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Abstract

In this paper, a class of discrete wave equations with Dirichlet bound-
ary conditions are obtained by using the centre-di¤erence method. For
any positive integers m and T , when the existence of time mT -periodic
solutions is considered, a strongly inde�nite discrete system needs to
be established. By using a variant generalized weak linking theorem,
a non-resonant superlinear (or superquadratic) result is obtained and
Ambrosetti-Rabinowitz condition is improved. Such method can not be
used for the corresponding continuous wave equations or the continuoue
Hamiltonian systems, however, it is valid for some general discrete Hamil-
tonian systems.
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1 Introduction

The existence of time periodic solutions for a nonlinear wave equation of the
form

utt � uxx + g (t; u) = 0; 0 < x < �; t 2 R; (1)

with the Dirichlet boundary conditions

u (0; t) = 0 = u (�; t) (2)

had been established in Vitt [23] when the distributed self-oscillating systems
been considered.
We note that the eigenvalues of the operator @tt�@xx in the space of functions

u (x; t), 2�=!-periodic in time and such that, say, u (�; t) 2 H1
0 (0; �) for all t,

are �!2l2 + j2; l 2 Z; j � 1. Therefore, when !2 is irrational, the eigenvalues
accumulate to 0. In this case, the inverse operator of @tt�@xx is unbounded and
the standard implicit function theorem is not applicable. When !2 is rational,
the number of 0-spectrum is in�nite, thus, this will introduce the presence of an
in�nite dimensional bifurcation equation. Consequently, when we consider the
existence of the time periodic solutions for problem (1)-(2), two main di¢ culties
must be overcome: the "small denominators" problem and the presence of an
in�nite dimensional bifurcation equation. To this end, two main methods are
used, that is, the variations viewpoint (see Rabinowitz [19] and Brézis and Coron
[5]) and the KAM theory (see Berti and Bolle [2] and Gentile and Mastropietro
[10]).
Let Z be a set of all integers, R be a set of all real numbers, and Z+ =

f0; 1; 2; � � �g. For any integers k and l with k < l, denote [k; l] = fk; k + 1; � � �; lg.
By using the centre-di¤erence method for the space variable x and the time
variable t, we can obtain a discrete analogue of (1)-(2) of the form8>>><>>>:

1
h2�

2u
�

i�
N+1 ; (n� 1)h

�
�
�
N+1
�

�2r2u� (i�1)�N+1 ; nh
�

+g
�
nh; u

�
i�
N+1 ; nh

��
= 0; i 2 [1; N ] ; n 2 Z

u
�

0�
N+1 ; nh

�
= u

�
(N+1)�
N+1 ; nh

�
= 0; n 2 Z;

(3)

where h > 0 is the time step size, N is a positive integer and the space step size
is �= (N + 1).
Let

u

�
i�

N + 1
; nh

�
= uin;

then, we have�
�2uin�1 � �2r2ui�1n + f

�
n; uin

�
= 0; i 2 [1; N ] ; n 2 Z

u0n = 0 = u
N+1
n ; n 2 Z; (4)

where
�2uin�1 = u

i
n+1 � 2uin + uin�1;
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r2ui�1n = ui+1n � 2uin + ui�1n ;

�2 = h2
�
N + 1

�

�2
and

f
�
n; uin

�
= h2g

�
nh; u

�
i�

N + 1
; nh

��
:

Problem (4) can be rewritten by the vector and matrix as

�2Un�1 + �
2AUn +rV (n;Un) = 0; n 2 Z; (5)

where
Un = col

�
u1n; u

2
n; � � �; uNn

�
;

A =

0BBBB@
2 �1 0 � � � 0
�1 2 �1 0

� � � � � �
0 �1 2 �1
0 � � � 0 �1 2

1CCCCA
N�N

;

and

V (n;Un) =
NX
i=1

Z uin

0

f (n; s) ds

which implies that

rV (n;Un) = col
�
f
�
n; u1n

�
; f
�
n; u2n

�
; � � ��; f

�
n; uNn

��
:

For a given positive integer T , we assume that the function f : Z � R ! R
is continuous about the two variable and satis�es the periodic condition

f (n+ T; �) = f (n; �) for n 2 Z:

