of a Set-endofunctor F for which a final coalgebra exists. Moreover, let θ be the
ordinal for which the final coalgebra construction of Theorem 5.5.1 converges.
For any F-coalgebra c : X → FX the bisimilarity distance on X is the function
bdc : X×X→ [0,>] where

bdc(x,y) := dθ
(
[[x]]c, [[y]]c

)
for all x,y ∈ X. Since dθ is a pseudometric also bdc is a pseudometric.

Let us check how this definition applies to deterministic automata and the
machine bifunctor.

187

Chapter 5 Behavioral Pseudometrics

Example 5.5.5 (Bisimilarity Pseudometric for Deterministic Automata) We
instantiate the above definition for the machine functor M2 = 2× _A with
maximal distance > = 1 and evaluation function evM2 : [0, 1] × [0, 1]A with
evM2(o, s) = c ·maxa∈A s(a) for 0 < c < 1 as in Example 5.5.2. We recall from
Example 2.4.10 (page 54) that for any coalgebra α : X → 2× XA the unique
map [[·]]α : X→ 2A

∗
into the final coalgebra maps each state x ∈ X to the (finite)

language [[x]]α : A
∗ → 2 it accepts. Using the final coalgebra pseudometric from

Example 5.5.2 we have

bdα : X×X→ [0, 1], bdα(x,y) = cinf{n∈N|∃w∈An.[[x]]α(w) 6=[[y]]α(w)} .

Thus the distance between two states x,y ∈ X is determined by the shortest
word w which is contained in the language of one state and not in the language
of the other. Then the distance is computed as c|w|.

We call the above pseudometric the bisimilarity pseudometric because states
which are F-bisimilar in the sense of Definition 2.4.12 (page 56) have distance 0.

Theorem 5.5.6 Let F, F, θ, c : X→ FX be as in Definition 5.5.4. For all x, x ′ ∈ X,

x ∼c x
′ =⇒ bdc(x, x ′) = 0 .

Proof. By Theorem 2.4.14 (page 57) x ∼c x ′ implies [[x]]c = [[x ′]]c. Moreover, since
dθ is a pseudometric it is reflexive and thus bdc(x, x ′) = dθ

(
[[x]]c, [[y]]c

)
= 0.

We will later (Theorem 5.5.10, page 190) provide some sufficient conditions
which guarantee that also the converse of the above implication holds.

Before doing so, we show that under some mild conditions the bisimilarity
pseudometric can be computed analogously to dθ itself, replacing the final
coalgebra z : Z→ FZ by the coalgebra c : X→ FX under consideration. This way
we do not have to explore the entire final coalgebra (which might be too large)
but can restrict to the relevant part.

Theorem 5.5.7 (Bisimilarity Pseudometric Construction) Let the chain of the
di converge in θ steps and F preserve isometries. Let furthermore c : X→ FX be
an arbitrary coalgebra. For all ordinals i we define a pseudometric ei : X×X→
[0,>] as follows:

. e0 is the zero pseudometric,

. ei+1 = e
F
i ◦ (c× c) for all ordinals i and

. ej = supi<j ei for all limit ordinals j.

188

5.5 Bisimilarity Pseudometrics

Then we reach a fixed point after ζ 6 θ steps, i.e., eζ = eFζ ◦ (c× c). Moreover eζ
is the bisimilarity pseudometric, i.e., we have bdc = eζ.

Proof. The chain ei of metrics is the same as the one constructed in the proof
of Theorem 5.5.1. In that proof we have shown that the unique coalgebra
homomorphisms f : X → Z into the final coalgebra in Set are nonexpansive
when seen as functions f : (X, ei) → (Z,di). Here we show that they are all in
fact isometries.

. For i = 0 this is true: for x,y ∈ X we have d0
(
f(x), f(y)

)
= 0 = e0(x,y).

. Now assume that f : (X, ei) → (Z,di) is an isometry, which implies (since F
preserves isometries) that Ff : (FX, eFi) → (FZ,dFi) is an isometry. Moreover,
z ◦ f = Ff ◦ c holds because f is a coalgebra homomorphism from c to z. Hence
for x,y ∈ X we have

di+1
(
f(x), f(y)

)
= dFi

(
z
(
f(x)

)
, z
(
f(y)

))
= dFi

(
Ff
(
c(x)

)
, Ff
(
c(y)

))
= eFi

(
c(x), c(y)

)
= ei+1(x,y) .

. For a limit ordinal j we have

dj
(
f(x), f(y)

)
= sup

i<j

di
(
f(x), f(y)

)
= sup

i<j

ei(x,y) = ej(x,y) .

We know that dθ is a fixed-point, i.e., we have dθ = dFθ ◦ (z× z). Then eθ must
also be a fixed-point (eθ = eFθ ◦ (c× c)), since:

eθ(x,y) = dθ
(
f(x), f(y)

)
= dFθ

(
z
(
f(x)

)
, z
(
f(y)

))
= dFθ

(
Ff
(
c(x)

)
, Ff
(
c(y)

))
= eFθ

(
c(x), c(y)

)
using again the fact that Ff is an isometry. Hence ζ 6 θ, i.e., the chain ei might
converge earlier and bdc(x,y) = dθ

(
f(x), f(y)

)
= eθ(x,y) = eζ(x,y).

Let us now try to find conditions which ensure that two states x and y are
bisimilar if their bisimilarity distance is 0. To this aim, we proceed by recalling
the final coalgebra construction via the final chain which was first presented in
the dual setting (free/initial algebra).

Definition 5.5.8 (Final Chain Construction [Ada74]) Let C be a category with
terminal object 1 and limits of ordinal-indexed cochains. For any functor
F : C→ C the final chain consists of objects Wi for all ordinals i and connection
morphisms pi,j : Wj →Wi for all ordinals i 6 j. The objects are defined as

189

Chapter 5 Behavioral Pseudometrics

. W0 := 1,

. Wi+1 := FWi for all ordinals i, and

. Wj := lim
i<j
Wi for all limit ordinals j.

The morphisms are determined by p0,i := !Wi : Wi → 1, pi,i = idWi for all
ordinals i, pi+1,j+1 := Fpi,j for all ordinals i < j and if j is a limit ordinal the pi,j
are the morphisms of the limit cone. They satisfy pi,k = pi,j ◦ pj,k for all ordinals
i 6 j 6 k. We say that the chain converges in λ steps if pλ,λ+1 : Wλ+1 →Wλ is an
isomorphism.

This construction does not necessarily converge (e.g. for the unrestricted
powerset functor P on Set), but if it does, we always obtain a final coalgebra.

Theorem 5.5.9 (Final Coalgebra via the Final Chain [Ada74]) Let C be a cate-
gory with terminal object 1 and limits of ordinal-indexed cochains. If the final
chain of a functor F : C→ C converges in λ steps then p−1λ,λ+1 : Wλ → FWλ is the
final coalgebra.

We now show under which circumstances dθ is a metric and how our con-
struction relates to the construction of the final chain.

Theorem 5.5.10 (Final Coalgebra Metric) Let F : PMet→ PMet be a lifting of
a functor F : Set → Set which has a final coalgebra z : Z → FZ. Let θ be the
ordinal for which the construction of the di in Theorem 5.5.1 converges. If

1. F preserves isometries,

2. F preserves metrics, and

3. the final chain for F converges

then dθ is a metric, i.e., all for z, z ′ ∈ Z we have dθ(z, z ′) = 0 ⇐⇒ z = z ′.

Proof. Let Wi,pi,j : Wj →Wi be as in Definition 5.5.8. We construct a series of
metrics ei : Wi ×Wi → [0,>] as follows:

. e0 : 1× 1→ [0,>] is the (unique!) zero metric on 1,

. ei+1 := e
F
i : Wi+1 ×Wi+1 → [0,>] for all ordinals i and

. ej := supi<j ei ◦ (pi,j × pi,j) for all limit ordinals j.

Since the functor preserves metrics ei+1 is a metric if ei is. Given a limit ordinal
j we can easily check that ej is a pseudometric provided that all the ei with
i < j are pseudometrics. To see that ej is also a metric when all ei with i < j
are metrics we proceed as follows: Suppose ej(x,y) = 0 for some x,y ∈ Wj,

190

5.5 Bisimilarity Pseudometrics

then we know that for all i < j we must have ei
(
pi,j(x),pi,j(y)

)
= 0 and thus

pi,j(x) = pi,j(y) because the ei are metrics. Since the cone (Wj

pi,j→ Wi)i<j is by
definition a limit in Set we can now conclude that x = y. This is due to the
universal property of the limit: Let us assume x 6= y then for the cone ({x,y}

fi→
Wi)i<j with fi(x) := pi,j(x), and also fi(y) := pi,j(y) = pi,j(y) there would have
to be a unique function u : {x,y} → Wj satisfying pi,j ◦ u = fi. However, for
example u,u ′ : {x,y} → Wj where u(x) = u(y) = x and u ′(x) = u ′(y) = y are
distinct functions satisfying this commutativity which is a contradiction to the
uniqueness. Thus our assumption (x 6= y) is false and ej is indeed a metric.

Using the metrics ei we now consider the connection morphisms pi :=

pi,λ : Z→Wi and proceed by showing that each of these connection morphisms
pi is an isometry (Z,di) → (Wi, ei).

. By definition this holds for d0 and e0 (both are constantly zero).

. If the property holds for an ordinal i, then in order to show it for i + 1
we recall that z = p−1λ,λ+1. Hence we have by properties of the connection
morphisms Fpi = Fpi,λ = pi+1,λ+1 = pi+1,λ ◦ pλ,λ+1 = p

i+1 ◦ z−1 and thus Fpi ◦
z = pi+1. Since by hypothesis pi : (Z,di) → (Wi, ei) is an isometry, the fact
that isometries are preserved by F implies that Fpi : (FZ,dFi) → (Wi+1, ei+1) is
an isometry. Furthermore z : (Z,di+1) → (FZ,dFi) is an isometry by definition
of the di (see Theorem 5.5.1, page 183). Hence also their composition pi+1 =
Fpi ◦ z is an isometry.

. For a limit ordinal j we calculate for x,y ∈ Z

ej
(
pj(x),pj(y)

)
= sup

i<j

ei
(
(pi,j ◦ pj)(x), (pi,j ◦ pj)(y)

)
= sup

i<j

ei
(
pi(x),pi(y)

)
= sup

i<j

di(x,y) = dj(x,y)

and thus also pj : (Z,dj)→ (Wj, ej) is an isometry.

Let λ be the ordinal for which the final chain converges. We assume that λ > θ,
otherwise set λ = θ (if the final chain converges in θ steps it also converges for
all larger ordinals), thus dλ = dθ. Now let x,y ∈ Z with dθ(x,y) = dλ(x,y) = 0.
This implies ei(pi(x),pi(y)) = 0 for all ordinals i 6 λ. Since all ei are metrics,
we infer that pi(x) = pi(y) for all ordinals i. With the same reasoning as above
(where we proved that ej is a metric for limit ordinals j) this implies that x and
y are equal.

Corollary 5.5.11 (Bisimilarity Metric) Let F : PMet → PMet be a lifting of a
functor F : Set→ Set which has a final coalgebra. Assume that

191

Chapter 5 Behavioral Pseudometrics

1. F preserves isometries,

2. F preserves metrics,

3. the final chain for F converges, and

4. F preserves weak pullbacks.

Then for every coalgebra c : X→ FX and all x, x ′ ∈ X we have

x ∼c x
′ ⇐⇒ bdc(x, x ′) = 0 .

Proof. We already know from Theorem 5.5.6 that x ∼c x ′ implies bdc(x, x ′) = 0
so we just have to show the converse. Due to our assumptions we can apply
Theorem 5.5.10 so 0 = bdc(x, x ′) = dθ([[x]]c, [[x

′]]c) implies [[x]]c = [[x ′]]c. Since F
preserves weak pullbacks we can use Theorem 2.4.15 (page 58) to conclude that
x ∼c x

′.

We will now get back to the examples studied at the beginning of this chapter
(Examples 5.3.1 and 5.3.3, pages 141 and 142) and discuss in which sense they
are instances of our framework.

Example 5.5.12 (Bisimilarity Pseudometric for Probabilistic Systems) In or-
der to model the discounted behavioral distance for purely probabilistic systems
as given in Example 5.3.1 (page 141) in our framework, we set > = 1 and pro-
ceed to lift the following three functors: we first consider the identity functor
Id with evaluation map evId : [0, 1]→ [0, 1], evId(z) = c · z in order to integrate
the discount (Example 5.4.29, page 164). Then, we take the coproduct with
the singleton metric space (Definition 5.4.57 and Lemmas 5.4.59 and 5.4.60,
pages 180 ff.). The combination of the two functors yields the discrete ver-
sion of the refusal functor of Franck van Breugel and James Worrel [vBW06],
namely R(X,d) = (X+ 1, d̂) where d̂ is the coproduct pseudometric taken from
Example 5.3.1. Finally, we lift the probability distribution functor D to obtain
D (Example 5.4.9, page 149). All functors satisfy the Kantorovich-Rubinstein
duality and preserve metrics.

It is easy to see that D(R(X,d)) = (D(X+ 1),d), where d is defined as in
Example 5.3.1). Then, the least solution of d(x,y) = d

(
c(x), c(y)

)
can be

computed as in Theorem 5.5.7.

Example 5.5.13 (Bisimilarity Pseudometric for Metric Transition Systems) As
in Example 5.3.3 we consider metric transition systems which we identified as
the coalgebras

c : S→M1 × · · · ×Mn ×Pf(S)

192

5.6 Compositionality of Liftings

where S is a finite set of states and (Mi,di) are pseudometric spaces. If, for i ∈
{1, . . . ,n}, πi : M1× · · · ×Mn×Pf(S)→Mi and πn+1 : M1× · · · ×Mn×Pf(S)→
Pf(S) are the projections of the product, then each state s ∈ S is assigned a
valuation function [s] : {1, . . . ,n}→ ∪nr=1Mr where, of course, [s](i) = πi

(
c(S)

)
,

and the set πn+1
(
c(S)

)
of successor states.

To obtain behavioral distances for metric transition systems using our frame-
work we set > = ∞. Moreover, analogously to the product bifunctor of
Definition 5.4.52 we can equip the product multifunctor P : Setn+1 → Set,
P(X1, . . . ,Xn) = X1 × · · · × Xn, P(f1, . . . , fn) = f1 × · · · × fn with the evaluation
function evP : [0,∞]n+1 → [0,∞] where evP(r1, . . . , rn+1) = max {r1, . . . , rn+1}
which is a natural generalization of the function presented in Lemma 5.4.54. As
in that lemma, this function is well-behaved in the sense of Definition 5.4.46

and analogously to Lemma 5.4.55 we can easily see that duality holds and we
obtain the categorical product pseudometric, i.e., for given pseudometric spaces
(Xi,di) the new pseudometric

dF : X1 × . . . Xn+1 → [0,∞], dF = max {d1, . . . ,dn+1} .

Let P be the corresponding lifted multifunctor. We instantiate the given
pseudometric spaces (Mi,di) as fixed parameters and obtain the endofunctor
F : PMet→ PMet with

F(X,d) = P
(
(M1,d1), . . . , (Mn,dn)×Pf(X,d)

)
where Pf is the lifting of the powerset functor using the evaluation function
max : Pf([0,∞])→ [0,∞] with max ∅ = 0 as presented in Example 5.4.31. Then,
via Theorem 5.5.7, we obtain exactly the least solution of

d(s, t) = max
{

pd([s], [t]), max
s ′∈τ(s)

min
t ′∈τ(t)

d(s ′, t ′), max
t ′∈τ(t)

min
s ′∈τ(s)

d(s ′, t ′)
}

as in (5.3.1) in Example 5.3.3. Except for the fact that we allow +∞ and con-
sider only undirected (symmetric) pseudometrics, this is exactly the branching
distance bdSs as defined by Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga
[dAFS09, Definition 13].

5.6 Compositionality of Liftings

In the remainder of this chapter we want to turn our attention to trace pseu-
dometrics. Since we plan to apply the generalized powerset construction we
will have to lift not only functors but also monads from Set to PMet. As a

193

Chapter 5 Behavioral Pseudometrics

preparation for that we now study compositionality of functor liftings, i.e., we
set off to identify some sufficient conditions ensuring FG = FG. Unfortunately,
this seems to be a quite difficult question in this general setting so our main
result only treats the Wasserstein lifting and requires the existence of optimal
couplings. However, whenever it can be applied it allows us to reason modu-
larly and, consequently, to simplify the proofs needed for the treatment of our
examples.

As further preparation for the trace pseudometric we will also consider two
examples involving the finite powerset monad where optimal couplings do not
always exist and manually prove that compositionality holds for these specific
cases.

5.6.1 Compositionality for Endofunctors

Given functors F,G : Set→ Set with evaluation functions evF and evG, we can
easily construct an evaluation function for the composition FG as follows.

Definition 5.6.1 (Composition of Evaluation Functions) Let F and G be endo-
functors on Set with evaluation functions evF and evG. We define the composi-
tion of evF and evG to be the evaluation function evF ∗ evG : FG[0,>]→ [0,>] for
the composed functor FG via evF ∗ evG := F̃evG = evF ◦ FevG.

Our first step will be to show that, whenever F and G preserve weak pullbacks,
well-behavedness is inherited.

Theorem 5.6.2 (Well-Behavedness of Composed Evaluation Function) Let F,
G be endofunctors on Set with evaluation functions evF, evG. If both functors
preserve weak pullbacks and both evaluation functions are well-behaved then
also evF ∗ evG is well-behaved.

We will split the proof into two technical lemmas. The first of these just
summarizes some useful rules for calculations.

Lemma 5.6.3 Let F,G be endofunctors on Set with evaluation functions evF, evG
and a := 〈Gπ1,Gπ2〉 (i.e., the unique mediating arrow into the product GX×GX,
where πi : X2 → X are the projections) and (X,d) an arbitrary pseudometric
space. Then the following holds.

1. We always have G̃d > d ↓G ◦ a and if evG satisfies Conditions W1 and W2 we
also have G̃d > d ↑G ◦ a

2. ∀t1, t2 ∈ FGX : t ∈ ΓFG(t1, t2) =⇒ Fa(t) ∈ ΓF(t1, t2).

194

5.6 Compositionality of Liftings

3. If F and G preserve weak pullbacks then so does FG.

4. For any f ∈ Set/[0,>] we have F̃Gf = F̃(G̃f).

Proof. We first of all observe that a is the unique mediating arrow into the
product GX×GX making the following diagram commute, where πi : X2 → X

and τi : (GX)2 → GX are the respective projections.

G(X×X)

GX GX×GX GX

Gπ1 Gπ2

τ1 τ2

a = 〈Gπ1,Gπ2〉

1. Let s ∈ G(X × X) and define si := Gπi(s) = τi ◦ a(s). Then by defini-
tion s ∈ ΓG(s1, s2) and we conclude G̃d(s) > inf

{
G̃d(s ′) | s ′ ∈ ΓG(s1, s2)

}
=

d ↓G(s1, s2) = d ↓G
(
τ1 ◦ a(s), τ2 ◦ a(s)

)
= d ↓G ◦ a(s). Since we always have

d ↓G > d ↑G as shown in Theorem 5.4.27, the statement follows.

2. We compute Fτi
(
Fa(t)

)
= F(τi ◦ a)(t) = F(Gπi)(t) = FGπi = ti.

3. This is indeed clear by definition.

4. Let f : X → [0,>], then F̃Gf = evF ∗ evG ◦ FGf = evF ◦ FevG ◦ FGf = evF ◦
F(evG ◦Gf) = F̃(G̃f).

We can now use these calculations to prove the second lemma which already
finishes the proof of the inheritance of well-behavedness.

Lemma 5.6.4 Let F,G be functors with evaluation functions evF and evG. Then
the following holds.

1. If F̃ and G̃ are monotone (Condition W1), then so is the evaluation functor
F̃G with respect to the composed evaluation function evF ∗ evG.

2. If G preserves weak pullbacks, evG is well-behaved and F̃ is monotone
(Condition W1) then evF ∗ evG satisfies Condition W2 of Definition 5.4.14.

3. If F preserves weak pullbacks and evF, evG satisfy Condition W3 of well-
behavedness, then also evF ∗ evG satisfies Condition W3 of Definition 5.4.14.

Proof. 1. Let f,g : X→ [0,>] with f 6 g, then by monotonicity of evG we have
G̃f 6 G̃g and using monotonicity of evF we get F̃Gf = F̃(G̃f) 6 F̃(G̃g) = F̃Gg.

195

Chapter 5 Behavioral Pseudometrics

2. Let πi : X2 → X be the projections of the product. For t ∈ FG([0,>]2) we
define ti := FGπi(t) ∈ FG[0,>]. By definition t ∈ ΓFG(t1, t2) so Lemma 5.6.3
(page 194) tells us Fa(t) ∈ ΓF(t1, t2) for a := 〈Gπ1,Gπ2〉. Moreover, since
evG : (G[0,>],d ↑Ge) → ([0,>],de) is nonexpansive (by definition of the Kan-
torovich pseudometric), we can apply Lemma 5.4.26 (page 162) to obtain the
inequality

de
(
(evF ∗ evG)(t1), evF ∗ evG(t2)

)
= de

(
F̃evG(t1), F̃evG(t2)

)
6 F̃d ↑Ge

(
Fa(t)

)
= F̃
(
d ↑Ge ◦ a

)
(t) .

By Lemma 5.6.3 we have d ↑Ge ◦ a 6 G̃de and using monotonicity of F̃ we can
continue our inequality with F̃

(
d
↑G
e ◦ a

)
(t) 6 F̃

(
G̃de

)
(t) = F̃Gde(t) which

concludes the proof!

3. Using Lemma 5.4.17 (page 153) we just have to show that the following
diagram is a weak pullback.

FG {0} F {0} {0}

FG[0,>] F[0,>] [0,>]

F!G{0}
FGi Fi

FevG

!F{0}
i

evF

!FG{0}

evF ∗ evG

Lemma 5.4.17 tells us that the right square is a weak pullback and since
F preserves weak pullbacks also the left square is. The outer part is thus
necessarily a weak pullback again yielding by Lemma 5.4.17 that evF ∗ evG
satisfies Condition W3.

This lemma concludes the proof of Theorem 5.6.2. In the light of this result we
know that, whenever we start with pullback preserving functors F, G along with
well-behaved evaluation functions evF, evG, the Wasserstein function for FG
(with respect to evF ∗ evG) is a pseudometric (see Theorem 5.4.20, page 157) so
we can safely talk about the Wasserstein lifting of FG and study compositionality.

We will now show that a sufficient criterion for compositionality of the
Wasserstein lifting is the existence of optimal couplings for G. Again we
start with a technical lemma which also contains a small statement about the
Kantorovich lifting.

196

5.6 Compositionality of Liftings

Lemma 5.6.5 Let F and G be endofunctors on Set together with evaluation
functions evF : F[0,>] → [0,>], evG : G[0,>] → [0,>]. We define evF ∗ evG :=

evF ◦ FevG. Then the following properties hold for every pseudometric space
(X,d).

1. d ↑FG 6 (d ↑G) ↑F.

