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Abstract

A standard Crank-Nicolson finite-difference scheme and a Dufort-Frankel finite-difference scheme are intro-
duced to solve two-dimensional damped and undamped sine-Gordon equations. The stability and conver-
gence of the numerical methods are considered. To avoid solving the nonlinear system, the predictor-corrector
techniques are applied in the numerical methods. Numerical examples are given to show that the numerical
results are consistent with the theoretical results.
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1. Introduction

2. Introduction

The sine-Gordon equation arises in extended rectangular Josephson junctions, which consist of two layers
of super conducting materials separated by an isolating barrier. A typical arrangement is a layer of lead
and a layer of niobium separated by a layer of niobium oxide. A quantum particle has a nonzero significant
probability of being able to penetrate in the other side of a potential barrier that would be impenetrable to
the corresponding classical particle. Mathematical model of light bullets in Maxwell-Bloch system can also
be described by the two-dimensional undamped sine-Gordon equation [30]. This equation is also applied
in a large number of areas of physics, for example, crystal dislocation theory [2], self-induced transparency
[2], laser physics [2] and particle physics [3], [4]. It is also a special case of the Baby Skyrme model which
describes baryons in a nonlinear manner [7].

Like some well-known partial differential equations such as KdV, mKdV and nonlinear Schrödinger
equations [15], the two-dimensional sine-Gordon equation possesses the various types of soliton solutions
(such as line solitons, elliptic ring soliton and ring solitons etc.). For the undamped (ρ = 0) sine-Gordon
equation in higher dimensions exact soliton solutions have been obtained in Hirota [19], in Zagrodzinsky [31]
using Lamb’s method, in Leibbrandt [22] by Bläcklund transformation and in Kaliappan and Lakshmanan
[20] by Painlevé transcendents.

Numerical solutions for two-dimensional undamped sine-Gordon equation, have been given among others
by Guo et al. [17] using two finite difference schemes, Xin [30] who studied sine-Gordon equation as an
asymptotic reduction of the two level dissipation less Maxwell-Bloch system, Christiansen and Lomdahl [12]
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using a generalized leapfrog method, Argyris et al. [1] using the finite element method. Sheng et al. [28]
introduced a split cosine scheme, Bratsos [7] used a three-time level fourth-order explicit finite-difference
scheme, Mirzaei and Dehghan [25] applied the continuous linear boundary elements method, Chen et al.
[11] applied the multilevel augmentation method for solving the sine-Gordon equations, etc. Numerical
approaches to the damped sine-Gordon equation can also be found in Nakajima et al. [27] who considered
dimensionless loss factors and unitless normalized bias, Gorria et al. [16] who studied the nonlinear wave
propagation in a planar wave guide consisting of two rectangular regions joined by a bent of constant
curvature. Bratsos [8], Djidjeli et al. [14] used a two-step one-parameter leap-frog scheme, which is a
generalization to that used by Christiansen and Lomdahl [12]. Dehghan and Shokri, etc [13] used the radial
basis functions as a truly meshfree method, to solve the two-dimensional damped/undamped sine-Gordon
equation.

Consider the two-dimensional sine-Gordon equation

∂2u

∂t2
+ ρ

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
− φ(x, y) sinu, (1.1)

with u = u(x, y, t) in the region Ω = {(x, y) ∈ [L0
x, L

1
x]× [L0

y, L
1
y]} for t > 0, the parameter ρ is the so-called

dissipative term, which is assumed to be a real number with ρ ≥ 0. When ρ = 0, equation (1.1) reduces
to the undamped sine-Gordon equation in two space variables, while when ρ > 0 to the damped one. The
function φ(x, y) can be explained as a Josephson current density.

Initial conditions associated with equation (1.1) will be assumed to be of the form

u(x, y, 0) = f(x, y), (x, y) ∈ Ω, (1.2)

with initial velocity
∂u

∂t
(x, y, 0) = g(x, y), (x, y) ∈ Ω. (1.3)

In equations (1.2), (1.3), the functions f(x, y) and g(x, y) represent wave modes or kinks and velocity,
respectively. Boundary conditions will be assumed to be of the form

∂u

∂x
(L0

x, y, t) =
∂u

∂x
(L1

x, y, t) = p(L1
x, y, t), L

0
y < y < L1

y, t > 0, (1.4)

and

∂u

∂y
(x, L0

y, t) =
∂u

∂y
(x, L1

y, t) = q(x, L1
y, t), L

0
x < x < L1

x, t > 0, (1.5)

where p(x, y, t) and q(x, y, t) are normal gradients along the boundary of the region Ω.

If partial differential equation contains the second order term ∂2u
∂x2 , the equation is discretized by using

the standard Crank-Nicolson scheme. However, it is verified that the scheme is unstable unconditionally

for the heat equation ∂u(x,t)
∂t = ∂2u(x,t)

∂x2 when it is discretized by the leap-frog scheme in time direction
and the Crank-Nicolson scheme in space direction, see [32]. The Dufort-Frankel method is very similar to
the leap-frog scheme but it has better numerical stability, and sometimes it will bring unpredicted effect
(if Dufort-Frankel approximate scheme is applied in spatial direction, the heat equation is unconditionally
stable [26]). Wu [29] applied the Dufort-Frankel scheme for solving the linear and nonlinear one-dimensional
Schrödinger equations, and obtained a unconditionally stable scheme. Markowich et. al. [24] applied the
Wigner-measure analysis for investigating the convergence of the Dufort-Frankel scheme for the Schrödinger
equation in semi-classical regime. Lai et al. [21] used a simple Dufort-Frankel type scheme for solving the
time-dependent Gross-Pitaevskii equation. In this paper, we will use the Dufort-Frankel scheme to solve
two-dimensional sine-Gordon equation.

