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Abstract

We introduce an algorithm for solving two-sided space-fractional partial differential equations. The space-
fractional derivatives we consider here are left-handed and right-handed Riemann-Liouville fractional deriva-
tives which are expressed by using Hadamard finite-part integrals. We approximate the Hadamard finite-part
integrals by using piecewise quadratic interpolation polynomials and obtain a numerical approximation of the
space-fractional derivative with convergence order O(∆x3−α), 1 < α < 2. A shifted implicit finite difference
method is applied for solving the two-sided space-fractional partial differential equation and we prove that
the order of convergence of the finite difference method is O(∆t + ∆xmin(3−α,β)), 1 < α < 2, β > 0, where
∆t,∆x denote the time and space step sizes, respectively. Numerical examples, where the solutions have
varying degrees of smoothness are presented and compared with the exact analytical solution to compare
the practical performance of the method with the theoretical order of convergence.
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1. Introduction

Consider the following two-sided space-fractional partial differential equation, with 1 < α < 2, t > 0,

ut(t, x) = C+(t, x)R0 D
α
xu(t, x),+C−(t, x)RxD

α
1 u(t, x) + f(t, x), 0 < x < 1, (1)

u(t, 0) = ϕ1(t), u(t, 1) = ϕ2(t), (2)

u(0, x) = u0(x), 0 < x < 1. (3)

Here the function f(t, x) is a source/sink term. The functions C+(t, x) ≥ 0 and C−(t, x) ≥ 0 may be

interpreted as transport related coefficients. The addition of a classical advective term −ν(t, x)∂u(t,x)
∂x in (1)

does not impact the analysis performed in this paper, and has been omitted to simplify the notation [24].
The left-handed fractional derivative R

0 D
α
xf(x) and right-handed fractional derivative R

xD
α
1 f(x) in (1) are

Riemann-Liouville fractional derivatives of order α defined by, with 1 < α < 2,

R
0 D

α
xf(x) =

1

Γ(2− α)

d2

dx2

∫ x

0

(x− ξ)1−αf(ξ) dξ, (4)

and

R
xD

α
1 f(x) =

1

Γ(2− α)

d2

dx2

∫ 1

x

(ξ − x)1−αf(ξ) dξ. (5)
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There are several ways to approximate the Riemann- Liouville fractional derivative. Let 0 = x0 < x1 <
· · · < xj < · · · < xM = 1 be a partition of [0, 1] and ∆x the stepsize. Based on the definition of the
Grünwald-Letnikov derivative, one can approximate the left-handed and right-handed Riemann-Liouville
fractional derivatives by, [24],

R
0 D

α
xf(xj) = ∆x−α

j∑
k=0

w
(α)
k f(xj−k) +O(∆x), (6)

and

R
xD

α
1 f(xj) = ∆x−α

M−j∑
k=0

w
(α)
k f(xj+k) +O(∆x), (7)

where w
(α)
k are some weights and the order of convergence in (6) or (7) is O(∆x) for any α > 0. Lubich [20]

obtained approximations of order 2 - 6 in the form of (6), where the coefficients w
(α)
k are just the coefficients

of the Taylor series expansions of some generating functions w
(α)
l (z), l = 2, 3, 4, 5, 6. However, there is a

need to have special starting weights to recover the order of these methods because the solution may not
be smooth. The L2 scheme and its modification L2C scheme are introduced in Oldham and Spanier [27],
Lynch, et al. [21] as follows. Note that, with 1 < α < 2,

R
0 D

α
xf(xj) =

f(x0)(xj − x0)−α

Γ(1− α)
+
f ′(x0)(xj − x0)1−α

Γ(2− α)

+
1

2− α

j−1∑
l=0

∫ xl+1

xl

s1−αf ′′(xj − s) ds.

On each interval [xl, xl+1], f ′′(xj − s) is approximated by
(
f(xj − xl)− 2f(xj − xl+1) + f(xj − xl+2)

)
/∆x2,

then the so-called L2 scheme is obtained and the convergence order is O(∆x). Similarly one can obtain L2C
scheme. Diethelm [5] [6] expressed the Riemann-Liouville fractional derivative by the equivalent Hadamard
finite-part integral and approximated this Hadamard finite-part integral by using piecewise linear interpo-
lation polynomials. More precisely, Diethelm [6] obtained, with 1 < α < 2,

R
0 D

α
xf(xj) =

1

Γ(2− α)

∫ xj

0

(xj − ξ)−αf ′(x) dx =
1

Γ(−α)

∮ xj

0

(xj − ξ)−α−1f(ξ) dξ

= ∆x−α
j∑

k=0

wk,jf(xj−k) +O(∆x2−α),

where
∮ xj

0
denotes the Hadamard finite-part integral and wk,j are some weights.

Odibat [26] introduced a computational algorithm for approximating the Caputo fractional derivative
and the convergence order is O(∆x2), see also Sousa [30]. The idea is as follows. Note that, with 1 < α < 2,

C
0 D

α
xf(xj) =

1

Γ(2− α)

∫ xj

0

(xj − ξ)1−αf ′′(ξ) dξ

=
1

Γ(2− α)

j−1∑
l=0

∫ xl+1

xl

(xj − ξ)1−αf ′′(ξ) dξ.

On each subinterval [xl, xl+1], one approximates the integral by using linear interpolation polynomial P1(ξ) =
ξ−xl+1

xl−xl+1
f ′′(xl) + ξ−xl

xl+1−xl f
′′(xl+1) and obtain, with some weights w̄k,j , k = 0, 1, 2, . . . , j,

C
0 D

α
xf(xj) ≈

1

Γ(2− α)

j−1∑
l=0

∫ xl+1

xl

(xj − ξ)1−αP1(ξ) dξ = ∆x2−α
j∑

k=0

w̄k,jf
′′(xk).
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Further, Odibat [26] approximated f ′′(xk) by f(xk+1)−2f(xk)+f(xk−1)
∆x2 and obtained a second order approxi-

mation scheme to C
0 D

α
xf(xj). More recently, Dimitrov [8] obtained a second and third order approximations

of Caputo derivative by the Grünwald and shifted Grünwald formulae with weighted averages.
There is considerable interest in developing various numerical methods for solving space-fractional partial

differential equations in literature: the finite difference methods [2], [13], [14] - [15], [18] - [19], [21] - [25],
[31] - [35], the finite element methods, [3] - [4], [9] - [12] and the spectral methods [16]-[17]. By using shifted
Grünwald -Letnikov formulae (6) and (7), Meerschaert and Tadjeran [24] introduced a finite difference
method for solving two-sided space-fractional partial differential equations (1)- (3) and proved that the
convergence order of spatial discretisation is O(∆x). Meerschaert and Tadjeran [23] also considered the
finite difference method for solving 1D fractional advection-dispersion equation, with 1 < α < 2,

∂u(t, x)

∂t
= −ν(x)

∂u(t, x)

∂x
+ d(x)

∂αu(t, x)

∂xα
+ f(t, x),

by using shifted Grünwald-Letnikov formula on a finite domain and proved that the convergence order of
spatial discretisation is O(∆x). Tadjeran, Meerschaert and Scheffler [31] and Tadjeran and Meerschaert [32]
applied shifted Grünwald-Letnikov formula and extrapolation techniques to fractional diffusion equation
in 1D and 2D and obtained a second-order accurate finite difference method. Liu et al. [19] transformed
the fractional advection-dispersion equation into a system of ordinary differential equations, which was
then solved using backward difference formulae. Podlubny [28] and Podlubny et al. [29] developed a ma-
trix approach to discretise fractional diffusion equations with various combinations of time-space-fractional
derivatives.