2. If evF and evG satisfy Conditions W1 and W2 then d ↓FG > (d ↓G) ↓F.

3. If for all t1, t2 ∈ FGX there is a function ∇(t1, t2) : ΓF(t1, t2)→ ΓFG(t1, t2) such
that F̃Gd ◦∇(t1, t2) = F̃d ↓G then d ↓FG 6 (d ↓G) ↓F.

Proof. Let t1, t2 ∈ FGX.

1. Recall that d ↑G is the smallest pseudometric such that for every nonexpansive
function f : (X,d) → ([0,>],de) also G̃f : (GX,d ↑G) → ([0,>],de) is nonexpan-
sive (see remark in the beginning of Section 5.4.1 on page 145). Moreover,
F̃Gf = F̃(G̃f) by Lemma 5.6.3. Thus

d ↑FG(t1, t2) = sup
{
de

(
F̃Gf(t1), F̃Gf(t2)

) ∣∣ f : (X,d) → ([0,>],de)
}

= sup
{
de

(
F̃(G̃f)(t1), F̃(G̃f)(t2)

) ∣∣ f : (X,d) → ([0,>],de)
}

6 sup
{
de

(
F̃(g)(t1), F̃(g)(t2)

) ∣∣g : (GX,d ↑G) → ([0,>],de)
}

= (d ↑G) ↑F(t1, t2)

2. Lemma 5.6.3 tells us G̃d > d ↓G ◦ a and for any coupling t ∈ ΓFG(t1, t2) we
have Fa(t) ∈ ΓF(t1, t2). Using these facts and the monotonicity of F̃ we obtain:

d ↓FG(t1, t2) = inf
{
F̃Gd(t)

∣∣ t ∈ ΓFG(t1, t2)} = inf
{
F̃(G̃d)(t)

∣∣ t ∈ ΓFG(t1, t2)}
> inf

{
F̃(d ↓G ◦ a)(t)

∣∣ t ∈ ΓFG(t1, t2)}
= inf

{
F̃d ↓G

(
Fa(t)

) ∣∣ t ∈ ΓFG(t1, t2)}
> inf

{
F̃d ↓G(t ′)

∣∣ t ′ ∈ ΓF(t1, t2)} = (d ↓G) ↓F(t1, t2)

3. Using ∇(t1, t2) we compute

d ↓FG(t1, t2) = inf
{
F̃Gd(t ′)

∣∣ t ′ ∈ ΓFG(t1, t2)}
6 inf

{
F̃Gd

(
∇(t1, t2)(t)

) ∣∣ t ∈ ΓF(t1, t2)}
= inf

{
F̃d ↓G(t)

∣∣ t ∈ ΓF(t1, t2)} = (d ↓G) ↓F(t1, t2)

which concludes the proof.

197

Chapter 5 Behavioral Pseudometrics

With this result at hand we can now prove the compositionality for the
Wasserstein lifting.

Theorem 5.6.6 (Compositionality of the Wasserstein Lifting) Let F,G be weak
pullback preserving endofunctors on Set with well-behaved evaluation func-
tions evF, evG and (X,d) be a pseudometric space. If for all t1, t2 ∈ GX there is
an optimal G-coupling γ(t1, t2) ∈ ΓG(t1, t2) such that d ↓G(t1, t2) = G̃d

(
γ(t1, t2)

)
then we have the equality d ↓FG = (d ↓G) ↓F.

Proof. From Lemma 5.6.5.2 we know d ↓FG > (d ↓G) ↓F. We just have to show
the other inequality. By our requirement we have a function γ : GX×GX →
G(X× X), such that d ↓G = G̃d ◦ γ. Moreover, let πi : X2 → X and τi : (GX)2 →
GX be the projections of the product then γ satisfies Gπi ◦ γ = τi. Given
t1, t2 ∈ FGX and t ∈ ΓF(t1, t2), we define ∇(t1, t2)(t) = Fγ(t), then this satisfies
the conditions of Lemma 5.6.5.3. First, we have Fγ(t) ∈ ΓFG(t1, t2) because
FGπi

(
Fγ(t)

)
= F(Gπi ◦ γ)(t) = Fτi(t) = ti. Moreover

F̃Gd
(
Fγ(t)

)
= evF ∗ evG ◦ F

(
Gd ◦ γ(t)

)
= evF ◦ FevG ◦ F(Gd ◦ γ)(t)

= evF ◦ F(G̃d ◦ γ)(t) = evF ◦ Fd ↓G(t) = F̃d ↓G(t)

so Lemma 5.6.5.3 yields d ↓FG 6 (d ↓G) ↓F.

This criterion will sometimes turn out to be useful for our later results.
Nevertheless it provides just a sufficient condition for compositionality as the
following examples show.

Example 5.6.7 (Compositionality for the Distribution Functor) We consider
the distribution functor (with finite support) Df of Example 2.3.12 with the
evaluation function defined in Example 5.4.9. For any pseudometric space
(X,d) we have d ↓DfDf =

(
d ↓Df

) ↓Df by Theorem 5.6.6 because optimal couplings
always exist.

Example 5.6.8 (Compositionality for the Finite Powerset Functor) We con-
sider the finite powerset functor Pf of Example 2.3.11 with the evaluation
function defined in Example 5.4.16. We claim that for any pseudometric space
(X,d) we have d ↓PfPf =

(
d ↓Pf

) ↓Pf although Pf-couplings do not always exist. To
verify this, we recall from Lemma 5.6.5.2 that

d ↓PfPf >
(
d ↓Pf

) ↓Pf
(5.6.1)

holds. We now show that we always have equality. Let (X,d) be a pseudometric
space and T1, T2 ∈ PfPfX. We distinguish three cases:

198

5.6 Compositionality of Liftings

1. If T1 = T2 = ∅ we know by reflexivity that both sides of (5.6.1) are 0.

2. If T1 = ∅ 6= T2 or T1 6= ∅ = T2 we know from Example 5.4.31 that ΓPf(T1, T2) = ∅
and therefore

(
d ↓Pf

) ↓Pf (T1, T2) = > and thus (5.6.1) is necessarily an equality
because the left hand side can never exceed >.

3. Let T1, T2 6= ∅. We know from Example 5.4.31 that we have an optimal
coupling T∗ ∈ ΓPf(T1, T2), say T∗ =

{
(Vj1,Vj2) ∈ PfX×PfX | j ∈ J

}
for a suit-

able index set J. Then, using the projections πi : (PfX)2 → PfX, we have
Ti = Pfπi(T

∗) = πi[T
∗] =

{
πi
(
(Vj1,Vj2)

) ∣∣ j ∈ J} = {Vji | j ∈ J}. By optimality
we thus have:(
d ↓Pf

) ↓Pf
(T1, T2) = P̃fd

↓Pf(T∗) = maxd ↓Pf [T∗] = max
j∈J

d ↓Pf(Vj1,Vj2) . (5.6.2)

We will make another case distinction:

3.1. If there is an index j ′ ∈ J such that ΓPf(Vj ′1,Vj ′2) = ∅, we apparently

have d ↓Pf(Vj ′1,Vj ′2) = > and by (5.6.2) also
(
d ↓Pf

) ↓Pf (T1, T2) = > which
again shows that (5.6.1) is an equality.

3.2. Otherwise we can take optimal couplings V∗j ∈ ΓPf(Vj1,Vj2) (see Exam-
ple 5.4.31, page 166). Continuing (5.6.2) we have(

d ↓Pf
) ↓Pf

(T1, T2) = max
j∈J

P̃fd(V
∗
j) = max

j∈J
maxd[V∗j] (5.6.3)

We define T :=
{
V∗j | j ∈ J

}
∈ PfPf(X× X) and calculate for the projec-

tions πi : X×X→ X

PfPfπi(T) = Pfπi[T] =
{
Pfπi(V

∗
j) | j ∈ J

}
=
{
Vji | j ∈ J

}
= Ti

and thus T ∈ ΓPfPf(T1, T2). Moreover we have

d ↓PfPf(T1, T2) 6 P̃fPfd(T) = max
((

Pf max
)(
PfPfd(T)

))
= max

(
max

[
(Pfd)[T]

])
= max

(
max

[{
d[V∗j] | j ∈ J

}])
= max

({
maxd[V∗j] | j ∈ J

})
= max

j∈J
maxd[V∗j] . (5.6.4)

Thus using this, (5.6.3) and (5.6.1) we conclude that

d ↓PfPf(T1, T2) 6 max
j∈J

maxd[V∗j] =
(
d ↓Pf

) ↓Pf
(T1, T2) 6 d ↓PfPf(T1, T2)

which proves equality also in this last case.

199

Chapter 5 Behavioral Pseudometrics

We conclude our study of compositionality for endofunctors with another
example for which we again have to show compositionality separately. This
result will later turn out to be helpful to obtain trace pseudometrics for non-
deterministic automata and we can use the same approach as in the previous
example.

Example 5.6.9 As in Example 5.4.35 (page 169) we equip the machine functor
with the evaluation function evM2 : 2× [0, 1]A → [0, 1], (o, s) 7→ c · evI(s) where
c ∈]0, 1] and evI is one of the evaluation functions for the input functor from
Example 5.4.34. Moreover, for the powerset functor we use the maximum as
evaluation function (see Example 5.4.16). We claim that, although couplings for
M2 do not always exist, we have d ↓PfM2 =

(
d ↓M2

) ↓Pf .
To prove this claim, we adapt the approach employed in Example 5.6.8. We

know from Lemma 5.6.5.2 that

d ↓PfM2 >
(
d ↓M2

) ↓Pf
(5.6.5)

holds. We now show that we always have equality. Let (X,d) be a pseudometric
space and T1, T2 ∈ PfM22 = Pf(2×XA). We distinguish three cases:

1. If T1 = T2 = ∅ we know by reflexivity that both sides of (5.6.5) are 0.

2. If T1 = ∅ 6= T2 or T1 6= ∅ = T2 we know from Example 5.4.31 that ΓPf(T1, T2) = ∅
and therefore

(
d ↓M2

) ↓Pf (T1, T2) = > and thus (5.6.5) is an equality because
the left hand side never exceeds >.

3. Let T1, T2 6= ∅. We know from Example 5.4.31 that we have an optimal cou-
pling T∗ ∈ ΓPf(T1, T2), say T∗ =

{(
(oj1, sj1), (oj2, sj2)

)
∈M2X×M2X | j ∈ J

}
for a suitable index set J. Then using the projections πi : M2X×M2X →
M2X we have Ti = Pfπi(T

∗) = πi[T
∗] =

{
πi
(
(oj1, sj1), (oj2, sj2)

)
| j ∈ J

}
={

(oji, sji) | j ∈ J
}

. By optimality we thus have(
d ↓M2

) ↓Pf
(T1, T2) = P̃fd

↓M2(T∗) = maxd ↓M2 [T∗]

= max
j∈J

d ↓M2
(
(oj1, sj1), (oj2, sj2)

)
. (5.6.6)

We will make another case distinction:

3.1. If there is a j ′ ∈ J such that ΓM2

(
(oj ′1, sj ′1), (oj ′2, sj ′2)

)
= ∅ (which is the

case if and only if oj ′1 6= oj ′2), we have d ↓M2
(
(oj1, sj1), (oj2, sj2)

)
= > and

using (5.6.6) also
(
d ↓M2

) ↓Pf (T1, T2) = > which again shows that (5.6.5)
is an equality.

200

5.6 Compositionality of Liftings

3.2. Otherwise for every index j ∈ Jwe can take the coupling
(
oj1, 〈sj1, sj2〉

)
∈

ΓM2

(
(oj1, sj1), (oj2, sj2)

)
which is unique and thus optimal. Continuing

(5.6.6) we have

(
d ↓M2

) ↓Pf
(T1, T2) = max

j∈J
M̃2d(oj1, 〈sj1, sj2〉)

= max
j∈J

evM2

((
id2 × dA

)(
oj1, 〈sj1, sj2〉

))
= max

j∈J
evM2

(
oj1,d ◦ 〈sj1, sj2〉

)
= c ·max

j∈J
evI
(
d ◦ 〈sj1, sj2〉

)
(5.6.7)

We define

T :=
{
(oj1, 〈sj1, sj2〉) | j ∈ J

}
∈ PfM2(X×X) = Pf

(
2× (X×X)A

)
.

We calculate for the projections πi : X×X→ X

PfM2πi(T) =
(
id2 × πAi

)
[T] =

{
(oj1, sji) | j ∈ J

}
= Ti

and thus T ∈ ΓPfM2(T1, T2). Moreover we have

d ↓PfM2(T1, T2) 6 P̃fM2d(T) = evPf ◦PfevM2 ◦PfM2d(T)

= max
(
Pf (evM2 ◦M2d) (T)

)
= max

(
(evM2 ◦M2d)[T]

)
= max

(
evM2

[(
id2 × dA

)
[T]
])

= max
(
evM2

[{(
id2 × dA

)
(oj1, 〈sj1, sj2〉) | j ∈ J

}])
= max

j∈J
evM2

(
oj1,d ◦ 〈sj1, sj2〉

)
= c ·max

j∈J
evI
(
d ◦ 〈sj1(a), sj2〉

)
(5.6.8)

thus using this, (5.6.7) and (5.6.5) we conclude that

d ↓PfM2(T1, T2) 6 c ·max
j∈J

evI
(
d ◦ 〈sj1, sj2〉

)
=
(
d ↓M2

) ↓Pf
(T1, T2) 6 d ↓PfM2(T1, T2)

which proves equality.

201

Chapter 5 Behavioral Pseudometrics

5.6.2 Compositionality for Multifunctors

We conclude the analysis of compositionality with a short explanation on how
our theory extends to multifunctors.

For n ∈ N we denote by [n] := {1, . . . ,n} ⊆ N the set of all positive natural
numbers less than or equal to n. Now let ni ∈N for all i ∈ [n] and F : Setn →
Set and Gi : Setni → Set (for i ∈ [n]) be multifunctors with evaluation functions
evF : F([0,>]n)→ [0,>] and evGi : Gi([0,>]ni)→ [0,>]. We define N :=

∑n
i=1 ni

and define the functor

H := F ◦
n∏
i=1

Gi = F ◦ (G1 ×G2 × · · · ×Gn) : SetN → Set

Then we can define the evaluation function evH : H([0,>]N)→ [0,>] by

evH := evF ◦ F(evG1 , evG2 , . . . , evGn) .

In this setting, compositionality of the lifting means that whenever we have N
pseudometric spaces (Xi,di) the pseudometric (d1, . . . ,dN)H is equal to(

(d1, . . . ,dn1)
G1 , (dn1+1, . . . ,dn1+n2)

G2 . . . , (dN−nn+1, . . . ,dN)
Gn
)F

.

In the examples in this thesis we will just use the Wasserstein lifting and we
only have the following two cases:

1. n = 1, n1 = 2 so that F : Set → Set is an endofunctor with evaluation
function evF : F[0,>] → [0,>] and G : Set2 → Set is a bifunctor with eval-
uation function evG : G([0,>], [0,>]) → [0,>]. Then we have N = n1 = 2

and obtain the bifunctor H = F ◦ G : Set2 → Set with evaluation evH =

evF ◦ FevG : FG([0, 1], [0, 1])→ [0, 1]. Compositionality means that for an two
pseudometric spaces (X1,d1), (X2,d2) we have (d1,d2) ↓H =

(
(d1,d2) ↓G

) ↓F.
2. n = 2, n1 = n2 = 1 so that F : Set2 → Set is a bifunctor with evaluation

function evF : F([0,>], [0,>]) → [0,>] and G1,G2 : Set → Set are endofunc-
tors with evaluations evGi : Gi[0,>] → [0,>]. Then we have N = n1 + n2 =

1 + 1 = 2 and obtain the bifunctor H = F ◦ (G1 × G2) : Set2 → Set with
evaluation evH = evF ◦ F(evG1 , evG2) : F(G1[0,>],G2[0,>]) → [0,>]. Compo-
sitionality means that for an two pseudometric spaces (X1,d1), (X2,d2) we
have (d1,d2) ↓H = (d ↓G1 ,d ↓G22) ↓F.

The results presented for endofunctors work analogously in the multifunctor
case (the proofs can be transferred almost verbatim), so we do not explicitly
present them here. Instead, we will use compositionality to obtain the machine
bifunctor.

202

5.6 Compositionality of Liftings

Example 5.6.10 (Machine Bifunctor) Let I = _A be the input functor of Exam-
ple 2.4.2, Id the identity endofunctor on Set and P be the product bifunctor of
Definition 5.4.52. The machine bifunctor is the composition M := P ◦ (Id× I), i.e.,
the bifunctor M : Set2 → Set with

M(B,X) := B×XA .

We compute the composed evaluation function which, of course, depends
on the evaluation functions for P and I (for Id we always take id[0,>]). Let
(o, s) ∈ [0,>]× [0,>]A, then

evM(o, s) = evP ◦ P(id[0,>], evI)(o, s)

= evP ◦ (id[0,>] × evI)(o, s) = evP
(
o, evI(s)

)
.

By instantiating evP and evI as in the table below (see also Example 5.4.34 and
Lemmas 5.4.53 and 5.4.55), we obtain the corresponding evaluation functions
evM : [0,>]× [0,>]A → [0,>]. They are well-behaved due to the fact that all in-
volved functors preserve weak pullbacks and for Id and I there are unique (thus
optimal) couplings so we have compositionality by a multifunctor equivalent to
Theorem 5.6.2.

Parameters evP(r1, r2) evI(s) evM(o, s)

c1, c2 ∈]0, 1] max {c1r1, c2r2} max
a∈A

s(a) max
{
c1o, c2 max

a∈A
s(a)
}

c1, c2 ∈]0, 1],
c1 + c2 6 1

c1x1 + c2x2 |A|−1
∑
a∈A

s(a) c1o+ c2|A|
−1
∑
a∈A

s(a)

c1, c2 ∈]0,∞[,
> =∞ c1x1 + c2x2

∑
a∈A

s(a) c1o+ c2
∑
a∈A

s(a)

Now let (B,dB), (X,d) be pseudometric spaces. For any t1, t2 ∈M(B,X) with
ti = (bi, si) ∈ B×XA the unique and therefore necessarily optimal coupling is
t := (b1,b2, 〈s1, s2〉). We compute the Wasserstein distance

(dB,d) ↓M(t1, t2) = M̃(dB,d)(t) = evM ◦M(dB,d)(t)

= evM ◦
(
dB × dA

)
(b1,b2, 〈s1, s2〉)

= evM
(
dB(b1,b2),d ◦ 〈s1, s2〉

)
.

Thus we obtain in the first case

(dB,d) ↓M(t1, t2) = max
{
c1dB(b1,b2), c2 ·max

a∈A
d
(
s1(a), s2(a)

)}

203

Chapter 5 Behavioral Pseudometrics

in the second case

(dB,d) ↓M(t1, t2) = c1dB(b1,b2) + c2|A|
−1
∑
a∈A

d
(
s1(a), s2(a)

)
and in the third case

(dB,d) ↓M(t1, t2) = c1dB(b1,b2) + c2
∑
a∈A

d
(
s1(a), s2(a)

)
.

Of course one has to choose which of these pseudometrics fits into the respective
context. While the first one selects either the distance of the output values or
the maximal distance of the successors and neglects the other one, the latter
two accumulate the distances. Depending on our maximal element, we have to
make sure that we stay within the selected measuring interval [0,>] by proper
scaling of the values.

Usually we will fix the first argument of the machine bifunctor (the set
of outputs) and just consider the machine endofunctor MB := M(B, _) as in
Examples 5.6.9 and 5.4.35 (pages 169 and 200). However, for the same reasons
as explained before for the product bifunctor, we often need to lift it as bifunctor
and then fix the first component of the lifted bifunctor. One notable exception
is the case where B is endowed with the discrete metric. Then we have the
following result.

Example 5.6.11 As in Example 5.6.9 we equip the machine endofunctor MB =

M(B, _) = B× _A with the evaluation function

evMB : B× [0, 1]A, evMB(o, s) = c · evI(s)

where c ∈]0, 1] and evI is one of the evaluation functions for the input functor
from Example 5.4.34 (page 168). We claim that if dB is the discrete metric on B
and if we take

evMB : [0, 1]× [0, 1]A, evMB(o, s) = max {o, c · evI(s)}

then the pseudometric obtained via the bifunctor lifting coincides with the one
obtained by endofunctor lifting, i.e., for all pseudometric spaces (X,d) we have
(dB,d) ↓M = d ↓MB .

In order to prove our claim, we note that given two elements t1, t2 ∈ B×XA,
say ti = (oi, si), their unique multifunctor M-coupling is t = (o1,o2, 〈s1, s2〉).
We now distinguish two cases.

204

5.6 Compositionality of Liftings

1. If o1 6= o2 no MB-coupling of t1, t2 exists so we have d ↓MB(t1, t2) = 1 but
also dB(o1,o2) = 1 so (dB,d) ↓M(t1, t2) = M̃(dB,d)(t) > dB(o1,o2) > 1.

2. Otherwise, if o1 = o2 the unique MB-coupling of t1, t2 is t ′ = (o1, 〈s1, s2〉)
and dB(o1,o2) = 0 thus

(dB,de) ↓M(t1, t2) = M̃(dB,d)(t) = c2evI
(
d ◦ 〈s1, s2〉

)
= evMB

(
o1,d ◦ 〈s1, s2〉

)
= evMB

((
idB × dA

)(
o1, 〈s1, s2〉

))
= M̃B(t

′) = d ↓MB(t1, t2)

which proves our claim.

Thus we can see that lifting the machine functor MB as endofunctor automati-
cally treats the output set as if it was equipped with the discrete metric.

Let us finish our short excursion to the theory of multifunctor compositional-
ity with another example which shows how the machine bifunctor lifting helps
to obtain suitable bisimilarity pseudometrics.

Example 5.6.12 (Bisimilarity Pseudometric for Automata with Real Outputs)
We consider the machine endofunctor with output set [0, 1], i.e., the functor
M[0,1] = [0, 1]× _A which arises out of the machine bifunctor M by fixing the
first component to [0, 1]. As maximal distance we set > = 1 and equip the
machine bifunctor M with the evaluation function evM : [0, 1]× [0, 1]A → [0, 1]
where

evM(o, s) = c1o+ c2|A|
−1
∑
a∈A

s(a)

for c1, c2 ∈]0, 1[such that c1 + c2 6 1 as in Example 5.6.10. Moreover, we recall
from Example 2.4.10 (page 54) that the carrier of the final M[0,1]-coalgebra is
[0, 1]A

∗
.

If we equip [0, 1] with the Euclidean metric de and use our knowledge from
Example 5.6.10 we know that for any pseudometric d on [0, 1]A

∗
we obtain as

Wasserstein pseudometric the function

(de,d) ↓F :
(
[0, 1]×

(
[0, 1]A

∗)A)2 → [0, 1], with

(de,d) ↓F
(
(r1, s1), (r2, s2)

)
= c1|r1 − r2|+

c2
|A|
·
∑
a∈A

d
(
s1(a), s2(a)

)
.

