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Abstract

This research dissertation focuses on the symbiotic interaction of mutualism, we give ex-
planations as to what it is before mathematically modelling population dynamics of two
species displaying mutualistic behaviour. Throughout the course of this dissertation, we
shall be re-examining the work done in the book by Kot [16] and the paper by Joharjee
and Roberts [32], whilst providing further explanations of the mathematics involved and
the steps taken. We begin by constructing a model for mutualism before attempting to
improve the model in order to make it more realistic. We go on to add delays to our im-
proved model and determine the stability of its equilibrium points. We formulate models
via piecewise constant arguments and via a simple Euler scheme before determining stabil-
ity for both systems. A graphical comparison will then be made to explain the differences
in behaviour between the two discretised systems.
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Chapter 1

Introduction

1.1 What is mutualism?

Mutualism is an interaction between different species in which they benefit each others
existence.

1.2 Why are we studying mutualism?

It is said by Boucher that Elementary ecology literature tells us that organisms interact in
three fundamental ways; competition, predation and mutualism [3]. There has been plenty
of credible work done in the areas of predator-prey and competition models, however we
find that when researching our chosen area, it has been largely neglected in ecological
literature until very recently. It is hard not to agree with Bascompte and Jordano’s view,
that mutualism represents one of the main mechanisms for shaping animal’s and plant’s
life histories and that understanding mutualistic interactions and their consequences in
species-rich communities remains one of the most challenging tasks in ecology [1]. The
importance of mutualism is surely cemented when we find that it was even noted early on
by Charles Darwin on his travels; ”If such great moths were to become extinct in Madagas-
car, assuredly the Angraecum would become extinct” [5], he saw with this example that
certain species would have perished had they not have found mutualistic partners. So, we
are studying mutualism in order to gain a better understanding of an area of ecology that
in terms of research is in short supply when compared to its peers.

1.2.1 Examples of mutualism

Having thoroughly studied the natural history of mutualisms, Janzen [14] argued that
most mutualisms can be classified into one of four types;

Seed-dispersal mutualism

A lot of plants rely on animals to carry their seeds to favourable destinations. Plants
frequently produce fruits and nuts to attract the animals, the food also serves as positive
reinforcement for the animals to return again. Squirrels are very popular dispersal agents,
they will collect acorns and nuts from trees and bury them elsewhere before forgetting
about them hence allowing them to grow into other trees. Other examples include birds
such as the Western Scrub Jay (Aphelocoma californica) who use the technique of ’caching’
which involves storing the food like acorns or insects in a cache for later retrieval. They

2



CHAPTER 1. INTRODUCTION 3

will carry seeds long distances and cache them in small clumps, where they may germinate
[16].

Pollination mutualism

Pollination is the transfer of a plant’s pollen grain before fertilisation. The classic example
here is between bees and flowers, bees use the flowers for nectar and in return pollinate
other flowers that they encounter on their travels. In gymnosperms, the transfer is from a
pollen-producing cone directly to an ovule. In angiosperms, the transfer is from an anther
to a stigma. Most gymnosperms are wind-pollinated. In contrast, many angiosperms
are animal pollinated. The obvious advantage of animal pollination is that pollen may
be transferred far from the host anther in a way that promotes outbreeding and genetic
variability. Angiosperm flowers often reward pollinators with nectar and pollen to promote
this process. Plant-pollinator mutualisms are particularly important, and involve nearly
170,000 plant and 200,000 animal species [19, 16].

Digestive mutualism

The guts of many animals are filled with mutualists (e.g. bacteria, yeast etc.) that help
to break down food. Often, the host animal is unable to digest the food on its own.
Animals such as cattle, deer and sheep rely on bacteria to break down plant cellulose into
subdigestible subunits. The microorganisms are rewarded for this behaviour by having an
environment in which they can survive i.e. the animal’s gut [16].

Protection mutualism

Protection mutualism is when one species protects another from predators, usually for
some kind of return favour. A very good example of a protection mutualism is one be-
tween clown fish and sea anemones. The clown fish are immune to the stinging nematocysts
of giant sea anemones and will feed and nest amongst their tentacles. Horse mackerels
appear to have a similar relationship with Portuguese man-of-war jellyfish [16].