Let L = �
�
�2 + �2A

�
. For any positive integers T and m, � (L) denotes the

spectrum of the linear operator L in EmT which will be de�ned in the next
section. We can see that � (L) \ (0;1) 6= ? and � (L) \ (�1; 0) 6= ?. In this
paper, we will consider the existence of mT -periodic solutions for problem (4)
when the condition 0 =2 � (L) holds. However, 0 is the spectrum point of linear
operator @tt � @xx for problem (1)-(2). Thus, our method can not be used for
the corresponding continuous wave equations.
Clearly, system (5) is also a discrete second order Hamiltonian system. Re-

cently, the existence of T -periodic solutions for system (5) has also been ex-
tensively studied when A is symmetric matrix and L is positive de�nite. By
using critical point theory, many solvability conditions are given, such as, the
superquadratic condition and subquadratic condition (see Deng et al. [8] and
Yan et al. [25]), the convex condition (see Jiang [12]), and the asymptotically
linear condition (see Guo and Yu [11]). Our method can be extended to a gen-
eral system, however, the linear operator L is strongly inde�nite. On the other

3



hand, in the superquadratic case, all papers asked the Ambrosetti-Rabinowitz
condition, that is, there exist the constants � > 2 and M > 0 such that

0 < �H (t; U) � (rH (t; U) ; U) ; jU j �M; t 2 [0; T ] ; (6)

where

jU j =
 

NX
i=1

��ui��2!1=2 ; U 2 RN :
In this paper, we will give a more general condition.
In fact, system (5) is also a discrete analogue of the second order Hamiltonian

system of the form

U 00 (t) +BU (t) +rH (t; U) = 0; t 2 R: (7)

The existence of periodic solutions of (7) have also been extensively discussed
since Poincaré [17]. The importance of periodic solutions for �nite dimensional
Hamiltonian system was pointed out by Poincaré in [17]. Poincaré stressed their
importance formulating a conjecture. This conjecture stimulates the systematic
study of periodic solutions by Poincaré himself, Lyapunov [15], Birkho¤ [4],
Moser [16], Weinstein [24], Rabinowitz [20], Ekeland [9], etc. In Pugh and
Robinson [18] a positive answer to the conjecture was given, but only in a generic
sense (namely in the C2�category of Hamiltonian functions): the periodic orbits
are dense on every compact and regular energy surface. However, for speci�c
systems, the conjecture is still open (and far from being proved), see [3].
Since P. Rabinowitz�s pioneering work [20] of 1978, variational methods have

been widely used in the study of existence of solutions of Hamiltonian systems,
see Long [13] and Luan and Mao [14]. Recently, some authors had improved
Ambrosetti-Rabinowitz condition by using the linking theorem, for example, see
Schechter and Zou [21] and Chen and Ma [6]. In [21], the authors considered the
existence of solutions for a Schrödinger equation and the classical Ambrosetti-
Rabinowitz condition is replaced by a general superquadratic condition: there
exist the constants a > 0 and p > 2 such that

jrV (t; U)j � a
�
1 + jU jp�1

�
for U 2 RN : (8)

In [6], Chen and Ma established existence of periodic solutions of (7) by using
similar method. However, the condition (8) will be improved in our result.
In the next section of present paper, we will give some preliminary results

which will be used in the proof of main results. The exact spectrum of the linear
operator L in EmT will be given. In this case, we easily give the conditions
0 =2 � (L), � (L) \ (0;1) 6= ?, and � (L) \ (�1; 0) 6= ?. Thus, in this paper,
we only consider the non-resonant strongly inde�nite problem. Our approach is
based on an application of a variant generalized weak linking strongly inde�nite
problem developed by Schechter and Zou [21], also see Chen and Ma [6]. Thus, a
variant generalized weak linking theorem is also given in this section. In Section
3, our main result will be obtained by using the variant generalized weak linking
theorem, the Ambrosetti-Rabinowitz condition will be improved.
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2 Some preliminary results

In this section, we recall some basic facts which will be used in the proof of
main results.
Let

X =
�
U = fUngn2Z : Un 2 R

N ; n 2 Z
	
:

For any given positive integers T and m, EmT is de�ned by

EmT = fU 2 X : Un+mT = Un; n 2 Zg :

EmT can be equipped with the inner product h�; �imT and norm k�kmT as follows:

hU; V imT =
mTX
n=1

(Un; Vn)

=

mTX
n=1

NX
i=1

uinv
i
n; U; V 2 EmT ;

kUkmT =
 
mTX
n=1

NX
i=1

�
uin
�2!1=2

:

Clearly, we can also de�ne one other norm for EmT . Note that the space
EmT is �nite dimensional, thus, they are equivalent.
It is easy to see that (EmT ; h�; �imT ) is a �nite dimensional Hilbert space

and linearly homeomorphic to RmT�N . For convenience, we identify U 2 EmT
with U = col (U1; U2; � � �; UmT ). In this case, we will consider the existence of
solutions for discrete wave equation:

�2uin�1 � �2r2ui�1n + f
�
n; uin

�
= 0; (i; n) 2 [1; N ]� [1;mT ] (9)

with the space Dirichlet boundary conditions

u0n = 0 = u
N+1
n ; n 2 [1;mT ] (10)

and the time periodic boundary conditions

ui0 = u
i
mT and u

i
1 = u

i
mT+1; i 2 [1; N ] : (11)

or the discrete Hamiltonian system:

�2Un�1 + �
2AUn +rV (n;Un) = 0; n 2 [1;mT ] (12)

with the time periodic boundary conditions

U0 = UmT and U1 = UmT+1: (13)
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De�ne functional H on EmT as follows:

H (U) =
mTX
j=1

NX
i=1

"
1

2

��uij+1 � uij��2 � �22 ��ui+1j � uij
��2 � Z uij

0

f (j; s) ds

#

=
1

2

mTX
j=1

NX
i=1

����uij��2 � �22 ��ruij��2
�
�

mTX
j=1

NX
i=1

Z uij

0

f (j; s) ds

=
1

2

mTX
j=1

(�Uj ;�Uj)�
�2

2

mTX
j=1

(AUj ; Uj)�
mTX
j=1

H (j; Uj) :

A vector W 2 EmT is called a critical point of the functional H if the gradient
of H at W is zero, i.e.,

@H (U)

uij
jU=W = 0 for i 2 [1; N ] ; j 2 [1;mT ] :

At the same time, c = H (W ) is called a critical value of H. So we can obtain
the following result.

Lemma 1. A vector W 2 EmT is a critical point of the functional H (U)
(or �H (U)) if, and only if, W is a solution of problem (9)�(11), in fact, it is
also a solution of (12)-(13).

Its proof is similar with Lemma 1 in [1], thus, it will be omitted.
In the following, we will consider the eigenvalue problem of the form

LU = �
�
�2uin�1 � �2r2ui�1n

�
= �uin; (i; n) 2 [1; N ]� [1;mT ] (14)

with the boundary conditions (10) and (11).
It is well known that the eigenvalue problem:�

��2xn�1 = 
xn; n 2 [1; N ] ;
x0 = xN+1 = 0

has the eigenvalues


k = 4 sin
2 k�

2 (N + 1)
; k 2 [1; N ]

and that the eigenvalue problem:�
��2xn�1 = �xn; n 2 [1;mT ] ;

x0 = xmT ; x1 = xmT+1

has the eigenvalues

�l = 4 sin
2 (l � 1)�

mT
; l 2 [1;mT ] :
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See Cheng [7]. Thus, we can obtain that all eigenvalues of the linear problem
(14)-(10)-(11) are

�kl = 4 sin
2 (l � 1)�

mT
� 4�2 sin2 k�

2 (N + 1)

for k 2 [1; N ] and l 2 [1;mT ]. That is,

� (L) =

�
4

�
sin2

(l � 1)�
mT

� �2 sin2 k�

2 (N + 1)

�
; (k; l) 2 [1; N ]� [1;mT ]

�
:

(15)
We note that


max = max
k2[1;N ]


k = 4 sin
2 N�

2 (N + 1)
;


min = min
k2[1;N ]


k = 4 sin
2 �

2 (N + 1)
;

�max = max
l2[1;mT ]