We now want to obtain the final coalgebra for the endofunctor M([0,1],de) =

M
(
([0, 1],de), _

)
on PMet which is a lifting of M[0,1] by Lemma 5.4.37. For this

205

Chapter 5 Behavioral Pseudometrics

we use the fixed-point equation induced by Theorem 5.5.1 (page 183). It is given
by, for p1,p2 ∈ [0, 1]A

∗
, the equation

d(p1,p2) = c1|p1(ε) − p2(ε)|+
c2
|A|
·
∑
a∈A

d
(
λw.p1(aw), λw.p2(aw)

)
.

As in the previous example a simple calculation shows that the function

d[0,1]A∗ : [0, 1]
A∗ × [0, 1]A

∗
→ [0, 1], with

d[0,1]A∗ (p1,p2) = c1 ·
∑
w∈A∗

(
c2
|A|

)|w|

|p1(w) − p2(w)|

is the least fixed-point of this equation so if we equip [0, 1]A
∗

with this pseudo-
metric we obtain the final M([0,1],de)-coalgebra. Thus for a probabilistic automa-
ton α : X→ [0, 1]×XA the bisimilarity pseudometric as given in Definition 5.5.4
(page 187) is the function

bdα : X×X→ [0, 1], bdα(x,y) = c1 ·
∑
w∈A∗

(
c2
|A|

)|w|

|[[x]]α(w) − [[y]]α(w)|

where the unique map into the final coalgebra [[·]]α : X→ [0, 1]A
∗

maps each state
to the function describing the output value of the automaton for each finite
word when starting from the respective state.

5.7 Lifting Natural Transformations and Monads

If we have a monad on Set, we can of course use our framework to lift the
endofunctor T to a functor T on pseudometric spaces. A natural question that
arises is, whether we also obtain a monad on pseudometric spaces, i.e., if the
components of the unit and the multiplication are nonexpansive with respect to
the lifted pseudometrics. In order to answer this question, we first take a closer
look at sufficient conditions for lifting natural transformations.

Theorem 5.7.1 (Lifting of a Natural Transformation) Let F, G be endofunc-
tors on Set with evaluation functions evF, evG and λ : F ⇒ G be a natural
transformation. The following two properties hold for the Kantorovich lifting.

1. If evG ◦ λ[0,>] 6 evF then λX is nonexpansive for all pseudometric spaces
(X,d), i.e., d ↑G ◦ (λX × λX) 6 d ↑F.

206

5.7 Lifting Natural Transformations and Monads

2. If evG ◦ λ[0,>] = evF then λX is an isometry for all pseudometric spaces (X,d),
i.e., d ↑G ◦ (λX × λX) = d ↑F.

Moreover, similar properties hold for the Wasserstein lifting.

3. If evG ◦ λ[0,>] 6 evF then λX is nonexpansive for all pseudometric space (X,d),
i.e., d ↓G ◦ (λX × λX) 6 d ↓F.

4. If evG ◦ λ[0,>] = evF and the Kantorovich-Rubinstein duality holds for F,
i.e., d ↑F = d ↓F, then λX is an isometry for all pseudometric spaces, i.e.,
d ↓G ◦ (λX × λX) = d ↓F.

Proof. Let t1, t2 ∈ FX.

1. By naturality of λ and evG ◦ λ[0,>] 6 evF we obtain for every f : X→ [0,>]:

G̃f ◦ λX = evG ◦Gf ◦ λX = evG ◦ λ[0,>] ◦ Ff 6 evF ◦ Ff = F̃f . (5.7.1)

Using this we compute

d ↑G
(
λX(t1), λX(t2)

)
(5.7.2)

= sup
{
de

(
G̃f
(
λX(t1)

)
, G̃f

(
λX(t2)

)) ∣∣∣ f : (X,d) → ([0,>],de)
}

6 sup
{
de

(
F̃f(t1), F̃f(t2)

) ∣∣∣ f : (X,d) → ([0,>],de)
}
= d ↑F(t1, t2) . (5.7.3)

2. We just have to replace the inequality by equality in (5.7.1) and (5.7.3).

3. Naturality of λ yields the following equations, where πi : X×X→ X are the
projections of the product and d : X×X→ [0,>] a pseudometric on X.

λX ◦ Fπi = Gπi ◦ λX×X (5.7.4)
λ[0,>] ◦ Fd = Gd ◦ λX×X (5.7.5)

Using (5.7.4), we can see that λX×X maps every coupling t ∈ ΓF(t1, t2) to a
coupling λX×X(t) ∈ ΓG

(
λX(t1), λX(t2)

)
because Gπi

(
λX×X(t)

)
= λX(Fπi(t)) =

λX(ti). Moreover, by our requirement (evG ◦ λ[0,>] 6 evF) we obtain

G̃d
(
λX×X(t)

)
= evG ◦Gd ◦ λX×X(t) = evG ◦ λ[0,>] ◦ Fd(t) 6 evF ◦ Fd(t) = F̃d(t)

With these preparations at hand we can finally see that

d ↓G
(
λX(t1), λX(t2)

)
= inf

{
G̃d(t ′)

∣∣ t ′ ∈ ΓG(λX(t1), λX(t2))}
6 inf

{
G̃d
(
λX×X(t)

) ∣∣ t ∈ ΓF(t1, t2)}
6 inf

{
F̃d(t)

∣∣ t ∈ ΓF(t1, t2)} = d ↓F(t1, t2) .

207

Chapter 5 Behavioral Pseudometrics

4. Using the previous two results and the fact that Wasserstein is an upper
bound yields:

d ↑F = d ↑G ◦ (λX × λX) 6 d ↓G ◦ (λX × λX) 6 d ↓F

and since d ↑F = d ↓F all these inequalities are equalities.

In the remainder of this chapter we will call a natural transformation λ nonex-
pansive [an isometry] if (and only if) each of its components are nonexpansive
[isometries] and write λ for the resulting natural transformation from F to
G. Instead of checking nonexpansiveness separately for each component of a
natural transformation, we can just check the above (in-)equalities involving the
two evaluation functions.

By applying these conditions on the unit and multiplication of a given monad,
we can now provide sufficient criteria for a monad lifting.

Corollary 5.7.2 (Lifting of a Monad) Let (T ,η,µ) be a Set-monad and evT an
evaluation function for T . Then the following holds.

1. If evT ◦ η[0,>] 6 id[0,>] then η is nonexpansive for both liftings. Hence we
obtain the unit η : Id⇒ T in PMet.

2. If evT ◦ η[0,>] = id[0,>] then η is an isometry for both liftings.

3. Let dT ∈
{
d ↑T ,d ↓T

}
. If evT ◦ µ[0,>] 6 evT ◦ TevT and compositionality holds

for TT , i.e., (dT)T = dTT , then µ is nonexpansive, i.e., dT ◦ (µX × µX) 6 (dT)T .
This yields the multiplication µ : T T ⇒ T in PMet.

Proof. This is an immediate consequence of Theorem 5.7.1. For the unit take
F = Id with evaluation function evF = id[0,>], hence d ↑F = d ↓F = d and G = T ,
evG = evT , λ = η : Id ⇒ T . For the multiplication take F = TT , G = T ,
evF = evTT = evT ◦ TevT , evG = evT and λ = µ.

We conclude this section with two examples of liftable monads.

Example 5.7.3 (Lifting of the Finite Powerset Monad) We recall from Exam-
ple 2.3.35 that the finite powerset functor Pf is part of a monad with unit η
consisting of the functions ηX : X→ PfX, ηX(x) = {x} and multiplication given by
µX : PfPfX → PfX, µX(S) = ∪S. We check if our conditions for the Wasserstein
lifting are satisfied. Given r ∈ [0,∞] we have evT ◦ η[0,∞](r) = max {r} = r

and for S ∈ Pf(Pf[0,>]) we have evT ◦ µ[0,1](S) = max∪S = max∪S∈SS and
evT ◦ TevT (S) = max (evT [S]) = max {maxS | S ∈ S} and thus it is easy to see
that both values coincide. Moreover, we recall from Example 5.6.8 that we have

208

5.8 Trace Pseudometrics

compositionality for PfPf. Therefore, by Corollary 5.7.2 η is an isometry and µ
nonexpansive.

Example 5.7.4 (Lifting of the Distribution Monad With Finite Support) We
recall from Example 2.3.36 (page 44) that the probability distribution functor
Df is part of a monad: the unit η consists of the functions ηX : X → DfX,
ηX(x) = δ

X
x where δXx is the Dirac distribution and the multiplication is given by

µX : DfDfX→ DfX, µX(P) = λx.
∑
q∈DfX P(q) · q(x). We consider its Wasserstein

lifting. Since [0, 1] = Df2 we can see that evDf = µ2. Using this and the monad
laws we have evDf ◦ η[0,1] = µ2 ◦ ηDf2 = idDfX = id[0,1] and also evDf ◦ µ[0,1] =
µ2 ◦ µDf2 = µ2 ◦Dfµ2 = evDf ◦DfevDf . Moreover, since we always have optimal
couplings, we have compositionality for DfDf by Theorem 5.6.6. Thus by
Corollary 5.7.2 η is an isometry and µ nonexpansive.

5.8 Trace Pseudometrics

Combining all our previous results we now want to use the generalized powerset
construction (see Section 2.4.3, page 60) on PMet instead of Set to obtain
trace pseudometrics. The basic setup is summarized in the (non-commutative)
diagram in Figure 5.8.1. We quickly recall that in the usual, qualitative setting

PMet EM(T)

Set EM(T)

U V

LT

UT

LT

UT

F

F

F̂

F̂

Figure 5.8.1: Trace pseudometrics via the generalized powerset construction

(bottom part of Figure 5.8.1) we have to start with a coalgebra c : X→ FTXwhere
F is an endofunctor with final coalgebra z : Z→ FZ and (T ,η,µ) is a monad on
Set. Using an EM-law λ : TF⇒ FT we can then consider the determinization c]

of c which is defined as

209

Chapter 5 Behavioral Pseudometrics

c] :=
(
TX TFTX FTTX FTX

)
.

Tc λTX FµX

With this determinized coalgebra we define two states x,y ∈ X of the original
coalgebra c to be trace equivalent if and only if [[ηX(x)]]c = [[ηX(y)]]c holds.

The underlying reason why this technique works is that the EM-law λ yields
a unique lifting (with respect to the canonical adjunction LT a UT , see Theo-
rem 2.3.44 on page 47) of the functor F to a functor F̂ on the Eilenberg-Moore
category EM(T). The determinization of a coalgebra is nothing but the applica-
tion of another lifting

L : CoAlg (FT)→ CoAlg
(
F̂
)

of the free algebra functor LT , i.e., c] = UTL(c) : TX → FTX is the F-coalgebra
underlying the F̂-coalgebra L(c) : µX → F̂µX.

In order to move to a quantitative setting (upper part of Figure 5.8.1) we need
to require that both the functor F and the monad (T ,η,µ) can be lifted. Then
clearly any FT -coalgebra c : X→ FTX can be regarded as an F T -coalgebra c by
equipping the state space X with the discrete metric d assigning > to non equal
states (in this way, c is trivially nonexpansive). Moreover, if we can ensure that
the EM law λ is nonexpansive, thus yielding an EM-law λ : T F⇒ F T , we can
use exactly the same ideas as before. In particular, we can lift the lifted functor
F to a functor

F̂ : EM
(
T)→ EM

(
T)

on the Eilenberg-Moore category of the lifted monad. With this, we can lift the
free algebra functor LT to a functor

L ′ : CoAlg
(
F T
)
→ CoAlg

(
F̂
)

which allows us to determinize c (as F T -coalgebra in PMet) to the F̂-coalgebra

L ′c : µX → F̂µX which is given by the underlying F-coalgebra

c] := UTL ′c = FµX ◦ λTX ◦ T c : T(X,d) → F T(X,d) . (5.8.1)

If we now equip TX with the behavioral pseudometric bdc] : (TX)
2 → [0,>] as

in Definition 5.5.4, we can define the trace pseudometric on X via the unit η as
follows.

210

5.8 Trace Pseudometrics

Definition 5.8.1 (Trace Pseudometric) Let F be an endofunctor and (T ,η,µ) be
a monad on Set. If

1. F has a final coalgebra z : Z→ FZ in Set,

2. F has a lifting F : PMet→ PMet,

3. (T ,η,µ) has a lifting (T ,η,µ), and

4. there is an EM-law λ : TF→ FT which can be lifted to an EM-law λ : T F→ F T

then for any coalgebra c : X→ FTX we define the trace pseudometric to be

tdc := bdc] ◦ (ηX × ηX) : X×X→ [0,>]

where c] = FµX ◦ λTX ◦ Tc : TX → FTX is the determinization of the coalgebra
c : X→ FTX and bdc] : (TX)

2 → [0,>] is the corresponding bisimilarity pseudo-
metric as in Definition 5.5.4 (page 187).

In order to apply this definition to our two main examples (nondeterministic
an probabilistic automata) the only missing thing is the lifting of the EM-law
to PMet. We note that Theorem 5.7.1 (page 206) not only provides sufficient
conditions for monad liftings but also can be exploited to lift distributive laws.
The additional commutativity requirements for K`-laws or EM-laws trivially
hold when all components are nonexpansive. For the Wasserstein lifting it
suffices to require compositionality on the left hand side of the law and to check
one inequality.

Corollary 5.8.2 (Lifting of a Distributive Law) Let F,G be weak pullback pre-
serving endofunctors on Set with well-behaved evaluation functions evF, evG
and λ : FG ⇒ GF be a distributive law. If the evaluation functions satisfy
(evG ∗ evF) ◦ λ[0,>] 6 evF ∗ evG and compositionality holds for FG, then λ is
nonexpansive for the Wasserstein lifting and hence λ : FG ⇒ GF is also a
distributive law.

Proof. We use the evaluation function evF ∗ evG for FG and for GF the evaluation
function evG ∗ evF. By Theorem 5.7.1 (page 206) we know that d ↓GF ◦ (λX×λX) 6
d ↓FG and by Lemma 5.6.5.2 (page 197) we have (d ↓F) ↓G 6 d ↓GF. Plugging
everything together we conclude that for every pseudometric space (X,d) we
have

(d ↓F) ↓G ◦ (λX × λX) 6 d ↓GF ◦ (λX × λX) 6 d ↓FG = (d ↓G) ↓F

which is the desired nonexpansiveness of λX.

211

Chapter 5 Behavioral Pseudometrics

In the remainder of this section we will consider two examples where in both
cases G is the machine endofunctor MB = B× _A of Example 2.4.5 (for B = 2
and B = [0, 1]). We recall from Example 2.4.10 that for every output set B the
final coalgebra for MB is

z = 〈oz, sz〉 : BA
∗
→ B×

(
BA
∗
)A

which maps any function f : A∗ → B to the tuple z(f) =
(
oz(f), sz(f)

)
. The

output value oz(f) is the value of f on the empty word, i.e., oz(f) = f(ε) and
the successor function sz(f) : A→ BA

∗
assigns to each letter a ∈ A the function

sz(f)(a) : A
∗ → B. Its value on a word w ∈ A∗ is equal to the value of f on the

word aw, formally sz(f)(a)(w) = f(aw). In order to lift the machine functor we
have two possibilities:

1. We can lift it as an endofunctor obtaining an endofunctor MB on PMet.

2. We lift the machine bifunctor M of Example 5.6.10 to obtain a lifted bifunctor
M : PMet2 → PMet. Then we fix a pseudometric dB on the outputs B and
consider the induced endofunctor M(B,dB) :=M

(
(B,dB), _

)
.

In the first case we can of course simply apply Corollary 5.8.2 from above but
in the second case we have to prove nonexpansiveness of λ separately. We will
employ the first approach for nondeterministic automata (where B = 2) and the
second one for probabilistic automata (where B = [0, 1]).

5.8.1 Trace Pseudometric for Nondeterministic Automata

We will now consider the EM-law λ : PfM2 ⇒ M2Pf for finitely branching
nondeterministic automata which we have already discussed in Definition 2.4.19

(page 62). Here, Corollary 5.8.2 is directly applicable using F = Pf and G =

M2 = 2× _A.

Lemma 5.8.3 (EM-law for Nondeterministic Automata) Let (Pf,η,µ) be the fi-
nite powerset monad from Example 5.7.3 with the maximum as evaluation func-
tion and M2 = 2× _A be the deterministic automaton functor equipped with
the evaluation function evM2 : 2× [0,>]A → [0,>], evM2(o, s) = c ·maxa∈A s(a)
with c ∈]0, 1] as in Example 5.6.11. We consider the EM-law λ : Pf(2× _A) ⇒
2×Pf(_)A on Set which is defined, for any set X, as λX(S) = 〈o, s〉 with o(S) = 1
if there is an s ′ ∈ XA such that (1, s ′) ∈ S else o(S) = 0 and the successor
functions

s(S) : A→ PX, s(A) =
{
s ′(a) | (o ′, s ′) ∈ S

}

212

5.8 Trace Pseudometrics

for every S ∈ P
(
2×XA

)
as presented in Definition 2.4.19 (page 62). This law is

nonexpansive.

Proof. In the notation of Corollary 5.8.2 we have F = 2× _A =M2, and G = Pf.
The composed evaluation functions are evPf ∗ evM2 : Pf(2 × [0, 1]A) → [0, 1]
where for S ∈ Pf(2× [0, 1]A)

evPf ∗ evM2(S) = evPf ◦PfevM2(S) = max {evM2(o, s) | (o, s) ∈ S}

= max
{
c ·max

a∈A
s(a) | (o, s) ∈ S

}
= c · max

(o,s)∈S
max
a∈A

s(a)

and evM2 ∗ evPf : 2× (Pf[0, 1])A → [0, 1] where for (o, s) ∈ 2× (PfX)
A

evM2 ∗ evPf(S) = evM2 ◦M2evPf(o, s)
= evM2

(
o, max ◦s

)
= c ·max

a∈A
max s(a)

As we have seen in Example 5.6.9 (page 200) we have compositionality for
PfM2 and the Wasserstein lifting. We want to apply Corollary 5.8.2 to show
nonexpansiveness. For this we just have to check that (evPf ∗ evM2) ◦ λ[0,1] 6
evM2 ∗ evPf holds. Indeed we have, for S ∈ Pf(2× [0, 1]A),

(evPf ∗ evM2) ◦ λ[0,1](S) = c ·max
a∈A

max {s(a) | (o, s) ∈ S}

= c ·max
a∈A

max
(o,s)∈S

s(a) = evM2 ∗ evPf(S)

which concludes the proof.

With this result at hand we can now define the trace pseudometric for finitely
branching nondeterministic automata.

Example 5.8.4 (Trace Pseudometric for Nondeterministic Automata) We con-
sider the machine endofunctor M2 = 2× _A. As maximal distance we take
> = 1 and as evaluation function we use evM2 : [0, 1]× [0, 1]A with evM2(o, s) =
c ·maxa∈A s(a) for 0 < c < 1 as in Example 5.5.2 (page 185) and lift the functor
using the Wasserstein lifting.

We now take a finitely branching nondeterministic automaton which is a
coalgebra α : X → 2× (PfX)

A. Its determinization is the powerset automaton
α] : PfX→ 2× (PfX)

A whose states are sets of states of the original automaton.
We recall from Example 5.5.5 (page 187) that the bisimilarity pseudometric is
the function

bdα] : PfX×PfX→ [0, 1], bdα](S, T) = cinf{n∈N|∃w∈An.[[S]]
α]

(w) 6=[[T]]
α]

(w)} .

213

Chapter 5 Behavioral Pseudometrics

If we apply the construction of Definition 5.8.1 using the unit ηX(x) = {x} of
the powerset monad we obtain the trace pseudometric

tdα : X×X→ [0, 1], tdα(x,y) = cinf{n∈N|∃w∈An.[[{x}]]
α]

(w) 6=[[{y}]]
α]

(w)} .

Thus the trace distance of states x and y of α is given by a word w of minimal
length which is

. contained in the language of the state {x} of the determinization α] and

. not contained in the language of the state {y} of the determinization α].

Then, the distance is computed as c|w|.

5.8.2 Trace Pseudometric for Probabilistic Automata

Our next example of an EM-law will be of the shape λ : DfM[0,1] → M[0,1]Df.
This is much more complicated because we need to consider multifunctors to
obtain the correct lifting.

Lemma 5.8.5 (EM-law for Probabilistic Automata) Let (Df,η,µ) be the distri-
bution monad with finite support from Example 5.7.4 (page 209) and M be the
machine bifunctor from Example 5.6.10 (page 203). There is a known15 EM-law
λ : Df([0, 1]× _A)⇒ [0, 1]×DAf in Set where λX = 〈oX, sX〉 with

oX(P) =
∑
r∈[0,1]

r · P(r,XA)

sX(P) : A→ DfX, sX(P)(a)(x) =
∑

s ′∈XA, s ′(a)=x

P([0, 1], s ′)

for all sets X and all distributions P : [0, 1]×XA → [0, 1]. The endofunctors on
both sides of this law can be seen a bifunctors F,G for which one component
is fixed. They arise by composition of the distribution functor, the identity
functor and the machine bifunctor as follows. The bifunctor on the left hand
side (the domain of λ) is F = Df ◦M and the bifunctor on the right hand side
(the codomain of λ) is G =M ◦ (Id×Df) and to get our law we need to fix the
respective first parameter to be [0, 1].

If we use the usual evaluation function for the distribution functor as given
in Examples 5.4.9 and 5.4.30 (pages 149 and 164), the identity function as evalu-
ation function for Id and the discounted sum for the machine bifunctor as in
15This law arises out of the so-called strength map of the monad [JSS15, Lemma 4]. Since we have

not discussed this map in this thesis, we have included an elementary proof in Appendix A.3
using only the definition of an EM-law.

214

5.8 Trace Pseudometrics

Example 5.6.10 (page 203), lift both bifunctors and then fix their first component
to the metric space ([0, 1],de) then the above EM-law is nonexpansive.

Proof. Since all of the involved (bi)functors have optimal couplings, we have
compositionality and the evaluation functions for the composed functors are

evF := evDf ◦DfevM : Df([0, 1]× [0, 1]A)→ [0, 1] and

evG := evM ◦M(id[0,1], evDf) : [0, 1]× (DfX)
A → [0, 1] .

We will now assume (and prove below) that there exists a function

ΛX : Df
(
[0, 1]2 × (X×X)A

)
→ [0, 1]2 ×

(
Df(X×X)

)A
which transfers F-couplings to suitable G-couplings in the following sense. For
any P1,P2 ∈ Df

(
[0, 1]×XA

)
and any P ∈ ΓF(P1,P2) ⊆ Df

(
[0, 1]× [0, 1]× (X×X)A

)
the function ΛX has to satisfy the following two requirements

ΛX(P) ∈ ΓG
(
λX(P1), λX(P2)

)
(5.8.2)

G̃(dB,d)
(
ΛX(P)

)
6 F̃(dB,d)(P) (5.8.3)

because then we have

(dB,d) ↓G
(
λX(P1), λX(P2)

)
= inf

{
G̃(dB,d)(P ′)

∣∣ P ′ ∈ ΓG(λX(P1), λX(P2))}
6 inf

{
G̃(dB,d)

(
ΛX(P)

) ∣∣ P ∈ ΓF(P1,P2)}
6 inf

{
F̃(dB,d)(P)

∣∣ t ∈ ΓF(P1,P2)}
= (dB,d) ↓F(P1,P2)

which, due to compositionality, proves the desired nonexpansiveness of λX.

