1 Is Wounding Aggression in Zoo-housed Chimpanzees and Ring-tailed
2 Lemurs related to Zoo Visitor Numbers?
3
4 Geoff Hosey ¹ , Vicky Melfi ² , Isabel Formella ² , Samantha J. Ward ^{3,4} , Marina Tokarski ² ,
5 Dave Brunger⁵, Sara Brice² & Sonya P. Hill^{5,6}
6
7 ¹ Biology, University of Bolton, Deane Road, Bolton BL3 5AB, UK;
8 ² Research & Conservation, Taronga Conservation Society Australia, Taronga Zoo, Bradleys Head 9Road, Mosman, NSW 2088, Australia;
10 ³ South Lakes Wild Animal Park, Dalton-in-Furness, Cumbria, UK;
11^4 Current address: School of Animal, Rural & Environmental Studies, Nottingham Trent University,
12Brackenhurst Campus, Nottinghamshire NG25 0QF, UK;
13 ⁵ Chester Zoo, Caughall Road, Upton-by-Chester, Chester CH2 1LH, UK;
14 ⁶ Current address: Department of Biological Sciences, University of Chester, Parkgate Road, Chester
15CH1 4BJ, UK
16Short title: Primate aggression and zoo visitors
17Word count: 2996 words
18Corresponding author: Prof Geoff Hosey, Biology, University of Bolton, Deane Road, Bolton BL3
195AB, UK
20email: gh2@bolton.ac.uk
21

22Abstract

23Chimpanzees in laboratory colonies experience more wounds on weekdays than on weekends, which 24has been attributed to the increased number of people present during the week; thus the presence of 25more people was interpreted as stressful. If this were also true for primates in zoos, where high 26human presence is a regular feature, this would clearly be of concern. Here we examine wounding 27rates in two primate species (chimpanzees *Pan troglodytes* and ring-tailed lemurs *Lemur catta*) at 28three different zoos, to determine whether they correlate with mean number of visitors to the zoo. 29Wounding data were obtained from a zoo electronic record keeping system (ZIMS[™]). The pattern of 30wounds did not correlate with mean gate numbers for those days for either species in any group. We 31conclude that there is no evidence that high visitor numbers result in increased woundings in these 32two species when housed in zoos.

33Keywords: aggression, captivity, visitor effect, animal welfare.

34

35

36

37Introduction

38Intra-group aggression is an ordinary and everyday part of primate societies, as it is the most obvious 39manifestation of within-group competition [Honess and Marin, 2006; Huchard and Cowlishaw 2011; 40Isbell, 1991; Walters and Seyfarth, 1987]. Indeed, aggression is sufficiently common in most primate 41societies that they have evolved behaviours such as reconciliation and consolation to help repair the 42damage to social relationships that can potentially be caused by conflict [de Waal, 2000]. Much of the 43aggression observed in primate groups is of low intensity and does not result in physical damage, but 44higher intensity violence does occur, often resulting in wounding and occasionally the death of the

45victim, both in haplorhines [eg Arlet et al., 2009; Chapman and Legge, 2009] and strepsirhines [Jolly 46et al., 2000; Vick and Pereira, 1989].

47Chimpanzees *Pan troglodytes* in the wild are particularly aggressive [Wrangham et al., 2006], with 48both male [Newton-Fisher, 2006] and female chimpanzees [Pusey et al., 2008] showing high levels of 49violent aggression. In the Kasakela community at Gombe, Tanzania, for example, intraspecific 50aggression was the cause of death in 20% of cases where the cause of death was known [Williams et 51al., 2008]. Given these high levels of violent aggression in wild chimpanzee populations, we might 52expect wounding and perhaps even killing to occur in captive populations as well. Thus, violent 53aggression in captive chimpanzees (indeed in any species of captive primate which shows this 54behaviour in the wild) should not surprise us, but may have implications for animal welfare and 55captive management of the species, as violent aggression may be deemed an undesirable behaviour in 56captive animals, even if it is normal for the species [Hill, 2004].