There most likely exists many more types of mutualisms that occur throughout the natural
world many of which may be undiscovered by science.

1.2.2 Dependency of the mutualism

The dependency of mutualism refers to how much a species is in need of the interaction,
we shall define the notes two different types of dependency that are used by the ecologist
Kot [16];

Definition 1 (Facultative Mutualism). A type of mutualism in which the interacting
species derive benefit from each other but are not fully dependent that each cannot survive
without the other. This is the most common type of mutualism and is exemplified by plants
producing fruit that is eaten by birds and the birds helping to dispose the seeds through
excretion [2].

Definition 2 (Obligate Mutualism). A type of mutualism in which the species involved
are in close proximity and interdependent with one another in a way that one cannot
survive without the other. A good example of this is between fungus and alga forming
lichen. In nature, the fungus in lichen provides the alga with water and minerals while the
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alga uses the minerals and water to make food for the fungus and itself (by photosynthesis.)
When the alga and fungus of lichens were cultured separately under laboratory conditions,
both of them cannot grow without the symbiotic partner [2].

In the next chapter we shall attempt to construct a mathematical model to represent
mutualism.



Chapter 2

Modelling mutualism

2.1 Initial attempt at modelling mutualism

Throughout the next two chapters we will follow the work done in chapters 12 and 13 by
Kot in the book ‘Elements of Mathematical Ecology’ and also reproduce the graphs found
there through a MATLAB program called ‘pplane7’ [25].

Let us begin by assuming that we have two species, 1 and 2, each with population sizes
N1 and N2 respectively that grow logistically1 in the absence of the other. Each species
has a per capita growth rate that decreases linearly with its population size. Therefore
we begin with the following model

1

N1

dN1

dt
= r1

(
1− N1

K1

)
(2.1a)

1

N2

dN2

dt
= r2

(
1− N2

K2

)
, (2.1b)

where each species has its own respective intrinsic rate of growth and its own respective
carrying capacity K1 and K2. Now let’s add competition to the model; we can do this by
assuming the effect of interspecific competition2 is similar to that of intraspecific crowding.
Due to competition, each individual of the second species causes a decrease in the per
capita growth of the first species, and vice versa. Now, because the two species are
different, individuals from different species (heterospecific) may have a stronger effect or
a weaker effect on the per capita growth rate than individuals from the same species
(conspecific). To parameterise this effect, we introduce a pair of competition coefficients
α12 and α21, that measure the strength of the effect of species 2 on species 1 and of species
1 on species 2 respectively. So, we let

1Logistic growth - Population growth in which the growth rate decreases with increasing number of
individuals until it becomes zero when the population reaches a maximum[20].

2Interspecific competition is a form of competition in which individuals of different species compete for
the same resource The other form of competition is intraspecific competition, which involves organisms of
the same species [12].

5
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N1 → N1 + α12N2

and

N2 → N2 + α21N1

then the system (2.1a) - (2.1b) becomes the Lotka-Volterra competition model

1

N1

dN1

dt
= r1

(
1− N1 + α12N2

K1

)
(2.2a)

1

N2

dN2

dt
= r2

(
1− N2 + α21N1

K2

)
. (2.2b)

Let us take out a factor of 1
K1

and 1
K2

and multiply both sides by N1 and N2 in respective
equations to arrive at a more concise model

dN1

dt
=

r1
K1

N1 (K1 −N1 − α12N2) (2.3a)

dN2

dt
=

r2
K2

N2 (K2 −N2 − α21N1) . (2.3b)

Now, we want to modify this competition model to create a mutualism model between
the two species. To do this, it seems a natural step to simply change the competition
coefficients α12 and α21 from having a negative effect to a positive effect on both equations
since mutualism is defined as a beneficial interaction. So, let’s change their signs from −
to +, this gives us

dN1

dt
=

r1
K1

N1 (K1 −N1 + α12N2) (2.4a)

dN2

dt
=

r2
K2

N2 (K2 −N2 + α21N1) . (2.4b)

This is now a model for facultative mutualism so far as the parameters

r1 > 0, r2 > 0, K1 > 0 and K2 > 0, (2.5)

in other words, each species can survive without its mututalist.

