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Abstract In this paper we introduce higher order numerical methods for solving
fractional differential equations. We use two approaches to this problem. The first
approach is based on a direct discretisation of the fractional differential operator: we
obtain a numerical method for solving a linear fractional differential equation with
order 0 < α < 1. The order of convergence of the numerical method is O(h3−α).
Our second approach is based on discretisation of the integral form of the fractional
differential equation and we obtain a fractional Adams-type method for a nonlinear
fractional differential equation of any order α > 0. The order of convergence of the
numerical method is O(h3) for α ≥ 1 and O(h1+2α) for 0 < α ≤ 1 for sufficiently
smooth solutions. Numerical examples are given to show that the numerical results
are consistent with the theoretical results.
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1 Introduction

We consider numerical methods for solving the fractional differential equation

C
0 Dα

t y(t) = f (t,y(t)), 0 < t < T, (1.1)

y(k)(0) = y(k)0 , k = 0,1,2, . . . ,dαe−1, (1.2)

where the y(k)0 may be arbitrary real numbers and α > 0. Here C
0 Dα

t denotes the dif-
ferential operator in the sense of Caputo denoted by

C
0 Dα

t y(t) =
1

Γ (n−α)

∫ t

0
(t−u)n−α−1y(n)(u)du,

where n = dαe is the smallest integer ≥ α .
Existence and uniqueness of solutions for (1.1) -(1.2) have been studied, for ex-

ample, in Podlubny [21], Diethelm [8], Diethelm and Ford [10]. Numerical meth-
ods for solving fractional differential equations have been considered by many au-
thors and we mention here a few key contributions. Lubich [18] wrote the frac-
tional differential equation in the form of an Abel-Volterra integral equation and
used the convolution quadrature method to approximate the fractional integral and
obtained approximate solutions of the fractional differential equation. Diethelm [7]
wrote the fractional Riemann-Liouville derivative by using the Hadamard finite-part
integral and approximated the integral by using a quadrature formula and obtained
an implicit numerical algorithm for solving a linear fractional differential equation.
Diethelm and Luchko [13] used the observation that a fractional differential equa-
tion has an exact solution, which can be expressed as a Mittag-Leffler type func-
tion. Then they used convolution quadrature and discretised operational calculus to
produce an approximation to this Mittag-Leffler function. Blank [1] applied a col-
location method to approximate the fractional differential equation. Podlubny [21]
used the Grünwald and Letnikov method to approximate the fractional derivative
and defined an implicit finite difference method for solving (1.1)-(1.2) and proved
that the order of convergence is O(h), where h is the step size. Gorenflo [17] in-
troduced a second order O(h2) difference method for solving (1.1)-(1.2), but the
conditions to achieve the desired accuracy are restrictive. In [11], the authors ap-
proximated the integral in (1.5) by using a piecewise linear interpolation polynomial
and introduced a fractional Adams-type predictor-corrector method for solving (1.1)-
(1.2), proving that the order of convergence of the numerical method is min{2,1+α}
for 0 < α ≤ 2 if C

0 Dα
t y ∈ C2[0,T ]. Deng [3] modified the method in [11] and intro-

duced a new predictor-corrector method for solving (1.1)-(1.2) and the convergence
order is proved to be min{2,1+ 2α} for α ∈ (0,1]. In [22], the authors introduced
a so-called Jacobi-predictor-corrector approach to solve (1.1)-(1.2) which is based
on the polynomial interpolation and the Gauss-Lobatto quadrature with respect to
some Jacobi-weight function and the computational cost is O(N),N = 1/h and any
desired convergence order can be obtained. In [2], a high order numerical method for
solving (1.1)-(1.2) is obtained where a quadratic interpolation polynomial was used
to approximate the integral. Ford, Morgado and Rebelo recently (see [16]) used a
nonpolynomial collocation method to achieve good convergence properties without
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assuming any smoothness of the solution. There are also several works that are related
to the fixed memory principle and the nested memory concept for solving (1.1)-(1.2),
see, e.g., [15], [12], [3], [4], [5], etc.

Two approaches are used in this paper to develop new numerical methods for
solving (1.1)- (1.2). The first approach is based on a direct discretisation of the frac-
tional differential operator in the form proposed by Diethelm [6]. In [7], Diethelm
considered the following linear fractional differential equation, with 0 < α < 1,

C
0 Dα

t y(t) = βy(t)+ f (t), 0≤ t ≤ 1, (1.3)
y(0) = y0, (1.4)

where β < 0, f is a given function on the interval [0,1]. Diethelm [7] used a first-
degree compound quadrature formula to approximate the Hadamard finite-part inte-
gral in the equivalent form of (1.3)-(1.4) and defined a numerical method for solv-
ing (1.3)-(1.4) and proved that the order of convergence of the numerical method is
O(h2−α),0 < α < 1. Here we approximate the Hadamard finite-part integral by using
the second-degree compound quadrature formula and obtain an asymptotic expansion
of the error for solving (1.3)-(1.4), which implies that the order of convergence of the
numerical method is O(h3−α),0 < α < 1. Moreover, a high order finite difference
method (O(h3−α),0 < α < 2) for approximating the Riemann-Liouville fractional
derivative is given, which may be applied to construct high order numerical methods
for solving time-space-fractional partial differential equations.

Our second approach for solving the fractional differential equation (1.1)-(1.2) is
based on the discretisation of the integral in the equivalent form of (1.1)-(1.2), see
[11]. It is well-known that (1.1)-(1.2) is equivalent to the Volterra integral equation

y(t) =
dαe−1

∑
ν=0

y(ν)0
tν

ν!
+

1
Γ (α)

∫ t

0
(t−u)α−1 f (u,y(u))du. (1.5)

We use piecewise quadratic interpolation polynomials to approximate the integral
in (1.5) and introduce a high order fractional Adams method for solving (1.5) and
prove that the order of convergence of the numerical method is min{3,1+ 2α} for
α ∈ (0,2] if C

0 Dα
t y(t) ∈C3[0,T ]. This method has higher convergence order than the

method in [3]. It is easier to implement our numerical algorithm compared with the
method in [22] where the Jacobi-Gauss-Lobatto nodes must be calculated at each time
level. Our method is simpler than the method in [2] in the sense that we are using
a predictor-corrector method and therefore we do not need to solve the nonlinear
system at each time level.

The paper is organised as follows: in Section 2, we consider how we can extend
the Diethelm method for solving a linear fractional differential equation. In Section
3, we consider the fractional Adams method for solving a nonlinear fractional differ-
ential equation. Finally in Section 4, we consider some numerical examples.
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2 Extending Diethelm’s method

In this section we will consider a higher order numerical method for solving (1.3)-
(1.4). It is well-known that (1.3)-(1.4) is equivalent, with 0 < α < 1, to the following
problem:

R
0 Dα

t [y(t)− y0] = βy(t)+ f (t), 0≤ t ≤ 1, (2.1)

where R
0 Dα

t y(t) denotes the Riemann-Liouville fractional derivative defined by, with
0 < α < 1,

R
0 Dα

t y(t) =
1

Γ (1−α)

d
dt

∫ t

0
(t−u)−α y(u)dτ. (2.2)

The Riemann-Liouville fractional derivative R
0 Dα

t y(t) can be written as [7]

R
0 Dα

t y(t) =
1

Γ (−α)

∮ t

0
(t−u)−1−α y(u)du, (2.3)

where the integral
∮

denotes the Hadamard finite-part integral.
In [7], Diethelm approximated the Hadamard finite-part integral in (2.3) by piece-

wise linear interpolation polynomials and defined a numerical method for solving
(2.1). In this section, we will approximate the Hadamard finite-part integral by using
piecewise quadratic interpolation polynomials.

Let M be a fixed positive integer and let 0= t0 < t1 < t2 < · · ·< t2 j < t2 j+1 < · · ·<
t2M = 1 be a partition of [0,1] and h the step size. At node t2 j =

2 j
2M , the equation (2.1)

satisfies
R
0 Dα

t [y(t2 j)− y0] = βy(t2 j)+ f (t2 j), j = 1,2, . . . ,M, (2.4)

and at node t2 j+1 =
2 j+1
2M , the equation (2.1) satisfies

R
0 Dα

t [y(t2 j+1)− y0] = βy(t2 j+1)+ f (t2 j+1), j = 0,1,2, . . . ,M−1. (2.5)

Let us first consider the discretisation of (2.4). Note that

R
0 Dα

t y(t2 j) =
1

Γ (−α)

∮ t2 j

0
(t2 j−τ)−1−α y(τ)dτ =

t−α

2 j

Γ (−α)

∮ 1

0
w−1−α y(t2 j− t2 jw)dw.