57There is limited evidence to suggest that crowds of zoo visitors can increase intra-group aggression in 58chimpanzees in zoos [Perret et al., 1995], but it should be noted that anthropogenic influences have 59been discounted as a cause of increased attacks among wild-living chimpanzees [Wilson et al., 2014]. 60However, studies in two different laboratories have shown that wounding rates among chimpanzees 61are higher during the working week than on weekends [Lambeth et al., 1997; Williams et al., 2010], 62and have attributed that finding to the presence of more people during the working week, who are 63probably carrying out different procedures, such as testing, than those present on weekends. 64Laboratories and zoos are quite different [Hosey, 2005], and weekday/weekend differences in staff 65and procedures are less likely to be important in zoos. Nevertheless, it would be of concern if this 66effect of people was a general consequence of captivity, and therefore occurred in zoo chimpanzee 67groups as well, as responsible zoos aim to provide conditions conducive with good welfare [Hill and Broom, 682009].

69It would also be a concern if it were found to be a consequence of captivity in other primate species. 70Ring-tailed lemurs *Lemur catta* are a commonly-held species in zoos, and also show evidence of

71wounding in both wild and captive populations [Pereira and Weiss, 1991; Hood and Jolly, 1995], 72although there appear to be no data for the frequencies of agonistic wounding. Frequencies of 73agonistic attacks in ring-tailed lemurs are generally quite low, but rise during the breeding season in 74both males and females; for example intergroup conflicts range from 0-4.67 conflicts per day at 75Berenty in Madagascar, while intragroup agonism ranges from 0-5.3 acts per hour depending on 76season [Pride, 2005a]. These rates are for all categories of agonistic act, so wounding rates should be 77considerably lower. Since glucocorticoid levels predict individual mortality in wild ring-tailed lemurs 78[Pride, 2005b], and the postulated "weekend effect" in captivity is suggested to be a consequence of 79stress, then ring-tailed lemurs are also a suitable species to investigate whether wounding in captive 80animals is related to visitor pressure in zoos.

81Here we test the hypothesis that wounding rates in zoo-held chimpanzees and ring-tailed lemurs are 82correlated with numbers of human visitors in the zoo.

83Methods

84Subjects

85We collected data for two chimpanzee groups at two different zoos, Taronga Zoo in Sydney, 86Australia, and Chester Zoo in the UK; and a ring-tailed lemur group at South Lakes Wild Animal 87Park, also in the UK. These two species were chosen because chimpanzees were the subjects of the 88original reports by Lambeth et al [1997] and Williams et al [2010], and ring-tailed lemurs are 89commonly-held primates in zoos for which we would be able to obtain sufficient data for analysis. 90Ring-tailed lemurs at Chester Zoo were considered unsuitable for this study as they are housed on an 91island, with limited public visibility; and Taronga lemurs were too few in number to provide a 92suitable database.

93Taronga chimpanzees

94Between the years 1999 and 2012 the Taronga Zoo chimpanzee colony comprised of between 16 and 9519 animals (mean \pm SE per year: females 10.9 \pm 0.1, males 6.9 \pm 0.1) ranging from neonates to 58

96 years old (mean 20.4 \pm SE 3.89). During this time the animals were housed under three different 97conditions. From 1980 until 2009, the population lived together in a large outdoor enclosure (1176.5 98m²) with grass, rocks and 14 tree trunks and two large off-exhibit night dens (290 m²) connected by an 99elevated causeway. The group was separated from the main viewing area by a moat; the distance 100between the animals and visitors was 6 m including the moat width. Due to refurbishment of the 101chimpanzees' enclosure the population was moved in 2009. The temporary housing between 11/2009 102and 09/2011 consisted of an outdoor enclosure with bark and soil substrates (120 m²), an indoor 103enclosure (35 m²) and adjacent off-exhibit night dens (135 m²). Outdoor and indoor enclosures were 104 furnished with climbing structures, platforms, ropes and cargo nets. In both enclosures the animals 105were separated from the main viewing area by a glass window. In 2011 the group moved back into the 106newly refurbished chimpanzee enclosure (dimensions as above) with seven of the original tree trunks 107as well as new climbing structures, platforms, ropes and cargo nets. All animals spent daylight hours 108(0800–1700) in the outdoor exhibit before being secured for the remainder of the day (1700–0800) in 109their night dens. All dens featured solid cement floors, with resting boards and hammocks (in some of 110them). All chimpanzees were fed five meals a day, consisting mainly of fruits and vegetables. Water 111was available ad lib both in the night cages and in the exhibition yard. During the study period five 112animals were born and five animals died.

