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Abstract

We address the problem of determining the initial function ϕ(t) (for
t ∈ [−τ, 0]) given the solution y(t) ≡ y(ϕ; t) of the linear delay differential
equation

y′(t) −A(t)y(t) −B(t)y(t− τ) = f(t) (t ∈ [0, T ]),

for which
y(t) = ϕ(t) (t ∈ [−τ, 0]).

The function ϕ(t) is approximated by the function ϕ⋆(t) that min-
imizes a certain parameter-dependent quadratic functional. The optimal
function ϕ⋆(t) is shown to satisfy a Fredholm integral equation, and the rôle
of a regularization parameter is transparent from the form of this equation.
(There is a related integral equation for ϕ(t).) The convergence properties
of an iterative method for finding ϕ⋆(t), using an iteration that is based
upon the delay equation for y(t) and a corresponding adjoint equation, are
established by considering an iteration for the solution of the Fredholm
integral equation.

Keywords: Delay differential equations, initial function, adjoint equations, iden-
tification problem, data assimilation, fundamental matrices, regularization pa-
rameter.

1 The nature of the problem.

Studies have been undertaken, in the context of the mathematical modelling of
biological data (see Remark 1.3), of the problem of determining a parametrized
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retarded differential equation, along with the corresponding initial function, such
that the solution is a good fit to an observed function. This type of problem has
been addressed by others (e.g. [7, 20]). Our practical approach to answering the
question relies upon the numerical solution of differential equations with deviating
arguments, and the minimization of an objective function appearing in this paper;
we discuss numerical experiments elsewhere. However, some interesting analysis
involving integral equations arises in arriving at a theory for our technique; part
of this material is presented below.

Here, we describe a method for determining an initial function, given the
solution to a linear delay differential equation that it generates. This is shown
– using the adjoint equations with deviating arguments – to be equivalent to
the solution of a Fredholm integral equation (see §1.3). The integral equation
can be of a type which is generally recognized as ill-posed, and the effect of
regularization parameters is established. Our results here extend those for “data
assimilation problems” in ordinary and partial differential equations (cf. [16] and
related works). Extensions to nonlinear delay differential equations (where the
initial function need not be unique) are discussed by the authors elsewhere.

Since inverse problems are frequently ill-posed, the connection with integral
equations of the first kind (and their regularization to integral equations of the
second kind) is, though interesting, unsurprising. Moreover, the rôle of adjoint
equations in variation-of-constants formulae can be found in the literature. Nev-
ertheless, our results appear to be new and the theory provides insight into a
practical method, insight which does not appear to be readily available by a
different approach.

1.1 Analysis.

Consider an n-dimensional system of linear delay differential equations (DDEs)
with time-dependent coefficients, of the form

dy(t)

dt
− A(t)y(t) −B(t)y(t− τ) = f(t), for t ∈ [0, T ], (1a)

subject to
y(t) = ϕ(t) for t ∈ [−τ, 0]. (1b)

Here
y(t), f(t), ϕ(t) ∈ R

n×1, A(t), B(t) ∈ R
n×n,

τ is a prescribed positive constant (the “lag”); ϕ(t) is the “initial function”, f(t)
the “inhomogeneous term”. We find it convenient to suppose that T ≥ τ . The
solution of (1) is dependent on the function ϕ in (1b), and when y(t) = ϕ(t) (for
t ∈ [−τ, 0]) we can therefore write

y(t) ≡ y(ϕ; t) (for t ∈ [−τ, T ]). (2)

2



Remark 1.1 If B(t) does not vanish for t ∈ [0, T ] then the functions y(ϕ1; t) and
y(ϕ2; t) differ when the functions ϕ1 and ϕ2 differ, and ϕ is uniquely determined
if y(ϕ; t) is given on [0, τ ].

The problem addressed here involves the determination (given prescribed τ > 0,
A(t), B(t), f(t)) of an initial function ϕ(t), chosen from some class F of functions
defined on [−τ, 0], such that the solution y(ϕ; t) of the given retarded equation
is a “best” approximation to an observed function. Throughout, we suppose
F ⊆ PC[−τ, 0]), so that the initial function is required to be piecewise continuous
with finite jumps at points of discontinuity. We emphasize the case where

ϕ ∈ F , where F :=
{
ϕ ∈ C[−τ, 0) with bounded ϕ(0)

}
; (3a)

A, B, f ∈ C[0, T ]. (3b)

We determine an estimation of the initial function ϕ(t) by minimization of a
quadratic functional (given below) involving the deviation of y(ϕ; t) from the
observed function.

1.2 Details of the identification problem.

Suppose α, β, γ ≥ 0 and y(ϕ; 0) = ϕ(0)) and ϕ̂ = ϕ̂(t) and ŷ = ŷ(t) are given
functions. We introduce the functional

Sβ,γ
α (ϕ) := α

2

0∫
−τ

∥∥ϕ(t) − ϕ̂(t)
∥∥2

2
dt+ β

2

∥∥ϕ(0) − ϕ̂(0)
∥∥2

2
+ (4)

γ

2

∥∥y(ϕ; 0) − ŷ(0)
∥∥2

2
+ 1

2

T∫
0

∥∥y(ϕ; t) − ŷ(t)
∥∥2

2
dt

where y(ϕ; t) satisfies (1). We intend the value γ (introduced to provide some
flexibility in the formulation) to assume the value 0 or 1.

We can now formulate the identification problem (or data assimilation prob-
lem) as follows:

Definition 1.1 Let F ⊆ PC[−τ, 0] be a smoothness class of bounded functions
on [−τ, 0]. Then the corresponding data assimilation problem for the identifica-
tion of ϕ is formulated as follows. Find a function ϕ⋆ ∈ F , such that y(ϕ⋆; t)
satisfies (1) and

Sβ,γ
α (ϕ⋆) = min

ϕ∈F
Sβ,γ

α (ϕ), (5)

where Sβ,γ
α (ϕ) is defined by (4), in which y(ϕ; t) satisfies (1).

