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Abstract

In this contribution, we indicate (and illustrate by example) rôles that may be played by
neutral delay differential equations in modelling of certain cell growth phenomena that
display a time lag in reacting to events. We explore, in this connection, questions involv-
ing the sensitivity analysis of models and related mathematical theory; we provide some
associated numerical results.
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1 Introduction

The problem of formulating a mathematical model explaining the systems behaviour
specified by time-series of observations is considered to be central to every scientific
discipline. Authors of a number of papers or books have addressed the determination
of computational models that describe mathematically the evolution of biological
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phenomena. In general, such phenomena depend upon past states (phenomena that
involve a gestation period are possibly the first examples to come to mind). Below,
we indicate, and illustrate by considering an example of cell growth dynamics, rôles
that may be played by neutral delay differential equations (NDDEs) in modelling of
certain growth phenomena that display a time lag in their reaction to events.

By way of orientation, the NDDEs that are discussed here are of the form

d

dt

{
y(t) − g0

(
p; t, y(t), y(t− τ)

)}
= g1

(
p; t, y(t), y(t(t− τ))

)
(t ≥ t0), (1.1)

or alternatively

y′(t) = g
(
p; t, y(t), y(t− τ), y′(t− τ)

)
(t ≥ t0), (1.2)

in each case incorporating a parameter vector p = [p1, p2, · · · , pL]T ∈ R
L and with

τ > 0. τ may be one of the components of p; exceptionally, we might admit the
possibility τ = 0. To determine a solution y(·) = y(p; ·) of such iii an NDDE we
require an initial condition of the form y(t) = ψ(t) for t ∈ [t0 − τ, t0].

1.1 Our perspective

For the present authors, a mathematical model comprises a set of equations, and
possibly constraints, that have their foundations in scientific observations and theory
and purport to generate insight into some specified phenomena. Our perspective
is that we should provide quantitative as well as qualitative predictions, and the
ultimate models are therefore computational models.

Rather than advocating a single, definitive model of biological growth phenomena,
we consider a variety of modelling approaches that have different strengths, weak-
nesses, and domains of applicability. The models with which we concern ourselves are
based on ordinary differential equations [ODEs], delay-differential equations [DDEs],
and NDDEs. These are all examples of retarded functional differential equations
(RFDEs). (In practice, complex models containing equations of various types are to
be combined.) It is from the modelling context that we approach our present topic.
Note that improvements in modelling precision typically carry a cost: they may
require more specific or precise data to be properly calibrated. We concentrate on
features involving NDDEs but, for intelligibility, we develop some of the background.

iii In Remark 1.1, we indicate how to normalize (if required) so that t0 = 0 and τ > 0 is
replaced by 1.
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1.2 Example equations

To open the discussion, note that a class of linear NDDE comprises equations of the
form

{y(t) − ρ2y(t− τ)}′ = ρ0y(t) + ρ1y(t− τ) (t ∈ [t0, T )) where τ > 0. (1.3a)

If the solution y(·) is differentiable, this equation can be rewritten as

y′(t) = ρ0y(t) + ρ1y(t− τ) + ρ2y
′(t− τ). (1.3b)

It is convenient to associate the equation with a parameter p = [ρ0, ρ1, ρ2]
T or

p = [ρ0, ρ1, ρ2, τ ]
T (but see Remark 1.1, below).

For either equation (1.3a) or (1.3b), we require an initial function ψ (which may
itself depend on parameters, say ψ(t) ≡ (ψ(p; t)) to specify a solution, and we write

y(t) ≡ y(ψ,p; t) (1.3c)

where

y(ψ,p; t) = ψ(t) for t ∈ [t0 − τ, t0]. (1.3d)

We designate by y0 the value

y0 = ψ(t0). (1.3e)

From time to time we suppress arguments so that

y(t) is identified with y(p, t), or y(ψ,p; t), or y(ψ; t), according to context.
(1.3f)

Unless otherwise stated it is assumed that ψ : [t0− τ, t] → R has a derivative (either
right-hand iv or conventional) and v

y′(ψ,p; t) = ψ′(t) for t ∈ [t0 − τ, t0]. (1.3g)

The smoothness of the solution y(ψ; t) is determined by ψ and it should be noted
that a solution of an NDDE can be discontinuous [10,12] but more generally it is
continuous with a discontinuous derivative. For y to be differentiable at t0 we require
the left-hand derivative ψ′

−
(t0) to match the right-hand derivative y′+(t0) determined

by the NDDE at t = t0. Henceforth, t0 is prescribed and we regard y0 as either known
from data or unknown (see §2.2).

iv The right-hand derivative is written, where we need to distinguish it, as ψ′

+. The value
ψ′(t0) is the left-hand derivative ψ′

−
(t0) and the value ψ′(t0−τ) is the right-hand derivative,

ψ′

+(t0 − τ).
v In certain modelling conditions y′(ψ; t) = ψ′(t) is not assumed to be the case and we
replace (1.3g) by an independent condition y′(t) = ψ1(t) (t ∈ [t0 − τ, t0]).
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A class of DDEs arises if we restrict attention to the case ρ2 = 0 and a class of
ODEs arises if we further require ρ1 = 0. Thus, the corresponding ODEs, DDEs,
and NDDEs form a nested hierarchy of models:

y′(t)= ρ0y(t) (t ≥ t0), (1.4a)

y′(t)= ρ0y(t) + ρ1y(t− τ) (t ≥ t0), (1.4b)

y′(t)= ρ0y(t) + ρ1y(t− τ) + ρ2y
′(t− τ) (t ≥ t0). (1.4c)

A case has been presented [3,5] for a model based on the equation

y′(t) =
1

τ
y(t− τ) (t ≥ t0). (1.4d)

This equation is a special case of our standard equation (1.3) (see also (1.4b)) but
with

ρ0 = 0, ρ1 = τ (equivalently τ = ρ1), and ρ2 = 0.

Remark 1.1 Corresponding inhomogeneous equations (often termed affine NDDEs),
have the form e.g.,

{y(t) − ρ2y(t− τ)}′ = ρ0y(t) + ρ1y(t− τ) + f(t) (t ∈ [t0, T )).

Observe that by a change of variable (t := τs+ t0) one can normalize τ > 0 to have
the value unity and t0 to have the value 0. For example, the previous equation is
equivalent to

u′(s) = {τρ0}u(s) + {τρ1}u(s− 1) + ρ2u
′(s− 1) + τf(τs+ t0) for s ≥ 0, (1.5)

where u(s) = y(τs+t0) for s ≥ −1. In principle, the introduction of τ as a parameter
may be considered via such a transformation.