We note that the model would be for obligate mutualism should the parameters be set as
follows

r1 < 0, r2 < 0, K1 < 0 and K2 < 0. (2.6)

2.1.1 Finding and determining stability of equilibrium points of the sys-
tem (2.4a)-(2.4b)

We can find the equilibrium points of the system (2.4a) - (2.4b) by setting dN1
dt = dN2

dt = 0
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So, let’s consider (2.4a), we set

dN1

dt
= 0

i.e.

r1
K1

N1 (K1 −N1 + α12N2) = 0

therefore, either

r1
K1

N1 = 0 or K1 −N1 + α12N2 = 0

which implies that our zero-growth isoclines for N1 are

N1 = 0 and N1 = K1 + α12N2

Similarly setting dN2
dt = 0, we get

r2
K2

N2 (K2 −N2 + α21N1) = 0

hence either

r2
K2

N2 = 0 or K2 −N2 + α21N1 = 0

which implies that our zero-growth isoclines for N2 are

N2 = 0 and N2 = K2 + α21N1.

So, our four equilibrium points are

(N∗1 , N
∗
2 ) = (0, 0) in which both species die out, as shown in figure 2.1.

Figure 2.1: Obligate mutualism phase portrait for α12α21 < 1.
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(N∗1 , N
∗
2 ) = (K1, 0) in which species 2 dies out and species 1 settles at its carrying capacity.

Figure 2.2: N1 zero-growth isoclines, K1 < 0.

In Figure 2.2 we see that to the left of the line N1 = K1 +α12N2, N1 increases and to the
right of this line N1 decreases.

(N∗1 , N
∗
2 ) = (0,K2) in which species 1 dies out and species 2 settles at its carrying capacity.

Figure 2.3: N2 zero-growth isoclines, K2 < 0.

In Figure 2.3 we see that below the line N2 = K2 + α21N1, N2 increases and above this
line N2 decreases.
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(N∗1 , N
∗
2 ) = (K1 +α12N

∗
2 ,K2 +α21N

∗
1 ) which is our non-trivial equilibrium point that lies

is the positive quadrant.

N2

N1

Non-trivial point

Three trivial points

Figure 2.4: Graph showing an arbitrary (N1, N2) plane with its four equilibrium points.

Note that the zero-growth isoclines divide each graph into two parts. To the left and below
of the isocline (in respective graphs) the population size increases because the combined
abundances of both species are less than the carrying capacity of the one, while to the right
and above of the isocline (in respective graphs) the population size decreases because the
combined abundances are greater than the carrying capacity. For Figure 2.3, the isocline
intersects the graph on the N1-axis when N1 reaches its carrying capacity (K1) and no
individuals of species 2 are present. For Figure 2.2, the isocline intersects the graph on
the N2-axis when N2 reaches its carrying capacity (K2) and no individuals of species 1
are present.
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Figure 2.5: Facultative mutualism phase portrait for α12α21 < 1

The zero-growth isoclines

N1 = K1 + α12N2 and N2 = K2 + α21N1

may either converge or diverge. They converge if

1

α12
> α21 ⇒ α12α21 < 1

In this case, the two isoclines cross and orbits approach a stable node in the interior of the
first quadrant (as shown in Figure 2.5). Since the slopes of the two zero-growth isoclines
are positive, the coordinates of this equilibrium are greater than the carrying capacities
K1 and K2; each species surpasses its carrying capacity because of its mutualist.

If

α12α21 > 1

then the zero growth isoclines

N1 = K1 + α12N2 and N2 = K2 + α21N1

diverge. In this case, the zero-growth isoclines do not cross and the only nontrivial equi-
librium point in the first quadrant exists at the point (∞,∞).
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Figure 2.6: Facultative mutualism phase portrait for α12α21 > 1

The populations undergo unlimited growth (as shown in Figure 2.6) this is also known as
an ”orgy of mutual benefaction” a phase coined by the ecologist May [26].

