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equation formulations
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Abstract

In discussions of certain neutral delay differential equations in
Hale’s form, the relationship of the original problem with an inte-
grated form (an integral equation) proves to be helpful in consider-
ing existence and uniqueness of a solution and sensitivity to initial
data. Although the theory is generally based on the assumption that
a solution is continuous, natural solutions of neutral delay differential
equations of the type considered may be discontinuous. This difficulty
is resolved by relating the discontinuous solution to its restrictions on
appropriate (half-open) subintervals where they are continuous and
can be regarded as solutions of related integral equations. Existence
and unicity theories then follow. Furthermore, it is seen that the
discontinuous solutions can be regarded as solutions in the sense of
Carathéodory (where this concept is adapted from the theory of ordi-
nary differential equations, recast as integral equations).

1 The forms of integral equation considered

The integral equations discussed in this paper are in the form

y(t) = g
(
t, y(t), y(t− τ(t))

)
+

∫ t

t0

f
(
s, y(s), y(s− τ(s))

)
ds+ z0 (1)

or the form

∗E-mail: cthbaker@na-net.ornl.gov Emeritus Professor, School of Mathematics,
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y(t) = γ
(
t, y(t− τ(t)),

∫ t

t0

f
(
s, y(s), y(s− τ(s))

)
ds+ z0

)
. (2)

In either case, the equation holds for t ∈ I0 where I0 is [t0, T ] or [t0, T )
(for t0 < T ∈ R ∪ ∞), and y(t) is prescribed on a suitable initial interval
[t−1, t0] ⊂ (−∞, t0]. The situations considered can give rise to discontinuous
solutions. We summarize the main results in Section 3.1.

2 Related evolutionary equations

We are motivated by the use of equations with time-lag (neutral delay differ-
ential equations – “NDDEs”) in certain mathematical models. The equations
that lead us to (1) and (2) are of the form

( d

dt

) {
y(t) − g

(
t, y(t), y(t− τ(t))

)}
= f

(
t, y(t), y(t− τ(t))

)
(3a)

(for t ∈ I0). The special case y′(t) = f
(
t, y(t), y(t− τ(t))

)
is a delay differ-

ential equation, or “DDE”.
With appropriate assumptions (see §3.2), a particular solution y(t) ≡

y(ϕ, τ ; t) is defined by (3a) together with

y(t) = ϕ(t) (t ∈ [t−1, t0], t−1 := inf
t∈I0

t− τ(t) ∈ (−∞, t0)). (3b)

We write [t−1, t0] ∪ I0 as I−1; we regard y(ϕ, τ ; t) as defined for t ∈ I−1.
If g(t, u, v) is not independent of v (e.g., if {∂/∂v}g(t, u, v) exists and does

not vanish identically) this is an example of a form of NDDE often called
“Hale’s form” (see [10, Chapter 12],[14, p. 9, pp. 118–120]).

Throughout, we regard t as representing ‘time’, and, for convenience,
consider problems (3) with a single time-dependent “lag” τ(t).

We seek a solution y(t) ∈ R
n, given ϕ(t) ∈ R

n for t ∈ [t−1, t0] and
appropriate functions f, g : I0 × R

n × R
n → R

n.

Example 2.1 An example of (3) taken in [2] to illustrate the class of prob-

lems reads
( d

dt

)
{y(t) − y(t− 1)} = y(t− 1) (for t ∈ I0, taking a right-hand

derivative); ϕ(t) = t (t ∈ [−1, 0)), ϕ(0) = 1. Expressions for a solution on
[0, 1], [1, 2], [2, 3], and [3, 4] are given in [2].

Regarding (3), we note that (i) the existence of a one- or two-sided deriva-
tive ( d

dt

) {
y(t) − g

(
t, y(t), y(t− τ(t))

)}
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does not imply the continuity of y(t) and that (ii) y(t) inherits discontinuities
(for certain t ≥ t0) from discontinuities at earlier times, through dependency
on y(t− τ(t)). Related discussions in the literature refer almost exclusively
to continuous, or even differentiable, solutions of (3). For some pathologies
see [5, 9] and their citations.

By way of illustration, suppose that y(ϕ, τ ; t) is actually continuous in t
for t ∈ I−1 (with y(ϕ, τ ; t) = ϕ(t) for t ∈ [t−1, t0]), and that f(t, u, v) and
g(t, u, v) are continuous for t ∈ I0, |u|, |v| < ∞. Then if y(ϕ, τ ; t) satisfies
the integral equation (1) where the integral is interpreted in the sense of
Riemann, it follows that

( d

dt

) {
y(t) − g

(
t, y(t), y(t− τ(t))

)}
= f

(
t, y(t), y(t− τ(t))

)
. (4)

However, y′(t) will not exist for arbitrary g(t, u, v).
Our remarks have been concentrated on the “implicit” form of NDDE,

(4). We also refer to the problem

y′(t) = f∗
(
t, y(t), y(t− τ), y′(t− τ)

)
(t ≥ t0), (5a)

y(t) = ϕ(t) (t ∈ [t−1, t0]) (5b)

which is an explicit form of NDDE. Bellen and Zennaro [4, page 5] note
that, unless the initial function ϕ satisfies an appropriate condition† at t0,
the solution of (5) “remains solely of class C0 and the solution of (5) must
be understood in the ‘almost everywhere’ generalized sense.”