So let us now define the function ΛX which we need for the previous proof
and prove that it satisfies (5.8.2) and (5.8.3).

Definition 5.8.6 For any set X we define the function

ΛX := 〈o1, o2, s〉 : Df
(
[0, 1]2 × (X×X)A

)
→ [0, 1]2 ×

(
Df(X×X)

)A
where for any P ∈ Df([0, 1]× [0, 1]× (X×X)A)

o1(P) =
∑
r∈[0,1]

r · P
(
r, [0, 1], (X×X)A

)
,

o2(P) =
∑
r∈[0,1]

r · P
(
[0, 1], r, (X×X)A

)
, and

s(P) : A→ Df(X×X), s(P)(a)(x,y) =
∑

s ′∈(X×X)A, s ′(a)=(x,y)

P([0, 1]2, s ′)

215

Chapter 5 Behavioral Pseudometrics

completely analogous to the definition of the components λX of the distributive
law in Lemma 5.8.5.

Let us now show that the above definition of ΛX satisfies our requirements.

Lemma 5.8.7 For any P1,P2 ∈ Df
(
[0, 1]×XA

)
and any P ∈ ΓF(P1,P2) the function

ΛX satisfies (5.8.2), i.e., we have ΛX(P) ∈ ΓG
(
λX(P1), λX(P2)

)
.

Proof. Let πi : [0, 1]2 → [0, 1] and τi : X
2 → X be the projections to the i-th

component of the binary products. Since P ∈ ΓF(P1,P2) we know F(πi, τi) = Pi.
In order to show (5.8.2), we have to prove that the equation

G(πi, τi)
(
ΛX(P)

)
= λX(Pi) (5.8.4)

holds. Let λX = 〈oX, sX〉 be defined as in Lemma 5.8.5, and o1, o2, and s as in
Definition 5.8.6. The left hand side of (5.8.4) evaluates to

G(πi, τi)
(
ΛX(P)

)
=
(
πi × (Dfτi)

A
)(
o1(P), o2(P), s(P)

)
=
(
oi(P),Dfτi ◦ s(P)

)
(5.8.5)

and since F(πi, τi) = Pi the right hand side of (5.8.4) evaluates to

λX(Pi) = λX
(
F(πi, τi)(P)

)
=
(
oX
(
Df(πi × τAi)(P)

)
, sX
(
Df(πi × τAi)(P)

))
. (5.8.6)

In order to prove (5.8.4) we will thus have to show that the equalities

oX

(
Df(πi × τAi)(P)

)
= oi(P), and (5.8.7)

sX

(
Df(πi × τAi)(P)

)
= Dfτi ◦ s(P) (5.8.8)

hold. We first check the output values and observe that

oX

(
Df(πi × τAi)(P)

)
=
∑
r∈[0,1]

r ·Df(πi × τAi)(P)(r,XA)

=
∑
r∈[0,1]

r ·
(
P ◦ (πi × τAi)−1[{r}×XA]

)
=
∑
r∈[0,1]

rP
({

(o1,o2, s ′) ∈ Df([0, 1]2 × (X2)A)
∣∣ πi × τAi (o1,o2, s ′) ∈ {r}×XA

})
=
∑
r∈[0,1]

rP
({

(o1,o2, s ′) ∈ Df([0, 1]2 × (X2)A)
∣∣ oi = r}) = oi(P)

216

5.8 Trace Pseudometrics

showing that indeed (5.8.7) holds. The left hand side of (5.8.8) evaluates to

s
(
Df(πi × τAi)(P)

)
(a)(x) =

∑
{s ′∈XA,s ′(a)=x}

Df(πi × τAi)(P)([0, 1], s ′)

=
∑

s ′∈XA,s ′(a)=x

P
({

(o1,o2, s ′′) ∈ Df
(
[0, 1]2 × (X2)A

) ∣∣ τi ◦ s ′′ = s ′})
=

∑
s ′′∈(X×X)A,τi◦s ′′(a)=x

P([0, 1]2, s ′′)

and the right hand side of (5.8.8) also evaluates to(
Dfτi ◦ s(P)

)
(a)(x) = s(P)(a) ◦ τ−1i [{x}]

= s(P)(a)
(
{y ∈ X×X | τi(y) = x}

)
=

∑
s ′′∈(X×X)A,τi◦s ′′(a)=x

P([0, 1]2, s ′′)

which shows that equation (5.8.8) holds and thus (5.8.5) and (5.8.6) coincide.
Therefore (5.8.4) holds i.e., we have proved ΛX(P) ∈ ΓG

(
λX(P1), λX(P2)

)
.

Lemma 5.8.8 For any P1,P2 ∈ Df
(
[0, 1]×XA

)
and any P ∈ ΓF(P1,P2) the function

ΛX satisfies (5.8.3), i.e., we have G̃(dB,d)
(
ΛX(P)

)
6 F̃(dB,d)(P).

Proof. Let o1, o2 and s be defined as in Definition 5.8.6. The left hand side of
(5.8.3) evaluates to

G̃(dB,d)
(
ΛX(P)

)
=
(
evG ◦G(dB,d)

)(
λX(P)

)
= evG

(
G(dB,d)

(
ΛX(P)

))
= evG

((
dB × (Dfd)

A
)(
o1(P), o2(P), s(P)

))
= evG

(
dB
(
o1(P), o2(P)

)
,a 7→ Dfd

(
s(P)(a)

))
=
(
evM ◦M

(
id[0,1], evDf

))(
dB
(
o1(P), o2(P)

)
,a 7→ Dfd

(
s(P)(a)

))
= evM

(
M
(
id[0,1], evDf

) (
dB
(
o1(P), o2(P)

)
,a 7→ Dfd

(
s(P)(a)

)))
= evM

(
dB
(
o1(P), o2(P)

)
, evADf

(
a 7→ Dfd

(
s(P)(a)

)))
= evM

(
dB
(
o1(P), o2(P)

)
,a 7→ evDf

(
Dfd

(
s(P)(a)

)))
= c1dB

(
o1(P), o2(P)

)
+
c2
|A|

∑
a∈A

evDf

(
Dfd

(
s(P)(a)

))
(5.8.9)

217

Chapter 5 Behavioral Pseudometrics

and since for each a ∈ A we have

evDf

(
Dfd

(
s(P)(a)

))
=
∑
r∈[0,1]

r · s(P)(a)
(
d−1[{r}]

)
=
∑

(x,y)∈X2
d(x,y) · s(P)(a)(x,y)

=
∑

(x,y)∈X2
d(x,y) ·

 ∑
s ′∈(X×X)A, s ′(a)=(x,y)

P([0, 1]2, s ′)

=

∑
s ′∈(X×X)A

d
(
s ′(a)

)
· P([0, 1]2, s ′)

we may continue (5.8.9) as follows:

G̃(dB,d)
(
ΛX(P)

)
= c1dB

(
o1(P), o2(P)

)
+
c2
|A|

∑
a∈A

∑
s ′∈(X×X)A

d
(
s ′(a)

)
· P([0, 1]2, s ′) . (5.8.10)

For the right hand side of (5.8.3) we have

F̃(dB,d)(P) =
(
evF ◦ F(dB,d)

)
(P) =

((
evDf ◦DfevM

)
◦Df

(
M(dB,d)

))
(P)

= evDf

(
DfevM

(
Df
(
M(dB,d)

)
(P)
))

= evDf

(
DfevM

(
Df
(
dB × dA

)
(P)
))

= evDf

((
Df
(
dB × dA

)
(P)
)
◦ ev−1M

)
=
∑
r∈[0,1]

r ·
(
Df
(
dB × dA

)
(P)
)(
ev−1M [{r}]

)
=

∑
(o,s)∈[0,1]×[0,1]A

evM(o, s) ·
(
Df
(
dB × dA

)
(P)
)
(o, s)

=
∑

(o,s)∈[0,1]×[0,1]A
evM(o, s) · P

((
dB × dA

)−1[
{(o, s)}

])
=

∑
(o1,o2,s ′)∈[0,1]2×(X×X)A

evM

((
dB × dA

)
(o1,o2, s ′)

)
· P(o1,o2, s ′)

=
∑

(o1,o2,s ′)∈[0,1]2×(X×X)A
evM

(
dB(o1,o2), λa.d

(
s ′(a)

))
· P(o1,o2, s ′)

=
∑

(o1,o2,s ′)∈[0,1]2×(X×X)A

(
c1dB(o1,o2) +

c2
|A|

∑
a∈A

d
(
s ′(a)

))
· P(o1,o2, s ′)

= c1o(P) +
c2
|A|

∑
s ′∈(X×X)A

∑
a∈A

d
(
s ′(a)

)
· P([0, 1]2, s ′) (5.8.11)

218

5.8 Trace Pseudometrics

with

o(P) =
∑

(o1,o2)∈[0,1]2
dB(o1,o2) · P

(
o1,o2, (X×X)A

)
.

Comparing (5.8.10) and (5.8.11) we see that in order to obtain inequality (5.8.3)
we just have to show

dB
(
o1(P), o2(P)

)
6 o(P)

This is easily done using the fact that dB = de is the Euclidean metric and the
triangle inequality:

dB
(
o1(P),o2(P)

)
=

=

∣∣∣∣∣∣
∑

r1∈[0,1]
r1 · P

(
r1, [0, 1], (X×X)A

)
−
∑

r2∈[0,1]
r2 · P

(
[0, 1], r2, (X×X)A

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

r1,r2∈[0,1]
r1 · P

(
r1, r2, (X×X)A

)
−
∑

r1,r2∈[0,1]
r2 · P

(
r1, r2, (X×X)A

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

r1,r2∈[0,1]
(r1 − r2) · P

(
r1, r2, (X×X)A

)∣∣∣∣∣∣
6

∑
r1,r2∈[0,1]

∣∣∣(r1 − r2) · P(r1, r2, (X×X)A)∣∣∣
=

∑
r1,r2∈[0,1]

|r1 − r2| · P
(
r1, r2, (X×X)A

)
= o(P) .

We have thus also completed the proof of the inequality (5.8.3).

With these two lemmas we have all the ingredients needed for the proof
of Lemma 5.8.5, so we now have a suitable lifting of the distributive law for
probabilistic automata.

Example 5.8.9 (Trace Pseudometric for Probabilistic Automata) As in Exam-
ple 5.6.12 (page 205) we consider the machine functor M[0,1] = [0, 1]× _A which
arises out of the machine bifunctor M by fixing the first component to [0, 1]. As
maximal distance we set > = 1 and equip the machine bifunctor M with the
evaluation function evM : [0, 1]× [0, 1]A where

evM(o, s) = c1o+ c2|A|
−1
∑
a∈A

s(a)

219

Chapter 5 Behavioral Pseudometrics

for c1, c2 ∈]0, 1[such that c1 + c2 6 1 as in Example 5.6.10. We lift this bifunctor
using the Wasserstein lifting and then fix its first component to ([0, 1],de).

For a probabilistic automaton α : X→ [0, 1]→ (DfX)
A its determinization is

the M[0,1]-coalgebra α] : DfX→ [0, 1]→ (DfX)
A whose state space are distribu-

tions on the states of the original automaton. From Example 5.6.12 we know
that we obtain the following bisimilarity pseudometric

bdα] : DfX×DfX→ [0, 1], bdα](p,q) = c1 ·
∑
w∈A∗

(
c2
|A|

)|w|

|[[p]]α](w) − [[q]]α](w)|

If we apply the construction of Definition 5.8.1 using the unit ηX(x) = δXx of
the finite distribution monad we obtain the trace pseudometric

tdα : X×X→ [0, 1], tdα(x,y) = c1 ·
∑
w∈A∗

(
c2
|A|

)|w| ∣∣∣[[δXx]]α](w) − [[δXy]]α](w)
∣∣∣ .

Thus the trace distance of states x and y of α is given by the distance of their
Dirac distributions in the determinization.

5.9 Conclusion, Related and Future Work

In this final main chapter we have seen how a lot of the coalgebraic machinery
for modelling and analyzing labelled transition systems can be extended from
a qualitative to a quantitative setting. The crucial idea for this is the idea to
lift a functor from the category Set of sets and functions to the category PMet
of pseudometric spaces and nonexpansive functions. While all the remaining
results require a bit of effort, they arise naturally once such lifting has been
defined. The big advantage of our approach is that we try

. to keep it as general as possible (by using coalgebra and not restricting to a
specific class of transition systems) and

. to minimize the amount of additional information needed.

Instead of assuming that a transition system already comes equipped with
some distance function on the state space, we give canonical definitions of
bisimilarity and trace pseudometrics in the sense that they arise automatically
out of the coalgebraic model. The only information we have to provide is the
evaluation function which explains how we can evaluate the effect of applying
the branching functor to real numbers as a single real number.

Whenever someone is interested in defining a new type of transition sys-
tem, he can now automatically derive canonical notions of both behavioral
equivalences and pseudometrics.

220

5.9 Conclusion, Related and Future Work

5.9.1 Related Work

The ideas for our framework are not only heavily influenced by transportation
theory [Vil09] but also by work on quantitative variants of (bisimulation) equiva-
lence of probabilistic systems. In that context Alessandro Giacalone, Chi-Chang
Jou and Scott A. Smolka observed in the nineties that probabilistic Larsen-Skou
bisimulation [LS89] is too strong and therefore introduced a metric based on
the notion of ε-bisimulations [GJS90]. Such a bisimulation is a relaxation of the
usual probabilistic bisimulation relation which allows matching the steps of
another state not with exactly the same probability but with a probability that
is at most ε apart with respect to the Euclidean metric on [0, 1]. Based on this,
two states are exactly ε apart if this is the smallest value such that the two states
are ε-bisimilar.

A second approach to behavioral distances is based on logics. Labelled
Markov processes (lmp) are generalizations of reactive probabilistic transition
system to fairly arbitrary (namely analytic) state spaces which involve some
measure theoretic results. Surprisingly, probabilistic bisimilarity for these
systems can be expressed via a simple modal logic without negation [DEP98]
in the sense that two states of an lmp are bisimilar if and only if they satisfy
the same formulae. Using this logical framework Josée Desharnais, Vineet
Gupta, Radha Jagadeesan and Prakash Panangaden defined a family of metrics
between lmps [DGJP04] via functional expressions, which can be understood
as quantitative generalization of the logical formulae. If evaluated on a state
of an lmp, such a functional expression measures the extent (as real number
between 0 and 1) to which a formula is satisfied in that state. Then, for any
set of such functional expressions, the distance of two lmps is the supremum
of all differences (wrt. to the Euclidean distance on [0, 1]) of these functional
expressions.

A third, coalgebraic approach, which inspired us to develop our framework,
is used by Franck van Breugel and James Worrell [vBW05; vBW06]. As we
have presented in the examples in this chapter, they define both a discounted
and an undiscounted pseudometric on probabilistic systems via a fixed point
approach using the usual Kantorovich pseudometric for probability measures.
Moreover, they show that this metric is related to the logical pseudometric by
Desharnais et al. [vBW05]. We quickly point out that metrics in a coalgebraic
setting appeared already earlier in a paper by Erik de Vink and Jan Rutten. They
used ultrametrics16 and the category of ultrametric spaces in order to define
coalgebraic bisimulation for continuous probabilistic transition systems [dVR97;

16An ultrametric is a reflexive and symmetric function d : X2 → [0, 1] satisfying the implication
d(x,y) =⇒ x = y and the strong triangle inequality d(x, z) 6 max {d(x,y),d(y, z)}.

221

Chapter 5 Behavioral Pseudometrics

dVR99]. However, they use it mainly as a technical tool to get a final coalgebra
and not in order to study bisimilarity distances between these systems.

Not only the definition of distances for probabilistic systems and the study
of their theoretical importance but also their efficient approximation or exact
computation has been the focus of several recent research papers [vBW01a;
FPP04; TDZ11; CPP12]. In particular, Di Chen, Franck van Breugel and James
Worrell proved that both the discounted and the undiscounted bisimilarity
pseudometric for probabilistic systems can be computed exactly in polynomial
time exploiting algorithms to solve linear programs [CvBW12]. Taking some
inspiration from this work, one year later Giorgio Bacci, Giovanni Bacci, Kim
Larsen and Radu Mardare proposed an on-the-fly approach for the exact com-
putation of bisimilarity distances [BBLM13] which they proved to be practically
much more efficient than the earlier approximation algorithms.

Behavioral distances have not only been studied for probabilistic systems but
also for other types of transition systems. One apparent example which also
appears in the main text is the branching distance for metric transition systems
[dAFS09]. Moreover, a thorough comparison of various different behavioral
distances on labelled transition systems has recently been carried out by Uli
Fahrenberg, Axel Legay and Claus Thrane. They transfer Rob van Glabbeek’s
quantitative linear-time–branching time spectrum [vGla90] to a quantitative
setting [FLT11; FL14].

Finally we remark that there has also been a previous effort to provide a
uniform and general framework for behavioral metrics which is, however, not
based on coalgebra. In 2006 Yuxin Deng, Tom Chothia, Catuscia Palamidessi and
Jun Pang defined action-labelled quantitative transition systems and a theory
of state-pseudometrics based on the Kantorovich and Wasserstein metrics for
probabilistic systems [DCPP06]. In particular, their largest state-pseudometric
(with respect to the reversed pointwise order of pseudometrics) corresponds
to bisimilarity and – as in our framework – it can be defined as greatest fixed
point of a monotone function (we use the pointwise order of pseudometrics so
we take the least fixed point).

5.9.2 Future Work

This chapter proposes a paradigmatic shift from qualitative to quantitative
behavior analysis and although many basic results are in place there is still a
lot of work ahead. We will first discuss a few open questions whose answers
(if they exist) might yield improvements of our current framework. Then we
discuss further possible generalizations.

In light of the fact that we propose two different lifting approaches, the

222

5.9 Conclusion, Related and Future Work

first apparent question is whether there are conditions that guarantee that
these liftings coincide, i.e., such that the Kantorovich-Rubinstein duality holds.
However, some preliminary attempts to do so suggest that this is very difficult.
The proof for the duality in the (arbitrary) probabilistic setting is domain specific
and cannot easily be generalized.

Another valid question concerning the two different liftings is whether they
can be captured by some universal properties. Although we use a coalgebraic and
thus category theoretic framework, our intuition comes from transportation and
probability theory. It would be interesting to figure out whether there is some
general category theoretic construction such that our liftings are two ends of
this construction in a similar way as the Kleisli and Eilenberg-Moore categories
of a monad are initial and final objects in a category of adjunctions. A possible
source of inspiration for this line of work could be Franck van Breugel’s draft
paper on the metric monad [vBre05] which describes a generalization of the
(continuous) Giry monad in terms of universal properties involving monad
morphisms.

In order to obtain trace pseudometrics we chose to employ the generalized
powerset construction by Alexandra Silva, Filippo Bonchi, Marcello Bonsangue
and Jan Rutten [SBBR13], one of the two most prominent coalgebraic approaches
to traces. As we have discussed in the Preliminaries (Chapter 2), the other well-
known approach is to work in the Kleisli category as suggested by Ichiro
Hasuo, Bart Jacobs and Ana Sokolova [HJS07]. An open question that remains
is, whether our framework can also be modified or extended to work in that
setting. A possible basis for answering this could be the recent comparison
between these two approaches in the qualitative setting which was carried out
by Bart Jacobs, Alexandra Silva and Ana Sokolova [JSS15]. However, since this
is already quite complicated in the qualitative case, it is very likely even more
involved to adapt it to the quantitative case. In particular, for this comparison
one needs – in addition to the EM-law – a K`-law and a so-called extension
natural transformation which connects the two distributive laws.

While our theory is already at a quite general level, there are several further
possible generalizations. Among these, one could be to drop symmetry and
study so-called directed pseudometrics as is done in the case of metric transition
systems [dAFS09]. This would lay the foundation to study simulation distances
from a coalgebraic perspective.

An even more general idea is to study certain reflexive functions d : X2 → L

as generalized metrics, where L is a (complete) lattice with possibly some addi-
tional structure. This could result in a theory in which one can model distances
for conditional transition systems (cts). These systems were proposed in 2012

by Jir̆í Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan

223

Chapter 5 Behavioral Pseudometrics

Milius and Alexandra Silva [ABH+12] and are similar to featured transition
systems [CHS+10]. Formally, a cts is a labelled transition system with the
following semantic. Once the environment chooses a label (which represents
a condition or a feature), all transitions with this label remain (but the label
is dropped) and all the other transitions vanish. Then one is interested in the
behavior of the resulting unlabelled transition system. If A is the set of condi-
tions, we could take the complete lattice (with respect to the subset ordering)
L = PA as codomain of our generalized metrics. A natural distance of two
states x,y could be the set of conditions for which they are not bisimilar. This is
a further generalization of a distance recently proposed by Joanne M. Atlee, Uli
Fahrenberg and Axel Legay for featured transition systems: their (simulation)
distance only counts how many features prevent simulation [AFL15].

A less drastic, yet interesting generalization could result from replacing the
Euclidean metric with a different metric which has recently been suggested by
Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi and Lili Xu
for probabilistic systems [CGPX14]. Our Kantorovich lifting is obviously based
on the Euclidean metric and we could simply replace de : [0,>]2 → [0,>] with a
different metric in this definition and study the resulting liftings. However, it is
unclear how to proceed for the Wasserstein lifting since the Euclidean metric
only plays a role in Condition W2 of the well-behavedness of the respective
evaluation function.

The use of so-called up-to techniques [San98] can significantly reduce both
memory consumption and running time for equivalence checks between two
specific states of a labelled transition system. This was demonstrated recently by
Filippo Bonchi and Damien Pous for the equivalence check of nondeterministic
finite automata [BP13]. Together with Daniela Petrişan and Jurriaan Rot, they
discovered a fibrational basis for these techniques [BPPR14; Rot15]. Based on
some preliminary research, we know that our entire framework can be seen
from a fibrational perspective as well, leading to yet another generalization.
It is our hope that this fibrational view will lead to more general proofs and
efficiently computable algorithms, possibly by using the aforementioned up-to
techniques.

Another valid question is, if (and how) our techniques can be generalized to
other categories than Set. In order to talk about distances between states it is
likely that this will require at least concrete categories.

As we have discussed above, for probabilistic systems it is possible to effi-
ciently compute the lifted distance by using ideas from linear programming.
While our framework provides a solid theoretical basis for reasoning about
several behavioral distances, its algorithmic applicability as yet is somewhat
limited. For this we would need

224

5.9 Conclusion, Related and Future Work

. an efficient method to compute the lifted distances, and possibly also

. an efficient method to automatically derive the fixed point of Theorem 5.5.1.

However, it is most likely that the efficiency of these methods will to a great
extent rely on the specific system under consideration.

Last but not least, the coalgebraic theory in Set has benefited a lot from the
huge amount of examples. While we have already looked at several examples
throughout this chapter, there is yet a lot more examples that should be worked
out explicitly. In particular, it would be interesting to see if (and how) we can
recover other behavioral distances from the literature.