113

114Chester chimpanzees

115Between the years 1999 and 2012 the Chester Zoo chimpanzee colony comprised of between 22 and 11630 animals (mean \pm SE per year: females 18.6 \pm 0.6, males 7.0 \pm 0.3), ranging from neonates to 117animals over 50 years old (mean 18.5 \pm SE 0.25). The chimpanzee enclosure at Chester Zoo was 118originally built in 1948, and has undergone several major improvements since then [Wehnelt et al., 1192006]. In 1989, its three small outdoor islands were joined to make one large, grass-covered island of 1202000 m², separated from the public by a water moat. The renovated island includes an outdoor refuge 121area for chimpanzees and, in the spring of 2000, a major re-planting of the island was undertaken. 122This included provision of hammocks, platforms, poles and ropes, making the island more complex

123and naturalistic; any poles that became rotten have been replaced since then. The indoor on-show area 124comprises a circular building (to prevent animals being cornered in a fight) 13 m diameter and 12 m 125high. There is a shallow water moat in front of the viewing windows, to keep chimpanzees away from 126the glass. Off-show bed areas are linked to the indoor enclosure.

127Between 1999 and 2003, the chimpanzees usually had access indoors and outdoors during zoo 128opening hours (weather permitting, e.g. not if the water moat was likely to freeze), and at night they 129would usually have access to their indoor enclosure and off-show bed areas. From 2003 onwards, they 130have indoor and outdoor access approximately 24 hours a day, between about the end of March until 131October. In winter they have daily access indoors and outdoors during zoo opening hours (weather 132permitting), and at night they have access to the indoor enclosure and off-show bed areas. The 133chimpanzees are fed a nutritionally-balanced diet of mostly fruit and vegetables, scatterfed about three 134times each day, and occasionally have additional browse on top of this.

135South Lakes ring-tailed lemurs

136Between 2008 and 2012 there were between 38 and 53 ring-tailed lemurs each year in the group 137(mean \pm SE animals per year: males 20.2 \pm 1.46, females 20.4 \pm 1.36, unknowns 6.6 \pm 1.29), ranging 138from newly born infants (the unknowns were animals that died at or soon after birth) to adults of 12 139years of age. In December 2008 there was a fire in one of the lemur houses which killed fourteen 140animals. Subsequently lemurs were brought in from three other zoos, resulting in both introductions 141and removals during 2009.

142The ring-tailed lemurs were housed within a mixed-species walk-through exhibit including black-and-143white ruffed *Varecia variegata variegata*, black-and-white belted *Varecia variegata subcincta*, red 144ruffed *Varecia rubra*, black *Eulemur macaco*, white-fronted brown *Eulemur albifrons*, mongoose 145*Eulemur mongoz* and gentle *Hapalemur alaotrensis* lemurs. All lemur species shared the indoor 146enclosures (approximately 100 m²) but tended to separate into intra-specific groups at night. The 147outdoor enclosure that was directly accessible was approximately 1ha; however, the ring-tailed lemurs 148had access to the entire zoo within the perimeter fence (approx 5 ha).

149The typical husbandry routine was that the lemurs were counted and visually checked for any health 150concerns at approximately 0810 h daily. The indoor enclosure would then be cleaned without the 151need for the lemurs to be locked outside. Lemurs were scatterfed twice daily within the indoor 152enclosure but also had access to berries and leaves growing wild around the park.

153Data and Analysis

154We defined a wound as any laceration which required veterinary treatment or was perceived by the 155keepers as potentially needing veterinary treatment. We collected incidences of wounding from zoo 156 records, together with the date of the record and the animal's identity. These were medical notes and 157medical observations extracted from ZIMS[™] records (Zoo Information Management Software, ISIS 1582014). It is likely that there are between-zoo differences in decisions about which events are recorded, 159and for this reason we cannot use these data to draw any meaningful biological conclusions about 160differences in wounding rates between zoos. These data were available for the period 1999-2012 for 161the two chimpanzee groups and 2008-2012 for the lemur group. We calculated mean daily gate 162numbers from daily attendance records kept by the zoos for those years for which data were available 163and within the time frame of the wounding data. By this we mean that we calculated a mean for all 164Mondays, another mean for all Tuesdays, and so on for the entire period for which we had gate 165numbers. We used gate numbers rather than number of people at the enclosure because these are 166historical data for which enclosure visitor numbers do not exist, but also because the papers which 167inspired this study [Lambeth et al., 1997; Williams et al., 2010] used people in the facility as a 168measure of anthropogenic pressure, rather than number of people in actual contact with the animals. 169Furthermore, in both Chester and Taronga the chimpanzee enclosures are in prominent, well-visited 170 positions, while the lemurs at South Lakes are free-range, so we are confident that gate numbers are a 171valid measure of visitor pressure.