The organization of the paper is as follows: In Section 2, a Crank-Nicolson finite-difference (CNFD)
scheme and a Dufort-Frankel finite-difference (DFFD) scheme for solving two-dimensional sine-Gordon
equation are introduced. In Section 3, the stabilities of the two schemes are discussed. In Section 4,
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the error estimates of CNFD and DFFD schemes are proved. To avoid solving non-linear equations, the
predictor-corrector methods of the two schemes are proposed in Section 5. In Section 6, numerical results
are investigated.

3. Numerical methods

2.1. The CNFD scheme and the DFFD scheme
For the numerical solution the region Ω × [t > 0] with its boundary ∂Ω consisting of the lines and

t = 0 is covered with a rectangular mesh, the points with coordinates (x, y, t) = (xk, ym, tn) = (L0
x +

khx, L
0
y + mhy, nτ),Ωh = {(xk, ym)} with k,m = 0, 1, · · · , N and n = 0, 1, · · · . The hx = (L1

x − L0
x)/N

and hy = (L1
y − L0

y)/N represent the space steps along x direction and y direction, while τ represents the
time step. The solution of an approximating difference scheme at the same point will be denoted by unk,m
(k,m = 0, 1, · · · , N) for the purpose of analyzing stability, the numerical value actually obtained will be
denoted by ũnk,m.

The CNFD scheme of (1.1) is

un+1
k,m − 2unk,m + un−1

k,m

τ2
+ ρ

un+1
k,m − u

n−1
k,m

2τ
=
unk+1,m − 2unk,m + unk−1,m

h2
x

+
unk,m+1 − 2unk,m + unk,m−1

h2
y

− 1

4
φk,m(sinun+1

k,m + 2 sinunk,m + sinun−1
k,m ), (2.1)

where φk,m = φ(xk, ym), k,m = 0, 1, · · ·, N .
The DFFD scheme for the equation (2.1) is obtained by replacing the term 2unk,m by un+1

k,m +un−1
k,m in the

CNFD scheme in the discretizations of ∂u(t,x,y)
∂x2 and ∂u(t,x,y)

∂y2 , that is

un+1
k,m − 2unk,m + un−1

k,m

τ2
+ ρ

un+1
k,m − u

n−1
k,m

2τ
=
unk+1,m − (un+1

k,m + un−1
k,m ) + unk−1,m

h2
x

+
unk,m+1 − (un+1

k,m + un−1
k,m ) + unk,m−1

h2
y

− 1

4
φk,m(sinun+1

k,m + 2 sinunk,m + sinun−1
k,m ).

Note that

unk+1,m − (un+1
k,m + un−1

k,m ) + unk−1,m

h2
x

=
unk+1,m − 2unk,m + unk−1,m

h2
x

− µ2
x

un+1
k,m − 2unk,m + un−1

k,m

τ2
,

where µx = τ/hx. The DFFD scheme can be expressed as the following, with µy = τ/hy,

(1 + µ2
x + µ2

y)(un+1
k,m − 2unk,m + un−1

k,m ) +
ρτ

2
(un+1
k,m − u

n−1
k,m ) = µ2

x(unk+1,m − 2unk,m + unk−1,m)

+µ2
y(unk,m+1 − 2unk,m + unk,m−1)− τ2

4
φk,m(sinun+1

k,m + 2 sinunk,m + sinun−1
k,m ) = 0. (2.2)

2.2. Local truncation error
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By Tayor expansion, it can be easily obtained that for the smooth function u(x, y, t), the principal part
of the local truncation error of the DFFD (2.2) is

(1 + µ2
x + µ2

y)
u(xk, ym, tn+1)− 2u(xk, ym, tn) + u(xk, ym, tn−1)

τ2

+ ρ
u(xk, ym, tn+1)− u(xk, ym, tn−1)

2τ

− u(xk+1, ym, tn)− 2u(xk, ym, tn) + u(xk−1, ym, tn)

h2
x

− u(xk, ym+1, tn)− 2u(xk, ym, tn) + u(xk, ym−1, tn)

h2
y

=
∂2u

∂t2
(xk, ym, tn) + ρ

∂u

∂t
(xk, ym, tn)− ∂2u

∂x2
(xk, ym, tn)− ∂2u

∂y2
(xk, ym, tn)

+O(τ2 + h2
x + h2

y + (τ/hx)2 + (τ/hy)2). (2.3)

To make (2.2) be consistent, it is known from (2.3) that the step sizes τ ,hx, hy have to be limited such
that when τ → 0, hx → 0 and hy → 0, we have τ/hx, τ/hy → 0. Let τ = O(h2

x), the above requirement
holds automatically.

