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Abstract. 11 

[Ca2+]i signalling is a key regulatory mechanism in sperm function. In mammalian sperm the Ca2+-12 

permeable, plasma membrane ion channel CatSper is central to [Ca2+]i signalling but there is good 13 

evidence that Ca2+ stored in intracellular organelles is also functionally important. Here we briefly 14 

review current understanding of the diversity of Ca2+ stores and the mechanisms for the regulation 15 

of their activity. We then consider the evidence for the involvement of these stores in [Ca2+]i 16 

signalling in mammalian (primarily human) sperm, the agonists that may activate these stores and 17 

their role in control of sperm function. Finally we consider the evidence that membrane Ca2+ 18 

channels and stored Ca2+ may play discrete roles in the regulation of sperm activities and propose a 19 

mechanism by which these different components of the sperm Ca2+-signalling apparatus may 20 

interact to generate complex and spatially diverse [Ca2+]i signals.  21 

  22 



1. Ca2+ signalling in sperm 23 

Cellular activity is constantly regulated by environmental cues and signals from other cells. Long 24 

term regulation of cell function is normally achieved by control of gene expression, changing the 25 

complement and levels of proteins in the cell, but rapid or short-term changes are achieved by ‘post-26 

translational’ protein modification, such as phosphorylation, sumoylation and nitrosylation, which 27 

alter the function/activity of proteins already present. Ca2+-signalling is a key regulator of such post-28 

translational modifications, with changes in cytoplasmic Ca2+ concentration ([Ca2+]i) controlling the 29 

activities of key enzymes and proteins. Large changes in [Ca2+]i can be achieved ‘instantaneously’ by 30 

flux of Ca2+ into the cytoplasm from the extracellular fluid or from storage organelles (primarily the 31 

endoplasmic reticulum) within the cell (fig 1a). The rapidity with which [Ca2+]i-signals can be 32 

generated is crucial for ‘instantaneous’ cellular responses such as activation of muscle contraction 33 

and secretion of neurotransmitter, that are achieved by rapid post-translational-modification of 34 

protein function. 35 

The highly-condensed nucleus of sperm is transcriptionally silent (Miller and Ostermeier 2006, 36 

Miller, et al. 2005) and translational activity is also negligible [though evidence has been presented 37 

for translation occurring at mitochondrial ribosomes (Chandrashekran, et al. 2014a, 38 

Chandrashekran, et al. 2014b, Gur and Breitbart 2007, Zhao, et al. 2009)]. Regulation of sperm 39 

function is therefore dependent primarily on post-translational processes. [Ca2+]i signalling is pivotal 40 

to this regulation and in mammalian sperm it plays a central role in controlling the cell’s behaviour 41 

(motility type and potentially chemotaxis), the induction of acrosome reaction and the process of 42 

capacitation (Darszon, et al. 2011, Darszon, et al. 2007, Publicover, et al. 2007). The importance for 43 

sperm function of membrane Ca2+-channels and Ca2+-influx is well-established (Darszon, et al. 2011) 44 

but there is also good evidence for the existence and functional importance of intracellular Ca2+-45 

storage organelles in sperm (Darszon, et al. 2007, Publicover, et al. 2007). Previously we reviewed 46 

the identities and functions  of Ca2+ stores in sperm, focussing on the evidence for the existence of 47 



such stores, their components (pumps and channels) and their possible roles in the regulation of 48 

function in the mature sperm cell (Costello, et al. 2009). Since then considerable progress has been 49 

made in understanding the central role of Ca2+ signalling in the regulation of mammalian and non-50 

mammalian sperm function and the mechanisms by which sperm [Ca2+]i signals are generated. In 51 

particular successful application of whole cell patch clamp technique, in human as well as mouse 52 

sperm, has revealed the central importance of Ca2+ influx through CatSper, a sperm specific, Ca2+-53 

permeable channel in the membrane of the flagellar principal piece. Male mice null for CatSper are 54 

infertile (Ren, et al. 2001) and their sperm show defective motility (Carlson, et al. 2003). Here we 55 

review recent progress in understanding the diversity of mechanisms for the regulation of Ca2+ store 56 

activity and the evidence for their involvement in controlling sperm function.  57 

2. Ca2+ stores and their regulation  58 

The importance of Ca2+ stores in generating complex Ca2+ signals in somatic cells has long been 59 

recognized. Until relatively recently the endoplasmic reticulum Ca2+ store has been the major focus 60 

for research as this was the first organelle to show controllable mobilization of Ca2+ through second 61 

messengers acting upon intracellular Ca2+ channels, as well as being able to be refilled via Ca2+ 62 

pumps. Additionally, these Ca2+ signals could also be re-modelled through the regulation of these 63 

Ca2+ transporters to generate complex spatial and temporal Ca2+ transients (Berridge, et al. 2003).  It 64 

has now become clear that many other organelles such as mitochondria, endosomes, lysosomes and 65 

Golgi complexes also contribute to the generation and propagation of these complex Ca2+ signals 66 

within cells (Michelangeli, et al. 2005).  Furthermore, novel Ca2+ transporters have also been 67 

identified within these other organelles and several have recently been identified in sperm (Costello, 68 

et al. 2009).    69 

(i) Intracellular Ca2+ Channels 70 



The major intracellular Ca2+ channels that have been identified and appear to be almost ubiquitously 71 

distributed within mammalian cells, especially on the endoplasmic reticulum, include the inositol-72 

1,4,5-trisphosphate-(IP3)-sensitive Ca2+ channel (or IP3 receptor; IP3R) and the ryanodine receptor 73 

