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PEM Fuel Cell Market Predictions

Fuel Cell Light Duty Vehicle Sales by Region, World Markets: 2020-2030
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Outline

m Conventional PEM fuel cells
m Challenges
m Direct reduction of O,

mRedox Flow Batteries
= H,-Br,

mRegenerative PEM fuel cells
m |[n-direct reduction of O,
m | ow cost
= Durable
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Conventional PEM Fuel Cells
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Conventional PEM Fuel Cell
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The Problem

m Direct reduction of oxygen
m Difficult reaction — requires “high” Pt loading
m Causes durability issues
Stack energy
efficiency @ 1/4
rated power (%)

System cost (S/kW)

| . Faculty of University of
US Drive: Fuel Cell Technical Team Roadmap, June 2013 & =3C hester

Stack power density
(W/L)

System durability (h)

Stack specific power
(W/kg)

System start from
-20 °C (sec)
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Platinum

m Recent US DoE analysis:
m Pt contributes ~17% of total cost of 80 kW PEMFC system
m 2012 technology + mass production

m Toyota PEMFC vehicle launch:
m £66,000 + VAT per car (Germany)
m 30 g Pt loading
m >3% of car cost
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Platinum — HOR

Pt
T :Rh.Re i
i m Pt best metal for HOR
Au
~ S5F Ni . ; :
- Y = Kinetics are very fast
< Fe
= we m “simple” reaction
5n 'B; Mo
27"- . T m Voltage losses are very small
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Activity

0.0

Platinum - ORR

O binding O binding
too strong too weak

m Pt is the best metal for the

OOR

m Kinetics are slow

m More Pt required for ORR

m Complicated reaction
with numerous pathways
m e vs. 4e
m Voltage losses are very
large

m More than half of the
voltage loss for PEMFC *

*J. Electrochem. Soc., 157 (2010) B1529
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Reduction Pathway

Oxygen Reduction Reaction “

O, +e +H"— HO, 0.13V
HO," + & + H" — H,0, +1.4V
H,O, + e+ H* —» HO*® + H,O +0.71V
HO® + e + H* — H,0 +2.55 V
O,+2e +2H"—H)0O, +0.68 V
H,O,+2e +2H"— 2H,0 +1.77 V
O,+4e +4H"—>2H,0 +1.23V
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Pt Reaction Selectivity
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m Undesirable side products cause durability issues

® Presence of H,0, is highly damaging
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Start Up Durabillity Issues

GDL Region A (air) Region B (air)

MPL
===
R 2H,0 = O, + 4H* + 4e

Cathode CL 0, + 4H" + 4e- 2> 2H,0 C +2H,0 = CO, + 4H* + 4e
Membrane

Anode CL 2H, = 4H* + 4e € O, + 4H" + 4¢ = 2H,0
2 =) = €
MPL

GDL Region C (hydrogen) Region D (air)
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Cooling

® Engineering challenge for conventional PEM fuel cells
m | imitfed to ~80°C — difficult to dissipate waste heat

® Need higher operating temperatures
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Conventional PEMFC Technology

m Challenges
m Direct reduction of oxygen
m Slow kinefics cause large voltage drop
= High Pt loading
m Degradation via by-products
m Start up issues
m Cooling issues due to 80°C max temperature

' University of
Faculty of
Science & Engineering a&:CheS[er



Redox Flow Batteries
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Recent Commercial VRB Systems and
Installations

Gildemeister - Germany 300 kW/3.6 MW Prudent - California
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f% Hydrogen/Bromine Flow Battery

Electrolyte
in

Br, + 2H* + 2e ¢ 2HBr

Discharge
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Nafion membrane)
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Carbon paper
catalyst layer)

Support layer (GDL))
Pt/C catalyst layer)

Leveraging designs developed in

the fuel—cell field for the cell)
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Regenerative PEM Fuel Cells
INn-Direct O, Reduction
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Regenerative PEMFC Technology

m Challenges
m Direct reduction of oxygen
m Slow kinefics cause large voltage drop
= High Pt loading
m Degradation via by-products
m Start up issues
m Cooling issues due to 80°C max temperature

m Solution
m In-direct reduction of oxygen
® No Pt required

m Durabillity issues resolved e
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ACAL Energy Concept

Liguid Phase Catalyst/Mediator to Drive Fuel Cell

Proprietary Catalyst
Solution

!