172Pearson correlation coefficients were used to test associations between total daily wounds and mean 173daily gate numbers for each zoo, to determine if there were daily effects of visitor number.

174Results

175Total numbers of wounding events and mean daily gate numbers for the three primate groups and 176three zoos are shown in Table 1. There were significant differences in mean daily gate number 177between days for all three zoos, primarily because of high Saturday and Sunday attendance (Chester 178 χ^2 = 1088.07, df = 6, *P* < 0.001; Taronga χ^2 = 1283.69, df = 6, *P* < 0.001; South Lakes χ^2 = 27.75, df = 1796, *P* < 0.001).

181There was no significant correlation of daily wounds with mean daily gate numbers in the Taronga 182chimpanzees (r = 0.261, P = 0.572, ns) or the Chester chimpanzees (r = -0.427, P = 0.339, ns).

183There was also no significant correlation of daily wounds with mean daily gate number in the South 184Lakes lemurs (r = -0.13, P = 0.781, ns).

185**Discussion**

186Chimpanzee woundings

187Our data from the Taronga and Chester chimpanzee groups do not support the hypothesis that 188wounding rates are correlated with visitor number. In neither group were days with high average gate 189numbers associated with high rates of wounding. There are at least two possible reasons why no 190correlations were found: i) there really is no effect of zoo visitor numbers on chimpanzee woundings; 191or ii) rates of woundings are related to visitor number up to a certain threshold, after which further 192increases in numbers of visitors are not discerned by the animals or are dealt with in other ways such 193as by increasing allo-grooming. For the latter to be true, both of our groups would have to already 194have passed that threshold regardless of what day it was, implying that zoo chimpanzee wounding 195rates are chronically high already compared with situations which do not experience high visitor 196numbers. This possibility can be tested by comparing the zoo wounding rates with those found 197elsewhere. This is not straightforward as group size and composition change over time in both wild 198and captive groups, and behavioural definitions and sampling methods differ between different 199studies. Nevertheless, Wrangham et al [2006] report median attack rates of 2,301 attacks per 100,000

200observation hours per male and 911 per female for wild chimpanzees at Gombe-Kasakela and Kibale-201Kanyawara. A comparable figure of 3213 attacks per individual per 100,000 hours was found in the 202captive group at Arnhem Zoo [Noë et al., 1980]. If we assume that our "observation hours" are the 203total available time during which wounding could occur (ie 14 years, or 122,640 hours per zoo), then 204our figures show median rates of 0.81 woundings per 100,000 hours for the males and 3.26 for 205females at Taronga, and 2.4 for males and 2.85 for females at Chester. This may reflect a real 206difference, but is mostly due to our variable "woundings" being different from "attacks" used by those 207authors. In any case, these figures do not support the suggestion that zoo groups of chimpanzees have 208higher rates of violent aggression than wild ones.

209Why do our two chimpanzee zoo groups show no visitor-related increases in wounding when the 210laboratory groups do? One plausible explanation is that the chimpanzees in the laboratory groups are 211more sensitive to human presence. Neither laboratory study [Lambeth et al., 1997; Williams et al., 2122010] says what numbers of human visitors their chimpanzees are exposed to, but they are not likely 213to be anywhere near the daily numbers faced by the Taronga and Chester animals. There is some 214evidence that animals in zoos may habituate to the large numbers of people they come into contact 215with [Hosey, 2013], in which case what appears to be an indifference to human crowds (at least as 216measured by numbers of woundings) may represent habituation to chronic human presence. 217Furthermore, zoo chimpanzees have more opportunities than those in laboratories to avoid or conceal 218themselves from human visitors [Wagner and Ross, 2008]. It is also possible that chimpanzees in 219laboratories perceive more threat from people than their zoo counterparts. For the laboratory 220chimpanzee the arrival of people on weekdays perhaps signals the likelihood of experimental 221procedures taking place, so the animals respond to this threat rather than numbers of people *per se*.

