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Abstract. We describe a thermal dissociation cavity ring-

down spectrometer (TD-CRDS) for measurement of ambi-

ent NO2, total peroxy nitrates (6PNs) and total alkyl nitrates

(6ANs). The spectrometer has two separate cavities operat-

ing at ∼ 405.2 and 408.5 nm. One cavity (reference) samples

NO2 continuously from an inlet at ambient temperature, the

other samples sequentially from an inlet at 473 K in which

PNs are converted to NO2 or from an inlet at 723 K in which

both PNs and ANs are converted to NO2, difference signals

being used to derive mixing ratios of 6PNs and 6ANs. We

describe an extensive set of laboratory experiments and nu-

merical simulations to characterise the fate of organic rad-

icals in the hot inlets and cavity and derive correction fac-

tors to account for the bias resulting from the interaction

of peroxy radicals with ambient NO and NO2. Finally, we

present the first measurements and comparison with other in-

struments during a field campaign, outline the limitations of

the present instrument and provide an outlook for future im-

provements.

1 Introduction

Reactive nitrogen oxides are centrally important trace gases

in atmospheric chemistry as they affect air quality, climate

and ecosystem nutrients. Nitrogen oxides are involved in the

photochemical production/loss of ozone (O3); they interact

with ROx radicals (ROx ≡ OH+HO2+RO2, where R is an

organic fragment) to either catalyse ozone formation or ter-

minate the HOx catalytic chain and thereby suppress ozone

formation. Nitrogen oxides are largely emitted to the atmo-

sphere as NO which is then oxidised to NO2. Beside inor-

ganic NOx (NOx ≡NO+NO2) there are several classes of

organic nitrogen oxides including peroxy nitrates (RO2NO2)

and alkyl nitrates (RONO2) which have an important influ-

ence on atmospheric composition. Peroxy nitrates and alkyl

nitrates are produced as by-products in the photochemical

oxidation of volatile organic compounds (VOCs) in the pres-

ence of NOx , the same processes and reactions that produce

the pollutant and greenhouse gas ozone. In addition to be-

ing indicators of photochemical ozone production, organic

nitrates exert a direct influence on regional ozone levels and

can have a large impact on the global distribution of NOx and

thus ozone (Singh and Hanst, 1981; Roberts, 1990).

Peroxy nitrates are formed in the reaction of RO2 with

NO2 (Reaction R1) and their lifetime with respect to ther-

mal decomposition (Reaction R2) is strongly temperature-

dependent.

RO2+NO2+M→ RO2NO2+M (R1)

RO2NO2+M→ RO2+NO2+M (R2)

Peroxy nitrates such as peroxyacetic nitric anhydride (PAN,

CH3C(O)O2NO2), which possess an acyl group adjacent to

the peroxy group, have thermal decomposition lifetimes that

vary from less than an hour at the surface at temperatures

close to 295 K, to more than a month at the low temperature

of e.g. the upper troposphere. Consequently, peroxyacetic ni-

tric anhydrides are important reservoirs of NOx and medi-

ators of its long-range transport to remote regions. In con-

trast, peroxy nitrates that do not possess the acyl group (e.g.
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HO2NO2 or CH3O2NO2) are much shorter lived and are only

found in significant abundance in cold regions of the tropo-

sphere such as in the Antarctic boundary layer (Slusher et

al., 2002) and the upper troposphere (Murphy et al., 2004;

Kim et al., 2007; Browne et al., 2011; Nault et al., 2015). In

the lowermost troposphere, other losses of RO2NO2 such as

photolysis or reaction with OH are vastly reduced in impor-

tance compared to thermal decomposition (Talukdar et al.,

1995). Throughout this paper, we use the term “PN” to refer

to peroxy nitrates.

During daytime, alkyl nitrates (RONO2) are formed in a

minor branch of the reaction between organic peroxy radi-

cals (RO2) and NO (Reaction R3). The dominant reaction

channel (Reaction R4) leads to the formation of NO2 and

therefore (via its photolysis) to ozone.

RO2+NO+M→ RONO2+M (R3)

RO2+NO → RO+NO2 (R4)

The fractional flux through Reaction (R3) (relative to Reac-

tions R3 and R4) depends on the carbon chain and also the

pressure and temperature and can vary from very low values

(< 2 %) for small hydrocarbons to > 50 % for longer chain

hydrocarbons such as heptane (Lee et al., 2014).

Alkyl nitrates can also be formed at night in the NO3-

induced degradation of unsaturated VOCs, which proceeds

via addition of NO3 across the double bond to form (in the

presence of O2) a nitrooxyalkyl peroxy radical that can fur-

ther react to form an alkyl nitrate with e.g. hydroxyl or car-

bonyl groups:

NO3+R= R(+O2)→ R′RONO2. (R5)

Yields of alkyl nitrates from these reactions can be large, es-

pecially for biogenic organics such as isoprene or terpenes

(Atkinson and Arey, 2003). Hereafter, we use the term “AN”

to refer to alkyl nitrates, irrespective of their mode of gener-

ation.

ANs which do not contain double bonds or hydroxyl

groups generally have a low affinity for surfaces and react

only slowly with oxidants such as OH (Talukdar et al., 1997)

so that they can sequester a significant fraction of reactive

nitrogen (Perring et al., 2013).

The organic nitrate content of ambient air comprises a

mixture of many structurally distinct compounds in gener-

ally low individual abundance, which makes their quantita-

tive determination challenging. Organic nitrates have been

measured on many occasions using gas chromatography. The

advantage of this technique is a limit of detection of a few

parts per trillion volume (pptv) and the possibility to distin-

guish between individual organic nitrates (see e.g. Roberts et

al., 2003). The disadvantages are the requirement of calibra-

tion for many trace gases (usually not commercially avail-

able) and low time resolution (Hao et al., 1994; Flocke et

al., 2005). Recently, PAN and other peroxycarboxylic nitric

anhydrides such as MPAN (peroxymethacrylic nitric anhy-

dride) and PPN (peroxypropionic nitric anhydride) have been

identified and measured with sub-second time resolution us-

ing thermal dissociation chemical ionisation mass spectrom-

etry (TD-CIMS) (Slusher et al., 2004; LaFranchi et al., 2009;

Wolfe et al., 2009; Roiger et al., 2011; Zheng et al., 2011;

Mielke and Osthoff, 2012; Phillips et al., 2013).

The first measurements of alkyl nitrates in the atmosphere

were made by Atlas et al. (1988), and subsequent calcu-

lations and measurements suggested that the atmosphere

should contain a wide suite of individual alkyl and multi-

functional nitrates (Calvert and Madronich, 1987; Atherton

and Penner, 1988; Schneider and Ballschmiter, 1999) and

that hydroxy alkyl nitrates derived from isoprene oxidation

could constitute as much as 12–26 % of tropospheric NOy
(Trainer et al., 1991). Recent measurement of speciated ANs

by chemical ionisation mass spectrometry (Beaver et al.,

2012) has shown that biogenic derived ANs may represent

a substantial fraction of the total AN mixture.

Total measured NOy has frequently been found

to exceed the sums of different nitrogen com-

pounds (NO+NO2+PAN+HNO3+HONO+NO3+

2N2O5+ . . .), the range of the “missing” NOy being 10–

20 %. In most of these observations the total alkyl nitrate

content was not measured or only partially (e.g. Fahey et

al., 1986; Buhr et al., 1990; Ridley et al., 1990; Parrish and

Buhr, 1993; Singh et al., 1996; Williams et al., 1997). These

considerations led to the development of instruments (Day

et al., 2002) which make use of the thermal instability of

RO2NO2 and RONO2 at elevated temperatures and which

report measurements of the sum of peroxy nitrates (6PN)

or the sum of alkyl nitrates (6AN) by monitoring the NO2

product of the thermal decomposition of PNs and ANs at

different temperatures.

RO2NO2→ RO2+NO2(> 420K) (R6)

RONO2→ RO + NO2(> 630K) (R7)

These studies have helped to confirm that ANs and PNs rep-

resent a significant fraction of atmospheric NOy and confirm

their role in e.g. HOx radical chain termination, or as indi-

cators of photochemical O3 generation (see e.g. Day et al.,

2003; Rosen et al., 2004; Perring et al., 2013).

Here we describe a recently constructed TD-CRD instru-

ment to measure ambient NO2 and also that formed from the

thermal decomposition of ANs and PNs via cavity ring-down

spectroscopy. Our instrument operates under similar condi-

tions of pressure flow, oven temperature and laser wavelength

to those described in Paul et al. (2009) and Paul and Os-

thoff (2010).

2 Principal of Operation and Instrument set-up

Cavity ring-down spectroscopy (hereafter CRDS) and its use

for the sensitive detection of atmospheric trace gases has
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been reviewed in detail (Berden et al., 2000; Brown, 2003).

CRDS is based on direct absorption spectroscopy in which

the absorption path length is enhanced by a high finesse cav-

ity formed by a set of two highly reflective mirrors. Most

applications use pulsed or intensity-modulated continuous-

wave (CW) lasers as a light source with direct coupling into

the cavity via one (front) mirror. The present experiment uses

a square-wave, on/off-modulated CW laser. During the “laser

on” phase the light intensity in the cavity builds up to a level

determined by mirror reflectivity and transmission. The light

leaking out through the back mirror during “laser off” mode

is analysed to derive an exponential decay constant, which

is reduced in the presence of an absorbing or scattering gas.

This provides an absolute measurement of optical extinction,

as given in Eq. (1).

σ [A]= α =
l

cd

(
1

τ
−

1

τ0

)
, (1)

where σ is the absorption cross section of the absorber, av-

eraged over the laser spectrum, [A] is the concentration of

the absorber, α is the optical extinction coefficient (units of

inverse length), c is the speed of light, τ and τ0 are the ex-

ponential decay constants with and without the absorber in

the cavity and l/d is the ratio of the length over which the

absorber is present to the distance between the two resonator

mirrors. In order to derive τ0 the cavity is flushed with zero

air (see Sect. 2.1.1).

Essential features of the TD-CRDS instrument described

here are displayed in Fig. 1. Our two-channel CRDS

utilises two laser diodes (Laser Components, optical power:

120 mW) in commercially available laser diode heads (Thor-

labs) with current and temperature controller units (Thorlabs

ITC 510 and ITC 502). The use of two lasers rather than one

increases the light intensity at the detector and thus improves

the signal-to-noise ratio, but brings with it the added com-

plexity of needing to measure two-laser spectra (see below)

and using two different NO2 absorption cross sections.

The lasers are modulated on and off at 1666 Hz (duty cy-

cle 50 %) by a 6 V square-wave signal. The rise and fall time

of the intensity is less than 1 µs, which, under normal con-

ditions (NO2 < 1 ppm), is rapid on the timescale of the de-

cay of intensity from the optical cavities. Optical isolators

(consisting of a linear polariser and a quarter-wave plate) are

used to prevent back reflections from the front mirror from

entering the lasers. The laser diodes are stabilised at about

40 ◦C and about 50 ◦C resulting in wavelengths centred at

about 405.2 and 408.5 nm, respectively. The laser emission

is monitored at regular intervals by coupling weak specular

reflection from either of the front mirrors via an optical fibre

into a spectrometer (∼ 0.1 nm resolution, OMT, temperature-

regulated CCD detector with 3648 pixels). Small variations

in the laser wavelength are observed (peak-to-peak variabil-

ity of < 2 % over consecutive, 10 min averaging intervals),

which result in the same variability of the effective absorp-

tion cross section. Figure 2 shows the laser emission spec-

tra (blue and red) along with the NO2 absorption spectrum

(black line, right y axis, (Voigt et al., 2002). The relatively

broad laser emission ensures the passive mode matches with

resonant frequencies of the cavity, avoiding the need for ac-

tive mode-matching (Ayers et al., 2005). Effective absorption

cross sections were obtained by multiplying the normalised

laser emission spectra by the structured absorption of NO2.

