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Abstract 

A reagentless pH sensor based upon disposable and economical graphite screen-printed 

electrodes (GSPEs) is demonstrated for the first time.  The voltammetric pH sensor utilises 

GSPEs which are chemically pre-treated to form surface immobilised oxygenated species that 

when their redox behaviour is monitored, give a Nernstian response over a large pH range (1-

13).  An excellent experimental correlation is observed between the voltammetric potential 

and pH over the entire pH range of 1-13, such a response is not usually expected but rather 

deviation from linearity is encountered at alkaline pH values; absence of this has previously 

been attributed to a change in pKa value of surface immobilised groups. This non-deviation, 

which is observed here in the case of our facile produced reagentless pH sensor and also 

reported in the literature for pH sensitive compounds immobilized upon carbon 

electrodes/surfaces,where a linear response is observed over the entire pH range, is explained 

alternatively for the first time. The performance of the GSPE pH sensor is directly compared 

with a glass pH probe and applied to the measurement of pH in real samples where an 

excellent correlation between the two protocols is observed validating the proposed GSPE pH 

sensor. 

 

Keywords:  pH sensor; graphite screen-printed electrodes; reagentless; sensor; 

electrochemistry 
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Introduction 

 

The accurate measurement of pH is crucial to a diverse array of scientific fields,1, 2 where 

for example, the slightest fluctuation can potentially result in substantial changes to the kinetics 

of a reaction.3, 4 From the on-line monitoring of proton ions in extreme conditions such as those 

postured by a nuclear reactor to waste water treatment plants and the observing of blood pH by 

clinicians,1, 2 the determination of pH is vital.  

Typical approaches for the measurement of pH are based upon electrochemical methods 

but face issues that need to be overcome. The most commonly used technique, potentiometric 

glass electrodes, have a limited shelf life due to the degradation of the glass membrane and the 

fragility that is associated with glass. In addition, the glass membrane pH electrodes have 

significant inaccuracy at high pH values,5 a so-called “alkali error” and regular calibration of 

the pH sensor is necessary as a pre-treatment; consequently they have little potential of the 

development into a portable hand-held device or be used easily in-the-field.2, 5  

A different approach for the pH measurement of a solution is based again on the 

application of electrochemical techniques, however using voltammetric techniques.3, 4, 6-8 In 

this case, a pH dependent mediator is selected 9-12 and its electrochemical activity is monitored 

(reduction or oxidation). A popular choice is quinone moieties which have been utilised 

previously in the literature: a carbon-epoxy electrode with pH sensitive species anthraquinone 

and phenanthrenequinone 11 and the modification of a glassy carbon electrode with an 

anthraquinone–ferrocene film have been reported.13 In such instances, the peak potential (Ep) 

of the redox peak is dependent on the pH of the solution  in which the mediator is present (as 

per the Nernst equation), and whilst using potentially cheaper electrodes and no further 

specialist equipment (such as a pH meter) it could prove to be a cost-effect approach to pH 

sensing.  Using a voltammetric method requires quantification of pH via the Nernst equation14 

(eqn. 1) and the measured potential (Ep) as given by: 

 

 𝐸𝑝 = 𝐸𝑓 𝑂𝑥/𝑅𝑒𝑑
0 − 2.303 

𝑅𝑇

𝑛𝐹
log

[𝑅𝑒𝑑]

[𝑂𝑥]
 (1) 

 

where n is the number of electrons involved in the reaction, R the ideal gas constant, T is the 

temperature, F is the Faraday constant and 𝐸𝑓
0 is the formal potential of the redox process. 
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This paper reports the preparation of a voltammetric pH sensor based upon cost-effective 

and disposable screen-printed graphite electrodes (GSPEs) which are chemically pre-treated to 

form surface oxygenated species that, when their redox behaviour is observed, give rise to a 