Example 2.2 Consider the problem of determining a function y that has a
derivative for almost all t ≥ 0 and satisfies ( cf. Example 2.1)

y′(t) = y′(t− 1) + y(t− 1) for almost all t ∈ I0 (6a)

y(t) = ϕ(t) for all t ∈ [−1, 0]. (6b)

Suppose that y♯ satisfies (6) for T = N (where N ∈ N), and suppose that
c ∈ R is arbitrary. Then the function yc with yc(t) = y♯(t) for t ∈ [0, N − 1)
and yc(t) = y♯(t)+ c for t ∈ [N−1, N ], also satisfies (6) for T = N . Observe
that a function that has a derivative for almost all t need not be continuous
for all t.

†See also [13, 14].
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The preceding and similar remarks suggest that one may ask what interpre-
tation of the problem (3) is appropriate, and, allied to this, in what sense we
seek a solution of (3), and whether a ‘solution’ is then unique. Integral equa-
tion formulations, of the type (1), play a rôle when we answer such questions,
below.

The results presented here require only standard analysis. Some of the in-
sight on which we rely comes from the special case y(t) = y(ζℓ)+

∫ t

ζℓ
f(s, y(s))ds,

t ∈ [ζℓ, ζℓ+1), in which y(t) has a derivative on [ζℓ, ζℓ+1). Additional insight
comes from the “method of steps” used in the discussion of certain DDEs
[13, 14]; however, the transition from DDEs to NDDEs in Hale’s form involves
some complications.

2.1 Supplementary remarks

We conclude this section with two additional remarks.

Remark 2.3 Liu [15] considers a simplified form of (4):

( d

dt

) {
y(t) − g∗

(
t, y(t− τ(t))

)}
= f

(
t, y(t), y(t− τ(t))

)
(t ∈ I0).

If y′(t) exists, this equation may be converted to explicit form y′(t) = f∗
(
t, y(t), y(t−

τ(t)), y′(t− τ)
)

by differentiating g∗
(
t, y(t− τ(t))

)
, assuming the derivatives

of τ and g∗ are available. However, y′(t) exists for t ≥ t0 only for a restricted
class of initial functions ϕ.

Remark 2.4 As an illuminating diversion, we note that Hale’s form (3)
of the NDDE problem can be expressed as a semi-explicit constrained delay
differential equations (CDDE); see [3] and references therein. Consider (for
t ∈ I0)

( d

dt

)
z(t) = f(t, y(t), y(t− τ(t))), (7a)

z(t) = y(t) − g(t, y(t), y(t− τ(t))) (7b)

with y(t) = ϕ(t) for t ∈ [t−1, t0]. This formulation is completely equivalent to
(3); however, it will be recognized as having the form of a CDDE – or “delay
differential algebraic equation” (DDAE) [1]. (The terminology DDAE has
some appeal if the function g(t, u, v) is an algebraic function of its arguments
u and v.) The equation (7b) can be regarded as a constraint.
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If f(t, u, v) = f(t, u) and g(t, u, v) = g(t, u), both independent of v, the
problem (7) becomes a “differential algebraic equation” (DAE) [1, 18]. It has
been observed that “DAEs are not ODEs” [17].

Extending the observation in Liu [15], there is a variant of (7) in which
the problem is written in the completely equivalent form

( d

dt

)
z(t) = f

(
t, z(t) + g

(
t, y(t), y(t− τ(t))

)
, y(t− τ(t))

)
, (8a)

z(t) = y(t) − g(t, y(t), y(t− τ(t))), (8b)

for t ∈ I0, with y(t) = ϕ(t) for t ∈ [t−1, t0].

Our discussion will establish, in part, the extent to which one can claim
that DAEs, DDEs, and constrained DDEs and NDDEs, can be construed as
integral equations.

3 Concerning the theory for NDDEs

This section is comprised of the following: [§3.1] the principal results; [§3.2]
formal assumptions; [§3.3] initial observations. The remainder of the paper
is then divided as follows: Section 4: the integral equation formulation; §4.1:
similar problems in ODEs; §4.2: a method of steps; §4.3: extension of Peano’s
theorem to the NDDE; §§4.3.1-4.3.2: three lemmas and a theorem; §4.3.3:
equicontinuity and uniform boundedness; §4.4: the extension of Picard iter-
ations to the NDDE; §4.5: sensitivity to initial data; §4.6: solutions in the
sense of Carathéodory; Section 5: conclusions; and, finally, references to the
literature.

3.1 The principal results

Any solution y(t) ≡ y(ϕ, τ ; t) of (3) derives its properties from τ and ϕ (and
f , g). Two definitions of the term ‘solution’ are given: in Definition 3.14
(a ‘natural solution’, based on an interpretation of derivatives as right-hand
derivatives) and in Definition 4.9 (a solution in the sense of Carathéodory).
We use assumptions, collected in Section 3.2, concerning our class of prob-
lems. The reader is asked to provide details of the proofs of Lemmata, except
Lemma 4.4 for which a reference is cited. The approach adopted differs from
that conventional in existing monographs (e.g., [11, 13, 14]). The principal
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results are:
(a) Theorems 4.5 and 4.6 on the existence of a natural solution;
(b) Theorem 4.6 on the uniqueness of a natural solution;
(c) Theorem 4.8 relating to the dependence of a natural solution on the orig-
inal data;
(d) Theorem 4.11 relating natural solutions to solutions in the sense of
Carathéodory.