222Lemur woundings

223Our data from the South Lakes ring-tailed lemur group do not support the hypothesis that wounding 224rates are correlated with visitor number. Studies in zoos on the relationship between visitor presence 225and ring-tailed lemur aggression give ambiguous results. There was a visitor-related increase in

226aggression in one group housed in a glass-fronted indoor enclosure [Chamove et al., 1988], but a 227study of a group in a walk-through exhibit showed no significant effect of human presence on the 228ring-tailed lemurs [Perry, 2011]. Our study shows similar findings relating to wounding in that even 229though the visitors were walking amongst the lemurs through their enclosure, it had no effect on the 230number of woundings between members of the ring-tailed lemur group. We have been unable to find 231any published data on wounding rates of wild ring-tailed lemurs, or indeed other captive groups. Our 232conclusion for these lemurs is the same as for the two chimpanzee groups, that there is no evidence 233that increased visitor presence is responsible for increased rates of woundings in these animals in 234captivity.

235Interestingly, human presence has also been implicated in altering the timing of births in some 236laboratory primates [Alford et al., 1992], but this effect appears not to occur in zoo-housed 237chimpanzees [Wagner and Ross, 2008] or gorillas [Kurtycz and Ross, 2015]. We can only agree with 238the latter authors that the effects of zoo visitors on captive animals may be less profound than 239previous studies suggested.

240Conclusion

241	1.	There is no evidence in our data to support the hypothesis that increases in daily zoo visitor
242		numbers result in more wounding by captive chimpanzees or ring-tailed lemurs.
243	2.	More observational studies are needed to assess whether there is any relationship between
244		visitor numbers and aggression in other zoo primates, and if so, what the nature of that
245		relationship is. This will contribute to our understanding of the effects of the zoo environment
246		on animal behaviour and welfare, and help enable zoos to implement the necessary additional
247		measures to ensure optimal welfare.
248	3.	Further research of this sort needs to be undertaken in other zoos on these and other species
249		for us to assess the generality of these conclusions.
250		

251Acknowledgements

252We are grateful to Chester Zoo, Taronga Zoo and South Lakes Wild Animal Park for the wounding 253data. None of the authors has a conflict of interest to declare.

254 References

255Alford PL, Nash LT, Fritz, J., Bowen JA. 1992. Effects of management practices on the timing of 256captive chimpanzee births. Zoo Biol 11: 253-260.

257Arlet ME, Carey JR, Molleman E. 2009. Species, age and sex differences in type and frequencies of 258injuries and impairments among four arboreal species in Kibale National Park, Uganda. Primates 50: 25965-73.

260Chamove AS, Hosey GR, Schaetzel P. 1988. Visitors excite primates in zoos. Zoo Biol 7: 359-369.

261Chapman TJ, Legge SS. 2009. The dangers of multi-male groupings: trauma and healing in 262cercopithecoid monkeys from Cameroon. Am J Primatol 71: 567-573.

263de Waal FBM. 2000. Primates – a natural heritage of conflict resolution. Science 289: 586-590.

264Hill SP. 2004. Behavioural and Physiological Investigations of Welfare in Captive Western Lowland 265Gorillas (*Gorilla gorilla gorilla*). [dissertation]. Cambridge. University of Cambridge.

266Hill SP, Broom DM. 2009. Measuring zoo animal welfare: theory and practice. Zoo Biol 28: 531-544.

267Honess PE, Marin CM. 2006. Behavioural and physiological aspects of stress and aggression in 268nonhuman prmates. Neurosci Biobehav Revs 30: 390-412.

269Hood LC, Jolly A. 1995. Troop fission in female *Lemur catta* at Berenty reserve, Madagascar. Int J 270Primatol 16: 997-1015.

271Hosey GR. 2005. How does the zoo environment affect the behaviour of captive primates? Appl 272Anim Behav Sci 90: 107-129.

273Hosey G. 2013. Hediger revisited: how do zoo animals see us? JAAWS 16: 338-359.

274Huchard E, Cowlishaw G. 2011. Female-female aggression around mating: an extra cost of sociality 275in a multimale primate society. Behav Ecol 22: 1003-1011.

276Isbell LA. 1991. Contest and scramble competition: patterns of female aggression and ranging 277behaviour among primates. Behav Ecol 2: 143-155.

278Jolly A, Caless S, Cavigelli S, et al. 2000. Infant killing, wounding and predation in *Eulemur* and 279*Lemur*. Int J Primatol 21: 21-40.