In this paper, we will use the idea in Diethelm [6] to define a finite difference method for solving (1)-
(3), see also our recent works in [13], [14]. We first express the fractional derivative by using the Hadamard
finite-part integral, i.e., with 1 < α < 2,

R
0 D

α
xf(x) =

1

Γ(2− α)

d2

dx2

∫ x

0

(x− ξ)1−αf(ξ) dξ =
1

Γ(−α)

∮ x

0

(x− ξ)−α−1f(ξ) dξ.

Then we approximate f(ξ) by using the piecewise quadratic interpolation polynomials and obtain an approx-
imation scheme of Riemann-Liouville fractional derivative. Similarly we can approximate the right-handed
Riemann-Liouville fractional derivative R

xD
α
1 f(x). Based on these approximation schemes, we define a

shifted finite difference method for solving (1)-(3). We prove that the convergence order of the numerical
method is O(∆t+ ∆xmin(3−α,β)), 1 < α < 2, β > 0.

The paper is organised as follows. In Section 2, we consider the implicit shifted finite difference method
for solving (1)-(3) where the Hadamard integral of the space-fractional derivative is approximated by us-
ing piecewise quadratic interpolation polynomials. In Section 3, we give three numerical examples. The
numerical experiments are consistent with the theoretical results.

Remark 1.1. In this paper we are studying a relatively low order scheme, and we consider (through example)
how the method will perform when the convergence smoothness conditions on the solution are violated. We
observe in the example that there is some loss of order even in this low order scheme but that the scheme
is still more effective than competitor schemes.. We also consider how the method will perform under the
nonhomogeneous Dirichlet boundary conditions. Again, we observe in the example that there is a loss of
order even in this lower order scheme, but once again its performance is better than competitors.

2. Numerical methods

In this section, we will introduce a finite difference method for solving (1)-(3) by using the idea in
Diethelm [5]. For simplicity, we assume C+(t, x) = C−(t, x) = 1 and ϕ1(t) = ϕ2(t) = 0. Recall that the
Riemann-Liouville fractional derivative has the form, with 1 < α < 2,

R
0 D

α
xf(x) =

1

Γ(−α)

∮ x

0

(x− ξ)−1−αf(ξ) dξ, (8)
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where
∮ x

0
(x− ξ)−1−αf(ξ) dξ denotes the Hadamard finite-part integral [5].

Let m be a fixed positive integer and M = 2m. Let 0 = x0 < x1 < x2 < · · · < x2j < x2j+1 < · · · <
x2m = 1 be a partition of [0, 1] and ∆x the step size.

At the nodes x2j = 2j
2m , j = 1, 2, . . . ,m, we have

R
0 D

α
xf(x2j) =

1

Γ(−α)

∮ x2j

0

(x2j − ξ)−1−αf(ξ) dξ =
x−α2j

Γ(−α)

∮ 1

0

w−1−αf(x2j − x2jw) dw. (9)

For every j, we replace g(w) = f(x2j − x2jw) in the integral in (9) by piecewise quadratic interpolation
polynomials with the equispaced nodes 0, 1

2j ,
2
2j , . . . ,

2j
2j . We then have∮ 1

0

w−1−αg(w) dw =

∮ 1

0

w−1−αP2(w) dw +R2j(g), (10)

where P2(w) is the piecewise quadratic interpolation polynomial of g(w) defined on the equispaced nodes
0, 1

2j ,
2
2j , . . . ,

2j
2j and R2j(g) is the remainder term.

At the node x2j+1 = 2j+1
2m , j = 1, 2, . . . ,m− 1 we have

R
0 D

α
xf(x2j+1) =

1

Γ(−α)

∮ x2j+1

0

(x2j+1 − ξ)−1−αf(ξ) dξ

=
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αf(ξ) dτ

+
x−α2j+1

Γ(−α)

∮ 2j
2j+1

0

w−1−αf(x2j+1 − x2j+1w) dw. (11)

For every j, j = 1, 2, . . . ,m− 1, we replace g(w) = f(x2j+1 − x2j+1w) by a piecewise quadratic interpo-
lation polynomial with the equispaced nodes 0, 1

2j+1 ,
2

2j+1 , . . . ,
2j

2j+1 and obtain∮ 2j
2j+1

0

w−1−αg(w) dw =

∮ 2j
2j+1

0

w−1−αQ2(w) dw +R2j+1(g), (12)

whereQ2(w) is the piecewise quadratic interpolation polynomial of g(w) defined on the nodes 0, 1
2j+1 ,

2
2j+1 , . . . ,

2j
2j+1

and R2j+1(g) is the remainder term.
We have, see [34]

Lemma 2.1. Let 1 < α < 2 and let M = 2m where m is a fixed positive integer. Let 0 = x0 < x1 < x2 <
· · · < x2j < x2j+1 < · · · < xM = 1 be a partition of [0, 1]. Assume that f ∈ C3[0, 1] is a sufficiently smooth
function. Then we have, with j = 1, 2, . . . ,m,

R
0 D

α
xf(x)

∣∣∣
x=x2j

=
x−α2j

Γ(−α)

( 2j∑
l=0

αl,2jf(x2j−l) +R2j(f)
)

= ∆x−α
2j∑
l=0

wl,2jf(x2j−l) +
x−α2j

Γ(−α)
R2j(f), (13)

and, with j = 1, 2, . . . ,m− 1,

R
0 D

α
xf(x)

∣∣∣
x=x2j+1

=
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αf(ξ) dξ

+
x−α2j+1

Γ(−α)

( 2j∑
l=0

αl,2j+1f(x2j+1−l) +R2j+1(f)
)

=
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αf(ξ) dξ + ∆x−α
2j∑
l=0

wl,2j+1f(x2j+1−l) +
x−α2j+1

Γ(−α)
R2j+1(f), (14)
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where

(−α)(−α+ 1)(−α+ 2)(2j)−ααl,2j

=



2−α(α+ 2), for l = 0,

(−α)22−α, for l = 1,

(−α)(−2−αα) + 1
2F0(2), for l = 2,

−F1(k), for l = 2k − 1, k = 2, 3, . . . , j,
1
2 (F2(k) + F0(k + 1)), for l = 2k, k = 2, 3, . . . , j − 1,
1
2F2(j), for l = 2j,

F0(k) =(2k − 1)(2k)
(
(2k)−α − (2(k − 1))−α

)
(−α+ 1)(−α+ 2)

−
(
(2k − 1) + 2k

)(
(2k)−α+1 − (2(k − 1))−α+1

)
(−α)(−α+ 2)