Nernstian response relative to the pH of the solution and as a result, a quantifiable signal to 

determine pH. GSPEs are of a benefit because of their robustness, especially when compared 

to the previously mentioned glass membrane electrodes, low purchase cost, rapid utilisation 

and simplicity.15-18 

Previous literature reports the utilisation of carbon electrodes (glassy carbon [GC], edge 

plane pyrolytic graphite [EPPG]) with extensive mechanical polishing (20 minutes prior to 

each experiment) to generate oxygenated (quinone) species which monitor pH.3, 4  It is 

theorised that a near perfect calibration plot ranging from pH 1.0 – pH 13.0 can be obtained 

with a Nernstian response corresponding to a 2 proton/2 electron system, which would relate 

to the redox processes of the quinone groups upon the electrode surface following extensive 

polishing. However, it is noticed that surface characterisation to confirm such inferences of 

surface immobilised groups are clearly lacking. Typically, a solution-based mediator 

undergoing such a reaction will affect the slope of a potential vs pH plot with a change in 

linearity occurring at the mediator’s pKa. For example, quinone moieties in solution have a 

reported pKa value of ca. 9.2 which would give rise to two linear regions either side of this 

value over the entire pH range; however Lu et al., along with other groups, observed no change 

in linearity when the quinone moiety was bound to the surface of  GC and EPPG electrodes.3, 

4, 19, 20  

In this paper a novel reagentless electrochemical approach for the sensing of pH based 

using disposable GSPEs that are chemically pre-treated to form oxygenated species on the 

electrode surface for the accurate sensing of pH utilising square-wave voltammetry (SWV) is 

reported for the first time. Such work allows an economical and disposable sensor to be realised 

that does not need surface modification with quinone-type compounds nor extensive surface 

pre-treatment via mechanical polishing;3, 4 since the electrodes are chemically pre-treated 

multiple electrodes can be readily prepared at once. The electrochemical response of the GSPEs 

are explored at different pHs demonstrating an exceptional linear response from pH 1.76 to 

13.12 with a gradient predicting a theoretical shift in reduction potentials of 57 mV per pH unit 

which is in excellent agreement with the value for a Nernstian response of a 1:1 proton:electron 
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process (59 mV per pH unit, T= 298 K). The protocol is also validated against the traditional 

glass probe in the measurement of pH in “real” unbuffered samples. 

Experimental 

All chemicals used were of analytical grade and were used as received without any 

further purification from Sigma-Aldrich (Gillingham, UK). All solutions were prepared with 

deionised water of resistively no-less than 18.2 Ω cm. All solutions (unless stated otherwise) 

were vigorously degassed with nitrogen to remove oxygen prior to analysis.  

Voltammetric measurements were carried out using a µ-AutolabII (Eco Chemie, The 

Netherlands) potentiostat/galvanostat and controlled by Autolab GPES software version 4.9. 

Experiments were performed using screen-printed graphite macroelectrodes (denoted as 

GSPEs herein) which have a 3 mm diameter  working electrode were fabricated in-house with 

appropriate stencil designs using a DEK 248 screen printing machine (DEK, Weymouth, UK). 

For the fabrication of the screen-printed sensors, firstly, a carbon-graphite ink formulation 

(Product Code: C2000802P2; Gwent Electronic Materials Ltd, UK) used previously was 

screen-printed onto a polyester (Autostat, 250 m thickness) flexible film (denoted throughout 

as standard-SPE). This layer was cured in a fan oven at 60 degrees for 30 minutes. Next a 

Ag/AgCl reference electrode was included by screen printing Ag/AgCl paste (Product Code: 

C2040308D2; Gwent Electronic Materials Ltd, UK) onto the polyester substrates. Finally, a 

dielectric paste (Product Code: D2070423D5; Gwent Electronic Materials Ltd, UK) was then 

printed onto the polyester substrate to cover the connections. After curing at 60 degrees for 30 

minutes the screen-printed electrodes are ready to be used. The reproducibility and repeatability 

of the batch fabricated screen-printed sensors were found to correspond to a % relative standard 

deviation (%RSD) no greater than 0.82% (N = 20) and 0.76% (N = 3) for  The heterogeneous 

rate constant, ko for the Ru(NH3)
2+/3+ redox probe in 1M KCl was found to be equal to 1.08×10-

3 cm s-1. Because of the removal of the Ag/AgCl reference in forming the surface immobilised 

oxygenated species, via the proposed chemical pretreatment (see later), an external saturated 

calomel electrode (SCE) was used as the reference and a platinum counter was also utilised in 

a 3 electrode set-up.  Independent pH measurements were performed using a SevenCompact 

pH meter (Mettler Toledo) which was calibrated prior to use with pH standard. The various 

tested solutions ranged from pH 1.76 – 13.12 and were composed of HCl (pH 1.76), phosphate 

buffer solution (PBS; pH 2.48, 3.51, 4.29, 6.47, 7.32, 8.26, 9.27, 10.16, 11.20, 12.10, 13.12). 