Again, if the interaction is strong with

α12α21 > 1

Figure 2.7: Obligate mutualism phase portrait for α12α21 > 1

then we have a saddle point. If mutualist densities are low, i.e. there are too few mu-
tualists to rescue either population then both populations become extinct. If mutualist
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densities are high, both species increase to another orgy of mutual benefaction (as shown
in figure 2.7).

The orbits of our mutualism model have either tended to an equilibrium or diverged to
infinity. However, we must make sure that there are no limit cycles3 that we have missed.
To do this, we shall prove that the system is cooperative.

Definition 3 (Cooperative system). The system

dN1

dt
= φ(N1, N2)

dN2

dt
= σ(N1, N2)

defined on D ⊆ R2 is cooperative if

∂φ

∂N2
≥ 0,

∂σ

∂N1
≥ 0 (2.7)

for all (N1, N2) ∈ D.

For the model (2.4a) - (2.4b), we let

dN1

dt
=

r1
K1

N1 (K1 −N1 + α12N2) = f1(N1, N2)

dN2

dt
=

r2
K2

N2 (K2 −N2 + α21N1) = g1(N1, N2)

so, we get

∂f1
∂N2

=
∂

∂N2

(
r1
K1

N1 (K1 −N1 + α12N2)

)
= α12

r1
K1

N1

and

∂g1
∂N1

=
∂

∂N1

(
r2
K2

N2 (K2 −N2 + α21N1)

)
= α21

r2
K2

N2

clearly
∂f1
∂N2

≥ 0, and
∂g1
∂N1

≥ 0, (2.8)

3A limit cycle is a closed trajectory in phase space having the property that at least one other trajectory
spirals into it either as time approaches infinity or as time approaches negative infinity [22].
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therefore our system (2.4a) - (2.4b) is cooperative on the invariant quadrant.

N2

N1

First Quadrant (Invariant)

Second QuadrantThird Quadrant (Invariant)

Fourth Quadrant

Figure 2.8: Graph illustrating the four quadrants an arbitrary (N1, N2) plane

We shall now state and prove theorem 2.1.

Theorem 2.1. The orbits of a cooperative system either converge to equilibria or diverge
to infinity.

Proof. Every trajectory of a system generates an orbit in this (N1, N2) plane (see figure
2.8). If the system is cooperative everywhere, the first quadrant of the (N1, N2) plane is
invariant. To exhibit this, consider an orbit that attempts to leave the first quadrant by
crossing the positive N2 -axis. Using our definition for cooperativity, we can show that

d2N1

dt2
=

∂φ

∂N1

dN1

dt
+

∂φ

∂N2

dN2

dt
=

∂φ

∂N2

dN2

dt
> 0 (2.9)

on the positive N2-axis. Thus, the orbit cannot cross the positive N1-axis. We also
note that the orbit cannot pass through the origin, as this would imply that the original
trajectory passes through a rest point. We can show similarly that the third quadrant is
invariant. As t → ∞, N1’s and N2’s signs will stay constant, i.e. if we start in the first
or third quadrant, we stay in that quadrant. If we start in the second or fourth quadrant,
we either stay there or move to one of the two invariant quadrants [16].

2.2 Is this a suitable model?

This is not a suitable model for mutualism due to the fact that there exists an equilibrium
point at (∞,∞) when α12α21 > 1 as illustrated in figures 2.6 and 2.7. This is not realistic
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because we cannot have infinite populations. We have been allowing the models to grow
in an unbounded manner which is also totally unrealistic since physical aspects of our
world such as space limitations and availability of resources will always bound growth of
populations. We also cannot entertain the idea of populations being negative in reality.
With these problems identified, we shall attempt to construct mutualism models that
reflect reality better as we progress through this paper.



Chapter 3

Attempts at constructing a more
realistic model

We must attempt to construct a model that is more suited to a real world situation. One
approach to preventing unlimited growth is to construct a resource-based model.