3.2 Formal assumptions

Assumption 3.1 Throughout, τ ∈ C(I0), 0 < τ∗ = inft∈I0
τ(t), −∞ <

t−1 = inft∈I0
{t− τ(t)} < t0, and supt∈I0

τ(t) ≤ τ ∗ <∞.

Assumption 3.2 The initial function ϕ is continuous at points in [t−1, t0]
with the exception of a finite set of (R+ 1) ordered points

ζ−R < ζ−R+1 < · · · < ζ−1 < ζ0 (9)

in (t−1, t0] where it is continuous from the right but suffers bounded jump
discontinuities ϕ(ζℓ)−ϕ(ζℓ−) (ℓ ∈ {−R, 1−R, · · · ,−1, 0}). For convenience,
we assume ζ0 = t0.

The next assumption imposes a further restriction on τ(t).

Assumption 3.3 There exists a monotone strictly increasing sequence {ζ1, ζ2, ζ3 · · · }
that has no finite point of accumulation in I0, and a map ℓ → kℓ for
ℓ ∈ {0, 1, 2, · · · } (with kℓ < ℓ− 1), such that

t− τ(t) ∈ [ζkℓ
, ζkℓ+1) when t ∈ [ζℓ, ζℓ+1). (10)

If T /∈ {ζℓ} then it should be added to {ζℓ} (as ζℓmax+1). For ℓ ∈ {0, 1, 2, · · · },
we use the notation

zℓ := y(ζℓ) − g
(
ζℓ, y(ζℓ), y(ζℓ − τ(ζℓ))

)
. (11)

Certain of our conclusions extend to problems with multiple time-lags.
Note that we can replace Assumption 3.3 by the following stronger hypoth-
esis, which (with Assumption 3.1) guarantees its validity.

Assumption 3.4 We assume that t− τ(t) is monotonic increasing.
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We request that the functions f , g satisfy the following.

Assumption 3.5 We suppose the functions f, g assuming values f(t, u, v)
and g(t, u, v) are continuous for t ∈ I0 and ‖u‖, ‖v‖ <∞.

As an additional (weak) condition on g, we assume:

Assumption 3.6 There is a function γ(t, v, w) that is continuous in v and
w for all t ∈ I0, such that if u = γ(t, v, w) then u satisfies the equation
u = g(t, u, v) + w,

Assumption 3.6 can be viewed as an index 1 condition, to evoke the termi-
nology for DAEs. Assumption 3.6 does not imply uniqueness of γ and to
show uniqueness of y(t) we strengthen the assumption:

Assumption 3.7 There exists a unique function γ(t, v, w) such that if u =
g(t, u, v) +w then u = γ(t, v, w) (for arbitrary t ∈ I0 and u, v, w ∈ R

n),
where γ(t, v, w) satisfies

‖γ(t, v′, w′) − γ(t, v′′, w′′)‖ ≤ K{‖v′ − v′′‖ + ‖w′ − w′′‖} (12)

uniformly for all t ∈ I0 and all v′, v′′, w′, w′′ ∈ R
n, where K > 0.

Example: For g(t, u, v) = v, as in Example 2.1), γ(t, v.w) = v + w.
Additional assumptions, on f and g, follow.

Assumption 3.8 There exist constants Λ1(f),Λ2(f) > 0, such that, uni-
formly for all t ∈ I0 and all u1, u2, v1, v2 ∈ R

n,

‖f(t, u1, v1) − f(t, u2, v2)‖ ≤ Λ1(f)‖u1 − u2‖ + Λ2(f)‖v1 − v2‖. (13)

Assumption 3.9 There exist constants Λ1(g),Λ2(g) > 0, such that, uni-
formly for all t ∈ I0 and all u1, u2, v1, v2 ∈ R

n,

‖g(t, u1, v1) − g(t, u2, v2)‖ ≤ Λ1(g)‖u1 − u2‖ + Λ2(g)‖v1 − v2‖. (14)

We remark on a possible further strengthening of the conditions on g.

Condition 3.10 For u1, u2, v, ∈ R
n,

‖g(t, u1, v) − g(t, u2, v)‖ ≤ λ1(g)‖u1 − u2‖ with λ1(g) ∈ [0, 1). (15)



8

If (14) is strengthened so that (15) also holds, then Assumption 3.7 can
be omitted, as it follows from (14) and (15). However, equation (15) is
not a necessary condition for Assumption 3.7 (example: g(t, u, v) = v as in
Example 2.1) and will not be a part of our general assumptions.

In §4.3, we assume the following condition.

Condition 3.11 There exist constants κ0,1 > 0 such that ‖f(t, u, v)‖ ≤
κ0‖u‖ + κ1 for t ∈ I0 and u, v ∈ R

n.

If f(t, 0, v) is uniformly bounded (for t ∈ I0 and ‖v‖ <∞) and Assumption
3.8 is valid, then Condition 3.11 holds.

We adopt all the Assumptions 3.1–3.9 unless we state that we are drop-
ping stronger hypotheses but retaining weaker ones.

Remark 3.12 Liu [15] considers numerics for the case (see Remark 2.3)
where g

(
t, y(t), y(t− τ(t))

)
is replaced by the simpler form g∗

(
t, y(t− τ(t))

)
.

This case lacks an essential feature of our discussion, because the existence
of the function γ in Assumption 3.7 becomes a trivial issue (in the simplified
case, γ(t, v, w) = g∗(t, v) + w).