1.3 Conservation laws

It may be asked from whence the NDDEs of the above form originate. One source
is the hyperbolic equations of conservation law models in structured population
dynamics. The corresponding models are associated with the names of Lotka-Sharpe-
McKendrck and Gurtin-MacCamy. Consider, as a simple example, the linear Sharpe-
Lotka-McKendrick model for a population structured by age a and specified at time
t by the distribution function n(t, a) (see the analysis presented in detail in [22]):

nt(t, α) + nα(t, α) + µ(α)n(t, α) = 0

with n(t, 0) =
∫
∞

0 b(α)n(t, α)dα, n(0, α) = n0(α). The birth b(α) and the death µ(α)
rate functions depend on age. Assume that there is a critical age τ > 0 which sepa-
rates adult age classes α > τ from juvenile age classes α < τ . Then, one can introduce

the total juvenile z(t) and the total adult population y(t) as z(t) =
∫ τ−

0
n(t, a)da,
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and y(t) =
∫

∞

τ+
n(t, a)da. Further assume that b(α) = (ρ1 + ρ2ρ0)Hτ (α) + ρ2δτ (α),

and µ(α) = −ρ0, where Hτ (α) is a Heaviside function with jump at α = τ and
δτ (α) is a delta function. Then one can show that the function y(t) satisfies a linear
NDDE

y′(t) = ρ0y(t) + ρ1y(t− τ) + ρ2y
′(t− τ). (1.6)

1.4 Existing theory & practice

The basic theory for NDDEs is quite well covered in the literature (for example,
[33,34]) and we shall be selective in the remarks offered below, concentrating on
features that are particularly relevant to us.

Let us first consider briefly the interpretation of the neutral delay equation. It is
possible to consider solutions of NDDES (a) in the sense of Carathéodory, [10,27]
(b) in the sense of one-sided derivatives, (c) in the sense of conventional derivatives.
With each interpretation of the equation one can enquire whether a solution y(t) is,
or is required to be, (i) piecewise continuous, (ii) piecewise continuous and piecewise
differentiable, (iii) continuous, (iv) continuous and differentiable in the conventional
sense on [t0, T ), and so on. We shall comment below on our cell-growth model, the
initial conditions, and the sense in which we consider solutions to be defined. The
smoothness of the solution is an important (and related) issue in modelling. To
match the differentiability conditions, and given a sufficiently smooth function v, we
can write

L+{v}(t) := v′+(t) − {ρ0v(t) + ρ1v(t− τ) + ρ2v
′

+(t− τ)} (1.7a)

when v has a right-hand derivative at t and t− τ and

L{v}(t) := v′(t) − {ρ0v(t) + ρ1v(t− τ) + ρ2v
′(t− τ)} (1.7b)

when v has a conventional derivative. Since (1.7a) collapses to (1.7b) whenever the
two-sided derivative exists, we can still use the notation L+ in (1.7a) in some places
where the notation (1.7b) would be more transparent.

Smoothness of the solution is also relevant in the numerics [2,20] of DDEs and
NDDEs (the solution or its derivatives may inherit jumps from the behaviour of
the initial function, through the lag). In consequence, a distinction between two-
sided and right-hand derivatives may be appropriate. Possible assumptions on ψ(t)
include that ψ be (a) bounded (b) piecewise-continuous, (c) piecewise-continuous and
differentiable from the right, (d) continuous and differentiable, or (e) continuously
differentiable.

Remark 1.2 Additional background literature can be categorized as follows:
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(1) Classical analysis of RFDEs – see, e.g.[21,31,34,35]
(2) Modelling, notably in bioscience; see, e.g. [38] and [1,3,6,4,5,8,9,23,19]
(3) Numerics of RFDEs [2,12,20,47]
(4) Computational codes for various types of RFDE [30,39,42]

1.5 The structure of the paper

Following this introduction, we have a section on modelling considerations, followed
by a section on perturbation theory, one on sensitivity, another on generalizations
and future work, and we conclude with references.

2 Modelling considerations

In this paper we concentrate on NDDEs, and their application is illustrated by
reference to experimental data reflecting the growth patterns of cells which clearly
exhibit the presence of a time-lag in their division, e.g., the synchronous in vitro
culture of Escheria coli (E.coli). Given such data and a specified type of formal
model we seek an actual model in which the parameters (such as {ρℓ} and τ above)
that define the structure are assigned values that are matched to the data. This
process can be set within the larger context of selecting a best parameterized model
chosen from within a hierarchy according to principles based on parsimony, Bayesian
concepts, maximum likelihood or minimimum description length; see [24,29,37] etc.
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Fig. 1. These figures show (left) data for synchronous E.coli growth (based on [45, Fig.4])
and (right) a graph of a solution of an NDDE (1.3), with particular values of its parameters
and initial function. The two figures show that an NDDE model with appropriate parameters
can be qualitatively consistent with the observed growth of synchronous cell populations.

—————————————————————-
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2.1 A first look at a modelling example

Given experimental data on cell growth, the use of such models as those above may
enable modellers to estimate some relevant growth parameters such as: the cell-
doubling time, the fraction of cells that are dividing, the rate of commitment of
cells to cell division, the degree of synchronization of cells in the population, and
the death rate of cells. Figure 1 shows observed data for synchronous E.coli growth
(based on [45, Fig.4]) compared with the graph of a solution y(t) of the NDDE (1.3b)
that corresponds to particular values of the parameters and an initial function. The
curve is clearly consistent with the observed data and illustrates the stepwise growth
of the population.

We shall use this modelling example as the basis for illustrating the general results
available in the context of model construction, analysis, and selection.

2.2 Cell growth and observational data

Cell growth is a process central to every living system. A cell population is an en-
semble of individual cells, all of which contribute in a different way to the overall
observed behaviour. The heterogeneity of dividing cell populations can be described
by a wide range of phenotypic and/or physical characteristics, e.g., the doubling
time, the position in the cell cycle. Various proliferation assays are used to quan-
tify the turnover of growing cell populations. Cell growth kinetics is affected by the
cellular heterogeneity with respect to the division rate, initial position in the cell
cycle, etc. Broadly heterogeneous cell populations display an exponential net growth
pattern (for as long as the necessary resources are available), whereas initially syn-
chronized cell cultures with a low variability in their division characteristics show for
some time a non-monotone step-like growth until they reach a ’steady exponential
growth’. A representative example of such a non-monotone growth is provided by
the in vitro system of synchronized E.coli cells [45]. It represents a nicely understood
reference growth system in bioengineering research (see Chapter 6.5.1 in [15]). We
used the published data on the population size of E.coli as a function of time to
estimate the parameters of the above nested family of models. In addition, as there
was no statistical characterization of the measurement error in the original study,
we estimated the standard deviation in the maximum likelihood framework.

2.3 Cell growth and parameter selection

The NDDE (1.3) contains parameters ρ0,1,2,τ ; the initial conditions (see below) in-
volve further parameters. In general, the issue is to choose a model in which the
parameters and the initial conditions are scientifically meaningful and determine
”suitable” numerical values of these parameters.

We take t0 = 0 here and in the subsequent discussion of cell growth so that the
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model equations (1.3) read

L{y}(t) = 0 (t ≥ 0), and L is one of (1.7a) or (1.7b). (2.1a)

We settle the choice of L from (1.7a) or (1.7b) (equivalently, the interpretation of
the model equations (2.1a)) in §2.4. Clearly, in either case L depends on {ρℓ}, τ .