+
(
(2k)−α+2 − (2(k − 1))−α+2

)
(−α)(−α+ 1), (15)

F1(k) =(2k − 2)(2k)
(
(2k)−α − (2k − 2)−α

)
(−α+ 1)(−α+ 2)

−
(
(2k − 2) + 2k

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α+ 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α+ 1), (16)

F2(k) =(2k − 2)(2k − 1)
(
(2k)−α − (2k − 2)−α

)
(−α+ 1)(−α+ 2)

−
(
(2k − 2) + (2k − 1)

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α+ 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α+ 1). (17)

Further we have, with l = 0, 1, 2, . . . , 2j,

Γ(3− α)wl,2j = (−α)(−α+ 1)(−α+ 2)(2j)−ααl,2j , (18)

and
αl,2j+1 = αl,2j , wl,2j+1 = wl,2j . (19)

The remainder term Rl(f) satisfies, for every f ∈ C3(0, 1),

|Rl(f)| ≤ C∆x3−α‖f ′′′‖∞, l = 2, 3, 4, . . . ,M, withM = 2m. (20)

We can consider in a similar way the approximation of the right-handed fractional derivative R
xD

α
1 f(x)

at x = xl, l = 0, 1, 2, . . . , 2m− 2. Using the same argument as for the approximation of R
0 D

α
xf(x) at x = xl,

we can show that, with j = 0, 1, 2, . . . ,m− 1,

R
xD

α
1 f(x)

∣∣∣
x=x2j

= ∆x−α
M−2j∑
l=0

wl,M−2jf(x2j+l) +
x−α2j

Γ(−α)
R2j(f), (21)

and, with j = 0, 1, 2, . . . ,m− 2,

R
xD

α
1 f(x)

∣∣∣
x=x2j+1

=
1

Γ(−α)

∫ xM

xM−1

(ξ − x2j+1)−1−αf(ξ) dξ

+ ∆x−α
M−(2j+1)−1∑

l=0

wl,M−(2j+1)f(x2j+1+l) +
x−α2j+1

Γ(−α)
R2j+1(f). (22)
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Let 0 = t0 < t1 < t2 < · · · < tn < . . . be the time partition and ∆t the time step size. At the nodes
x2j = 2j

2m , j = 1, 2, . . . ,m− 1, we have, by (1),

ut(tn+1, x2j)−
(
R
0 D

α
xu(tn+1, x2j+1) + R

xD
α
1 u(tn+1, x2j−1)

)
= fn+1

2j + σn+1
2j , (23)

and at the nodes x2j+1 = 2j+1
2m , j = 1, 2, . . . ,m− 1,

ut(tn+1, x2j+1)−
(
R
0 D

α
xu(tn+1, x2j+2) + R

xD
α
1 u(tn+1, x2j)

)
= fn+1

2j+1 + σn+1
2j+1, (24)

where

σn+1
2j = −

(
R
0 D

α
xu(tn+1, x2j+1)− R

0 D
α
xu(tn+1, x2j)

)
−
(
R
xD

α
1 u(tn+1, x2j−1)− R

xD
α
1 u(tn+1, x2j)

)
,

σn+1
2j+1 = −

(
R
0 D

α
xu(tn+1, x2j+2)− R

0 D
α
xu(tn+1, x2j+1)

)
−
(
R
xD

α
1 u(tn+1, x2j)− R

xD
α
1 u(tn+1, x2j+1)

)
.

Discretising ut(tn+1, xl) by using backward Euler method and discretising R
0 D

α
xu(tn+1, xl) and R

xD
α
1 u(tn+1, xl)

by using (13) - (14) and (21) - (22), respectively, we obtain, with unj = u(tn, xj), f
n
j = f(tn, xj)

∆t−1
(
un+1

2j − u
n
2j

)
= ∆x−α

( 2j∑
k=0

wk,2j+1u
n+1
2j+1−k +

M−(2j−1)−1∑
k=0

wk,M−(2j−1)u
n+1
2j−1+k

)
+ fn+1

2j + Sn+1
2j + σn+1

2j + τn+1
2j , j = 1, 2, . . . ,m− 1, (25)

∆t−1
(
un+1

2j+1 − u
n
2j+1

)
= ∆x−α

( 2j+2∑
k=0

wk,2j+2u
n+1
2j+2−k +

M−2j∑
k=0

wk,M−2ju
n+1
2j+k

)
+ fn+1

2j+1 + σn+1
2j+1 + τn+1

2j+1, j = 0, 1, 2, . . . ,m− 1, (26)

where the truncation errors τn+1
l = O(∆t+ ∆x3−α), l = 1, 2, . . . , Ṁ − 1 [5], [6] and

Sn+1
2j =

1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(ξ, tn+1) dξ +
1

Γ(−α)

∫ xM

xM−1

(ξ − x2j+1)−1−αu(ξ, tn+1) dξ. (27)

Let Un2j ≈ u(tn, x2j) and Un2j+1 ≈ u(tn, x2j+1) denote the approximate solutions of u(tn, x2j) and
u(tn, x2j+1), respectively. We define the following implicit shifted numerical method for solving (1) - (3).

∆t−1
(
Un+1

2j − Un2j
)

= ∆x−α
( 2j∑
k=0

wk,2j+1U
n+1
2j+1−k +

M−(2j−1)−1∑
k=0

wk,M−(2j−1)u
n+1
2j−1+k

)
+ fn+1

2j +Qn+1
2j , j = 1, 2, . . . ,m− 1, (28)

∆t−1
(
Un+1

2j+1 − U
n
2j+1

)
= ∆x−α

( 2j+2∑
k=0

wk,2j+2U
n+1
2j+2−k +

M−2j∑
k=0

wk,M−2jU
n+1
2j+k

)
+ fn+1

2j+1, j = 0, 1, 2, . . . ,m− 1, (29)

where Qn+1
2j is defined below in (30).
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To approximate the integral 1
Γ(−α)

∫ x1

0
(x2j+1 − ξ)−1−αu(tn+1, ξ) dξ in (27), we denote g(ξ) = u(tn+1, ξ)

and approximate g(ξ) on [0, x1] by the following quadratic interpolation polynomials, [1],

P2(ξ) =
(ξ − x 1

2
)(ξ − x1)

(x0 − x 1
2
)(x0 − x1)

u(tn+1, x0) +
(ξ − x0)(ξ − x1)

(x 1
2
− x0)(x 1

2
− x1)

u(tn+1, x 1
2
)

+
(ξ − x0)(ξ − x 1

2
)

(x1 − x0)(x1 − x 1
2
)
u(tn+1, x1) for ξ ∈ [x0, x1],

where

u(tn+1, ξ)− P2(ξ) = R
(1)
1 (ξ) =

u′′′(tn+1, c1)

3!
(ξ − x0)(ξ − x 1

2
)(ξ − x1), c1 ∈ (0, x1).