3.1 A Resource-Based Model

This model is taken exclusively from Kot [16]. An example can be found in the work of
Lee et al [21] on the interaction between a lactic acid bacterium Lactobacillus plantarum,
and a propionic acid bacterium Propionibacterium shermanii.

Lactobacillus plantarum grows on glucose and produces lactic acid. Propionibacterium
shermanii takes lactate (a salt of lactic acid) and metabolizes it to produce propionic acid
and carbon dioxide. Although this is a model for commensalism, a (+,0) interaction, the
resulting framework can easily be extended to mutualism (which can be found in works by
Meyer et al., [27] 1975; Miura et al., [28] and Dean [6]). Lee et al ’s model can be written
as

dS

dT
= D(Si − S)− 1

Y1

µ1SN1

K1 + S
− cN1, (3.1a)

dN1

dT
=
µ1SN1

K1 + S
−DN1, (3.1b)

dP

dT
= a

µ1SN1

K1 + S
+ bN1 −

1

Y2

µ1PN2

K2 + P
−DP, (3.1c)

dN2

dT
=
µ1PN2

K2 + P
−DN2, (3.1d)

where S is the substrate (glucose), P is the product (lactate), N1 is the density of Lac-
tobacillus plantarum, and N2 is the density of Propionibacterium shermanii. The model
contains the usual dilution rate, inflowing substrate concentration, functional responses,
half-saturation constants. The two terms cN1 and bN1 account of Lactobacillus plan-
tarum’s large maintenance cost. (Lactobacillus plantarum must consume glucose without
growing in order to stay viable [16].) This model is very specific, in the next section we
look at a more generalised way to make our mutualism models more realistic.

15
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3.2 A Model that limits per capita birth and death rates

An example of the approach of constructing a model that limits the per capita birth and
death rate can be found in the work of Wolin and Lawler [37]. They began by considering
a single-species (N1) population model in which the per capita birth rate (b̃) decreases
with density,

b̃ = b0 − bN1, (3.2)

and the per capita death rate (d̃) increases with density,

d̃ = d0 + dN1, (3.3)

where b0 and d0 represent the maximum birth and death rate respectively and . The
growth rate of the population N1 is therefore the per capita death rate subtracted from
the per capita birth rate multiplied by the population at time t, i.e.

dN1

dt
=
(
b̃− d̃

)
N1 (3.4)

substituting (3.2) and (3.3) into (3.4), we obtain

dN1

dt
=
(

(b0 − bN1)− (d0 + dN1)
)
N1

which expands to

dN1

dt
= b0N1 − bN2

1 − d0N1 − dN2
1

taking out factors of N1 and N2
1 gives us

dN1

dt
= (b0 − d0)N1 − (b+ d)N2

1 . (3.5)

We notice that (3.5) is simply the logistic differential equation,

dN1

dt
= rN1 −

r

K
N2

1 , (3.6)

with

r = b0 − d0, K =
b0 − d0
b+ d

.

Now, let’s assume that a facultative mutualist N2 increases the per capita birth rate of
N1, we add mN2 to (3.2) where m ∈ R is some mutualistic constant

b̃ = b0 − bN1 +mN2, (3.7)

but has no effect on the per capita death rate,

d̃ = d0 + dN1, (3.8)

so again, by substituting into (3.4) we get
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dN1

dt
=
(

(b0 − bN1 +mN2)− (d0 + dN1)
)
N1

= (b0 − bN1 +mN2 − d0 − dN1)N1

= b0N1 − bN2
1 +mN1N2 − d0N1 − dN2

1

= (b0 − d0)N1 − (b− d)N2
1 +mN1N2,

taking out a factor of N1 we can rearrange this to get an equation in the form

dN1

dt
=

r

K
N1

(
K −N1 +

mK

r
N2

)
(3.9)

where again

r = b0 − d0, K =
b0 − d0
b+ d

.