(RyR) (Michelangeli, et al. 2005) (fig 1a).  The IP3 receptor, as the name implies, is activated by the 74 

second messenger IP3 that is generated through the hydrolysis of phosphatidylinositol-4,5-75 

bisphosphate. This channel has a specific IP3 binding site that is located towards the N-terminus of 76 

the protein (Seo, et al. 2012) and also has a requirement for Ca2+ which acts as a co-agonist in order 77 

for the channel to open (Bezprozvanny, et al. 1991). The activation of RyR is likely to be through a 78 

mechanism involving Ca2+ induced Ca2+release (CICR) and by the action of the putative second 79 

messenger cyclic-adenosine diphospho-ribose (cADPR) (Ogunbayo, et al. 2011) (fig 1a). cADPR is 80 

made from nicotinamide-adenine-dinucleotide (NAD) by the action of an ADP-ribosyl cyclase enzyme 81 

such as CD38 (Cosker, et al. 2010), although other as yet unidentified enzymes may also be involved 82 

in catalysing this reaction (Guse 2014). It is as yet unclear whether, unlike the IP3R, cADPR binds 83 

directly to RyR or whether it binds to accessory proteins such as calmodulin or FK506-binding 84 

protein, that then interact with the RyR (Guse 2014).  85 

Another metabolite of NAD which is believed to have Ca2+ mobilizing ability is nicotinic acid adenine 86 

dinucleotide phosphate (NAADP) (Genazzani, et al. 1997). NAADP is made from NADP through the 87 

action of either CD38 acting as a base-exchanger, swapping the nicotinamide group for nicotinic acid 88 

or via an unidentified NADP-deaminase (Guse 2014).  NAADP is believed specifically to mobilize Ca2+ 89 

from acidic stores such as lysosomes (Churchill, et al. 2002, Menteyne, et al. 2006 ), which can then 90 

induce CICR at RyRs and IP3Rs in mammalian cells (Cancela et 1999) (fig 1a). Results initially 91 

presented by Calcraft and colleagues (Calcraft, et al. 2009), indicated that NAADP specifically 92 

activates Ca2+ specific ‘two-pore’ channels (TPC) within the acidic organelles, these channels being 93 

first described in plants (Peiter, et al. 2005). However, in kinetic studies there is a prominent lag 94 

between addition of NAADP and Ca2+ mobilization (Genazzani, et al. 1997). Combined with the 95 

observation that photo-affinity labelling with azido-NAADP (Lin-Moshier, et al. 2012) showed 96 



labelling of only low molecular weight proteins, not consistent with TPCs, this suggests that NAADP 97 

might function by binding to accessory proteins rather than directly to the channel.  More recently 98 

two studies (Cang, et al. 2013, Wang, et al. 2012) have raised considerable controversy as whether 99 

the NAADP-sensitive Ca2+ channel is a TPC. Both studies suggest that TPCs are in fact Na2+-specific 100 

channels with very low Ca2+ selectivity that are activated by phosphoinositide lipids and modulated 101 

by mTOR, but not by NAADP. More work is currently being undertaken to clarify this and a number 102 

of possible theories as to what role TPCs play in NAADP-induced Ca2+ mobilization are being explored 103 

(see Morgan and Galione (2014).  104 

Numerous kinases have been shown to modulate the activity of both the IP3Rs and RyRs, these 105 

include several ubiquitous ser/thr kinases such as PKA, PKG and CaMKII (Camors and Valdivia 2014, 106 

Yule, et al. 2010). Indeed some of these kinases such as PKA appear to have both stimulatory and 107 

inhibitory effects on the IP3R dependent upon isoform subtype and the presence of multiple kinase-108 

dependent phosphorylation sites on the same receptor (Dyer, et al. 2003). Less ubiquitous ser / thr 109 

kinases such as Akt and polo kinases as well as tyrosine kinases such as fyn kinase have also been 110 

shown to affect these channels (Camors and Valdivia 2014, Yule, et al. 2010). 111 

Both the RyRs and the IP3Rs are modulated by changes in their oxidation states caused by reactive 112 

oxygen species (ROS) and reactive nitrogen species (RNS) and this occurs mainly through 113 

modification of specific cysteine (cys) amino acid residues. Oxidation of these cys residues in RyRs  114 

occurs both by s-glutathionylation as well as s-nitrosylation by the second messenger nitric oxide 115 

(NO) (Csordas and Hajnoczky 2009) and promotes the activity of the channel by enhancing RyR 116 

subunit interactions and also by reducing the efficacy of inhibitory modulators (Hamilton and Reid 117 

2000).  In IP3Rs the effects of oxidative stress are complex: low levels of cys oxidation caused by low 118 

concentrations of thimerosal (a cys–modifying mercuric compound) and naturally generated ROS 119 

cause sensitization of this channel, while higher concentrations of thimerosal inhibit channel activity 120 



(Missiaen, et al. 1991, Sayers, et al. 1993). Currently, however, there is little evidence that NO can 121 

affect the activity of the IP3Rs.  122 

 (ii) Intracellular Ca2+ pumps 123 

The major transporter involved in refilling Ca2+ stores within the endoplasmic reticulum is the 124 

sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) (fig 1a) and these pumps occur abundantly 125 

in all somatic cells. Their role is to pump Ca2+ back into the storage organelles to help terminate Ca2+ 126 

signals (Michelangeli and East 2011, Michelangeli, et al. 2005).  There are 3 isoforms of this 127 