The cavity mirrors (1 inch diameter, 1 m radius of curva-

ture) have a nominal reflectivity of 0.999965 (Advanced Thin

Films). The mirrors are mounted in a self-made mirror holder

system, the ∼ 70 cm distance between them being rigidly

fixed using three hollow carbon fibre rods (outer diameter

15 mm) per cavity. This combination of mirror reflectivity

and separation results in ring-down times under typical con-

ditions (830 mbar air) of about τ0 =38 µs when no absorber

is present, or optical path lengths of > 10 km. A purge flow,

100 cm3 (STP) min−1 (hereafter sccm), of zero air protects

each mirror from contamination by ambient air and subse-

quent loss of reflectivity.

The light transmitted through the back mirror of the cavity

is detected by a photomultiplier, located behind a lens and an

interference filter (10 nm full width at half maximum height

centred at 405 nm) to reject stray light. The preamplified sig-

nal is digitised by a USB digital oscilloscope (PicoScope

3000, 12 bit vertical resolution, 5 Mhz sampling rate), with

1344 ring-down traces being averaged in order to achieve the

desired signal-to-noise ratio. This number results from min-

imising read-out time from the PicoScope by measuring se-

quential 42 ring-down traces (filling internal memory) before

reading out the data. This cycle is repeated 32 times, result-

ing in a time resolution of about 4 s per data point for both

channels.

The two-channel CRDS consists of two nominally iden-

tical cavities (both thermostatted to 308 K) and sample in-

lets. The cavities are made of 10 mm inner diameter Duran

glass, which was coated with a thin film of Teflon (DuPont,

FEP TE9568) to minimise interaction of traces gases with

the walls, which could potentially result in loss or produc-

tion of NO2. Aerosols are prevented from entering the inlets

and cavities using a 47 mm diameter, 2 µm PTFE filter (PAL

Teflon).

The cavities are operated at sub-ambient pressure (typi-

cally 800–850 mbar) which is held constant using an addi-

tional, mass-flow-controlled branch, linking the inlet mani-

fold to a pump. This line also contains a relative humidity

and temperature sensor to enable corrections for laser light

scattering by H2O vapour to be made (see Sect. 2.1.3). Am-

bient air enters the centre of the cavities at a flow rate of

2.0 L min−1 (STP) in each channel, resulting in a cavity resi-

dence time of about 1.2 s. However, as concentrations are in-

tegrated over the entire cavity length, the average residence

time of a molecule of detected in the cavity will be less than

this.

Values of τ0 were obtained at regular intervals (every 5–

10 min) by switching ambient air for zero air for a short pe-
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Figure 1. Schematic diagram of the two cavities (reference and TD) and associated inlets (quartz tubes at ambient temperature, 473 or

723 K). The reference cavity samples continuously via a quartz tube at ambient temperature, the TD cavity samples sequentially from quartz

tubing at ambient temperature, 473 or 723 K. Both cavities are held at 308 K and at constant pressure (usually 800 mbar). M: mirror, WP:

quarter-wave plate, Pol: polariser, QT: quartz tubing, P: pressure transducer, FC: mass flow controller, PC: computer, RH: relative humidity

and temperature sensor, IF: interference filter, PMT: photomultiplier, PG: purge gas, Ex: exhaust.

3 9 5 4 0 0 4 0 5 4 1 0 4 1 5
0

2

4

6

8

1 0

 
 N O 2  ( V o i g t  e t  a l .  2 0 0 2 )
 H 2 O  ( x 1 0 6 ,  R o t h m a n  e t  a l .  2 0 1 3 )
 C H O C H O  ( V o l k a m m e r  e t  a l .  2 0 0 5 )
 C H 3 C ( O ) C H O  ( M e l l e r  e t  a l .  1 9 9 1 )

cro
ss 

se
ctio

n  
(10

-19
 cm

2   m
ole

cu
le-1 )

w a v e l e n g t h  ( n m )

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

no
rm

ali
ed

 la
se

r s
pe

ctr
a

s

Figure 2. Laser emission spectrum (left y axis) measured in the ref-

erence cavity (blue) and the TD cavity (red). The absorption spec-

tra (Meller et al., 1991; Voigt et al., 2002; Volkamer et al., 2005b;

Rothman et al., 2013) are associated with the right y axis. The H2O

spectrum is scaled by a factor of 1× 106.

riod (1–2 min). Three-way Teflon valves (NResearch) which

have been shown not to permanently remove PNs, ANs or

NO2 were used. This frequency of zeroing was found to be

sufficient to track drifts in the ring-down constant (see later).

One of the cavities (reference cavity in Fig. 1) continu-

ously measures ambient NO2; the second cavity (TD cavity)

samples alternatively from three separate, quartz tubes of i.d.

1.5 cm and length 42 cm. Fifteen centimetre sections of two

of the quartz tubes were placed in commercial ovens (Car-

bolite) and heated up to 473 and 723 K, whereby these are

oven temperatures and do not necessarily reflect the temper-

ature of gas flowing through the quartz tubing. The cavity

attached to the heated quartz inlets thus measures the sum of

NO2 plus NO2 generated from the thermal dissociation of or-

ganic nitrates. We refer to the NO2 measurements when sam-

pling from these inlets as [NO2]ref, [NO2]TD, [NO2]TD 473

and [NO2]TD 723.

The strength of the NO2 bond within the parent com-

pound defines the temperature at which thermal dissociation

(to form NO2) is feasible. The ROO–NO2 bond strengths for

peroxy nitrates lie between∼ 85 and 115 kJ mol−1 (Kirchner

et al., 1999) which is significantly weaker than the RO–NO2

bond strength for alkyl nitrates (160–170 kJ mol−1, Roberts,

1990). For comparison, the HO–NO2 bond strength for ni-

tric acid is ∼ 200 kJ mol−1 (Atkinson et al., 2004). As dis-

cussed by Day et al. (2002) efficient thermal dissociation

to NO2 occurs at temperatures > 420 K for peroxy nitrates,

> 630 K for alkyl nitrates and > 900 K for HNO3. Based on

purely thermodynamic considerations, and following Day et

al. (2002), we do not expect to convert significant amounts

of HNO3 to NO2 in either of our inlets. However, the re-

cent data set of Wild et al. (2014) indicates that in their in-

let at 723 K, substantial decomposition (∼ 70 %) of HNO3 to

NO2 takes place. As HNO3 is a significant and highly vari-

able fraction of boundary-layer NOy , this may represent a

potential artefact for our measurements of ambient 6ANs.

In order to assess this, we conducted some experiments to

check whether HNO3 is detected as NO2 in our TD 723 inlet.

A simple HNO3 permeation source was set up by passing a

Atmos. Meas. Tech., 9, 553–576, 2016 www.atmos-meas-tech.net/9/553/2016/
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small flow of air (≈ 20 sccm) through a metre of 1/16′′ PFA

tubing immersed in 66 % HNO3 solution at room tempera-

ture and diluting this to ∼ 5 L (STP) min−1 (hereafter SLM)

before adding the resultant flow directly to the inlets.

Figure S1 of the Supplement shows the efficiency of de-

tection of HNO3 as a function of oven temperature at a rel-

ative humidity (measured at 298 K) of 40 %. Assuming that

we detect 100 % of HNO3 at ∼ 950 K (about 2 ppbv) we can

derive an efficiency of ∼ 10 % at the normal inlet tempera-

ture of 723 K, which is substantially less than the 70 % at

723 K reported by Wild et al. (2014). The reduction of NO2

at T > 900 K is seen for additions of both HNO3 and pure

NO2 and may reflect its surface catalysed decomposition at

these elevated temperatures. Based on this single measure-

ment, ambient levels of 2 ppb for HNO3 would result in a

0.2 ppb bias to the measurements of the6ANs. However, the

true size of a bias to the ambient measurements of6ANs pre-

sented later is much smaller as HNO3 transmission through

the long (∼ 10 m), unheated, Teflon inlets and filter used is

expected to be poor (Neuman et al., 1999). For the purpose

of this paper we assume, as has been done in numerous previ-

ous studies (Day et al., 2002), that HNO3 does not impact the

measurements of our 6ANs significantly. Strictly speaking,

in the absence of independent HNO3 measurements, the am-

bient 6ANs mixing ratios we present later are thus to be re-

garded as upper limits. In a similar vein, we assume through-

out that we have 100 % inlet transmission for all PNs and all

ANs but recognise that some loss of “sticky” hydroxynitrates

may occur.

The cavity which normally samples from the 473 or 723 K

inlets can also be switched to sample at ambient tempera-

ture (via the “bypass” inlet shown in Fig. 1), enabling di-

rect comparison of NO2 measurements in the two cavities.

As this method for detection of 6ANs and 6PNs relies on

the difference in NO2 mixing ratios when sampling from the

heated and unheated inlets, tests were carried out to estab-

lish that equal concentrations of NO2 are measured in each

cavity when only NO2 is present. This data set, displayed as

Fig. S2, yields slopes of unity when the TD cavity sampled

NO2 (2–80 ppb) from the 473 and 723 K inlets.

The residence time inside the heated quartz tubes and the

connection tubing after splitting the air stream is about 2.5 s

before reaching the cavities. The temperature profile inside

the heated part of the quartz tube is non-uniform and the op-

erating temperature was chosen to ensure complete dissoci-

ation of the organic nitrates. Figure 3 displays the relative

NO2 signals measured when ramping the temperature of the

ovens from 323 to 803 K and passing dilute samples of either

PAN, 2-propyl nitrate or i-butyl nitrate through the heated

inlets. This shows clearly that the thermal decomposition of

PAN is complete at oven temperatures greater than 443 K.

For the two alkyl nitrates tested, very similar profiles are ob-

tained, indicating that decomposition is negligible at temper-

atures < 493 K but that temperatures above ∼ 693 K are suf-

ficient for complete decomposition to NO2. These observa-
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Figure 3. Efficiency of thermal dissociation of PAN and the ANs

2-propyl nitrate and i-butyl nitrate. PAN (≈ 500 pptv) was formed

by the photolysis of acetone/NO/air sample (see text for details).

The purple and black data points were measured before and after a

campaign (≈ 2 months separation in time). The ANs were available

as diluted samples (several parts per million by volume, ppmv) in air

which were diluted to ≈ 10 ppbv for these tests. The vertical lines

indicate the nominal oven temperatures finally used.

tions are consistent with those reported for similar TD set-

ups to determine peroxy and alkyl nitrates (Day et al., 2002;

Wooldridge et al., 2010; Zheng et al., 2011). Based on these

results, the ovens were set to temperatures of 473 and 723 K

(vertical lines in Fig. 3).

For initial estimates of the conversion efficiency of PNs

and ANs to NO2 we conducted tests using samples of PAN

and 2-propyl nitrate of known concentration. For PAN we

used a photochemical source (Phillips et al., 2013) in which

NO is converted to PAN via a series of oxidation steps involv-

ing the photolysis of acetone in air. The PAN source is simi-

lar to those reported e.g. in Warneck and Zerbach (1992) and

Flocke et al. (2005) who have shown that NO is converted

with > 90 % efficiency to PAN. A plot of the NO2 signal from

the TD-CRDS vs. the calculated concentration of PAN (150

to 600 pptv) is given in Fig. S3. In this case, PAN was cal-

culated by multiplying the NO mixing ratio (itself calculated

from the manufacturer’s specification and dilution factors) by

1.1. In this range of PAN mixing ratios, the response of the

TD-CRDS to various NO (and thus PAN) concentrations is

linear, with a gradient close to unity, initially suggesting that

PAN detection as NO2 is quantitative in our TD-CRDS.