280Kurtycz LMB, Ross SR. 2015. Western lowland gorilla (*Gorilla gorilla gorilla*) birth patterns and 281human presence in zoological settings. Zoo Biol 34: 518-521.

282Lambeth SP, Bloomsmith MA, Alford PL. 1997. Effects of human activity on chimpanzee wounding.283Zoo Biol 16: 327-333.

284Newton-Fisher NE. 2006. Female coalitions against male aggression in wild chimpanzees of the 285Budongo Forest. Int J Primatol 27: 1589-1599.

286Noë R, de Waal FBM, van Hooff JARAM. 1980. Types of dominance in a chimpanzee colony. Folia 287Primatol 34: 90-110.

288Pereira ME, Weiss ML. 1991. Female mate choice, male migration, and the threat of infanticide in 289ringtailed lemurs. Behav Ecol Sociobiol 28: 141-152.

290Perret K, Preuschoft H, Preuschoft S. 1995 Einfluss von Zoobesuchen auf das Verhalten von 291Schimpansen (*Pan troglodytes*). Der Zool Gart NF 65: 314-322.

292Perry A. 2011. Assessment of the effects of visitors on four species of lemur (*Lemur catta*, *Varecia* 293*variegata*, *Varecia rubra* and *Eulemur rufifrons*) at the Wingham Wildlife Park. Canopy 12 (1): 12-29414.

295Pride RE. 2005a. Foraging success, agonism, and predator alarms: behavioural predictors of cortisol 296in *Lemur catta*. Int J Primatol 26: 295-319.

297Pride RE. 2005b. High faecal glucocorticoid levels predict mortality in ring-tailed lemurs (*Lemur* 298*catta*). Biol Lett 1: 60-63

299Pusey A, Murray C, Wallauer W, Wilson M, Wroblewski E, Goodall J. 2008. Severe aggression 300among female *Pan troglodytes schweinfurthii* at Gombe National Park, Tanzania. Int J Primatol 29: 301949-973.

302Vick LG, Pereira ME. 1989. Episodic targeting aggression and the histories of *Lemur* social groups. 303Behav Ecol Sociobiol 25: 3-12.

304Wagner KE, Ross SR. 2008. Chimpanzee (*Pan troglodytes*) birth patterns and human presence in 305zoological settings. Am J Primatol 70: 703-706.

306Walters JR, Seyfarth RM. 1987. Conflict and cooperation. In: Smuts BB, Cheney DL, Seyfarth RM, 307Wrangham RW, Struhsaker TT, editors. Primate Societies. Chicago USA. University of Chicago 308Press. p 306-317.

309Wehnelt S, Bird S, Lenihan A. 2006. Chimpanzee Forest exhibit at Chester Zoo. Int Zoo Ybk 40: 310313–322.

311Williams JM, Lonsdorf EV, Wilson ML, Schumacher-Stankey J, Goodall J, Pusey AE. 2008. Causes 312of death in the Kasakela chimpanzees of Gombe National Park, Tanzania. Am J Primatol 70: 766-777.

313Williams RC, Nash LT, Scarry CJ, Videan EN, Fritz J. 2010. Factors affecting wounding aggression 314in a colony of captive chimpanzees (*Pan troglodytes*). Zoo Biol 29: 351-364.

315Wilson ML, Boesch C, Fruth B et al. 2014 Lethal aggression in *Pan* is better explained by adaptive 316strategies than human impacts. Nature 513: 414-417.

317Wrangham RW, Wilson ML, Muller MN. 2006. Comparative rates of violence in chimpanzees and 318humans. Primates 47: 14-26.

320Table 1. Total number of wounds and mean daily zoo visitor numbers, recorded as gate number for 321each day of the week, for the three study groups.

Group	Measur	Day of Week						
-	e	M	T	W	Th	F	Sa	Su
Taronga	Total no.	15	7	11	8	13	11	8
chimpanzees	of							
	wounds							
	Mean	3037	3109	3120	3168	3659	4253	5466
	gate							
	number							
Chester	Total no.	4	23	17	24	29	3	17
chimpanzees	of							
	wounds							
	Mean	2963	2677	2836	2829	2924	4460	4416
	gate							
	number							
South Lakes	Total no.	24	20	7	22	19	11	13
ring-tailed	of							
lemurs	wounds							
	Mean	564	500	493	507	576	602	630
	gate							
	number							