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AN ANALYTIC APPROACH TO THE NORMALIZED RICCI
FLOW-LIKE EQUATION: REVISITED

NIKOS I. KAVALLARIS AND TAKASHI SUZUKI

Abstract. In this paper we revisit Hamilton’s normalized Ricci flow, which was thor-
oughly studied via a PDE approach in [10]. Here we provide an improved convergence
result compared to the one presented [10] for the critical case λ = 8π. We actually
prove that the convergence towards the stationary solution is realized through any time
sequence.

1. Introduction-Preliminaries

In the current work we revisit the problem

∂ew

∂t
= ∆w + λ

(
ew∫

Ω
ew dx

− 1

|Ω|

)
, x ∈ Ω, t > 0, (1.1)

w(x, 0) = w0(x), x ∈ Ω, (1.2)

which we first studied, using a PDE approach, in [10]. Here λ > 0 is a constant and Ω is
a compact Riemannian surface without boundary. When λ = 8π and Ω equals to the unit
sphere S2 = {x ∈ R2 : ||x|| < 1} then (1.1) - (1.2) describes the evolution of the metric
associated with the normalized Ricci, [9].

First note that integrating equation (1.1) over Ω, taking also into account that Ω is a
compact manifold without boundary, we obtain the total mass conservation∫

Ω

ew(x,t) dx =

∫
Ω

ew0(x) dx = λ, for t > 0. (1.3)

Also if we consider the functional

Jλ(w) =
1

2
||∇w||22 − λ

{
log

∫
Ω

ew dx− 1

|Ω|

∫
Ω

w dx

}
=

1

2
‖∇(w − w)‖2

2 − λ log

∫
Ω

ew−wdx, (1.4)

where w = 1
|Ω|

∫
Ω
wdx, then there holds that

d

dt
Jλ(w(·, t)) =

∫
Ω

∇w · ∇wtdx− λ
∫

Ω

(
ew∫

Ω
ewdx

− 1

|Ω|

)
wtdx = −

∫
Ω

eww2
t dx, (1.5)
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and thus Jλ(w) is a Lyapunov functional for problem (1.1) - (1.3).
The corresponding steady-state problem is, therefore,

−∆φ = λ

(
eφ∫

Ω
eφ dx

− 1

|Ω|

)
,

∫
Ω

eφ dx =

∫
Ω

ew0 dx (= λ). (1.6)

In [10] we proved that for the so called subcritical case, 0 < λ < 8π, problem (1.1)
- (1.3) has a global-in-time solution which actually converges to a unique steady state.
More precisely the following result was obtained.

Theorem 1.1. ([10]) If 0 < λ < 8π, the solution w = w(x, t) to (1.1) - (1.3) satisfies the
uniform estimates

sup
t≥0

{
||ew(·,t)||∞ + ||e−w(·,t)||∞

}
<∞,

and hence exists globally in time. Moreover

ω(w0) := {ψ ∈ C2(Ω) | there exists tk ↑ ∞ such that ||w(·, tk;u0)− ψ||C2(Ω) → 0}
is a non-empty connected compact set in C2(Ω) contained in the steady-state solution set

Eλ =
{
φ ∈ C2(Ω) | φ satisfies (1.6) when parameter is equal to λ

}
.

The above result actually yields that for any 0 < λ < 8π the solution orbit stays in the
center manifold, hence there exists w∞ ∈ Eλ such that

w(·, t)→ w∞ in C2(Ω) as t→∞. (1.7)

On the other hand, in the “critical case” λ = 8π although we established the global-
in-time existence of solutions, due the lack of some estimates from below for w, we were
unable to derive convergence towards steady-state through any time sequence. Indeed, in
[10] was derived.

Theorem 1.2. ([10]) If λ = 8π, then problem (1.1) - (1.3) still has a global-time solution.
Furthermore, there exists tk ↑ ∞ and w∞ ∈ E8π such that w(·, tk) → w∞ in C2(Ω) as
k →∞.

The purpose of this paper is to improve the convergence result provided by Theorem
1.2. In particular in the next section we are proving that the convergence in (1.7) is still
true even for the case λ = 8π, which then cannot be characterized as critical.

2. Main Result

The main result of the current work, improving Theorem 1.2, is.

Theorem 2.1. If λ = 8π, then there holds

sup
t≥0

{
||ew(·,t)||∞ + ||e−w(·,t)||∞

}
<∞, (2.1)

and thus ω(w0) ⊂ E8π.
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Before proceeding to the proof of Theorem 2.1 we need to provide some auxiliary results.
First of all we note that by Fontana-Moser-Trudinger’s inequality, [8, 14], there holds

J8π(w) =
1

2
‖∇w‖2

2 − 8π log

(∫
Ω

ew−wdx

)
=

1

2
‖∇w‖2

2 + 8πw − 8π log(8π) ≥ −C. (2.2)

Moreover, Jensen’s inequality implies

exp

(
1

|Ω|

∫
Ω

wdx

)
≤ 1

|Ω|

∫
Ω

ewdx

and thus

w(t) ≤ log

(
8π

|Ω|

)
, (2.3)

using also (1.3).
The following lemma provides a fundamental lower estimate of w was not obtained in

[10].