We notice that replacing mK
r with α then (3.9) takes the form of the equations of the sys-

tem (2.4a) - (2.4b), a model we have already deemed to be unrealistic. A further reason
that this route is an unwise one to take is that equation (3.7) implies that the presence
of many mutualists will raise the per capita birth rate above b0. However, since b0 is the
maximum per capita birth rate, this cannot happen therefore we cannot continue with
this idea; we must approach the situation in a different way.

Let us imagine, instead, that the mutualism decreases the density dependence in the per
capita birth rate of N1, as follows

b̃ = b0 −
b

1 + α12N2
N1, (3.10)

substituting this into (3.4);

dN1

dt
=

(
b0 −

b

1 + α12N2
N1 − d0 − dN1

)
N1

=

(
(b0 − d0)−

b

1 + α12N2
N1 − dN1

)
N1

letting r = b0 − d0 again we arrive at the equation

dN1

dt
=

(
r − bN1

1 + α12N2
− dN1

)
N1.

By making a similar assumption with regard to the second species and adding appropriate
subscripts to each unsubscripted b, d and r, we derive the system
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dN1

dt
=

(
r1 −

b1N1

1 + α12N2
− d1N1

)
N1 (3.11a)

dN2

dt
=

(
r2 −

b2N2

1 + α21N1
− d2N2

)
N2 (3.11b)

where

K1 =
r1

b1 + d1
, K2 =

r2
b2 + d2

. (3.12)

This is the model that we shall focus on throughout the rest of this paper.

Figure 3.1: Bent zero-growth isoclines with parameter values r1 = r2 = b1 = b2 =
1, α12, α21 = 0.9, d1 = d2 = 0.5

Let’s find the non-trivial equilibrium point for this system. Consider equation (3.11a), by
setting dN1

dt = 0 we get (
r1 −

b1N
∗
1

1 + α12N∗2
− d1N∗1

)
N∗1 = 0

so either

N∗1 = 0 or r1 −
b1N

∗
1

1 + α12N∗2
− d1N∗1 = 0.

We are looking for the non-trivial point, so we choose

r1 −
b1N

∗
1

1 + α12N∗2
− d1N∗1 = 0

removing a factor of N∗1 , we obtain
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r1 −N∗1
(

b1
1 + α12N∗2

+ d1

)
= 0.

Since d1 =
d1(1+α12N∗

2 )
1+α12N∗

2
, we derive

N∗1

(
b1

1 + α12N∗2
+
d1(1 + α12N

∗
2 )

1 + α12N∗2

)
= r1

⇒ N∗1

(
b1 + d1(1 + α12N

∗
2 )

1 + α12N∗2

)
= r1

∴ N∗1 =
r1(1 + α12N

∗
2 )

b1 + d1(1 + α12N∗2 )
.

Similarly, we can use (3.11b) to find that

N∗2 =
r2(1 + α21N

∗
1 )

b2 + d2(1 + α21N∗1 )
.

Therefore, our non-trivial equilibrium point for the system (3.11a) - (3.11b) is

(N∗1 , N
∗
2 ) =

(
r1(1 + α12N

∗
2 )

b1 + d1(1 + α12N∗2 )
,

r2(1 + α21N
∗
1 )

b2 + d2(1 + α21N∗1 )

)
,

as illustrated by the intersecting point of the two zero-growth isoclines in figure 3.1.

3.2.1 Confirmation of computational work through a worked example

We have the equation

N∗1 =
r1(1 + α12N

∗
2 )

b1 + d1(1 + α12N∗2 )
.

Let us confirm that the graph created from MATLAB is correct by inputting the following
parameter values r1 = r2 = b1 = b2 = 1, α12, α21 = 0.9, d1 = d2 = 0.5. We get

N∗1 =
1(1 + 0.9N∗2 )

1 + 0.5(1 + 0.9N∗2 )

by setting N∗2 = 0, we can find a numerical value for N∗1

N∗1 =
1(1 + 0.9× 0)

1 + 0.5(1 + 0.9× 0)

=
1

1.5

= 0.6̇

by referring to figure 3.1 we see that the zero-growth isocline for N∗1 (displayed as a pink
line) crosses the N1-axis at this value. We can show in a similar manner that the N∗2
isocline will cross the N2-axis at the same value.