Real pH samples consisted of a commonly available antacid (Rennies) and malt vinegar: The 
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antacid (1.3 g) was dissolved in water before analysis and the malt vinegar was analysed 

without any pre-treatment or dilution. 

The chemical formation of surface groups involved immersion of GSPEs (with Ag/AgCl 

reference removed) in to a percarbonate solution ([10% w/v] Na2CO3/H2O2) and was left 

overnight (18 h). Note: electrodes were also left for a longer duration (45 h); however no 

significant difference in electrochemical response was observed (see Figure S1).  This 

procedure is optimal, meaning that all electrodes pretreated via this approach are successfully 

prepared. 

X-ray photoelectron spectroscopy (XPS) was used to analyse the electrode surface and 

its hypothesised oxygenated groups. All spectra were collected using a bespoke ultra-high 

vacuum system fitted with a Specs GmbH Focus 500 monochromated Al Kα X-ray source, 

Specs GmbH PHOIBOS 150 mm mean radius hemispherical analyser with 9-channeltron 

detection, and a Specs GmbH FG20 charge neutralising electron gun .  Survey spectra were 

acquired over the binding energy range 1100 – 0 eV using a pass energy of 50 eV and high 

resolution scans were made over the C 1s and O 1s lines using a pass energy of 20 eV.  The 

analysis area was approximately 1.4 mm in diameter.  Under these conditions the full width at 

half maximum of the Ag 3d5/2 reference line is ~0.7 eV.  The energy scale of the instrument is 

calibrated according to ISO standard 15472, and the intensity scale is calibrated using an in-

house method traceable to the UK National Physical Laboratory.  Data were quantified using 

Scofield photoelectric cross sections corrected for the energy dependencies of the electron 

attenuation lengths and the instrument transmission.  Data interpretation was carried out using 

CasaXPS software v2.3.16. 

Scanning electron microscope (SEM) micrographs were obtained with a Zeiss Supra 

40vp model. Fourier-transform infra-red spectroscopy (FT-IR, Nicolet iS5, Thermo Scientific) 

was performed on the surface with the iD5 ATR-Diamond accessory. Eight Scans were 

performed over the range 4000-525 cm-1 with 1.928 cm-1 data spacing and recorded with a 

DTGS KBr detector utilizing a KBr beam-splitter. From this % transmittance was obtained the 

values compared to commonly available IR transmittance tables. 
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Results and Discussion 

Characterisation of the chemically pre-treated electrodes 

GSPEs were chemically pre-treated to form surface immobilised oxygenated species, as 

detailed in the experimental section, which introduces oxygenated species upon the electrode 

surface. These pre-treated GSPES were characterised with Scanning Electron Microscopy 

(SEM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infra-red spectroscopy 

(FT-IR). Apparent from the SEM images in Figure 1 is an increase in porosity for the pre-

treated GSPE (Figure 1B) which is likely the result of the chemical pre-treatment with 

percarbonate solution ([10% w/v] Na2CO3/H2O2); (see experimental section). FT-IR and XPS 

were performed to aid the hypothesised presence of generated oxygenated species immobilised 

on the electrode surface as a result of the chemical pre-treatment process. The chemically pre-

treated and un-treated GSPEs were measured with FT-IR, and expecting an increase in peaks 

in the 1665 – 1760 cm-1 range for the chemically pre-treated GSPE, which would be indicative 

of carbonyl moiety. However, following experimentation there was found to be no distinct 

variation between both chemically pre-treated and un-treated GSPEs – this could be related to 

the “depth” to which the IR beam penetrates the electrode surface (the generated oxygenated 

species are only theorised to be on the surface).  