Ca2+ATPase, each encoded by a different gene and each isoform can exist in a variety of spliced 128 

variants that differ in size and regulatory properties (Michelangeli and East 2011). SERCA1 is mainly 129 

confined to skeletal muscle, while SERCA2 is widely distributed in most other tissues and organs and 130 

type 3 has a limited expression. Another related Ca2+ATPase that is also found ubiquitously within 131 

somatic cells is the secretory pathway Ca2+ ATPase (SPCA) which is localized to the Golgi apparatus 132 

(Wootton, et al. 2004). SPCA exists in 2 isoforms with the expression of type 1 being far more 133 

widespread than type 2, which appears to be mainly located within glandular tissues (Vanoevelen, et 134 

al. 2005). Recently there has been evidence to suggest the SPCA2 can interact with and regulate the 135 

plasma membrane located Orai Ca2+ channels that are implicated in store-operated Ca2+ entry (Feng, 136 

et al. 2010), which may indicate a dual function for this Ca2+ ATPase in cells that express it.   137 

There is currently some debate as to which type of intracellular Ca2+ ATPase is expressed in mature 138 

sperm. We have highlighted that SPCA1 is present in human sperm, where it appears to be mainly 139 

localized to the neck region of the cell where the redundant nuclear envelope (RNE) and calreticulin-140 

containing vesicles are situated (Harper, et al. 2005). This study also found no evidence for 141 

expression of SERCA in human sperm as no cross-reactivity was observed with a pan-isoform SERCA 142 

antibody and no effects on [Ca2+]i were observed with specific but saturating concentrations of the 143 

SERCA-inhibitor thapsigargin. However, a more recent study (Lawson, et al. 2007) detected SERCA2, 144 

mainly localized to the acrosome and mid-piece, using a SERCA2-specific antibody.   145 



Unlike the intracellular Ca2+ channels, there is no strong evidence to suggest that either SERCA or 146 

SPCA can be directly phosphorylated and regulated by protein kinases, although some Ca2+ ATPase 147 

modulatory proteins like phospholamban (that is found almost exclusively in heart) are regulated 148 

through phosphorylation by PKA, PKG and CamKII (Colyer 1998).  There is considerable evidence 149 

indicating that oxidative stress can modulate SERCA activity (although no studies have yet been 150 

undertaken on SPCA). Again a number of critical cys residues such as cys674 can be s-151 

glutathionylated to cause an increase in SERCA pump activity (Adachi, et al. 2004). Modifications of 152 

other cys residues on the Ca2+ ATPase, however, can have inhibitory effects (Csordas and Hajnoczky 153 

2009, Sayers, et al. 1993, Sharov, et al. 2006).   154 

 155 

3. Ca2+ stores, mechanisms for store mobilisation and store-operated Ca2+ channels in sperm  156 

During the later stages of their development spermatozoa shed much of their cytoplasm including 157 

intracellular organelles. Thus mammalian sperm contain no organised endoplasmic reticulum. 158 

However, studies on the expression of Ca2+ store components and on the generation [Ca2+]i signals 159 

suggest that the remaining intracellular organelles function as Ca2+-stores and play a significant role 160 

in the regulation of cellular function (Costello, et al. 2009). In particular, the acrosomal vesicle at the 161 

apex of the head and the collection of vesicular membranous structures that occur at the sperm 162 

neck and anterior midpiece (including the cytoplasmic droplet of human sperm) appear to be 163 

functionally important Ca2+-stores (fig 1b; shown in green). At both these locations IP3Rs have been 164 

detected in human and in bovine sperm by immuno-staining (Dragileva, et al. 1999, Ho and Suarez 165 

2001, 2003, Kuroda, et al. 1999, Naaby-Hansen, et al. 2001).  Ryanodine receptors (RyRs) have also 166 

been detected in human and rodent sperm (Lefievre, et al. 2007, Trevino, et al. 1998). Staining of 167 

human sperm with anti-RyR1, anti-RyR2, pan-RyR and BODIPY-FLX ryanodine is localised primarily to 168 

the neck region, though some acrosomal staining was also observed (Harper, et al. 2004, Lefievre, et 169 

al. 2007, Park, et al. 2011). In contrast, other authors (Ho and Suarez 2001) have reported no 170 

staining of bovine sperm with BODIPY-FLX ryanodine (see (Costello, et al. 2009) for further 171 



discussion).  Thus mobilisation of stored Ca2+ in mammalian sperm may occur in response to 172 

generation of IP3 by activity of phospholipase C and by Ca2+-induced Ca2+ release (CICR) at IP3Rs or 173 

RyRs. These processes can be sensitised by effects such as oxidative stress and S-nitrosylation (see 174 

section 2). For instance, exposure of human sperm to NO· at levels equivalent to those produced by 175 

explants of reproductive tract lining mobilises store Ca2+ and modifies flagellar activity (Lefievre, et 176 

al. 2007, Machado-Oliveira, et al. 2008). 177 

In addition to generation of IP3 in sperm, there is evidence that other Ca2+ mobilising messengers 178 

(NAADP and cADPR) are synthesised in sperm and/or produced in response to stimulation. Sea 179 

urchin sperm contain significant levels of both cADPR and NAADP, which may contribute to oocyte 180 

activation (Billington, et al. 2002, Chini, et al. 1997). Human sperm have been shown to contain 181 

cADPR at micromolar concentrations but NAADP was not detected (Billington, et al. 2006).  182 

Interestingly, this study also demonstrated synthesis of cADPR by human sperm but the ecto-183 

enzyme CD38 (an enzyme present on mammalian cells that synthesises both cADPR and NAADP; see 184 

section 2) could not be detected by western blotting.  In contrast, Park and colleagues (Park, et al. 185 