225

6
Conclusion

The overall aim of this thesis was to continue the analysis of labelled
transition systems using coalgebraic methods. Let us now first briefly
sum up the main results of the thesis and then discuss how they fit into

the broader scientific context. In a nutshell, the main chapters provide us with

. an interpretation of the role of adjunctions between coalgebras, which shows
that several automata transformations (determinization etc.) are just adjoint
functors (Chapter 3),

. a coalgebraic definition of finite and infinite traces for continuous generative
probabilistic transition systems (Chapter 4), and finally

. a coalgebraic framework for deriving behavioral pseudometrics encompassing
both branching time (bisimilarity) pseudometrics as well as linear time (trace)
pseudometrics (Chapter 5).

All of these results are independent of each other yet they share a common
foundation: the idea that coalgebra allows both to model transition systems
and more importantly that it provides a canonical method to analyze their
behavior via the notion of final coalgebra. This validates the transformations of
coalgebras using right adjoints in Chapter 3 since they preserve limits and thus
the behavior of a system. Moreover, the definition of traces for probabilistic
systems in Chapter 4 is just an instance of a final coalgebra. Finally, also the
whole framework for behavioral pseudometrics developed in Chapter 5 builds
upon the interpretation of final coalgebra as behavior: the fixed-point definition
of the behavioral pseudometric yields the final coalgebra for the lifted functor
in the category of pseudometric spaces.

6.1 From Qualitative to Quantitative Analyses

While all the results we have presented are interesting in their own right, the
most important conceptual contribution of this work is the move from qualitative

227

Chapter 6 Conclusion

to quantitative behavioral analyses proposed at great length in the last main
chapter (Chapter 5). However, before we discuss these quantitative aspects, let
us first assess the significance of the other contributions of this thesis.

Our examination of adjunction liftings in the context of coalgebraic automata
models (Chapter 3) did not result in deep new theoretical insights but shed some
light on the crucial properties of standard determinization constructions on
automata, namely that they are lifted left or right adjoints between categories of
coalgebras. This observation adds not only to the understanding of the meaning
of adjunctions but might also help to find new determinization constructions
for other types of transition systems.

The treatment of arbitrary generative probabilistic systems in the category
Meas of measurable spaces and functions which we discussed in Chapter 4

shows several things. First of all, it proves that the basic idea of the Kleisli
approach to trace semantics [HJS07] can also successfully be applied to other
base categories than Set (without the correspondence between initial algebra
and final coalgebra). Moreover, our main final coalgebra result (Theorem 4.2.27,
page 111) exhibits an interesting correlation of the uniqueness of the arrow into
the final coalgebra and the unique extension of a σ-finite pre-measure. Finally,
with our theory it is possible to analyze not only finite but also infinite linear
behavior of generative probabilistic systems which is impossible in Set even if
the system under consideration can be modelled as coalgebra in Set. Moreover,
looking at the infinite behavior also permits to analyze systems without explicit
termination resulting in infinite probabilistic traces.

Let us now turn our attention to the quantitative perspective. It is certainly
very easy to just use coalgebra in a quantitative setting. For example, systems
involving any (real) numbers like probabilistic or weighted transition systems
are inherently of a quantitative nature and thus any coalgebra which models
such a system carries a quantitative meaning. However, usually such systems are
modelled as coalgebras in the category Set which deprives us of the possibility
to analyze these quantitative properties using the coalgebraic machinery. In
particular, final coalgebras only yield behavioral equivalences.

In order to employ coalgebraic reasoning for behavioral distances, one has to
work in a suitable category where the quantitative information is captured as
part of the category itself such as our category PMet of pseudometric spaces
and nonexpansive functions. In this case, things are very simple if we can
start with a coalgebra c : (X,d) → G(X,d) in PMet for a functor G on PMet
which has a final coalgebra z : (Z,dZ)→ G(Z,dZ). Then the apparent canonical
definition of a behavioral (bisimilarity) distance is

bdc : X×X→ [0,>], bdc(x, x ′) := dZ
(
[[x]]c, [[x

′]]c
)

(6.1.1)

228

6.1 From Qualitative to Quantitative Analyses

using the unique coalgebra homomorphism into the final coalgebra which is a
nonexpansive function [[·]]c : (X,d) → (Z,dZ). Apart from being intuitively the
correct one, this definition possesses two important properties.

. First of all it naturally extends coalgebraic behavioral equivalences: two states
which are identified in the final coalgebra ([[x]]c = [[x ′]]c) necessarily have
distance 0.

. Moreover, it is the smallest distance on X for which we can define a G-
coalgebra structure on (X,d). In fact, since [[·]]c has to be nonexpansive (it
must be an arrow in PMet), we have bdc(x, x ′) = dZ([[x]]c, [[y]]c) 6 d(x, x ′)
for every coalgebra c : (X,d) → G(X,d). Conversely this means that every
coalgebra c : (X,d) → G(X,d) proves that the behavioral distance on X is
smaller than or equal to d.

The main difficulty with the above setup is that in many cases it is much
easier to model a transition system just as a coalgebra c : X → FX in Set than
to do so directly in PMet. When we take into account the above observations,
the problem is not to equip the state space X with a suitable distance d to start
with because we can always take the discrete distance which assigns distinct
states the distance >. The difficult part is to define a suitable functor on PMet.
While it is usually easy to figure out how the functor transforms the state space
X, one also has to specify how the functor transforms a pseudometric d on X to
a pseudometric on FX.

This problem is the starting point for the systematic study of functor liftings
which forms the basis for the behavioral pseudometric framework of Chapter 5.
Given an endofunctor F on Set we provide two canonical ways, based solely
on a simple evaluation function, to extend this to a functor F on PMet which
we call a lifting of F. Moreover, in presence of any lifting, a final F-coalgebra
induces a final F-coalgebra (see Theorem 5.5.1). Thus, in this case we can define
bisimilarity distances as in (6.1.1) using G = F as functor (Definition 5.5.4).

As final contribution we also show how to extend the generalized powerset
construction [SBBR13] to this quantitative setting using liftings: Whenever
this construction is applicable to a coalgebra of the shape c : X → FTX for an
endofunctor F and a monad (T ,η,µ) on Set, we can check if all the respective
parts can be lifted to PMet. Then – as is to be expected – this construction
yields a canonical definition of trace distance as detailed in Definition 5.8.1.

Summing up, we have indeed successfully and with many details demon-
strated how to use the coalgebraic machinery for a quantitative analysis of
transition systems. However, this is still just an initial step and there are yet
many interesting discoveries to be made in this quantitative coalgebraic world
(see the discussion in Section 5.9, page 220).

229

Chapter 6 Conclusion

6.2 Pros and Cons of the Coalgebraic Perspective

Apparently, the coalgebraic view requires a lot of non-trivial background knowl-
edge which is not immediately related to the respective systems under investi-
gation. The Preliminaries (Chapter 2) of this thesis provide a short introduction
to both category theory as well as coalgebra which should be sufficient to under-
stand this thesis and also some of the most important ideas of the coalgebraic
machinery. However, they only cover a very small part of the big picture so in
order to properly work with transition systems coalgebraically, one has to be
prepared to learn about many more abstract concepts.

The benefit of this high level of abstraction provided by the coalgebraic
framework is that it allows to identify fundamental principles. By properly
hiding the specific details of a transition system, one can often discover the
crucial properties of a construction. For example, the determinization of non-
deterministic automata can be understood in terms of adjunctions and liftings as
we have discussed in Chapter 3. Moreover, this idea also forms the basis for the
generalized powerset construction [SBBR13] allowing determinization of various
coalgebras in Set which we extended to pseudometric spaces in Chapter 5. Of
course, the whole behavioral pseudometric framework of that chapter is another
example for coalgebraic abstraction. The definitions, theorems and algorithms
for the behavioral pseudometrics arise quite naturally just out of the coalgebraic
theory. Instead of having to think of them for each transition system separately
and showing e.g. that one obtains a pseudometric, we now have a generic and
uniform framework for (almost) any transition system that can be modelled as
Set-coalgebra.

Sticking with this example we can, however, also identify a downside of the
coalgebraic abstraction. While the final coalgebra construction in PMet (see
Theorem 5.5.1) is essentially algorithmic, it is not yet implementable since the
only termination guarantee we can provide is termination after ω steps (if
the functor is ω-continuous). In order to guarantee termination after finitely
many steps or at least some measure of convergence of our algorithm we will
most likely have to take into account some specific properties of the respective
systems under consideration.

To conclude this very brief discussion, coalgebra can be extremely helpful to
understand fundamental theoretic principles underlying several constructions
and it permits to state and prove several properties without referring to specific
details. However, the level of abstraction makes it difficult to learn and some-
times the lack of details even restrains the expressiveness of the results. Thus it
is perhaps best to use coalgebra for a general theory where it excels and resort
to the more specific details not only in order to get the ideas for expanding this

230

6.3 Related and Future Work

theory but also in order to strengthen and extend the general results provided
by the coalgebraic machinery.

6.3 Related and Future Work

A detailed description of the possible follow-up works on the topics covered in
this thesis and also pointers to related literature can be found in the respective
parts at the end of the main chapters. Here we will instead concentrate on a
more general perspective and evaluate which future research direction seems
most promising.

First of all we remark that the immediate extensibility of the results on coal-
gebraic traces for continuous probabilistic transition systems as given Chapter 4

is limited. This is simply due to the fact that we have just employed the Kleisli
approach to trace equivalences [HJS07] to a very specific setting using methods
from measure theory. Thus there is not much hope of a generalization to other
transition systems. This line of work can thus serve mainly as a proof of the
applicability of the Kleisli approach for other, more complicated categories than
Set and also as a reference for some slightly more complicated final coalgebras.
However, as we pointed out already at the end of Chapter 4, since we just
constructed our final coalgebras manually, it might still be interesting to find
generic final coalgebra constructions in the Kleisli category of the Giry monads.

Although the theoretical contribution about adjoint functor lifting in Chapter 3

is encompassed by an earlier, more general 2-categorical result by Claudio Her-
mida and Bart Jacobs [HJ98], the chapter can still teach us that it is sometimes
also useful to work out examples in detail. In fact, the whole coalgebras-are-
transition-systems-paradigm is of course only validated by the many examples
that have been studied in the literature. In our case – besides the different au-
tomata constructions we have (re)discovered – this has lead us to the definition
of deterministic join automata which are just deterministic automata whose state
spaces are complete join semilattices and whose transition function respects
this structure. They are a natural generalization of the powerset automaton
that arises as the determinization of a nondeterministic automaton. In such an
automaton, the join of two states (which are sets of states of the original nfa)
is just their set-theoretic union.

To put them in context with the literature, we note that from a theoretic point
of view, the state spaces of the powerset automata are simply the free Eilenberg-
Moore algebras of the powerset monad whereas the state spaces of deterministic
join automata are arbitrary ones. Thus, if we look at other monads, we might
wonder whether their free algebras are also state spaces of determinizations

231

Chapter 6 Conclusion

of some systems. This is exactly the view taken in the generalized powerset
construction [SBBR13; JSS15]. Moreover, the determinization construction itself
is yet another instance of lifting adjunctions to coalgebras: It is the lifting
of the free algebra functor [JSS15, Lemma 1], which is the left adjoint of the
Eilenberg-Moore adjunction as given in Definition 2.3.41.

That being said, the general take-home message of this line of work is to not
only look for theoretical advancements but to actually employ known results on
concrete examples. In particular, whenever one is interested in determinization
alike constructions, it could be worth to try lifting an adjunction (whenever that
is possible) and see what the resulting construction does.

Last but not least we come back to behavioral pseudometrics. Since we
have identified our coalgebraic framework of Chapter 5 as main conceptual
contribution of this thesis, it is likely that the most promising line of future
research should have its roots in this framework. As pointed out at the end of
the chapter (see Section 5.9), there might be many ways not only to improve
the current framework but maybe even generalize it further by allowing lattice
valued metrics. Apart from that, the aforementioned take-home message still
holds true: also this framework will benefit a lot from more examples.

232

A
Supplementary Material

A.1 Proofs and Calculations for Chapter 3

In this section we present all the missing proofs and detailed calculations for
the results given in Chapter 3.

A.1.1 Determinization of Nondeterministic Automata

Let us first briefly check that indeed β−1
X is the inverse of βX: For any S ∈

P (A×X+ 1) we calculate

β−1
X (βX(S)) = β

−1
X

(
oX(S), sX(S)

)
= {X | oX(S) = 1}∪

⋃
a∈A

{a}× sX(S)(a)

= {X | X ∈ S}∪ {(a, x) | (a, x) ∈ S} = S

and for any (o, s) ∈ 2× (PX)A we have

βX
(
β−1
X ((o, s))

)
= βX

(
{X | o = 1}∪

⋃
a∈A

{a}× s(a)

)
= βX ({X | o = 1}∪ {(a, x) | a ∈ A, x ∈ s(a)})

=

o,

s ′ : A→ PX,a 7→
⋃

{(a,x)|x∈s(a)}
{x}

=
(
o,
(
s ′ : A→ PX,a 7→ s(a)

))
= (o, s) .

Moreover, β and β−1, are natural transformations: We consider the diagram

233

Appendix A Supplementary Material

P (A×X+ 1) 2× (PX)A

P (A× Y + 1) 2× (PY)A

βX

β−1
X

P (A× f+ 1) 2× f[·]A

βY

β−1
Y

and remark that for any S ∈ P (A×X+ 1) both (βY ◦ P (A× f+ 1))(S) and(
(2× f[·]A ◦βX

)
(S) evaluate to the same tuple

(
oX(S), sX(S)

)
where

sX(S) : A→ PX, a 7→
⋃

(a,x)∈S

{f(x)}

and for (o, s) ∈ 2× (PX)A we have

(P (A× f+ 1) ◦β−1
X)(o, s) = {X | o = 1}∪

{(
a, f(x)

)
| a ∈ A, x ∈ s(a)

}
= {X | o = 1}∪ {(a,y) | a ∈ A,y ∈ (f ◦ s)(a)}

=
(
β−1
Y ◦

(
2× f[·]A

))
(o, s)

which completes the proof that β as defined by Equations (3.2.1) and (3.2.2) is a
natural isomorphism.

For each set X we calculate αX : 2×XA ↔ A×X+ 1 using Equation (3.1.6):

αX = εGLX ◦ Lβ−1
LX ◦ LFηX = εA×X+1 ◦ Lβ−1

X ◦ L(2× η
A
X)

= εA×X+1 ◦ Lβ−1
X ◦
{(

(o, s) , (2× ηAX)(o, s)
)∣∣∣o ∈ 2, s ∈ XA

}
= εA×X+1 ◦ Lβ−1

X ◦

{(
(o, s) ,

(
o,
(
s ′ : A 3 a 7→ {s(a)} ∈ PX

)))∣∣∣∣∣ o ∈ 2,
s ∈ XA

}

= εA×X+1 ◦

{(
(o, s) , {X | o = 1}∪

⋃
a∈A

{a}× s ′(a)

) ∣∣∣∣∣ o ∈ 2,
s ∈ XA

}
=
{(

(1, s) , X
)

,
(
(o, s) ,

(
a, s(a)

))
| o ∈ 2, s ∈ XA,a ∈ A

}
which verifies Equation (3.2.4).

Now we proceed to calculate the lifted left adjoint using Equation (3.1.1). For
any coalgebra c : X→ 2×XA we have

L(c) = αX ◦ Lc = αX ◦ {(x, c(x)) | x ∈ X}

234

A.1 Proofs and Calculations for Chapter 3

=

{
(x,X)

∣∣∣∣ x ∈ X,
π1(c(x)) = 1

}
∪
{(
x,
(
a,π2 (c(x)) (a)

)) ∣∣∣∣ x ∈ X,
a ∈ A

}
which verifies Equation (3.2.5).

Analogously, we calculate the lifted right adjoint using Equation (3.1.2) where
for any NA d : Y ↔ A× Y + 1 the new DA R(d) : PY → 2× (PY)A is given by,
for any set Q ∈ PY

R(d)(Q) = (βY ◦ Rd)(Q) = βY
(
Rd(Q)

)
= βY ({z ∈ A× Y + 1 | ∃q ∈ Q : (q, z) ∈ d}) = (o, s)

where o = 1 if there is a q ∈ Q such that (q,X) ∈ d and o = 0 else which
verifies Equation (3.2.6) and s : A → PY,a 7→ {y ∈ Y | ∃q ∈ Q : (q, (a,y)) ∈ d}
which verifies Equation (3.2.7).

A.1.2 Codeterminization of Nondeterministic Automata

For each set X we calculate αX : P (A×X+ 1) ← A × PX + 1 using Equa-
tion (3.1.6):

αX = εGLX ◦ Lβ−1
LX ◦ LFηX = εA×PX+1 ◦ L1A×X+1 ◦ L(A× ηX + 1)

= εA×PX+1 ◦ L(A× ηX + 1)

and evaluating this Setop-arrow as a function yields:

αX(X) = L(A× ηX + 1)(εA×PX+1(X)) = L(A× ηX + 1)(1)

=
{
z ∈ A×PX+ 1 | ∃z ′ ∈ 1 :

(
z, z ′

)
∈ (A× ηX + 1)

}
= {z ∈ A×PX+ 1 | (z,X) ∈ (A× ηX + 1)} = 1

and analogously for any (a,S) ∈ A×PX we have

αX((a,S)) = L(A× ηX + 1)(εA×PX+1((a,S))) = L(A× ηX + 1)({(a,S)})
=
{
z ∈ A×PX+ 1 | ∃z ′ ∈ {(a,S)} :

(
z, z ′

)
∈ (A× ηX + 1)

}
= {z ∈ A×PX+ 1 | (z, (a,S)) ∈ (A× ηX + 1)}

= {(a, x) ∈ A×PX | x ∈ S} = {a}× S .

We calculate the lifted left adjoint using Equation (3.1.1). For any c : X ↔
A× X+ 1 we obtain the Setop-arrow L(c) = αX ◦ Lc which, as a function is
given by, for every (a,S) ∈ A×PX,

L(c)((a,S)) = (Lc ◦αX)((a,S)) = Lc (αX((a,S))) = Lc ({a}× S)

235

Appendix A Supplementary Material

= {x ∈ X | ∃ (a,y) ∈ {a}× S : (x, (a,y)) ∈ c}
= {x ∈ X | ∃y ∈ S : (x, (a,y)) ∈ c} .

Analogously we use Equation (3.1.2) to obtain the lifted right adjoint. For a
coalgebra d : Y ← A× Y + 1 we obtain

R(d) = βY ◦ Rd = {(y, 1) ∈ Y × (A× Y + 1) | d(X) = y}

∪
{(
y,
(
a,y ′

))
∈ Y × (A× Y + 1) | d(

(
a,y ′

)
) = y

}
.

A.1.3 Determinization of Deterministic Automata

For each set X we calculate the join preserving1 function αX : P
(
2×XA

)
→

2× (PX)A using Equation (3.1.6)

αX = εGLX ◦ Lβ−1
LX ◦ LFηX = ε(PX,∪) ◦ L1PX ◦ L(2× ηAX)

= ε(2×(PX)A,t) ◦ L(2× η
A
X)

which for each S ∈ P
(
2×XA

)
evaluates to

αX(S) =
(⊔

{o | (o, s) ∈ S} ,
⊔

{s | (o, s) ∈ S}
)

which is Equation (3.3.1). We calculate the lifted left adjoint using Equa-
tion (3.1.1). For any coalgebra c : X→ 2×XA we obtain a coalgebra L(c) : PX→
2× (PX)A where for every S ∈ PX we have

L(c)(S) = (αX ◦ Lc)(S) = αX(c[S])

=
(⊔

{π1(c(x)) | x ∈ S} ,
⊔

{π2(c(x)) | x ∈ S}
)

Analogously we use Equation (3.1.2) to obtain the lifted right adjoint. For a
coalgebra d : (Y,t)→

(
2× YA,t

)
we obtain

R(d) = βY ◦ Rd = Rd .

A.1.4 Codeterminization of Deterministic Join Automata

For this adjunction we will first give all the details of the base adjunction due
to the fact that – to our knowledge – it is not standard construction.

1It satisfies this property by construction!

236

A.1 Proofs and Calculations for Chapter 3

Left adjoint

L : JSL→ Setop, L (X,t) = X, L(f : (X,t)→ (Y,t)) = Lf : X← Y

where Lf(y) =
⊔
{x ∈ X | f(x) v y}.

Right adjoint

R : Setop → JSL, RX = (PX,∪), R(f : X← Y) = f−1[.] : PX→ PY

This is indeed a JSL-arrow due to the fact that the inverse image preserves
arbitrary unions.

Unit

η(X,t) : (X,t)→ (PX,∪) , x 7→ ↑ x =
{
x ′ ∈ X | x ′ 6w x

}
Let us check that this is join-preserving. For binary joins we have

η(X,t)(xt y) =
{
x ′ ∈ X | x ′ 6w xt y

}
= {x ′ ∈ X | x ′ w xt y}

= {x ′ ∈ X | x ′ w x}∩ {x ′ ∈ X | x ′ w y}
=
{
x ′ ∈ X | x ′ 6w x

}
∪
{
x ′ ∈ X | x ′ 6w y

}
= η(X,t)(x)∪ η(X,t)(y)

which immediately can be generalized to arbitrary joins. In order to see that η
is a natural transformation we calculate:

((RLf) ◦ η(X,t))(x) = (Lf)−1
[
↑ x
]
= {y ∈ Y | (Lf)(y) 6w x}

=
{
y ∈ Y |

⊔{
x ′ ∈ X | y w f(x ′)

}
6w x
}

and claim that{
y ∈ Y | t

{
x ′ ∈ X | y w f(x ′)

}
6w x
}
= {y ∈ Y | y 6w f(x)} = (η(Y,t) ◦ f)(x) .

This is true because their complements are the same:

. Let y w f(x), then x ∈ {x ′ ∈ X | y w f(x ′)} and
⊔
{x ′ ∈ X | y w f(x ′)} w x.

. Conversely for y ∈ {y ∈ Y |
⊔
{x ′ ∈ X | y w f(x ′)} w x} by join preservation

and monotonicity we obtain

y w
⊔{

f(x ′) | y w f(x ′)
}
= f

(⊔{
x ′ ∈ X | y w f(x ′)

})
w f(x) .