The XPS results from the electrodes (Table 1) showed the regular GSPE working 

electrode surface to be composed of 87.3% carbon and 3.9% oxygen with the carbon 1s 

spectrum of the un-treated GSPE typical of an oxidised graphite-like material.   The chemically 

pre-treated electrode surface had an increased oxygen content of 16.7% and a reduced carbon 

content of 71.1% indicating oxidation of the electrode surface. The carbon 1s spectra from the 

pre-treated and the reference GSPE samples are shown in Figure S2. In both cases the spectra 

show a strong asymmetric and narrow component at approximately 284.8 eV binding energy 

which is typical of graphitic carbon.  They both also show a strong shoulder at approximately 

286.3 eV.  This is due to carbon in either C-O or C-Cl bonds, which cannot generally be 

resolved by XPS.  However, analysis of the relative intensity of this component and the 

proportion of Cl detected showed that similar levels of C-O bonds were present in both cases, 

accounting for approximately 50% of the intensity of this component.  Both spectra showed 

intensity at approximately 289.3 eV, attributed to surface acid groups, COO-.  A significant 

difference was seen at higher binding energy where the treated GSPE sample showed intensity 

at approximately 291.3 eV not seen on the untreated surface.  This is in the spectral region 
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typically associated with graphitic plasmon loss features, but is rather intense and suggests the 

presence of carbon in a further highly chemically-shifted configuration such as a carbonate 

ester i.e. R-O-C(=O)-O-R.  Note that an inorganic carbonate group such as may be expected 

from any Na2CO3 residue would be expected at approximately 289.4 – 289.5 eV and no 

significant difference in seen between the untreated and treated samples in this binding energy 

range.  It is clear from the XPS data that the treated surface is more highly oxygenated (higher 

oxygen surface composition, and evidence of a highly oxygenated component in the C 1s 

spectrum) but it has not been possible to determine the exact composition of oxygenated 

species on the GSPE surface.  

 

Electrochemical testing 

Several different accurately measured 0.01 M buffers (HCl, phosphate buffer solution 

[PBS] and acetate buffer) ranging from pH 1.76 – 13.12 were electrochemically tested with 

square-wave voltammetry (SWV) on both the chemically pre-treated GSPEs ([10% w/v] 

Na2CO3/H2O2) and un-treated GSPEs. Scanning cathodically from positive to negative 

potentials a single reduction peak is realized. As can be observed from Figure 2A, increasing 

the pH results in more negative overpotentials as well as there being peaks with much lower 

intensity; this could be since at high pHs there are less protons available, limiting the amount 

of species that can be reduced. Note: peaks with lower intensities in acidic conditions (>pH 5) 

could be attributed to deprotonation of carboxylic acid groups on the surface21 or pH dependent 

charge trapping of the quinones electrostatically bound in an electron-confined polymer 

(polyvinyl chloride [PVC], a polymer, is used as a binder in the GSPE ink)22.  The use of 

background correction and smoothing were employed by the GSPE software to give clarity to 

the responses, as is common in the literature.4 As can be seen from Figure S3 there is an 

electrochemical response with untreated GSPEs, likely due to a small amount of oxygenated 

species naturally occurring on the GSPE surface; however, note that this is much lower in 

intensity (approximately 1000 times lower).  The use of an untreated electrode provides 

inconsistent voltammetric responses when utilised to monitor changes in pH and instead the 

proposed chemical pretreatment produces optimal responses. The approach herein attempts to 

negate the use of any mechanical effort as reported in the literature3, 4 to solely rely on the 

chemical pre-treatment. Note that the chemical pre-treatment for a longer duration (45 h) was 
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explored; however, slight variations in peak current notwithstanding the overwhelming 

similarities in the response showed 18 h is adequate for pre-treatment (Figure S1). 

Next, a plot of peak potential (E) vs. pH was constructed (Figure 2B) where a gradient of 

57 mV was observed (E/V = - 57mV + 0.4 E/pH, R² = 0.99). This value is indicative of a 1:1 

proton/electron process as described from the Nernst equation (equation 1). It is important to 

note that there is no deviation across the pH range explored. It is hypothesised by Lu et al. that, 

when bound to the surface, there are significant changes in pKa between bulk aqueous solution 

and surface immobilized species; naturally leading to the conclusion that the pKa value of a 

selected mediator (in this instance quinones; normal pKa value ca. 9.2) must have altered, 

exceeding pH 13.0, consequently not changing the linearity of any calibration plots.  