3.3 Initial observations

For a function ψ(t) that is continuous from the right on [t′, t′′) (so ψ(t) =
limδց0 ψ(t+ δ) for t ∈ [t′, t′′)), consider, if it exists, the right-hand derivative

[12] defined as
( d

dt

)
+
ψ(t) = lim

δց0
{ψ(t+ δ) − ψ(t)}/δ. If ψ is right-continuous

on [t′, t′′),
( d

dt

)
+

∫ t

t′
ψ(s)ds = ψ(t) for t ∈ [t′, t′′).

Lemma 3.13 (i) Suppose y(t) ≡ y(ϕ, τ ; t) satisfies the integral equation
(1) where the integral is interpreted in the sense of Riemann and suppose
Assumption 3.5 is valid. If y(t) is right-continuous and has a right-hand

derivative
( d

dt

)
+
y(t) then

( d

dt

)
+
{y(t) − g

(
t, y(t), y(t− τ(t))

)
} = f

(
t, y(t), y(t− τ(t))); (16)

further,
( d

dt

)
+
y(t) =

( d

dt

)
+
g
(
t, y(t), y(t− τ(t))

)
+ f

(
t, y(t), y(t− τ(t))). (ii)

Alternatively, suppose y(t) possesses the assumed right-continuity and satis-
fies (16), and suppose that y(t) − g

(
t, y(t), y(t− τ(t))

)
is continuous. Then

y(t) also satisfies (1).
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Note that a continuous function with a bounded right-hand derivative is
absolutely continuous on compact intervals.

Definition 3.14 A natural solution of (3) on I0 is a right-continuous func-
tion satisfying (16) (the derivatives being taken as right-hand derivatives) for
t ∈ I0, and such that y(t) − g

(
t, y(t), y(t− τ(t))

)
is continuous for t ∈ I0.

4 The integral equation formulation

Our concern is to relate the problem (3a) to its integrated form

y(t) = g
(
t, y(t), y(t− τ(t))

)
+

∫ t

t0

f
(
s, y(s), y(s− τ(s))

)
ds+ z0 (17a)

for t ∈ I0, with z0 as in (11), with the condition (3b), viz.

y(t) = ϕ(t) (t ∈ [t−1, t0]) where t−1 := inf
t∈I0

t− τ(t), (17b)

and to exploit (17). To develop (17a) further, Assumption 3.7 is convenient,
and we deduce, from (17a), the new formulation

y(t) = γ
(
t, y(t− τ(t)),

∫ t

t0

f
(
s, y(s), y(s− τ(s))

)
ds+ z0

)
. (17c)

Remark 4.1 There are similarities in our approach and the treatment of
Driver [8] of the problem of a system of explicit NDDEs

y′(t) = f⋆(t, y(t), y(t− τ1(t)), y
′(t− τ2(t))), (18)

where τ1,2(t) > 0, where Driver assumes that the initial function ϕ is abso-
lutely continuous on the closed initial interval ([t−1, t0] in our notation) with
t− τ1,2(t) ≥ t−1.

4.1 Similar problems for ordinary differential equations

We pause to place our approach in perspective. Where g vanishes identi-
cally and f(t, u, v) = f(t, u) the problem of relating (3a) to the integrated
form reduces to a well-studied problem of the relation between ordinary dif-
ferential equations (ODEs) y′(t) = f(t, y(t)) and the integrated form y(t) =
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y(t0)+

∫ t

t0

f(s, y(s))ds. Related are (i) use of the integral equation to establish

existence of a solution (ii) investigation of Picard iteration (or other iterative
methods) for the integral equation and (iii) consideration of the solution of
the ODE in the sense of Carathéodory.

We observe that: (i) the Peano or Cauchy-Peano theory relies on the
Arzelà-Ascoli theorem (stated below as Lemma 4.4); (ii) the Picard or Picard-
Lendelöf iteration for solution of the integral equation form of the ODE
y′(t) = f(t, y(t)) has the form yk+1(t) = y(t0) +

∫ t

t0
f(s, yk(s))ds; and (iii) a

solution of y′(t) = f(t, y(t)) on I0 in the sense of Carathéodory is a function
that is absolutely continuous (see [12]) on compact sub-intervals of I0, and
satisfies the integral equation y(t) = y(t0) +

∫ t

t0
f(s, y(s))ds on I0, with the

integral taken in the sense of Lebesgue. See, e.g., [6, 19, 20].

4.2 A method of steps

The method of steps for the solution of a DDE extends‡ to potentially dis-
continuous ‘natural’ solutions of (3) (that is, solutions of (16) in the sense of
Definition 3.14). We examine the solution on [ζℓ, ζℓ+1), taking as hypothesis
the existence of a (not necessarily unique) solution y(t) satisfying (16) on the
interval [t−1, ζℓ). The value of this solution at ζℓ is a solution of the equation
y(ζℓ)−g

(
ζℓ, y(ζℓ), y(ζkℓ

)
)

= limt→ζℓ
y(t)−g

(
ζℓ, limt→ζℓ

y(t), limt→ζℓ
y(t−τ(t))

)

and it follows from a knowledge of y(t) on [t−1, ζℓ) provided that equations
of the form u− g(t, u, v) = w have some solution u when given t, v, w.