Similarly, it is easily obtained that the truncation error of the CNFD scheme is O(τ2 + h2
x + h2

y).
Remark 2.1. In terms of the compatibility conditions, the constraint of time and space steps in the

DFFD scheme is more demanding than that of the CNFD scheme, but it is easy for the time step to satisfy
it, which is a usual method. In the following discussion of convergence, it is found that the time and space
steps in the CNFD scheme have to satisfy the constraint, however the DFFD scheme is unconditional.

Remark 2.2. The DFFD is a scheme in which a term µx + µy is added to the leading coefficient of
DNFD. This extra term enhances the stability of it and greatly reduces the restriction on time step.

4. Stability analysis of CNFD and DFFD

In this section, the stabilities of the two schemes are discussed. Following the Fourier method of analyzing
stability a small error of the following form is considered

Qnk,m = unk,m − ũnk,m, (3.1)

with
Qnk,m = λnei(βkhx+γmhy), i =

√
−1, (3.2)

where λ is a complex number and β, γ are real. Due to von Neumann criterion for stability, the condition
|λ| ≤ 1 has to be satisfied

3.1. Stability analysis for the DFFD
Using (3.1)-(3.2) and Maclaurin’s expansion

sinunk,m =

+∞∑
j=0

(−1)j(unk,m)2j+1/(2j + 1)!,

the equation (2.3) can be written as

(1 + µ2
x + µ2

y +
ρτ

2
)Qn+1

k,m +
τ2

4
φk,mS

n+1
k,mQ

n+1
k,m − 2(1− 2µ2

xsin
2 βhx

2
− 2µ2

ysin
2 γhy

2
)Qnk,m

+
τ2

2
φk,mS

n
k,mQ

n
k,m + (1 + µ2

x + µ2
y −

ρτ

2
)Qn−1

k,m +
τ2

4
φk,mS

n−1
k,mQ

n−1
k,m = 0, (3.3)
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where

Snk,m =

+∞∑
j=0

(−1)j

(2j + 1)!
[(unk,m)2j + (unk,m)2j−1ũnk,m + . . .+ (ũnk,m)2j ]

≈
+∞∑
j=0

(−1)j

(2j)!
(us)

2j = cosus. (3.4)

Here we linearize the term in square brackets and us = max
k,m=0,1,··· ,N−1

u0
k,m. Using (3.4) and Qnk,m =

λnei(βkhx+γmhy), we get the following stability equation

Aλ2 − 2Bλ+ C = 0, (3.5)

where

A = 1 + µ2
x + µ2

y +
τ2

4
φk,m cosus +

ρτ

2
,

B = 1− 2µ2
x sin2 βhx

2
− 2µ2

y sin2 γhy
2
− τ2

4
φk,m cosus,

C = 1 + µ2
x + µ2

y +
τ2

4
φk,m cosus −

ρτ

2
.

Assume that cosus > 0, if ρ = 0, A > 0, C > 0, then B2 − AC ≤ 0 holds for any µx, µy. Hence |λ| ≤ 1
holds. Through von Neumann criterion the DFFD scheme is unconditionally stable.

Assume that ρ > 0, 1− ρτ/2 > 0, and A > 0, C > 0 and A > C. Note that B2 − AC ≤ 0 always holds.
Hence the solutions

λ± = (B ±
√
B2 −AC)/A, (3.6)

of equation (3.5) satisfy |λ±| ≤ 1, which implies that if ρ > 0, τ < 2
ρ , the scheme is stable.

3.2 Stability analysis for the CNFD
Similarly, the stability equation of CNFD (2.1) is

Ăλ2 − 2B̆λ+ C̆ = 0, (3.7)

where

Ă = 1 +
τ2

4
φk,m cosus +

ρτ

2
,

B̆ = 1− 2µ2
x sin2 βhx

2
− 2µ2

y sin2 γhy
2
− τ2

4
φk,m cosus,

C̆ = 1 +
τ2

4
φk,m cosus −

ρτ

2
.

To guanrentee |λ| ≤ 1, we need |B̆| ≤ C̆ or

−C̆ ≤ B̆ ≤ C̆, (3.8)

.
The left-hand side of (3.8) has the form

(
1

h2
x

sin2 βhx
2

+
1

h2
y

sin2 γhy
2

)τ2 +
ρ

4
τ − 1 ≤ 0, (3.9)

which is true if

(
1

h2
x

+
1

h2
y

)τ2 +
ρ

4
τ − 1 ≤ 0. (3.10)
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Let τ̃1, τ̃2 be the roots of (3.10). Let H = 1/h2
x + 1/h2

y. Note that τ̃1τ̃2 = −1/H < 0, the roots are real

and distinct. Let the positive root τ̃2 = (
√
ρ2 + 64H − ρ)/8H, we then have τ ≤ τ̃2.

The right-hand side of (3.8) gives

τ2
(
φk,m cosus + 4(

1

h2
x

sin2 βhx
2

+
1

h2
y

sin2 γhy
2

)
)
≥ τρ, (3.11)

if ρ = 0, then (3.11) is always satisfied, while when ρ > 0, τ must satisfy the restriction condition

τ ≥ ρ[φ̃+ 4(h−2
x + h−2

y )]−1. (3.12)

Thus, the time step τ needs to satisfy the stability conditions (3.10) and (3.12).