This confirms our computational work.



Chapter 4

Delay differential equations

4.1 Introduction to delay differential equations

4.1.1 What are DDEs?

Delay differential equations (DDEs) are equations of the form

y′(t) = f (t, y(t), y(t− τ1(t, y(t))), y(t− τ2(t, y(t))), . . . ) , (4.1)

where the values τi, i = 1, 2, · · · are delays that are measurable physical quantities and
may be either constant, a function of t or a function of t and y itself. There are many
similarities between the theory of ODEs and that of DDEs and analytical methods for
ODEs have been extended to DDEs when possible. However, their differences have made
new approaches necessary [23]. Delays cause severe mathematical complications and by
the same token make a much richer range of phenomena possible [11].

4.1.2 Differences between ODEs and DDEs

An ordinary differential equation assumes that the effect of any changes to the system are
instantaneous whereas a delay differential equation takes past history into account when
dealing with such effects, ODEs generate a system that is finite dimensional, however DDEs
generates a system that is infinite dimensional. Also in terms of solving the equations,
ODEs require an initial value and DDEs require an initial function in order to determine a
particular solution. An advantage of DDEs is that they enable a more accurate reflection of
the system being modelled than ODEs, however the analytical theory is less well developed
in DDEs than ODEs. [23]

4.2 Why are DDEs useful in modelling?

When modelling using mathematics, we of course want to represent the real world as best
we can. With this in mind we notice that in some if not most situations, there is a time-
lag between the inception of an action and the resulting change. Even though ordinary
differential equations have been used as a fundamental tool of mathematical modellers for
a very long time. An ODE model formulation of a system does not take in to account the
presence of any delays. Formulation of a functional differential equation, which includes all
ODEs, DDEs, FDEs (fractional differential equations), etc enables both the current and
all previous values of a function and/or its derivatives to be considered when determining
the future behaviour of a system. This often leads to an improved model.

20
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Use of delays are sought in the modelling many situations, for example, in everyday
occurrences;

• Pressing the ’on’ button on a remote control ⇒ The television turning on

• Shower tap being turned ⇒ Water temperature change.

• Driver applying the brakes in a car ⇒ Car physically slowing down

In biology, there are also many examples in which delays take place;

• Foreign cells in the blood stream ⇒ White blood cells being produced

• Alcohol consumption ⇒ Consumer feeling the effects.

• Pain stimuli ⇒ Pain registering in the brain.

In our particular case, working with population dynamics. There are a large number of
cases in which a time-lag must be taken into account. For example

• Seeds being planted ⇒ Seeds growing into pollenating plants.

• Animals being born ⇒ Animals developing into adults capable of reproduction.

If acquisition of food caused immediate birth of fully mature adults instead of merely pro-
ducing eggs which develop into adults later on, then a system like f(N) = r

(
1− N

K

)
would

be non-oscillatory. It would simply wander around its carrying capacity as a stochastic
logistic process. The time-lag τ between appearance of eggs and adults is therefore fun-
damental to the observed process. However, whilst understanding the underlying biology
may be described as fairly easy, translation of these biological ideas into mathematical
equations is not so simple [31].

The size of the delay relative to the underlying time-scales influences the modellers decision
about the choice of model formulation. Systems for which a model based on a functional
differential equation is more appropriate than one based on an ODE can be referred to
as problems with memory. A delay differential equation model may also be used to
approximate a high dimensional model without delay by a lower dimensional model with
delay, the analysis of which is more readily carried out. This approach has been used
extensively in process control industry [23]

4.3 Constructing and solving the Verhulst-Pearl logistic equa-
tion

The following extract is taken from an MSc mathematical modelling coursework done by
A. Rowntree [34]. It shows an example of how delays can be added into a well-known
ecological model.

Definition 4 (Natural Period of a system). If the growth of a species in the absence of

regulation obeys the equation dN(t)
dt = rN(t) then the ’natural period’ of the system is 1

r .