237

Appendix A Supplementary Material

Counit

This is simply εX : PX ← X, x 7→ {x} which is indeed a natural transformation
(arrows to be read as functions):

(LRf ◦ εY)(y) = L(f−1)({y}) =
⊔{

S ∈ PX | {y} w f−1[S]
}

=
⋃{

S ∈ PX | {y} ⊇
{
y ′ ∈ Y | f(y ′) ∈ S

}}
=
⋃

{S ∈ PX | f(y) 6∈ S} = {f(y)} = (εX ◦ f)(y)

Unit-Counit-Equations (2.3.3)

We have (arrows as functions)

(Lη(X,t) ◦ εL(X,t))(x) = Lη(X,t)({x}) =
⊔{

x ′ ∈ X | {x} ⊇ η(X,t)(x
′)
}

=
⊔{

x ′ ∈ X | {x} ⊇ ↑ x ′
}
=
⊔{

x ′ ∈ X | {x} ⊆ ↑ x ′
}

=
⊔{

x ′ ∈ X | x ∈ ↑ x ′
}
=
⊔{

x ′ ∈ X | x w x ′
}
= x

and in JSL:

(RεX ◦ ηRX)(S) = ε−1X
[
η(PX,∪)(S)

]
=
{
x ∈ X | εX(x) ∈ η(PX,∪)(S)

}
=
{
x ∈ X | {x} ∈ ↑ S

}
=
{
x ∈ X | {x} 6⊇ S

}
= {x ∈ X | x ∈ S} = S

Lifting

We need a natural isomorphism β : RG ⇒ FR, i.e. for each set X we need a
join-preserving function βX : (P (A×X+ 1) ,∪)→

(
2× (PX)A,t

)
. We take the

bijective function given in Equation (3.3.6) from Section 3.2.2 which is:

βX(S) = (χS(X), (s : A→ PX, s(a) = {x ∈ X | (a, x) ∈ S}))

In Section 3.2.2 we have already seen that this function is join-preserving. Using
Equation (3.1.2) we calculate the lifted right adjoint:

R(d : Y ← A× Y + 1) : (PY,∪)→
(

2× (PY)A,t
)

where we have

R(d)(S) = βY ◦ d−1[S]

238

A.1 Proofs and Calculations for Chapter 3

= βY({X | d(X) ∈ S}∪ {(a,y) | d((a,y)) ∈ S})
= (χS(d(X)), (s : A→ PY, s(a) = {y ∈ Y | d((a,y)) ∈ S}))

which is just the determinization of the automaton via the powerset construction.
In order to obtain the lifted left adjoint we use Equation (3.1.6) to calculate
α(X,t) = εGL(X,t) ◦ Lβ−1

L(X,t) ◦ LFη(X,t) which is a Setop-arrow (thus we have
to reverse all arrows to calculate the function!). We calculate for arbitrary
(a, x) ∈ A×X:

εA×X+1(X) = 1 = A×X, and εA×X+1((a, x)) = {(a, x)}

and with that we continue

Lβ−1
L(X,t)(A×X)

=
⊔{

(o, s) ∈ 2× (PX)A | A×X ⊇ β−1
L(X,t)((o, s))

}
=
⊔{

(o, s) ∈ 2× (PX)A | o = 0
}

=
(
0, (s ′X : A→ PX,a 7→ X)

)
and for the other cases

Lβ−1
L(X,t)({(a, x)}) =

⊔{
(o, s) ∈ 2× (PX)A | {(a, x)} ⊇ β−1

L(X,t)((o, s))
}

=
⊔{

(o, s) ∈ 2× (PX)A | (a, x) 6∈ β−1
L(X,t)((o, s))

}
=
⊔{

(o, s) ∈ 2× (PX)A | x 6∈ s(a)
}

=

(
1,

(
s ′(a,x) : A→ PX, s ′(a,x)(a

′) =

{
{x}, a ′ = a

X, else

))
.

Finally we plug in these results to obtain

LFη(X,t)(
(
0, s ′X

)
) =

⊔{
(o, s) ∈ 2×XA |

(
0, s ′X

)
w
(
o,ηA(X,t)(s)

)}
=
⊔{

(o, s) ∈ 2×XA | o = 0∧ s ′X w ηA(X,t)(s)
}

=
(
0,
⊔{

s ∈ XA | s ′X w ηA(X,t)(s)
})

=
(
0,
(
sX : A→ X, sX(a) =

⊔{
x ′ ∈ X | s ′X(a) w η(X,t)(x

′)
}))

=
(
0,
(
sX : A→ X, sX(a) =

⊔{
x ′ ∈ X | X ⊇ ↑ x ′

}))
= (0, (sX : A→ X, sX(a) = >))

239

Appendix A Supplementary Material

and for all other cases we get Equation (3.3.6):

LFη(X,t)

((
1, s ′(a,x)

))
=
⊔{

(o, s) ∈ 2×XA |
(
1, s ′(a,x)

)
w (Fη(X,t))((o, s))

}
=
⊔{

(o, s) ∈ 2×XA |
(
1, s ′(a,x)

)
w
(
o,ηA(X,t)(s)

)}
=
⊔{

(o, s) ∈ 2×XA | s ′(a,x) w η
A
(X,t)(s)

}
=
(
1,
⊔{

s ∈ XA | s ′(a,x) w η
A
(X,t)(s)

})
=
(
1,
(
s(a,x) : A→ X, s(a,x)(a

′) =
⊔{

x ′ ∈ X | s ′(a,x)(a
′) ⊇ η(X,t)(x

′)
}))

=
(
1,
(
s(a,x) : A→ X, s(a,x)(a

′) =
⊔{

x ′ ∈ X | s ′(a,x)(a
′) ⊇ ↑ x ′

}))
=

(
1,

(
s(a,x) : A→ X, s(a,x)(a

′) =

{⊔{
x ′ ∈ X | {x} ⊇ ↑ x ′

}
, a ′ = a⊔{

x ′ ∈ X | X ⊇ ↑ x ′
}

, a ′ 6= a

))

=

(
1,

(
s(a,x) : A→ X, s(a,x)(a

′) =

{⊔
{x ′ ∈ X | {x} ⊆ ↑ x ′} , a ′ = a

>, a ′ 6= a

))

=

(
1,

(
s(a,x) : A→ X, s(a,x)(a

′) =

{⊔
{x ′ ∈ X | x w x ′} , a ′ = a

>, a ′ 6= a

))

=

(
1,

(
s(a,x) : A→ X, s(a,x)(a

′) =

{
x, a ′ = a

>, a ′ 6= a

))
.

With these results we can use Equation (3.1.1) to obtain the lifted left adjoint

Lc
((
1, s(a,x)

))
=
⊔{

x ′ ∈ X |
(
1, s(a,x)

)
w c(x ′)

}
=
⊔{

x ′ ∈ X | s(a,x) w π2(c(x ′))
}

=
⊔{

x ′ ∈ X | ∀a ′ ∈ A : s(a,x)(a
′) w π2(c(x ′))(a ′)

}
=
⊔{

x ′ ∈ X | s(a,x)(a) w sc(x ′)(a)
}

=
⊔{

x ′ ∈ X | x w π2(c(x ′))(a)
}

which is the supremum of all such x ′ whose a−successors are less or equal to x.
Moreover, we obtain

Lc
((
0, s ′0

))
=
⊔{

x ′ ∈ X |
(
0, s ′0

)
w c(x ′)

}
=
⊔{

x ′ ∈ X | (0,>) w c(x ′)
}

=
⊔{

x ′ ∈ X | π1(c(x
′)) = 0

}
which is the supremum of all non-final states.

240

A.2 Borel-Measurability of the Trace Arrow Revisited

A.2 Borel-Measurability of the Trace Arrow Revisited

In Section 4.2.4 we used transfinite induction to show that the trace function is
a Markov kernel. The following, alternative proof was suggested2 to the author
of this thesis by Ernst-Erich Doberkat after presenting the result on the Bellairs
Workshop on Probability in 2014. It is much simpler and does not require any
transfinite induction.

Let X be a set. We call a set P ⊆ P (X) a π-system on X, if it is non-empty
and closed under finite intersections and a set D ⊆ P (X) a Dynkin system (or
λ-system) on X if it contains X, is closed under complements and for any family
(An)n∈N of disjoint sets An ∈ D also their union is in D [Els11, I. Def. 6.4].

Theorem A.2.1 (Dynkin’s π-λ Theorem [Els11, I. Satz 6.7]) Let X be a set, P a
π-system and D a Dynkin system on X such that P ⊆ D. Then σ(P) ⊆ D.

Using this we can prove the next result.

Lemma A.2.2 Let X, Y be sets, P ⊆ P (Y) a π-system containing Y and k : X×
σ(P)→ [0, 1] a function such that k(x, _) is a (sub-)probability measure for every
x ∈ X. If k(_,S) is measurable for every S ∈ P then it is measurable for every
S ∈ σ(P) and thus a (Sub-)Markov kernel.

Proof. We aim at applying the π-λ theorem. We define the set

D := {S ⊆ Y | x 7→ k(x,S) is measurable}

and observe that we certainly have P ⊆ D. We proceed by showing that D is
a Dynkin system. We have X ∈ P ⊆ D and thus X ∈ D. If S ∈ D we also have
Y \ S ∈ D because x 7→ k(x,X \ S) = 1− k(x,S) is measurable as difference of
two measurable functions. Finally, for a countable family (An)n∈N of disjoint
sets An ∈ D we have

k

(
x,
⋃
n∈N

An

)
=
∑
n∈N

k(x,An) = sup
N∈N

∑
16n6N

k(x,An)

which is measurable because it is the supremum of a family of measurable
functions (which are themselves measurable because they are the finite sum of
measurable functions). Thus D is a Dynkin system, so by the π-λ theorem we
conclude σ(P) ⊆ D which yields measurability for every S ∈ σ(P).

2The presented version presented is based on some short proof sketches.

241

Appendix A Supplementary Material

In order to employ this result to our trace function, we recall that by The-
orem 4.2.12 tr(x) is a (sub-)probability measure and by Lemma 4.2.19 for
every S ∈ S� the function x 7→ tr(x)(S) is Borel-measurable. Now, since for
each � ∈ {∗,ω,∞} the sets S� are semirings and thus π-systems the above
Lemma A.2.2 yields the statement of Theorem 4.2.25, i.e., that x 7→ tr(x)(S) is
Borel-measurable for every S ∈ σA�(S�).

A.3 Distributive Law for Probabilistic Automata

Here we prove that the distributive law λ : Df([0, 1]× _A)⇒ [0, 1]×DAf given in
Lemma 5.8.5 (Page 214) is indeed a distributive law. We recall the definition of
λX = 〈oX, sX〉 with

oX(P) =
∑
r∈[0,1]

r · P(r,XA)

and

sX(P) : A→ DfX,

sX(P)(a)(x) =
∑

s∈XA, s(a)=x

P([0, 1], s) = P
(
[0, 1],

{
s ∈ XA | s(a) = x

})
for all sets X and all distributions P : [0, 1]×XA → [0, 1].

The proof that this is an EM-law is carried out in the three following lemmas
using just the definition of an EM-law given in Definition 2.3.43 (Page 46).

Lemma A.3.1 λ as defined above is a natural transformation.

Proof. We have to show commutativity of the following diagram:

Df
(
[0, 1]×XA

)
[0, 1]×

(
DfX

)A

Df
(
[0, 1]× YA

)
[0, 1]×

(
DfY

)A

λX = 〈oX, sX〉

λY = 〈oY , sY〉

Df
(
id[0,1] × fA

)
id[0,1] ×

(
Dff
)A

This is equivalent to the equality(
id[0,1] ×

(
Dff
)A) ◦ 〈oX, sX〉 = 〈oY , sY〉 ◦Df

(
id[0,1] × fA

)

242

A.3 Distributive Law for Probabilistic Automata

which in turn is equivalent to the following two equalities

oX = oY ◦Df
(
id[0,1] × fA

)
(A.3.1)(

Dff
)A ◦ sX = sY ◦Df

(
id[0,1] × fA

)
(A.3.2)

We will show them separately. Let P ∈ Df
(
[0, 1]×XA

)
. The right hand side of

(A.3.1) evaluates to

oY ◦Df
(
id[0,1] × fA

)
(P) = oY

(
Df
(
id[0,1] × fA

)
(P)
)

=
∑
r∈[0,1]

r ·Df
(
id[0,1] × fA

)
(P)
(
r, YA

)
=
∑
r∈[0,1]

r ·
∑
g∈YA

Df
(
id[0,1] × fA

)
(P)(r,g)

=
∑
r∈[0,1]

r ·
∑
g∈YA

P
(
r,
{
h ∈ XA | f ◦ h = g

})
=
∑
r∈[0,1]

r · P(r,XA) = oX

using for the second to last equality that for each h ∈ XA there is apparently
a unique g ∈ YA such that f ◦ h = g, namely g := f ◦ h. Thus we have shown
(A.3.1).

In order to prove (A.3.2), we calculate both sides of the equality. For the left
hand side we obtain for every P ∈ Df

(
[0, 1]×XA

)
, every a ∈ A and every y ∈ Y(

Dff
)A ◦ sX(P)(a)(y) = (Dff)(sX(P)(a))(y)

= sX(P)(a)
(
{x ∈ X | f(x) = y}

)
=

∑
x∈X, f(x)=y

sX(P)(a)(x)

=
∑

x∈X, f(x)=y

∑
s∈XA, s(a)=x

P([0, 1], s)

=
∑

s∈XA, f(s(a))=y

P([0, 1], s)

∑
s∈XA, f◦s(a)=y

P([0, 1], s) . (A.3.3)

For the right hand side of (A.3.2) we have

sY ◦Df
(
id[0,1] × fA

)
(P)(a)(y) = sY

(
Df
(
id[0,1] × fA

)
(P)
)
(a)(y)

= Df
(
id[0,1] × fA

)
(P)
(
[0, 1],

{
s ′ ∈ YA | s ′(a) = y

})
=

∑
s ′∈YA, s ′(a)=y

Df
(
id[0,1] × fA

)
(P)([0, 1], s)

243

Appendix A Supplementary Material

=
∑

s ′∈YA, s ′(a)=y

P
(
[0, 1],

{
s ∈ XA | f ◦ s = s ′

})
=

∑
s ′∈YA, s ′(a)=y

∑
s∈XA,f◦s=s ′

P([0, 1], s)

=
∑

s∈XA, f◦s(a)=y

P([0, 1], s)

which is the same as (A.3.3) so indeed (A.3.2) holds and thus λ is a natural
transformation.

Lemma A.3.2 The diagram below commutes for all sets X.

[0, 1]×XA

Df
(
[0, 1]×XA

)
[0, 1]×

(
DfX

)A
id[0,1] × ηAX

λX = 〈oX, sX〉

η[0,1]×XA

Proof. Commutativity of the diagram is equivalent to

〈oX, sX〉 ◦ η[0,1]×XA = id[0,1] × ηAX

which in turn is equivalent to requiring, for every (r, s) ∈ [0, 1]×XA,

oX ◦ η[0,1]×XA(r, s) = id[0,1](r) = r, (A.3.4)

sX ◦ η[0,1]×XA(r, s) = η
A
X (s) . (A.3.5)

Showing (A.3.4) is straightforward: for every (r, s) ∈ [0, 1]×XA we have

oX ◦ η[0,1]×XA(r, s) = oX
(
δ
[0,1]×XA
(r,s)

)
=
∑
r ′∈[0,1]

r ′ · δ[0,1]×X
A

(r,s) (r ′,XA)

= r · δ[0,1]×X
A

(r,s) (r, s) = r

where for every non-empty set Y and y ∈ Y the function δYy : Y → [0, 1] is the
Dirac distribution, i.e., δYy(y ′) = 1 if y ′ = y and δYy(y ′) = 0 else.

In order to show (A.3.5) we again compute both sides separately. For the left
hand side we have, for all (r, s) ∈ [0, 1]×XA, all a ∈ A and all x ∈ X,

sX ◦ η[0,1]×XA(r, s)(a)(x) = sX
(
δ
[0,1]×XA
(r,s)

)
(a)(x)

244

A.3 Distributive Law for Probabilistic Automata

= δ
[0,1]×XA
(r,s)

(
[0, 1],

{
s ′ ∈ XA | s ′(a) = x

})
=

{
1, if s(a) = x
0, else

and for the right hand side

ηAX (s)(a)(x) = ηX
(
s(a)

)
(x) = δXs(a)(x) =

{
1, if s(a) = x
0, else

which completes our proof.

Lemma A.3.3 The diagram below commutes for all sets X.

D2f
(
[0, 1]×XA

)
Df
(
[0, 1]× (DfX)

A
)

[0, 1]×
(
D2f X

)A

Df
(
[0, 1]×XA

)
[0, 1]×

(
DfX

)A

Df〈oX, sX〉 〈oDfX, sDfX〉

µ[0,1]×XA id[0,1] × µAX

〈oX, sX〉

Proof. Commutativity of the diagram is equivalent to the two equalities

oDfX ◦Df〈oX, sX〉 = oX ◦ µ[0,1]×XA (A.3.6)

µAX ◦ sDfX ◦Df〈oX, sX〉 = sX ◦ µ[0,1]×XA (A.3.7)

We compute the left hand side of (A.3.6) for P ∈ D2f
(
[0, 1]×XA

)
as

oDfX ◦Df〈oX, sX〉(P) = oDfX
(
Df〈oX, sX〉(P)

)
=
∑
r∈[0,1]

r ·Df〈oX, sX〉(P)
(
r,
(
DfX

)A)
=
∑
r∈[0,1]

r ·
∑

s∈(DfX)A
Df〈oX, sX〉(P)(r, s)

=
∑
r∈[0,1]

r ·
∑

s∈(DfX)A
P

({
q ∈ Df

(
[0, 1]×XA

) ∣∣ oX(q) = r, sX(q) = s})

=
∑
r∈[0,1]

r · P
({
q ∈ Df

(
[0, 1]×XA

) ∣∣ oX(q) = r})

245

Appendix A Supplementary Material

=
∑

q∈Df([0,1]×XA)

oX(P) · P(q)

and the right hand side evaluates to

oX ◦ µ[0,1]×XA(P) =
∑
r∈[0,1]

r · µ[0,1]×XA(P)(r,X
A)

=
∑
r∈[0,1]

r ·
∑
s∈XA

µ[0,1]×XA(P)(r, s)

=
∑
r∈[0,1]

r ·
∑
s∈XA

∑
q∈Df([0,1]×XA)

P(q) · q(r, s)

=
∑

q∈Df([0,1]×XA)

P(q) ·
∑
r∈[0,1]

r · q(r,XA)

=
∑

q∈Df([0,1]×XA)

P(q) · oX(q)

so indeed (A.3.6) holds. We can rearrange the sums because they only contain
non-negative values.

Also for (A.3.7) we first compute the left hand side for any P ∈ D2f
(
[0, 1]×XA

)
,

any a ∈ A and any x ∈ X

µAX ◦ sDfX ◦Df〈oX, sX〉(P)(a)(x) = µX
(
sDfX

(
Df〈oX, sX〉(P)

)
(a)
)
(x)

=
∑
q∈DfX

q(x) · sDfX
(
Df〈oX, sX〉(P)

)
(a)(q)

=
∑
q∈DfX

q(x) ·Df〈oX, sX〉(P)
(
[0, 1],

{
s ′ ∈ (DfX)

A
∣∣ s ′(a) = q})

=
∑

s ′∈(DfX)A
s ′(a)(x) ·Df〈oX, sX〉(P)([0, 1], s ′)

=
∑

s ′∈(DfX)A
s ′(a)(x) ·

∑
r∈[0,1]

Df〈oX, sX〉(P)(r, s ′)

=
∑

s ′∈(DfX)A
s ′(a)(x) ·

∑
r∈[0,1]

P
({
q ∈ Df

(
[0, 1]×XA

) ∣∣ oX(q) = r, sX(q) = s ′})
=

∑
q∈Df([0,1]×XA)

sX(q)(a)(x) · P(q)

=
∑

q∈Df([0,1]×XA)

∑
s ′∈XA, s ′(a)=x

∑
r∈[0,1]

q(r, s ′) · P(q)

246

A.3 Distributive Law for Probabilistic Automata

and the right hand side evaluates to

sX ◦ µ[0,1]×XA(P)(a)(x) = sX
(
µ[0,1]×XA(P)

)
(a)(x)

= µ[0,1]×XA(P)
(
[0, 1],

{
s ′ ∈ XA | s ′(a) = x

})
=
∑
r∈[0,1]

∑
s ′∈XA ,s ′(a)=x

µ[0,1]×XA(P)(r, s
′)

=
∑
r∈[0,1]

∑
s ′∈XA ,s ′(a)=x

∑
q∈Df([0,1]×XA)

P(q) · q(r, s)

which proves (A.3.7) and thus concludes the proof.

247

Bibliography

Publications of Henning Kerstan

[BBKK16] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Coalgebraic
Behavioral Metrics. Logical Methods in Computer Science, 2016. – invited submission
to special issue, submitted for review –.

[BBKK15] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Towards
Trace Metrics via Functor Lifting. In 6th Conference on Algebra and Coalgebra in
Computer Science (CALCO’15). Lawrence S. Moss and Paweł Sobociński, editors.
Volume 35. In Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, October 2015, pages 35–49. doi :
10.4230/LIPIcs.CALCO.2015.35. arXiv:1505.08105 [cs.LO].

[BBKK14] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Behavioral
Metrics via Functor Lifting. In 34th International Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2014). Venkatesh Raman and
S. P. Suresh, editors. Volume 29. In Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014, pages 403–415.
doi:10.4230/LIPIcs.FSTTCS.2014.403. arXiv:1410.3385 [cs.LO].

[KKW14] Henning Kerstan, Barbara König, and Bram Westerbaan. Lifting Adjunctions
to Coalgebras to (Re)Discover Automata Constructions. In Coalgebraic Methods
in Computer Science. Marcello M. Bonsangue, editor. Volume 8446. In Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2014, pages 168–188.
doi:10.1007/978-3-662-44124-4_10.

[KK13] Henning Kerstan and Barbara König. Coalgebraic Trace Semantics for Continuous
Probabilistic Transition Systems. Logical Methods in Computer Science, 9 [4:16](834),
December 2013. doi:10.2168/LMCS-9(4:16)2013. arXiv:1310.7417v3 [cs.LO].

[KK12b] Henning Kerstan and Barbara König. Coalgebraic Trace Semantics for Probabilistic
Transition Systems Based on Measure Theory. In CONCUR 2012 – Concurrency
Theory. Maciej Koutny and Irek Ulidowski, editors. Volume 7454. In Lecture Notes
in Computer Science. Springer Berlin Heidelberg, September 2012, pages 410–424.
doi:10.1007/978-3-642-32940-1_29.

[KK12a] Henning Kerstan and Barbara König. Coalgebraic Trace Semantics for Probabilistic
Transition Systems Based on Measure Theory. Technical report (2012-02). Abteilung
für Informatik und Angewandte Kognitionswissenschaft, Universität Duisburg-
Essen, June 2012. urn:nbn:de:hbz:464-20120703-101943-2.

[Ker11] Henning Kerstan. Trace Semantics for Probabilistic Transition Systems – A Coalge-
braic Approach. Diplomarbeit. Universität Duisburg-Essen, September 2011.

249

http://doi.org/10.4230/LIPIcs.CALCO.2015.35
http://doi.org/10.4230/LIPIcs.CALCO.2015.35
http://arxiv.org/abs/1505.08105
http://doi.org/10.4230/LIPIcs.FSTTCS.2014.403
http://arxiv.org/abs/1410.3385
http://doi.org/10.1007/978-3-662-44124-4_10
http://doi.org/10.2168/LMCS-9(4:16)2013
http://arxiv.org/abs/1310.7417v3
http://doi.org/10.1007/978-3-642-32940-1_29
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:464-20120703-101943-2

Bibliography

Publications of Other Authors

[ABH+12] Jiří Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius, and
Alexandra Silva. A Coalgebraic Perspective on Minimization and Determinization.
In Lars Birkedal, editor, Foundations of Software Science and Computational Structures.
Volume 7213, in Lecture Notes in Computer Science, pages 58–73. Springer Berlin
Heidelberg, 2012. doi:10.1007/978-3-642-28729-9_4 (cited on pages 67, 84, 85, 127,
224).