We shall be seeking proofs by induction, so let us assume that a solution
y(t) exists on [t−1, ζℓ]. For t ∈ [ζℓ, ζℓ+1), we have t − τ(t) ∈ [ζkℓ

, ζkℓ+1] (by
Assumption 3.3, eqn (10)). We write

ϕℓ(t) = y(t) for t ∈ [ζkℓ
, ζkℓ+1) and ϕℓ(ζkℓ+1) = lim

tրζkℓ+1

y(t). (19)

Thus, ϕℓ(t) = y(t) on [ζkℓ
, ζkℓ+1) but ϕℓ(t) lacks a jump that y(t) may be

assumed to possess, at ζkℓ+1.
If an extension of the solution y(t) to [ζℓ, ζℓ+1] exists, it agrees on the

half-open interval [ζℓ, ζℓ+1) with the solution yℓ(t) of

( d

dt

){
yℓ(t) − gℓ

(
t, yℓ(t)

)}
= fℓ

(
t, yℓ(t)

)
(t ∈ [ζℓ, ζℓ+1]), (20a)

‡In the usual method of steps [13, 14] a solution on [t−1, tk] is extended to an interval
[tk, tk+1] such that t − τ(t) < tk for t ∈ [tk, tk+1], k ∈ {0, 1, 2, · · · }.
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yℓ(ζℓ) = y(ζℓ), (20b)

with

fℓ

(
t, yℓ(t)

)
:= f

(
t, yℓ(t), ϕℓ(t− τ(t))

)

gℓ

(
t, yℓ(t)

)
:= g

(
t, yℓ(t), ϕℓ(t− τ(t))

)

}
(t ∈ [ζℓ, ζℓ+1). (20c)

If we then require that yℓ(ζℓ+1) satisfies

yℓ(ζℓ+1) − gℓ

(
ζℓ+1, yℓ(ζℓ+1)

)
= lim

tրζℓ+1

{
y(t) − gℓ

(
t, y(t)

)}
, (21)

we define y(ζℓ+1) = yℓ(ζℓ+1). While yℓ(t) has a jump at ζℓ+1, (20c) implies
that, for t ∈ [ζℓ, ζℓ+1), fℓ

(
t, yℓ(t)

)
≡ f

(
t, yℓ(t), ykℓ

(t−τ(t))
)

and gℓ

(
t, yℓ(t)

)
≡

g
(
t, yℓ(t), ykℓ

(t − τ(t))
)
. We write zℓ(t) := yℓ(t) − gℓ

(
t, yℓ(t)

)
, z(t) = y(t) −

g(t, y(t), y(t− τ(t))); zℓ(ζℓ) = z(ζℓ) is zℓ.
The literature on ODEs suggests two ways to proceed: the first is to follow

Peano and establish the existence of a solution (not necessarily unique), using
Assumption 3.5. The second is to follow Picard and study suitable iterations
using conditions of Lipschitz continuity. Actually, the non-vanishing of g in
(20) suggests that we should look to the theory of DAEs rather than that of
ODEs, but we are unaware of literature that gives extensions of Peano’s or
Picard’s theories to DAEs.

4.3 Extension of Peano’s theorem to the NDDE

Condition 3.11 implies that ‖fℓ(t, u)‖ ≤ κ0‖u‖+ κ1 and we now require this
condition to be satisfied along with Assumption 3.6. Our theory echos that
for ODEs detailed in Reid [19, Chapter 1, §3]; an alternative is to assume a
uniform bound on ‖fℓ(t, u)‖ for all possible arguments.

4.3.1 Three lemmas . . .

We state three lemmas that we use to establish what follows.

Lemma 4.2 If |νr| ≤ ∆C0

∑r−1
q=0 |νq|+C1 for r = 1, 2, · · · , N where C0 > 0,

C1 > 0, are constants, then

max
r∈{0,1,··· ,N}

|νr| ≤ (C1 + ∆C0|ν0|) exp{C0N∆}.
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Now write ▽ζℓ = ζℓ − ζℓ−1 and pick ∆ = ▽ζℓ/N for some positive integer
N . Suppose µ = r + θ ≤ N with r ∈ {0, 1, · · · , N − 1}, θ ∈ [0, 1], so

that
∫ ζℓ+µ∆

ζℓ
ψ(s)ds =

∑r−1
s=0

∫ ζℓ+(s+1)∆

ζℓ+s∆
ψ(σ)dσ +

∫ ζℓ+µ∆

ζℓ+r∆
ψ(σ)dσ. Euler’s rule

may be applied to each integral term, and Lemma 4.3, below, provides a
bound on the error in the resulting approximation, in terms of the modulus
of continuity ω(ψ; ∆) of the integrand.

Lemma 4.3 For ψ ∈ C[ζℓ, ζℓ+1], µ = r + θ (as above) we have

‖

∫ ζℓ+µ∆

ζℓ

ψ(s)ds−
{

∆

r−1∑

s=0

ψ(ζℓ+s∆) + θ∆ψ(ζℓ+r∆)
}
‖ ≤ |ζℓ+1 − ζℓ|ω(ψ; ∆).

Lemma 4.4 (The Arzelà–Ascoli Theorem; see [19, p.527]) Let F be a set of
uniformly bounded and equicontinuous functions defined on a compact metric
space X ; then any sequence {fn} ⊆ F has a subsequence that is uniformly
convergent on X to a continuous function.

4.3.2 . . . and a theorem

Theorem 4.5 Suppose that Assumptions 3.1–3.6 and Condition 3.11 hold;
then there exists a natural solution of (3).