�l =

�
4; mT is even

4 cos2 �
mT mT is odd

and
�min = min

l2[1;mT ]
�l = 0:

Thus, we have

�max = max
(k;l)2[1;N ]�[1;mT ]

�kl

= �max � 4�2
min

=

8<: 4
�
1� �2 sin2 �

2(N+1)

�
; mT is even

4
�
cos2 �

mT � �
2 sin2 �

2(N+1)

�
; mT is odd

and

�min = min
(k;l)2[1;N ]�[1;mT ]

�kl = �4�2 sin2
N�

2 (N + 1)
:

In this paper, we ask that � (L)\ (0;1) 6= ? and � (L)\ (�1; 0) 6= ?. Clearly,
� (L) \ (�1; 0) 6= ?, thus, we only assume that the condition(

� sin �
2(N+1) < 1; mT is even

� sin �
2(N+1) < cos

�
mT ; mT is odd

(16)

holds, where � > 0. On the other hand, we also need to suppose that the
conditions

sin2
(l � 1)�
mT

6= �2 sin2 k�

2 (N + 1)
(17)

hold for (k; l) 2 [1; N ] � [1;mT ]. In this case, we have 0 =2 � (L). Throughout
this paper, we always assume that the conditions (16) and (17) hold.
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The abstract critical point theorem plays an important role in proving our
main results. Let E be a Hilbert space with norm k�k and inner product h�; �i
and have an orthogonal decomposition E = N �N?, where N 2 E is a closed
and separable subspace. Since N is separable, we can de�ne a new norm jvj!
satisfying jvj! � kvk for all v 2 N and such that the topology induced by this
norm is equivalent to the weak topology of N on bounded subset of N . For
u = v + w 2 E with v 2 N and w 2 N?, we de�ne juj2! = jvj2! + kwk

2, then
juj! � kuk for u 2 E. Particularly, if fun = vn + wng

1
n=1 2 E is j�j!-bounded

and un !j�j! u, then vn * v weakly in N , wn ! w strongly in N?, un * v+w
weakly in E (see [21]).
Let E = E� � E+, z0 2 E+ with kz0k = 1. For any u 2 E, we write

u = u� � sz0 � w+ with u� 2 E�, s 2 R, w+ 2 (E� �Rz0)? := E+1 . For
R > 0, let

Q =
�
u = u� + sz0

��s 2 R+; u� 2 E�; kuk < R	
with p0 = s0z0 2 Q; s0 > 0. We de�ne

D =
�
u = sz0 + w

+
��s � 0; w+ 2 E+1 ;

sz0 + w+

 = s0	 :

For I 2 C1 (E;R), de�ne h : [0; 1] � Q ! E is j�j!-continuous, h (0; u) = u,
I (h (s; u)) � I (u) for u 2 Q, for any (s0; u0) 2 [0; 1] � Q, there is a j�j!-
neighborhood U(s0;u0) such that�

u� h (t; u)
��(t; u) 2 U(s0;u0) \ [0; 1]�Q	 � Efin;

where Efin denotes various �nite-dimensional subspaces of E whose exact di-
mensions are irrelevant and depend on (s0; u0). Denote

� =
�
h
��h : [0; 1]�Q! E

	
;

then � 6= ? since id 2 �.
The variant weak linking theorem is:

Lemma 2 (see [21]). The family of C1-functional fH�g has the form

H� (u) = I (u)� �K (u) for � 2 [1; 2] :

Assume that
(a) K (u) � 0; u 2 E;H1 = H;
(b) I (u)!1 or K (u)!1 as kuk ! 1;
(c) H� is j�j!-upper semicontinuous, H 0

� is weakly sequentially continuous
on E. Moreover, H� maps bounded sets to bounded sets;
(d) sup@QH� � infDH� for � 2 [1; 2] :
Then for almost all � 2 [1; 2], there exists a sequence fung such that

sup
n
kunk <1;H 0

� (un)! 0;H� (un)! c�;

where

c� = inf
h2�

sup
u2Q

H� (h (1; u)) 2
"
inf
D
H�; sup

Q

H

#
:
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3 Main Result

First of all, we state the following conditions.
(i) xf (n; x) � 0 for x 2 R and n 2 Z;
(ii) There exists 0 < a < 1 and r > 0 such thatZ x