[Ada74] Jiří Adámek. Free algebras and automata realizations in the language of categories.
eng. Commentationes Mathematicae Universitatis Carolinae, 015(4):589–602, 1974. http:
//eudml.org/doc/16649 (cited on pages 189, 190).

[AFL15] Joanne M. Atlee, Uli Fahrenberg, and Axel Legay. Measuring Behaviour Interac-
tions Between Product-line Features. In Proceedings of the Third FME Workshop on
Formal Methods in Software Engineering. In Formalise ’15. IEEE Press, Florence, Italy,
2015, pages 20–25. doi:10.1109/FormaliSE.2015.11 (cited on page 224).

[AHS90] Jir̆í Adámek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Cate-
gories. The Joy of Cats. Volume 17. [John Wiley and Sons, New York], 2006 [1990],
pages 1–507. http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html (visited on
11/20/2015) (cited on pages 16, 27, 40, 149).

[AM89] Peter Aczel and Nax Mendler. A final coalgebra theorem. In David H. Pitt, David E.
Rydeheard, Peter Dybjer, Andrew M. Pitts, and Axel Poigné, editors, Category
Theory and Computer Science. Volume 389, in Lecture Notes in Computer Science,
pages 357–365. Springer Berlin Heidelberg, 1989. doi:10.1007/BFb0018361 (cited
on page 56).

[Ash72] Robert B. Ash. Real Analysis and Probability. Of Probability and Mathematical Statistics
– A Series of Monographs and Textbooks. Academic Press, 111 Fifth Avenue, New York,
New York, 1972. isbn 978-1483175614 (cited on pages 88, 90, 93–96, 137).

[Awo06] Steve Awodey. Category Theory. Clarendon Press, 2006. isbn 978–0–19–856861–2

(cited on pages 27, 36, 41, 82).

[BBLM13] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On-the-Fly
Exact Computation of Bisimilarity Distances. In Nir Piterman and Scott A. Smolka,
editors, Tools and Algorithms for the Construction and Analysis of Systems. Volume 7795,
in Lecture Notes in Computer Science, pages 1–15. Springer Berlin Heidelberg,
2013. doi:10.1007/978-3-642-36742-7_1 (cited on pages 127, 222).

[BBRS12] Filippo Bonchi, Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra Silva.
Brzozowski’s Algorithm (Co)Algebraically. In Logic and Program Semantics – Essays
Dedicated to Dexter Kozen on the Occasion of His 60th Birthday. Robert L. Constable
and Alexandra Silva, editors. Volume 7230. In Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pages 12–23. doi:10.1007/978-3-642-29485-3_2
(cited on page 67).

[Ber41] Paul Bernays. A System of Axiomatic Set Theory–Part II. The Journal of Symbolic
Logic, 6(1):pages, 1941. doi:10.2307/2267281 (cited on pages 18, 19).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,
2008. isbn 978-0-262-02649-9 (cited on pages 20, 98).

250

http://doi.org/10.1007/978-3-642-28729-9_4
http://eudml.org/doc/16649
http://eudml.org/doc/16649
http://doi.org/10.1109/FormaliSE.2015.11
http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html
http://doi.org/10.1007/BFb0018361
http://doi.org/10.1007/978-3-642-36742-7_1
http://doi.org/10.1007/978-3-642-29485-3_2
http://doi.org/10.2307/2267281

Bibliography

[BKP12] Nick Bezhanishvili, Clemens Kupke, and Prakash Panangaden. Minimization via
Duality. In Proc. of WoLLIC ’12. LNCS 7456. Springer Berlin Heidelberg, 2012,
pages 191–205. doi:10.1007/978-3-642-32621-9_14 (cited on page 67).

[BN80] Luc Boasson and Maurice Nivat. Adherences of languages. Journal of Computer and
System Sciences, 20(3):285–309, 1980. doi:10.1016/0022-0000(80)90010-0 (cited on
page 185).

[BP13] Filippo Bonchi and Damien Pous. Checking NFA Equivalence with Bisimulations
Up to Congruence. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. In POPL ’13. ACM, Rome, Italy,
2013, pages 457–468. doi:10.1145/2429069.2429124 (cited on pages 84, 224).

[BPPR14] Filippo Bonchi, Daniela Petrişan, Damien Pous, and Jurriaan Rot. Coinduction
Up-To in a Fibrational Setting. In Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). In CSL-LICS ’14.
ACM, 2014. doi:10.1145/2603088.2603149 (cited on page 224).

[BT11] Janusz Brzozowski and Hellis Tamm. Theory of Átomata. In Giancarlo Mauri
and Alberto Leporati, editors, Developments in Language Theory. Volume 6795, in
Lecture Notes in Computer Science, pages 105–116. Springer Berlin Heidelberg,
2011. doi:10.1007/978-3-642-22321-1_10 (cited on pages 65, 73).

[Can92] Georg Cantor. Ueber eine elementare Frage der Mannigfaltigkeitslehre. In. Jahresbericht
der Deutschen Mathematiker-Vereinigung 1890-1891. G. Cantor, W. Dyck, and E.
Lampe, editors. Volume 1. Deutsche Mathematiker-Vereinigung, 1892. http: / /
eudml.org/doc/144383 (visited on 09/25/2015) (cited on page 53).

[CGPX14] Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu.
Generalized bisimulation metrics. In Paolo Baldan and Daniele Gorla, editors,
CONCUR 2014 – Concurrency Theory. Volume 8704, in Lecture Notes in Computer
Science, pages 32–46. Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-662-
44584-6_4 (cited on page 224).

[CHS+10] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and
Jean-François Raskin. Model Checking Lots of Systems: Efficient Verification
of Temporal Properties in Software Product Lines. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume 1. In ICSE
’10. ACM, Cape Town, South Africa, 2010, pages 335–344. doi:10.1145/1806799.
1806850 (cited on page 224).

[CPP12] G. Comanici, P. Panangaden, and D. Precup. On-the-Fly Algorithms for Bisim-
ulation Metrics. In 2012 Ninth International Conference on Quantitative Evaluation
of Systems (QEST). IEEE Computer Society, September 2012, pages 94–103. doi:
10.1109/QEST.2012.30 (cited on page 222).

[Crs10] Corina Cîrstea. Generic Infinite Traces and Path-Based Coalgebraic Temporal
Logics. Electronic Notes in Theoretical Computer Science, 264(2):83–103, August 2010.
doi:10.1016/j.entcs.2010.07.015 (cited on page 127).

251

http://doi.org/10.1007/978-3-642-32621-9_14
http://doi.org/10.1016/0022-0000(80)90010-0
http://doi.org/10.1145/2429069.2429124
http://doi.org/10.1145/2603088.2603149
http://doi.org/10.1007/978-3-642-22321-1_10
http://eudml.org/doc/144383
http://eudml.org/doc/144383
http://doi.org/10.1007/978-3-662-44584-6_4
http://doi.org/10.1007/978-3-662-44584-6_4
http://doi.org/10.1145/1806799.1806850
http://doi.org/10.1145/1806799.1806850
http://doi.org/10.1109/QEST.2012.30
http://doi.org/10.1109/QEST.2012.30
http://doi.org/10.1016/j.entcs.2010.07.015

Bibliography

[CvBW12] Di Chen, Franck van Breugel, and James Worrell. On the Complexity of Computing
Probabilistic Bisimilarity. In Foundations of Software Science and Computational Struc-
tures. Lars Birkedal, editor. Volume 7213. In Lecture Notes in Computer Science.
Springer, Heidelberg, 2012, pages 437–451. doi:10.1007/978-3-642-28729-9_29
(cited on pages 127, 222).

[dAFS09] Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and Branching System
Metrics. IEEE Trans. Software Eng., 35(2):258–273, 2009. doi:10.1109/TSE.2008.106
(cited on pages 142, 143, 193, 222, 223).

[DCPP06] Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics for Action-
labelled Quantitative Transition Systems. Electronic Notes in Theoretical Computer
Science, 153(2):79–96, 2006. Proceedings of the Third Workshop on Quantitative
Aspects of Programming Languages (QAPL 2005) Quantitative Aspects of Pro-
gramming Languages 2005. doi:10.1016/j.entcs.2005.10.033 (cited on page 222).

[DEP98] Josée Desharnais, Abbas Edalat, and Prakash Panangaden. A logical characteriza-
tion of bisimulation for labeled Markov processes. In Proceedings of the 13th IEEE
Symposium on Logic in Computer Science, Indianapolis. Volume 179(2). IEEE Press,
New York, 1998, pages 478–489. doi:10.1109/LICS.1998.705681 (cited on pages 11,
221).

[DGJP04] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for labelled Markov processes. Theoretical Computer Science, 318(3):323–354,
2004. doi:10.1016/j.tcs.2003.09.013 (cited on page 221).

[DGJP99] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for Labeled Markov Systems. In Jos C. M. Baeten and Sjouke Mauw, editors,
CONCUR’99 Concurrency Theory. Volume 1664, in Lecture Notes in Computer
Science, pages 258–273. Springer Berlin Heidelberg, 1999. doi:10.1007/3-540-
48320-9_19 (cited on page 12).

[Dob07a] Ernst-Erich Doberkat. Kleisli morphisms and randomized congruences for the
Giry monad. Journal of Pure and Applied Algebra, 211(3):638–664, 2007. doi:10.1016/j.
jpaa.2007.03.003 (cited on pages 96, 111).

[Dob07b] Ernst-Erich Doberkat. Stochastic relations: foundations for Markov transition systems.
Of Chapman & Hall/CRC studies in informatics series. Chapman & Hall/CRC, 2007.
isbn 978-1-58488-941-0 (cited on page 126).

[dVR97] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition sys-
tems: a coalgebraic approach. In Pierpaolo Degano, Roberto Gorrieri, and Alberto
Marchetti-Spaccamela, editors, Automata, Languages and Programming. Volume 1256,
in Lecture Notes in Computer Science, pages 460–470. Springer Berlin Heidelberg,
1997. doi:10.1007/3-540-63165-8_202 (cited on page 221).

[dVR99] E.P de Vink and J.J.M.M Rutten. Bisimulation for probabilistic transition systems:
a coalgebraic approach. Theoretical Computer Science, 221(1–2):271–293, 1999. doi:
10.1016/S0304-3975(99)00035-3 (cited on page 222).

252

http://doi.org/10.1007/978-3-642-28729-9_29
http://doi.org/10.1109/TSE.2008.106
http://doi.org/10.1016/j.entcs.2005.10.033
http://doi.org/10.1109/LICS.1998.705681
http://doi.org/10.1016/j.tcs.2003.09.013
http://doi.org/10.1007/3-540-48320-9_19
http://doi.org/10.1007/3-540-48320-9_19
http://doi.org/10.1016/j.jpaa.2007.03.003
http://doi.org/10.1016/j.jpaa.2007.03.003
http://doi.org/10.1007/3-540-63165-8_202
http://doi.org/10.1016/S0304-3975(99)00035-3
http://doi.org/10.1016/S0304-3975(99)00035-3

Bibliography

[EHS+13] Christian Eisentraut, Holger Hermanns, Johann Schuster, Andrea Turrini, and
Liju Zhang. The Quest for Minimal Quotients for Probabilistic Automata. In Nir
Piterman and Scott A. Smolka, editors, Tools and Algorithms for the Construction and
Analysis of Systems. Volume 7795, in Lecture Notes in Computer Science, pages 16–
31. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-36742-7_2 (cited on
page 127).

[Els11] Jürgen Elstrodt. Maß- und Integrationstheorie. Of Springer-Lehrbuch. Springer Berlin
Heidelberg, 7th edition, 2011. doi:10.1007/978-3-642-17905-1 (cited on pages 88,
90–94, 100, 102, 120, 121, 241).

[FL14] Uli Fahrenberg and Axel Legay. The quantitative linear-time–branching-time
spectrum. Theoretical Computer Science, 538:54–69, 2014. Quantitative Aspects of
Programming Languages and Systems (2011-12). doi:10.1016/j.tcs.2013.07.030
(cited on page 222).

[FLT11] Uli Fahrenberg, Axel Legay, and Claus Thrane. The Quantitative Linear-Time–
Branching-Time Spectrum. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2011). Supratik Chakraborty
and Amit Kumar, editors. Volume 13. In Leibniz International Proceedings in
Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 2011, pages 103–114. doi:10.4230/LIPIcs.FSTTCS.2011.103 (cited on
page 222).

[FPP04] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for Finite Markov
Decision Processes. In Proceedings of the 20th Conference on Uncertainty in Artificial
Intelligence. In UAI ’04. AUAI Press, Banff, Canada, 2004, pages 162–169. isbn 0-
9749039-0-6. arXiv:1207.4114 [cs.AI] (cited on page 222).

[Gab62] Pierre Gabriel. Des catégories abéliennes. Bulletin de la Société Mathématique de
France, 90:323–448, 1962 (cited on page 16).

[Gir82] Michèle Giry. A categorical approach to probability theory. In B. Banaschewski,
editor, Categorical Aspects of Topology and Analysis. Volume 915, in Lecture Notes
in Mathematics, pages 68–85. Springer Berlin Heidelberg, 1982. doi :10 .1007/
BFb0092872 (cited on pages 95, 96).

[GJS90] Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic Reasoning
for Probabilistic Concurrent Systems. In Proc. IFIP TC2 Working Conference on
Programming Concepts and Methods. North-Holland, 1990, pages 443–458 (cited on
pages 11, 221).

[Gum01] H. Peter Gumm. Functors for Coalgebras. algebra universalis, 45(2-3):135–147, 2001.
doi:10.1007/s00012-001-8156-x (cited on page 39).

[HJ98] Claudio Hermida and Bart Jacobs. Structural Induction and Coinduction in a
Fibrational Setting. Information and Computation, 145(2):107–152, 1998. doi:10.1006/
inco.1998.2725 (cited on pages 65, 66, 69, 231).

[HJS06] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic Trace Theory. In International
Workshop on Coalgebraic Methods in Computer Science. Volume 164. In Electronic
Notes in Theoretical Computer Science. Elsevier, 2006, pages 47–65. doi:10.1016/j.
entcs.2006.06.004 (cited on pages 9, 59, 60, 87, 103).

253

http://doi.org/10.1007/978-3-642-36742-7_2
http://doi.org/10.1007/978-3-642-17905-1
http://doi.org/10.1016/j.tcs.2013.07.030
http://doi.org/10.4230/LIPIcs.FSTTCS.2011.103
http://arxiv.org/abs/1207.4114
http://doi.org/10.1007/BFb0092872
http://doi.org/10.1007/BFb0092872
http://doi.org/10.1007/s00012-001-8156-x
http://doi.org/10.1006/inco.1998.2725
http://doi.org/10.1006/inco.1998.2725
http://doi.org/10.1016/j.entcs.2006.06.004
http://doi.org/10.1016/j.entcs.2006.06.004

Bibliography

[HJS07] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic Trace Semantics via Coin-
duction. Logical Methods in Computer Science, 3 (4:11):1–36, November 2007. doi:
10.2168/LMCS-3(4:11)2007 (cited on pages 59, 82, 85, 87, 88, 126, 223, 228, 231).

[Joh75] P. T. Johnstone. Adjoint Lifting Theorems for Categories of Algebras. Bulletin
London Mathematical Society, 7:294–297, 1975 (cited on page 47).

[JR97] Bart Jacobs and Jan Rutten. A Tutorial on (Co)Algebras and (Co)induction. Bulletin
of the European Association for Theoretical Computer Science, 62:222–259, 1997 (cited
on pages 3, 48).

[JSS12] Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace Semantics via Determiniza-
tion. In Dirk Pattinson and Lutz Schröder, editors, Coalgebraic Methods in Computer
Science. Volume 7399, in Lecture Notes in Computer Science, pages 109–129.
Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-32784-1_7 (cited on
page 60).

[JSS15] Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determiniza-
tion. Journal of Computer and System Sciences, 81(5):859–879, 2015. 11th International
Workshop on Coalgebraic Methods in Computer Science, CMCS 2012 (Selected
Papers). doi:10.1016/j.jcss.2014.12.005 (cited on pages 47, 54, 58, 60–62, 67, 85,
214, 223, 232).

[KMPS15] Alexander Kurz, Stefan Milius, Dirk Pattinson, and Lutz Schröder. Simplified
Coalgebraic Trace Equivalence. In, Software, Services, and Systems. Volume 8950, in
Lecture Notes in Computer Science, pages 75–90. Springer International Publishing,
2015. doi:10.1007/978-3-319-15545-6_8. arXiv:1410.2463 (cited on page 58).

[Kon36] Dénes König. Theorie der endlichen und unendlichen Graphen. Chelsea Publishing
Company New York, N.Y., 1936 (cited on page 105).

[KR15] Bartek Klin and Jurriaan Rot. Coalgebraic Trace Semantics via Forgetful Logics.
In Andrew Pitts, editor, Foundations of Software Science and Computation Structures.
Volume 9034, in Lecture Notes in Computer Science, pages 151–166. Springer
Berlin Heidelberg, 2015. doi:10.1007/978-3-662-46678-0_10 (cited on page 58).

[KS74] G.M. Kelly and Ross Street. Review of the elements of 2-categories. In Gregory M.
Kelly, editor, Category Seminar. Volume 420, in Lecture Notes in Mathematics,
pages 75–103. Springer Berlin Heidelberg, 1974. doi:10.1007/BFb0063101 (cited on
page 66).

[Lam68] Joachim Lambek. A fixpoint theorem for complete categories. Mathematische
Zeitschrift, 103(2):151–161, 1968. doi:10.1007/BF01110627 (cited on page 53).

[LS89] Kim G. Larsen and Arne Skou. Bisimulation through Probabilistic Testing (Pre-
liminary Report). In Conference Record of the 16th ACM Symposium on Principles of
Programming Languages (POPL), 1989, pages 344–352. doi:10.1145/75277.75307
(cited on pages 25, 126, 127, 221).

[LS91] Kim G. Larsen and Arne Skou. Bisimulation through Probabilistic Testing. Informa-
tion and Computation, 94:1–28, 1991. doi:10.1016/0890-5401(91)90030-6 (cited on
pages 25, 126).

254

http://doi.org/10.2168/LMCS-3(4:11)2007
http://doi.org/10.2168/LMCS-3(4:11)2007
http://doi.org/10.1007/978-3-642-32784-1_7
http://doi.org/10.1016/j.jcss.2014.12.005
http://doi.org/10.1007/978-3-319-15545-6_8
http://arxiv.org/abs/1410.2463
http://doi.org/10.1007/978-3-662-46678-0_10
http://doi.org/10.1007/BFb0063101
http://doi.org/10.1007/BF01110627
http://doi.org/10.1145/75277.75307
http://doi.org/10.1016/0890-5401(91)90030-6

Bibliography

[Mac69] Saunders Mac Lane. One Universe as a Foundation for Category Theory. In, Reports
of the Midwest Category Seminar III. Volume 106, in Lecture Notes in Computer
Science, pages 192–200. Springer Berlin Heidelberg, 1969. doi:10.1007/BFb0059147
(cited on page 16).

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 2nd edition,
1998. doi:10.1007/978-1-4757-4721-8 (cited on pages 3, 27, 29, 44).

[Mil80] Robin Milner. A Calculus of Communicating Systems. Volume 92 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1980. doi:10.1007/3-540-10235-3
(cited on page 1).

[Mon81] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. In. Histoire de
L’Académie Royale des Sciences. Paris, 1781, pages 666–704 (cited on page 131).

[Moo56] Edward F. Moore. Gedanken-Experiments on Sequential Machines. In, Automata
Studies, pages 129–153. Princeton University Press, 1956 (cited on page 51).

[MPS15] Stefan Milius, Dirk Pattinson, and Lutz Schröder. Generic Trace Semantics and
Graded Monads. In 6th Conference on Algebra and Coalgebra in Computer Science
(CALCO’15). Lawrence S. Moss and Paweł Sobociński, editors. Volume 35. In Leib-
niz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2015. doi :10.4230/LIPIcs .CALCO.2015.253 (cited on
page 58).

[MS15] Lawrence S. Moss and Paweł Sobociński, editors. 6th Conference on Algebra and
Coalgebra in Computer Science (CALCO’15). Volume 35 of Leibniz International Pro-
ceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2015.

[Mul94] Philip S. Mulry. Lifting theorems for Kleisli categories. In Stephen Brookes, Michael
Main, Austin Melton, Michael Mislove, and David Schmidt, editors, Mathematical
Foundations of Programming Semantics. Volume 802, in Lecture Notes in Computer
Science, pages 304–319. Springer Berlin Heidelberg, 1994. doi:10.1007/3-540-
58027-1_15 (cited on page 47).

[Pan09] Prakash Panangaden. Labelled Markov Processes. Imperial College Press, 2009.
isbn 978-1-84816-287-7 (cited on pages 87, 95, 96, 98, 126, 127).

[PT99] John Power and Daniele Turi. A Coalgebraic Foundation for Linear Time Semantics.
Electronic Notes in Theoretical Computer Science, 29:259–274, 1999. doi:10.1016/S1571-
0661(05)80319-6 (cited on page 59).

[Rot15] Jurriaan Cornelis Rot. Enhanced Coinduction. PhD thesis. Universiteit Leiden,
October 2015. hdl:1887/35814 (cited on page 224).

[RT93] Jan J.M.M. Rutten and Daniele Turi. On the foundations of final semantics: Non-
standard sets, metric spaces, partial orders. In J.W. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors, Semantics: Foundations and Applications. Volume 666, in
Lecture Notes in Computer Science, pages 477–530. Springer Berlin Heidelberg,
1993. doi:10.1007/3-540-56596-5_45 (cited on pages 56, 57).

[Rut00] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249:3–80, 2000. doi:10.1016/S0304-3975(00)00056-6 (cited on pages 3, 39,
48, 49, 53, 56, 58, 60, 62, 167).

255

http://doi.org/10.1007/BFb0059147
http://doi.org/10.1007/978-1-4757-4721-8
http://doi.org/10.1007/3-540-10235-3
http://doi.org/10.4230/LIPIcs.CALCO.2015.253
http://doi.org/10.1007/3-540-58027-1_15
http://doi.org/10.1007/3-540-58027-1_15
http://doi.org/10.1016/S1571-0661(05)80319-6
http://doi.org/10.1016/S1571-0661(05)80319-6
http://hdl.handle.net/1887/35814
http://doi.org/10.1007/3-540-56596-5_45
http://doi.org/10.1016/S0304-3975(00)00056-6

Bibliography

[Rut98] J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra). In Davide
Sangiorgi and Robert de Simone, editors, CONCUR’98 Concurrency Theory. Vol-
ume 1466, in Lecture Notes in Computer Science, pages 194–218. Springer Berlin
Heidelberg, 1998. doi:10.1007/BFb0055624 (cited on page 55).

[San98] Davide Sangiorgi. On the Bisimulation Proof Method. Mathematical Structures in
Computer Science, 8(5):447–479, October 1998. doi:10.1017/S0960129598002527
(cited on page 224).