(2.6)
For every j, we replace g(w) = y(t2 j− t2 jw) in the integral in (2.6) by a piecewise

quadratic interpolation polynomial with equispaced nodes 0, 1
2 j ,

2
2 j , . . . ,

2 j
2 j . We then

have ∮ 1

0
w−1−α g(w)dw =

∮ 1

0
w−1−α g2(w)dw+R2 j(g), (2.7)

where g2(w) is the piecewise quadratic interpolation polynomial of g(w) with equis-
paced nodes 0, 1

2 j ,
2
2 j , . . . ,

2 j
2 j and R2 j(g) is the remainder term.
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Lemma 2.1 Let 0 < α < 1. We have∮ 1

0
w−1−α g2(w)dw =

2 j

∑
k=0

αk,2 jg
( k

2 j

)
, (2.8)

where

(−α)(−α+1)(−α+2)(2 j)−α
αl,2 j =



2−α(α +2), for l = 0,
(−α)22−α , for l = 1,
(−α)(−2−α α)+ 1

2 F0(2), for l = 2,
−F1(k), for l = 2k−1,

k = 2,3, . . . , j,
1
2 (F2(k)+F0(k+1)), for l = 2k,

k = 2,3, . . . , j−1,
1
2 F2( j), for l = 2 j,

F0(k) =(2k−1)(2k)
(
(2k)−α − (2k−2)−α

)
(−α +1)(−α +2)

−
(
(2k−1)+2k

)(
(2k)−α+1− (2k−2)−α+1

)
(−α)(−α +2)

+
(
(2k)−α+2− (2k−2)−α+2

)
(−α)(−α +1),

F1(k) =(2k−2)(2k)
(
(2k)−α − (2k−2)−α

)
(−α +1)(−α +2)

−
(
(2k−2)+2k

)(
(2k)−α+1− (2k−2)−α+1

)
(−α)(−α +2)

+
(
(2k)−α+2− (2k−2)−α+2

)
(−α)(−α +1),

and

F2(k) =(2k−2)(2k−1)
(
(2k)−α − (2k−2)−α

)
(−α +1)(−α +2)

−
(
(2k−2)+(2k−1)

)(
(2k)−α+1− (2k−2)−α+1

)
(−α)(−α +2)

+
(
(2k)−α+2− (2k−2)−α+2

)
(−α)(−α +1).

Proof For fixed 2 j, let 0 < 1
2 j <

2
2 j < · · · <

2 j
2 j = 1 be a partition of [0,1]. Denote

wl =
l

2 j , l = 0,1,2, . . . ,2 j. We then have, for k = 1,2, . . . , j,

g2(w) =
(w−w2k−1)(w−w2k)

(w2k−2−w2k−1)(w2k−2−w2k)
g(w2k−2)

+
(w−w2k−2)(w−w2k)

(w2k−1−w2k−2)(w2k−1−w2k)
g(w2k−1)

+
(w−w2k−2)(w−w2k−1)

(w2k−w2k−2)(w2k−w2k−1)
g(w2k), for w ∈ [w2k−2,w2k

]
. (2.9)



6 Yubin Yan et al.

Let us now consider∮ 1

0
w−1−α g2(w)dw =

[∮ w2

0
+
∫ w4

w2

+ · · ·+
∫ w2 j

w2 j−2

]
w−1−α g2(w)dw.

By the definition of the Hadamard finite-part integral [6], we obtain

∮ w2

0
w−1−α g2(w)dw =

g2(0)(w2)
−α

−α
+
∫ w2

0
w−1−α

[∫ w

0
g′2(y)dy

]
dw

=
2−α

(−α)(2 j)−α
g2(0)+

∫ w2

0
w−1−α(g2(w)−g2(0))dw.

(2.10)

By using (2.9), we have∮ w2

0
g2(w)w−1−α dw

=
2−α

(−α)(2 j)−α
g(0)+

∫ w2

0
w−1−α

[ (2 j)2

2

(
w2− (w1 +w2)w

)
g(0)

+
(2 j)2

−1

(
w2− (0+w2)w

)
g(w1)+

(2 j)2

2

(
w2− (0+w1)w

)
g(w2)

]
dw

=
2−α(α +2)

(−α)(−α +1)(−α +2)(2 j)−α
g(0)+

22−α

(−α +1)(−α +2)(2 j)−α
g(w1)

+
−2−α α

(−α +1)(−α +2)(2 j)−α
g(w2).

Similarly we have, after a simple calculation,

(−α)(−α +1)(−α +2)(2 j)−α

∫ w2k+2

w2k

g2(w)w−1−α dw

=
1
2

F0(k)g(w2k−2)+(−1)F1(k)g(w2k−1)+
1
2

F2(k)g(w2k),

where Fi(k), i = 0,1,2 and k = 2,3, ..., j are defined as above.
Together these estimates lead to (2.8) and the proof of Lemma 2.1 is complete.

Next we consider the discretisation of (2.5). At the node t2 j+1 =
2 j+1
2M , j = 1,2, . . . ,M−

1 we have

R
0 Dα

t y(t2 j+1) =
1

Γ (−α)

∮ t2 j+1

0
(t2 j+1− τ)−1−α y(τ)dτ

=
1

Γ (−α)

∫ t1

0
(t2 j+1− τ)−1−α y(τ)dτ +

t−α

2 j+1

Γ (−α)

∮ 2 j
2 j+1

0
w−1−α y(t2 j+1− t2 j+1w)dw.

(2.11)
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Fig. 2.1 The weights αk,10 of the approximation of the fractional derivative with the different fractional
order α

For j = 1,2, . . . ,M− 1, we replace g(w) = y(t2 j+1− t2 j+1w) in the integral in
(2.11) by a piecewise quadratic interpolation polynomial with equispaced nodes 0, 1

2 j+1 ,
2

2 j+1 , . . . ,
2 j

2 j+1 .
We then have, for any smooth function g(w),

∮ 2 j
2 j+1

0
w−1−α g(w)dw =

∮ 2 j
2 j+1

0
w−1−α g2(w)dw+R2 j+1(g), (2.12)

where g2(w) is the piecewise quadratic interpolation polynomial of g(w) with the
nodes 0, 1

2 j+1 ,
2

2 j+1 , . . . ,
2 j

2 j+1 and R2 j+1(g) is the remainder term.
Similarly we can prove the following lemma.

Lemma 2.2 Let 0 < α < 1. We have

∮ 2 j
2 j+1

0
w−1−α g2(w)dw =

2 j

∑
k=0

αk,2 j+1g
( k

2 j+1

)
, (2.13)

where αk,2 j+1 = αk,2 j, k = 0,1,2, . . . ,2 j and αk,2 j are given in Lemma 2.1.

Remark 2.1 By the direct calculations, we can show that, with 0 < α < 1,

α0,2 j =
2−α(α +2)

(−α)(−α +1)(−α +2)(2 j)−α
< 0, (2.14)

and αk,2 j > 0 for k > 0, k 6= 2. For k = 2, there exists α1 ∈ (0,1) such that α2,2 j ≥ 0
for 0 < α < α1 and α2,2 j ≤ 0 α1 < α < 1.

To see the weights αk,2 j, k = 0,1,2, . . . ,2 j, in Figure 2.1, we plot αl,10 for l =
0,1,2, . . . ,10 with the different fractional order α = 1/4,1/2,3/4.