Introducing further parameters ρ3 and ρ⋆ (ρ⋆ will later be absorbed in ρ3), we define
the initial function ψ(t) for t ∈ [−τ, 0] by defining ψ(0) = y0 (which is either a
measured observation or has to be estimated as a parameter) and (see [5] for more
details) with

ρ3 =
4.50

τcell
(y0ρ⋆/ρ1), and E(t) =





exp(
1

t2 − 1
)for |t| < 1,

0 for |t| ≥ 1
, (2.1b)

ψ(t) ≡ ψ(ρ3; t) = ρ3E(
2t

τ
+ 1), for t ∈ [−τ, 0) (2.1c)

where τ is synonymous with τcell. The choice of the scaling factor 4.50 in (2.1b)

ensures that
∫ τ

0
ψ(s − τcell)ds = y0. Thus, ψ(t) depends upon parameters to be

assigned or to be estimated. In the linear NDDE model under consideration, one
possible biological interpretation of the parameters is given in Table 1; the solution
will be denoted

y(t) ≡ y(p; t) =y([ρ0,1,2,3, τ ]; t), (2.1d)

where vi p = [ρ0,1,2,3, τ ]. In the simplest scenario, we suppose that we have N obser-

Notation Biological interpretation Units

τ > 0; the average cell-division time min

−ρ0 ≥ 0 the rate of cell-death min−1

ρ1 ≥ 0 the rate of commitment to the cell-division process min−1

0 ≤ ρ2 ≤ 2 the gradual dispersal of synchronization of cell-division

(ρ2 = 2 implies perfect synchronization)

0 ≤ ρ⋆ ≤ 1 the fraction of cells dividing over the first step

Table 1: A biological interpretation of the parameters in the model (2.1).

vations pairs, {tj; yj}
N
j=1 with

0 = t0 ≤ t1 < t2 < · · · < tN−1 < tN , where y0 = y1 is known if t0 = t1,

vi Or p = [ρ0,1,2,3, τ, y0] if y0 is unknown and has to be estimated.
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and we seek a parameter p in our computational model such that y(p; tj) ≈ yj. The
model-fitting problem is to select that parameter p∗ for which the function y(t;p∗)
provides a ‘best’ fit, at arguments t = tj, to the given data set {yj}

N
j=1.

2.4 Interpretation of the model equations

Before proceeding too far, we should take stock (given the application envisaged) of
the interpretation of the equations that define our model. We shall suppose that we
are attempting to model a process in which the cell population grows continuously
with time t. This has a bearing on the definition of the initial function ψ, which
suffers a jump discontinuity at the right end-point t = t0 (and has no left-hand
derivative at this point). It is necessary to observe that ψ(t) does not represent the
state of the population for t ∈ [t0 − τ, t0] but is an ”initial function” chosen to
ensure that the model is reasonable for t ≥ t0; compare the observation in footnote
iv. However, if the model equations are inappropriately interpreted, the solution can
appear to suffer jump discontinuities.

Let us first consider a solution in the sense of Carathéodory; that is, we seek an
absolutely continuous function that satisfies the integrated form of (1.3), viz

y(t) − y0 =
∫ t

t0

{ρ0y(s) + ρ1y(s− τ) + ρ2y
′(s− τ)} ds. (2.2)

For t ∈ [t0, t0 + τ ] this yields

y(t) −
∫ t

t0

ρ0y(s) ds = y0 +
∫ t−τ

t0−τ
{ρ1ψ(s) + ρ2ψ

′(s)} ds (2.3)

(and it will be noted that the value, at t = t0, of the integrands in the second integral
does not affect the value of this integral). The last equation forms the foundation
of a method of steps for solving the equation: we consider, for n ∈ {0, 1, 2, · · · } the
equation

y(t)−
∫ t

tn

ρ0y(s) ds = y(tn)+
∫ t−τ

tn−τ
{ρ1y(s) + ρ2y

′(s)} ds where t ∈ [tn, tn+1], tn = nτ.

For the method of steps, it only remains to note that the solution of y(t)−
∫ t

tn

ρ0y(s) ds

= gn(t) (tn ≤ t ≤ tn+1) is y(t) = exp{ρ0(t− tn)}gn(tn) +
∫ t

tn

exp{ρ0(t− s)}g′n(s) ds

for tn ≤ t ≤ tn+1 and we can use this result for the previously displayed equation,
with g′n(s) = ρ1y(s − τ) + ρ2y

′(s − τ). The solution of the integrated form is also
a continuous solution of (1.3a) or, equally, a continuous solution of (1.3b) when
derivatives are (re)interpreted as right-hand derivatives.

Theorem 2.1 The solution in the sense of Carathéodory of our model equations is
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also a solution of L+{y}(t) = 0 for t ∈ [t0, T ). Thus,

{y(t) − ρ2y(t− τ)}′+ = ρ0y(t) + ρ1y(t− τ) (t ∈ [t0, T )) (2.4a)

and

y′+(t) = ρ0y(t) + ρ1y(t− τ) + ρ2y
′

+(t− τ) (t ∈ [t0, T )) (2.4b)

with

y(t) = ψ(t), (and y′+(t) = ψ′

+(t)) for t ∈ [t0 − τ, t0]. (2.4c)

2.5 Reformulating our cell-growth model

We return to the combination of the NDDE and the initial function that combine
to form our cell growth model (2.1). Related to the solution that satisfies (2.1) are
two functions y0(t) and y1(t) each satisfying the NDDE (2.1a) but with differing
(complementary) initial conditions. The following superposition principle holds:

Theorem 2.2 The solution y(t) ≡ y([ρ0,1,2,3, τ ]; t) of (2.1) satisfies

y(t) = y0(t) + y1(t). (2.5a)

where y0(t) ≡ y0([ρ0,1,2,3, τ ]; t), y1(t) ≡ y0([ρ0,1,2, τ ]; t) satisfy (2.1a), and where

y0(t) = ρ3E(2t/τ + 1), t ∈ [−τ, 0], (2.5b)

y1(t) = 0, t ∈ [−τ, 0), y1(0) = y0 (2.5c)

and, in the notation of (1.7a),

L+{y0}(t) = 0 and L+{y1}(t) = 0 for t ∈ [0, T ) (2.5d)

It is useful to have the notation y♯ for the solution of

L+{y♯}(t) = 0 for t ∈ [0, T ), y♯(t) = 0, t ∈ [−τ, 0), y♯(0) = 1, (2.6a)

since in this notation y1(t) = y0y♯(t). Clearly, y′♮(t) = ρ0y♮(t), for t ∈ [0, τ ] and we
have

y′♯(t) = ρ0y♯(t) + ρ1y♯(t− τ) + ρ1y
′

♯(t− τ) for t ≥ τ , (2.6b)

y♯(t) = exp(ρ0t) on [0, τ ]. (2.6c)

Remark 2.1 (a) Observe that y0 ∈ C1[−τ, 0] while y1 (which is independent of ρ3)
has the jump discontinuity but is continuous for t ≥ 0. (b) According to Remark
1.1, one can normalize τ > 0 to have the value unity and consider u(t) = y(τt) =
y0(τt) + y1(τt).
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2.6 Parameter selection

The key part in selecting values of parameters in order to fit a model to data is the
formulation of an objective function to be optimized by the choice of these values.
We seek the parameter p⋆ for which the corresponding values {y(p⋆; tj)}

N
j=1, provide

a ‘best fit’ to the given data {yj}
N
j=1 in the sense that

Φ(p⋆) = min
p

Φ(p). (2.7)

Different fitness functions can be used [17], depending on the statistical features of
the errors in the data. There is a variety of methods for regression analysis and
interpretation of statistical properties of estimation schemes [16–18,25,36]. For a
comparison of objective functions, we refer to [43].