This formulation embodies parameters α ≥ 0, β ≥ 0, γ ≥ 0, which (when
positive) are “regularization parameters” (see [9], for example). This applies,
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in particular, to α. Thus, if we introduce an abstract operator A such that
y(ϕ; t) = Aϕ(t) we have

S0,0
α (ϕ) =

α

2

0∫

−τ

∥∥ϕ(t) − ϕ̂(t)
∥∥2

2
dt+

1

2

T∫

0

∥∥Aϕ− ŷ(t)
∥∥2

2
dt,

(which is of the form associated with Tikhonov regularization [19] for recovery of
ϕ(t) from Aϕ(t) = ŷ(t)). Clearly, ϕ⋆ depends on these parameters α, β, γ.

We consider an idealized situation where the functions ŷ(t) and ϕ̂(t) are sup-
posed to be unambiguously defined, but in practice ŷ(t) is usually defined by a
priori observational data which is subject to noise. The choice of ϕ̂(t) is deter-
mined by modelling considerations.

1.3 Our results in brief.

We show below that the optimal initial function ϕ⋆ satisfies a coupled set of
delay equations (see (10)), involving “adjoint equations”, and we give an iterative
technique for obtaining successive approximations ϕn to ϕ⋆. We show that the
function ϕ⋆ identified by our chosen formulation is associated with the solution
of a Fredholm integral equation, and the iteration we propose is related to an
iterative solution of the integral equation. Our discussion establishes a connection
with a regularization method due to Lavrent’ev [12].

Theorem 1.1 For appropriate gβ,γ
α (t), Kβ,γ(t, s) and γ0(β, γ), the function ϕ⋆(t)

solving the data assimilation problem satisfies equations of the form

αϕ⋆(t) +

∫
0

−τ

Kβ,γ(t, s)ϕ⋆(s)ds = gβ,γ
α (t), for t ∈ [−τ, 0), (6)

ϕ⋆(0) = γ0(β, γ).

In (6), the kernel Kβ,γ(t, s) is self-adjoint (Kβ,γ(t, s) = KT

β,γ(s, t)) and positive-
definite.

Remark 1.2 If α > 0, then equation (6) is a Fredholm equation of the second
kind, and if α = 0 it is a Fredholm equation of the first kind. The positive-
definiteness of the kernel implies that the equation of the second kind (α > 0) is
uniquely solvable. However, Fredholm equations of the first kind (the case α = 0)
with well-behaved kernels are ill-posed. For this reason, the introduction of α > 0
is said to regularize the problem.

The above theorem is derived through the use of an adjoint differential equation
with a deviating argument. (The link with a variation of parameters formula is
exploited.) We shall obtain properties of the kernel Kβ,γ(t, σ) using the funda-
mental matrix solution for a delay differential equation. The iteration that yields
successive ϕn is related to the integral equation in (6) and we investigate the
convergence of that iteration by using properties of the kernel.
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Remark 1.3 Note that we concentrate on the identification of the initial function
ϕ(t), it being assumed that the DDE is known. For discussions of parameter
estimation for DDEs, in particular in the context of cell dynamics, see Baker,
Bocharov & Paul [3], Baker, Bocharov, Paul, & Rihan [4], and [5], and the
references therein. Ordinary differential equations (ODEs) and parabolic partial
differential equations (PPDEs) also arise in modeling of cell populations. Similar
(so-called — see [1, 2, 15, 16, 17]) data assimilation problems have been discussed
for ODEs, see [15], and PPDEs, see [1, 2, 16]; the present work fills a gap in the
discussion of DDEs.

2 The optimization problem.

In order to consider the minimum of the functional (4), we analyze Sβ,γ
α (ϕ+ εψ).

If ϕ⋆ ∈ F provides a minimum of the functional Sβ,γ
α (ϕ), we have Sβ,γ

α (ϕ⋆) ≤
Sβ,γ

α (ϕ⋆ + εψ), where ε is a real parameter and ψ is an arbitrary function in the
linear space F . We note Sβ,γ

α (ϕ) ≥ 0, and Sβ,γ
α (ϕ + εψ) is a quadratic in ε. To

write down Sβ,γ
α (ϕ⋆ + εψ) we need an expression for y(ϕ⋆ + εψ; t), and we have

it in the following result.
Let us write Ly(t) := y′(t) − A(t)y(t) − B(t)y(t − τ) (for t ∈ [0, T ]), and

My(t) = y(t) (for t ∈ [−τ, 0]). By virtue of the linearity of L and M ,

y(ϕ⋆ + εψ; t) = y(ϕ⋆; t) + εz(ψ; t) (7)

where z(t) ≡ z(ψ; t) satisfies Lz(t) = 0 (for t ∈ [0, T ]) and Mz(t) = ψ(t) (for t ∈
[−τ, 0]), that is,

dz(ψ; t)

dt
−A(t)z(ψ; t) − B(t)z(ψ; t− τ) = 0, for t ∈ [0, T ], (8a)

z(ψ; t) = ψ(t), for t ∈ [−τ, 0), and z(ψ; 0) = ψ(0). (8b)

The condition z(ψ; t) = ψ(t), for t ∈ [−τ, 0] is expressed as z(ψ; t) = ψ(t), for
t ∈ [−τ, 0), and z(ψ; 0) = ψ(0) in order to emphasize the possibility that ψ(0−)
may not equal ψ(0). The function z(ψ; t) vanishes if and only if ψ(t) vanishes.