Samples of alkyl nitrates in air of known concentrations

(∼ 3 and ∼ 6 ppb) were prepared manometrically and used

to derive the stoichiometry of conversion of 2-propyl ni-

trate to NO2. The results are also displayed in Fig. S3 and

indicate that at 723 K, 2-propyl nitrate in air is quantita-

tively converted to NO2. Later we discuss the effects of non-

stoichiometric conversion of PAN and ANs to NO2 due to

reactions of the organic radical fragment formed during ther-

mal dissociation.

www.atmos-meas-tech.net/9/553/2016/ Atmos. Meas. Tech., 9, 553–576, 2016
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Figure 4. Example of a typical measurement cycle (showing raw

data) when sampling ambient air. The black data points show the

continuously measured NO2 mixing ratios measured by the refer-

ence cavity. The green, red and blue data points were recorded in

the TD cavity when sampling from the inlets at ambient tempera-

ture, 473 and 723 K, respectively.

A typical measurement sequence (in this case with an am-

bient air sample) is illustrated in Fig. 4 which displays NO2

mixing ratios in both cavities. The black data points show

NO2 measurements in the reference cavity; the blue and red

data points were obtained when the TD cavity sampled from

the 723 and 473 K ovens, respectively. The green data points

were obtained in the TD cavity when the gas was sampled

via the bypass and serve as a check for consistency between

the two cavities. The gaps in the data indicate zeroing peri-

ods when the inlet was filled with synthetic air. Zeroing was

conducted at the same pressure as the measurement to avoid

changes in ring-down due to changes in Rayleigh scattering

by air. Note that the change in ring-down time at 405 nm

caused by a 3.3 mbar change in pressure of air is the equiv-

alent of ∼ 100 pptv of NO2. As we discuss later, the use of

dry zero air to derive τ0 also requires correction for the dif-

ference in scattering cross section of dry and humid (i.e. am-

bient) air. Experiments to derive correction factors for this

effect are described in Sect. 2.1.

Subtraction of the NO2 mixing ratio measured when sam-

pling from the reference cavity ([NO2]ref) from that obtained

in the cavity sampling from the 473 K inlet ([NO2 ]473) in

principal yields the summed mixing ratio of PNs that decom-

pose thermally at this temperature. The main contributor will

usually be CH3C(O)O2NO2 (PAN), with contributions from

larger PNs and other NO2-containing trace gases (e.g. N2O5,

see later) which also readily decompose at this temperature.

In order to derive the 6ANs mixing ratio we first have to in-

terpolate [NO2]TD 473 (red data points) and then subtract this

from [NO2]TD 723 (blue data points). The need to interpolate

the data from the 473 K channel means that the accuracy of

the measurement of the 6ANs is impacted by variability of

the mixing ratio of the 6PNs.

2.1 Data corrections

2.1.1 l to d ratio

Owing to the use of purge gas flows at the mirrors, the physi-

cal distance between the mirrors (d) is longer than the length

through which optical absorption takes place (l). The ratio of

d to l was obtained by flowing a constant amount of NO2/N2

though the cavity and varying the purge gas flow from 0 to

500 sccm as shown previously for our red-laser instrument

for measuring NO3 and N2O5 (Schuster et al., 2009). The re-

duction in NO2 signal at a purge gas flow of 100 sccm com-

pared to when the complete volume between the mirrors was

flushed with NO2 (no mirror purge) was 5 %, indicating a d

to l ratio of 1.06.

2.1.2 Inlet and filter loss of NO2, PNs and ANs

The inlet transmission and filter losses were investigated in

the laboratory for NO2, 6PNs and 6ANs. The response to

concentration changes was nearly instantaneous, suggesting

that wall losses or associated memory effects on the inlet and

cavity tubing are insignificant. Transmission through a fresh

PTFE filter (2 µm pore size) housed in a PFA filter holder

was, within measurement precision, quantitative. Daily re-

placement when sampling ambient air was found to be suffi-

cient to maintain this high transmission.

2.1.3 Relative humidity

Use of dry zero air to derive τ0 requires correction for

the fact that the Rayleigh scattering cross section of water

vapour is smaller than that of dry air. The size of this effect

was investigated in the laboratory by comparing τ0 (obtained

in dry zero air) to τ in zero air at various relative humidities

(RHs) between 10 and 70 % (Delta Ohm, HD49T) at room

temperature. The results are displayed in Fig. 5 which,

at constant total pressure, shows a linear decrease in ex-

tinction with increasing water vapour concentration. This

confirms that, in contrast to the conclusions of Hargrove

and Zhang (2008) who found a large, positive interference

caused by water vapour at 405 nm, the effect of H2O in

ambient air is to reduce extinction due to its lower Rayleigh

scattering cross section. The slope of the fit in Fig. 5 yields a

cross section difference between water vapour and dry air of

1σ 405−409 nm
Rayleigh = (−4.0± 0.4)× 10−27 cm2 molecule−1.

This is somewhat lower than the value of

1σ 405−409 nm
Rayleigh = (−5.0± 0.2)× 10−27 cm2 molecule−1

obtained at 404± 0.5 nm by Fuchs et al. (2009). To put this

in context, the correction applied for an ambient relative

humidity of 70 % at 22 ◦C is equivalent to 130 pptv NO2

under normal operating conditions. At low NO2 mixing ra-
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Figure 5. Determination of the scattering cross section of H2O at

405 nm. 1α is the change in measured extinction when H2O is

added to dry air (1α = α(RH= 0) – α(RH > 0)). The dashed line is

the calculated value of 1α when using the difference in scattering

cross sections in dry and humid air reported by Fuchs et al. (2009).

tios the correction is therefore large (e.g. 100 % at 100 pptv).

We discuss the impact of this later when assessing the total

uncertainty.

2.1.4 Presence of NO2 in zero air

The presence of NO2 in the zero air used would lead to an

underestimation of the ambient NO2 concentrations. In order

to check for NO2 impurity in bottled zero air (hydrocarbon-

free) we constructed and characterised an efficient, all-quartz

blue-light converter (BLC) (Kley and McFarland, 1980) to

remove NO2. The BLC consisted of a thin (ID 10 mm) quartz

tube of ∼ 30 cm length with the light from two LED arrays

operating at a central wavelength of ∼ 390 nm coupled into

the tube via quartz end windows. NO2 entered and exited the

BLC via side arms located close to the end windows and,

at a flow rate of 1 SLM, was removed with an efficiency of

∼ 60 %, independent of NO2 mixing ratios up to about 1 ppb.

The use of quartz rather than Teflon for the construction of

the BLC reduces memory effects related to NO2 degassing

from or being formed on UV-illuminated Teflon surfaces.

The level of NO2 in the zero air could thus be monitored with

the CRDS by flowing the air through the BLC and modulat-

ing the light on and off over several 1 min cycles. In all bot-

tles tested during a field campaign (PARADE; see Sect. 3) no

change in NO2 signal was observed, placing an upper limit

of about 20 pptv of NO2 in the zero air, implying a maximum

bias of −20 pptv in the NO2 measurements.

2.1.5 Formation of NO2 via O3+ NO

Common to several established instruments that measure

NO2, its formation in a dark reaction between NO and O3 in

e.g. an inlet line has to be considered (Ryerson et al., 2000).

NO+O3→ NO2 (R8)

Laboratory experiments were thus conducted to examine the

formation of NO2 via the reaction of O3 with NO, in which

mixing ratios of NO (0–10 ppbv) and O3 (25, 48 or 80 ppbv)

were varied systematically. NO was taken from a bottled

standard, O3 was formed by passing synthetic air over a Pen-

Ray® lamp and its concentration was monitored using a pho-

tometric O3 analyser (Thermo Environmental Instruments,

model 49).

Under conditions of low conversion of NO and O3,

the amount of NO2 formed [NO2]t can be calculated

from the initial concentrations of NO and O3 and the

reaction time (t): [NO2]t = k8[NO][O3]t , where k8 is

the rate coefficient for Reaction (R8) and is given as

2.07× 10−12 exp(−1400/T ) cm3 molecule−1 s−1 (Atkinson

et al., 2004) which results in a room temperature rate coeffi-

cient of about 1.9× 10−14 cm3 molecule−1 s−1. For the NO2

reference channel (inlet at 298 K, cavity at 308 K) the amount

of NO2 formed was entirely consistent with the kinetic pa-

rameters and reaction time used. This is demonstrated in

Fig. 6 (upper panel).

The expression above indicates that the rate coefficient in-

creases significantly with temperature so that an increase in

the formation of NO2 would be expected in the ovens of the

TD cavity. Indeed, in order to explain the formation of NO2

in the 473 and 723 K channels, “effective” rate coefficients

of k8eff = 2.5× 10−14 and 6.2× 10−14 cm3 molecule−1 s−1,

respectively were necessary. These effective rate coefficients

are substantially lower than those derived from the param-

eterisation given above (1.1× 10−13 cm3 molecule−1 s−1 at

473 K and 3.0× 10−13 cm3 molecule−1 s−1 at 723 K) and

correspond to lower effective or average temperatures (∼ 320

and 400 K, respectively) experienced by gas passing through

the inlets and cavities. Numerical simulations of the reaction

between NO and O3 taking place in the oven and cavities

were conducted using a measured temperature profile (see

below). The amount of NO2 formed in the simulation of Re-

action (R8) was converted to an effective rate coefficient us-

ing the expression above. The result for the 723 K cavity was

a value of k8eff ∼ (6.4± 0.5)× 10−14 cm3 molecule−1 s−1

where the scatter in the retrieved effective rate constant was

the result of simulations using different initial amounts of

O3. This is entirely consistent with the experimental obser-

vations.

The effective rate coefficients (k8eff) are thus appropriate

for making corrections for NO2 formed from O3+NO in this

particular system. In order to illustrate the size of this cor-

rection, we assume O3= 50 ppb, NO= 1 ppb, NO2 = 5 ppb,

which are typical of a semi-polluted environment during day-

time. The amount of NO2 formed in the reference (cold)

channel via this route is 0.1 ppbv or 2 % of ambient NO2.

This increases to 2.6 and 6.5 % in the 473 and 723 K chan-

nels, respectively.
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Figure 6. Upper panel: NO2 formation in the reaction of O3 (25, 48

or 80 ppbv) with NO in the inlet (in this case at ambient tempera-

ture), and reference cavity (at 308 K) and connecting tubing. The er-

ror bars on the calculated NO2 formed are derived from the ∼ 20 %

error in the rate coefficient given for the rate coefficient (Atkinson

et al., 2004). The fit to the data (black line) yields a slope of 1.04±

0.08. Lower panel: loss of NO2 as a result of the thermal decom-

position of O3 to O atoms and Reaction (R11). The black numbers

to the right of each symbol indicate the O3 mixing ratio (ppbv); the

red numbers to the left represent the initial NO2 amount (in ppbv).

The straight black line is a weighted fit to the data with a slope of

7.34× 10−4 ppbv−1. The transparent red line is the NO2 loss (in

ppbv) calculated as described in the text with [O]ss = [O3] /276.