A general framework for consistent parameter estimation is provided by the maxi-
mum likelihood approach. In addition, this approach establishes a common basis for
ranking models that may vary considerably in their “architecture”. In this frame-
work the data is regarded as fixed and the parameters as variable. Those parameters
for which the likelihood of obtaining exactly the observed data is the highest:

L(p⋆) = max
p

L(p), (2.8)

represent the “maximum likelihood estimates”. The statistical properties of the er-
rors in the observed data are assumed to be expressible using an appropriate prob-
ability density distribution (e.g., a normal, or log-normal, distribution).

Theorem 2.3 (Likelihood function) If the errors in the observed date at successive
times are independent and have a Gaussian (normal) distribution about the vectors
yj := {y(p; tj)}

N
j=1, that is, yj ∼ N(yj, σj), where σj is the j-th covariance matrix,

then the likelihood function can be written as

L(p) =
N∏

j=1

H(yj;p). (2.9)

Here, the component probability density functions are given by

{
H(yj;p) =

1
√

(2π)σ2
j

exp{−
1

2
[yj − yj ]

Tσ−2
j [yj − yj]}

}
. (2.10)

Under the further assumption that the data variance is equal to the corresponding
maximum likelihood estimate, the maximum likelihood approach is equivalent to the
common weighted least squares parameter estimation. The discussion for the present
example will be based, in the main, on the use of the weighted objective function:

11



Φ(p) =
N∑

j=1

wj

[
y(p; tj) − yj

]2
, with the weights wj > 0 defined by wj = σ−2ωj,

(2.11)
as the measure of the discrepancy between the model forecast and the observed data.

Remark 2.2 As part of a more general discussion, it is useful to consider alter-
native objective functions. To assist such discussions we can denote (2.11) with
constant weights unity by ΦOLS:

ΦOLS(p) =
N∑

j=1

[
y(p; tj) − yj

]2
; (2.12a)

with arbitrary non-negative weights {wj} by ΦWLS,

ΦWLS(p) =
N∑

j=1

wj

[
y(p; tj) − yj

]2
(for any non-trivial choice with wj ≥ 0). (2.12b)

The similar (but different) objective function associated with a log-least-squares ap-
proach is

ΦLLS(p) =
N∑

j=1

[
ℓn (y(p; tj)) − ℓn (yj)

]2
(2.12c)

(the data and solution values must be positive). Minimization of (2.12a), (2.12b),
(2.12c) defines, respectively, the ”OLS”-approach, ”WLS”-approach, and the ”LLS”-
approach.

To solve (2.8) we seek p⋆ = arg min Φ(p).

Theorem 2.4 Given sufficient smoothness,

Φ(p+εδp) = Φ(p)+2
N∑

j=1

wj

{
y(p; tj)−yj

}{
y(p+εδp; tj)−y(p; tj)

}
+O(ε2), (2.13)

(irrespective of the choice of positive weights), and, provided that the derivatives
exist,

∂

∂pℓ

Φ(p) = 2
N∑

j=1

wj

[
y(p; tj) − yj

] ∂

∂pℓ

y(p; tj). (2.14)

Parameter values for which (2.14) vanishes are candidates vii for the choice as op-

vii Since τ is constrained to be positive, the possibility that an optimum parameter occurs
with τ = 0 should be admitted; a similar observation applies with other parameters
that are meaningful only if constrained (see Table 1). Note that the system of equations
∂

∂pℓ
Φ(p) = 0 for l ∈ {1, 2, · · · , L} (or the similar equations using right-hand derivatives)

may be ill-conditioned.
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timal parameter. Consequently, Theorem 2.4 demonstrates a practical rôle for the
values ∂

∂pℓ

y(p; tj) of the first-order sensitivity coefficients evaluated at the data-
sampling abscissae. When Φ is piecewise-smooth we may find it necessary to replace
derivatives in (2.14) by right-hand derivatives. In fact, it was pointed out by Baker
and Paul [11] that with certain choices of parameters the function Φ may display
jump discontinuities, and standard optimization routines may require adaptation or
monitoring.

2.7 Selection from a hierarchy of models

Model identification may be regarded as having two components: (i) computation of
the values of the parameters by fitting observational data set and (ii) selection, from
a range of forms, of a parameterized mathematical model. Choosing any one type of
model (ODE, DDE, NDDE) from amongst those considered here corresponds to an a
priori restriction of the number of parameters. Thus, if we denote the corresponding
formal parameter by pODE, pDDE, and pNDDE, the corresponding vector spaces {V∗} of
parameters are nested: V ODE ⊂ V DDE ⊂ V NDDE. In this sense, the ODEs, DDEs, and
NDDEs considered here form a nested hierarchy of models. The parameter selection
procedure will depend upon a choice of an objective function Φ(p) in (2.11) and the
determination of p⋆

ODE, p⋆
DDE, and p⋆

NDDE such that

p⋆
ODE = arg min

pODE∈VODE
Φ(p), p⋆

DDE = arg min
pDDE∈VDDE

Φ(p), p⋆
NDDE = arg min

pNDDE∈VNDDE
Φ(p).

(2.15)
Clearly, because the models form a hierarchy Φ(pODE

⋆ ) ≤ Φ(pDDE

⋆ ) ≤ Φ(pNDDE

⋆ ), but we
now proceed with one of the standard selection principles to decide on the most
appropriate model.

It is clear that an increase in the number of model parameters reduces bias in the
data fit. However, small data sets do not support models with many parameters since
the increase (above some critical value) in the number of parameters to be estimated
from a finite data set leads to an increase of the variance in the parameters estimates
viii . Therefore, the complexity of the model structure has to be justified. There are
various theoretical bases (Bayesian, information-theoretic, or minimum description
length principles) for making such a selection, but a common feature of many of them
is that the models are ranked in order of some multiple of ℓnΦ(p) (data description
bias) modified by the addition of an regulator or penalty measure µ, to yield (as,
e.g., in (2.19a) below) an index

κ(p) := NℓnΦ(p) + µ (2.16)

viiiNotice that a quantitative characterization of the amount of information (about the
model parameters) that observable variables carry is provided by the Cramer-Rao in-
formation inequality ix [44,46]. This requires the computation of the Fisher Information
Matrix [24, p. 358] defined via the expectation of the second derivative of the log of the
likelihood function with respect to parameters.
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where µ may depend on the dimensionality of p, the number of data points, or infor-
mation obtained from (say) the Fisher Information Matrix. The bias term ℓnΦ(p⋆)
indicates the link of the selection criterion with the maximized likelihood function
through the relation

−2ℓn L(p) = Nℓn(2π) +
N∑

j=1

ℓn(wj) + ℓnΦ(p) (2.17)

Remark 2.3 The Akaike Information Criterion (AIC) and Schwarz Information
Criterion (SIC) are widely used as criteria of model selection tools. If N is the
number of data points, L is the number of estimated parameters, and Φ(p) is the
weighted sum of squared residuals with uncorrelated Gaussian errors characterized
by the coefficient of variation σ2, with

Φ(p) = σ−2Φω(p) := σ−2
N∑

j=1

ωj

[
y(p; tj) − yj

]2
, (2.18)

then

κAIC =NℓnΦω(p∗) + 2(L+ 1) (µ = 2(L+ 1)), (2.19a)

κSIC =NℓnΦω(p∗) + (L+ 1)ℓnN (µ = (L+ 1)ℓnN). (2.19b)

The best model is then defined that which yields the lowest value of κAIC or κSIC.