Proof: Consider the solution of the problem (20) on [ζℓ−1, ζℓ); we take ℓ = 1,
then consider ℓ = 2, 3, etc., in turn.

We construct, for each ∆ = ▽ζℓ/N (as above), approximations y∆(t)
to yℓ(t) and z∆(t) to zℓ(t) where dependencies on ℓ are suppressed in the
notation y∆, z∆. For θ ∈ [0, 1], we consider the Euler-type equations

z∆(ζℓ+(r+θ)∆) = z∆(ζℓ+r∆)+θ∆fℓ

(
ζℓ+r∆, y∆(ζℓ+r∆)

)
, (22a)

z∆(t) = y∆(t) − gℓ

(
t, y∆(t)

)
≡ y∆(t) − g

(
t, y∆(t), ϕkℓ

(t− τ(t))
)
. (22b)

Thus, writing µ = r + θ (for θ ∈ [0, 1], r ∈ {0, 1, · · · , N − 1}),

z∆(ζℓ+µ∆) = (23a)

z∆(ζℓ) + ∆

r−1∑

s=0

fℓ(ζℓ+s∆, y∆(ζℓ+s∆)) + θ∆fℓ(ζℓ+r∆, y∆(ζℓ+r∆))

z∆(ζℓ + µ∆) = y∆(ζℓ + µ∆) − gℓ(ζℓ + µ∆, y∆(ζℓ + µ∆)). (23b)

This yields

y∆(ζℓ + µ∆) = z(ζℓ) + gℓ(ζℓ + µ∆, y∆(ζℓ + µ∆))+ (24)
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+∆
r−1∑

s=0

fℓ(ζℓ+s∆, y∆(ζℓ+s∆)) + θ∆fℓ(ζℓ+r∆, y∆(ζℓ+r∆)).

From the above, we deduce that the functions
{
y∆(t)

∣∣∆ = ▽ζℓ/N ;N =
1, 2, · · ·

}
are uniformly bounded and equicontinuous on [ζℓ, ζℓ+1].

The details of how this conclusion is reached (using Lemma 4.3 and our
stated assumptions) appear in §4.3.3 below. By the Arzelà-Ascoli theorem
(Lemma 4.4), the set of uniformly bounded and equicontinuous functions
{y∆(t)} on [ζℓ, ζℓ+1] contains a subsequence {y∆j

(t)} with a continuous limit
lim∆j→0 y∆j

(t), on [ζℓ, ζℓ+1], in the sense of uniform convergence. We can
now appeal to Lemma 4.3 and the equicontinuity of {y∆k

(t)} and hence of
{fℓ(t, y∆k

(t))}. Since (24) gives

y∆(t) = zℓ + gℓ(t, y∆(t)) +

∫ t

ζℓ

fℓ(s, y∆(s))ds+ ǫ(∆)

and lim∆k→0 ǫ(∆k) = 0, it follows that lim∆k→0 y∆k
(t) exists on the closed

interval [ζℓ, ζℓ+1] and on the open interval [ζℓ, ζℓ+1) it satisfies the integral
equation

y(t) = zℓ + g
(
t, y(t), y(t− τ(t))

)
+

∫ t

ζℓ

f(s, y(s), y(s− τ(s)))ds, (25)

and hence (20). Equation (21) defines a value y(ζℓ+1). By induction on ℓ,
there follows the existence of a natural solution y(t) on I0.

4.3.3 Equicontinuity and uniform boundedness

To establish the equicontinuity and uniform boundedness above, we rely on
the discrete Gronwall inequality in Lemma 4.2.
• To show uniform boundedness, we could employ (24) directly or recast it
in terms of γ as we do here. As a convenient shorthand, write

σµ(∆) := ∆

r−1∑

s=0

fℓ(ζℓ+s∆, y∆(ζℓ+s∆)) + θ∆fℓ(ζℓ+r∆, y∆(ζℓ+r∆)).

From (24),

y∆(ζℓ + µ∆) = γ(ζℓ + µ∆, ϕkℓ
(ζℓ + µ∆), z(ζℓ) + σµ(∆)).

This is valid for µ ∈
{
r + θ

∣∣ r ∈ {0, 1, · · · , N}; θ ∈ [0, 1];µ ≤ N
}

and in
particular for µ = 0 (we have y∆(ζℓ) = γℓ(ζℓ, z(ζℓ))). The expression that we
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deduce for y∆(ζℓ+µ∆)−y∆(ζℓ) allows us to establish a bound on y∆(ζℓ+µ∆)
(using the assumptions of our theorem, a triangle inequality, and the fact that
y∆(ζℓ) = y(ζℓ)). With

Γµ(∆) := ‖γ(ζℓ + µ∆, ϕkℓ
(ζℓ + µ∆), zℓ) − γ(ζℓ, ϕkℓ

(ζℓ), z
ℓ)‖

(for which a uniform bound exists) we have the result

‖y∆(ζℓ + µ∆)‖ ≤ Γµ(∆) + (26)

+‖γ(ζℓ + µ∆, ϕkℓ
(ζℓ + µ∆), zℓ + σµ(∆)) − γ(ζℓ + µ∆, ϕkℓ

(ζℓ + µ∆), zℓ)‖,

≤ Γµ(∆) + Λ3(γ)
{
κ0

(
∆

r−1∑

s=0

‖y∆(ζℓ+s∆)‖ + θ∆‖y∆(ζℓ+r∆))‖
)

+ κ1µ∆}

using Condition 3.11 for f . If we set θ = 0 in (26), the discrete Gron-
wall inequality provides a uniform bound for {‖y∆(ζℓ + r∆)‖}N

r=0. Now con-
sider θ ∈ (0, 1) and we deduce from (26) a uniform bound on the quantities
{‖y∆(ζℓ + µ∆)‖}.
• To show equicontinuity, employ (24) with µ = µ′ and µ = µ′′. Difference the
resulting equations§, and use the uniform boundedness of {y∆(ζℓ + s∆)}N

s=0

and the continuity of f and g, which is uniform on compact intervals.