Now solutions of (2.1) satisfy, with j = 1,2, . . . ,M,

y(t2 j)=
1

α0,2 j− tα
2 jΓ (−α)β

[
tα
2 jΓ (−α) f (t2 j)−

2 j

∑
k=1

αk,2 jy(t2 j−k)+y0

2 j

∑
k=0

αk,2 j−R2 j(g)
]
,

(2.15)
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and, with j = 1,2, . . . ,M−1,

y(t2 j+1) =
1

α0,2 j+1− tα
2 j+1Γ (−α)β

[
tα
2 j+1Γ (−α) f (t2 j+1)−

2 j

∑
k=1

αk,2 j+1y(t2 j+1−k)

+ y0

2 j

∑
k=0

αk,2 j+1−R2 j+1(g)− tα
2 j+1

∫ t1

0
(t2 j+1− τ)−1−α y(τ)dτ

]
. (2.16)

Here α0,l− tα
l Γ (−α)β < 0, l = 2 j,2 j+1, which follow from (2.14) and Γ (−α)<

0, β < 0 and α0,2 j+1 = α0,2 j.
Let y2 j ≈ y(t2 j) and y2 j+1 ≈ y(t2 j+1) denote the approximations of the exact

solutions y(t2 j) and y(t2 j+1), respectively. Assume that the starting values y0 and
y1 are given. We define the following numerical methods for solving (2.1), with
j = 1,2, . . . ,M,

y2 j =
1

α0,2 j− tα
2 jΓ (−α)β

[
tα
2 jΓ (−α) f (t2 j)−

2 j

∑
k=1

αk,2 jy2 j−k + y0

2 j

∑
k=0

αk,2 j

]
, (2.17)

and, with j = 1,2, . . . ,M−1,

y2 j+1 =
1

α0,2 j+1− tα
2 j+1Γ (−α)β

[
tα
2 j+1Γ (−α) f (t2 j+1)−

2 j

∑
k=1

αk,2 j+1y2 j+1−k

+ y0

2 j

∑
k=0

αk,2 j+1− tα
2 j+1

∫ t1

0
(t2 j+1− τ)−1−α y(τ)dτ

]
. (2.18)

Remark 2.2 In practice, we need to approximate
∫ t1

0 (t2 j+1−τ)−1−α y(τ)dτ . One way
is to divide the integral [0, t1] into small intervals 0 ≤ t1

1 ≤ t2
1 ≤ ·· · ≤ tN

1 = t1 with
stepsize h̃� h. We first obtain y1p ≈ y(t p

1 ), p = 1,2, . . . ,N by using some numeri-
cal methods for solving fractional differential equation. Then we apply a quadrature
formula to approximate the integral.

We have the following asymptotic expansion theorem.

Theorem 2.1 Let 0 < α < 1 and M be a positive integer. Let 0 = t0 < t1 < t2 <
· · · < t2 j < t2 j+1 < · · · < t2M = 1 be a partition of [0,1] and h the step size. Let
y(t2 j),y(t2 j+1),y2 j and y2 j+1 be the exact solutions and the approximate solutions
of (2.15) - (2.18), respectively. Assume that the function y ∈ Cm+2[0,1], m ≥ 3.
Further assume that we obtain the exact starting values y0 = y(0) and y1 = y(t1).
Then there exist coefficients cµ = cµ(α) and c∗µ = c∗µ(α) such that the sequence
{yl}, l = 0,1,2, . . . ,2M possesses an asymptotic expansion of the form

y(t2M)− y2M =
m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1), for M→ ∞,

that is,

y(t2M)− y2M =
m+1

∑
µ=3

cµ hµ−α +
µ∗

∑
µ=2

c∗µ h2µ +o(hm+1−α), for h→ 0,
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where µ∗ is the integer satisfying 2µ∗ < m+1−α < 2(µ∗+1), and cµ and c∗µ are
certain coefficients that depend on y.

To prove Theorem 2.1, we need the following lemma for the asymptotic expan-
sions for the remainder terms R2 j(g) and R2 j+1(g) in (2.7) and (2.12).

Lemma 2.3 Let 0 < α < 1 and g ∈ Cm+2[0,1], m ≥ 3. Let R2 j(g) and R2 j+1(g)
be the remainder terms in (2.7) and (2.12), respectively. Then we have, with l =
2,3, . . . ,2 j,2 j+1, . . . ,2M,

Rl(g) =
m+1

∑
µ=3

dµ lα−µ +
µ∗

∑
µ=2

d∗µ l−2µ +o(lα−m−1), (2.19)

where µ∗ is the integer satisfying 2µ∗ < m+1−α < 2(µ∗+1), and dµ and d∗µ are
certain coefficients that depend on g.

Proof We follow the proof of Theorem 1.3 in [14] where the piecewise linear La-
grange interpolation polynomials are used.

We first consider the case l = 2 j for j = 1,2, . . . ,M. Let 0=w0 <w1 <w2 < · · ·<
w2 j = 1,wk =

k
2 j ,k = 0,1,2, . . . ,2 j be a partition of [0,1]. Let h1 =

1
2 j be the step size.

Let g2(w) denote the piecewise quadratic Lagrange interpolation polynomial defined
by (2.9) on [w2l ,w2l+2], l = 0,1,2, . . . , j−1. Then we have

R2 j(g) =
∮ 1

0
w−1−α g(w)dw−

∮ 1

0
w−1−α g2(w)dw

=
j−1

∑
l=0

∫ w2l+2

w2l

w−1−α

(
g(w)−g2(w)

)
dw =

j−1

∑
l=0

∫ 1

0
(w2l +2h1s)−1−α

[
g(w2l +2h1s)

−
(1

2
(2s−1)(2s−2)g(w2l)− (2s)(2s−2)g(w2l+1)+

1
2
(2s)(2s−1)g(w2l+2)

)]
(2h1)ds.

By using the Taylor formula, we have

g(w2l) = g(w2l +2h1s)+
g′(w2l +2h1s)

1!
(−2h1s)+

g′′(w2l +2h1s)
2!

(−2h1s)2

+
g′′′(w2l +2h1s)

3!
(−2h1s)3 + · · ·+ g(M)(w2l +2h1s)

m!
(−2h1s)m +R(1)

m+1,

g(w2l+1) = g(w2l +2h1s)+
g′(w2l +2h1s)

1!
(h1−2h1s)+

g′′(w2l +2h1s)
2!

(h1−2h1s)2

+
g′′′(w2l +2h1s)

3!
(h1−2h1s)3 + · · ·+ g(m)(w2l +2h1s)

m!
(h1−2h1s)m +R(2)

m+1,

g(w2l+2) = g(w2l +2h1s)+
g′(w2l +2h1s)

1!
(2h1−2h1s)+

g′′(w2l +2h1s)
2!

(2h1−2h1s)2

+
g′′′(w2l +2h1s)

3!
(2h1−2h1s)3 + · · ·+ g(m)(w2l +2h1s)

m!
(2h1−2h1s)m +R(3)

m+1,

(2.20)
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where R(i)
m+1, i = 1,2,3 denote the remainder terms. Thus we obtain

R2 j(g) =(2h1)
j−1

∑
l=0

∫ 1

0
(w2l +2h1s)−1−α

[m−3

∑
r=0

hr+3
1 g(r+3)(w2l +2h1s)πr(s)

]
ds

+(2h1)
j−1

∑
l=0

∫ 1

0
(w2l +2h1s)−1−α

εm+1(s)ds = I + II,

where εm+1(s) depends on the remainder terms R(i)
m+1, i = 1,2,3 and πr(s) are some

functions of s.
For I, we have

I =
m−3

∑
r=0

hr+3
1

∫ 1

0

[
2h1

j−1

∑
l=0

(w2l +2h1s)−1−α g(r+3)(w2l +2h1s)
]
πr(s)ds.

Applying Theorem 3.2 in [20], we have, with w̄l = w2l , h̄1 = 2h1,

2h1

j−1

∑
l=0

(w2l +2h1s)−1−α g(r+3)(w2l +2h1s)

= h̄1

j−1

∑
l=0

(w̄l + h̄1s)−1−α g(r+3)(w̄l + h̄1s)

=
m−r−3

∑
j=0

a j(s)h
j
1 +

m−r−2

∑
j=0

a0, j(s)h
j−α

1 +o(hm−r−2
1 ),

with some suitable functions a j(s), j = 0,1, . . . ,m−r−3 and a0, j(s), j = 0,1, . . . ,m−
r−2, with r = 0,1,2, . . . ,m−3, m≥ 3.