We can write

Sβ,γ
α (ϕ+ εψ) = Sβ,γ

α (ϕ) + εP β,γ
α (ϕ, ψ) + ε2Qβ,γ

α (ψ), (9a)

where

P β,γ
α (ϕ, ψ) = α

0∫

−τ

{ϕ(t) − ϕ̂(t)}Tψ(t)dt+ (9b)

T∫

0

{y(ϕ; t) − ŷ(t)}T z(ψ; t)dt+ β{ϕ(0) − ϕ̂(0)}Tψ(0) + γ{y(ϕ; 0)− ŷ(0)}T z(ψ; 0);
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Qβ,γ
α (ψ)=

α

2

0∫

−τ

‖ψ(t)‖2

2dt+
1

2

T∫

0

‖z(ψ; t)‖2

2dt+
β

2
‖ψ(0)‖2

2 +
γ

2
‖z(ψ; 0)‖2

2.

We observe that in the latter expressions we have z(ψ; 0) = ψ(0). We obtain
the following result.

Lemma 2.1 If Jβ,γ
α (ϕ, ψ) ≡ α

2

0∫

−τ

{ϕ(t) − ϕ̂(t)}T {ψ(t) − ϕ̂(t)}dt+

1

2

T∫

0

{y(ϕ; t) − ŷ(t)}T {y(ψ; t) − ŷ(t)}dt+
β

2
{ϕ(0) − ϕ̂(0)}T{ψ(0) − ϕ̂(0)}+

γ

2
{y(ϕ; 0)− ŷ(0)}T {y(ψ; 0)− ŷ(0)};

then Sβ,γ
α (ϕ) = Jβ,γ

α (ϕ, ϕ), and P β,γ
α (ϕ, ψ) = Jβ,γ

α (ϕ, ψ)+Jβ,γ
α (ψ, ϕ) = 2Jβ,γ

α (ϕ, ψ).

Finally, Qβ,γ
α (ψ) = 1

2
∂2

∂ε2

{
Jβ,γ

α (ϕ+εψ, ϕ+εψ)
}
, and Qβ,γ

α (ψ) ≥ 0 and Qβ,γ
α (ψ) = 0

if and only if ψ = 0 on [−τ, 0].

We thus have the following result.

Theorem 2.1 A function ϕ⋆(t) defined on [−τ, 0] minimizes Sβ,γ
α (ϕ) in (4) for

ϕ ∈ F if and only if P β,γ
α (ϕ⋆, ψ) in (9b) vanishes for all ψ ∈ F , where z = z(ψ; t)

satisfies (7).

We also note the following result (the proof of which is provided in Appendix
A).

Lemma 2.2 The bilinear form Pβ,γ
α (ϕ, ψ) is symmetric and positive semidefinite

(definite when α > 0) on F .

2.1 A method for finding the optimal ϕ⋆.

We propose a method for finding the initial function ϕ⋆ ∈ F which minimizes
Sβ,γ

α (ϕ) on F . This method comprises the solution of a set of coupled equations,
written in the form

dy(t)

dt
− A(t)y(t) −B(t)y(t− τ) = f(t), for t ∈ [0, T ], (10a)

y(t) = ϕ⋆(t) for t ∈ [−τ, 0), y(0) = ϕ⋆(0), (10b)

−
dxT (t)

dt
− xT (t)A(t) − xT (t+ τ)B(t+ τ) = [y(ϕ⋆; t) − ŷ(t)]T , (10c)

for t ∈ [0, T ],
xT (t) = 0, for t ∈ [T, T + τ ], (10d)

α(ϕ⋆(t) − ϕ̂(t)) + [B(t+ τ)]Tx(t+ τ) = 0, for t ∈ [−τ, 0), (10e)

x(0) + β{ϕ⋆(0) − ϕ̂(0)} + γ{ϕ⋆(0) − ŷ(0)} = 0. (10f)
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Remark 2.1 If equation (10e) were to hold for t ∈ [−τ, 0] then the equation for
t = 0 would have the form αϕ⋆(0)+ [B(τ)]T x(τ) = αϕ̂(0). Equation (10f) defines
ϕ⋆(0) if β + γ 6= 0.

In the process of determining ϕ⋆(t) we also determine the corresponding y(ϕ⋆; t)
and xT (ϕ⋆; t). We shall show that the solution of (10) does provide a minimum.

The method proposed for the solution of (10) is based upon the following
iteration:

Definition 2.1 (An iteration for finding the function ϕ⋆(t))

dyn(t)

dt
− A(t)yn(t) −B(t)yn(t− τ) = f(t), for t ∈ [0, T ], (11a)

yn(t) = ϕn(t) for t ∈ [−τ, 0), yn(0) = ϕn(0), (11b)

−
dxTn(t)

dt
− xTn(t)A(t) − xTn(t+ τ)B(t+ τ) = [yn(ϕn; t) − ŷ(t)]T , (11c)

for t ∈ [0, T ],
xTn(t) = 0, for t ∈ [T, T + τ ], (11d)

ϕn+1(t) = ϕn(t) + δn
(
α(ϕn(t) − ϕ̂(t)) + [B(t+ τ)]T xn(t+ τ)

)
, (11e)

for t ∈ [−τ, 0) and

ϕn+1(0) = ϕn(0) + δ′n
{
(β + γ)ϕn(0) + xn(0) − βϕ̂(0) − γŷ(0)

}
, (11f)

for n = 0, 1, 2, . . . and {δj}, {δ
′
j} are appropriately chosen scalars.

What is proposed is to find the solution of (10) using the following procedure:

• Choose a starting approximation for the initial function (ϕ0(s), s ∈ [−τ, 0]).

• For n = 0, 2, . . . , N , where the choice of N yields appropriate accuracy:

1.) Obtain the solution yn = yn(t) of the original problem (11a) for ϕ =
ϕn(s).