[SBBR10] Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten.
Generalizing the powerset construction, coalgebraically. In IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2010). Kamal Lodaya and Meena Mahajan, editors. Volume 8. In Leibniz Interna-
tional Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2010, pages 272–283. doi:10.4230/LIPIcs.FSTTCS.2010.272 (cited on
pages 12, 60).

[SBBR13] Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten.
Generalizing determinization from automata to coalgebras. Logical Methods in
Computer Science, 9(1), 2013. doi:10.2168/LMCS-9(1:9)2013 (cited on pages 58, 60,
65, 67, 85, 223, 229, 230, 232).

[Sch99] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1999. isbn 978–0–471–98232–6 (cited on page 133).

[SdV04] Ana Sokolova and Erik P. de Vink. Probabilistic Automata: System Types, Parallel
Composition and Comparison. In Christel Baier, BoudewijnR. Haverkort, Holger
Hermanns, Joost-Pieter Katoen, and Markus Siegle, editors, Validation of Stochastic
Systems. Volume 2925, in Lecture Notes in Computer Science, pages 1–43. Springer
Berlin Heidelberg, 2004. doi:10.1007/978-3-540-24611-4_1 (cited on page 26).

[Sok05] Ana Sokolova. Coalgebraic Analysis of Probabilistic Systems. PhD thesis. Tech-
nische Universiteit Eindhoven, 2005. doi:10.6100/IR596314 (cited on pages 26,
87).

[Sok11] Ana Sokolova. Probabilistic systems coalgebraically: A survey. Theoretical Computer
Science, 412(38):5095–5110, 2011. CMCS Tenth Anniversary Meeting. doi:10.1016/j.
tcs.2011.05.008 (cited on pages 26, 27, 87, 97, 126, 164).

[TDZ11] Mathieu Tracol, Josée Desharnais, and Abir Zhioua. Computing Distances between
Probabilistic Automata. In 9th Workshop on Quantitative Aspects of Programming
Languages (QAPL 2011). Mieke Massink and Gethin Norman, editors. Volume 57.
In EPTCS, July 2011, pages 148–162. doi:10.4204/EPTCS.57.11. arXiv:1107.1206
[cs.FL] (cited on page 222).

[UH15] Natsuki Urabe and Ichiro Hasuo. Coalgebraic Infinite Traces and Kleisli Simu-
lations. In Lawrence S. Moss and Paweł Sobociński, editors, 6th Conference on
Algebra and Coalgebra in Computer Science (CALCO’15). Volume 35, in Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPIcs.CALCO.2015.320 (cited on page 58).

[vBre05] Franck van Breugel. The Metric Monad for Probabilistic Nondeterminism. April
2005. http://www.cse.yorku.ca/~franck/research/drafts/monad.pdf (visited on
11/20/2015) (cited on page 223).

256

http://doi.org/10.1007/BFb0055624
http://doi.org/10.1017/S0960129598002527
http://doi.org/10.4230/LIPIcs.FSTTCS.2010.272
http://doi.org/10.2168/LMCS-9(1:9)2013
http://doi.org/10.1007/978-3-540-24611-4_1
http://doi.org/10.6100/IR596314
http://doi.org/10.1016/j.tcs.2011.05.008
http://doi.org/10.1016/j.tcs.2011.05.008
http://doi.org/10.4204/EPTCS.57.11
http://arxiv.org/abs/1107.1206
http://doi.org/10.4230/LIPIcs.CALCO.2015.320
http://www.cse.yorku.ca/~franck/research/drafts/monad.pdf

Bibliography

[vBSW08] Franck van Breugel, Babita Sharma, and James Worrell. Approximating a Be-
havioural Pseudometric Without Discount for Probabilistic Systems. Logical Meth-
ods in Computer Science, 4 [2:2]:1–23, April 2008. doi:10.2168/LMCS-4(2:2)2008
(cited on page 134).

[vBW01a] Franck van Breugel and James Worrell. An Algorithm for Quantitative Verification
of Probabilistic Transition Systems. In Kim G. Larsen and Mogens Nielsen, editors,
CONCUR 2001 — Concurrency Theory. Volume 2154, in Lecture Notes in Computer
Science, pages 336–350. Springer Berlin Heidelberg, 2001. doi:10.1007/3-540-
44685-0_23 (cited on page 222).

[vBW01b] Franck van Breugel and James Worrell. Towards Quantitative Verification of Proba-
bilistic Transition Systems. In Fernando Orejas, Paul G. Spirakis, and Jan Leeuwen,
editors, Automata, Languages and Programming. Volume 2076, in Lecture Notes in
Computer Science, pages 421–432. Springer Berlin Heidelberg, 2001. doi:10.1007/3-
540-48224-5_35 (cited on page 127).

[vBW05] Franck van Breugel and James Worrell. A behavioural pseudometric for proba-
bilistic transition systems. Theoretical Computer Science, 331(1):115–142, 2005. doi:
10.1016/j.tcs.2004.09.035 (cited on page 221).

[vBW06] Franck van Breugel and James Worrell. Approximating and computing behavioural
distances in probabilistic transition systems. Theoretical Computer Science, 360(1):373–
385, May 2006. doi:10.1016/j.tcs.2006.05.021 (cited on pages 11, 12, 127, 129, 134,
141, 192, 221).

[vGla90] R. J. van Glabbeek. The linear time - branching time spectrum. In J. C. M. Baeten
and J. W. Klop, editors, CONCUR ’90 Theories of Concurrency: Unification and
Extension. Volume 458, in Lecture Notes in Computer Science, pages 278–297.
Springer Berlin Heidelberg, 1990. doi:10.1007/BFb0039066 (cited on pages 2, 222).

[vGSST95] Rob van Glabbeek, Scott A. Smolka, Bernhardt Steffen, and Chris M. N. Tofts.
Reactive, Generative and Stratified Models of Probabilistic Processes. Information
and Computation, 121:59–80, 1995. doi:10.1006/inco.1995.1123 (cited on pages 87,
97).

[Vig05a] Ignacio D. Viglizzo. Final Sequences and Final Coalgebras for Measurable Spaces.
In José Fiadeiro, Neil Harman, Markus Roggenbach, and Jan Rutten, editors,
Algebra and Coalgebra in Computer Science. Volume 3629, in Lecture Notes in Com-
puter Science, pages 395–407. Springer, 2005. doi:10.1007/11548133_25 (cited on
page 127).

[Vig05b] Ignacio Darío Viglizzo. Coalgebras on Measurable Spaces. PhD thesis. Indiana
University, 2005. hdl:2022/7065 (cited on page 127).

[Vil09] Cédric Villani. Optimal Transport – Old and New. Volume 338 of Grundlehren der
mathematischen Wissenschaften. Springer Berlin Heidelberg, 2009. doi:10.1007/978-
3-540-71050-9 (cited on pages 12, 129, 131, 165, 221).

[vNeu23] John von Neumann. Zur Einführung der transfiniten Zahlen. Acta Scientiarum
Mathematicarum (Szeged), 1(4):199–208, 1923. http://acta.fyx.hu/acta/showCustomerA

rticle.action?id=4981&dataObjectType=article (cited on page 19).

[Wor05] James Worrell. On the final sequence of a finitary set functor. Theoretical Computer
Science, 338(1–3):184–199, 2005. doi:10.1016/j.tcs.2004.12.009 (cited on page 53).

257

http://doi.org/10.2168/LMCS-4(2:2)2008
http://doi.org/10.1007/3-540-44685-0_23
http://doi.org/10.1007/3-540-44685-0_23
http://doi.org/10.1007/3-540-48224-5_35
http://doi.org/10.1007/3-540-48224-5_35
http://doi.org/10.1016/j.tcs.2004.09.035
http://doi.org/10.1016/j.tcs.2004.09.035
http://doi.org/10.1016/j.tcs.2006.05.021
http://doi.org/10.1007/BFb0039066
http://doi.org/10.1006/inco.1995.1123
http://doi.org/10.1007/11548133_25
http://hdl.handle.net/2022/7065
http://doi.org/10.1007/978-3-540-71050-9
http://doi.org/10.1007/978-3-540-71050-9
http://acta.fyx.hu/acta/showCustomerArticle.action?id=4981&dataObjectType=article
http://acta.fyx.hu/acta/showCustomerArticle.action?id=4981&dataObjectType=article
http://doi.org/10.1016/j.tcs.2004.12.009

Bibliography

[Zer08] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I. German.
Mathematische Annalen, 65(2):261–281, 1908. doi:10.1007/BF01449999 (cited on
page 53).

258

http://doi.org/10.1007/BF01449999

List of Symbols

_ identity endofunctor on a category C. 32

λ the Lebesgue measure λ : L→ R. 121

⊗ product-σ-algebra or product measure. 91,
115

� a measure similar to the product measure.
115

X symbol for termination, the unique element
of the singleton set 1. 17

χS the characteristic function of the set S. 94

the counting measure. 120

� a placeholder for the symbols 0, ∗,ω,∞. 97

ε the empty word. 20

> A chosen maximal element 0 < > 6∞. 135

1 singleton set 1 = {X}. 17

2 two element set, usually 2 = {0, 1}. 17

ω the first (smallest) infinite ordinal. 19

ω1 the first (smallest) uncountable ordinal. 19

[a,b] closed interval of extended real numbers. 17

]a,b] half open interval of extended real numbers.
17

]a,b[open interval of extended real numbers. 17

[a,b[half open interval of extended real numbers.
17

A∗ the set of all finite words with letters from A.
7, 20

Aω the set of all infinite words with letters from
A. 21

A∞ the set of all words (finite and infinite) with
letters from A. 21

A the class of all arrows of a category. 28

B the Borel σ-algebra. 93

259

List of Symbols

bdc the bisimilarity pseudometric bdc : X
2 →

[0,>] for a coalgebra c : X→ FX. 187

[C,D] the functor (quasi-)category of functors from
C to D and natural transformations. 40

C (A,B) the class of arrows with domain A and
codomain B of a category C . 28

Cat the (large) category of small categories and
functors. 33

CoAlg (F) coalgebras of an endofunctor F. 52

d ↑F the Kantorovich pseudometric. 145

dF a lifted pseudometric. 144

d ↓F the Wasserstein pseudometric. 150

D the distribution functor. 32

(d1, . . . ,dn) ↑F the Kantorovich pseudometric for a multi-
functor F : Setn → Set. 172

(d1, . . . ,dn)F a lifted pseudometric for a multifunctor
F : Setn → Set. 171

(d1, . . . ,dn) ↓F the Wasserstein pseudometric for a multifunc-
tor F : Setn → Set. 173

Df the finite-support probability distribution
functor. 33

de the Euclidean distance de : [0,>] × [0,>] →
[0,>]. 136

EM(T) the Eilenberg-Moore category of a monad
(T ,η,µ). 46

evF evaluation function for an endofunctor F on
Set. 144

evF ∗ evG composition of evaluation functions yielding
an evaluation function for FG. 194

F̃ evaluation functor for an endofunctor F on
Set or a multifunctor F : Setn → Set. 144

F lifting of a functor F to pseudometric spaces.
144

f[A] the image of A for a function f : X → Y and
A ⊆ X . 17

260

List of Symbols

f−1[B] the preimage of B for a function f : X→ Y and
B ⊆ B. 17

[[·]] unique coalgebra homomorphism from a co-
algebra c into the final coalgebra. 52

ΓF(t1, t2, . . . , tn) the set of F-couplings of t1, . . . , tn for an endo-
functor/a multifunctor F. 150

I (G) the closure of a set G ⊆ PX under countable
intersections. 101

IdC identity endofunctor on a category C. 32

IdF the identity natural transformation from a
functor F to itself. 40

idA identity arrow of an object A in a category. 28

K`(T) the Kleisli category of a monad (T ,η,µ). 44

L the Lebesgue σ-algebra. 120

λx.T lambda abstraction. 18

Meas the category of measurable spaces and mea-
surable functions. 91

O the object-class of a category, . 28

Ord the class of all ordinals. 19

P the probability functor. 95

P the powerset functor. 32

Pf the finite powerset functor. 32

PX the powerclass of the class X. 17

Pa (x,S) Markov kernel giving the transition probabil-
ity of a pts from state x with label a to set of
states S. 97

PMet the category of pseudometric spaces and non-
expansive functions. 138

pts a probabilistic transition system. 97

R the set of real numbers. 17

R+ the set of non-negative real numbers. 17

261

List of Symbols

R the set of extended real numbers. 17

R+ the set of non-negative extended real num-
bers. 17

R� a function mapping ordinals to subsets of A�

such that R�(ω1) = σA�(S�). 101

Rel the category of sets and relations. 30

S the sub-probability functor. 95

S� a semiring of words where � ∈ {0, ∗,ω,∞}. 99

Set the category of sets and functions. 29

SRel the category of stochastic relations. 96

tdc the trace pseudometric tdc : X2 → [0,>] for a
coalgebra c : X→ FTX. 211

U (G) the closure of a set G ⊆ PX under countable
unions. 101

X/R the set of all equivalence classes of an equiva-
lence relation R ⊆ X×X. 25

xRy notation for (x,y) ∈ R if R ⊆ X× Y is a binary
relation. 17

X Y An arrow in a Kleisli category; corresponds
to an arrow X→ TY in the base category. 44

X↔ Y a binary relation from X to Y. 42

262

Index

EM-law, 46

K`-law, 46

ω-continuity, 185

σ-additive, 89

σ-algebra, 88

σ-finite, 90

lts, 20

deterministic lts, 49

action, 20

adjoint functors, 41

adjoint mate, 69

adjunction, 41

Eilenberg-Moore, 46

Kleisli, 44

algebra (for a monad), 45

algebra (for an endofunctor), 48

algebra of sets, 101

arrow, 28

bicomplete, 36

bifunctor, 33

binary relation, 17

bisimilar, 23

bisimilarity, 23

F-bisimilarity, 56

coalgebraic bisimilarity, 56

Larsen-Skou bisimilarity, 25

probabilistic bisimilarity, 25

bisimulation, 23

F-bisimulation, 56

coalgebraic bisimulation, 56

Larsen-Skou bisimulation, 25

probabilistic bisimulation, 25

Borel σ-algebra, 93

Borel-measurable, 94

cartesian product, 17

category, 28

category of pseudometric spaces,
138

coalgebra, 48

final coalgebra, 52

coalgebraic bisimulation, 56

cocomplete, 36

cocone, 35

codomain, 17, 28

colimit, 35

colimit preserving, 38

complete, 36

complete join semilattice, 77

component (of a natural
transformation), 39

composed evaluation function, 194

cone, 34

cone (of words), 99

conglomerate, 16

connection morphism, 189

coproduct, 37

coproduct pseudometric, 182

cospan, 34

counit, 41

countable cover, 89

counting measure, 120

coupling, 150

covering semiring, 89

density, 121

263

INDEX

derivative (of a language), 55

deterministic automaton, 51

determinization (of a coalgebra), 60

diagram, 34

Dirac measure, 90

discrete category, 29

discrete sigma-algebra, 89

disjoint, 17

disjoint union, 17

distribution monad, 44

distributive law, 46

domain, 17, 28

duality (Kantorovich Rubinstein),
163

duality (of categories), 43

dually equivalent (categories), 43

Eilenberg-Moore adjunction, 46

Eilenberg-Moore algebra, 45

Eilenberg-Moore category, 45

Eilenberg-Moore law, 46

empty word, 20

endofunctor, 32

epi, 31

epimorphism, 31

equivalence (of categories), 43

equivalent (categories), 43

Euclidean metric, 136

evaluation function, 144

composition, 194

evaluation function (for
multifunctors), 172

evaluation functor, 144

extension (of a functor), 46

extension theorem, 90

faithful, 33

final chain, 189

final object, 36

finite measure, 90

formal language, 55

free algebra, 46

free monoid, 21

full, 33

fully faithful, 33

function, 17

isometry, 137

nonexpansive, 137

functor, 32

constant functor, 32

distribution functor, 32

endofunctor, 32

Giry functor, 95

identity functor, 32

powerset functor, 32

probability functor, 95

subprobability functor, 95

functor category, 40

generalized powerset construction,
60

generative probabilistic transition
system, 26

generator (of a σ-algebra), 89

Giry functor, 95

Giry monad, 95

Gluing lemma, 154

Hausdorff pseudometric, 166

identity, 28

identity natural transformation, 40

identity theorem, 90

image (function), 17

image measure, 95

index category, 34

induction, 18

transfinite, 19

initial object, 36

input functor, 49, 168

integrable function, 94

264

INDEX

intersection, 17

iso, 30

isometry, 137

isomorphism, 30

join, 77

join semilattice, 77

join-preserving, 77

Kantorovich function, 145

Kantorovich function (for
multifunctors), 172

Kantorovich lifting, 146

Kantorovich pseudometric, 145

Kantorovich-Rubinstein duality, 163

Kleisli adjunction, 44

Kleisli category, 44

Kleisli law, 46

labelled transition system, 20

deterministic labelled transition
system, 49

language of a state, 21

large category, 29

Larsen-Skou bisimilarity, 25

Larsen-Skou bisimulation, 25

Lebesgue σ-algebra, 120

Lebesgue measure, 121

left adjoint, 41

left-cancellative, 31

letter, 21

lifted functor, 144

lifting, 144

lifting (of a functor), 46

lifting (of a multifunctor), 170

lifting of an adjunction, 68

limit, 34

limit ordinal, 19

limit preserving, 38

locally small category, 29

machine bifunctor, 203

machine functor, 51

Markov kernel, 96

measurable function, 91

measurable set, 89

measurable space, 89

measure, 90

finite, 90

measure space, 90

metric, 135

metric space, 135

metric transition system, 142

Minkowski inequality, 137

monad, 43

distribution monad, 44

Giry monad, 95

powerset monad, 44

probability monad, 95

subprobability monad, 95

mono, 31

monomorphism, 31

Moore machine, 51

morphism, 28

multifunctor, 33

multiplication (of a monad), 43

natural isomorphism, 39

natural transformation, 39

nonexpansive function, 137

object, 28

open set, 93

opposite functor, 33

ordinal, 19

output functor, 50

partial function, 17

power class, 17

powerset
powerset functor, 32

powerset monad, 44

265

INDEX

pre-measure, 89

preimage (function), 17

preserves colimits, 38

preserves limits, 38

preserves weak colimits, 38

preserves weak limits, 38

probabilistic bisimilarity, 25

probabilistic bisimulation, 25

probabilistic transition system
generative, 26

reactive, 25

probability distribution, 18

probability functor, 95

probability measure, 90

probability monad, 95

product, 36

product bifunctor, 175

product category, 31

product pseudometrics, 178

product sigma-algebra, 91

proposition, 142

pseudometric, 135

pseudometric space, 135

pullback, 38

pushout, 38

quasicategory, 33

reactive probabilistic transition
system, 25

reflexive, 136

reflexivity, 136

relation, 17

relative complement, 17

right adjoint, 41

right-cancellative, 31

semiring of sets, 88, 89

shape (of a diagram), 34

sigma-additive, 89

sigma-algebra, 88

sigma-finite, 90

simple function, 94

small category, 29

source, 28

span, 34

split epi, 31

split mono, 31

squaring functor, 149

state, 20

stochastic kernel, 96

subprobability distribution, 18

subprobability functor, 95

subprobability measure, 90

subprobability monad, 95

successor, 20

successor ordinal, 19

support (of a function), 18

symmetric, 136

symmetry, 136

target, 28

terminal object, 36

topology, 93

trace of a state, 21

transfinite induction, 19

transition relation, 20

transition system, 20

triangle inequality, 136

trivial sigma-algebra, 89

uncountable ordinal, 19

union, 17

unit (of a monad), 43

unit (of an adjunction), 41

universal, 35, 36

valuation, 142

weak colimit, 35

weak colimit preserving, 38

weak limit, 34

266

INDEX

weak limit preserving, 38

weak pullback, 38

weak pushout, 38

weakly colimit preserving, 38

weakly limit preserving, 38

weakly preserves colimits, 38

weakly preserves limits, 38

weakly universal, 34, 35

zero object, 36

267

	Abstract
	Preface
	Introduction
	Trace Equivalence versus Bisimilarity
	Coalgebra as a Theory of Transition Systems
	Structure of the Thesis
	Contributions

	Preliminaries
	Foundation
	Set Theoretic Assumptions
	Notation and Basic Definitions
	Ordinals and Transfinite Induction

	Transition Systems and Automata
	Labelled Transition Systems
	Trace Equivalence and Bisimulation
	Side Effects: From Nondeterminism To Probability

	Category Theory
	Basics
	Functors
	Limits and Colimits
	Adjunctions and Monads

	Coalgebra
	Coalgebras are Transition Systems
	Final Coalgebra
	Trace Semantics

	Adjunctions and Automata
	Lifting Adjunctions
	Motivating Example
	Lifting an Adjunction to Coalgebras

	Nondeterministic Automata and Determinization
	Automata as Coalgebras
	Determinization of Nondeterministic Automata
	Codeterminization of Nondeterministic Automata

	Deterministic Join Automata
	Complete Join Semilattices
	Deterministic Join Automata
	Determinization of Deterministic Automata
	Codeterminization of Deterministic Join Automata

	Checking Behavioral Equivalences
	Conclusion
	Open Questions and Future Work
	Related Work
	Final Remarks

	Trace Semantics for Continuous Probabilistic Transition Systems
	Measure Theoretic Basics
	The Category of Measurable Spaces and Functions
	Borel-Sigma-Algebras and the Lebesgue Integral
	The Probability and the Subprobability Monad
	A Category of Stochastic Relations

	Coalgebraic Probabilistic Traces
	Towards Measurable Sets of Words: Cones and Semirings
	Measurable Sets of Words
	The Trace Measure
	The Trace Function is a Kleisli Arrow
	The Trace Measure and Final Coalgebra

	Examples
	Completion and the Lebesgue Measure
	Densities
	Examples

	Conclusion
	Related Work
	Future Work

	Behavioral Pseudometrics
	Motivation
	Wasserstein and Kantorovich Distance
	Behavioral Distance as Fixed Point
	Structure of this Chapter

	Pseudometric Spaces
	Calculating with (Extended) Real Numbers
	Pseudometrics Categorically

	Examples of Behavioral Distances
	Lifting Functors to Pseudometric Spaces
	The Kantorovich Lifting
	The Wasserstein Lifting
	Lifting Multifunctors
	The Product and Coproduct Bifunctors

	Bisimilarity Pseudometrics
	Compositionality of Liftings
	Compositionality for Endofunctors
	Compositionality for Multifunctors

	Lifting Natural Transformations and Monads
	Trace Pseudometrics
	Trace Pseudometric for Nondeterministic Automata
	Trace Pseudometric for Probabilistic Automata

	Conclusion, Related and Future Work
	Related Work
	Future Work

	Conclusion
	From Qualitative to Quantitative Analyses
	Pros and Cons of the Coalgebraic Perspective
	Related and Future Work

	Supplementary Material
	Proofs and Calculations for Chapter 3
	Determinization of Nondeterministic Automata
	Codeterminization of Nondeterministic Automata
	Determinization of Deterministic Automata
	Codeterminization of Deterministic Join Automata

	Borel-Measurability of the Trace Arrow Revisited
	Distributive Law for Probabilistic Automata

	Bibliography
	List of Symbols
	Index