5. Convergence and error estimates for DFFD and CNFD

We define a discrete inner product and its associated norm by

(un, vn) = hxhy

N∑
k=0

N∑
m=0

unk,mvk,m, ‖un‖2 = (un, u), ‖un‖∞ = max
Ωh

|unk,m|.

Conveniently, we note

δtu
n
k,m =

un+1
k,m − unk,m

τ
, δtu

n
k,m =

unk,m − u
n−1
k,m

τ
, δt̂u

n
k,m =

un+1
k,m − u

n−1
k,m

τ
,

δ2
t u

n
k,m =

δtu
n
k,m − δtunk,m

τ
, δxuk,m =

unk+1,m − unk,m
hx

, δyu
n
k,m =

unk,m+1 − unk,m
hy

,

δ2
xu

n
k,m =

unk+1,m − 2unk,m + unk−1,m

h2
x

, δ2
yu

n
k,m =

unk,m+1 − 2unk,m + unk,m−1

h2
y

,

δpxu
n
k,m =

δp−1
x unk+1,m − δp−1

x unk,m
hx

(1 ≤ p ≤ +∞).

The difference scheme DFFD (2.2) can be written in the following form

(1 + µ2
x + µ2

y)δ2
t u

n
k,m + ρδt̂u

n
k,m = δ2

xu
n
k,m + δ2

yu
n
k,m −

1

4
φk,m(sinun+1

k,m + 2 sinunk,m + sinun−1
k,m ). (4.1)

We have the following Lemmas.
Lemma 4.1.

(δ2
t u

n, δt̂u
n) =

1

2
δt(‖δtun‖2).

Lemma 4.2.

(δ2
xu

n, δt̂u
n) = −1

2
δt̂(‖δxu

n‖2) +
τ2

4
δt(‖δxδtun‖2).

Lemma 4.3. Let p ≥ p′ + 1, for arbitrary ε > 0, we have, for ∀un ∈ Ωh,

τ2

2
‖δpxδtun‖2 ≤ ε(‖δpxun‖2 + ‖δpxun+1‖2) +

τ2

8ε
(

4

h2
x

)p
′
‖δp−p

′

x δtu‖2.

Proof: By ε inequality,
τ2

2
‖δpxδtun‖2 ≤

ετ2

2
‖δpxδtun‖2 +

τ2

8ε
‖δpxδtun‖2, (4.2)
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the definition of the difference quotient implies

ετ2

2
‖δpxδtun‖2 ≤ ε(‖δpxun‖2 + ‖δpxun+1‖2). (4.3)

By using the definition of norm, we get

τ2

8ε
‖δpxδtun‖2 ≤

τ2

8ε

4

h2
x

‖δp−1
x δtu

n‖2 ≤ τ2

8ε
(

4

h2
x

)2‖δp−2
x δtu

n‖2 ≤ τ2

8ε
(

4

h2
x

)p
′
‖δp−p

′

x δtu‖2.

Formulas (4.2)-(4.3) implies that Lemma 4.3 holds. In particular,

τ2

2
(‖δxδtun‖2 + ‖δyδtun‖2) ≤ ε(‖δxun+1‖2 + ‖δxun‖2)

+‖δyun+1‖2 + ‖δyun‖2) +
1

2ε
(µ2
x + µ2

y))‖δtun‖2. (4.4)

The proof of Lemma 4.3 is complete.
Next we consider the convergence of the DFFD (2.2). Suppose enk,m = u(xk, ym, tn) − unk,m , we define

the following weak form, for ∀ϕ ∈ H1(Ω)

(1 + µ2
x + µ2

y)(δ2
t u

n, ϕ) + ρ(δt̂u
n, ϕ)

= −(δxu
n, δxϕ)− (δyu

n, δyϕ)− 1

4
(φ(sinun+1 + 2 sinun + sinn−1), ϕ), (4.5)

(1)

Subtracting (2.2) from (4.1), we have,

(1 + µ2
x + µ2

y)(δ2
t e
n, ϕ) + ρ(δt̂e

n, ϕ) + (en, ϕ) + (δxe
n, δxϕ) + (δye

n, δyϕ)

= (en, ϕ)− 1

4
(q(u(tn))− q(un), ϕ) + (rn, ϕ), (4.6)

where

q(u(tn))− q(un)

= φ[sinu(tn+1)− sinun+1) + 2(sinu(tn)− sinun) + (sinu(tn−1)− sinun−1)],

rn = O(τ2 + h2
x + h2

y + (τ/hx)2 + (τ/hy)2).