2011), reported detection of CD38 in human sperm after co-incubation with prostasomes (prostate-186 

derived membrane vesicles; see below). Furthermore, the presence of a novel NAADP synthase, 187 

which lacks the cyclase activity of CD38, has been described both in sea urchin (Vasudevan, et al. 188 

2008) and human sperm (Sánchez-Tusie et al, 2014). In sea urchin sperm this enzyme is strongly 189 

Ca2+-regulated and most active at acid pH whereas the human  enzyme shows only  weak Ca2+-190 

regulation and activity is maximal at pH 7 to 8 (Sanchez-Tusie, et al. 2014, Vasudevan, et al. 2008).  191 

Recent findings have supported the idea that NAADP is functional in human sperm. Sanchez-Tusie et 192 

al. (2014) investigated the effects of cell-permeant (AM-ester) derivatives of NAAPD and cADPR. No 193 

effects were observed with cADPR, consistent with previous pharmacological investigation by 194 

Billington et al. (2006), but NAADP caused elevation of [Ca2+]i both in cells incubated under standard 195 

conditions and also when [Ca2+]o was buffered to 100 nM, conditions under which  Ca2+ influx is 196 



negligible and [Ca2+]i signalling depends solely on  mobilisation of stored Ca2+. Staining of NAADP 197 

receptors using the fluorescent NAADP receptor ligand Ned-19 and identification of acidic organelles 198 

using lysotracker highlighted both an anterior store (potentially the acrosome) and a store at the 199 

sperm neck (fig 1b). Consistent with these findings, Arndt et al. (2014), studying acrosome reaction 200 

(see below), provided evidence for involvement in this process of NAADP and two-pore channels 201 

(TPCs), which have been proposed to be the NAADP receptor/Ca2+ channel of acidic Ca2+ storage 202 

organelles (Calcraft, et al. 2009) (Fig 1a; see section 2). 203 

(Park et al. (2011) investigated the incorporation into human sperm of proteins from prostasomes 204 

(prostate-derived vesicles which are normally added to sperm during ejaculation) and their effects 205 

on [Ca2+]i signalling. They concluded that CatSper channel proteins were present in the differentiated 206 

sperm, but other Ca2+ signalling ‘tools’ including RyRs and CD38 were added to the freshly-ejaculated  207 

sperm upon mixing with prostasomes, by fusion with the membrane of the midpiece.  They also 208 

examined the effects of stimulation with progesterone on [Ca2+]i and motility of sperm exposed to 209 

prostasomes and sperm that had been rapidly removed from semen to minimise mixing with 210 

prostasomes.  Their data suggest that the generation of sustained [Ca2+]i signals (such as the second 211 

component of the biphasic progesterone-induced [Ca2+]i signal)  and consequent effects on motility 212 

may depend, at least partly, upon generation of cADPR by prostasome-derived enzymes. 213 

Interestingly, CD38-null mice proved to be fertile, but analysis showed that 20% of normal ADPR 214 

cyclase activity remained in prostasomes from these animals, indicating the presence of a non-CD38 215 

ADPR-cyclase, potentially that described by Sánchez-Tusie et al (2014). Thus both NAADP and cADPR 216 

are potentially synthesised by sperm and involved in regulation of sperm Ca2+ store activity but their 217 

roles are not yet clear.  218 

In somatic cells mobilisation of stored Ca2+ induces secondary Ca2+ influx through channels at the cell 219 

membrane (store-operated channels; SOCs) by the process of capacitative Ca2+ entry (CCE) (fig 1a). 220 

CCE both prolongs Ca2+ signals that are induced by store mobilisation and provides Ca2+ for re-221 



charging of the storage organelles. Recently great progress has been made in elucidating the key 222 

players and mechanisms in this process. STIM (stromal interaction molecule) has been identified as 223 

the sensor molecule present in the membrane of the Ca2+ store. The intraluminal part of STIM 224 

includes a Ca2+-binding EF hand that detects depletion of stored Ca2+. STIM then redistributes, 225 

moving to a position adjacent to the plasma membrane where it activates channel proteins (Orai 226 

and possibly members of the TRPC [transient receptor potential canonical] family; Cahalan 2009). 227 

[Ca2+]i signals in human and other mammalian sperm induced by agonists and by treatments 228 

designed to mobilise stored-Ca2+ show characteristics consistent with the occurrence of CCE 229 

(Blackmore 1993, Dragileva, et al. 1999, Lefievre, et al. 2012, O'Toole, et al. 2000, Park, et al. 2011). 230 

STIM1, Orai and TRPC proteins have been detected in human sperm (Castellano, et al. 2003, 231 

Darszon, et al. 2012, Lefievre, et al. 2012), STIM1 being localised primarily to the neck 232 

region/midpiece and the acrosome where Ca2+ stores are present (Lefievre, et al. 2012). To date the 233 

application of whole-cell patch clamp has not provided evidence for the occurrence of CCE in human 234 

sperm (Lefievre, et al. 2012) so these findings must be interpreted cautiously, but [Ca2+]i signals 235 

generated by mobilisation of Ca2+ stores in sperm may be amplified by activation of CCE. Induction of 236 

CCE in somatic cells can have a latency of 10s of seconds due to the need for STIM to migrate to the 237 

peripheral portions of the endoplasmic reticulum where it can interact with SOC proteins (Luik, et al. 238 

2006, Wu, et al. 2006), but in sperm the storage organelles are close to the plasma membrane and 239 

STIM proteins are localised here, such that CCE could be near ‘instantaneous’. Pre-treatment of 240 

human sperm with low concentrations of 2-aminoethoxydiphenyl borate (2-APB), which potentiates 241 