0

f (j; s) ds � a�+min
2

x2 for jxj � r;

and
(iii) There exist � > 0 and d > 1 such thatZ x

0

f (j; s) ds � d�+max
2

x2 for jxj > �;

where
�+min = min f�kl > 0; (k; l) 2 [1; N ]� [1;mT ]g

and
�+max = max f�kl > 0; (k; l) 2 [1; N ]� [1;mT ]g :

Theorem 1. The function f : Z � R ! R is continuous about the second
variable and there exists a positive integer T such that

f (n+ T; �) = f (n; �) for n 2 Z:

Suppose that the above conditions (i)-(iii), (16) and (17) hold. Then for any
positive integer m, problem (9)�(11) at least exists a non-zero time mT -periodic
solution.

Proof. In view of Lemma 2, we need to prove that the conditions (a)-(d)
hold. First of all, we give some symbols.
When the conditions (16) and (17) hold, we can denote

�+ (L) = f�kl > 0; (k; l) 2 [1; N ]� [1;mT ]g ;

�� (L) = f�kl < 0; (k; l) 2 [1; N ]� [1;mT ]g ;

�+min = min f�kl > 0; (k; l) 2 [1; N ]� [1;mT ]g ;

�+max = max f�kl > 0; (k; l) 2 [1; N ]� [1;mT ]g ;

��min = min f�kl < 0; (k; l) 2 [1; N ]� [1;mT ]g

and
��max = max f�kl < 0; (k; l) 2 [1; N ]� [1;mT ]g :

Clearly, we have
��min < �

�
max < 0 < �

+
min < �

+
max;

9



� (L) = �+ (L) [ �� (L)

and
�+ (L) \ �� (L) = ?:

That is, the linear operator L = �
�
�2 � �2A

�
has a sequence of eigenvalues

��min = ��p � ��p+1 � � � � � ��1 = ��max
< 0 < �+min = �1 � �2 � � � � � �q = �+max

and the corresponding eigenvectors �j for j = �p; � � �;�1; 1; � � �; q(Clearly, we
have p+ q = mTN).
Let

E� =

(
pX
i=1

ci��i jci 2 R
)
and E+ =

(
qX
i=1

ci�i jci 2 R
)
:

Then EmT = E = E� � E+ and for any U 2 EmT we have U = U� + U+,
where U� 2 E� and U+ 2 E+. Clearly, we have also E0 = kerL = f0g.
For any U; V 2 EmT , U = U+ + U� and V = V + + V �, we can de�ne an

equivalent new inner product h�i and the corresponding norm k�k in EmT by

hU; V i =


LU+; V +

�
mT

�


LU�; V �

�
mT

and kUk = hU;Ui1=2 ;

see [22]. Therefore, H can be rewritten as

H (U) =
1

2

�

U+

2 � 

U�

2��	(U)
=

1

2



U+

2 � �1
2



U�

2 +	(U)� ;
where

	(U) =
mTX
j=1

NX
i=1

Z uij

0

f (j; s) ds =
mTX
j=1

H (j; Uj) :

In order to apply Lemma 2, we consider the family of functional de�ned by

H� (U) =
1

2



U+

2 � ��1
2



U�

2 +	(U)� for � 2 [1; 2] : (18)

In the following, we give the proofs for the conditions (a)-(d) in Lemma 2.

(a) K (U) � 0; U 2 EmT ;H1 = H.
Let

K (U) =
1

2



U�

2 +	(U) :
When xf (n; x) � 0, we get that (a) holds.
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(b) I (U)!1 or K (U)!1 as kUk ! 1. We will prove that K (U)!1
as kUk ! 1. In fact, this is clear when the condition (iii) holds.

(c) H� is j�j!-upper semicontinuous, H 0
� is weakly sequentially continuous

on E. Moreover, H� maps bounded sets to bounded sets;
The condition (iii) implies that

H� (U) =
1

2



U+

2 � ��1
2



U�

2 +	(U)�
� 1

2



U+

2 � 1
2



U�

2 �	(U)
� �+max

2
kUk2mT �

d�+max
2

kUk2mT

= � (d� 1) �
+
max

2
kUk2mT ! �1 as kUkmT !1:

Thus, if Un !j�j! U and H� (Un) � a, then H� (U) � a, which means that H�
is j�j!-upper semicontinuous. The other cases are clear.