(2)

In (4.6), let ϕ = δt̂e
n,

(1 + µ2
x + µ2

y)(δ2
t e
n, δt̂e

n) + ρ(δt̂e
n, δt̂e

n) + (en, δt̂e
n)(δxe

n, δt̂δxe
n) + (δye

n, δt̂δye
n)

= (en, δt̂e
n)− 1

4
(q(u(tn)− q(un)), δt̂e

n) + (rn, δt̂e
n). (4.7)

Applying Lemma 4.1, Lemma 4.2, we have

1

2
(1 + µ2

x + µ2
y)δt(‖δten‖2) + ρ‖δt̂e

n‖2 +
1

2
δt̂(‖e

n‖2)− τ2

4
δt(‖δten‖2)

+
1

2
δt̂(‖δxe

n‖2)− τ2

4
δt(‖δxδten‖2) +

1

2
δt̂(‖δye

n‖2)− τ2

4
δt(‖δyδten‖2)

= (rn, δt̂e
n)− (q(u(tn))− q(un), δt̂e

n) + (en, δt̂e
n). (4.8)
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Summing up for n from 1 to M and multiplying 2τ , we get

ΘM + 2ρτ

M∑
n=1

‖δt̂e
n‖2

= Θ0 + 2τ

M∑
n=1

[(rn, δt̂e
n)− (q(u(tn))− q(un), δt̂e

n) + (en, δt̂e
n)]

= Θ0 + 2τ

M∑
n=1

[I1 + I2 + I3] (4.9)

where

ΘM = (1 + µ2
x + µ2

y)‖δteM‖2 +
1

2
(‖eM‖2 + ‖eM+1‖2)− τ2

2
‖δteM‖2 +

1

2
(‖δxeM‖

+‖δxeM+1‖2) +
1

2
(‖δyeM‖2 + ‖δyeM+1‖2)− τ2

2
(‖δtδxeM‖2 + ‖δtδyeM‖2), (4.10)

Θ0 = (1 + µ2
x + µ2

y)‖δte0‖2 +
1

2
(‖e0‖2 + ‖e1‖2)− τ2

2
‖δte0‖2 +

1

2
(‖δxe0‖

+ ‖δxe1‖2) +
1

2
(‖δye0‖2 + ‖δye1‖2)− τ2

2
(‖δxδte0‖2 + ‖δyδte0‖2). (4.11)

Note that

I1 = (rn, δt̂e
n) ≤ C‖τ2 + h2

x + h2
y + (τ/hx)2 + (τ/hy)2)‖‖δt̂e

n‖
≤ C(τ4 + h4

x + h4
y + (τ/hx)4 + (τ/hy)4 + ‖δten−1‖2 + ‖δten‖2), (4.12)

which follows from

|(φ(sinu(tn+1)− sinun+1), δt̂e
n)| ≤ C‖u(tn+1)− un+1‖‖δt̂e

n‖

≤ C‖en+1‖‖δt̂e
n‖ ≤ 1

4
‖en+1‖2 + C(‖δten−1‖2 + ‖δten‖2),

|(φ[2(sinu(tn)− sinun) + (sinu(tn−1)− sinun−1)], δt̂e
n)|

≤ C(‖en‖2 + ‖en−1‖2 + ‖δten−1‖2 + ‖δten‖2).

Similarly
I2 = (q(u(tn))− q(un), δt̂e

n)

≤ 1

4
‖en+1‖2 + C(‖en‖2 + ‖en−1‖2 + ‖δten−1‖2 + ‖δten‖2), (4.13)

and
I3 = (en, δt̂e

n) ≤ C(‖en‖2 + ‖δten−1‖2 + ‖δten‖2). (4.14)

From (4.12), (4.13), (4.14), we obtain

ΘM ≤ Θ0 + 2Cτ

M∑
n=1

(τ4 + h4
x + h4

y + (τ/hx)4 + (τ/hy)4 + ‖en‖2 + ‖δten‖2). (4.15)

By Lemma 4.3, we have

ΘM ≥ [1 + µ2
x + µ2

y −
τ2

2
− ε

4
(µ2
x + µ2

y)]‖δten‖2 +
1

2
(‖eM+1‖2 + ‖eM‖2)

+
1

2
(1− 1

4ε
)(‖δxeM+1‖2 + ‖δxeM‖2 + ‖δyeM+1‖2 + ‖δyeM‖2), (4.16)
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Θ0 ≤ ‖δte0‖2 +
1

2
(‖e1‖2 + ‖e0‖2) +

1

2
(‖δxe0‖2 + ‖δxe1‖2 + ‖δye1‖2 + ‖δye0‖2)), (4.17)

in the last formula, we need to choose suitable ε to satisfy 1 − 1
4ε > 0. If the time step satisfies τ <

√
2,

then we will make all coefficients bigger than 0 and obtain

‖eM‖2 + ‖δxeM‖2 + ‖δyeM‖2 + ‖δteM‖2

≤ Cτ
M∑
n=1

(τ4 + h4
x + h4

y + (τ2/hx)4 + (τ2/hy)4

+ ‖en‖2 + ‖δxen‖2 + ‖δyen‖2 + ‖δten‖2). (4.18)

By Gronwall’s inequality, we have, for all M ,

‖eM‖+ ‖δxeM‖+ ‖δyeM‖+ ‖δteM‖ ≤ C(τ2 + h2
x + h2

y + (τ/hx)2 + (τ/hy)2). (4.19)

Remark 4.1. The convergence analyses for the CNFD scheme is the same as for the DFFD scheme. The
difference is that there is no µ2

x + µ2
y in the first term of CNFD scheme (2.1), so in (4.16), the convergence

of the CNFD scheme needs satisfying both 1 − τ2

2 −
ε
4 (µ2

x + µ2
y) ≥ σ > 0 and 1 − 1

4ε > 0 for ε. We choose

ε = 1
2 , the convergence of CDFD needs satisfying the constraint condition

τ ≤
(1

2
+

1

8
(

1

h2
x

+
1

h2
y

)
)−1/2

. (4.20)

6. The Predictor-Corrector scheme

To avoid solving the nonlinear system arising from system (2.1) and (2.2), the following predictor-
corrector (P-C) scheme is used.