2.1.6 Pyrolysis of O3

The potential for the reduction of NO2 to NO via reac-

tion with O(3P) atoms (henceforth O) formed in the thermal

degradation of O3 has been discussed by Day et al. (2002)

who showed that it is of negligible importance for measure-

ments of PNs and ANs at the temperatures of their heated

inlets and their residence times. However, more recently, the

same group has shown that at slightly higher oven tempera-

tures, this effect may be significant (Lee et al., 2014). Peukert

et al. (2013) have recently provided a parameterisation for the

thermal decomposition rate coefficient of O3 (k9) that results

in a value of 0.2 s−1 at 473 K, increasing to 520 s−1 at 723 K,

the temperatures of the two ovens used here. The fate of O

atoms formed is almost exclusively recombination with O2

(with rate coefficient k10).

O3→ O + O2 (R9)

O + O2+M→ O3+M (R10)

This leads to a steady-state expression for the O atom con-

centration of [O]ss = k9 [O3]/k10 [O2]. At 723 K, the for-

ward and back reactions are both fast (several 100 s−1) and

a steady state is rapidly acquired. Thus at an ambient O3

level of 50 ppbv, the O atom concentration in a steady state

at 723 K would be 2.6× 1011 atom cm−3; i.e. O atoms repre-

sent a substantial fraction (> 20 %) of odd oxygen (O+O3)

at 723 K.

The lifetime for NO2 loss with respect to reaction with

O (Reaction R11) at 723 K is given by (k11× [O])−1 and is

equal to∼ 0.6 s. Thus, the loss of NO2 due to reaction with O

from the thermal decomposition of O3 depends sensitively on

the residence time in the oven and on the temperature profile

in the oven.

O+NO2→ NO+O2 (R11)

We have examined the impact of this reaction in laboratory

experiments in which NO2 (in varying amounts) was de-

tected simultaneously in both the TD cavity with the oven at

473 or 723 K and the ambient temperature inlet/cavity whilst

O3 (also in varying amounts) was added. At 473 K no mea-

surable effect was observed, which is consistent with the ob-

servations of Day et al. (2002) and a calculated O atom con-

centration of 2× 107 atom cm−3.

In contrast, at 723 K, a loss of NO2 is indeed observed at

high O3 concentrations and the results are displayed in the

lower panel of Fig. 6 where we plot the measured loss of

NO2 vs. the product of the NO2 and O3 mixing ratios. The

individual NO2 (red) and O3 (black) mixing ratios (in ppbv)

are listed to the left and right of the symbols.

The solid black line is a least squares fit to the data with

the amount of NO2 lost, LNO2
(ppbv), given by

LNO2
= 7.34 × 10−4

[NO2][O3], (2)

where the mixing ratios of O3 and NO2 are also given in

ppbv.

The rationale for representing the data this way is

that the loss rate of NO2 is given by the expression

−d[NO2] / dt = k11[NO2][O]ss, where [O]ss is pro-

portional to [O3] (see above). k11 displays a weak

temperature dependence, with recommended values

of ∼ 6–8× 10−12 cm3 molecule−1 s−1 between 400

and 740 K (Atkinson et al., 2004). By taking an av-

erage contact time for transport through the ovens

and cavity of 3 s (as in Sect. 2.1.5) and a value of
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k11 = 7× 10−12 cm3 molecule−1 s−1, we calculate the loss

of NO2 by adjusting the value of [O]ss / [O3] until agreement

with the experimental results is observed. This procedure

returns a value of [O]ss = [O3] /276 and is represented by

the thick, transparent red line in Fig. 6. This effective ratio of

[O] to [O3] is much smaller than that indicated above which

is partly a result of using an average transport time through

the oven and cavity and thus an average temperature, and

partly via loss of O atoms (see below).

Equation (2) thus enables us to perform a simple correc-

tion to account for NO2 loss though O3 decomposition in

the 723 K oven and TD cavity. The size of the correction de-

pends sensitively on the O3 concentration. For example, at

[O3]= 50 ppbv we calculate that from an initial NO2 mixing

ratio of 5 ppbv, we would lose 0.18 ppbv, i.e. less than 4 %.

To further our understanding of the processes involved, we

have also conducted numerical simulations of a simple reac-

tion scheme in which various amounts of O3 and NO2 pass

through the hot oven and piping, and are thereby exposed to

the temperature profile displayed in Fig. S4. The simulations,

which included Reactions (R8)–(R11) and also the reaction

of O with O3, showed that at high O3 levels, > 10 % of the

NO2 passing through the 723 K oven would be consumed by

the reaction with O, clearly overestimating the measured ef-

fect. The results of the series of simulations are summarised

in Fig. S5 which also shows the experimental data. Good

agreement (green data points) is obtained when an extra loss

term (e.g. wall loss) for the O atoms of≈ 70 s−1 was incorpo-

rated in order to reduce their steady-state concentration. This

is in accord with the observations of Day et al. (2002), who

also invoked a loss of O atoms to account for observed NO2

loss rates which were also much lower (factor of 4) than cal-

culated. In our system, the predicted loss of NO2 without O

atom wall loss (purple symbols) is a factor of ∼ 2 too large.

This may be partially a result of loss of O atoms to walls, but

may also be related to the fact that the pyrolysis rate constant

for O3 is highly temperature-dependent and a change in oven

temperature from 723 K to e.g. 703 K would reduce the O

atom concentration by a factor of ∼ 1.5.

2.1.7 Reactions of organic radicals with NO and NO2

The method of thermal dissociation of PNs or ANs to

NO2 and subsequent monitoring of NO2 requires knowl-

edge of the stoichiometry of the conversion factor under op-

erating conditions. As discussed already (Day et al., 2002;

Wooldridge et al., 2010), deviation from an ideal conversion

factor of unity occurs when the NO2 formed in the thermal

dissociation recombines with the organic radical, or when the

organic radical can react with other atmospheric substituents

(such as NO) to form NO2. The reactions which take place

in the 473 and 723 K inlets are discussed below.

473 K inlet

Alkyl nitrates pass through the 473 K inlet without dissocia-

tion so we need only to consider the fate of PNs. For PAN

(CH3C(O)O2NO2) the major reactions that either form or

consume NO2 are

CH3C(O)O2NO2+M→ CH3C(O)O2+NO2 + M (R12)

CH3C(O)O2+NO2+M→ CH3C(O)O2NO2+M (R13)

CH3C(O)O2+NO(+O2)→ NO2+CH3O2+CO2 (R14)

CH3O2+NO(+O2)→ HCHO + HO2+NO2. (R15)

HO2+NO→ OH + NO2 (R16)

OH + NO2→ HNO3 (R17)

Note that Reactions (R14) and (R15) are composite reactions

in which the initially formed CH3CO2 and CH3O either de-

compose and/or react with O2 to give the products listed.

Reaction (R13) results in underestimation of RO2NO2

mixing ratios, whereas Reaction (R14) and subsequent Re-

actions (R15) and (R16) of organic radical fragments result

in an overestimation by oxidising a fraction of any ambient

NO. These reactions compete with loss of the organic radical

to the wall of the hot quartz tubing or their thermal decompo-

sition so that the size of the artefact will depend non-linearly

on ambient levels of NO and NO2 as well as the concentra-

tion of RO2NO2. The reaction scheme above indicates that

when wall losses of the radicals are neglected, the presence

of sufficient NO can result in the generation of three extra

NO2 for each one formed directly in PAN decomposition.

Such effects can be reduced by operating the instrument

at very low pressures (and absolute trace gas concentrations)

as described by the Berkeley group (Wooldridge et al., 2010).

As discussed by Paul et al. (2009), this option is not available

for a CRDS instrument which generally operates at higher

pressures in order to maintain sufficient sensitivity.

Initial observations of an unchanging mixing ratio when

flowing samples of PAN or 2-propyl nitrate at levels of 1–

2 ppb through the inlet and cavities at flow rates of between

1 and 3 L (STP) min−1 (SLM), and thus varying the reaction

time by a factor of 3 indicated that such effects are small, in

accord with the observations of Paul et al. (2009) and the data

shown in Fig. S3. A detailed experimental investigation of

this artefact was conducted in a set of experiments in which

known amounts of NO or NO2 were added to a PAN sample

(between 500 and 5000 pptv) and the resultant NO2 formed

by thermal decomposition was monitored.

The results of experiments in which various concentrations

of NO2 were added to three different concentrations of PAN

are displayed in Fig. 7. In these experiments, PAN was sup-

plied from a diffusion source of PAN in tridecane held at

273 K.

In the absence of a recombination of CH3C(O)O2 rad-

icals and NO2, the difference between [NO2]TD 473 and

[NO2]ref (y axis) would be a flat line at the initial PAN
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Figure 7. Measurements of the difference signal (TD cavity sam-

pling from the 473 K inlet – NO2 reference cavity) with various

amounts of NO2 added and at three different PAN concentrations

(0.79, 2.45 and 7.50 ppbv). The error bars represent standard devi-

ation and were derived by propagating errors in the NO2 signals in

the TD and reference cavities. The blue lines show the results of

numerical simulations as described in Sect. 2.1.7.

concentration. The effect of reformation of PAN is clearly

seen in the data; therefore, at an initial concentration of

about 700 pptv of PAN, only 460 pptv would be detected as

[NO2]473− [NO2]ref if 8 ppb NO2 were also present. Even

in the absence of added NO2, [NO2]TD 473− [NO2]ref is

smaller than the amount of PAN added as some of the

700 pptv of the NO2 formed in the thermal dissociation re-

gion can also recombine with CH3C(O)O2.

In Fig. 8 we display the results of a similar set of experi-

ments in which NO was added instead of NO2. As expected

from the reaction scheme above, by adding NO we convert

CH3C(O)O2 radicals into NO2 and thus observe a positive

bias in the [NO2]TD 473–[NO2]ref signal. For an initial PAN

concentration of about 1000 pptv, the result of adding 4 pbbv

of NO is to overestimate the PAN concentration by about

180 %. These results are similar to those presented in Paul

and Osthoff (2010) who used a warmer TD temperature of

523 K (at 450 Torr) and found a roughly linear (negative) de-

pendence on NO2. They used a second-order polynomial ex-

pression to correct the non-linear, positive bias caused by the

presence of NO. However, as ambient air contains NO and

NO2 in greatly varying amounts and ratios, there is no sim-

ple analytical expression that can provide a correction for the

opposing effects of PN underestimation due to NO2 recom-

bination or PN overestimation as a result of peroxy-radical-

induced oxidation of ambient NO. The sign and size of the

bias depends on the concentrations of PN, NO and NO2 and

also the rate of wall loss of the peroxy radicals involved

(Wooldridge et al., 2010). In order to gain insight into the

reactions taking place in the ovens and in the piping leading

to the cavities and in the cavities themselves, we conducted
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Figure 8. Measurements of the difference signal (TD cavity sam-

pling from the 473 K inlet – NO2 reference cavity) with various

amounts of NO added and at two different PAN concentrations (0.74

and 7.40 ppbv). The error bars represent standard deviation and

were derived by propagating errors in the NO2 signals in the TD and

reference cavities. The blue lines show the numerical simulations as

described in Sect. 2.1.7. The apparent worsening of the agreement

between the model and the experiment at [NO] > 2.5 ppbv is the re-

sult of drifts in the PAN mixing ratio during this experiment. By

normalising to the PAN concentration (as in Fig. 10), the deviation

disappears.

a detailed set of numerical simulations (FACSIMILE, Curtis

and Sweetenham, 1987) of the laboratory experiments de-

scribed above.