Further we approximate the value u(tn+1, x 1
2
) by

u(tn+1, x 1
2
) ≈ 3

8
u(tn+1, x0) +

3

4
u(tn+1, x1)− 1

8
u(tn+1, x2),

where

u(tn+1, x 1
2
)−

(3

8
u(tn+1, x0) +

3

4
u(tn+1, x1)− 1

8
u(tn+1, x2)

)
= R

(2)
1 (ξ),

and R
(2)
1 (ξ) = 1

16u
′′′(tn+1, c2)h3, c2 ∈ (0, x2).

We then have

1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(tn+1, ξ) dξ =

2∑
i=0

B̂iu(tn+1, xi) +R1,

where

B̂0 =

∫ x1

0

(x1 − ξ)α−1
(ξ − x 1

2
)(ξ − x1)

(x0 − x 1
2
)(x0 − x1)

dξ +
3

8

∫ x1

0

(x1 − ξ)α−1 (ξ − x0)(ξ − x1)

(x 1
2
− x0)(x 1

2
− x1)

dξ,

B̂1 =
3

4

∫ x1

0

(x1 − ξ)α−1 (ξ − x0)(ξ − x1)

(x 1
2
− x0)(x 1

2
− x1)

dξ +

∫ x1

0

(x1 − ξ)α−1 (ξ − x0)(ξ − x1)

(x1 − x0)(x1 − x 1
2
)
dξ,

B̂2 = −1

8

∫ x1

0

(x1 − ξ)α−1 (ξ − x0)(ξ − x1)

(x 1
2
− x0)(x 1

2
− x1)

dξ,

and

R1 =

∫ x1

0

(x2j+1 − ξ)−1−αR
(1)
1 (ξ) dξ +

∫ x1

0

(x2j+1 − ξ)−1−αR
(2)
1 (ξ) dξ.

It is easy to show that

|R1| ≤
∫ x1

0

(x2j+1 − ξ)−1−α|R(1)
1 (ξ)| dξ +

∫ x1

0

(x2j+1 − ξ)−1−α|R(2)
1 (ξ)| dξ

≤
∫ x1

0

(x2j+1 − ξ)−1−αC∆x3 dξ ≤ C∆x3∆x−α = C∆x3−α.

Hence, we have ∫ x1

0

(x2j+1 − ξ)−1−αu(tn+1, ξ) dξ −
2∑
i=0

B̂iu
n+1
i = O(∆x3−α).

Similarly, we have, for some suitable weights B̃i, i = 0, 1, 2,∫ xM

xM−1

(ξ − x2j+1)−1−αu(tn+1, ξ) dξ −
M∑

i=M−2

B̃iU
n+1
i = O(∆x3−α).
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Based on the analysis above, we will define Qn+1
2j in (28) by

Qn+1
2j =

1

Γ(−α)

2∑
i=0

B̂iU
n+1
i +

1

Γ(−α)

M∑
i=M−2

B̃iU
n+1
i . (30)

It is easy to see that

Sn+1
2j − 1

Γ(−α)

( 2∑
i=0

B̂iu
n+1
i +

M∑
i=M−2

B̃iu
n+1
i

)
= O(∆x3−α).

Theorem 2.2. Let 1 < α < 2 and let u(tn+1, xl) and Un+1
l , l = 1, 2, . . . ,M − 1 be the solutions of (25)-

(26) and (28)-(29), respectively. Assume that u(t, ·) ∈ C3[0, 1]. Further assume that u(t, x) satisfies the
Lipschitz conditions with the second variable, that is, with some β > 0,∣∣∣R0 Dα

xu(t, x)− R
0 D

α
xu(t, y)

∣∣∣ ≤ Cα|x− y|β , (31)∣∣∣RxDα
1 u(t, x)− R

xD
α
1 u(t, y)

∣∣∣ ≤ Cα|x− y|β . (32)

Then
max

1≤l≤M−1
|u(tn+1, xl)− Un+1

l | ≤ C(∆t+ ∆xmin(β,3−α)).

To prove this theorem, we need the following lemma.

Lemma 2.3. Let 1 < α < 2. The coefficients wl,2j in (13) satisfy

w1,2j < 0, (33)

wl,2j > 0, l 6= 1, l = 0, 2, 3, . . . , 2j, (34)

Γ(3− α)

2j∑
k=0

wl,2j < 0. (35)

Proof: It is easy to show that w0,2j > 0 and w1,2j < 0. We now prove that wk,2j > 0, k = 2, 3, . . . , 2j.
We first show that

w2l−1,2j > 0, l = 2, 3, . . . , j.

Note that

Γ(3− α)w2l−1,2j = 2
(

(2l − 2)−α+2 − (2l)−α+2
)

+ 2(−α+ 2)
(

(2l − 2)−α+1 + (2l)−α+1
)
.

Let m = 2l. It is sufficient to show that, with m = 4, 6, . . . ,

I(m) = (m− 2)−α+2 −m−α+2 + (−α+ 2)(m− 2)−α+1 + (−α+ 2)m−α+1 > 0.

In fact, we have, by using a binomial expansion,

I(m) =m−α+2
(
− 1 + (−α+ 2)

1

m
+ (1− 2

m
)−α+2 + (−α+ 2)(1− 2

m
)−α+1 1

m

)
= m−α+2

( (−α+ 2)(−α+ 1)(−α)

m3

(
− 23

3!
+

22

2!

)
+

(−α+ 2)(−α+ 1)(−α)(−α− 1)

m4

(24

4!
− 23

3!

)
+

(−α+ 2)(−α+ 1)(−α)(−α− 1)

m5

(−25

5!
+

24

4!

)
+ . . .

)
.
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Note that the sequence an = 2n

n! is decreasing. Hence we see that, with 1 < α < 2,

I(m) > 0.

We next prove that
w2l,2j > 0, l = 1, 2, . . . , j − 1.

Note that, with l = 2, 3, . . . , j − 1,

Γ(3− α)w2l,2j = −3(−α+ 2)(2l)−α+1 +
(

(2l + 2)−α+2 − (2l − 2)−α+2
)

− 1

2
(−α+ 2)

(
(2l + 2)−α+1 + (2l − 2)−α+1

)
.

Let m = 2l. It is sufficient to show that, with m = 4, 6, . . . ,

I(m) = −6(−α+ 2)m−α+1 + (−2)(m− 2)−α+2

+ (−1)(−α+ 2)(m− 2)−α+1 + 2(m+ 2)−α+2 + (−1)(−α+ 2)(m+ 2)−α+1 > 0.

In fact, we have, by using a binomial expansion,

I(m) =m−α+2
(

+ (−2)(1− 2

m
)−α+2 + (−1)(−α+ 2)(1− 2

m
)−α+1 1

m

+ 2(1 +
2

m
)−α+2 + (−1)(−α+ 2)(1 +

2

m
)−α+1 1

m

)
= m−α+2

(2(−α+ 2)(−α+ 1)(−α)(−α− 1)(−α− 2)

m3

(
− 23 · 2

3!
+

22

2!

)
+

2(−α+ 2)(−α+ 1)(−α)(−α− 1)(−α− 2)

m5

(25 · 2
5!
− 24

4!

)
+

2(−α+ 2)(−α+ 1)(−α)(−α− 1)(−α− 2)

m7

(27 · 2
7!
− 26

6!

)
+ . . .