CCE by promoting the interaction of STIM with SOCs (Navarro-Borelly, et al. 2008, Wang, et al. 2009, 242 

Yamashita, et al. 2011) significantly enhances the amplitude of the progesterone-induced Ca2+ 243 

transient at the sperm neck (where secondary release of stored Ca2+ may occur; fig 1b; see section 6) 244 

but does not affect the response in the flagellum, where progesterone activates CatSper channels 245 

(fig 1b), or the kinetics of the signal at either location (Lefievre, et al. 2012). Conversely, when sperm 246 

were pre-treated with a cell-penetrating peptide that mimics part of the key SOAR region of STIM1 247 



(potentially preventing auto-inhibitory folding of STIM upon store-refilling) there was a marked 248 

prolongation of the progesterone-induced [Ca2+]i transient in a subset of cells (Morris, et al. 2015). 249 

 250 

  251 

4. Mobilisation of sperm Ca2+ stores by agonists 252 

In the majority of somatic cells mobilisation of stored Ca2+ is induced by agonist-induced synthesis of 253 

Ca2+ mobilising intracellular messengers. Thus agonist-induced synthesis of inositol trisphosphate, 254 

cADPR and NAADP can lead to rapid release of stored Ca2+ and generation of local, global and 255 

complex spatio-temporal signals (fig 1a). Is there evidence that such processes occur and are 256 

functionally significant in responses to agonist stimulation of sperm?  257 

 The best-characterised agonist-induced [Ca2+]i signals in sperm are responses to solubilised zona 258 

pellucida/zona proteins in mouse cells and progesterone in human. Application of patch clamp has 259 

clearly shown that the primary action of progesterone in human sperm is to activate CatSper 260 

channels, leading to Ca2+-influx (Lishko, et al. 2011, Strunker, et al. 2011). Strunker and colleagues 261 

(Strunker, et al. 2011) investigated the [Ca2+]o dependence of progesterone-induced [Ca2+]i signals in 262 

rapid-mixing experiments on human sperm and reported that buffering of [Ca2+]o to ≤100 nM 263 

abolished the response (though see Espino et al.( 2009)), suggesting that any mobilisation of stored 264 

Ca2+ is a secondary response. Synthesis of IP3 is reported to occur downstream of progesterone-265 

induced Ca2+ influx (Thomas and Meizel 1989), an important observation that should be pursued.  266 

Stimulation of mouse sperm with zona proteins induces acrosome reaction, which requires elevation 267 

of [Ca2+]i in the sperm head (Florman, et al. 2008) and is dependent on mobilisation of Ca2+ from the 268 

acrosomal store ((De Blas, et al. 2002); see below). The nature of the Ca2+ influx following 269 

stimulation is not clear and several channels may be involved (Cohen, et al. 2014, Florman, et al. 270 

2008, Xia and Ren 2009), but Ca2+ signals are sensitive to inhibition of G-protein signalling (using 271 

pertussis toxin) and inhibition of PLC (Florman, et al. 2008, Ren and Xia 2010). Furthermore, in sperm 272 

from mice null for PLC4 (in which males fertility is ‘severely impaired’) the [Ca2+]i response is 273 



reduced and zona-induced AR does not occur (Fukami, et al. 2001, Fukami, et al. 2003). Thus 274 

conventional IP3-induced mobilisation of stored Ca2+ is apparently central to this essential aspect of 275 

mammalian sperm physiology.  276 

Evidence for the existence of other store-mobilising agonists is largely preliminary, but there are a 277 

number of candidates, of which the best-studied is vitamin D (Blomberg Jensen 2014). Human sperm 278 

have been shown to express vitamin D receptor (VDR) (Aquila, et al. 2009, Blomberg Jensen, et al. 279 

2011, Blomberg Jensen, et al. 2010), the enzymes CYP2R1 and CYP27B (which produce the active 280 

compound (1,25(OH)2D3) cholcalciferol) and the inactivating enzyme CYP24A1 (Blomberg Jensen, et 281 

al. 2011, Blomberg Jensen, et al. 2010).  All are expressed in the neck region of the sperm and 282 

staining of cells for VDR and CYP24A1 shows a strong association. In sub-fertile patients the 283 

proportion of cells expressing CYP24A1 varies greatly and is significantly correlated with semen 284 

quality (sperm count, concentration, morphology and motility) (Blomberg Jensen, et al. 2011, 285 

Blomberg Jensen, et al. 2012). Stimulation of human sperm with 1,25(OH)2D3 (100 pM-1 uM) 286 

induced a [Ca2+]i response, including a transient and plateau, that was blocked by pre-treatment with 287 

the non-genomic VDR antagonist 1b,25(OH)2D3 but was insensitive to blockade of the nuclear VDR 288 

antagonist ZK159222 (Blomberg Jensen, et al. 2011). This effect was greatly reduced by pre-289 

treatment with the phospholipase C inhibitor U73122 (2 M) but was inhibited by incubation in 290 

EGTA-buffered medium for up to 20 min prior to stimulation. Both motility and AR were significantly 291 

increased upon stimulation with 1,25(OH)2D3 (Blomberg Jensen, et al. 2011).   292 

Kisspeptin, a peptide agonist of the G-protein coupled receptor GPR54/KISS1R has also been shown 293 

to cause sustained, dose-dependent elevation of [Ca2+]i in human and in mouse sperm (Hsu, et al. 294 

2014, Pinto, et al. 2012). In neurons binding of kisspeptin to its receptor activates PLC and results in 295 

generation of IP3 and diacyglycerol, leading to mobilisation of stored Ca2+ and also depolarisation 296 