2.) Obtain the solution xTn = xTn(t) of the adjoint problem (11c) with known
right-hand side yn(t)− ŷ(t) when t ∈ [0, T ] with the condition xTn(s) =
0, s ∈ [T, T + τ ].

3.) Find the next iterate ϕn+1(s) using equations (11e) and (11f).

We shall establish that if we allowN to tend to infinity, this iteration converges
to give ϕ⋆, for a feasible range of values of α and δ. Our convergence result (see
Theorem 4.2) follows very simply from the fact that the solution of (10) satisfies
an integral equation of the form

αϕ⋆(t) +

∫
0

−τ

Kβ,γ(t, s)ϕ⋆(s)ds = gβ,γ
α (t), (12)

for t ∈ [−τ, 0), in which Kβ,γ(t, s) and gβ,γ
α (t) are given in detail in (23). The

iteration above is related to an iterative method for solving the integral equation
(see (36), below).
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3 The underlying theory.

The theoretical discussion of our method depends upon aspects of the theory of
DDEs and of integral equations.

3.1 A rôle for the adjoint equation.

We shall obtain an equivalent formulation of the problem (5), based upon adjoint
equations. This provides an alternative characterization to that of Theorem 2.1.
The purpose of this approach is to derive (10) and (11) in order to solve the
“data assimilation problem” (5). The results presented here arise, in effect, due
to the relation between the fundamental solution, certain adjoint problems, and
variation of parameters formulae [6].

Lemma 3.1 Let y = y(ϕ; t) be a solution of the problem (1) and let z = z(ψ; t)
be a solution of the homogeneous problem (8). Then the first variation of the

functional Sβ,γ
α (ϕ) can be represented in the form P β,γ

α (ϕ, ψ) =

0∫

−τ

{
α[ϕ(t) −

ϕ̂(t)] + xT (t+ τ)B(t+ τ)
}T

ψ(t)dt+

(
xT (0) + β[ϕ(0) − ϕ̂(0)]T + γ[y(ϕ; 0) − ŷ(0)]T

)
ψ(0), (13)

where xT (t) ∈ R
1×n is the solution (xT (t) ≡ xT (ϕ; t)) of the problem

−
dxT (t)

dt
− xT (t)A(t) − xT (t+ τ)B(t+ τ)=[y(ϕ; t) − ŷ(t)]T, (14a)

for t ∈ [0, T ],
xT (t) = 0, for t ∈ [T, T + τ ]. (14b)

Equations (14) correspond to an adjoint problem, with a special forcing term
y(ϕ; t) − ŷ(t).

Remark 3.1 If required, the derivative in (14a) is interpreted as the left-hand
derivative. The derivative of the function xT (t) satisfying (14) inherits from
y(ϕ; t)− ŷ(t) any jump discontinuities at points in [0, T ]; if y(ϕ; t) − ŷ(t) is con-
tinuous (in particular if y(t) satisfies (1) where f ∈ C[0, T ] and ϕ ∈ C[−τ, 0])
then d

dt
xT (t) is continuous on [0, T ].

Proof. We have

P β,γ
α (ϕ, ψ) = α

0∫

−τ

[ϕ(t) − ϕ̂(t)]Tψ(t)dt+
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β[ϕ(0) − ϕ̂(0)]Tψ(0) + γ[y(ϕ; 0) − ŷ(0)]T z(ψ; 0)

−

T∫

0

dxT (t)

dt
z(ψ; t)dt

︸ ︷︷ ︸
term (i)

−

T∫

0

xT (t)A(t)z(ψ; t)dt

︸ ︷︷ ︸
term (ii)

(15)

−

T∫

0

xT (t+ τ)B(t+ τ)z(ψ; t)dt

︸ ︷︷ ︸
term (iii)

.

Using integration by parts, for (i) in (15) and writing (iii) as

T+τ∫

τ

xT (s)B(s)z(ψ; s− τ)ds =

T∫

0

xT (s)B(s)z(ψ; s− τ)ds

−

0∫

−τ

xT (s+ τ)B(s+ τ)ψ(s)ds,

we obtain P β,γ
α (ϕ, ψ) = α

0∫
−τ

[ϕ(t)−ϕ̂(t)]Tψ(t)dt+xT (0)z(ψ; 0)+ β[ϕ(0)−ϕ̂(0)]Tψ(0)+

γ[y(ϕ; 0) − ŷ(0)]Tz(ψ; 0)+
0∫

−τ

xT (t+ τ)B(t+ τ)ψ(t)dt+

T∫
0

xT (t)

(
dz(ψ; t)
dt

− A(t)z(ψ; t) −B(t)z(ψ, t− τ)

)
dt. Then z(ψ; t) satisfies the

homogeneous equation (8). For P β,γ
α (ϕ, ψ) we thus obtain the expression in (13)

and our lemma follows.
¿From (9a), since y(ψ; 0) = ϕ(0), we have the following theorem.

Theorem 3.1 A function ϕ⋆(t) defined on [−τ, 0] minimizes Sβ,γ
α (ϕ) for ϕ ∈ F

where F = C[−τ, 0) ∩ {ϕ
∣∣ϕ(0) is bounded} if, where xT satisfies (7),

0∫

−τ

{α[ϕ(t) − ϕ̂(t)] + xT (t+ τ)B(t+ τ)}Tψ(t)dt = 0 (16a)

for all ψ ∈ C[−τ, 0), and

{x(0) + β[ϕ(0) − ϕ̂(0)] + γ[ϕ(0) − ŷ(0)]}Tψ(0) = 0. (16b)

If we consider the problem of minimizing over a subset Fn of F , we obtain
analogous results with F replaced in Fn.
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3.2 A rôle for fundamental solutions.