5.1. The Predictor of DFFD
Using an analogous scheme as in [15], [19], the predictor value ûn+1

k,m was evaluated from the following
three-time level explicit scheme of DFFD (2.2)

(1 + µ2
x + µ2

y)ûn+1
k,m = 2(1 + µ2

x + µ2
y)unk,m − (1 + µ2

x + µ2
y)un−1

k,m + µ2
x(unk+1,m

−2unk,m + unk−1,m) + µ2
y(unk,m+1 − 2unk,m + unk,m−1)− τ2φk,m sinunk,m. (5.1)

for k,m = 0, 1, · · · , N.
Following a similar approach for the stability analysis of the nonlinear scheme as in Section 3.1, it can

be proved that the characteristic equation of the predictor is given by

(1 + µ2
x + µ2

y)λ2 − 2
(

1− 2(µ2
x sin2 βkhx

2
+ µ2

y sin2 γmhy
2

)− 1

2
φk,m cosus

)
λ

+ 1 + µ2
x + µ2

y = 0, (5.2)

and the scheme (5.1) is therefore unconditionally stable.
5.2. The Predictor of CNFD
The predictor of CNFD satisfies

ûn+1
k,m = 2unk,m − un−1

k,m + µ2
x(unk+1,m − 2unk,m + unk−1,m)

+ µ2
y(unk,m+1 − 2unk,m + unk,m−1)− τ2φk,m sinunk,m. (5.3)

Following the discussion in Section 3.2, the characteristic equation of (5.3) is

λ2 − 2
(

1− 2(µ2
x sin2 βkhx

2
+ µ2

y sin2 γmhy
2

)− 1

2
φk,m cosus

)
λ+ 1 = 0. (5.4)
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Denote B∗ = 1− 2(µ2
x sin2 βkhx

2 + µ2
y sin2 γmhy

2 )− 1
2φk,m cosus, the roots of (5.4) are

λ± = B∗ ±
√

(B∗)2 − 1. (5.5)

Let φ̃ = sup(x,y)∈[L0
x,L

1
x]×[L0

y,L
1
y ] |φ(x, y)| with |φ(x, y)| < +∞. To ensure |λ±| ≤ 1, we require |B∗| ≤ 1,

that is,

τ ≤ (
1

4
φ̃+

1

h2
x

+
1

h2
y

)−1/2. (5.6)

5.3. The predictor algorithm implementation for the DFFD scheme
The predictor of the DFFD scheme is a three-time level explicit scheme, in order to obtain the same

second order accuracy, we deal with the initial value of the DFFD scheme, that is, at n = 0 the equation
(5.1) has the following form

û1
k,m = 2u0

k,m − u−1
k,m + µ2

x(u0
k+1,m − 2u0

k,m + u0
k−1,m) + µ2

y(u0
k,m+1 − 2u0

k,m

+u0
k,m−1)− τ2φk,m sinu0

k,m(k,m = 1, 2, · · ·, N), (5.7)

to approximate u−1(x, y) in the internal points the initial velocity is used, for this we discretize the initial
velocity as

u1(xk, ym)− u−1(xk, ym)

2∆t
= g(xk, ym). (5.8)

Combining (5.7) with (5.8), we have

û1
k,m = u0

k,m + 2τg(xk, ym) +
µ2
x

2
(u0
k+1,m − 2u0

k,m + u0
k−1,m) +

µ2
y

2
(u0
k,m+1

− 2u0
k,m + unk,m−1)− τ2

2
φk,m sinu0

k,m, k,m = 1, 2, · · ·, N − 1. (5.9)

Thus (5.1) becomes, applying the boundary conditions for ∀n and m = 1, 2, · · · , N,

ûn+1
0,m = 2un0,m − un−1

0,m + µ2
x(un1,m − 2un0,m + un−1,m)

+ µ2
y(un0,m+1 − 2un0,m + un0,m−1)− τ2φ0,m sinun0,m, (5.10)

ûn+1
N,m = 2unN,m − uN−1

0,m + µ2
x(unN+1,m − 2unN,m + unN−1,m)

+ µ2
y(unN,m+1 − 2unN,m + unN,m−1)− τ2φN,m sinunN,m. (5.11)

The second order discretization form of the boundary condition ∂u(x,y,t)
∂x = p(x, y, t) is

un1,m − un−1,m

2hx
= p(x0, ym, nτ),

unN+1,m − unN−1,m

2hx
= p(xN , ym, nτ). (5.12)

Substituting (5.12) into (5.10) and (5.11), we have

ûn+1
0,m = 2un0,m − un−1

0,m + 2µ2
x(un1,m − hxp(x0, ym, nτ)− un0,m)

+ µ2
y(un0,m+1 − 2un0,m + un0,m−1)− τ2φ0,m sinun0,m, (5.13)