(Beltramo, et al. 2014, Liu, et al. 2008, Pielecka-Fortuna, et al. 2008). In human sperm the effect of 297 

kisspeptin on [Ca2+]i did not occlude the response to stimulation with the CatSper agonist 298 



progesterone and was not reduced when applied in the presence of progesterone (Pinto, et al. 299 

2012). Both KISS1R and kisspeptin itself were detected in the head of human sperm, suggesting that 300 

an autocrine action of the peptide may occur. Motility parameters of kisspeptin-treated cells were 301 

significantly altered, including an increase in lateral movement of the head and a decrease in 302 

linearity of the sperm path, characteristics of hyperactivated sperm (Pinto, et al. 2012).  Ghrelin, 303 

another peptide hormone which also acts through mobilisation of stored Ca2+ (Camina, et al. 2003), 304 

has also been detected in human sperm (Moretti, et al. 2014). Micromolar concentrations of ghrelin 305 

have been shown to increase [Ca2+]i and motility in rat sperm  (Lukaszyk, et al. 2012) but expression 306 

of ghrelin receptors or effect of ghrelin on human sperm [Ca2+]i have not been investigated.  307 

5. Functional significance of Ca2+-stores  308 

The acrosome 309 

Acrosome reaction (AR) is the fusion between the outer acrosomal membrane and the overlying 310 

plasma membrane. Fusion occurs at multiple points, resulting in vesiculation and loss of the fused 311 

outer acrosomal membrane/plasmalemma so that the acrosomal content is released and the inner 312 

acrosomal membrane becomes the new cell surface.  Membrane fusion proteins from the SNARE 313 

family are present in the acrosomal region and may be integrated into microdomains that facilitate 314 

Ca2+-regulated membrane fusion in a manner that has been compared with events at presynaptic 315 

terminals (De Blas, et al. 2005, Mayorga, et al. 2007, Zitranski, et al. 2010). Zona pellucida proteins 316 

interact with sperm surface receptors to activate a signalling cascade leading to AR (Florman, et al. 317 

2008) and release of acrosomal content at the surface of the zona may, in combination with 318 

hyperactivated motility, facilitate zona penetration. However, observation of mouse IVF using sperm 319 

with GFP-labelled acrosomes showed that, in addition to cells that undergo AR at the surface of the 320 

zona, sperm which arrive having already lost their acrosome (probably within the cumulus) may go 321 

on to penetrate the zona and fertilise (Jin, et al. 2011). Physiological inducers of AR that have been 322 

studied (primarily mouse ZP3 and progesterone) induce Ca2+ influx across the plasma membrane and 323 

a sustained rise in [Ca2+]i. O'Toole, et al (2000) provided pharmacological evidence that ZP3-induced 324 



AR in mouse sperm involved activation of store operated Ca2+ influx downstream of Ca2+ store 325 

mobilisation and De Blas, et al (2002) showed that in streptolysin-permeabilised human sperm, 326 

mobilisation of the acrosomal Ca2+ store was a requirement for acrosome reaction even when it was 327 

‘directly’ induced by introduction of Rab3A into the cytoplasm. Further studies using this 328 

permeabilised sperm model have provided information about the mechanisms by which fusion of 329 

the plasma and outer acrosomal membranes is regulated, resulting in a detailed model in which 330 

mobilisation of the acrosomal store is a central and necessary event (Ruete, et al. 2014). Stimulation 331 

of PLC, leading to generation of IP3 and activation of IP3Rs in the outer acrosomal membrane may be 332 

key to this process (Fukami, et al. 2001, Fukami, et al. 2003), but there is also evidence that the 333 

acrosomal membrane contains the NAADP-sensitive, Ca2+-permeable two-pore channels (Calcraft, et 334 

al. 2009) and that NAADP mobilises acrosomal Ca2+ in mouse sperm (Arndt, et al. 2014). 335 

Interpretation of this finding is complex since the regulation and Ca2+-permeability of TPCs have 336 

recently been questioned (Cang, et al. 2013, Wang, et al. 2012) (see section 2).  337 

 338 

The redundant nuclear envelope and calreticulin-containing vesicles 339 

A second area where Ca2+ storage organelles have been identified in mammalian sperm is at the 340 

sperm neck and midpiece (fig 1b). Mitochondria have mechanisms for accumulation and release of 341 

Ca2+ (Drago, et al. 2011, Pizzo, et al. 2012) and therefore may contribute to Ca2+ buffering and 342 

signalling in this part of the sperm. Inhibition of mitochondrial function in sea urchin sperm, using 343 

respiratory inhibitors or uncouplers, causes a rise in [Ca2+]i and leads to activation of Ca2+ influx that 344 

has characteristics consistent with store-operated channels (Ardon, et al. 2009). Treatment with 345 

mitochondrial uncouplers (2,4 dinitrophenol [2,4 DNP], carbonyl cyanide-4-346 

(trifluoromethoxy)phenylhydrazone [FCCP]) also increases [Ca2+]i in human sperm (Morris and 347 

Publicover, unpublished). Mitochondria may thus contribute to shaping of Ca2+ signals in sperm. 348 

However, the primary stimulus-regulated Ca2+ storage in this part of the sperm is in the redundant 349 

nuclear envelope and/or a second, apparently separate group of calreticulin-containing vesicular 350 



structures, both of which are sited at the sperm neck region and cytoplasmic droplet (Ho and Suarez 351 