We introduce (see [10, pp. 359-363], [11, pp. 148-150]) the fundamental solution
for a linear delay differential equation of the form

dy(t)

dt
− A(t)y(t) −B(t)y(t− τ) = f(t), for t ∈ [0, T ], (17a)

with initial condition
y(t) = ϕ(t) for t ∈ [−τ, 0]. (17b)

Lemma 3.2 Let Y (s, t) be a solution of the equation

∂Y (s, t)

∂s
+ Y (s, t)A(s) + Y (s+ τ, t)B(s+ τ) = 0, for s < t, (18a)

which satisfies
Y (s, t) = 0, for t < s, Y (t, t) = I (18b)

Then the solution of the system (17) is given by

y(t)=Y (0, t)ϕ(0)+

0∫

−τ

Y (s+τ, t)B(s+τ)ϕ(s)ds+

t∫

0

Y (s, t)f(s)ds. (19)

For related results, see [6]. One may see that the essential structure in (19)
is that

y(ϕ; t) ≡ y(t) = Y (0, t)ϕ(0) + Fϕ(t) + Vf(t) (20a)

where F is a Fredholm integral operator defined on F and V is a Volterra inte-
gral operator defined on C[0, T ]. Hence, also, the solution of the homogeneous
problem with initial function ψ is

z(ψ; t) ≡ z(t) = Y (0, t)ψ(0) + Fψ(t). (20b)

Lemma 3.3 The solution xT (t) of the adjoint problem

−
dxT (t)

dt
− xT (t)A(t) − xT (t+ τ)B(t+ τ)=gT (t), for t ∈ [0, T ], (21a)

xT (t) = vT (t), for t ∈ [T, T + τ ]. (21b)

is expressible as

xT (t) = vT (T )Y (t, T ) +

T+τ∫

T

vT (s)B(s)Y (t, s− τ)ds+

T∫

t

gT (s)Y (t, s)ds,

It follows that the solution xT (t) of (14) is given by

xT (t) =

T∫

t

[y(ϕ; s) − ŷ(s)]T Y (t, s)ds, (22)
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4 An integral equation for the optimal initial
function ϕ⋆.

In the next pages, we shall establish the following theorem.

Theorem 4.1 For t ∈ [−τ, 0),

αϕ⋆(t) +

∫
0

−τ

Kβ,γ(t, s)ϕ⋆(s)ds = gβ,γ
α (t), (23)

in which

Kβ,γ(t, s) =

T∫

ξ=t+τ

ΦT (t+ τ, ξ)Φ(s+ τ, ξ)dξ+ (24a)

−

T∫

ξ=t+τ

T∫

µ=s+τ

ΦT (t+ τ, ξ)Y (0, ξ)D−1

β,γ[Y (0, µ)]T Φ(s+ τ, µ)dµdξ

and

gβ,γ
α (t) = αϕ̂(t) −

T∫

t+τ

ΦT (t+ τ, s)Y (0, s)D−1

β,γF0(ϕ̂(0), ŷ, f)ds+ (24b)

−

T∫

t+τ

ΦT (t+ τ, s)




s∫

0

Y (ξ, s)f(ξ)dξ − ŷ(s)



 ds

where

Dβ,γ := (β + γ)I +

T∫

0

[Y (0, s)]TY (0, s)ds (24c)

is a symmetric and positive-definite constant matrix. Here Φ(t + τ, s) = Y (t +
τ, s)B(t+ τ). Additionally, ϕ⋆(0) satisfies a relation

Dβ,γϕ⋆(0) = βϕ̂(0) + γŷ(0) +

0∫

−τ

T∫

s+τ

[Y (0, ξ)]T Φ(s + τ, ξ)ϕ(s)dξds−

T∫

0

[Y (0, s)]T




s∫

0

Y (ξ, s)f(ξ)dξ − ŷ(s)



 ds, (25)

11



Remark 4.1 It is easy to show that Dβ,γ is symmetric positive-definite (and

therefore has an inverse). Consider J (t, s) =
T∫

0

[Y (t, ξ)]TY (s, ξ)dξ; we have

J (t, s) = JT (s, t), and therefore Dβ,γ ≡ (β + γ)I + J (0, 0) = DT

β,γ. By defi-

nition,

T∫

0

uT (t)

T∫

0

[Y (0, s)]TY (0, s)dsu(t)dt =

T∫

0

T∫

0

uT (t)[Y (0, s)]TY (0, s)u(t)dsdt =

T∫

0

‖v(t)‖2dt ≥ 0 (26)

for some v(t), and β ≥ 0, γ ≥ 0 so
(
Dβ,γu, u

)
≥ 0. Thus the positive semi-

definiteness of Dβ,γ is obtained. Since Y (0, s) is a solution of the equation (18a)
we can conclude from (26) that (Dβ,γu, u) = 0 implies u ≡ 0. The existence of
D−1

β,γ follows.

Corollary 4.1 When α = 0, we have

∫
0

−τ

Kβ,γ(t, s)ϕ⋆(s)ds = g
β,γ
0 (t) for t ∈ [−τ, 0), (27)

where Kβ,γ(t, s) and gβ,γ
α (t) are defined by (24).

Lemma 4.1 The kernel Kβ,γ(t, s) defined by (24a) is self-adjoint and positive
semi-definite.

The proof is provided in Appendix B.
The equation (23) is obtainable from (27) by applying Lavrent’ev’s method

([12, 18], [21, p. 89]) – which is sometimes called the “method of singular pertur-
bation” [13, 18] – to (27). The function ϕ satisfies

0∫

−τ

K0,0(t, s)ϕ(s)ds = g
0,0
0 (t), for t ∈ [−τ, 0). (28)

4.1 Proof of Theorem 4.1.

In this section we shall establish that the initial function which satisfies equations
(16) also satisfies the integral equation (23).