ûn+1
N,m = 2unN,m − un0,m + 2µ2

x(unN−1,m + hxp(xN , ym, nτ)− unN,m)

+ µ2
y(unN,m+1 − 2unN,m + unN,m−1)− τ2φN,m sinunN,m. (5.14)

Similarly, for ∀n and k = 1, 2, · · · , N,

ûn+1
k,0 = 2unk,0 − un−1

k,0 + µ2
x(unk+1,0 − 2unk,0 + unk−1,0)

+ 2µ2
y(unk,1 − hyq(xk, y0, nτ)− unk,0)− τ2φk,0 sinunk,0, (5.15)
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ûn+1
k,N = 2unk,N − unk,N + µ2

x(unk,N − 2unk,N + unk−1,N )

+ 2µ2
y(unk,N−1 + hyq(xk, yN , nτ)− unk,N )− τ2φk,N sinunk,N . (5.16)

5.4 The Correctors of DFFD and CNFD
The corrector of DFFD can be proposed as

(1 + µ2
x + µ2

y +
ρτ

2
)un+1
k,m = −1

4
φk,msinû

n+1
k,m + 2unk,m −

1

2
φk,m sinunk,m

− (1 + µ2
x + µ2

y −
ρτ

2
)un−1
k,m −

1

4
φk,m sinun−1

k,m , (5.17)

for k,m = 0, 1, · · · , N.
The corrector of CNFD can be proposed as

(1 +
ρτ

2
)un+1
k,m = −1

4
φk,msinû

n+1
k,m + 2unk,m −

1

2
φk,m sinunk,m

− (1− ρτ

2
)un−1
k,m −

1

4
φk,m sinun−1

k,m , (5.18)

for k,m = 0, 1, · · · , N.
In (5.17) and (5.18) the corrected values un+1

k,m instead of the predicted ûn+1
k,m were also used, the stability

analysis of the corrector is analogous to that developed in Section 3.1 and Section 3.2. The initial value
problem and boundary problem are solved in the same way as in Section 5.3.

7. Numerical results

In this section we present some numerical results of two schemes for the two-dimensional sine-Gordon
equation.

Example 1
To observe the behavior of the numerical method, let φ(x, y) = 1 in (1.2), it is tested on the following

problem
∂2u

∂t2
+ ρ

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
− sinu,−7 ≤ x, y ≤ 7, t > 0. (6.1)

with initial conditions
u(x, y, 0) = 4 tan−1(exp(x+ y)),−7 ≤ x, y ≤ 7, t > 0, (6.2)

∂u(x, y, 0)

∂t
= − 4 exp(x+ y)

1 + exp(2x+ 2y)
,−7 ≤ x, y ≤ 7, t > 0, (6.3)

and boundary conditions

∂u

∂x
=

4 exp(x+ y + t)

exp(2t) + exp(2x+ 2y)
, for x = −7 and x = 7,−7 ≤ y ≤ 7, t > 0, (6.4)

∂u

∂y
=

4 exp(x+ y + t)

exp(2t) + exp(2x+ 2y)
, for y = −7 and y = 7,−7 ≤ x ≤ 7, t > 0. (6.5)

The theoretical solution of this problem, in which the parameter ρ = 0 is given by

u(x, y, t) = 4 tan−1(exp(x+ y − t)). (6.6)

As mentioned in Section 2, the truncation error of the DFFD scheme is O(τ2+h2
x+h2

y+(τ/hx)2+(τ/hy)2).
One can easily see that if we choose the time step τ = h2

x = h2
y, for DFFD scheme and CNFD scheme, they

are second-order convergence. Respectively by the PC-DFFD scheme and the PC-CNFD scheme we take the
same space step and work out equation (6.1), where the initial conditions (6.2) and (6.3), and the boundary
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Figure 1: (left) Absolute error of the solution of RBF method [22], (right)absolute error of the solution of the PC-DFFD scheme
in t = 7 for test problem 6.1.

conditions (6.4) and (6.5) are employed. The error is measured by the ‖uE − uN‖L2 , ‖uE − uN‖L∞ of the
difference between the exact solution uE given by (6.6) and the numerical solution uN , the time is T = 7.0.
Table 1 shows that it needs a sufficiently small space and time step to keep the stability of PC-CNFD scheme
while the PC-DFFD scheme is unconditionally stable, which are in consistent with the theoretical results.

Table 1. Two different errors for ‖uE − uN‖L2 and ‖uE − uN‖L∞ at T = 7.

hx = hy τ PC-DFFD PC-CNFD
‖uE − uN‖L2 ‖uE − uN‖L∞ ‖uE − uN‖L2 ‖uE − uN‖L∞

1
10

1
100 0.722164e-01 0.3503924e-02 unstable unstable

1
20

1
400 0.787769e-02 0.2436561e-03 unstable unstable

1
40

1
1600 0.653123e− 04 0.1643035e-05 0.249841e-03 0.404723e-04

Take the same step length hx = hy = 0.25, τ = 0.01 as in [13], we apply the PC-DFFD scheme to
computing the solution to equation (6.1), the absolute errors are given at times t = 4, 7, 10, 20, 25. Figure
1 shows that when the space and time step are the same, compared with the absolute error at t = 7 in
[13], the accuracy of the PC-DFFD scheme is much better than the method in [13] and the absolute error
becomes about 0.1 times smaller than RBF method in [13]. Compared with [1], [8], [9], [10], [27], [16], [14],
[13], PC-DFFD scheme is much better than the numerical algorithms presented in these articles. Figure 2
shows that the PC-DFFD scheme better keeps longer stability at t = 25 or much longer time, where the
absolute error is nearly the same as that at t = 4. Compared with the scheme proposed in [1], [8], [9], [10],
[27], [16], [14], [13], the PC-DFFD scheme maintains its simplicity and better stabilities. The accumulation
of absolute errors can not lead to infinite increases of them, hence, the scheme can be applied in long-time
numerical simulations.