Lemma 2.2. If λ = 8π, then there holds

lim inf
t↑∞

w(t) > −∞. (2.4)

Proof. Assume that lim inft↑∞w(t) = −∞, then there exist tk ↑ ∞, δ > 0 with tk+1 >
tk + δ such that limk→∞w(tk) = −∞ and thus by virtue of the Benilan-Crandall’s type

estimate wt ≤
et

et − 1
, see Lemma 3 in [10], we obtain

8πw(t) ≤ −k − C for any t ∈ (tk − δ, tk). (2.5)

The entropy defined by

H(t) :=

∫
Ω

eww dx

satisfies the obvious estimate

H(t) ≥ −e|Ω|. (2.6)

On the other hand, by following similar calculations as in Lemma 11 in [10], we deduce

dH
dt

= H(t)− ‖∇w‖2
2 − 8πw(t)

= H(t) + 8πw(t) +O(1)

taking also into account (2.2).
The latter combined with (2.5) reads

dH
dt
≤ H(t)− k
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or

d (e−tH)

dt
≤ −ke−t for any t ∈ (tk − δ, tk),

and integrating over (tk − δ, tk − δ/2) we deduce by virtue of (2.6)

H(t) ≥ et−tkH(tk) + k
(
1− et−tk

)
≥ −e1+δ|Ω|+ k

(
1− e−δ/2

)
,

which actually yields

lim
k→∞

inf
t∈(tk−δ,tk−δ/2)

H(t) = +∞. (2.7)

Due to (1.5) and (2.2) we also have
∞∑
k=1

∫ tk−δ/2

tk−δ
dt

∫
Ω

eww2
t dx ≤

∫ ∞
0

dt

∫
Ω

eww2
t dx <∞,

thus

lim
k→∞

∫ tk−δ/2

tk−δ
dt

∫
Ω

eww2
t dx = 0. (2.8)

By virtue of (2.7) and (2.8) we can extract a sequence t′k ∈ (tk − δ, tk − δ/2) such that

lim
k→∞
H(t′k) = +∞ (2.9)

and

lim
k→∞

∫
Ω

ew(·,t′k)w2
t (·, t′k) dx = 0,

whereby the latter relation we deduce∥∥∥∥∂ew∂t (·, t′k)
∥∥∥∥

1

≤
∥∥∥ew(·,t′k)

∥∥∥
1

∥∥∥ew(·,t′k)w2
t (·, t′k)

∥∥∥
1
→ 0 as k →∞. (2.10)

Applying now the concentration result of Lemma 10 in [10] we derive

w(·, t′k)→ G(·, x∞) in W 1,q(Ω), 1 ≤ q < 2, (2.11)

for some x∞ ∈ Ω, using L1-estimate in [3] as well as (2.9) and Brezis-Merle’s estimate
[2]. Here G = G(x, x′) denotes the Green’s function of (−∆JL)−1 where the operator
(−∆JL)−1 is defined by

(−∆JL)−1u = v (2.12)

if and only if

−∆v = u− 1

|Ω|

∫
Ω

u dx, x ∈ Ω,

∫
Ω

v dx = 0.

But (2.11) via Fatou’s Lemma implies∫
Ω

ew(x,t′k)dx→∞ as k →∞

contradicting to the fact that
∫

Ω
ew dx = 8π. �
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Proof of Theorem 2.1 The uniform estimate (2.1) is obtained by employing Moser’s
iteration scheme as in Theorem in [10] and taking also into account estimate (2.4). Then
the inclusion ω(w0) ⊂ E8π is obtained due to the compactness of the orbit, guaranteed by
(2.1) and parabolic regularity, as well as due to classical dynamical systems theory taking
also into account dissipation relation (1.5). �

Remark 2.3. Theorem 2.1 verifies the convergence of the normalized Ricci flow towards
its steady state, see [1, 9], since when Ω = S2 then E8π = {w∞ = log(8π/|S2|)} by the
results in [6, 7, 12]. Furthermore, in the flat torus case, i.e when Ω = T2 = R2/aZ × bZ
with b

a
> π

4
then again E8π = {w∞ = log(8π/|T2|)}, [13], and thus w(·, t)→ log(8π/|T2|)

as t→∞ in C2(T2).

Remark 2.4. Similar results to Theorems 1.1 and 2.1 hold if Ω is a bounded domain in
R2 with smooth boundary, and the Neumann boundary condition is provided with (1.1)-
(1.2). That is, the global-in-time solution arises with compact orbit, as far as 0 < λ ≤
4π. Actually, we have only to use Chang-Yang’s inequality, [4, 5], instead of Fontana’s
inequality for the proof.
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