4.4 Extension of Picard iterations to the NDDE

The iterations obtained with either rk = k or rk = k + 1 in

yk+1(t) = g
(
t, yrk

(t), yk(t− τ(t))
)

+

∫ t

t0

f
(
s, yk(s), yk(s− τ(s))

)
ds+z0,

are two tentative candidates for the discussion of (17a). We amend these iter-
ations, to reflect ideas underpinning the method of steps. Our replacements
for the above iterations read, respectively,

yk+1(t) = g
(
t, yk(t), y(t− τ(t))

)
+ (27a)

∫ ζℓ

t0

f
(
s, y(s), y(s− τ(s))

)
ds+

∫ t

ζℓ

f
(
s, yk(s), y(s− τ(s))

)
ds+ zℓ;

§It is convenient to consider first the case µ′ = r + θ′, µ′′ = r + θ′′.
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yk+1(t) − g
(
t, yk+1(t), y(t− τ(t))

)
= (27b)

∫ ζℓ

t0

f
(
s, y(s), y(s− τ(s))

)
ds+

∫ t

ζℓ

f
(
s, yk(s), y(s− τ(s))

)
ds + zℓ

for t ∈ [ζℓ, ζℓ+1). These are based on (17a), and the last of these corresponds
to an iteration for (17c) of the form

yk+1(t) = (27c)

γ
(
t, y(t−τ(t)),

∫ ζℓ

t0

f
(
s, y(s), y(s−τ(s)))ds+

∫ t

ζℓ

f
(
s, yk(s), y(s−τ(s))

)
ds+zℓ

)

for t ∈ [ζℓ, ζℓ+1). Recall that t − τ(t) < ζℓ when t ∈ [ζℓ, ζℓ+1) and zℓ+1 =
lim

tրζℓ+1

{
y(t)− g

(
t, y(t), y(t− τ(t))

)}
for ℓ ∈ {0, 1, 2, · · · }. The iteration (27a)

is less than ideal. When f vanishes identically, the iteration reads yk+1(t) =
g
(
t, yk(t), y(t − τ(t))

)
. Convergence of this iteration is normally discussed

under a condition of the form (15), and we therefore expect¶ to have to
strengthen this condition for the general case. On the other hand, (15) is not
a necessary condition for the existence of γ and it therefore seems desirable
to consider (27b) or the form (27c).

Theorem 4.6 Suppose that Assumptions 3.1–3.8 are valid. Then there ex-
ists a unique natural solution of (3), which is obtainable by Picard iteration
based on (27b) or (27c).

Proof. On writing ∆yk(t) := yk+1(t) − yk(t), (12) and (27c) yield

‖∆yk(t)‖ ≤ KΛ1(f)

∫ t

ζℓ

‖∆yk−1(s)‖ds. (28)

Now yk+1(t) = y0(t) +
∑k

r=0 ∆yr(t) and by comparison with the exponential
series and (28) it follows that

∑∞
r=0 ∆yr(t) converges absolutely (for t ∈

[ζℓ, ζℓ+1)). From the continuity of γ and f it follows that the limit satisfies the
integral equation formulation (17c) (and hence (17a)) on [ζℓ, ζℓ+1). The value
y(ζℓ+1) follows. Using similar inequalities to those above, the assumption that
there are two such solutions yields a contradiction.

¶If f vanishes, and if g(t, u, v) is continuously differentiable with respect to its second
argument and the spectral radius of (∂/∂u)g

(
t, y(t), y(t − τ(t))

)
is greater than unity,

convergence does not take place for arbitrary starting values.
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4.5 Sensitivity to initial data

An approach that can be useful both for the theory and the practical treat-
ment of (3) involves the replacement of a discontinuous initial function ϕ(t)
by a continuous approximation ϕδ(t) that has the jumps “smoothed out”
but retains the original support [t−1, t0]. One may then analyze the change
y(ϕ, τ ; t)− y(ϕδ, τ ; t). Let us consider the effect of changing the initial func-

tion ϕ(t) to an inital function ϕ̃(t) ∈ {ϕ̃δ(t)}0<δ<bδ
where δ̂ > 0. The functions

ϕ̃δ(t) are to be either continuous on [t−1, t0] or to have possible jumps at the
same points (9) as does ϕ(t). For t ∈ I−1, we write

y(t) ≡ y(ϕ, τ ; t), ỹ(t) ≡ y(ϕ̃, τ ; t), δy(t) := ỹ(t) − y(t),

zℓ = lim
t→ζℓ

z(t), z̃ℓ = lim
t→ζℓ

z̃(t), δzℓ = z̃ℓ − zℓ.