Hence we have, noting that h1 = (2 j)−1,

I =
m−3

∑
r=0

h3+r
1

[∫ 1

0

m−r−3

∑
j=0

a j(s)h
j
1πr(s)ds

]
+

m−3

∑
r=0

h3+r
1

[∫ 1

0

m−r−2

∑
j=0

a0, j(s)h
j−α

1 πr(s)ds)
]
+o(hm+1

1 )

=
m−3

∑
r=0

m−r−3

∑
j=0

[∫ 1

0
a j(s)πr(s)ds

]
h3+r+ j

1

+
m−3

∑
r=0

m−r−2

∑
j=0

[∫ 1

0
a0, j(s)πr(s)ds

]
h3+r+ j−α

1 +o(hm+1
1 )

=
m+1

∑
µ=3

dµ(2 j)α−µ +
µ∗

∑
µ=2

d∗µ(2 j)−2µ +o((2 j)−m−1), (2.21)

where µ∗ is the integer satisfying 2µ∗ < m+1−α < 2(µ∗+1), and dµ and d∗µ are
certain coefficients that depend on g. We remark that the expansion does not contain
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any odd integer of powers of (2 j) which follows from the argument in the proof of
Theorem 1.3 in [14].

For II, we have, following the argument of the proof for Theorem 1.3 in [14],

II = 2h1

j−1

∑
l=0

∫ 1

0
(w2l +2h1s)−1−α

εm+1(s)ds = o((2 j)α−m−1).

Thus (2.19) holds for l = 2 j.
Next we consider the case l = 2 j+1. Denote w2l =

2l
2 j+1 , w2l+2 =

2l+2
2 j+1 and h1 =

1
2 j+1 , we have

R2 j+1(g) =
∮ 2 j

2 j+1

0
w−1−α g(w)dw−

∮ 2 j
2 j+1

0
w−1−α g2(w)dw

=
j−1

∑
l=0

∫ w2l+2

w2l

w−1−α

(
g(w)−g2(w)

)
dw =

j−1

∑
l=0

∫ 1

0
(w2l +2h1s)−1−α

[
g(w2l +2h1s)

−
(1

2
(2s−1)(2s−2)g(w2l)− (2s)(2s−2)g(w2l+1)+

1
2
(2s)(2s−1)g(w2l+2)

)]
(2h1)ds.

Following the same argument as for the case l = 2 j, we show that (2.19) also holds
for l = 2 j+1. Together these estimates complete the proof of Lemma 2.3.

Proof (Proof of Theorem 2.1)
We follow the proof of Theorem 2.1 in [14] where the piecewise linear Lagrange

interpolation polynomials are used to approximate the Hadamard finite-part integral.
Let us fix tl = c to be a constant for l = 1,2, . . .2M. We will investigate the differ-

ence
el = y(tl)− yl , for l→ ∞, with tl = lh =

l
2M

= c,

where h = 1/(2M) is the step size. In other words, there is a constant c, independent
of M, such that

l = c · (2M), or M = l/(2c),
and consequently, we see that if el possesses an asymptotic expansion w. r. t. l, then
e2M possesses at the same time one w. r. t. M, and vice versa.

We shall prove

el = y(tl)− yl =
m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1), for l→ ∞,

(2.22)
for some suitable constants cµ ,c∗µ which we will determine later.

Let us first consider the case l = 2 j. Subtracting (2.17) from (2.15), we have,
noting t2 j = (2 j)h = 2 j

2M = c,

e2 j =
1

α0,2 j− ( 2 j
2M )αΓ (−α)β

[
−

2 j

∑
k=1

αk,2 j(y(t2 j−k)− y2 j−k)−R2 j(g)
]

=
1

cαΓ (−α)β −α0,2 j

( 2 j

∑
k=1

αk,2 je2 j−k +R2 j(g)
)
. (2.23)
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Note that g(·) = y(t2 j− t2 j·) ∈Cm+2[0,1], m≥ 3, we have, by Lemma 2.3,

R2 j(g) =
m+1

∑
µ=3

dµ(2 j)α−µ +
µ∗

∑
µ=2

d∗µ(2 j)−2µ +o((2 j)α−m−1), for j→ ∞, (2.24)

where µ∗ is the integer satisfying 2µ∗ < m+1−α < 2(µ∗+1), and dµ and d∗µ are
certain coefficients that depend on g.

Note that (2 j)/(2M) = c, we can write (2.24) into

R2 j(g) =
m+1

∑
µ=3

d̃µ(2M)α−µ +
µ∗

∑
µ=2

d̃∗µ(2M)−2µ +o((2M)α−m−1), for j→ ∞. (2.25)

Choose

cµ =
1

−cαΓ (−α)β −1/α
d̃µ , µ = 3,4, . . . ,m+1, (2.26)

c∗µ =
1

−cαΓ (−α)β −1/α
d̃∗µ , µ = 1,2, . . . ,µ∗, (2.27)

we will prove below that (2.22) holds for the coefficents cµ ,c∗µ defined in (2.26) and
(2.27).

We shall use mathematical induction to prove (2.22). By assumption e0 = 0,e1 =
0, hence (2.22) holds for l = 0,1 with the coefficients given by (2.26) and (2.27). Let
us now consider the case for l = 2. We have, noting that α0,l =

2−α (α+2)(2Mc)α

(−α)(−α+1)(−α+2) and
applying Lemma 2.3,

e2 = y(t2)− y2 =
1

cαΓ (−α)β −α0,2

( 2

∑
k=1

αk,2e2−k +R2(g)
)

=
1

cαΓ (−α)β −α0,2

[(m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1)
)

·
( 2

∑
k=0

αk,2−α0,2

)
+R2(g)

]
. (2.28)

Thus we get, noting that ∑
2
k=0 αk,2 =−1/α and α0,2 =

2−α (α+2)(2Mc)α

(−α)(−α+1)(−α+2) ,[ 2−α(α +2)(2Mc)α

(−α)(−α +1)(−α +2)
− cα

Γ (−α)β
]
e2

=
1
α

[m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1)
]

−
m+1

∑
µ=3

d̃µ(2M)α−µ −
µ∗

∑
µ=2

d̃∗µ(2M)−2µ +o((2M)α−m−1)

+
2−α(α +2)(2Mc)α

(−α)(−α +1)(−α +2)

[m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1)
]
.

(2.29)
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This shows that the sequence e2 possesses an asymptotic expansion with respect to
the powers of 2M, and it is easy to check that, by comparing with the coefficients of
powers of (2M), see [14],

e2 =
m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1).

Assume that (2.22) holds for l = 0,1, . . . ,2 j− 1. Then we have, following the
same argument for (2.29), noting ∑

2 j
k=0 αk,2 j =−1/α and applying Lemma 2.3,

[ 2−α(α +2)(2Mc)α

(−α)(−α +1)(−α +2)
− cα

Γ (−α)β
]
e2 j

=
1
α

[m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1)
]

−
m+1

∑
µ=3

d̃µ(2M)α−µ −
µ∗

∑
µ=2

d̃∗µ(2M)−2µ +o((2M)α−m−1)

+
2−α(α +2)(2Mc)α

(−α)(−α +1)(−α +2)

[m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1)
]
.

(2.30)

This shows that the sequence e2 j possesses an asymptotic expansion with respect
to the powers of 2M, and it is easy to check that, by comparing with the coefficients
of powers of (2M), see [14],

e2 j =
m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1).

Hence (2.22) holds for l = 2 j.
Finally we assume that (2.22) holds for l = 0,1, . . . ,2 j. Then we have, following

the same argument for (2.30), noting ∑
2 j
k=0 αk,2 j+1 = ∑

2 j
k=0 αk,2 j = −1/α , α0,2 j+1 =

α0,2 j and applying Lemma 2.3,

[ 2−α(α +2)(2Mc)α

(−α)(−α +1)(−α +2)
− cα

Γ (−α)β
]
e2 j+1

=
1
α

[m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1)
]

−
m+1

∑
µ=3

d̃µ(2M)α−µ −
µ∗

∑
µ=2

d̃∗µ(2M)−2µ +o((2M)α−m−1)

+
2−α(α +2)(2Mc)α

(−α)(−α +1)(−α +2)

[m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1)
]
.

(2.31)
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This again shows that the sequence e2 j+1 possesses an asymptotic expansion with
respect to the powers of 2M, and it is easy to check that, by comparing with the
coefficients of powers of 2M, see [14],

e2 j+1 =
m+1

∑
µ=3

cµ(2M)α−µ +
µ∗

∑
µ=2

c∗µ(2M)−2µ +o((2M)α−m−1).