)
=

1

m1+α

(2(−α+ 2)(−α+ 1)(−α)

m0

(23 · 2
3!
− 22

2!

)
+

2(−α+ 2)(−α+ 1)(−α)(−α− 1)(−α− 2)

m2

(25 · 2
5!
− 24

4!

)
+

2(−α+ 2)(−α+ 1)(−α)(−α− 1)(−α− 2)(−α− 3)(−α− 4)

m4(27 · 2
7!
− 26

6!
+ . . .

)
.

Note that
2n · 2
n!
− 2n−1

(n− 1)!
=

2n−1

(n− 1)!

(2 · 2
n
− 1
)
≤ 0, n ≥ 4.

Hence we obtain

I(m) ≥ 21+α

m1+α

1

21+α

(2(−α+ 2)(−α+ 1)(−α)

m0

(23 · 2
3!
− 22

2!

)
+

2(−α+ 2)(−α+ 1)(−α)(−α− 1)(−α− 2)

22

(25 · 2
5!
− 24

4!

)
+

2(−α+ 2)(−α+ 1)(−α)(−α− 1)(−α− 2)(−α− 3)(−α− 4)

24

(27 · 2
7!
− 26

6!
+ . . .

)
=

21+α

m1+α
I(2), m = 2, 3, 4, . . . .
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It is easy to show that, with 1 < α < 2,

I(2) = 2−α+2
(

3α− 6 + 2−α(6 + α)
)
> 0.

Thus we obtain
I(m) > 0, m = 2, 3, 4, . . . .

Similarly we can show that w2j,2j > 0.

Finally we shall prove Γ(3− α)
∑2j
l=0 wl,2j < 0. We have

Γ(3− α)

2j∑
l=0

wl,2j =
−3(−α+ 2)

2
(2j)−α+1 − (2j)−α+2 +

α− 2

2
(2j + 2)−α+1 + (2j + 2)−α+2.

Let m = 2j + 2, it is sufficient to show that, with m = 4, 6, 8, . . . ,

I(m) = −3(−α+ 2)(m− 2)−α+1 − 2(m− 2)−α+2 + (α− 2)m−α+1 + 2 ·m−α+2 < 0.

In fact, by using a binomial expansion, we have

I(m) =m−α+2
(

(3α− 6)(1− 2

m
)−α+1 1

m
− 2(1− 2

m
)−α+2 + (α− 2)

1

m
+ 2
)

=
(−α+ 2)(−α+ 1)

m2

(
(−3)

(−2)

1!
+ (−2)

(−2)2

2!

)
+

(−α+ 2)(−α+ 1)(−α)

m3

(
(−3)

(−2)2

2!
+ (−2)

(−2)3

3!

+
(−α+ 2)(−α+ 1)(−α)(−α− 1)

m4

(
(−3)

(−2)3

3!
+ (−2)

(−2)4

4!

)
+ . . . .

Note that

(−3)
(−2)n

n!
+ (−2)

(−2)(n+ 1)

(n+ 1)!
=

(−2)n

n!

(
(−3) + (−2)

−2

n+ 1

)
=

(−2)n

n!

(
(−3) +

4

n+ 1

)
=
−3n+ 1

(n+ 1)!
(−2)n,

which implies that
I(m) < 0,m = 4, 6, 8, . . . .

Together these estimates complete the proof of Lemma 2.3.

�

Proof of Theorem 2.2: Let en+1
l = u(tn+1, xl) − Un+1

l , l = 1, 2, . . . ,M − 1. Subtracting (25)
- (26) from (28)-(29), We obtain the following error equation, for l = 2j, j = 1, 2 . . . ,m − 1, with R =
O(∆t+ ∆xmin(3−α,β)),

∆t−1
(
en+1

2j − e
n
2j

)
−∆x−α

( 2j∑
k=0

wk,2j+1e
n+1
2j+1−k +

M−(2j−1)−1∑
k=0

wk,M−(2j−1)e
n+1
2j−1+k

)
+R,

and, for l = 2j + 1, j = 0, 1, 2 . . . ,m− 1,

∆t−1
(
en+1

2j+1 − e
n
2j+1

)
−∆x−α

( 2j+2∑
k=0

wk,M−(2j+2)e
n+1
2j+2+k +

M−2j∑
k=0

wk,M−2je
n+1
2j+k

)
+R.
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With λ = ∆t/∆xα, we have, for l = 2j, j = 1, 2 . . . ,m− 1,

(1− λw1,2j+1 − λw1,M−(2j−1))e
n+1
2j

− λ
(
w0,2j+1e

n+1
2j+1 + +w2,2j+1e

n+1
2j−1 + · · ·+ w2j,2j+1e

n+1
1

)
− λ
(
w0,M−(2j−1)e

n+1
2j−1 + +w2,M−(2j−1)e

n+1
2j+1 + · · ·+ wM−(2j−1)−1,M−(2j−1)e

n+1
M−1

)
= en2j + ∆tR,

and, for l = 2j + 1, j = 0, 1, 2 . . . ,m− 1,

(1− λw1,2j+2 − λw1,M−2j)e
n+1
2j+1

− λ
(
w0,2j+2e

n+1
2j+2 + +w2,2j+2e

n+1
2j + · · ·+ w2j+2,2j+2e

n+1
0

)
− λ
(
w0,M−2je

n+1
2j + +w2,M−2je

n+1
2j+2 + · · ·+ wM−2j,M−2je

n+1
M

)
= en2j+1 + ∆tR.

Assume that |e1|∞ = supl |e1
l | = |e2k| for some k, we obtain, by Lemma 2.3, withR = (∆t+∆xmin(3−α,β)),

|e1|∞ = sup
l
|e1
l | = |e1

2k| ≤ |e1
2k|
(

1− λ(w0,2k+1 + w1,2k+1 + . . . w2k,2k+1)

− λ(w0,M−(2k−1) + w1,M−(2k−1) + · · ·+ wM−(2k−1)−1,M−(2k−1))
)

≤ |e1
2k| − λw0,2k+1|e1

2k+1| − λw1,2k+1|e1
2k| − · · · − λw2k,2k+1|e1

1|
− λw0,M−(2k−1)|e1

2k−1| − λw1,M−(2k−1)|e1
2k| − · · · − λwM−(2k−1)−1,M−(2k−1))|e1

M−1|
≤ |e1

2k| − λw0,2k+1|e1
2k+1| − λw1,2k+1|e1

2k| − · · · − λw2k,2k+1|e1
1|

− λw0,M−(2k−1)|e1
2k−1| − λw1,M−(2k−1)|e1

2k| − · · · − λwM−(2k−1)−1,M−(2k−1)|e1
M−1|

≤ |e0
2k|+ ∆tR.