Here z̃(t) := {ỹ(t) − g(t, ỹ(t), ỹ(t− τ(t)))} but, more conveniently,

z̃(t) = z̃ℓ +

∫ t

ζℓ

f
(
s, ỹ(s), ỹ(s− τ(s))

)
ds, (29)

for t ∈ [ζℓ, ζℓ+1), with an analogous form for z(t). Using (13),

‖δz(t)‖ ≤ ‖δzℓ‖ +

∫ t

ζℓ

{Λ1(f)‖δy(s)‖+ Λ2(f)‖δy(s− τ(s))‖}ds. (30)

Taking limits in equations of the form (30),

‖δzℓ+1‖ ≤ ‖δzℓ‖+

∫ ζℓ+1

ζℓ

{Λ1(f)‖δy(s)‖+ Λ2(f)‖δy(s− τ(s))‖}ds, (31)

(ℓ = 0, 1, 2, · · · ,). For t ∈ [ζℓ, ζℓ+1),

ỹ(t) = γ
(
t, ỹ(t− τ(t)),

∫ t

ζℓ

f(s, ỹ(s), ỹ(s− τ(s)))ds+ z̃ℓ)
)
, (32)

with a corresponding equation for y(t).

Lemma 4.7 Let Assumptions 3.1–3.9 apply. If t∈ [ζℓ, ζℓ+1) ⊂ I0,

‖δy(t)‖ ≤ K

∫ t

ζℓ

Λ1(f)‖δy(s)‖ds+ vℓ(t) (33)

with vℓ(t) := K
{
‖δzℓ‖ + ‖δy(t−τ(t))‖ +

∫ t

ζℓ
Λ2(f)‖δy(s−τ(s))‖ds

}
.
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The term vℓ(t) depends on δy(t) for t ≤ ζℓ, and (33) yields ‖δy(t)‖ ≤ vℓ(t) +
K1

∫ t

ζℓ
exp{K1(t − s)}vℓ(s)ds for t ∈ [ζℓ, ζℓ+1), with K1 = KΛ1(f). Thus,

there exist positive values c1,2(ℓ) such that ‖δy(t)‖ ≤ vℓ(t)+c1(ℓ)
∫ ζℓ+1

ζℓ
vℓ(s)ds,

and
∫ t

ζℓ
‖δy(s)‖ds ≤ c2(ℓ)

∫ ζℓ+1

ζℓ
‖v(s)‖ds, for t ∈ [ζℓ, ζℓ+1) ⊂ I0. We can now

prove the following result by considering successive intervals [ζℓ, ζℓ+1) and
using induction.

Theorem 4.8 Let Assumptions 3.1–3.9 apply. If ‖ϕ(t)−ϕ̃δ(t)‖
pw
→ 0 (point-

wise) as δ → 0 for each t ∈ [t−1, t0], and
∫ t0

t−1
‖ϕ(s)− ϕ̃δ(s)‖ds→ 0 as δ → 0,

then ‖y(ϕ, τ ; t) − y(ϕ̃δ, τ ; t)‖
pw
→ 0, for each t ∈ I0.

4.6 Solutions in the sense of Carathéodory

Definition 4.9 A function y(t) = y(ϕ, τ ; y) that satisfies (17a) for t ∈ I0,
where y(t) − g(t, y(t), y(t − τ(t))) is absolutely continuous on compact sub-
intervals of I0, where the integral is interpreted in the sense of Lebesgue, and
also satisfies (17b) for all t ∈ [t−1, t0], will be called a solution of (3) on I0

in the sense of Carathéodory.

For the extension of the fundamental theorems of calculus in terms of Rie-
mann integrals to Lebesgue integrals, we recall the following:

Lemma 4.10 If ψ ∈ L[t′, t′′] and Ψ(t) =
∫ t

t0
ψ(s)ds (t ∈ [t′, t′′]) then Ψ is

absolutely continuous on [t′, t′′]. If Ψ is absolutely continuous on [t′, t′′] then Ψ
is differentiable almost everywhere on [t′, t′′], Ψ′ ∈ L[t′, t′′] and

∫ t

t′
Ψ′(s)ds =

Ψ(t) − Ψ(t′) for all t ∈ [t′, t′′].

Given γ(t, u, v), a solution of (3) on I0 in the sense of Carathéodory also
satisfies (17c) for almost all t ∈ I0, and vice-versa in the case that y(t) −
g(t, y(t), y(t− τ(t)) is absolutely continuous.

It has long been appreciated that solutions of DDEs and NDDEs may
have discontinuous derivatives [16]. The discontinuous natural solutions
considered by Baker and Paul [2] (who give some illustrative examples) have
right-hand derivatives everywhere on I0, and conventional derivatives almost
everywhere on I0 (the conventional derivative fails to exist only at the points
ζℓ where the solution has jump discontinuities).

Theorem 4.11 With the given Assumptions, natural solutions of (3), in the
sense of Definition 3.14 (with derivatives taken as right-hand derivatives), are
solutions in the sense of Carathéodory as stated in Definition 4.9.
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5 Conclusions

The principal results established here comprise: (a) a theorem on the ex-
istence of a natural solution; (b) a theorem on the uniqueness of a natural
solution; (c) a theorem relating to the dependence of a natural solution on
the original data; (d) the relationship between natural solutions and solutions
in the sense of Carathéodory. The use of integral equations underpins the
discussion. The extension of our results to NDDEs of a more general type,
or not satisfying our hypotheses, presents opportunities for further investi-
gation.
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