Remark 2.4 With the notation in Remark 2.2, we can define the notation κOLS

AIC
, κOLS

SIC
,

κWLS

AIC
, κWLS

SIC
, κLLS

AIC
, κLLS

SIC
by replacing Φω(p∗) in (2.19a) by, respectively, ΦOLS(p∗), ΦWLS(p∗),

or ΦLLS(p∗). Because we are interested in the relative size of the indicators for differ-
ent models, extraneous terms associated with the different types of objective functions
can be ignored. The conditions that motivate and justify the use of each of the indices
differ from each other.

We estimated the parameters for the set of ODE-, DDE-, and NDDE models under
the assumption of identical weights ωj = 1, j = 1, . . . , N , i.e. equal data variance
σ2 at successive observation times. The parameter estimation results together with
the computed values of the above information-theoretic criteria are summarized in
Table 2. They clearly suggest that the NDDE model provides the most coherent
description of the synchronized cell population growth data.

In completion, it should be noticed that the model’s complexity measure in the
information-theoretic framework is incomplete. It has been proposed that the mini-
mum description length (MDL) criterion takes into account the goodness of the fit
to the data and the structural and functional complexity of the model in a more
comprehensive way. It prescribes that the model with the smallest value of the score
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Fig. 2. The top-left panel shows prediction of the exponential growth model (2.21a) (solid
line) to the data of E.coli colonies (circles). The top-right panel shows the solution of the pure
DDE (2.21b) fitted to the E.coli data. The bottom-left panel shows the solution of the DDE
(2.21c) fitted to the E.coli data. The bottom-right panel shows the consistency of the NDDE
model (2.21d) with the E.coli data.

—————————————————————-

should be regarded to be superior over the others in the set as it permits the great-
est compression of the data in its description. The MDL framework requires the
computation of the following score:

κMDL =− ℓnL(p⋆) +
(L+ 1)

2
log(

N

2π
) + log(

∫

V

√
det[F(p)]dp), (2.20)

where V is the parameter vector space and F(·) stands for the Fisher information
matrix. We refer for further discussion to [29].

Example 2.1 The modelling problems that we consider are as follows:

(a) Estimate τcalture =
ℓn 2

ρ0

in the simple exponential growth model (with initial value

y(0) = y0)
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y′(t) = ρ0y(t) (t ≥ 0); (2.21a)

(b) Obtain an estimate of τ = τcell =
1

ρ1
, with ρ0 = ρ2 = 0, and ρ⋆ = 1 (with given

initial function ψ(t) described in (2.1c)) in the pure time-lag growth model

y′(t) = ρ1y(t− τ) (t ≥ 0); (2.21b)

(c) Obtain an estimate of τ = τcell, ρ0, and ρ1, with ρ2 = 0, and ρ⋆ = 1 (with given
initial function ψ(t) described in (2.1c)), in the model

y′(t) = ρ0y(t) + ρ1y(t− τ) (t ≥ 0); (2.21c)

(d) Obtain an estimate of τ = τcell, ρ0, ρ1, ρ2, ρ⋆ in (2.1c) and in

y′(t) = ρ0y(t) + ρ1y(t− τ) + ρ2y
′(t− τ) (t ≥ 0); (2.21d)

The solutions of the models (2.21a)-(2.21d) corresponding to the optimal parameters
appear in Figure 2. Numerical results for the parameter estimates and κAIC & κSIC

(defined by (2.19)) are displayed in Table 2.6a. There is a noticeable qualitative
and quantitative improvement on moving through the hierarchy of models (2.21b)–
(2.21d).

2.8 Sensitivity of model predictions to parameter estimates

As mentioned in the introduction of this paper, the information contained in the
sensitivity analysis is useful for parameter identification, optimization, reduction of
complex nonlinear models, and for experimental design and analysis. Of consider-
able importance in assessing the acceptability of a model (2.1), is the sensitivity of
the model solution y(p; t) to small variations in the parameter p. For example, if
it can be observed that a particular parameter pj has little effect on the solution,
it may be possible to eliminate it, at some stage, from the modelling process. (Ar-
guably, ranking within a hierarchy models using a suitable modelling index would
also determine this course.)

3 Perturbation theory

We give varying approaches to the analysis of sensitivity for models described by
neutral delay differential equations (NDDEs).

3.1 Dependency of the solution on the model

We provide a result that demonstrates the dependence of a solution of the inho-
mogeneous form of (1.3) on the parameters, initial function, and inhomogeneous
term.
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Model ρ0 ρ1 ρ2 ρ3 τ ‖ErrOLS‖2 κOLS

AIC
&κOLS

SIC
(2.19)

(no. iters.)

ODE (2.21a) - - - 33.56 724 (6) 372.75 & 375.41

DDE (2.21b) - - - 26.220 571.80 (6) 359.53 & 362.20

DDE (2.21c) -0.1165 0.3088 - - 27.716 258.89 (15) 319.16 & 324.49

NDDE (2.21d) -0.0057 0.0131 1.8407 0.1600 20.2229 128.37 (13) 283.87 & 291.87

Table 2.6a: Parameter estimates, errors (with the number of iterations [39]),
and κOLS

AIC
& κOLS

SIC
values for E.coli growth models, using the OLS approach

(see Remark 2.2); here, wi = 1 and ‖ErrOLS‖2 =
√

ΦOLS(p∗).

Model ρ0 ρ1 ρ2 ρ3 τ ‖ErrWLS‖2 κWLS

AIC
&κWLS

SIC
(2.19)

(no. iters.)

DDE (2.21b) - - - 28.820 2.506 (4) 55.46 & 58.13

DDE (2.21c) -0.1120 0.3032 - - 27.650 1.1679 (12) 16.69 & 22.02

NDDE (2.21d) -0.0059 0.0131 1.844 0.1794 20.216 0.5073 (15) -26.01 & -18.03

Table 2.6b: Parameter estimates, errors (with the number of iterations), and κWLS

AIC
& κWLS

SIC

values for E.coli growth models, using the WLS approach (see Remark 2.2);

here, wi = 1
Y 2

i

and ‖ErrWLS‖2 =
√

ΦWLS(p∗).

Model ρ0 ρ1 ρ2 ρ3 τ ‖ErrLLS‖2 κLLS

AIC
&κLLS

SIC
(2.19)

(no. iters.)

DDE (2.21c) - - - 30.776 1.346 (5) 20.68 & 20.34

DDE (2.21c) -0.0603 0.1565 - - 26.462 0.7562 (10) -7.65 & -2.32

NDDE (2.21d) -0.0072 0.0183 1.6654 0.1704 20.172 0.4852 (4) -28.49 & -20.50

Table 2.6c: Parameter estimates, errors (with the number of iterations), and κLLS

AIC
& κLLS

SIC

values for E.coli growth models, using the LLS approach; see Remark 2.2. Here,
‖ErrLLS‖2 =

√
ΦLLS(p∗).