The simulations were initialised with position-dependent

temperature gradients in the oven and subsequent piping and

cavities (see Fig. S4), which were derived by inserting a ther-

mocouple into the quartz tubing and measuring the temper-

ature of the inner wall at different distances from the cold,

front edge of the oven. As the 473 K oven and cavities were

maintained at 800 mbar, the large variation in temperature

resulted in significant gradients in the gas density and flow

velocity in hot and cold parts of the apparatus, which were

also accounted for in the simulations. The gas-phase reac-

tions accounted for in the chemical scheme are listed as sup-

plementary information, the temperature-dependent rate con-

stants being taken mainly from IUPAC (2015). The goal of

the simulations was to mimic the observed dependence of the

PN–NO2 signals on the amounts of NO and NO2 added (i.e.

the data in Figs. 7 and 8).

Initial simulations confirmed that the bias due to adding

NO and NO2 was dependent on the assumed wall loss rate

constant (kwall) of the HO and peroxy radicals. Simulations

with unrealistically large wall loss rates such as to make all

other radical reactions insignificant removed the bias com-

pletely and thus could not reproduce the observations. The

use of very small (or zero) values of kwall resulted in an over-

estimation of the bias. Although kwall clearly plays a role in
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determining the size of the bias, the use of a single value of

kwall was not able to reproduce the observed effect for differ-

ent initial PAN concentrations, with lower values of kwall re-

quired for experiments in which PAN was large. This obser-

vation is consistent with the radicals being lost to the surface

via a Langmuir–Hinshelwood-type mechanism, in which the

rates of surface reactions are inversely dependent on radical

densities, often described in terms of surface passivation.

The uptake coefficient (γ ) for a gas to a surface can be de-

scribed by the following expression (Crowley et al., 2010a):

1

γ
=

1

α
+

1

0s

+
1

0d

. (3)

Here, α is the accommodation coefficient, which in this case

we assume not to be rate-limiting and set as 1. 0d is related

to diffusive limitation to the uptake and, in tubular geometry,

is approximated by

0d =
3.66(2Dg)

c̄r
, (4)

where r (cm) is the radius of the tube, c̄ (cm s−1) is the mean

thermal velocity and Dg a diffusion coefficient (cm2 s−1).

Temperature- and pressure-dependent diffusion coefficients

for HO, HO2, CH3O2 and CH3C(O)O2 were calculated from

D(R,air)=
1.0868T 1.75

√
M(R,air)

(
3
√
VR +

3
√
Vair

)2
, (5)

where M is the reduced mass of R in air, R is one of HO,

HO2, CH3O2 or CH3C(O)O2 and V is the diffusion volume,

which can be calculated from diffusion volumes for the indi-

vidual atoms of each radical (Fuller et al., 1966).

In the case of a Langmuir–Hinshelwood reaction, we have

0s = A
KLangC

(1+KLangC[R])
. (6)

A is a composite term:

A=
4ks[Y ]Nmax

c̄
, (7)

where ks is the rate constant for the accommodated trace gas

reacting with a surface site Y , andKLangC and Nmax describe

the equilibrium partitioning of RO2 to the surface.

We treat A as a variable for optimising agreement be-

tween observations and the numerical simulation. In doing

this we make some broad simplifications: we take into ac-

count the temperature and molecular mass dependence of

the mean thermal velocity of HO2, CH3O2 and CH3C(O)O2

but do not consider the unknown temperature dependence of

terms such as ks and KLangC. We further assume that these

terms have the same value for all the peroxy radicals in-

volved and sum the concentrations of the peroxy radicals at

each time step, so that [RO2] in expression (Eq. 8) is equal to

[CH3C(O)O2]+ [CH3O2]+ [HO2].

We derive temperature and pressure and thus time-

dependent values of γ for each peroxy radical involved. This

is then converted to individual wall losses using

kwall (RO2)=
γ c̄

2r
. (8)

The time-dependent values of kwall varied between 0.3

and 0.8 s−1 with an average value (over the transport time

through the ovens and cavities) of∼ 0.5 s−1, which is similar

to the values of 0.2 and 0.3 s−1 derived for Teflon and quartz

surface reported previously (Wooldridge et al., 2010).

The results of the simulations are shown by the solid blue

lines in Figs. 7 and 8. In all cases the same reaction scheme

has been applied with only the initial concentration of PAN

varied to reproduce the data set. The simulations reproduce

the experimental data reasonably well over large variation in

PAN (∼ 700 to ∼ 7000 pptv) and NO/NO2, indicating that

the reaction scheme is a reasonable representation of the pro-

cesses taking place. Some deviation (at [NO] >∼ 3 ppb) be-

tween the measurement and model for the experiment with

PAN= 1.05 ppbv is observed which (at 7 ppbv) amounts to

∼ 25 %. This was largely due to fluctuations in the PAN

source during this particular experiment and the apparent dis-

crepancy disappears when normalised to the PAN amount, as

shown below for the same data set.

The results of one experiment in which both PAN

(∼ 560 pptv) and NO (500 pptv) were initially present, and

in which NO2 was varied, are also captured well by the sim-

ulations, showing that multicomponent mixtures are also cor-

rectly represented (Fig. S6).

One further test was conducted using a photochemical

source of PAN which converts NO to NO2 and then to PAN at

a yield of > 90 % (see above). This source is free of NO and

NO2 in significant amounts and can deliver a calibrated PAN

amount if the NO mixing ratio is well characterised. The lack

of NO2 in this source was confirmed by observation of (no)

NO2 in the unheated, reference cavity. The cavity sampling

from the 473 K oven displayed the expected increase in NO2,

whereas the cold channel showed negligible amounts. The re-

sults are displayed in Fig. S7 in which we plot [NO2]TD 473–

[NO2]ref (solid squares) against that calculated from the con-

version factor of NO to PAN and the degree of dilution (solid

line). The results indicate that the amount of PAN detected

is slightly less than calculated at the lowest mixing ratio and

that the bias is enhanced at high PAN mixing ratios, consis-

tent with the recombination of CH3C(O)O2 with NO2 com-

peting with wall loss of CH3C(O)O2. The open circles rep-

resent the results of a set of simulations (random amounts

of PAN) using the same model as described above and ini-

tialised with NO and NO2 mixing ratios of zero. The model

reproduces the negligible effect of radical recombination at

the lowest PAN mixing ratios and captures the dependence

of the bias on PAN over a large range (factor of 10) of PAN

mixing ratios, further validating its applicability to systems

with varying amounts of PAN, NO and NO2.
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In summary, the model simulations yield correction factors

for the amount of NO2 formed by PAN decomposition, which

depends on the mixing ratios of PAN, NO and NO2. For ex-

ample, ambient mixing ratios of∼ 550 pptv PAN,∼ 520 pptv

NO and 2100 pptv NO2 would result in detection of 518 pptv

NO2 in the TD channel, which thus has a bias of – 32 pptv,

requiring a correction factor of 1.06 (i.e. 6 %). For similar

PAN and NO2 concentrations, but with NO reduced to close

to zero (e.g. at night) the correction factor increases to 1.28.

Correction factors less than unity are only found when NO

is in excess of NO2; e.g. for 550 pptv of PAN with 5100 pptv

NO and 1600 pptv NO2, the correction factor is 0.55.

In Sect. 4 we apply PAN, NO and NO2 concentration-

dependent correction factors to a set of data from a field

campaign (PARADE, 2011). In order to do this, the results

of > 90 000 simulations were stored in a look-up table from

which correction factors for triads of PAN–NO–NO2 mixing

ratios could be read. The results of the full set of simulations

are summarised in Fig. S8. As expected, correction factors

greater than unity are associated with high NO2 mixing ra-

tios and those less than unity with large NO mixing ratios.

In both cases, the correction factor is smallest when PAN is

low (at the limit of zero PAN, there are no RO2 to recombine

with or generate NO2).

723 K inlet

At the higher temperatures of the 723 K inlet, the chemistry

of acetyl and acetyl peroxy radicals is significantly modified

compared to that detailed above. The main difference is that

the CH3C(O)O2 radical initially formed in PAN decomposi-

tion is thermally instable and can decompose to the acetyl

radical (CH3CO) and O2 (Reaction R18a) or isomerise to

CH2C(O)OOH (Reaction R18b) (Lee et al., 2002; Carr et al.,

2011):

CH3C(O)O2+M → CH3CO+O2+M (R18a)

→ CH2C(O)OOH. (R18b)

The major fate of CH2C(O)OOH is thermal decomposition

to OH and a singlet α-lactone (Carr et al., 2011).

CH2C(O)OOH→ OH+1C2H2O2 (R19)

The acetyl radical formed in (Reaction R18a) can decompose

to CH3+CO (Reaction R20) or react with O2 to reform the

peroxy radical (Reaction R21a) or form OH (Reaction R21b)

and the singlet α-lactone (Tyndall et al., 1995; Carr et al.,

2007, 2011; Chen and Lee, 2010; Groß et al., 2014; Papadim-

itriou et al., 2015):

CH3CO→ CH3+CO (R20)

CH3CO + O2+M→ CH3C(O)O2+M (R21a)

CH3CO + O2→ OH+1C2H2O2 (R21b)

CH3+O2+M→ CH3O2+M. (R22)

CH3 formed in Reaction (R20) will react with O2 to form the

methyl peroxy radical (Reaction R22).

At 723 K, Reactions (18)–(21) proceed on timescales of

milliseconds or shorter, the net effect being the destruction of

CH3C(O)O2 on a timescale that is short relative to its other

loss processes including loss at the wall, recombination with

NO2 or reaction with NO. The radical products formed in

these steps are OH and CH3O2. The loss of CH3C(O)O2 at

723 K will obviously reduce the potential for reformation of

PAN via Reaction (R13) so that the effect of adding NO2

should be significantly reduced when compared to the inlet

at 473 K. The reaction of CH3O2 with NO2 also forms a per-

oxy nitrate (CH3O2NO2), but one which is unstable with re-

spect to decomposition back to reactants even at moderate

temperatures and this reaction does not lead to significant se-

questering of NO2.

The effect of adding NO2 was explored in a set of experi-

ments with different initial PAN mixing ratios and with NO2

varied up to ∼ 20 ppbv. The results are displayed in Fig. 9

which plots the ratio of NO2 from PAN thermal dissociation

to the amount of PAN added vs. [NO2] added. Ideally, in the

case of complete dissociation of PAN to NO2 and no subse-

quent recombination, this should be close to a value of unity

and independent of the mixing ratio of NO2 added and this

is indeed what is observed when sampling from the 723 K

inlet. We conclude that at 723 K, there are insufficient per-

oxy radicals to remove NO2, and that measurements using

this inlet are insensitive to variations in ambient NO2 up to

about 20 ppbv. By way of comparison we also plot the data

obtained using the 473 K inlet in the same manner to empha-

sise the significant dependence on added NO2 in the cooler

inlet as described above. This is consistent with the measure-

ments of Paul et al. (2009) who also observed a lack of de-

pendence on added NO2 using a 723 K oven operated at a

similar pressure (450 Torr).