According to §3.2 we may write the solution of the adjoint problem (14) in
the form

xT (t) =

T∫

t

[y(ϕ; s) − ŷ(s)]T Y (t, s)ds. (29)

12



Using (19), we can write (29) as

xT (t) =

T∫

t



Y (0, s)ϕ(0) +

0∫

−τ

Y (ξ + τ, s)B(ξ + τ)ϕ(ξ)dξ




T

Y (t, s)ds+

T∫

t




s∫

0

Y (ξ, s)f(ξ)dξ − ŷ(s)




T

Y (t, s)ds

(for 0 ≤ t ≤ T ), and therefore

xT (t+ τ) =

T∫

t+τ




s∫

0

Y (ξ, s)f(ξ)dξ − ŷ(s)




T

Y (t+ τ, s)ds+

+

T∫

t+τ



Y (0, s)ϕ(0) +

0∫

−τ

Y (ξ + τ, s)B(ξ + τ)ϕ(ξ)dξ




T

Y (t+ τ, s)ds. (30)

By virtue of (10e), ϕ(t) satisfies αϕ(t) +
[
xT (t + τ)B(t + τ)

]
T

= αϕ̂(t) for t ∈
[−τ, 0). Thus, using (30), we have for t ∈ [−τ, 0)

αϕ(t) +




T∫

t+τ



Y (0, s)ϕ(0) +

0∫

−τ

Y (ξ + τ, s)B(ξ + τ)ϕ(ξ)dξ




T

×

×Y (t+ τ, s)dsB(t+ τ)




T

= αϕ̂(t)−




t+τ∫

T




s∫

0

Y (ξ, s)f(ξ)dξ − ŷ(s)




T

Y (t+ τ, s)dsB(t+ τ)





T

. (31)

¿From the expression for xT (t), we have

xT (0) =

T∫

0




s∫

0

Y (ξ, s)f(ξ)dξ − ŷ(s)




T

Y (0, s)ds+

+

T∫

0



Y (0, s)ϕ(0) +

0∫

−τ

Y (ξ + τ, s)B(ξ + τ)ϕ(ξ)dξ




T

Y (0, s)ds. (32)

13



Therefore, we can write ϕ(0) as (see (10f)) (γ+β)ϕ(0)+
[
xT (0)

]T
= βϕ̂(0)+γŷ(0).

Here, using (32), we can write (β + γ)ϕ(0)+




T∫

0



Y (0, s)ϕ(0) +

0∫

−τ

Y (ξ + τ, s)B(ξ + τ)ϕ(ξ)dξ




T

Y (0, s)ds





T

=

βϕ̂(0) + γŷ(0) −




T∫

0




s∫

0

Y (ξ, s)f(ξ)dξ − ŷ(s)




T

Y (0, s)ds





T

. (33)

The latter equation allows us to eliminate ϕ⋆(0) from (31) to obtain an integral
equation for ϕ⋆. Taking the transposes we can write (33) in the form

(γ + β)ϕ(0) +

T∫

0

[Y (0, s)]TY (0, s)ϕ(0)ds =

−

T∫

0

0∫

−τ

[Y (0, s)]TY (ξ + τ, s)B(ξ + τ)ϕ(ξ)dξds+ F0(ϕ̂(0), ŷ, f),

where F0(ϕ̂(0), ŷ, f) = βϕ̂(0) + βŷ(0)−

T∫

0

[Y (0, s)]T




s∫

0

Y (ξ, s)f(ξ)dξ − ŷ(s)



 ds.

We may therefore write

Dβ,γϕ(0) = −

T∫

0

0∫

−τ

[Y (0, s)]T Φ(ξ + τ, s)ϕ(ξ)dξds+ F0(ϕ̂(0), ŷ, f). (34)

Using the equation (34), we may obtain from (31) the result

αϕ(t) +

T∫

t+τ

0∫

−τ

ΦT (t+ τ, s)Φ(ξ + τ, s)ϕ(ξ)dξds+ (35)
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−

T∫

t+τ

T∫

0

{ 0∫

−τ

ΦT (t+ τ, s)Y (0, s)D−1

β,γ[Y (0, µ)]T Φ(ξ + τ, µ)ϕ(ξ)dξ
}
dµds =

αϕ̂(t) −
T∫

t+τ

ΦT (t+ τ, s)Y (0, s)D−1

β,γF0(ϕ̂(0), ŷ, f)ds+

−

T∫

t+τ

ΦT (t+ τ, s)




s∫

0

Y (ξ, s)f(ξ)dξ − ŷ(s)



 ds.

Remark 4.2 From Lemma 3.2 we have Y (ξ + τ, µ) = 0 for µ < ξ + τ . We may
therefore change the lower limit in the third term in equation (35) to µ = ξ + τ .

We have derived (35) which is the required integral equation formulation and
Theorem 4.1 is now established.

Remark 4.3 The solution ϕ⋆ of (23) is unique in L2[−τ, 0] and hence in F .
Using a similar method to that above, we can show that in a finite dimensional
subspace Fn of F the integral equation has the form (23), where all functions are
treated as functions from Fn.

4.2 A convergence result.

We shall consider the convergence of the iteration described in §2.1 by studying
the iteration

ϕn+1(t) − ϕn(t)

δn
= gβ,γ

α (t) −
(
αϕn(t) +

0∫

−τ

Kβ,γ(t, s)ϕn(s)ds
)
. (36)

This iteration is based upon the integral equation (23). It is, in a certain
sense, linked to the “method of sequential approximations” [12, p. 272]. In (36),
Kβ,γ(t, s) has been shown to be symmetric and positive-definite; the correspond-
ing integral operator on L2[−τ, 0] is bounded, self-adjoint, and positive-definite.
We state the following result.