Theorem 3.1 (See Baker & Parmuzin [14]) There exist functions C, K, and Y
(collectively dependent on p = [ρ0,1,2, τ ]) such that the solution y(t) = y(p, ψ; t) of

{y(t) − ρ2y(t− τ)}′ = ρ0y(t) + ρ1y(t− τ) + f(t) (t ∈ [0, T )) (3.1)

with
y(t) = ψ(t) (t ∈ [−τ, 0]) (3.2)

(where ψ ∈ C(−τ, 0)) can be written in the form

y(ψ; t) =
{
Y(0, t)(Uψ)(0) + C(t)ψ(t−⌊

t

τ
+ 1⌋τ) +

0∫

−τ

K(s, t)ψ(s)ds
}
+ (3.3)

+

t∫

0

Y(s, t)f(s)ds, wherein Uψ(0) := ψ(0) − ρ2ψ(−τ).

A constructive proof of this result, which can be regarded as a variation of param-
eters result, yields a means for generating expressions for C, K, and Y . A feature
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that is important to us is embodied in the following consequence of Theorem 3.1.

Theorem 3.2 With ψ ∈ C(−τ, 0) in (3.2), y(t) depends, at any t ≥ 0, on values
ψ(s) for s ranging over [−τ, 0].

The preceding results extend in an obvious manner to the case where t0 6= 0 (see
Remark 1.1).

3.2 Sensitivity

From the foregoing discussion, a key feature in the determination of a good model
is the response of a solution of the model to changes in the model. This includes the
response to changes in the initial function ψ. The existence theory reveals that the
continuity class of y(p + εδp, ψ + δψ; ·) may differ from that of y(p, ψ; ·). Where
they exist, the (possibly one-sided) limits

lim
ε→0+

y(p + εδp, ψ + εδψ; ·) − y(p, ψ; ·)

ε
, (3.4a)

define various sensitivities any one of which is obtained for specific

δp with ‖δp‖ = 1 and/or δψ with ‖δψ‖ = 1 (3.4b)

(here, δψ may vanish, or selected components δpℓ may vanish). These have a signif-
icant role in determining parameters that are in some sense optimal given observed
data. They also have a rôle (i) in determining qualitative behaviour of a solution,
and (ii) in making a choice of numerical method for computing a solution. As a
special case, the limits corresponding to variations in individual components of p

give rise to
∂y

∂pℓ

(p, ψ; t) (t ∈ [t0, T ), (3.5)

which (when the derivative exists) is a first-order sensitivity coefficient.

If δp = 0 and one considers the limit (3.4a) for a fixed and normalized function
δψ then one is, in effect, invoking a Gateau derivative to define the limit. However,
where ψ is defined by one or more parameters {pλ}λ∈Λ one can investigate (3.5) for
ℓ ∈ Λ.

3.3 Finite difference simulation of the first-order sensitivity

To illustrate, we consider the solution y(t) of the our cell growth model equations,
and we regard ρ0, ρ1, ρ2, τ and y0 as parameters. Thus, y(t) ≡ y([ρ0, ρ1, ρ2, τ, y0]; t).
Perturbations in the parameters give rise to corresponding perturbations in the
solution, e.g.,
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δ0y(t) := {y([ρ0 + δρ0, ρ1, ρ2, τ, y0]; t) − y([ρ0, ρ1, ρ2, τ, y0]; t)} (3.6a)

δ1y(t) := {y([ρ0, ρ1 + δρ1, ρ2, τ, y0]; t) − y([ρ0, ρ1, ρ2, τ, y0]; t)} (3.6b)

δ2y(t) := {y([ρ0, ρ1, ρ2+δρ2, τ, y0]; t) − y([ρ0, ρ1, ρ2, τ, y0]; t)} (3.6c)

δy
0
y(t) := {y([ρ0, ρ1, ρ2, τ, y0 + δy0]; t) − y([ρ0, ρ1, ρ2, τ, y0]; t)} (3.6d)

δτy(t) := {y([ρ0, ρ1, ρ2, τ + δτ, y0]; t) − y([ρ0, ρ1, ρ2, τ, y0]; t)}. (3.6e)

The perturbations clearly respond to the size of the change in the parameters. The
first-order sensitivity functions (3.5) can be approximated by finite-difference tech-
niques. Then the first-order sensitivity functions can be approximated by computing,
respectively,

δ0y(t)

δρ0

≈ (
∂

∂ρ0

)+y(t),
δ1y(t)

δρ1

≈ (
∂

∂ρ1

)+y(t),
δ2y(t)

δρ2

≈ (
∂

∂ρ2

)+y(t), (3.7a)

δ2y(t)

δτ
≈ (

∂

∂τ
)+y(t) (3.7b)

and (see below)

δy
0
y(t)

δy0

:= {y([ρ0, ρ1, ρ2, τ, y0 + δy0]; t) − y([ρ0, ρ1, ρ2, τ, y0]; t)}/δy0 (3.7c)

where δρ0,1,2 > 0 δτ > 0 and δy0 > 0. Every function in (3.7a) satisfies the same
initial condition.

In the case of (3.7b) the change in τ induces a change in the initial x condition (2.1c)
which (applied to y([ρ0, ρ1, ρ2, τ + δτ, y0]; t)) now becomes

ψ(t) = ρ3E(
2t

τ+δτ
+ 1), for t ∈ [−τ − δτ, 0), ψ(0) = y0. (3.8)

Turning to sensitivity with respect to y0, it is easy to see that the first-order sen-
sitivity function (and its difference simulation) are both expressible in the notation
(2.6a) as

∂

∂y0

y(t) = y♯(t). (3.9)

Figure 3 shows the functions xi in (3.7) corresponding to small changes to the
parameters y0, ρ0, ρ1, ρ2, and τ (changes δy0 = 5; δρ0 = 0.01; δρ1 = 0.01; δρ2 = 0.1;
δτ = 2). These functions can be used to indicate which parameters have a significant
effect on the solution; they demonstrate the measure of the importance of the input
parameters, and enable one to assess the relevant time intervals for the identification
of specific parameters and enhance the understanding of the role played by specific

x If one seeks sensitivity with respect to ρ3 in (2.1c), a change in the initial function also
occurs.
xi Parameterized solutions were computed using Archi [39] with tolerance 10−9.
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Fig. 3. The figures show a selection of finite difference simulations in (3.7) due to changes in the
parameters [y0 (top-left), ρ0 (top-right), ρ1 (middle-left), ρ2 (middle-right), and τ (bottom)]
The plots have ”kinks” at t = nτ, n = 1, 2, 3, ... as result of the existence of a delay in the
system.

—————————————————————-

model parameters in describing experimental data. See §3.9. We note from Figure
3 that the solution of the NDDE model is very sensitive to a small change in ρ0.
The oscillation accompanied by δy(t; p)/δτ signifies that the solutions of the models
(2.21c)&(2.21d) are sensitive to changes in the parameter τ and this parameter plays
a significant role in the model. However, robustness is shown with small changes in
the initial value y0.
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3.4 An illustration

The estimate of the data variance provided by the maximum likelihood approach,
with ωj identically 1, follows from the optimality condition and is given by the value

σ2
∗

=
1

N
Φω(p⋆). For the given data set the NDDE model predicts that σ∗ ≈ 24.