Assume that |e1|∞ = supl |e1
l | = |e2k+1| for some k, we obtain, by Lemma 2.3, with R = (∆t +

∆xmin(3−α,β)),

|e1|∞ = sup
l
|e1
l | = |e1

2k+1| ≤ |e1
2k+1|

(
1− λ(w0,2k+2 + w1,2k+2 + . . . w2k+2,2k+2)

− λ(w0,M−2k + w1,M−2k + · · ·+ wM−2k,M−2k)
)

= |e1
2k+1| − λw0,2k+2|e1

2k+2| − λw1,2k+2|e1
2k+1| − · · · − λw2k+2,2k+2|e1

0|
− λw0,M−2k|e1

2k| − λw1,M−2k|e1
2k+1|+ · · · − λwM−2k,M−2k)|e1

M |
≤ |e1

2k+1| − λw0,2k+2|e1
2k+1| − λw1,2k+2|e1

2k+1| − · · · − λw2k+2,2k+2|e1
0|

− λw0,M−2k|e1
2k| − λw1,M−2k|e1

2k+1| − · · · − λwM−2k,M−2k|e1
M |

≤ |e0
2k+1|+ ∆tR.

Hence we obtain
sup
l
|e1
l | ≤ sup

l
|e0
l |+ ∆tR.

Further, for simplicity, we assume that e0
l = 0. Then we have

|e1|∞ ≤ ∆tR.

Similarly, we can show that
|e2|∞ ≤ |e1|∞ + ∆tR ≤ t2R,
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and in general, with 0 ≤ tn ≤ T ,

|en|∞ ≤ tnR ≤ C(∆t+ ∆xmin(3−α,β)).

The proof of Theorem 2.2 is now complete.

�

3. Numerical simulations

In this section, we will give some numerical examples. Let us consider the following space-fractional
partial differential equation with nonhomogeneous Dirichlet boundary conditions, with 1 < α < 2,

∂u(t, x)

∂t
− R

0 D
α
xu(t, x) = f(t, x), 0 < x < 1, t > 0, (36)

u(t, 0) = ϕ1(t), u(t, 1) = ϕ2(t), (37)

u(0, x) = u0(x), (38)

where ϕ1(t), ϕ2(t) are some suitable functions of t and u0(x) is the initial condition.
Let us recall the numerical method introduced in the previous section. Let m be a positive integer and

let 0 = x0 < x1 < x2 < · · · < x2m = 1 be a space partition of [0, 1] and ∆x the space stepsize. Let
0 = t0 < t1 < t2 < · · · < xN = 1 be a time partition of [0, 1] and ∆t the time stepsize.

At x = xl, t = tn, we have, with l = 1, 2, . . . , 2m− 1, and n = 1, 2, . . . , N ,

∂u(t, x)

∂t

∣∣∣
x=xl,t=tn

− R
0 D

α
xu(t, x)

∣∣∣
x=xl,t=tn

= f(t, x)
∣∣∣
x=xl,t=tn

, (39)

u(tn, 0) = ϕ1(tn), u(tn, 1) = ϕ2(tn), (40)

u(0, xl) = u0(xl), (41)

To get a stable finite difference scheme for this time-dependent problem, we need to consider the following
shifted equation, that is,

∂u(t, x)

∂t

∣∣∣
x=xl,t=tn

− R
0 D

α
xu(t, x)

∣∣∣
x=xl+1,t=tn

= f(t, x)
∣∣∣
x=xl,t=tn

+ ρl(tn), (42)

u(tn, 0) = ϕ1(tn), u(tn, 1) = ϕ2(tn), (43)

u(0, xl) = u0(xl), (44)

where
ρl(tn) = −

(
R
0 D

α
xu(t, x)

∣∣∣
x=xl+1,t=tn

−R0 Dα
xu(t, x)

∣∣∣
x=xl,t=tn

)
.

Note that,
∂u(t, x)

∂t

∣∣∣
x=xl,t=tn

=
u(tn, xl)− u(tn−1, xl)

∆t
+O(∆t),

and, with l = 2j, j = 1, 2, . . . ,m− 1,

R
0 D

α
xu(t, x)

∣∣∣
x=xl+1,t=tn

=
1

Γ(−α)

∫ x2j+1

x0

(x2j+1 − ξ)−1−αu(tn, ξ) dξ

=
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(tn, ξ) dξ

+ ∆x−α
2j∑
k=0

wk,2j+1u(tn, x2j+1−k) +O(∆x3−α),
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and, with l = 2j + 1, j = 0, 1, 2, . . . ,m− 1,

R
0 D

α
xu(t, x)

∣∣∣
x=xl+1,t=tn

=
1

Γ(−α)

∫ x2j+2

0

(x2j+2 − ξ)−1−αu(tn, ξ) dξ

= ∆x−α
2j+2∑
k=0

wk,2j+2u(tn, x2j+2−k) +O(∆x3−α),

where wk,2j+1, wk,2j+2 are defined as in (13) and (14).
Denote Unj ≈ u(tn, xj). We define the following backward Euler method for solving (36)-(38),

Un2j − U
n−1
2j

∆t
−∆x−α

2j∑
k=0

wk,2j+1U
n
2j+1−k = f(x2j , tn) + ρn2j

+
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(ξ, tn) dξ, j = 1, 2, . . . ,m− 1,

Un2j+1 − U
n−1
2j+1

∆t
−∆x−α

2j+2∑
k=0

wk,2j+2U
n
2j+2−k = f(x2j+1, tn) + ρn2j+1

+
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(ξ, tn) dξ, j = 0, 1, 2, . . . ,m− 1,

or, with λ = ∆t
∆xα ,

Un2j − λ
2j∑
k=0

wk,2j+1U
n
2j+1−k = Un−1

2j + ∆tf(x2j , tn) + ∆tρn2j

+ ∆t
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(ξ, tn) dξ, j = 1, 2, . . . ,m− 1, (45)

Un2j+1 − λ
2j+2∑
k=0

wk,2j+2U
n
2j+2−k = Un−1

2j+1 + ∆tf(x2j+1, tn) + ∆tρn2j+1, j = 0, 1, 2, . . . ,M − 1. (46)

The numerical methods (45) - (46) can be written into the following matrix form

AUn = Un + ∆tFn + ∆tρn + ∆tIn +Bnl +Bnr ,

where

Un =


Un1
Un2
Un3
...

Un2m−1

 , Fn =


f(x1, tn)
f(x2, tn)
f(x3, tn)

...
f(x2m−1, tn)

 , ρn =



−
(
R
0 D

α
xu(x2, tn)− R

0 D
α
xu(x1, tn)

)
−
(
R
0 D

α
xu(x3, tn)− R

0 D
α
xu(x2, tn)

)
−
(
R
0 D

α
xu(x4, tn)− R

0 D
α
xu(x3, tn)

)
...

−
(
R
0 D

α
xu(x2m, tn)− R

0 D
α
xu(x2m−1, tn)

)


,

and

In =



0
1

Γ(−α)

∫ x1

0
(x3 − ξ)−1−αu(tn, ξ) dξ

0
...

1
Γ(−α)

∫ x1

0
(x2m−1 − ξ)−1−αu(tn, ξ) dξ

0


, Bnl =



λw2,2u(tn, x0)
0

λw4,4u(tn, x0)
0
...
0

λw2m,2mu(tn, x0)


, Bnr =


0
0
...
0

λw0,2mu(tn, x2m)

 ,
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and

A =


1− λw1,2 −λw0,2 0 0 · · · 0
−λw2,3 1− λw1,3 −λw0,3 0 · · · 0

...
...