As is evident from the literature, new electrodes that are proposed for the sensing of pH 

mostly neglect to apply them to the sensing of pH in real samples. 3, 4 Consequently, the 

proposed analytical pH sensing protocol herein is validated against the laboratory standard 

glass probe pH sensor in the real samples: malt vinegar and a commonly available antacid 

(Rennies). The electroanalytical SWV signals gained are visible in Figure 3 and comparable 

values of pH were obtained in both cases; with malt vinegar a pH value of 2.98 was obtained 

by the glass probe compared to 2.86 from the pre-treated GSPE (±0.12; RSD 3.72%) and the 

antacid 10.43 versus 10.08 (±0.35; RSD 4.81%). This demonstrates there is potential for this 

approach to be developed into a portable, hand-held, voltammetric pH sensor using GSPEs. 

Returning to the origin of the observed correlation between the voltammetric potential 

and pH over the entire pH range of 1-13 where no deviation is encountered at alkaline pH 

values has previously been reported19-21 to be caused by a change in pKa value of surface 

immobilised groups in comparison to that of a solution phase species. A new alternative 

approach is proposed herein is that the pKa value of a surface bound mediator (oxygenated 

species) does not interfere with the linear Nernstian response because of its activity (α).  

For simplicity, envisage the example of the electrochemical reduction of 1,2-

benzoquinone(1,2-BQ) into 1,2-hydroquinone(1,2-HQ); (Scheme S1) which has been utilised 

previously in the literature;3, 4, 22 (such as Prissanaroon-Ouajai et al.22 who used a novel pH 

sensor based on hydroquinone monosulfonate-doped conducting polypyrrole). First, consider 

the Nernst equation which quantitatively predicts the cell potential relating it to the redox 

behaviour of two species, utilised in the above analysis of the electrochemical reduction of 1,2-

BQ as described in the following equation (2): 
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1,2 𝐵𝑄 + 2𝑒− + 2𝐻+ ⇌ 1,2 𝐻𝑄  (2)     

 

which when applied to the Nernst equation leads to:                                                                  

𝐸𝑝 = 𝐸𝑓 𝑂𝑥/𝑅𝑒𝑑
0 − 2.303 

𝑅𝑇

𝑛𝐹
log

[𝑅𝑒𝑑]

[𝑂𝑥]
   (3) 

If one takes into account the activity where a is the symbol for alpha used in all the equations 

such as in equation 4 of the 1,2-benzoquinone(1,2-BQ)/1,2-hydroquinone(1,2-HQ)  redox 

behaviour, equation (3) leads to:  

 

𝐸𝑝 = 𝐸𝑓 𝑂𝑥/𝑅𝑒𝑑
0 − 2.303 

𝑅𝑇

2𝐹
log

𝛼 1,2-𝐻𝑄

𝛼 1,2-𝐵𝑄 ∙ 𝛼𝐻+2      (4) 

 

However, if it is considered that the surface immobilised groups are a solid since they are 

immobilised upon the electrode surface, and therefore have an activity of 1, this results in: 

𝐸𝑝 = 𝐸𝑓 𝑂𝑥/𝑅𝑒𝑑
0 − 2.303 

𝑅𝑇

2𝐹
log

1

𝑎
𝐻+2

              (5) 

𝐸𝑝 = 𝐸𝑓 𝑂𝑥/𝑅𝑒𝑑
0 − 2.303 

𝑅𝑇

2𝐹
log 𝑎

𝐻+−2             (6) 

 

Application of the logarithmic power rule results in the following series of equations: 

 

𝐸𝑝 = 𝐸𝑓 𝑂𝑥/𝑅𝑒𝑑
0 − 2.303 

𝑅𝑇

2𝐹
(−2) log 𝑎𝐻+    (7) 

𝐸𝑝 = 𝐸𝑓 𝑂𝑥/𝑅𝑒𝑑
0 + 2.303 

𝑅𝑇

𝐹
log 𝑎𝐻+                    (8) 

𝐸𝑝 = 𝐸𝑓 𝑂𝑥/𝑅𝑒𝑑
0 − 2.303 

𝑅𝑇

𝐹
−log 𝑎𝐻+ (9) 

𝐸𝑝 = 𝐸𝑓 𝑂𝑥/𝑅𝑒𝑑
0 − 2.303 

𝑅𝑇

𝐹
𝑝𝐻   (10) 

which show the electrochemical response is dependent solely on the pH (and obviously other 

thermodynamic effects e.g. temperature) and negates the pKa values of the quinone species. 