Notice that the cell population grows from 100 to 2100 cells, implying that the pre-
dicted relative accuracy of the measurements should also increase by a corresponding
factor.

Sensitivity can be determined numerically by selecting p, δp and a value ǫ > 0

and computing the difference approximation
1

ǫ
{y(p+ δp, ψ+ ǫδψ; ·)− y(p, ψ; ·)} to

the limit (3.4a) above. It is also possible to formulate systems of equations for the
first-order sensitivity equations.

3.5 Sensitivity for our cell growth model

We commence with (2.1), satisfied by y(t) ≡ y([ρ0,1,2,3, τ ]; t), and take partial deriva-
tives.

Lemma 3.3 Where the derivative ∂
∂ρℓ

y′+(t) is continuous, it can be rewritten

∂

∂ρℓ

y′+(t) =
( d

dt

)

+

∂

∂ρℓ

y(t) (3.10)

and a similar observation applies (with a similar condition) for partial derivatives
with respect to τ :

( ∂
∂τ

)

+
y′+(t) =

( d

dt

)

+

( ∂
∂τ

)

+
y(t), (3.11a)

( ∂

∂τ

)

+
y(t− τ) = −y′+(t− τ), (3.11b)

( ∂

∂τ

)

+
y′+(t− τ) ≡

( d

dt

)

+

( ∂
∂τ

)

+
y(t− τ) = −y′′+(t− τ). (3.11c)

To show (3.11),
{
u

(
t − (τ + |δ|)

)
− u(t)

}
/|δ| = −

{
u(t) − u

(
(t − |δ|) − τ

)}
/|δ| →

−( d
dt

)+u(t− τ) (with u = y or u = y′+, etc.) provided ( d
dt

)+u(t− τ) is continuous.

We now recall the equations in (2.1) and take partial derivatives. Assuming the
conditions of Lemma 3.3, we have (for t ≥ 0)
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L+

{
y
}
(t) = 0, L+

{
∂

∂ρ0
y
}
(t)−y(t) = 0, (3.12)

L+

{
∂

∂ρ1

y
}
(t)−y(t− τ) = 0, L+

{
∂

∂ρ2

y
}
(t)−y′(t− τ) = 0, (3.13)

L+

{
∂

∂ρ3
y
}
(t) = 0, (3.14)

while for t ∈ [−τ, 0]

y(t) = ψ(t),
∂

∂ρ0
y(t) = 0,

∂

∂ρ1
y(t) = 0, (3.15a)

∂

∂ρ2

y(t) = 0,
∂

∂ρ3

y(t) =
∂

∂ρ3

ψ(t). (3.15b)

Here, ∂
∂ρ3

ψ(t) has the value

∂

∂ρ3
ψ(t) = E(2t/τ + 1) (t ∈ [−τ, 0]). (3.16)

The equations for sensitivity with respect to τ are more subtle. For further remarks
on sensitivity to parameters, including the time lag, of a general nonlinear NDDE
system we refer to the earlier work [3]. We can examine sensitivity with respect to
τ in the case (1.4d) on the basis that d

dτ
ρ0 = −1/τ 2 (τ > 0).

3.6 Sensitivity and stability

The term conditioning is often used by numerical analysts to indicate the magnitude
of the sensitivity of a solution to perturbation in a problem, and the term stability
is frequently used to describe the propagation of errors in an evolutionary problem
(such as a linear recurrence xii ) when initial values are perturbed.

Remark 3.1 The study of both conditioning and stability (in many senses, includ-
ing the latter sense) forms part of a general perturbation theory. The terminology
employed by numerical analysts is heavily influenced by the historical development
of the subject. The classical emphasis on linear evolutionary equations leads to def-
initions of stability in terms of qualitative properties of solutions, rather than qual-
itative properties of perturbations to a particular solution. It is perhaps surprising
that such definitions still find currency in some examples of contemporary research;
the saving grace being that in the linear case one can establish rigorously the link
between ”correctly defined” stability and behaviour of the solutions.

Three differing concepts of stability (in particular) can be related to each other:

xii For perspectives on stability in the context of RFDEs see e.g.[33].
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(1) Stability with respect to initial conditions,
(2) Stability with respect to persistent perturbations,
(3) Stability with respect to structural changes.

The only example of (3) to be considered here is stability with respect to parameters
(which may include stability with respect to the time-lag xiii ).

The general notion of stability can be conveyed as follows. Denote by T an un-
bounded set of discrete or continuous values of t ∈ [t0,∞) that comprise the domain
of definition of y. Here, y(t) is supposed to be the solution of an evolutionary problem
P . Corresponding to this, ỹ(t) (t ∈ T) is supposed to be the solution of a perturbed
problem P̃ . We may restrict the type of perturbation in the problem, and we require
a suitable measure of the distance, say d(P, P̃ ) = d(P̃ , P ), between the problem P̃
and P ; then the problems are neighbouring if d(P, P̃ ) is ‘small’. We also require a
suitable measure, say ‖ỹ(t)− y(t)‖, of the change in the solution at the point t ∈ T.
Then the solution y(t) is locally stable if ‖ỹ(t) − y(t)‖ is uniformly bounded for all
t ∈ T whenever d(P, P̃ ) is sufficiently small; it is locally asymptotically stable when
it is locally stable and in addition lim

t → ∞
t ∈ T

‖ỹ(t) − y(t)‖ = 0.

The stability (respectively, asymptotic stability) is called global, rather than local,
if, in these definitions, the size of the term d(P, P̃ ) is unrestricted.

3.7 Types of perturbation

The types of stability enumerated (1)–(3) above correspond to differing types of
perturbation in the problem, for example, corresponding to stability with respect to
initial perturbations, ψ̃(t) := ψ(t) + δψ(t) for a suitable class of perturbations δψ(t)

and ỹ(t) := ỹ(t; ψ̃), y(t) := y(t;ψ), and d(P, P̃ ) = ‖δψ(t)‖[t0−τ,t0]. For stability with
respect to persistent perturbations, one addresses (say) the problems

(y + µ δy)′(t) = F (t, (y + µ δy)(t), (y + µ δy)(t− τ), (y + µ δy)′(t− τ)) + µδF (t)
(3.17)

(t ∈ [t0,∞)) for a class of suitable, possibly state-dependent, δF (t). For µ = 0
we obtain an unperturbed solution; for µ = 1 we have the solution of a perturbed
problem; the associated change δy is the subject of interest when defining stability.

Remark 3.2 It is possible to express the effect of a perturbation in ψ as a pertur-
bation in the inhomogeneous term. This suggests that there may be a link between
stability with respect to initial conditions and stability with respect to persistent per-
turbations, and for our model equation this is so.

When defining stability with respect to parameters, the problem P̃ is obtained from
the problem P by substituting p + δp for p. On occasions, it suffices to develop

xiiiThe definition of stability with respect to the time lag requires careful attention to
detail, since the initial function will be liable to change if the time-lag changes .
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an asymptotic analysis and study the dominant effect – ignoring second-order ef-
fects – of small perturbations (leading, for example, to the introduction of sensitivity
coefficients; see §3.2).