Hence (2.22) holds also for l = 2 j+ 1. Together these estimates complete the proof
of (2.22). Applying l = 2M in (2.22), we get (2.23). The proof of Theorem 2.1 is now
complete.

Remark 2.3 In Theorem 2.1, we assume that y1 = y(t1) exactly. In practice y1 can be
approximated by using the ideas described in Remark 2.2.

3 A higher order fractional Adams-type method

In this section we will consider a higher order numerical method for solving (1.1)-
(1.2). For simplicity we only consider the case where 0 < α ≤ 2 since the case α > 2
does not seem to be of major practical interest [11].

To make sure that (1.1) - (1.2) has a unique solution, we assume that f (u, ·) satis-
fies a Lipschitz condition, i.e., there exists a constant L such that

| f (u,x)− f (u,y)| ≤ L|x− y|, ∀x,y ∈ R. (3.1)

Let m be a positive integer and let 0 = t0 < t1 < t2 < · · · < t2 j < t2 j+1 < · · · <
t2m = T be a partition of [0,T ] and h the stepsize. Note that the system (1.1)-(1.2)
is equivalent to (1.5). Let us now consider the discretisation of (1.5). At node t =
t2 j, j = 1,2, . . . ,m, we have

y(t2 j) = y0 + y(1)0
t2 j

1!
+

1
Γ (α)

∫ t2 j

0
(t2 j−u)α−1 f (u,y(u))du. (3.2)

(The second of the initial conditions only for 1 < α < 2 of course). At node t =
t2 j+1, j = 1,2, . . . ,m−1, we have

y(t2 j+1) = y0 + y(1)0
t2 j+1

1!
+

1
Γ (α)

∫ t2 j+1

0
(t2 j+1−u)α−1 f (u,y(u))du

= y0 + y(1)0
t2 j+1

1!
+

1
Γ (α)

∫ t1

0
(t2 j+1−u)α−1 f (u,y(u))du

+
1

Γ (α)

∫ t2 j+1

t1
(t2 j+1−u)α−1 f (u,y(u))du

= y0 + y(1)0
t2 j+1

1!
+

1
Γ (α)

∫ t1

0
(t2 j+1−u)α−1 f (u,y(u))du

+
1

Γ (α)

∫ t2 j

0
(t2 j−u)α−1 f (u+h,y(u+h))du (3.3)
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We will replace f (u,y(u)) in the integral
∫ t2 j

0 (t2 j−u)α−1 f (u,y(u))du in (3.2) by
the following piecewise quadratic polynomial, for t2l ≤ u≤ t2l+2, l = 0,1,2, . . . j−1
with j = 1,2, . . . ,m,

f (u,y(u))≈ P2(u) =
(u− t2l+1)(u− t2l+2)

(t2l− t2l+1)(t2l− t2l+2)
f (t2l ,y(t2l))

+
(u− t2l)(u− t2l+2)

(t2l+1− t2l)(t2l+1− t2l+2)
f (t2l+1,y(t2l+1))

+
(u− t2l)(u− t2l+1)

(t2l+2− t2l)(t2l+2− t2l+1)
f (t2l+2,y(t2l+2)). (3.4)

Similarly we will replace f (u + h, f (u + h)) in the integral
∫ t2 j

0 (t2 j − u)α−1 f (u +
h,y(u+ h))du in (3.3) by the following piecewise quadratic polynomial, for t2l ≤
u≤ t2l+2, l = 0,1,2, . . . j−1, j = 1,2, . . . ,m−1,

f (u+h,y(u+h))≈ Q2(u) =
(u− t2l+1)(u− t2l+2)

(t2l− t2l+1)(t2l− t2l+2)
f (t2l+1,y(t2l+1))

+
(u− t2l)(u− t2l+2)

(t2l+1− t2l)(t2l+1− t2l+2)
f (t2l+2,y(t2l+2))

+
(u− t2l)(u− t2l+1)

(t2l+2− t2l)(t2l+2− t2l+1)
f (t2l+3,y(t2l+3)). (3.5)

We then have the following lemma:

Lemma 3.1 Let 0 < α ≤ 2. We have

∫ t2 j

0
(t2 j−u)α−1P2(u)du =

2 j

∑
k=0

ck,2 j f (tk,y(tk)), (3.6)

and ∫ t2 j

0
(t2 j−u)α−1Q2(u)du =

2 j

∑
k=0

ck,2 j f (tk+1,y(tk+1)), (3.7)

where

ck,2 j =
hα

α(α +1)(α +2)


1
2 F0(0), if k = 0,
1
2 F0(l)+ 1

2 F2(l−1), if k = 2l, l = 1,2, . . . , j−1,
−F1(l), if k = 2l +1, l = 0,1,2, . . . , j−1,
1
2 F2( j−1), if k = 2 j,
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and

F0(l) = α(α +1)
(
(2 j−2l)α+2− (2 j−2l−2)α+2

)
+α(α +2)

(
2(2 j)− (2l +1)− (2l +2)

)(
(2 j−2l−2)α+1− (2 j−2l)α+1

)
+(α +1)(α +2)

(
(2 j−2l−1)(2 j−2l−2)

)(
(2 j−2l)α − (2 j−2l−2)α

)
,

F1(l) = α(α +1)
(
(2 j−2l)α+2− (2 j−2l−2)α+2

)
+α(α +2)

(
2(2 j)− (2l)− (2l +2)

)(
(2 j−2l−2)α+1− (2 j−2l)α+1

)
+(α +1)(α +2)

(
(2 j−2l)(2 j−2l−2)

)(
(2 j−2l)α − (2 j−2l−2)α

)
,

F2(l) = α(α +1)
(
(2 j−2l)α+2− (2 j−2l−2)α+2

)
+α(α +2)

(
2(2 j)− (2l)− (2l +1)

)(
(2 j−2l−2)α+1− (2 j−2l)α+1

)
+(α +1)(α +2)

(
(2 j−2l)(2 j−2l−1)

)(
(2 j−2l)α − (2 j−2l−2)α

)
,

Proof This follows from a simple calculation. We omit the proof here.

We now define a fractional Adams numerical method for solving (1.5). Let yl ≈
y(tl) denote the approximation of y(tl), l = 0,1,2, . . . ,2m. The corrector formula is
defined by

y2 j = y0 + y(1)0
t2 j

1!
+

1
Γ (α)

(2 j−1

∑
k=0

ck,2 j f (tk,yk)+ c2 j,2 j f (t2 j,yP
2 j)
)
, j = 1,2, . . . ,m,

(3.8)
and

y2 j+1 = y0 + y(1)0
t2 j+1

1!
+

1
Γ (α)

∫ t1

0
(t2 j+1−u)α−1 f (u,y(u))du

+
1

Γ (α)

(2 j−1

∑
k=0

ck,2 j f (tk+1,yk+1)+ c2 j,2 j f (t2 j+1,yP
2 j+1)

)
, j = 1,2, . . . ,m−1.

(3.9)

The remaining problem is the determination of the predictor formula required to
calculate yP

k . The idea is the same as the one described above: we replace f (u,y(u))
and f (u+h,y(u+h)) of the integrals on the right-hand sides of equations (3.2) and
(3.3), respectively, by the piecewise linear interpolation polynomials and obtain

yP
2 j = y0 + y(1)0

t2 j

1!
+

1
Γ (α)

(2 j−1

∑
k=0

ak,2 j f (tk,yk)+a2 j,2 j f (t2 j,yPP
2 j )
)
, j = 1,2, . . . ,m,

(3.10)
and, with j = 1,2, . . . ,m−1,

yP
2 j+1 = y0 + y(1)0

t2 j+1

1!
+

1
Γ (α)

( 2 j

∑
k=0

ak,2 j+1 f (tk,yk)+a2 j+1,2 j+1 f (t2 j+1,yPP
2 j+1)

)
,

(3.11)
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where the weights are [11]

ak,n+1 =
hα

α(α +1)


nα+1− (n−α)(n+1)α , if k = 0,
(n− k+2)α+1 +(n− k)α+1−2(n− k+1)α+1 if 1≤ k ≤ n,
1, if k = n+1.