...
...

...
...

−λw2m−2,2m−1 −λw2m−3,2m−1 · · · · · · 1− λw1,2m−1 −λw0,2m−1

−λw2m−1,2m −λw2m−2,2m · · · · · · −λw2,2m 1− λw1,2m

 .
Here Bnl and Bnr are determined by the Dirichlet boundary conditions u(tn, x0) and u(tn, x2m). We then
use MATLAB to obtain all the approximate solutions Un, n = 1, 2, . . . , N .

Example 3.1. Consider [2]

ut(t, x) = R
0 D

α
xu(t, x) + f(t, x), 0 < x < 2, t > 0 (47)

u(t, 0) = 0, u(t, 2) = 0, (48)

u(0, x) = 4x2(2− x)2, 0 < x < 1, (49)

where

f(t, x) = −4e−tx2(2− x)2 − 4e−t
(

4
Γ(2 + 1)

Γ(2− α+ 1)
x2−α − 4

Γ(3 + 1)

Γ(3− α+ 1)
x3−α +

Γ(4 + 1)

Γ(4− α+ 1)
x4−α,

The exact solution is u(t, x) = 4e−tx2(2− x)2.

By Theorem 2.2, we have

|eN |∞ = |UN − u(tN )|∞ ≤ C(∆t+ ∆xγ), with γ = min(3− α, β),

where |eN |∞ denotes the L∞-norm of the error at time tN = 1. In our numerical example, we know the
exact solution u, so we can exactly calculate ρn. In general, we may need to approximate ρn by using the
computed solutions Un with some higher order approximation numerical methods.

To observe the convergence order with respect to ∆x, we choose ∆t = 2−10 sufficiently small and the
different space step sizes hl = ∆x = 2−l, l = 2, 3, 4, 5, 6. Hence the error will be dominated by ∆xγ . Now
let |eNl |∞ = |UN −u(tN )|∞ denote the L∞-norm at tN = 1 obtained by using the space stepsize hl. For the
fixed space stepsize hl = 2−l, l = 2, 3, 4, 5, 6, we have

|eNl |∞ ≈ Ch
γ
l , (50)

which implies that
|eNl |∞
|eNl+1|∞

≈
hγl
hγl+1

= 2γ .

Hence the convergence order satisfies

γ ≈ log2

( |eNl |∞
|eNl+1|∞

)
. (51)

In Table 1, we obtain the experimentally determined orders of convergence (EOC) for the different α =
1.2, 1.4, 1.6, 1.8. We see that the convergence order is almost 3− α which is consistent with our theoretical
convergence order γ = min(3−α, β). The order 3−α term dominates the convergence order in this example.
Here and below we will call our numerical method “the Shifted Diethelm method ”.

In [24], the shifted Grünwald difference operator

Aαh,pu(x) = ∆x−α
∞∑
k=0

g
(α)
k u(x− (k − p)∆x)
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∆t ∆x α = 1.2 α = 1.4 α = 1.6 α = 1.8
2−10 2−3

2−10 2−4 1.5009 1.5203 1.4714 1.5419
2−10 2−5 1.5813 1.4978 1.3432 1.3221
2−10 2−6 1.7058 1.5597 1.3262 1.2168
2−10 2−7 1.8136 1.6285 1.3504 1.1905

Table 1: The experimentally determined orders of convergence (EOC) at t = 1 in Example 3.1 by using the shifted Diethelm’s
method

approximates the Riemann-Liouville fractional derivative uniformly with first order accuracy, i.e.,

Aαh,pu(x) = R
−∞D

α
xu(x) +O(∆x),

where p is an positive integer and g
(α)
k = (−1)k( αk ). Considering a well defined function u(x) on a bounded

interval [a, b] if u(a) = 0 or u(b) = 0, the function u(x) can be zero extended for x < a or x > b. And
then the α order left and right Riemann-Liouville fractional derivatives of u(x) at each point x can be
approximated by the shifted Grünwald difference operator Aαh,pu(x). In [33], the authors introduced a
weighted and shifted Grünwald difference operator which has second order accuracy to approximate the
Riemann-Liouville fractional derivative. However the approximation of the left or right Riemann-Liouville
fractional derivatives in [24], [33] by using the shifted Grünwald difference operator on finite interval [a, b]
requires that u(a) = 0 or u(b) = 0 respectively. In Table 2, we obtain the experimentally determined orders
of convergence (EOC) for the different α = 1.2, 1.4, 1.6, 1.8 by using Grünwand difference method in [24].
We only observe the first order convergence.

∆t ∆x α = 1.2 α = 1.4 α = 1.6 α = 1.8
2−10 2−3

2−10 2−4 0.8970 0.9660 1.1971 1.7665
2−10 2−5 0.9304 0.9997 1.0878 1.4690
2−10 2−6 0.9571 1.0004 1.0340 1.1946
2−10 2−7 0.9792 1.0033 1.0166 1.0674

Table 2: The experimentally determined orders of convergence (EOC) at t = 1 in Example 3.1 by using the shifted Grünwald
method

Example 3.2. We consider the same equation as in Example 3.1, but with the nonhomogenous Dirichlet
boundary condition,

ut(t, x) = R
0 D

α
xu(t, x) + f(t, x), 0 < x < 2, t > 0 (52)

u(t, 0) = 5, u(t, 2) = 5, (53)

u(0, x) = 4x2(2− x)2 + 5, 0 < x < 1, (54)

where

f(t, x) = −4e−tx2(2−x)2−4e−t
(

4
Γ(2 + 1)

Γ(2− α+ 1)
x2−α−4

Γ(3 + 1)

Γ(3− α+ 1)
x3−α+

Γ(4 + 1)

Γ(4− α+ 1)
x4−α+5

Γ(1)

Γ(1− α)
x−α

)
.

The exact solution is u(t, x) = 4e−tx2(2− x)2 + 5.
15



We use the same notations as in Example 3.1. In Table 3, we obtain the experimentally determined
orders of convergence (EOC) for the different α = 1.2, 1.4, 1.6, 1.8. We see that the convergence order is less
than 3− α. This is because of the nonhomogeneous boundary conditions.

Since the approximation of the Riemann-Liouville fractional derivative by using Grünwald difference
operator on [a, b] in Meerschaert and Tadjeran [24] requires that the function has the zero extension for x < a
and x > b. Hence we require that the function should have zero boundary conditions on the finite interval
in order to get good approximation of the fractional derivative of such function by using the Grünwald
difference operator. In this example, since the Dirichlet boundary conditions are not homogenuous, we
observe that in Table 4 the convergence order of the algorithm by using Grünwald difference method is
rather low. However the shifted Diethelm’s method works well for the nonhomogeneous Dirichlet boundary
conditions and the convergence order is approximately equal to 1 in this example. This is another advantage
by using the shifted Dietehlm’s method compared with the Grünwald difference method in Meerschaert and
Tadjeran [24].