3.8 Illustrative example of stability

Concepts (1)–(3) are examples of a general notion (there are many refinements) of
stability of a solution of an evolutionary problem for an ODE or DDE, or for an
NDDE. Let us indicate some stability concepts by reference to

y(t) ≡ y(ψ, ρ0,1,2, f ; t) (3.18a)

{y(t) − ρ2y(t− τ)}′ = ρ0y(t) + ρ1y(t− τ) + f(t) (t ∈ [t0, T )), (3.18b)

y(t) = ψ(t) (t ∈ [t0 − τ, t0). (3.18c)

If ψ is perturbed to ψ̃(t) := ψ+δψ (τ remaining fixed, and with δψ in some suitable
smoothness class) then the size of this perturbation can be measured by some norm
‖δψ‖[t0−τ,t0], and stability can be discussed in terms of the boundedness of δy(t) for
t ∈ [t0, T ] where δy(t) := ỹ(t) − y(ψ, ρ0,1,2, f ; t), with ỹ(t) = y(ψ + δψ, ρ0,1,2, f ; t). If

ψ is unchanged but f(t) is perturbed to f̃(t) := f(t) + δf(t) then we can measure
the size of the perturbation by some norm ‖δf‖[t0,∞) and instead define δy(t) :=
y(ψ, ρ0,1,2, f + δf ; t) − y(ψ, ρ0,1,2, f ; t). For a change δp in p = [ρ0, ρ1, ρ2] the size is
measured by any vector-norm ‖δp‖. The effect of perturbations can, in principle, be
investigated through (3.3) and the corresponding equation in which (with obvious

perturbations) C̃ replaces C, K̃ replaces K, Ỹ replaces Y , Ũ replaces U, ψ̃ replaces ψ,
etc., and an adjustment is made for non-zero t0. The latter approach gives valuable
insight, though alternative methods of analysis of stability may prove to be simpler;
the following theorem provides an example.
Theorem 3.4 For the problem (3.18), if ψ, ψ + δψ ∈ C[t0 − τ, t0] then y(ψ +
δψ, ρ0,1,2, f ; t) − y(ψ, ρ0,1,2, f ; t) is bounded and tends to zero provided all the zeros
of

χ(ζ) := ζ − ρ0 − ρ1 exp(−τζ) − ρ2ζ exp(−τζ) (3.19)

satisfy ℜ(ζ) ≤ ζ̂ where ζ̂ < 0. (3.20)

Suppose that it is known that δf ∈ L1[t0,∞); then the change δf induces a uniformly
bounded change δy(t) under the same condition (3.20) on the zeros of (3.19).

The corresponding result for the function u(t) = y(τt) (see (1.5)) can be stated by
reference to the function χ♮(ζ) := ζ − τρ0 − τρ1 exp(−ζ)− ρ2ζ exp(−ζ) replacing χ.

Example 3.1 All solutions of (3.18) are unstable if |ρ2| > 1. A region of asymptotic
stability for (3.18) is a set of parameter values for which the zeros of χ satisfy the
condition (3.20). Figure 4 displays stability regions for solutions of (3.18) in which
τ has been normalized to unity (see Remark 1.1).
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Fig. 4. This figure shows, in the (ρ0, ρ1)-plane, the asymptotic stability regions (and their
boundaries) for solutions of (3.18) with ρ2 = −0.9,−0.5, 0, 0.5, 0.9 (ρ0, ρ1 ∈ R and τ = 1);
cf. [33, Fig.3.1].

—————————————————————-

3.9 Sensitivity revisited

First-order sensitivity functions and stability analysis each contribute, in rather
different ways, a limited understanding of the interaction between parameterized
models and solutions, and the recovery of parameter estimates from data.

Let us suppose that a solution is asymptotically stable with respect to a parameter
pℓ (or, if one prefers, an initial function ψ; in that case the following text must be
modified). Due to the asymptotic stability, perturbations in the solution arising from
changes in pℓ tend to zero as t→ ∞. It follows, conversely, that data corresponding
to very large values of t can correspond to widely disparate values of pℓ, and the
estimation of this parameter is therefore difficult if one only has data at large t. On
the other hand, we can generalize such conclusions to other values of t if the first-
order sensitivity function is small in a neighbourhood of t = t∗, the data corresponds
to value of t close to t∗, and the perturbations admitted are small. (Of course, one
may estimate pℓ poorly if one is only interested in re-creating observables near the
same value t∗.)
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4 Generalizations and future work

Modelling with NDDE models represents an active area of research. The correspond-
ing mathematical techniques require further attention from the applied mathematics
community to became a versatile modelling tool capable of adding value to the bi-
ology.

Our treatment is not intended to be exhaustive, and we comment on further direc-
tions for research. There is a link between stability and the general idea of sensitivity
of a solution to perturbations in the problem. A notable omission here is that of an
in-depth discussion of adjoint theory for NDDEs.

In the case of sensitivity, one envisages a family of problems, that we denote {P (ε) |0 ≤
ε ≤ 1}} where P (ε) can be considered to be the problem P + εδP , with P (1) = P̃ ,
say, and (by way of a normalization) d(P, P̃ ) = 1. If the solution of the problem
P (ε) is denoted y(ε; t), the first order xiv sensitivity is limε→0+ s(ε; t) (provided that
the limit exists) where s(ε; t) := {y(ε; t) − y(0; t)}/ε. It is frequently possible to
define the sensitivity function in terms of a Gâteau (or Gateau) derivative. Given
smoothness, ỹ(t) = y(t)+

∫ 1
0 s(ε; t) dε, which may permit insight into stability to be

obtained from an investigation of sensitivity.

An interesting question is sensitivity of a solution to perturbations in the ini-
tial function (other model features remaining unchanged); for further reading see
[13,14,26,40,41]. In this context, the results of the present paper suggest that it
could be interesting to revisit those in [40,41] obtained, independently of the work
here, by Fathalla Rihan.

We have concentrated here on a hierarchy of linear model equations. In general,
one would like to consider nonlinear models such as e.g., the generalization of the
logistic equation

y′(t)= ̺0y(t){1 − [̺1y(t) + ̺2y(t− τ) + ̺3y
′(t− τ)]} (4.1)

and systems of similar equations. One would also wish to depart from equations that
depend upon a single time-lag.

We may generalize the class of equations in our earlier discussion. Given a suitable
function u and a value τ > 0, we denote by uτ the function with values uτ (t) =
u(t− τ). Now suppose that p is a vector-valued parameter. Then a general class of
equations comprises those of the form

d

dt

{
y(t) − g∗

(
p; t, y(t), yτ(t))

)}
= g∗

(
p; t, y(t), yτ(t))

)
. (4.2)

xivSimilar, higher-order sensitivity coefficients can be defined given sufficient smoothness.
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To determine a solution of such an NDDE we require an initial condition of the form
yτ (0) = ψ(·). Generalizing (1.3b), the corresponding explicit equations commonly
have the form

y′(t) = g♮

(
p; t, y(t), yτ(t)), y

′

τ(t))
)

(t ∈ [0, T ]). (4.3)
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