Similarly, to calculate yPP
k , we replace f (u,y(u)) and f (u+ h,y(u+ h)) in the

integrals on the right-hand sides of equations (3.2) and (3.3), respectively, by the
piecewise constants and obtain

yPP
2 j = y0 + y(1)0

t2 j

1!
+

1
Γ (α)

2 j−1

∑
k=0

bk,2 j f (tk,yk), j = 1,2, . . . ,m, (3.12)

and

yPP
2 j+1 = y0 + y(1)0

t2 j+1

1!
+

1
Γ (α)

2 j

∑
k=0

bk,2 j+1 f (tk,yk), j = 1,2, . . . ,m−1. (3.13)

where the weights [11]

bk,n+1 =
hα

α

(
(n+1− k)α − (n− k)α

)
. (3.14)

Our basic fractional Adams method, is completely described now by equations
(3.8) - (3.13).

Remark 3.1 In practice, we need to approximate the integral in (3.9). We shall use
the same ideas as in Remark 2.2.

We have thus completed the description of our numerical algorithm. The remain-
der of the paper will be devoted to the error analysis of the scheme.

We have the following theorem.

Theorem 3.1 Let 0 < α ≤ 2 and assume that C
0 Dα

t y ∈ C3[0,T ] for some suitable
chosen T . Let y(tk) and yk,k = 0,1,2, . . . ,2m, t2m = T be the solutions of (3.2), (3.3),
(3.8), (3.9), respectively. Assume that y0 = y(0) and y1 = y(t1) exactly. Then there
exists a positive constant C0 > 0 such that

max
0≤k≤2m

|y(tk)− yk| ≤

{
C0h1+2α , if 0 < α ≤ 1,
C0h3, if 1 < α ≤ 2.

To prove this theorem, we need some lemmas.

Lemma 3.2 ( Theorem 2.4 [11]) Let 0 < α ≤ 2. If z ∈C1[0,T ], then there is a con-
stant Cα

1 depending only on α such that

∣∣∣∫ t2 j

0
(t2 j−u)α−1z(u)du−

2 j−1

∑
k=0

bk,2 jz(tk)
∣∣∣≤Cα

1 tα
2 jh.
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Lemma 3.3 ( Theorem 2.5 [11]) Let 0 < α ≤ 2. If z ∈C2[0,T ], then there is a con-
stant Cα

2 depending only on α such that∣∣∣∫ t2 j

0
(t2 j−u)α−1z(u)du−

2 j

∑
k=0

ak,2 jz(tk)
∣∣∣≤Cα

2 tα
2 jh

2.

Lemma 3.4 Let 0 < α ≤ 2. If z ∈ C3[0,T ], then there is a constant Cα
3 depending

only on α such that∣∣∣∫ t2 j

0
(t2 j−u)α−1z(u)du−

2 j

∑
k=0

ck,2 jz(tk)
∣∣∣≤Cα

3 tα
2 jh

3. (3.15)

and ∣∣∣∫ t2 j+1

t1
(t2 j+1−u)α−1z(u)du−

2 j

∑
k=0

ck,2 jz(tk+1)
∣∣∣≤Cα

3 tα
2 j+1h3. (3.16)

Proof We have

I =
∫ t2 j

0
(t2 j−u)α−1z(u)du−

2 j

∑
k=0

ck,2 jz(tk)

=
∫ t2 j

0
(t2 j−u)α−1z(u)du−

∫ t2 j

0
(t2 j−u)α−1P2(u)du, (3.17)

where P2(u) is the piecewise quadratic interpolation polynomial of z(u), defined by
(3.4).

Thus we have

|I|=
∣∣∣ j−1

∑
k=0

∫ t2k+2

t2k

(t2 j−u)α−1
(

z(u)−P2(u)
)

du
∣∣∣

=
∣∣∣ j−1

∑
k=0

∫ t2k+2

t2k

(t2 j−u)α−1 z′′′(ξ )
3!

(u− t2k)(u− t2k+1)(u− t2k+2)du
∣∣∣

≤ ‖ f ′′′‖∞

3!
(2h)3

∫ t2 j

0
(t2 j−u)α−1 du =Cα

3 tα
2 jh

3,

which shows (3.15). Similarly we can show (3.16).

Lemma 3.5 [11] Let 0 < α ≤ 2 and m and n be positive integers. Let ak,2 j and
bk,2 j,k = 0,1,2, . . . ,2 j, j = 1,2, . . . ,m be introduced in (3.10) and (3.12), respec-
tively. Then we have

ak,2 j ≥ 0, bk,2 j ≥ 0, k = 0,1,2, . . .2 j,

and
2 j

∑
k=0

ak,2 j ≤
1
α

T α ,
2 j

∑
k=0

bk,2 j ≤
1
α

T α . j = 1,2, . . . ,m.

Further, there exist constants Dα
1 and Dα

2 such that

a2 j,2 j = Dα
2 hα , b2 j,2 j = Dα

1 hα , j = 1,2, . . . ,m.
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Lemma 3.6 Let 0 < α ≤ 2. Let ck,2 j,k = 0,1,2, . . . ,2 j, j = 1,2, . . . ,m be introduced
in (3.8). Then we have

ck,2 j ≥ 0, k = 0,1,2, . . . ,2 j, (3.18)

and
2 j

∑
k=0

ck,2 j ≤
1
α

T α . (3.19)

Further there exists a constant Dα
3 such that

c2 j,2 j = Dα
3 hα , j = 1,2, . . . ,m. (3.20)

Proof We first show that

F1(l)≤ 0, l = 0,1,2, . . . , j−1. (3.21)

It is easy to show that

F1(l) = 2
(
(2 j−2l)α+2− (α +2)(2 j−2l)α+1− (2 j−2l−2)α+2

− (α +2)(2 j−2l−2)α+1
)
, l = 0,1,2, . . . , j−1.

Further, after some direct calculations, we can show that

(γ +1)(n+2)γ +(γ +1)nγ +nγ+1− (n+2)γ+1 ≥ 0, ∀ n ∈ Z+, γ > 0.

By putting n = 2 j−2l−2 and γ = α +1, we get (3.21).
Next we show

F0(l)+F2(l−1)≥ 0, l = 1,2, . . . , j−1. (3.22)

It is easy to show that

F0(l)+F2(l−1) = 2(2 j−2l +2)α+2− (α +2)(2 j−2l +2)α+1−6(α +2)(2 j−2l)α+1

−2(2 j−2l−2)α+2− (α +2)(2 j−2l−2)α+1.

Further, after some direct calculations, we can show that

2(n+4)α+2−(α+2)(n+4)α+1−6(α+2)(n+2)α+1−2nα+2−(α+2)nα+1≥ 0, ∀ n∈Z+.
(3.23)

Hence (3.22) follows from (3.23). Finally we can also show F0(0)≥ 0 and F2( j−1)≥
0 . Therefore we get (3.18).

Further (3.19) follows from

2 j

∑
k=0

ck,2 j =
∫ t2 j

0
(t2 j−u)α−1 du =

1
α

tα
2 j ≤

1
α

T α .

For (3.20), we have, by Lemma 3.1, c2 j,2 j =
1
2 F2( j−1) =Dα

3 hα , with the suitable
constant Dα

3 . Together these estimates complete the proof of Lemma 3.6.
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Proof (Proof of Theorem 3.1) We first consider the case where 1<α ≤ 2. We will use
mathematical induction. Note that, by assumptions, |y(t0)− y0|= 0, |y(t1)− y1|= 0.
Assume that

|y(tk)− yk| ≤C0h3, (3.24)

is true for k = 0,1,2, . . . ,2 j− 1, j = 1,2, . . . ,m. We must prove that this also holds
for k = 2 j. In fact, we have, with j = 1,2, . . . ,m,

Γ (α)
(

y(t2 j)− y2 j

)
=
∫ t2 j

0
(t2 j−u)α−1 f (u,y(u))du−

(2 j−1

∑
k=0

ck,2 j f (tk,yk)− c2 j,2 j f (t2 j, tP
2 j)
)

=
∫ t2 j

0
(t2 j−u)α−1 f (u,y(u))du−

∫ t2 j

0
(t2 j−u)α−1P2(u)du

+
∫ t2 j

0
(t2 j−u)α−1P2(u)du−

(2 j−1

∑
k=0

ck,2 j f (tk,yk)− c2 j,2 j f (t2 j, tP
2 j)
)

=
(∫ t2 j

0
(t2 j−u)α−1 f (u,y(u))du−

∫ t2 j

0
(t2 j−u)α−1P2(u)du

)
+

2 j−1

∑
k=0

ck,2 j

(
f (tk,y(tk))− f (tk,yk)

)
+ c2 j,2 j

(
f (t2 j,y(t2 j))− f (t2 j, tP

2 j)
)

= I1 + II1 + III1.