A similar set of experiments was carried out with NO

added instead of NO2, in this case to investigate potential

bias from the oxidation of ambient NO to NO2 as seen for

the 473 K inlet. The results are presented in Fig. 10, which

plots the ratio of NO2 from PAN thermal dissociation to the

amount of PAN added vs. [NO] added. In the absence of any

unwanted NO2 formation resulting from NO oxidation, the

result should be a flat line with an intercept of 1. Figure 10

shows that NO is converted to NO2 in the 723 K inlet, though

the effect is much reduced when compared to the 473 K in-

let. For example, the effect of adding 10 ppb NO is to bias

the PAN measured by a factor 2.75 sampling from the 473 K

inlet and 1.5 when sampling from the 723 K inlet. There is

no significant difference in the bias when PAN was varied

between 1 and 2.5 ppb. Note that the data plotted here for the

473 K inlet are the same as those in Fig. 8.

As described in detail above, the large bias seen when sam-

pling from the 473 K inlet results mainly from reactions of

CH3C(O)O2 with NO. As CH3C(O)O2 decomposes rapidly

at 723 K, the oxidation of NO to NO2 at this temperature
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Figure 9. Measurements of the difference signal (TD cavity sam-

pling from the 473 (squares) or 723 K inlet (circles) – NO2 refer-

ence cavity) when adding different amounts of NO2 to PAN sam-

ples (740 or 2200 pptv). [NO2]TD refers to the mixing ratio of NO2

measured in the TD cavity sampling from either the 473 or 723 K

inlet. The blue line denotes the model prediction of the effect of

adding NO2 to the 723 K inlet. The black line shows an exponential

fit to the NO2 measured when sampling from the 473 K inlet and is

added to guide the eye. The error bars represent standard deviation

and were derived by propagating errors in the NO2 signals in the

TD and reference cavities.

is expected to be via the CH3O2 radicals formed in Re-

actions (R20)–(R22) and also via conversion of CH3O2 to

HO2 in the presence of NO/O2 (Reaction R15). This could

be qualitatively confirmed by extending the simulations de-

scribed above to cover the temperatures of the 723 K in-

let. In order to do this, we scaled the temperature profile

to peak at 723 K (instead of 473 K) and also added Re-

actions (R18)–(R22). The rate coefficients used were from

Baulch et al. (2005) (Reaction R20), (Papadimitriou et al.,

2015) (Reaction R21a and R21b) with the dissociation and

isomerisation rate constants taken from Lee et al. (2002). We

note that, as these rate constants are poorly characterised at

723 K and that, even at 298 K, there is disagreement con-

cerning e.g. the yield of OH from CH3CO+O2 (Carr et

al., 2007; Groß et al., 2014; Papadimitriou et al., 2015), per-

fect agreement between observation and simulation is not ex-

pected. The simulation shown in Fig. 10 (blue line, labelled

A) does however capture the observed reduction in oxidation

of NO to NO2 in the 723 K inlet compared to the 473 K inlet

(blue line, labelled “C”). Simulation C was obtained using

the same simulation but with the temperature profile for the

473 K inlet.

The amount of NO2 formed depends on the abundance

of CH3O2 and HO2, so that the simulated NO2 genera-

tion is favoured by higher rates of CH3C(O)O2 dissociation

to CH3CO rather than isomerisation to CH2C(O)OOH, and

higher rates of CH3CO dissociation to CH3 relative to reac-
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Figure 10. Measurements of the difference signal (TD cavity sam-

pling from the 473 (squares) or 723 K inlet (circles) – NO2 ref-

erence cavity) when adding various amounts of NO to PAN sam-

ples (1000 or 2500 pptv). [NO2]TD refers to the mixing ratio of

NO2 measured in the TD cavity sampling from either the 473 or

723 K inlet. The simulations (blue lines) labelled A and B are model

predictions of the effect of adding NO2 to the 723 K inlets using

different rate constants for the rearrangement of CH3C(O)O2 to

CH2C(O)OH (see text for details). The simulation labelled C cor-

responds to the 473 K inlet. The error bars represent standard devi-

ation and were derived by propagating errors in the NO2 signals in

the TD and reference cavities. The black lines show exponential fits

to the data as described by the expressions given.

tion with O2, which ultimately leads to OH (which can re-

move NO2 by forming HNO3) rather than CH3O2 or HO2.

An improved match between the observation and the model

(Fig. 10, blue curve marked “B”) was achieved by reducing

the rate of isomerisation of CH3C(O)O2 to CH2C(O)OOH

to 20 % of the value reported by Lee et al. (2002) at 723 K.

This value is strongly dependent on calculated barrier heights

and is particularly uncertain, as has been noted by Carr et

al. (2011). We do not seek to imply that our data constrain

such kinetic parameters as there are certainly other factors

that can affect the NO2 production rate, including the rates of

wall losses of radicals and the relative rates of decomposition

and isomerisation of CH3C(O)O2 and the thermal stability of

CH3CO.

In summary, in the absence of ANs, the experiments sam-

pling PAN via the 723 K inlet reveal that there is no signif-

icant bias when adding NO2, and that the (positive) bias in-

troduced by the addition of NO is independent of the amount

of PAN, at least up to 2–3 ppbv PAN. This simplification of

the chemistry compared to the 473 K inlet removes the need

for complex simulations to correct the data set. The NO2

mixing ratio resulting from the presence of PAN and NO

in the 723 K inlet is adequately described by the expression

PAN∗ (1+ 0.9(1− exp(−0.08∗NO))), with NO being the NO

mixing ratio in ppb (solid black line in Fig. 10), which re-

turns correction factors of 0.94 at 1 ppb NO and ∼ 0.64 at
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∼ 10 ppbv NO and is valid for NO mixing ratios up to about

10 ppbv. These NO-dependent factors must be applied to the

PAN mixing ratios prior to subtracting them from the total

NO2 signal (from6ANs+6PANs) when sampling from the

723 K inlet.

We now consider the chemistry taking place when ANs are

present. For the 723 K inlet and considering 2-propyl nitrate,

the additional reactions are

2-C3H7ONO2→ 2-C3H7O + NO2 (R23)

2-C3H7O + O2→ CH3C(O)CH3+HO2 (R24)

2-C3H7O + M→ CH3+CH3CHO + M (R25)

HO2+NO→ NO2+OH. (R26)

The CH3 radical is immediately converted to CH3O2 so that

the radical pool is again a mixture of CH3O2 and HO2, both

of which may convert NO to NO2. As neither CH3O2NO2

nor HO2NO2 are sufficiently thermally stable to sequester

NO2 these radicals should not lead to loss of NO2 via re-

combination. In the 723 K inlet, this chemical system should

therefore behave similarly to the one described above for

PAN, i.e. should suffer from positive bias when adding NO

but no negative bias when adding NO2.

The results from a set of experiments to explore the effects

of adding NO2 to various amounts of 2-propyl nitrate are dis-

played in Fig. 11. NO2 was varied between ∼ 0.5 and 12 ppb

for 2-propyl nitrate mixing ratios of 0.35, 0.75 and 2.6 ppb.

The bias from adding NO2 at these levels is not measurable at

the lowest 2-propyl nitrate mixing ratios, though the data at

2.6 ppb indicate a weak reduction in the measured AN mix-

ing ratio. The model described above was extended with Re-

actions (R23) to (R26) and initiated with the 2-propyl nitrate

mixing ratios observed in the absence of extra NO2. The re-

sults are shown by the blue lines in Fig. 11. Once again the

model satisfactorily predicts the trends observed for each ex-

periment, including the weak loss (5 %) of NO2 observed at

the highest 2-propyl nitrate mixing ratio. The simulations re-

vealed that the sole significant “reservoir” of this missing 5 %

of 2-propyl nitrate was in the form of CH3O2NO2.

Experiments with various amounts of added NO are sum-

marised in Fig. 12. The positive bias caused by oxidation of

NO to NO2 is apparent, and at NO mixing ratios of 8 ppb, re-

sults in a ∼ 60 % overestimation of the 2-propyl nitrate mix-

ing ratio. The model (blue lines) also indicates that this is

expected, the main oxidant of NO being CH3O2. The effect

of adding 5 ppb of NO2 is not observable, consistent with the

weak effects described above in the absence of NO2.

A more detailed look at the relative bias caused by adding

NO is provided by Fig. 13, which plots the ratio of the AN

signal in the presence of NO to that without added NO. There

is no clear trend in the data set with the largest effects (i.e.

the uppermost and lowermost data points not associated with

the extremes of 2-propyl nitrate mixing ratios. The positive

bias caused by the presence of NO is adequately described by

the expression 1+ 1.8(1− exp(−0.08∗NO)), with NO being
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Figure 11. Measurements of the difference signal (TD cavity sam-

pling from the 723 K inlet – NO2 reference cavity) when adding

different amounts of NO2 to 2-propyl nitrate samples (0.35, 0.75

or 2.6 ppbv). The error bars represent standard deviation and were

derived by propagating errors in the NO2 signals in the TD and ref-

erence cavities. The blue lines show the model predictions of the

effect of adding NO2 to the 723 K inlet as described in the text.

0 2 4 6 8

1

1 0

[NO
2] TD

 72
3 - 

[NO
2] ref

[ N O ]  a d d e d  ( p p b v )

  [ 2 - p r o p y l  n i t r a t e ]
 0 . 5 5  ( p p b v )
 0 . 5 6  ( p p b v )
 0 . 6 2  ( p p b v )
 5 . 7 8  ( p p b v )
 2 . 9 2  ( p p b v )

Figure 12. Measurements of the difference signal (TD cavity sam-

pling from the 723 K inlet – NO2 reference cavity) when adding dif-

ferent amounts of NO2 to 2-propyl nitrate samples (0.55, 0.56, 0.62,

2.92 or 5.78 ppbv). The sample with 0.62 ppbv 2-propylnitrate also

contained ∼ 5 ppbv of NO2. The error bars represent standard devi-

ation and were derived by propagating errors in the NO2 signals in

the TD and reference cavities. The blue lines show the model pre-

dictions of the effect of adding NO to the 723 K inlet as described

in the text.

the NO mixing ratio in ppb. This is plotted as the solid black

line in Fig. 13. The blue lines indicate the model prediction

when initialised with 0.56 (upper blue line) and 5.78 ppbv

(lower blue line) 2-propyl nitrate, respectively. The model

correctly predicts the strong response of adding NO and the
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Figure 13. Relative change in difference signal

([NO2]TD 723− [NO2]ref) / [2PN]0)) as a function of added

NO for six different 2-propyl nitrate (2PN) mixing ratios. [2PN]0

is the measured mixing ratio of 2-propyl nitrate in the absence of

added NO. The sample with 0.62 ppbv 2-propyl nitrate also con-

tained∼ 5 ppbv of NO2. The black line is defined by the expression

([NO2]TD 723− [NO2]ref) / [2PN]0)= 1+ 1.8× (1− exp(−0.08[NO])),

where [NO] is the mixing ratio of NO in ppbv. The blue lines show

model results with 0.56 and 5.7 ppbv 2-propyl nitrate.

weak effects caused by using two different 2-propyl nitrate

concentrations that differ by a factor of ∼ 10.

We conclude that the (negative) bias caused by addi-

tion of NO2 to samples of 2-propyl nitrate is small and,

to a good approximation, independent of the 2-propyl ni-

trate mixing ratio. The positive bias caused by oxidation of

NO (by CH3O2) is sufficiently large to require correction,

the appropriate factor given by the inverse of the expression

1+ 1.8(1− exp(−0.08∗NO)).

As a final test of our understanding of the chemistry, ex-

periments were conducted in which the four components, NO

(0.5 ppbv), NO2 (varied), PAN (0.53 ppb) and 2-propyl ni-

trate (0.19 ppb), were present. The results are displayed in

Fig. 14. The model (blue lines) correctly predicts the total

signal observed in both channels, allowing us to conclude

that within experimental error, the model chemistry simu-

lates the effects of radical recombination and radical-induced

oxidation of NO to NO2 in both inlets/cavities.