This offers an alternative explanation as to why there is no change in linearity when surface 

immobilised oxygenated species (for example quinone groups) are utilised for pH sensing. This 

also explains data obtained by other groups using oxygenated species immobilised on an 
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electrode surface and solid quinone compounds for pH sensing which observe similar results 

of a linear Nernstian response that is dependant only on pH and not a change in linearity at a 

surface bound mediators pKa.3, 4, 27, 28 Although this worked example (equations 1 to 9) offers 

an explanation to the previously mentioned reports, the protocol presented within following 

elucidation of XPS spectra reveals the process of 1,2-benzoquinone(1,2-BQ) into 1,2-

hydroquinone(1,2-HQ) cannot be the sole contributor to the electrochemical response when 

sensing pH in this instance (and perhaps others). An inadequate amount of  carbonyl moieties 

(such as those present on 1,2-BQ) suggest instead that the electrochemical response, which is 

the origin of the pH sensor could possibly be dominated, for example, by either 

 

quinone moiety (R-C=O) + 2H+ +2e- ⇌ bisphenol moiety (R-C-OH)   (11) 

 

or 

 

hydroquinone moiety (R-C-OH) + H+ + e- ⇌ phenolic moiety (R-C-O-)  (12) 

 

or resonance structures in the graphite lattice; though, as noted above, the exact kinetics of the 

surface remain unknown and the actual “step by step” mechanism that occurs is likely to be 

rather complex.  What is clear, however, is that it is an equal electron-proton process. 

Therefore, a generic example of the mathematic resolution is reported below: 

 

𝑂𝑥 + 𝑛𝑒− + 𝑚𝐻+  ⇌ 𝑅𝑒𝑑  (13) 

𝐸𝑝 =  𝐸𝑓
0 −

𝑅𝑇

𝑛𝐹
ln

𝑎 [𝑅𝑒𝑑]

𝑎[𝑂𝑥]𝑎𝐻+𝑚 (14) 

𝐸𝑝 =  𝐸𝑓
0 −

𝑅𝑇

𝑛𝐹
2.303 log

𝑎 [𝑅𝑒𝑑]

𝑎[𝑂𝑥]
+ 2.303

𝑅𝑇

𝑛𝐹
log 𝑎𝐻+𝑚

 (15) 

𝐸𝑝 =  𝐸𝑓
0 −

𝑅𝑇

𝑛𝐹
2.303 log

𝑎 [𝑅𝑒𝑑]

𝑎[𝑂𝑥]
+ 2.303

𝑅𝑇𝑚

𝑛𝐹
log 𝑎𝐻+  (16) 

𝐸𝑝 =  𝐸𝑓
0 −

𝑅𝑇

𝑛𝐹
2.303 log

𝑎 [𝑅𝑒𝑑]

𝑎[𝑂𝑥]
− 2.303

𝑚

𝑛
 
𝑅𝑇

𝐹
log 𝑎𝐻+   (17) 

𝐸𝑝 =  𝐸𝑓
0 −

𝑅𝑇

𝑛𝐹
2.303 log

𝑎 [𝑅𝑒𝑑]

𝑎[𝑂𝑥]
− 2.303

𝑚

𝑛
 
𝑅𝑇

𝐹
𝑝𝐻    (18) 

This offers an explanation as to why the electrochemical response is dependant only on the pH 

and not the pKa of a surface immobilised mediator and as such, also explaining the linear 
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response over the entire pH range observed in this work (Figure 2B) and critically in all prior 

literature in which this unique response is routinely observed.. 3, 4, 19, 20, 26 

 

Conclusions 

For the first time, the accurate measurement of pH using chemically pre-treated low cost, 

disposable GSPEs has been shown as a practicable analytical protocol. This inspires the 

potential for a handheld, portable and reproducible pH sensor that has also been validated  

against a traditional pH sensing protocol and demonstrated accurate quantification capabilities 

when applied to ‘real’ pH samples without the need for further specialist equipment (such as a 

pH meter) nor extensive mechanical pre-treatment. The monitoring of surface immobilised 

oxygenated species redox potentials across the range of pH 1.76-13.12 display a linear response 

(R2 = 0.99) with a gradient of 57 mV (N = 3). Also presented is an alternative explanation as 

to why surface immobilised mediators do not influence the Nernstian response, suggesting 

molecules immobilised on the surface have an activity equal to 1, excluding them from the 

Nernst equation meaning the measured potential depends solely on the pH. A mathematical 

model for all cases involving surface immobilised mediators is proposed in equations 13 – 18.  