(d) sup@QH� � infDH� for � 2 [1; 2] :
Note the condition (ii), then we let s0 = r, for U 2 S = fU jU 2 E+; kUk = s0 g

we have

H� (U) =
1

2



U+

2 � �	(U)
� �+min

2
kUk2mT � 2

mTX
j=1

NX
i=1

Z uij

0

f (j; s) ds

� �+min
2

kUk2mT �
a�+min
2

kUk2mT

= (1� a) �
+
min

2
kUk2mT :

Let z0 = �1= k�1k and

D =
�
U
��U = sz0 +W+; s � 0;W+ 2 E+1 and kUk = s0

	
;

we have D � S which implies that

inf
D
H� (U) > 0:

Now, we choose � > 0 of the condition (ii) and let

Q =
�
U
��U = U� + sz0; s � 0; U� 2 E� and kUk < �	 :

For U 2 @Q, we have

H� (U) =
1

2



U+

2 � ��1
2



U�

2 +	(U)�
� � (d� 1) �

+
max

2
kUk2mT < 0:
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That is, the condition (d) holds.
In view of Lemma 2, we �nd that for almost all � 2 [1; 2] there exists a

sequence
�
U (n)

	
� Q such that

sup
n




U (n)


 <1;H 0
�

�
U (n)

�
! 0

and

H�

�
U (n)

�
! c� 2

"
1

2
(1� a) r�+min; sup

Q

H� (U)

#
: (19)

Note that the function H� (U) is �nite dimensional continuous, thus, there exist�
U (n)

	
� Q and U� 2 Q such that

lim
n!1

H1

�
U (n)

�
= lim

n!1
H
�
U (n)

�
= lim

n!1
H (U�) = c1 > 0:

The proof is complete.

Remark 1. The symbols ��min and �
�
max have not been used. In fact,

similarly, if we discuss the functional �H (U), then the corresponding result
can also be obtained. It is omitted.

Remark 2. From the proofs of (a)-(d), we can see that the conditions
(ii)-(iii) need only to be hold locally. For convenience, we use the present state.

Remark 3. Our result is new, see Deng et al. [8] and Yan et al. [25].
Clearly, the sublinear case can also be established. It will be omitted.

Remark 4. For mT -dimensional discrete system of the form

�2Un�1 +BUn +rV (n;Un) = 0; n 2 Z;

when B is a symmetric positive de�nite, negative de�nite, or in�nite de�nite
matrix, our method is also valid.

Remark 5. The superlinear condition (iii) can not be used for the cor-
responding continuous wave equations or the continuous Hamiltonian systems
because their eigenvalues are unbounded.

Remark 6. Our method is not suitable for the corresponding continuous
wave equations. When !2 is irrational, the eigenvalues of the operator @tt�@xx
accumulate to 0. However, if !2 is rational, the number of 0-spectrum is in�nite.

Remark 7. All conditions of Theorem 1 are easy satis�ed. For the condi-
tions (16) and (17), for example, let � = 1, m = 1 and T = 2, the condition (16)
clearly holds for any N . At the same time, note that

sin2
(1� 1)�

2
= 0, sin2

(2� 1)�
2

= 1
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and

0 < sin2
k�

2 (N + 1)
< 1

for all k 2 [1; N ]. Thus, the condition (17) also holds. For the nonlinear term,
the conditions (i)-(iii) are also easy satis�ed. For example, for � = 1, m = 1,
T = 2 and N = 2, we have

� (L) =

�
�3
4
;�1
4
; 1; 3

�
, �+min = 1 and �

+
max = 3:

In this case, we let f (�x) = �f (x) and

f (x) =

8<:
x
4 ; 0 � x < 1;

59
8 x�

57
8 1 � x � 3;

5x; jxj > 3:

Then, all conditions of Theorem 1 are satis�ed. However, such function is valid
for the corresponding continuous wave equations or the continuous Hamiltonian
systems.
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