Lemma 4.2 The iteration (36) is equivalent to the iteration (11) described in
§2.1. (For a given ϕ0, the two sequences {ϕn} are identical.)

Proof. From (11e), the functions defined by the iteration (11) satisfy the relation

ϕn+1(t) − ϕn(t)

δn
= α(ϕn(t) − ϕ̂(t)) + [B(t+ τ)]T xn(t+ τ) for t ∈ [−τ, 0)

and we have shown in §4.1 that

α(ϕn(t) − ϕ̂(t)) + [B(t+ τ)]T xn(t+ τ) = αϕn(t) +

0∫

−τ

Kβ,γ(t, s)ϕn(s)ds− gβ,γ
α (t),

15



so the result is immediate.

Theorem 4.2 (Convergence) Suppose ρ(Kβ,γ) is the spectral radius of the inte-
gral operator Kβ,γ on L2[−τ, 0] having the kernel Kβ,γ(t, s). Then, a sufficient
condition for the iteration (11) in Definition 2.1 to converge in the mean-square
norm is

δn ≤
2

max (α, ρ(Kβ,γ))
, for all n. (37)

Proof. We shall write Lβ,γ
α ϕ(t) = αϕ(t) +

0∫
−τ

Kβ,γ(t, s)ϕ(s)ds and the operator

Lβ,γ
α on L2[−τ, 0] inherits self-adjointness and (with α > 0) positive-definiteness

from the corresponding properties of the integral operator Kβ,γ. For a sequence
{δn} with δn > 0 for all n, we can write the iteration process (36) in the form

ϕn+1(t) − ϕn(t)

δn
= gβ,γ

α (t) − Lβ,γ
α ϕn(t). (38)

Let ϕ⋆ be the solution of the equation Lβ,γ
α ϕ⋆(t) = gβ,γ

α (t) and let us define εn+1 =
ϕn+1 − ϕ⋆. Then, according to (38), we have the relation εn+1 = (I − δnL

β,γ
α )εn,

and

εn+1 =

n∏

i=0

(I − δnL
β,γ
α )ε0. (39)

The iteration (38) converges in the mean-square norm if ‖εn‖2 → 0 as n → ∞.
¿From (39) we have

‖εn+1‖2 ≤
∥∥∥

n∏

i=0

(I − δnLβ,γ
α )

∥∥∥
2

‖ε0‖2 ≤

n∏

i=0

∥∥∥(I − δnL
β,γ
α )

∥∥∥
2

‖ε0‖2.

Thus, a sufficient condition for convergence of this iteration is

‖I − δnLβ,γ
α ‖2 ≤ ϑ < 1 for all n. (40)

Given the properties of Lβ,γ
α on L2[−τ, 0], we have ‖Lβ,γ

α ‖2 = max
r
κr (the spectral

radius ρ(Lβ,γ
α )), where {κr}r≥0 are the positive eigenvalues of Lβ,γ

α . Indeed, κr =
α + κr, where {κr}r≥0 are the positive eigenvalues of Kβ,γ. Then condition (40)
becomes

max
r

|1 − δnα− δnκr| < 1.

We have 1 − δnα − δnκr ∈ [1 − δnα − δnρ(Kβ,γ), 1 − δnα) ⊆ (−1, 1) provided
1 − δnα− δnρ(Kβ,γ) > −1 and Theorem 4.2 established.

Remark 4.4 In general, the explicit form of the kernel Kβ,γ(t, s) is unknown
and we cannot implement the iteration process for the integral equation itself; we
use the iterative process (11).

Appendices
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A Proof of Lemma 2.2

¿From (9b) we have

P β,γ
α (ϕ, ψ) = α

0∫

−τ

{ϕ(t) − ϕ̂(t)}Tψ(t)dt+

T∫

0

{y(ϕ, f ; t) − ŷ(t)}T z(ψ; t)dt+

β{ϕ(0) − ϕ̂(0)}Tψ(0) + γ{y(ϕ; 0)− ŷ(0)}T z(ψ; 0).

Clearly,

P 0,0
α (ϕ, ψ) = α

0∫

−τ

{ϕ(t) − ϕ̂(t)}Tψ(t)dt+

T∫

0

{y(ϕ, f ; t) − ŷ(t)}T z(ψ; t)dt =

= α

0∫

−τ

ϕT (t)ψ(t)dt+

T∫

0

yT (ϕ, f ; t)z(ψ; t)dt

−
{
α

0∫

−τ

ϕ̂T (t)ψ(t)dt+

T∫

0

ŷ(t)}T z(ψ; t)dt
}
.

Using the expressions for y(t) and z(t) associated with (20),

T∫

0

{y(ϕ, f ; t)− ŷ(t)}T z(ψ; t)dt =

{ T∫

0

{Y (0, t)ϕ(0) + Fϕ(t) + Vf(t) − ŷ(t)}TY (0, t)dt
}
ψ(0)+

T∫

0

{
Y (0, t)ϕ(0) + Fϕ(t) + Vf(t) − ŷ(t)

}
T

Fψ(t)dt.

Let us write P β,γ
α (ϕ, ψ) in the form

P β,γ
α (ϕ, ψ) =

integrals with ψ(t) in the integrand︷ ︸︸ ︷
0P 0,0

α (ϕ, ψ)︸ ︷︷ ︸
terms in ϕ

+ 1P 0,0
α (ϕ̂, ψ)︸ ︷︷ ︸

terms in ϕ̂

+ 2P
0,0
0 ({Vf − ŷ}, ψ)︸ ︷︷ ︸
terms in f & ŷ

+ 0∇P 0,0
0 (ϕ) + 1∇P 0,0

0 ({Vf − ŷ})︸ ︷︷ ︸
integrals involving ψ(0)

(41)
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+

discrete terms: involving ϕ(0) and ψ(0);
︷ ︸︸ ︷

0∆P 0,0
0︸ ︷︷ ︸

independent of β, γ

+ 1∆P β,γ
0 +

involving only ψ(0)
︷ ︸︸ ︷
2∆P β,γ

0 (ϕ̂, ŷ)︸ ︷︷ ︸
involving β and γ

.