This is contrary to previous reports of a mediator immobilised on the surface’s pKa; such work 

is of huge importance in the electroanalytical field which forms the basis of voltammetric pH 

sensors. 
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Scheme 1. Mechanism of electrochemical reduction of 1,2-benzoquinone into 1,2-

hydroquinone leads to pH dependent responses, one of the many proposed mechanisms 

occurring on the chemically pre-treated surface. 
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Table 1. De-convolution of the XPS spectra obtained for the GSPE before and after chemical pre-treatment (denoted Na2CO3/GSPE). Note 

the presence of chloride is due to the polyvinyl chloride (PVC) binder in the GSPE ink, and the low level additional species found on the pre-

treated surface make no significant contribution to the interpretation of the carbon surface chemical state as discussed in the text. 

 

Element 

GSPE GSPE with pre-treatmet 

Element 
atom % 

Moeity Element 
atom % 

Moeity 

assignment BE (eV) atom % assignment BE (eV) atom % 

C 1s 87.2 C-C 284.7 68.86 71.1 C-C 284.7 59.08 

  C-O/C-Cl 286.55 15.63  C-O/C-Cl 286.58 9.92 

  COO- 288.8 2.77  COO-/CO32- 289.27 2.1 

      
plasmon/high 
oxygenation 

290.09 3.53 

Cl 2p 8.8 C-Cl 200.3  5.6 C-Cl 200.4  

O 1s 3.9 unresolved, consistent with C-O 16.7 
broad, consistent with C 1s assignments and low level 

inorganics 

Na 1s -    2.8 Na+, non-specific 1072.4  

Si 2p -    1.7    

S 2p -    0.4    

Mg 2p -    1.5    

N 1s -    0.2    
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Figure 1.  SEM images of untreated (A) and chemically pre-treated (B) GSPEs 
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Figure 2A. Electrochemical signal (SWV) obtained over the pH range 1.76 – 13.12 using the 

chemically pre-treated GSPEs. Note the electrochemical signal is obtained from scanning 

potential from positive to negative to induce the electrochemical reduction of the surface 

immobilised oxygenated species (see Scheme 1). SWV parameters: Frequency 20 Hz, step 

potential 2 mV, amplitude 200 mV. (vs. SCE). 
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Figure 2B. Calibration plot resulting from the analysis of SWV peak potential (date shown in 

figure 2) against pH for using the chemically pre-treated GSPEs over the pH range of 1.76 to 

13.12. A linear response is observed with a  gradient of 57 mV R2 = 0.99; N = 3. (vs SCE). 
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Figure 3. Electrochemical signals (SWV) obtained in real samples for A: Malt Vinegar and B: 

Rennies® antacid using the chemically pre-treated GSPEs. SWV parameters: Frequency 20 

Hz, step potential 2 mV, amplitude 200 mV. (vs. SCE). Peak of maximum inflection is used 

throughout.  
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Electronic Supporting Information 

ESI Figure 1 - Electrochemical signal (SWV) obtained over the pH range 1.81 – 13.16 using 

chemically pre-treated GSPEs (45 hours). SWV parameters: Frequency 20 Hz, step potential 2 

mV, amplitude 200 mV. (vs. SCE). Inset: Calibration plot resulting from the analysis of SWV 

peak potential against pH for a chemically pre-treated GSPE (45 hour treatment – see 

experimental solution)  in 0.01 M buffer solutions (HCl, and PBS) ranging from pH 1.81 – 

13.16. A linear response is observed with a  gradient of 57 mV R2 = 0.99, N=3. (vs. SCE). 
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ESI 2 – Electrochemical reduction of oxygenated species at the chemically pre-treated GSPEs 

(solid line) and un-treated GSPEs (dashed line, inset) using SWV using ~ pH 7.4  PBS. Visible 

from the inset is a zoom of the un-treated GSPEs where a small voltammetric peak is evident 

(Note nA scale). Square-wave parameters: Frequency 20 Hz, step potential 2 mV, amplitude 

200 mV. (vs. SCE). 

 

  