2001, 2003, Naaby-Hansen, et al. 2001). Mobilisation of Ca2+ stored in these compartments regulates 352 

flagellar activity and treatment of mouse sperm with thimerosal stimulates hyperactivated motility 353 

by activating Ca2+ release from these organelles (Ho and Suarez 2001, Marquez, et al. 2007). This 354 

effect occurs in the absence of extracellular Ca2+ and can be induced in sperm that are null for 355 

CatSper (Marquez, et al. 2007).  In mouse sperm the direction of the major, high-amplitude flagellar 356 

bend of hyperactivated sperm can be clearly characterised by reference to the hooked acrosomal 357 

cap (pro-hook or anti-hook). Sperm that became hyperactivated during capacitation in vitro (due to 358 

activation of CatSper) show pro-hook bends whereas those activated by store mobilisation (using 359 

thimerosal) show anti-hook bends (Chang and Suarez 2011). When sperm were observed interacting 360 

with the lining of isolated mouse oviducts, most hyperactivated cells showed anti-hook bending of 361 

the type which is elicited by store mobilisation (Chang and Suarez 2012).   362 

In human sperm a similar effect of store mobilisation is seen. Thimerosal greatly increases the 363 

proportion of cells showing hyperactivated motility and 4-aminopyridine, which both alkalinises the 364 

cytoplasm (and will thus activate CatSper) and mobilises stored Ca2+, is similarly potent (Alasmari, et 365 

al. 2013a, Alasmari, et al. 2013b). In contrast, manipulations that should activate CatSper (elevation 366 

of pHi, stimulation with progesterone or prostaglandin E1) elevate [Ca2+]i but have only minor 367 

stimulatory effects on the proportion of hyperactivated cells. Instead, these manipulations 368 

significantly increase penetration into viscous media (Alasmari, et al. 2013a, Alasmari, et al. 2013b, 369 

Luo, et al. 2014).  370 

 371 

6. Model for interaction of CatSper channels and Ca2+-stores  372 

Patch clamp recordings have provided no evidence that conventional voltage-operated Ca2+ channels 373 

contribute to Ca2+ influx in mature mammalian sperm. In mouse sperm null for CatSper1 and the K+ 374 

channel Slo3 only a small leak current was recorded even at high intracellular pH and strong 375 



depolarisation (Zeng, et al. 2013). CatSper channels in mouse and human sperm are pH- and 376 

(weakly) voltage-sensitive but in human sperm the channel is also ligand-sensitive. Established Ca2+-377 

mobilising agonists of human sperm such as progesterone and prostaglandin E1 have been shown to 378 

activate CatSper but also a range of other small molecules including environmental pollutants such 379 

as  1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane, 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane 380 

(4,4’-DDT), p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) and 4-methylbenzylidene camphor (4-381 

MBC) are potent agonists (Schiffer, et al. 2014, Tavares, et al. 2013). In addition, agents used to 382 

demonstrate cyclic-nucleotide-activated Ca2+ influx (such as 8-Br-AMP) have been shown directly to 383 

activate CatSper by binding at the extracellular surface (Brenker, et al. 2012). Thus it is possible that 384 

a significant proportion of the pharmacological data that apparently support the existence of 385 

multiple Ca2+ influx pathways in sperm are misleading and in fact reflect actions of the drugs on Ca2+ 386 

flux through CatSper channels (Brenker, et al. 2012). Furthermore, experiments using CatSper null 387 

mice provide strong evidence that [Ca2+]i elevation induced by solubilised ZP is dependent on Ca2+ 388 

influx through the CatSper channel in the flagellum, which then propagates to the head (Xia and Ren 389 

2009) (though see (Cohen, et al. 2014)). Interestingly, the ability of solubilised zona to induce 390 

acrosome reaction was not diminished in CatSper-null sperm. These findings not only suggest that 391 

CatSper is the primary Ca2+ influx pathway in mammalian sperm, but also that in human sperm it 392 

may act as a Ca2+-signalling ‘hub’ or ‘node’, such that the effects of diverse agonists are 393 

summated/integrated in the rate of Ca2+ influx into the flagellum (Brenker, et al. 2012).  This is an 394 

elegant and simple model for which there is already a significant body of data, but in its basic form it 395 

does not address the question of how a sperm can generate and use diverse [Ca2+]i signals to control 396 

diverse Ca2+-sensitive functions. 397 

Mouse sperm null for CatSper are unable to hyperactivate (Carlson, et al. 2003) and evidence from 398 

clinical cases suggests that CatSper is also required for normal levels of motility in human sperm 399 

(Avenarius, et al. 2009, Smith, et al. 2013). Why then, is manipulation of Ca2+ stores more effective in 400 

inducing hyperactivated motility than treatments targeted to CatSper (Alasmari, et al. 2013b)? We 401 



have proposed that CatSper activation acts as a trigger and consequent elevation of flagellar [Ca2+]i 402 

stimulates secondary release of stored Ca2+ at the sperm neck, either by stimulating synthesis of IP3 403 

or by CICR, leading to hyperactivation  (Alasmari, et al. 2013b).  Mathematical modelling of the Ca2+ 404 

signals induced by CatSper activation in mouse sperm suggests that forward diffusion of Ca2+ from 405 

the flagellum cannot explain the [Ca2+]i that occurs at the sperm head upon activation of CatSper and 406 

that such a secondary Ca2+ release at the neck region occurs (Li, et al. 2014, Olson, et al. 2011, Olson, 407 

et al. 2010). Recently we have investigated the occurrence of such secondary responses in human 408 

sperm by uncaging Ca2+ in the principal piece of the flagellum. Uncaging induces a clear [Ca2+]i 409 

transient in the flagellum that decays within 5-10 s. At the neck region of the sperm the transient is 410 

truncated and rises more slowly, consistent with diffusion of Ca2+ from the uncaged pool, but in a 411 

small proportion of cells (≈10%) we have observed a late [Ca2+]i response at the neck region, often 412 

including multiple peaks (fig 2).  The low incidence of this secondary Ca2+-mobilisation is consistent 413 

with our observation that, though direct release of stored Ca2+ can induce hyperactivated motility  in 414 

the majority of human sperm, only a small proportion of cells hyperactivate upon activation of 415 