∆t ∆x α = 1.2 α = 1.4 α = 1.6 α = 1.8
2−10 2−3

2−10 2−4 1.4510 1.4687 1.5479 1.6511
2−10 2−5 1.4388 1.2905 1.2426 1.2030
2−10 2−6 1.3686 1.1039 0.9791 1.0037
2−10 2−7 1.0667 0.8199 0.7011 0.7089

Table 3: The experimentally determined orders of convergence (EOC) at t = 1 in Example 3.2 by using the shifted Diethelm’s
method

∆t ∆x α = 1.2 α = 1.4 α = 1.6 α = 1.8
2−10 2−3

2−10 2−4 0.7821 0.3548 0.6070 1.1859
2−10 2−5 0.5424 0.2148 0.2738 0.5377
2−10 2−6 0.4045 0.2604 0.2348 0.2664
2−10 2−7 0.3801 0.3191 0.2580 0.1939

Table 4: The experimentally determined orders of convergence (EOC) at t = 1 in Example 3.2 by using the shifted Grünwald
method

Example 3.3. Consider [2]

ut(t, x) = R
0 D

α
xu(t, x) + f(t, x), 0 < x < 1, t > 0 (55)

u(t, 0) = 0, u(t, 1) = e−t, (56)

u(0, x) = xα1 , 0 < x < 1, (57)

where

f(t, x) = −e−txα1 − e−t Γ(α1 + 1)

Γ(α1 + 1− α)
xα1−α.

The exact solution is u(t, x) = e−txα1 . In our numerical simulations, we first consider the nonsmooth
solutions with α1 = α. we then consider the smooth solutions with α1 = 3.
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For the case α1 = α, we have

R
0 D

α
x (xα1) = D2

(
R
0 D

α−2
x

)
(xα1) = D2 1

Γ(2− α)

∫ x

0

(x− τ)1−ατα1 dτ = CD2(x2) = C,

for some constant C, which implies that the following Lipschitz condition holds for any β > 0,∣∣∣R0 Dα
xu(t, x)− R

0 D
α
y u(t, y)

∣∣∣ = 0 ≤ C|x− y|β .

In Table 5, we obtain the experimentally determined orders of convergence (EOC) for the different
α = 1.2, 1.4, 1.6, 1.8. We see that the convergence order is less than 3−α. This is because the exact solution
u is not sufficiently smooth in this case.

∆t ∆x α = 1.2, α1 = 1.2 α = 1.4, α1 = 1.4 α = 1.6, α1 = 1.6 α = 1.8, α1 = 1.8
2−10 2−3

2−10 2−4 1.2981 1.1479 1.0375 0.9583
2−10 2−5 1.4639 1.3352 1.1884 1.0637
2−10 2−6 1.4405 1.4178 1.2836 1.1379
2−10 2−7 1.2192 1.4118 1.3292 1.1831

Table 5: The experimentally determined orders of convergence (EOC) at t = 1 in Example 3.3 for α1 = α

For the case α1 = 3, we obtain, in Table 6, the experimentally determined orders of convergence (EOC)
for the different α = 1.2, 1.4, 1.6, 1.8. We see that the convergence order is almost 3− α.

∆t ∆x α = 1.2, α1 = 3 α = 1.4, α1 = 3 α = 1.6, α1 = 3 α = 1.8, α1 = 3
2−10 2−3

2−10 2−4 1.3625 1.2416 1.1532 1.0745
2−10 2−5 1.5740 1.3951 1.2398 1.1111
2−10 2−6 1.7143 1.5008 1.3099 1.1440
2−10 2−7 1.8557 1.5754 1.3585 1.1690

Table 6: The experimentally determined orders of convergence (EOC) at t = 1 in Example 3.3 for α1 = 3

Example 3.4. Consider the same equation as in Example 3.3, but with the nonhomogeneous boundary
conditions.

ut(t, x) = R
0 D

α
xu(t, x) + f(t, x), 0 < x < 1, t > 0 (58)

u(t, 0) = 1, u(t, 1) = e−t + 1, (59)

u(0, x) = xα1 + 1, 0 < x < 1, (60)

where

f(t, x) = −e−txα1 − e−t Γ(α1 + 1)

Γ(α1 + 1− α)
xα1−α.

The exact solution is u(t, x) = e−txα1 +1. In our numerical simulations, we consider the smooth solution
with α1 = 3.
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In Table 7, we obtain the experimentally determined orders of convergence (EOC) for the different
α = 1.2, 1.4, 1.6, 1.8. We see that the convergence order is almost 3 − α even under the nonhomogeneous
boundary conditions.

∆t ∆x α = 1.2, α1 = 3 α = 1.4, α1 = 3 α = 1.6, α1 = 3 α = 1.8, α1 = 3
2−10 2−3

2−10 2−4 1.3961 1.2732 1.1686 1.0791
2−10 2−5 1.5847 1.4090 1.2514 1.1165
2−10 2−6 1.7003 1.5015 1.3149 1.1474
2−10 2−7 1.7823 1.5581 1.3562 1.1698

Table 7: The experimentally determined orders of convergence (EOC) at t = 1 in Example 3.4 for α1 = 3

Example 3.5. Consider the following two-sided space-fractional partial differential equation, [24]

ut(t, x) = c+(t, x)R0 D
α
xu(t, x) + c−(t, x)RxD

α
1 u(t, x) + f(t, x), 0 < x < 2, t > 0 (61)

u(t, 0) = u(t, 2) = 0, (62)

u(0, x) = 4x2(2− x)2, 0 < x < 2, (63)

where
c+(t, x) = Γ(1.2)x1.8 and c−(t, x) = Γ(1.2)(2− x)1.8

f(t, x) = −32e−t
(
x2 + (2− x)2 − 2.5(x3 + (2− x)3) +

25

22
(x4 + (2− x)4)

)
.

The exact solution is u(t, x) = 4e−tx2(2− x)2.

We use the same notations as in Example 3.1. In Table 8, we obtain the experimentally determined
orders of convergence (EOC) for the different α = 1.2, 1.4, 1.6, 1.8. We see that the convergence order is
almost 3− α. The order 3− α term dominates the convergence order in this example.

∆t ∆x α = 1.2 α = 1.4 α = 1.6 α = 1.8
2−10 2−3

2−10 2−4 1.3872 1.2531 1.1841 1.1424
2−10 2−5 1.5540 1.2676 1.1884 1.1425
2−10 2−6 1.6878 1.4151 1.2607 1.1280
2−10 2−7 1.7892 1.4580 1.1861 1.1961

Table 8: The experimentally determined orders of convergence (EOC) at t = 1 in Example 3.5 by using the shifted Diethelm’s
method
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4. Conclusions

As we have foreseen in the earlier discussion, we have constructed a reliable numerical scheme for the
solution of equations of the form (1). We also have a convergence result and examples showing how the
order is lost when the smoothness assumptions are violated. This gives an insight into how the method
is likely to perform in practice. The use of numerical schemes usually has the effect of solving a slightly
perturbed problem. Even if the original problem has solutions that satisfy the smoothness conditions, we
may find that the perturbed problem has solutions that are not smooth. Thus the convergence order of the
numerical solution will be reduced in the way we have seen in Example 3.3.
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