

Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen

Trevor Davies, University of Chester FCH2 2015, 21st May 2015

PEM Fuel Cell Market Predictions

Fuel Cell Light Duty Vehicle Sales by Region, World Markets: 2020-2030

(Source: Navigant Research)

Outline

- Conventional PEM fuel cells
 - Challenges
 - Direct reduction of O₂
- Redox Flow Batteries
 - \blacksquare H₂-Br₂
- Regenerative PEM fuel cells
 - In-direct reduction of O₂
 - Low cost
 - Durable

Conventional PEM Fuel Cells

Conventional PEM Fuel Cell

The Problem

- Direct reduction of oxygen
 - Difficult reaction requires "high" Pt loading
- Causes durability issues Stack energy efficiency @ 1/4 rated power (%) 0.8 0.6 Stack power density System durability (h) (W/L) 0.4 0.2 System start from Stack specific power -20 °C (sec) (W/kg) System cost (\$/kW) Faculty of US Drive: Fuel Cell Technical Team Roadmap, June 2013 Science & Engineering

Platinum

- Recent US DoE analysis:
 - Pt contributes ~17% of total cost of 80 kW PEMFC system
 - 2012 technology + mass production
- Toyota PEMFC vehicle launch:
 - €66,000 + VAT per car (Germany)
 - 30 g Pt loading
 - >3% of car cost

Platinum – HOR

- Pt best metal for HOR
- Kinetics are very fast
- "simple" reaction
- Voltage losses are very small
 - <5 mV for 0.05 mg cm⁻² *

* J. Electrochem. Soc., 157 (2007) B631

Platinum - ORR

- Pt is the best metal for the OOR
- Kinetics are slow
- More Pt required for ORR
- Complicated reaction with numerous pathways
- 2e vs. 4e
- Voltage losses are very large
- More than half of the voltage loss for PEMFC *

* J. Electrochem. Soc., 157 (2010) B1529

Reduction Pathway

Oxygen Reduction Reaction	E°
$O_2 + e^- + H^+ \rightarrow HO_2^-$	-0.13 V
$HO_2^{\bullet} + e^- + H^+ \rightarrow H_2O_2$	+1.4 V
$H_2O_2 + e^- + H^+ \rightarrow HO^{\bullet} + H_2O$	+0.71 V
$HO^{\bullet} + e^{-} + H^{+} \rightarrow H_{2}O$	+2.55 V
O_2 + 2 e ⁻ + 2 H ⁺ → H ₂ O_2	+0.68 V
$\mathrm{H_2O_2} + 2~\mathrm{e^-} + 2~\mathrm{H^+} \rightarrow 2~\mathrm{H_2O}$	+1.77 V
O_2 + 4 e ⁻ + 4 H ⁺ \rightarrow 2 H ₂ O	+1.23 V

Pt Reaction Selectivity

- Undesirable side products cause durability issues
 - Presence of H₂O₂ is highly damaging

Start Up Durability Issues

GDL	Region A (air)	l	Region B (air)
MPL			
Cathode CL	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	e-	$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ $C + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^-$
Membrane	1 H+		↓ H ⁺
Anode CL	$2H_2 \rightarrow 4H^+ + 4e^-$	e- I	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$
MPL			
GDL	Region C (hydrogen)	1	Region D (air)

- Engineering challenge for conventional PEM fuel cells
- Limited to ~80°C difficult to dissipate waste heat
- Need higher operating temperatures

Conventional PEMFC Technology

Challenges

- Direct reduction of oxygen
 - Slow kinetics cause large voltage drop
 - High Pt loading
 - Degradation via by-products
 - Start up issues

Cooling issues due to 80°C max temperature

Redox Flow Batteries

Recent Commercial VRB Systems and Installations

1 MW/5 MWh VRB - Sumitomo - Japan

5 MW/10 MWh Rongke

Gildemeister - Germany

300 kW/3.6 MW Prudent - California

Hydrogen/Bromine Flow Battery

111111

(IIII)

Performance

Ambient temperature and pressure 0.9 M Br₂ / 1 M HBr

A. Weber, IFBF 2013, Dublin

Regenerative PEM Fuel Cells In-Direct O₂ Reduction

Regenerative PEMFC Technology

Challenges

- Direct reduction of oxygen
 - Slow kinetics cause large voltage drop
 - High Pt loading
 - Degradation via by-products
 - Start up issues
- Cooling issues due to 80°C max temperature

Solution

- In-direct reduction of oxygen
 - No Pt required
 - Durability issues resolved

ACAL Energy Concept Liquid Phase Catalyst/Mediator to Drive Fuel Cell

Science & Engineering

Basic Cell Architecture

- Standard cell components
- Fuel cell flow battery hybrid
 - Anode very similar to conventional PEMFC
 - Cathode similar to redox flow battery
- Optimization needed
- Same fuels as standard PEM
 - Hydrogen, reformate and methanol evaluated

Polyoxometallates (POMs)

- Keggin structures form a category of POMs
 - Best known example is PMA (Aldrich)
- Inorganic complexes
 - Stable
 - Electrochemically reduced at carbon electrode
 - Reduced keggin reacts with oxygen

POM Electrochemistry

0.5 mM (n-Bu4N)₄[PVMo₁₁O₄₀] in 0.1 M HClO₄/MeCN/water Glassy carbon working electrode

J. Electroanal. Chem. 451 (1998) 203

[PVMo₁₁O₄₀]⁴⁻ Keggin

POM Electrochemistry

 $[P_2V_2W_{16}O_{62}]^{8-1}$ Dawson

0.2 mM [P₂V₂W₁₆O₆₂]⁸⁻ in aqueous media Glassy carbon working electrode

C. R. Chimie, 8 (2005) 1057

Comparison with Commercial MEA Data

Potential (V)

Current Density (mA/cm²)

Fundamentally More Durable

- Catalyst system thermodynamically stable
 - High operational durability
- Reaction with oxygen occurs away from electrode
 - No oxygen or peroxide in contact with electrode or membrane to cause damage
- Membrane in contact with aqueous solution
 - Membrane always hydrated

Automotive Durability Protocol – FlowCath® v Commercial

Cooling

Regenerative fuel cells can operate above 80°C

- Cathode side of membrane is always wet
 - Membrane drying can be avoided
- Big impact on cooling
 - Catholyte acts as a coolant

A New Set of Challenges

- Cell optimization, scale up and stack assembly
 - Flow battery vs. fuel cell architecture
- Liquid catalyst formulation
 - High electrode potential vs. fast regeneration reaction
- Bubble generation
 - High surface area bubbles vs. high efficiency bubbling
 - The bubbler performance and catalyst chemistry determine the volume of catholyte required
- >100°C operation
 - 10,000 hours durability achieved at 70-80°C
 - Oxygen concentration vs. regeneration kinetics

Innovation

- Ford invited (and patented) the regenerative fuel cell concept in the 1980s
- Despite a wealth of resources, Ford could not achieve adequate current densities
- Over the last 10 years major advances have been achieved by a small company on a limited budget

Why?

Thank you

Backup Slides

All-vanadium redox flow cell

sity of

Performance

 Charge-discharge curves

- Coulombic efficiency
- Electrical efficiency

Performance

Successfully operated up to 160 mA.cm⁻² at an energy efficiency ~75%

Conventional PEM Fuel Cell Weaknesses

- Too Costly
 - High platinum content
 - Expensive balance of plant
- Poor durability
 - Membrane and catalyst suffer degradation
- Development cycle for catalyst requires durability effort to be repeated for each development
 - Large task for auto companies

'Platinum agglomeration is key reliability issue'

- Japanese Auto Maker