CatSper (Alasmari, et al. 2013a, Alasmari, et al. 2013b).  416 

Ca2+-store-mediated [Ca2+]i oscillations occur more readily in sperm incubated for a prolonged period 417 

(>24 h) under capacitating conditions (Kirkman-Brown, et al. 2004). Capacitation involves generation 418 

of reactive oxygen and reactive nitrogen species (Aitken and Nixon 2013, Herrero, et al. 1999, 2001) 419 

and we have observed that store mobilisation is sensitised and induced by low concentrations of NO· 420 

donors, through a mechanism that involves protein S-nitrosylation (Machado-Oliveira, et al. 2008). 421 

RyRs were detected in the human sperm nitrosoproteome (Lefievre, et al. 2007) and it is well-422 

established that IP3Rs and RyRs are sensitised by oxidative stress (Bansaghi, et al. 2014, Bootman, et 423 

al. 1992, Meissner 2004, Sayers, et al. 1993, Stoyanovsky, et al. 1997) (see section2).  We propose 424 

that CICR from the sperm neck Ca2+-store is regulated during capacitation, perhaps through the 425 

effects of oxidative stress on Ca2+ release channels (Alasmari, et al. 2013b) (fig 3). 426 



7. Final remarks 427 

The central role of [Ca2+]i signalling in the physiology of mammalian sperm and the pivotal 428 

importance of CatSper in this process are well established - mice null for CatSper are infertile (Ren, 429 

et al. 2001) and in men CatSper lesions are associated with impaired sperm function (Avenarius, et 430 

al. 2009, Avidan, et al. 2003, Smith, et al. 2013, Zhang, et al. 2009) . The available evidence suggests 431 

that Ca2+-stores also play important roles in both acrosome reaction and the regulation of motility. 432 

Future studies should address the mechanisms by which store mobilisation is achieved (both by CICR 433 

and by direct activation by agonist-induced generation of Ca2+-mobilising 2nd messengers) and 434 

regulated, particularly the significance of capacitation in Ca2+-store filling and in sensitising Ca2+ 435 

release mechanisms. Also, similarly to the important species differences in expression and function 436 

of sperm ion channels between human and mouse sperm (Brenker, et al. 2014, Miller, et al. 2014), 437 

there may also be differences in store-regulation and/or function between species. An intriguing 438 

possibility is that, at least in human sperm, it may prove possible to bypass the effects on motility of 439 

lesions in the expression, function or regulation of CatSper channels by pharmacological activation of 440 

store Ca2+ release.   441 
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Figure legends 801 

Fig.1 a: Simplified diagrammatic summary of [Ca2+]i signalling toolkit in a somatic cell. Ion channels 802 

are shown as rectangles with arrow indicating normal direction of Ca2+ flow (yellow=voltage gated; 803 

green=ligand gated; purple=store-operated; light blue=IP3 receptor; dark blue=ryanodine receptor; 804 

red=NAADP-gated. Pumps are shown as circles with arrows indicating normal direction of Ca2+ 805 

movement (red=PMCA’; blue=Na+-Ca2+ exchanger; green=SERCA; blue=SPCA). Activation of IP3 806 

receptors by membrane receptor activation and phosphoplipase C is shown in light blue. Generation 807 

of cADPR and NAADP by CD38 and possibly other enzymes (leading to mobilisation of Ca2+ from 808 

intracellular stores) is shown by yellow boxes. b: Structure of human sperm showing positions of 809 

CatSper channels (yellow shading around anterior flagellum) and Ca2+ stores in the acrosome and at 810 

the sperm (neck redundant nuclear envelope and calreticulin-containing vesicles) (shown in green).  811 

 Fig. 2. Ca2+ responses evoked in human sperm by uncaging of Ca2+ in the flagellum.  Cells were 812 

labelled with fluo-4 and loaded with ‘caged’ Ca2+ (NP-EGTA), then stimulated by an uncaging flash 813 

(360 nm laser) at the central flagellum (shown by arrow) whilst collecting images at 33 Hz. Changes 814 

in fluorescence, assessed at each of the positions shown by coloured circles in panel ‘a’, are plotted 815 

(normalised to minimum and maximum) in panel ‘b’ using the same colour code. Green=neck; 816 

yellow-midpiece; red=proximal flagellum; light blue=mid-distal flagellum; dark blue=distal flagellum. 817 

Fig. 3. Model for triggering/regulation of CatSper-activated hyperactivation. CatSper channels in the 818 

flagellum (yellow box; shown by yellow shading on sperm flagellum) are activated by diverse stimuli 819 

including intracellular pH (pHi), membrane potential (Em), progesterone, prostaglandins and other 820 

organic molecules. Ca2+ from the flagellum diffuses forward, raising [Ca2+]i at the sperm neck and can 821 

mobilise stored Ca2+ by Ca2+-induced Ca2+ release (CICR).  Susceptibility of the store to CICR is 822 

potentially regulated/sensitised by processes occurring during capacitation including cAMP 823 

signalling, oxidative stress, S-nitrosylation as well as Ca2+ store filling and effects of agonists on Ca2+-824 

store release channels. 825 
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