Let us now consider the bilinear form

Pβ,γ
α (ϕ, ψ) = 0P 0,0

α (ϕ, ψ) +
(

0∇P 0,0
0 (ϕ) + 0∆P 0,0

0 + 1∆P β,γ
0

)
ψ(0) (42)

If we return to the detailed expression for 0P 0,0
α (ϕ, ψ), 0∇P 0,0

0 (ϕ), 0∆P 0,0
0 and

1∆P β,γ
0 we obtain the following expression for the bilinear form Pβ,γ

α (ϕ, ψ) =

α

0∫

−τ

ϕT (s)ψ(s)ds+

T∫

0

0∫

−τ

0∫

−τ

ϕT (s)ΦT (s+ τ, t)Φ(µ+ τ, t)ψ(µ)dµdsdt+

T∫

0

0∫

−τ

ϕT (s)ΦT (s+ τ, t)Y (0, t)ψ(0)dsdt+

T∫

0

0∫

−τ

ϕT (0)[Y (0, t)]T Φ(s+ τ, t)ψ(s)dsdt+

(43)

ϕT (0)(β + γ)ψ(0) +

T∫

0

ϕT (0)[Y (0, t)]TY (0, t)ψ(0)dt.

It is easy to see from (43) that Pβ,γ
α (ϕ, ψ) = Pβ,γ

α (ψ, ϕ). Now consider Pβ,γ
α (ϕ, ϕ).

We can write

Pβ,γ
α (ϕ, ϕ) = α

0∫

−τ

ϕT (s)ϕ(s)ds + (β + γ)ϕT (0)ϕ(0)+

T∫

0

[
Y (0, t)ϕ(0)+

0∫

−τ

Φ(s+τ, t)ϕ(s)ds
]T [

Y (0, t)ϕ(0)+

0∫

−τ

Φ(s+τ, t)ϕ(s)ds
]
dt.

Thus Pβ,γ
α (ϕ, ϕ) > 0; positive definiteness is established.

B Proof of Lemma 4.1

Since the bilinear form (42) is positive semidefinite for all ϕ(0) we can pick some
particular value of the function ϕ at t = 0, namely, let

ϕ(0) = −D−1

β,γ

0∫

−τ

T∫

s+τ

[Y (0, ξ)]TY (s+τ, ξ)B(s+τ)ϕ(s)dξds,
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and we define the bilinear form (43) after substitution of ϕ(0) as P̂β,γ
α (ϕ, ϕ).

If, for notational convenience, we define

ϕ̄(µ, t) := Φ(µ+ τ, t)ϕ(µ)

then we have

P̂0,0
α (ϕ, ϕ) = α

0∫

−τ

ϕT (s)ϕ(s)ds+

T∫

0

0∫

−τ

0∫

−τ

ϕ̄T (s, t)ϕ̄(µ, t)dµdsdt−

T∫

0

0∫

−τ

ϕ̄T (s, t)Y (0, t)D−1

β,γ

0∫

−τ

T∫

µ+τ

[Y (0, ξ)]T ϕ̄(µ, ξ)dξdµdsdt+




 −

T∫

0

0∫

−τ

[
D−1

β,γ

0∫

−τ

T∫

µ+τ

[Y (0, ξ)]T ϕ̄(µ, ξ)dξdµ
]T

[Y (0, t)]T ϕ̄(s, t)dsdt+

[
D−1

β,γ

0∫

−τ

T∫

t+τ

[Y (0, µ)]T ϕ̄(t, µ)dµdt
]T(

(β + γ)I +

T∫

0

[Y (0, t)]TY (0, t)dt
)
×

×D−1

β,γ

0∫

−τ

T∫

s+τ

[Y (0, ξ)]T ϕ̄(s, ξ)dξds






Let us consider the last two terms in the expression for P̂β,γ
α (ϕ, ϕ) (within the

braces). Taking into account that Dβ,γ = (β + γ)I +

T∫

0

[Y (0, t)]TY (0, t)dt we can

write

−

T∫

0

0∫

−τ

{
D−1

β,γ

0∫

−τ

T∫

µ+τ

[Y (0, ξ)]T ϕ̄(µ, ξ)dξdµ
}T

[Y (0, t)]T ϕ̄(s, t)dsdt+

{
D−1

β,γ

0∫

−τ

T∫

t+τ

[Y (0, µ)]T ϕ̄(t, µ)dµdt
}T

0∫

−τ

T∫

s+τ

[Y (0, ξ)]T ϕ̄(s, ξ)dξds = 0.

Hence, we have
0 ≤ P̂β,γ

α (ϕ, ϕ) = α(ϕ, ϕ) + (Kβ,γϕ, ϕ), (44)

where Kβ,γ is the integral operator with kernel

Kβ,γ(t, s) =

T∫

ξ=t+τ

ΦT (t+ τ, ξ)Φ(s+ τ, ξ)dξ+ (45)
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−

T∫

ξ=t+τ

T∫

µ=s+τ

ΦT (t+ τ, ξ)Y (0, ξ)D−1

β,γ[Y (0, µ)]T Φ(s+ τ, µ)dµdξ

Since D−1

β,γ is symmetric we can show, from (44) and (45), that P̂β,γ
α (ϕ, ψ) is

symmetric and Lemma 4.1 is established.
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