—

Hydrogen or
Reformate Fuel

Air, water vapor
 — and heat

Anode Cathode

Proton exchange
membrane
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Porous BOSIC Ce”
cocToce Architecture

m Standard cell components

m Fuel cell - flow battery hybrid

m Anode very similar to
conventional PEMFC

=
o

T
9

=
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m Cathode similar to redox flow
battery

m Optimization needed

m Same fuels as standard PEM

Bipolar plate ' Bipolar plate = Hydrogen, reformate and
methanol evaluated
Gas diffusion Proton exchange
layer membrane
Catalyst
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Polyoxometallates (POMs)

m Keggin structures form a category of POMs
m Best known example is PMA (Aldrich)

® |[norganic complexes
m Stable
m Flectrochemically reduced at carbon electrode
m Reduced keggin reacts with oxygen
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E/mV vs AglAgCl
0.5 MM (n-Bu4N),[PVM0,,0 ] in

0.1 M HCIO,/MeCN/water
Glassy carbon working electrode

J. Electroanal. Chem. 451 (1998) 203

POM Electrochemistry
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POM Electrochemistry

[PoVoW, O] 8-
Dawson

0.2 mM [PV, W, ,O,,]® in aqueous media
Glassy carbon working electrode

C. R. Chimie, 8 (2005) 1057
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Fundamentally More Durable

Basic Theory of Operation

e

Hydrogen or  g-----==---2 >

Reformate Fuel i

 ——

Proprietary
Catalyst
Solution

Anode T

Proton
Exchange
Membrane

Cathode

Air, Water

1 Vapor, Heat

‘ Blower
Air

/

m Catalyst system
thermodynamically stable

« High operational durability

® Reaction with oxygen
occurs away from electrode

« NO oxygen or peroxide in
contact with electrode or
membrane to cause damage

m Membrane in contact with
agueous solution

« Membrane always hydrated
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Automotive Durability Protocol - FlowCath® v Commercial

¥ Flowcath® Cell Voltage/V
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Cooling

mRegenerative fuel cells can operate above 80°C

B Cathode side of membrane is always wet
" Membrane drying can be avoided

mBig impact on cooling
m Catholyte acts as a coolant
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A New Set of Challenges

m Cell optimization, scale up and stack assembly
m Flow battery vs. fuel cell architecture

m Liquid catalyst formulation
m High electrode potential vs. fast regeneration reaction

m Bubble generation
m High surface area bubbles vs. high efficiency bubbling

m The bubbler performance and catalyst chemistry determine the
volume of catholyte required

m >]100°C operation
m 10,000 hours durability achieved at 70-80°C
m Oxygen concentratfion vs. regeneration kinefics
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Innovation

m Ford invited (and patented) the regenerative fuel cell concept
in the 1980s

m Despite a wealth of resources, Ford could not achieve
adequate current densities

m Over the last 10 years major advances have been achieved
by a small company on a limited budget

" Why?
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Innovation vs. Structure

“Innovativity”
A
\\\"\\ >
Structure
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Thank you
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All-vanadium redox flow cell
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Performance
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Performance

Performance depending on flow rate and °C
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Conventional PEM Fuel Cell Weaknesses

/
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Excess Fuel
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m Too Costly
= High platinum content
m Expensive balance of plant

Pt Cathode

Air, Water

: yapour&Heaf
m Poor durability

®m Membrane and catalyst suffer
degradation

m Development cycle for catalyst
requires durability effort to be
repeated for each
development

m | arge task for auto companies
Air

, / . *
embrane 1.

‘Platinum agglomeration is key
reliability issue’
- Japanese Auto Maker
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No cooling Able to operate at up to 110°C

channels \ No additional
cooling circuit

"4

No oxygen
in stack

",

No humidification
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No gas crossover
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System assembly
Balance of system
Fuel management
Water management
Air management
Thermal management
Final stack assembly
Balance of stack

Bipolar plate

- Gas diffusion layer
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