In the numerical calculations that follow, various cases involving line and ring solitons for the solution
of (2.1) are reported. In all the following experiments, by the PC-DFFD scheme,

we choose τ = 0.001, hx = hy = 0.1, the boundary conditions are taken to be

∂u

∂x
= 0,

∂u

∂y
= 0. (6.7)

Example 2 (Circular ring solitons)
Bogolyubskĭi and Makhankov [5], Bogolyubskĭi [6] and Christiansen and Lomdahl [12] have investigated

numerically the behavior of a circular ring quasi-soliton or pulson arising from the two-dimensional sine-
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Gordon equation. Circular ring solitons are found for the case φ(x, y) = 1 and initial conditions [28], [12]

f(x, y) = 4 tan−1 exp(3−
√
x2 + y2), g(x, y) = 0,−7 ≤ x, y ≤ 7. (6.8)

In Figure 3, the numerical solutions of circular ring solitons for the ρ = 0 at t = 2.8, 5.6, 8.4, 11.2, 15, 18, 20
are shown in terms of sin(u/2) for three-dimensional picture. The soliton from its initial position, where it
appears as two homocentric ring solitons, is shrinking until t = 2.8 appears as a single-ring soliton. From
t = 5.6, which could be considered as the beginning of the expansion phase, a radiation appears. This
expansion continues until t = 11.2, where the soliton is almost reformed. These results are in agreement
with the published ones in [1], [8], [9], [10], [27], [16], [14], [13], [25]. For different ρ = 0.05, 0.5, in Figure
4, with solution changes of a smaller ρ = 0.05 (left) and a larger ρ = 0.5 (right), the results are the same
as [13]. As ρ increases, the initial shrunk ring soliton was found to be changing more slowly from its initial
position as time increases, the dissipative term is slowing down the evolution of the line soliton as time
increases.

Example 3 (Collision of two circular solitons)
The collision of two expanding circular ring solitons is considered with φ(x, y) = 1 and initial conditions

f(x, y) = 4 tan−1 exp(
4−

√
(x+ 3)2 + (y + 7)2

0.436
),−30 ≤ x ≤ 10,−21 ≤ y ≤ 7

g(x, y) = 4.13 sinh(
4−

√
(x+ 3)2 + (y + 7)2

0.436
),−30 ≤ x ≤ 10,−21 ≤ y ≤ 7.

Numerical simulation presented in Figure 10 is for sin(u/2) at levels t=0, 2, 4, 6, 8, 10, 12, 14, 16, 18
and 20 with ρ = 0, respectively. The solution shown includes the extension across x = −10 and y = −7
by symmetry properties of the problem [28], [14], [13]. Figure 5 demonstrates the collision between two
expanding circular ring solitons in which two smaller ring solitons bounding an annular region emerge into
a large ring soliton, The simulated solution is again precisely consistent to existing results, contour maps
are given to show more clearly the movement of solitons. Though minor disturbances can be observed
in middle of the numerical solution, probably due to the transactions following the symmetry features in
computations, the overall simulation results match well those described in [12], [28], [14], [13], [25] with
satisfaction. Simultaneously, it is found that after t = 16, the originally formed large ring soliton is to split
into two line solitons to the boundary extension.

8. Conclusion.

In this paper, two numerical methods, CNFD and DFFD, are constructed for solving the two-dimensional
sin-Gordon equation. The stability, convergence and error estimats, are discussed. The DFFD scheme is
unconditionally stable and convergent, while the CNFD scheme requires more critical space and time step
constraints, in order to guarantee its stability and convergence. We establish two explicit PC-CNFD scheme
and PC-DFFD scheme, whose stabilities are discussed. The PC-DFFD scheme is unconditionally stable.
The numerical experiments indicate that the PC-DFFD scheme has better stability in comparison with the
methods in [1], [1], [8], [9], [10], [27], [16], [14], [13] and is proper to the long-time computation.
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Figure 3: Circular ring solitons: solution at t=0, 2.8, 5.6, 8.4, 11.2, 15, 18, 20 with ρ = 0.
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Figure 4: Circular ring solitons solution at t = 0, 2.8, 5.6, 8.4, 11.2, 15, 18, 20 with (left) ρ = 0.05 and (right) ρ = 0.5.
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Figure 5: Collision of two circular solitons, at t=0, 2,4,6,8,10,12,14,16,18,20 with ρ = 0.
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[5] I. L. Bogolyubskĭi and V.G. Makhankov, Life time of pulsating solitons in certain classical models, JETP Lett. 24
(1)(1976), 12-14.
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