For I1, we have, by Lemma 3.4,

|I1|=
∣∣∣∫ t2 j

0
(t2 j−u)α−1 f (u,y(u))du−

∫ t2 j

0
(t2 j−u)α−1P2(u)du

∣∣∣≤Cα
3 T α h3.

For II1, we have, by Lemma 3.6 and the Lipschitz condition (3.1),

|II1| ≤
2 j−1

∑
k=0

ck,2 j| f (tk,y(tk))− f (tk,yk)| ≤
2 j−1

∑
k=0

ck,2 jL|y(tk)− yk|

≤ 1
α

T α L max
0≤k≤2 j−1

|y(tk)− yk|.

For III1, we have, by Lemma 3.6 and the Lipschitz condition,

|III1| ≤ c2 j,2 j| f (t2 j,y(t2 j))− f (t2 j,yP
2 j)| ≤ Dα

3 hα L|y(t2 j)− yP
2 j|.

Now let us consider the bound for |y(t2 j)− yP
2 j|. We have



Higher order numerical methods for solving fractional differential equations 21

Γ (α)
(

y(t2 j)− yP
2 j

)
=
∫ t2 j

0
(t2 j−u)α−1 f (u,y(u))du−

(2 j−1

∑
k=0

ak,2 j f (tk,yk)−a2 j,2 j f (t2 j, tPP
2 j )
)

=
(∫ t2 j

0
(t2 j−u)α−1 f (u,y(u))du−

∫ t2 j

0
(t2 j−u)α−1P1(u)du

)
+

2 j−1

∑
k=0

ak,2 j

(
f (tk,y(tk))− f (tk,yk)

)
+a2 j,2 j

(
f (t2 j,y(t2 j))− f (t2 j, tPP

2 j )
)

= I2 + II2 + III2.

For I2, we have, by Lemma 3.3,

|I2|=
∣∣∣∫ t2 j

0
(t2 j−u)α−1 f (u,y(u))du−

∫ t2 j

0
(t2 j−u)α−1P1(u)du

∣∣∣≤Cα
2 T α h2.

For II2, we have, by Lemma 3.5 and the Lipschitz condition (3.1),

|II2| ≤
2 j−1

∑
k=0

ak,2 j| f (tk,y(tk))− f (tk,yk)| ≤
2 j−1

∑
k=0

ak,2 j|y(tk)− yk|

≤ 1
α

T α L max
0≤k≤2 j−1

|y(tk)− yk|.

For III2, we have, by Lemma 3.5 and Lipschitz condition (3.1),

|III2| ≤ a2 j,2 j| f (t2 j,y(t2 j))− f (t2 j,yPP
2 j )| ≤ Dα

2 hα L|y(t2 j)− yPP
2 j |.

We also need to consider the bound for |y(t2 j)− yPP
2 j |. We have

Γ (α)
(

y(t2 j)− yPP
2 j

)
=
∫ t2 j

0
(t2 j−u)α−1 f (u,y(u))du−

2 j−1

∑
k=0

bk,2 j f (tk,yk)

=
∫ t2 j

0
(t2 j−u)α−1 f (u,y(u))du−

2 j−1

∑
k=0

bk,2 j f (tk,y(tk))

+
2 j−1

∑
k=0

bk,2 j

(
f (tk,y(tk))− f (tk,yk)

)
= I3 + II3.

For I3, we have, by Lemma 3.2, |I3| ≤Cα
1 T α h.

For II3, we have, by Lemma 3.5 and Lipschitz condition (3.1),

|II3| ≤
1
α

T α L max
0≤k≤2 j−1

|y(tk)− yk|.
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Together these estimates, we have

Γ (α)|y(t2 j)− y2 j| ≤Cα
3 T α h3 +

1
α

T α L max
0≤k≤2 j−1

|y(tk)− yk|

+Dα
3 hα L

1
Γ (α)

(
Cα

2 T α h2 +
1
α

T α L max
0≤k≤2 j−1

|y(tk)− yk|

+Dα
2 hα L

1
Γ (α)

[
Cα

1 T α h+
1
α

T α L max
0≤k≤2 j−1

|y(tk)− yk|
])

≤
[
Cα

3 T α h3 +
Dα

3 LCα
2 T α h2+α

Γ (α)
+

Dα
3 Dα

2 L2Cα
1 T α h1+2α

Γ (α)2

]
+
[ 1

α
T α L+

Dα
3 L2( 1

α
T α)hα

Γ (α)
+

Dα
3 Dα

2 (
1
α

T α)L3h2α

Γ (α)2

]
max

0≤k≤2 j−1
|y(tk)− yk|.

By mathematical induction (3.24), we have

|y(t2 j)− y2 j| ≤
[Cα

3 T α h3

Γ (α)
+

Dα
3 LCα

2 T α h2+α

Γ (α)2 +
Dα

3 Dα
2 L2Cα

1 T α h1+2α

Γ (α)3

]
+
[ 1

Γ (α +1)
T α L+

Dα
3 L2( 1

α
T α)hα

Γ (α +1)Γ (α)
+

Dα
3 Dα

2 (
1
α

T α)L3h2α

Γ (α +1)Γ (α)2

]
C0h3.

(3.25)

We first choose T sufficiently small, see Lemma 3.1 in [11] such that 1
Γ (α+1)T α L≤

1
2 . Then we fix this value for T and make the sum of the remaining terms in the right
hand side of (3.25) smaller than C0

2 h3 (for sufficiently small h) by choosing C0 suffi-
ciently large. Hence we obtain, for 1 < α ≤ 2,

|y(t2 j)− y2 j| ≤
C0

2
h3 +

C0

2
h3 =C0h3. (3.26)

We also need to show that if (3.24) is true for k= 0,1,2, . . . ,2 j with j = 1,2, . . . ,m−
1, then it also holds for k = 2 j+1. In fact, we have, with j = 1,2, . . . ,m−1,

Γ (α)
(

y(t2 j+1)− y2 j+1

)
=
∫ t2 j+1

0
(t2 j+1−u)α−1 f (u,y(u))du

−
(∫ t1

0
(t2 j+1−u)α−1 f (u,y(u))du+

2 j−1

∑
k=0

ck,2 j f (tk+1,yk+1)+ c2 j,2 j f (t2 j+1,yP
2 j+1)

)
=
∫ t2 j+1

t1
(t2 j+1−u)α−1 f (u,y(u))du−

(2 j−1

∑
k=0

ck,2 j f (tk+1,yk+1)+ c2 j,2 j f (t2 j+1,yP
2 j+1)

)
=
(∫ t2 j+1

t1
(t2 j+1−u)α−1 f (u,y(u))du−

∫ t2 j+1

t1
(t2 j+1−u)α−1Q2(u)du

)
+

2 j−1

∑
k=0

ck,2 j

(
f (tk+1,y(tk+1))− f (tk+1,yk+1)

)
+ c2 j,2 j

(
f (t2 j+1,y(t2 j+1))− f (t2 j+1,yP

2 j+1)
)

Using the same arguments as proving (3.26), we can show

|y(t2 j+1)− y2 j+1| ≤C0h3, j = 1,2, . . . ,m−1.
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Hence we complete the proof for the case where 1 < α ≤ 2.
Next we consider the case where 0 < α ≤ 1. Note that, by the assumptions,

|y(t0)− y0|= 0, |y(t1)− y1|= 0. Assume that

|y(tk)− yk| ≤C0h1+2α , (3.27)

for k = 0,1,2, . . . ,2 j−1, j = 1,2, . . . ,m. We must prove that this also holds for k =
2 j. In fact, by using the same arguments as showing (3.26), we get

|y(t2 j)− y2 j| ≤
[Cα

3 T α h3

Γ (α)
+

Dα
3 LCα

2 T α h2+α

Γ (α)2 +
Dα

3 Dα
2 L2Cα

1 T α h1+2α

Γ (α)3

]
+
[ 1

Γ (α +1)
T α L+

Dα
3 L2( 1

α
T α)hα

Γ (α +1)Γ (α)
+

Dα
3 Dα

2 (
1
α

T α)L3h2α

Γ (α +1)Γ (α)2

]
C0h1+2α .