In summary, the correction procedure when sampling from

the 453 and 723 K inlets is as follows. (1) We use the

model simulation results in the form of look-up tables with

measured NO and NO2 concentrations and the total signal

[NO2]TD 473− [NO2]ref to derive (by inversion) the correct

PAN mixing ratios. (2) This PAN mixing ratio is used to

calculate its (NO-dependent) contribution to the observed

total NO2 measured when sampling from the 723 K inlet.

This contribution is subtracted and the result divided by

1+ 1.8(1− exp(−0.08∗NO)). This leads to the final expres-

sion to derive corrected 6ANs:
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Figure 14. Dependence of ([NO2]TD 473− [NO2]ref) and

([NO2]TD 723− [NO2]ref) on added NO2 in the presence of PAN

(0.53 ppbv) and AN (0.19 ppbv). The error bars represent standard

deviation and were derived by propagating errors in the NO2

signals in the TD and reference cavities. The blue lines show the

model results as described in the text.

[ANs]=
[NO2]TD 723− [NO2]ref− [PAN]F1

F2
, (9)

with correction factors F1= 1+ 0.9(1− exp(−0.08[NO]))

and F2 = 1+ 1.8(1− exp(−0.08[NO])), where [i] are mix-

ing ratios in ppbv. When the NO mixing ratio is zero, Eq. (9)

reduces to [ANs]= [NO2]TD 723− [NO2]ref− [PAN].

The laboratory tests we describe above provide insight into

the radical reactions that take place in the heated inlets. The

tests were conducted with PAN as a representative peroxy

nitrate and with 2-propyl nitrate representing alkyl nitrates.

Although the initial thermal decomposition of other PNs and

ANs is likely to be follow a very similar pattern (Day et al.,

2002; Wooldridge et al., 2010; Perring et al., 2013), we can-

not rule out that the organic radicals, formed with, e.g. differ-

ent functional groups, will behave somewhat differently and

would thus require modified correction factors. Comparison

with instruments measuring both speciated and summed PNs

and ANs would be required to examine this.

2.1.8 Other absorbing trace gases at 405–408.5 nm

The potential for systematic error owing to light absorp-

tion at 405 or 408.5 nm is limited to a small number of

trace gases that absorb at such wavelengths. Those known

to be present in the atmosphere are dicarbonyls, such as gly-

oxal (CH(O)CH(O)), methylglyoxal (CH3C(O)CH(O)) and

biacetyl (CH3C(O)CH3C(O)), which are formed from the

degradation of many volatile organic compounds including

isoprene and aromatics (Atkinson, 1994; Calvert et al., 2000,

2002). The absorption cross sections of these dicarbonyls at
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wavelengths between 405 and 410 nm are approximately 6

(±2)× 10−20 cm2 molecule−1 (Meller et al., 1991; Atkinson

et al., 2006; IUPAC, 2015), about a factor 10 lower than those

of NO2 (see Fig. 2). Although high mixing ratios of e.g. gly-

oxal (> 1 ppbv) have been observed in polluted environments

(Volkamer et al., 2005a), its contribution to absorption is es-

timated to be insignificant compared to NO2 (Fuchs et al.,

2009). In rural environments, peak mixing ratios of glyoxal

and methylglyoxal of up to 200–300 pptv have been reported

(Lee et al., 1995; Huisman et al., 2011). This would gener-

ate a bias of ∼ 20–30 pptv in the NO2 measurement, which

corresponds to an error of 5 % if NO2 levels are less than

∼ 400 pptv.

NO3 radicals also absorb at 405 nm, with a cross section

of ∼ 3× 10−20 cm2 molecule−1, i.e. a factor of 20 less than

NO2. NO3 mixing ratios of several hundred pptv (only at

night) have been reported (see e.g. Crowley et al., 2010b)

so that the NO3 contribution to extinction at ∼ 400 nm could

exceed that of the dicarbonyls discussed above. However, as

NO2 serves as precursor to NO3, its mixing ratios are always

much larger; therefore, even if NO3 were efficiently sampled

into the cavity, its contribution to absorption at 405 nm would

be negligible.

2.1.9 Detection of N2O5 (473 K) and ClNO2 (723 K)

Numerous studies have reported the measurement of N2O5

via thermal dissociation at temperatures between 80 and

100 ◦C to NO3, which may be detected by CRDS at 662 nm

(see e.g. Brown and Stutz, 2012, and references therein). As

the co-product of the thermal dissociation is NO2, the pres-

ence of N2O5 also represents a potential interference when

sampling from either of the heated inlet lines. We have used

the thermal dissociation of N2O5 and detection of NO2 using

CRDS at 405 nm to detect N2O5 in this manner in laboratory

investigations (Tang et al., 2012).

N2O5 is not present in significant mixing ratios during the

day but can represent a significant fraction of oxidised nitro-

gen at night-time. In the data set obtained in the PARADE

campaign, we observed occasional increases in NO2 when

sampling from the heated inlets that were strongly corre-

lated with the presence of N2O5 (measured by TD-CRDS

at 662 nm, Crowley et al., 2010b). Correction for an N2O5

contribution could however not be accurately applied as the

sampling efficiency (through ≈ 10 m of PFA tubing) was un-

known but evidently less than unity as the features observed

in the NO2 instrument were weaker than those in the N2O5

instrument. In addition, the NO3 formed may also react with

any NO available (generating two more NO2) or with hydro-

carbons, so that the stoichiometry of N2O5 to NO2 conver-

sion may be variable.

For the PARADE campaign data set we therefore chose

to eliminate data during episodes of high N2O5 (> 150 pptv).

We conclude that undesired detection of N2O5 as NO2 when

sampling from the heated inlets can be a significant source of

uncertainty when measuring 6PN at night-time, especially

if measurements of N2O5 are not available. As both heated

channels will decompose N2O5 to NO2 the measurement of

the 6ANs (obtained as the difference signal) should not be

impacted by the presence of N2O5.

A potential interference specific to the 723 K channel re-

sults from the thermal decomposition of ClNO2, which is

formed in the heterogeneous reaction of N2O5 on chloride-

containing particles at night-time. In a series of laboratory

experiments using this instrument (Fig. S9) we showed that

a sample of ClNO2 was detected as NO2 at oven tempera-

tures above ∼ 680 K, consistent with that reported by Thaler

et al. (2011). As ClNO2 can represent a significant fraction of

NO2 at night-time and in the early morning (see. e.g. Osthoff

et al., 2008; Thornton et al., 2010; Phillips et al., 2012; Wag-

ner et al., 2012; Mielke et al., 2013) it will represent a signifi-

cant source of uncertainty in the measurements of the 6ANs

when present. In this case, the only correction possibility re-

quires the simultaneous measurement of ClNO2. During the

PARADE campaign (see later), early-morning ClNO2 levels

approached 800 pptv; therefore large corrections had to be

applied to extract 6ANs during these periods.

2.1.10 Precision

The precision of the measurements of NO2 in the reference

cavity and TD cavities was derived by continuous sampling

of zero air. Equivalent NO2 mixing ratios were calculated

for conditions of 893 mbar and 35 ◦C. The results are sum-

marised in Fig. 15 where the upper panel shows the raw

data converted to NO2 mixing ratio equivalents. The regu-

lar spaces in the data are zeroing periods as they would have

been measured in a normal experiment. The baseline which

is plotted for a 2 h time interval here shows no long-term

trend, indicating that the zero measurements every 5–10 min

are sufficient to capture drifts in ring-down related to the

variability of the cavity performance. The lower panel is an

Allan deviation plot for this cavity (red curve), which shows

that the 1 σ precision improves for integration times up to

∼ 40 s and follows the expected square root dependence (red,

dashed line) up to an integration time of ∼ 10 s. The preci-

sion at 1 s integration time is 28 pptv, improving to 5–6 pptv

at 40 s.

The precision obtained with the TD cavity (sampling from

the 723 K inlet) was investigated by adding a constant mixing

ratio (∼ 700 pptv) of 2-propyl nitrate and measuring the dif-

ference signal between the reference and TD cavities. These

results are shown in the middle panel (raw data) and in the

Allan deviation plot (blue lines). The precision of the mea-

surement improves from ∼ 10 % for 4 s integration time to

about 3 % for 1 min integration time and follows a square

root dependence up to ∼ 10 s integration time.
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Figure 15. The upper panel (red data points) displays a time series

of raw NO2 data (5 s intervals) when sampling zero air. The mid-

dle panel (blue data points) shows a series of measurements when

sampling a constant flow of 2-propyl nitrate (∼ 700 pptv) from the

723 K inlet. The lower panel is an Allan deviation plot showing the

dependence of the measurement precision (1 σ) on the signal inte-

gration time in the reference cavity (red curve) and TD cavity (blue

curve). The dashed lines represent precision expected for random

noise.

2.1.11 Total uncertainty

NO2 measurement

Several sources of systematic error may contribute to the to-

tal uncertainty of the NO2 measurements in the reference

cavity; these are as follows:

– error in determination of the effective cross section

σLaser:≤ 5 %, which also accounts for uncertainty in the

absolute NO2 cross sections of Voigt et al. (2002);

– wavelength stability of the laser emission over longer

measurement periods: ≤ 3 % based on variability of the

emission spectra (recorded at 20 min intervals);

– error in l/d ratio: ∼ 1 % (see above);

– error in pressure and temperature stability of the cavi-

ties: ∼ 0.5 %;

– NO2 mixing ratio in zero air bottles: < 20 pptv (see

above);

– error in humidity correction: considering the difference

in values of1σ 405−409 nm
Rayleigh derived in this work and those

of Fuchs et al. (2009) (see Sect. 2.1.3) we estimate an

error of about 20 % in this correction factor; this con-

verts to an error of ≤ 20 pptv at 100 % RH;

– possible interference from other absorbers: normally

negligible but must be assessed on a case-to-case basis.

At very low NO2 mixing ratios, the uncertainty of the NO2

measurements is therefore mainly influenced by the amount

of NO2 within the zero air bottles and the correction applied

for the scattering effect of ambient H2O, whilst at larger NO2

mixing ratios, the uncertainty is mainly determined by the

uncertainty in the effective cross section and laser stability.

The uncertainty of the NO2 measurement stemming from

systematic errors is thus 6 %+ 20 pptv+ (20 pptv∗RH/100),

where RH is in percent. For any given integration period, the

total uncertainty may be obtained by adding the precision

quoted above and is e.g. 11 %+ 30 pptv for a 40 s sampling

period, with a relative humidity of 50 %.

Measurement of PNs

As this is a difference measurement, the uncertainty in the

corrections for the potential presence of NO2 in the zero air

or errors in 1σ 405−409 nm
Rayleigh do not contribute to overall uncer-

tainty. The major source of uncertainty is associated with the

corrections made for reactions of radical fragments with NO

and NO2 (Sect. 2.1.7). Although performing the correction

via modelling of the chemistry in the hot inlets and subse-

quent tubing is clearly complex, the fact that laboratory data

covering a large parameter space can be simulated well indi-

cates that the error in the correction is less than 15 % at the

largest PAN, NO and NO2 mixing ratios investigated. How-

ever, as we have only performed these tests for PAN and not

for other peroxy acyl nitric anhydrides, we increase the max-

imum uncertainty on this correction factor to a conservative

estimate of 30 %. As the size of the correction increases non-

linearly with each of PAN NO and NO2 mixing ratios, no sin-

gle uncertainty can be given. As an example, at 1 ppb PAN,

the correction factor required in the presence of 1 ppb NO

and 5 ppb NO2 is 1.09± 0.22. In the absence of NO (e.g. at

night-time) the same concentrations of PAN and NO2 require

a correction factor of 1.52± 0.30.

Measurement of ANs

As the instrument has only two measurement cavities sam-

pling from three inlets, the derivation of 6ANs while sam-

pling from the 723 K inlet requires interpolation of the mea-

surements from the 473 K inlet. The overall uncertainty for

the measurements of the6ANs thus depends on the variabil-

ity of the measurements of the 6PNs. A further source of

uncertainty is associated with the corrections made for re-

actions of radical fragments with NO and NO2 as described

in Sect. 2.1.7. The largest errors in 6ANs will be associ-

ated with air masses with high 6PN and low 6ANs, as

this will amplify any error in the correction related to the

different efficiency of sampling of 6ANs from both inlets,

which itself is a function of the NO and NO2 concentra-

tions. For example, using expression Eq. (9), and adding a

[NOx]-dependent error to the PAN, F1 and F2 correction

factors (increasing from 0 to 10 % error when going from
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0 to 5 ppb NO), we calculate a total possible error of ∼ 16 %

if [NOx]= [PAN]= 1 ppb, increasing to ∼ 50 % at 5 ppb of

NO.

Clearly, the accuracy of the6PN measurement and its cor-

rection will critically impact on the accuracy of the 6AN

measurement. As we indicate later, reliable 6AN measure-

ments are made under certain conditions (low PAN variabil-

ity and [NO2] <∼ 5 ppbv).

3 Ambient data sets for NO2, 6PNs and 6ANs

A summer field campaign of ∼ 3 weeks’ duration at the

Taunus Observatorium on the Kleiner Feldberg (Crowley et

al., 2010b; Phillips et al., 2012) provided opportunity for

comparison of the present CRDS system for measurement

of NO2 and 6PNs with established instruments under vari-

able conditions. The Taunus Observatorium is in a rural area

impacted by emissions from several local sites between 30

and 40 km distance away. Typical NOx levels are between 1

and 2 ppb, with occasional excursions up to peak values of

> 10 ppb (Crowley et al., 2010b). Summertime PAN levels

of at the site had been reported as part of a PhD thesis with,

campaign averaged, mid-afternoon maximum concentrations

of about 1 ppb (Handisides, 2001).

3.1 NO2 measurements

The established instruments used for comparison were (for

NO2) a chemiluminescence detector (CLD) with a blue-

light converter and a long-path differential optical absorp-

tion spectrometer, DOAS. These instruments are described in

detail elsewhere (Crowley et al., 2010b; Pöhler et al., 2010;

Hosaynali Beygi et al., 2011; Merten et al., 2011; Suitters,

2012).

TD-CRDS vs. CLD

Both instruments sampled air via PFA tubing with co-located

inlets about 8 m above ground level and 2 m above the plat-

form structure to which the inlets were attached. In both

cases, bypass flows were used to reduce the residence time

in the inlets. The TD-CRDS sampled at a rate of ∼ 0.2 Hz,

the CLD at∼ 1 Hz. The accuracy of the CLD measurements,

defined partially by calibration accuracy, blue-light converter

efficiency, and assumptions about levels of NO2 in zero air,

is reported to be ∼ 10 % during the PARADE campaign (Li

et al., 2015).

The data displayed in Fig. 16 (upper panel) show the corre-

lation between 1 min averaged NO2 mixing ratios derived by

these two instruments. The error bars are the reported stan-

dard deviation over the sampling interval, and reflect atmo-

spheric variability rather than instrument precision. Agree-

ment is good, with a slope 0.906± 0.0003 for the bivariate

(York) fit to the data and an intercept of −115± 0.7 pptv.

An unweighted fit gives values of 0.889± 0.0006 and

Figure 16. Comparison of NO2 data (reference cavity) from the

TD-CRDS with two established instruments. Upper panel: chemi-

luminescence detector (CLD), 1 min data averages. Lower panel:

long-path differential absorption spectrometer (DOAS), 10 min data

averages. The red solid lines are weighted bivariant fits considering

reported standard deviations for both instruments; the dashed line is

an unweighted fit. For the DOAS comparison, only data were used

for which the CRDS indicated standard deviations of less than 5 %

(over 10 min intervals).

−86± 2 pptv. Irrespective of the method of weighting used,

the deviation of the slope from unity lies within the com-

bined uncertainty of the instruments. A statistically signifi-

cant, negative intercept as observed would be e.g. the result

of low levels (∼ 100 pptv) of NO2 present in the zero air used

to zero the CLD, or the photochemical/surface-activated de-

composition (to NO2) of surface adsorbed trace gases (e.g.

nitrates) in the blue-light converter during zeroing.

CRDS vs. DOAS

The lower panel of Fig. 16 shows the correlation between

the CRDS and DOAS instruments. The DOAS measured

NO2 over an optical path length of ≈ 3 km, with the light

source and spectrograph located within a few metres of the

CRDS inlet. The DOAS measurements of NO2 were made
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every 10 min. Spatial inhomogeneity in NO2 mixing ratios

will result in reduced agreement between a point measure-

ment (CRDS) and that of the DOAS, which integrates over

a large area. For this reason we compare only data in which

the temporal variability in the CRDS signal results in stan-

dard deviations over the 10 min averaging interval of less

than 5 %. Such data sets are likely to be characterised by

good spatial homogeneity over the same time period and are

more suitable for comparison. The resulting slope and inter-

cept from the weighted, bivariant fit are 1.008± 0.002 and

−0.034± 0.006 ppbv, respectively. The unweighted fit re-

sulted in values of 0.962± 0.006 and 0.025± 0.002 ppbv, re-

spectively, both fits indicating excellent agreement between

these instruments.

We conclude that the CRDS measurements of NO2 com-

pare well with two well-established instruments, confirming

the experimental concept and the accuracy of the correction

factors applied.

4 Measurement of 6PNs and comparison with PAN

measured by TD-CIMS

During PARADE, speciated PANs were measured using a

TD-CIMS (Phillips et al., 2013). The CIMS instrument is

able to distinguish between different acyl peroxy nitrates

such as PAN, PPN or MPAN, while the TD-CRDS mea-

sures the sum of all the individual nitrates. The TD-CIMS

requires an in situ calibration using a photochemical source

of PAN. This PAN calibration source was characterised us-

ing the TD-CRDS instrument, employing the correction fac-

tors described above. As the calibration was conducted at

∼ 500 pptv of PAN, and in the absence of extra NO2 or NO,

the correction factor for the CRDS measurements (1.06) was

small.

Figure 17 shows the comparison between the PAN mea-

surements by CIMS and 6PNs measured by the TD-CRDS.

The correlation between the measurements is very good

(R2
= 0.93), with a slope of 1.31 and an intercept of

−34 pptv. The data are coloured according to [NO] and in-

dicate no obvious bias due, e.g., to the existence of high NO

levels. The correction factors applied to the TD-CRDS data

set were in the range of 0.8–1.5, mostly however close to

1.15± 0.1. This is illustrated in the frequency distribution

plot in Fig. S10.

The slope of greater than unity indicates the presence

of peroxy nitrate species such as PPN, MPAN and APAN,

which thus represent ∼ 24 % of total PNs. In addition to

PAN, the TD-CIMS monitored five masses corresponding to

other PNs. These masses have not been calibrated, though by

assuming the same detection efficiency as PAN, we can show

that PNs other than PAN represented∼ 20 % of all PNs, con-

sistent with the value above. The PAN and measurements of

6PNs will be discussed in detail in a publication describ-

ing the results of the PARADE campaign. Here we simply
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Figure 17. PARADE data: comparison of PAN derived by the TD-

CIMS with the TD-CRDS measurement of 6PNs. The 6PNs data

have been corrected as described in the text. The data are colour-

coded according to [NO] mixing ratios.

note that the results are consistent with previous observa-

tions, which indicate that PAN is the most abundant PN in

the atmosphere and usually contributes 70–90 % of the total

peroxy nitrates (Roberts, 1990).

5 Measurements of ANs

A 5 day period of measurements of 6ANs with NO2, NO

and 6PNs during PARADE is shown in Fig. 18. The black

data points in the 6PNs plot (lower panel) denote the raw

data; the red data points have been corrected for the effects

of NO and NO2 as derived above. The black data points in the

6ANs plot (middle panel) indicate the total NO2 signal when

sampling from the 723 K inlet minus the NO2 measured in

the reference cavity, and thus represent the uncorrected sum

of 6ANs+6PNs. The red data points were obtained by ap-

plying the full corrections as described. To illustrate the mag-

nitude of the corrections, this may be compared to the blue

data points which were obtained simply by subtracting the

NO2 mixing ratios measured when sampling from the 473 K

inlet from that when sampling from the 723 K inlet. The dif-

ference between the blue (uncorrected) and red (corrected)

data sets is mainly less than ∼ 20 % but can be much larger

during episodes of high NO and NO2. For a particular set of

conditions, the most reliable data (i.e. small correction fac-

tors) were obtained for NOx < 5 ppb. As noted above, a more

detailed analysis of this and the 6PNs data set will be pre-

sented elsewhere.
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Figure 18. Time series of PARADE data over a 5 day period. Upper

panel: NO2 mixing ratios (black data points) measured in the refer-

ence cavity along with NO measured by the CLD (blue data points).

Central panel: TD cavity measurements when sampling from the

723 K inlet. Black data points indicate uncorrected (raw) data. The

blue data points were obtained by directly subtracting the NO2 mix-

ing ratios measured when sampling from the 473 K inlet from that

when sampling from the 723 K inlet. The red data points include the

corrections described in the text. Lower panel: uncorrected (black)

and corrected (red) measurements of the 6PNs.

6 Conclusions and outlook

We have developed, tested and deployed a two-cavity

(405.2 and 408.5 nm) instrument with three different in-

lets for the measurement of ambient NO2, 6PN and

6AN. NO2 is measured directly with a total uncertainty of

6 %+ 20 pptv+ (20 pptv∗RH/100), where RH is in percent.

PNs and ANs are detected via thermal dissociation to NO2,

and extensive laboratory characterisation of the instrument,

including numerical simulation of the radical chemistry in

both heated inlets, was carried out in order to derive correc-

tion factors that account for the bias caused by the compet-

ing effects of radical recombination and oxidation of ambient

NO. The requirement to correct the 6AN and 6PN data sets

limits the application of this prototype instrument to regions

of low to moderate NOx levels (< 5 ppb).

The first field deployment (PARADE) showed favourable

comparison with other NO2 and6PN measurements (chemi-

luminescence detector with blue-light converter and long-

path differential optical absorption spectroscopy for NO2,

and chemical ionisation mass spectrometry for 6PNs). Dur-

ing the campaign, the correction factor for PNs was, on aver-

age, between 0.8 and 1.2, depending on the relative NO and

NO2 concentrations.

Future improvements will involve the use of humidified

zero air to reduce uncertainty resulting from optical scatter-

ing of atmospheric water vapour, which will improve the ac-

curacy of the data at low NOx levels. We shall also explore

other signal acquisition hardware/software options, with the

goal of increasing the sampling rate and improving the de-

tection limit for all channels. We will add an extra cavity to

enable permanent sampling from all three inlets, removing

the need to interpolate data from the 473 K inlet.

Most importantly, we shall investigate means of reduction

of the impact of organic radical reactions in the hot inlets

by heterogeneous scavenging of e.g. CH3C(O)O2 and other

ROx species and also by reduction of the pressure and gas

residence time in the inlets and cavities. These measures will

reduce the total uncertainty in the measurements of PNs and

ANs and extend the operational range of the instrument to

higher NOx regimes.

The Supplement related to this article is available online

at doi:10.5194/amt-9-553-2016-supplement.
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