(3.28)

As in the case for 1 < α ≤ 2, we first choose T sufficiently small such that
1

Γ (α+1)T α L ≤ 1
2 . Then we fix this value for T and make the sum of the remaining

terms in the right had side of (3.28) smaller than C0
2 h1+2α (for sufficiently small h)

by choosing C0 sufficiently large.
Hence we obtain, for 0 < α ≤ 1,

|y(t2 j)− y2 j| ≤
C0

2
h1+2α +

C0

2
h1+2α =C0h1+2α . (3.29)

Similarly we can show that if (3.27) is true for k= 0,1,2, . . . ,2 j with j = 1,2, . . . ,m−
1, then it is also true for k = 2 j+ 1. Together these estimates complete the proof of
Theorem 3.1.

Remark 3.2 In Theorem 3.1, we require that C
0 Dα

t y(t) is in C3[0,T ] which implies
that the solution has the form, see Page 46 in [11],

y(t) = ctα + smoother terms.

Since y(t) has low regularity at t = 0, it may be necessary to use some high order
methods and a small step size to approximate the solutions near t = 0 and to use a
big step size to calculate the approximate solutions at other nodes to get the required
accuracy. We will investigate this interesting issue in our future work.

4 Numerical simulations

Example 4.1 [7] Consider

C
0 Dα

t y(t) = βy(t)+ f (t), t ∈ [0,1], (4.1)
y(0) = y0, (4.2)

where y0 = 0, 0<α < 1, β =−1 and f (t)= (t2+2t2−α/Γ (3−α))+(t3+3!t3−α/Γ (4−
α)). The exact solution is y(t) = t2 + t3.
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The main purpose is to check the order of convergence of the numerical method
with respect to the fractional order α . For various choices of α ∈ (0,1), we computed
the errors at t = 1. We choose the step size h = 1/(5× 2l), l = 1,2, . . . ,7, i.e, we
divided the interval [0,1] into n = 1/h small intervals with nodes 0 = t0 < t1 < · · ·<
tn = 1. Then we compute the error e(tn) = y(tn)− yn. By Theorem 2.22, we have

|e(tn)|= |y(tn)− yn| ≤Ch3−α , (4.3)

To observe the order of convergence we shall compute the error |e(tn)| at tn = 1 for
the different values of h. Denote |eh(tn)| the error at tn = 1 for the step size h. Let
hl = h = 1/(5×2l) for a fixed l = 1,2, . . . ,7. We then have

|ehl (tn)|
|ehl+1(tn)|

≈
Ch3−α

l

Ch3−α

l+1

= 23−α ,

which implies that the order of convergence satisfies 3−α ≈ log2

( |ehl
(tn)|

|ehl+1
(tn)|

)
. In

Table 4.1, we compute the orders of convergnce for the different values of α . The
numerical results are consistent with the theoretical results.

n ERC ( α = 0.25 ) ERC ( α = 0.5) ERC ( α = 0.75)
10
20 2.7486 2.4840 2.2070
40 2.7526 2.4937 2.2304
80 2.7544 2.4979 2.2408
160 2.7549 2.4997 2.2456
320 2.7547 2.5003 2.2479
640 2.7543 2.5005 2.2490

Table 4.1 Numerical results at t = 1 for β =−1

and f (t) = (t2 +2t(2−α)/Γ (3−α))+(t3 +3!t3−α/Γ (4−α))

In Figure 4.1, we plot the order of the convergence. We have from (4.3)

log2(|e(tn)|)≤ log2(C)+(3−α)log2(h).

Let y = log2(|e(tn)|) and x = log2(h). In Figure 4.1, we plot the function y = y(x) for
the different values of x= log2(h) where h= 1/(5×2l), l = 1,2, . . . ,7. To observe the
order of convergence, we also plot the straight line y = (3−α)x, where α = 0.75. We
see that these two lines are exactly parallel which means that the order of convergence
of the numerical method is O(h3−α).

Example 4.2 [11] Our second example deals with the nonlinear fractional differential
equation where the unknown solution y has a smooth derivative of order α . Specifi-
cally we shall look at the equation [11]

C
0 Dα

t y(t)=
40320

Γ (9−α)
t8−α−3

Γ (5+α/2)
Γ (5−α/2)

t4−α/2+
9
4

Γ (α+1)+
(3

2
tα/2−t4

)3
−[y(t)]3/2.
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Fig. 4.1 The experimentally determined orders of convergence (“EOC ”) at t = 1 in Example 4.2 with
α = 0.75

The initial conditions were chosen to be homogeneous (y(0) = 0, y′(0) = 0; the latter
only in the case 1 < α < 2). This equation has been chosen because it exhibits a
difficult (nonlinear and nonsmooth) right-hand side, and yet we are able to find its
exact solution, thus allowing us to compare the numerical results for this nontrivial
case to the exact results. Indeed, the exact solution of this initial value problem is

y(t) = t8−3t4+α/2 +
9
4

tα ,

and hence

C
0 Dα

t y(t) =
40320

Γ (9−α)
t8−α −3

Γ (5+α/2)
Γ (5−α/2)

t4−α/2 +
9
4

Γ (α +1),

which implies C
0 Dα

t y ∈ C3[0,T ] for arbitrary T > 0 and 0 < α ≤ 2, and thus the
conditions of Theorem 3.1 are fulfilled.

For various choices of α ∈ (0,2], we compute the errors at tn = 1. We choose the
step size h = 1/(5×2l), l = 1,2, . . . ,7, i.e, we divided the interval [0,1] into n = 1/h
small intervals with nodes 0 = t0 < t1 < · · · < tn = 1. Then we compute the error
e(tn) = y(tn)− yn. By Theorem 3.1, we have

max
0≤k≤2m

|y(tk)− yk| ≤

{
C0h1+2α , if 0 < α ≤ 1,
C0h3, if 1 < α ≤ 2.

In Table 4.2, we compute the orders of convergence for different values of α . We
observe that the order of convergence is O(h1+2α) for 0 < α ≤ 1. But the observed
order of convergence is higher than 3 for 1 < α ≤ 2 in this example. For example,
when α = 1.25, the experimentally determined order is 3.5. When α = 1.75, the
experimentally determined order is almost 4.

In Figure 4.2, we plot the order of convergence. We have

log2(|e(tn)|)≤ log2(C)+(1+2α)log2(h).

Let y = log2(|e(tn)|) and x = log2(h). In Figure 4.2, we plot the function y = y(x) for
the different values of x = log2(h) where h = 1/(5× 2l), l = 1,2, . . . ,7. To observe
the order of convergence, we also plot the straight line y = (1+ 2α)x, where α =
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Fig. 4.2 The experimentally determined orders of convergence (“EOC ”) at t = 1 in Example 4.2 with
α = 0.35
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Fig. 4.3 The experimentally determined orders of convergence (“EOC ”) at t = 1 in Example 4.2 with
α = 1.25

0.35. We see that these two lines are almost parallel which confirms that the order of
convergence of the numerical method is O(h1+2α).

In Figure 4.3, we will plot the order of convergence for α = 1.25. We plot the
function y = y(x) for the different values of x = log2(h) where h = 1/(5× 2l), l =
1,2, . . . ,7. To observe the order of convergence, we also plot the straight line y = 3x.
We observe that the order of convergence is higher than 3 ( almost 1+2α).

n ERC ( α = 0.35 ) ERC ( α = 1.25) ERC ( α = 1.75)
10
20 1.2475 3.2109 3.8503
40 1.5302 3.5125 3.9305
80 1.7461 3.6050 3.9633

160 1.8293 3.6182 3.9786
320 1.8518 3.5886 3.9856
640 1.8478 3.5422 4.0225

Table 4.2 Numerical results at t = 1 in Example 4.2 with the different fractional order α
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21. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
22. L. Zhao and W. H. Deng, Jacobi-predictor-corrector approach for the fractional ordinary differential

equations, arXiv:1201.5952v2, 2012.