In general if the feedback loop is longer than the ’natural period’ of the system, then large
amplitude oscillations will result. [31]
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Let’s construct a model to represent a situation in which the net growth rate per individual,
denoted by f(N), is a function of the total population size N(t). Then the deterministic
rate of increase is represented by the equation

dN

dt
= Nf(N). (4.2)

Now when N is large df(N)
dN must be negative, since the larger the population becomes the

greater must be its inhibitory effect on further growth. The simplest assumption to make
is that f(N) is linear, that is

f(N) = r − sN (4.3)

for some positive constants r and s. Substituting (4.3) into (4.2) gives us

dN

dt
= N(r − sN), (4.4)

this is known as the Verhulst-Pearl logistic equation.

An alternative argument is to let r denote the intrinsic rate of natural increase for growth
(the rate at which a population increases in size if there are no density-dependent forces
regulating the population), and to let K be the carrying capacity. Then when N is near
0 and K we require f(N) to be near r and 0 respectively. So let’s consider

f(N) = r

(
1− N

K

)
(4.5)

which drops linearly as N increases. Substituting (4.5) into (4.2) we get

dN

dt
= rN

(
1− N

K

)
. (4.6)

Now let’s solve equation (4.6). Separation of variables yields

dN

N
(
1− N

K

) = rdt. (4.7)

We can use partial fractions to separate the LHS of (4.7)

dN

N
(
1− N

K

) =
A

N
+

B(
1− N

K

) (4.8)

giving all terms a common denominator gives us

⇒ dN

N
(
1− N

K

) =
A
(
1− N

K

)
N
(
1− N

K

) +
BN

N
(
1− N

K

)
∴ dN = A

(
1− N

K

)
+BN
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Let N = 0

⇒ A = dN

Let

(
1− N

K

)
= 0 ∴ K = N

⇒ B =
dN

K
.

So, substituting our expressions for A and B back into equation (4.8) gives us

dN

N
(
1− N

K

) =
dN

N
+

dN

K
(
1− N

K

) (4.9)

therefore by (4.7), (4.9) becomes

dN

N
+

dN

K
(
1− N

K

) = rdt. (4.10)

Integrating both sides of (4.10), we get∫
1

N
dN +

1

K

∫
1(

1− N
K

)dN =

∫
rdt

ln(N)− ln

(
1− N

K

)
= rt+ C

using laws of logs on the LHS we get

ln

(
N

(1− N
K )

)
= rt+ C.

Taking the exponential of both sides;

N

1− N
K

= ert+C

N

1− N
K

= µert

where µ = eC ,

⇒ N = µert
(

1− N

K

)

N = µert − µert
(
N

K

)
Rearranging further for N gives us our general solution of (4.6)
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N(t) =
µert(

1 + µert

K

) (4.11)

We can eliminate our constant of integration µ by letting t = 0 and N(0) = N0 be our
initial condition, this gives us

µ =
N0

k −N0
(4.12)

Substituting (4.12) into (4.11) gives us a particular solution to (4.6)

N(t) =
N0e

rt

(K −N0)
(

1 + N0ert

(k−N0)K

) . (4.13)

4.4 Adding a delay term to equation (4.6)

Introducing a delay term τ to equation (4.6) gives us

dN(t)

dt
= rN(t)

(
1− N(t− τ)

K

)
(4.14)

The delay differential equation (4.14) can now be used to model the dynamics of a sin-
gle species population growing towards K with a constant reproduction rate r; the term(

1− N(t−τ)
K

)
denotes a density dependent feedback mechanism which takes τ units of time

to respond to changes in the population density represented in the equation by N .

By a change of variables in the following manner; let N(t) = Ky(t), α = rτ and t = sτ ,
(4.14) can be brought to an equation in the dimensionless form

dy(s)

ds
= −αy(s− 1) (1 + y(s)) (4.15)

where α is a positive constant that represents the ratio of delay to growth time [11, 9].
Equation (4.15) has been studied in depth by a number of authors, notably Kakutani and
Markus [15] and Wright [38]

This is a good example of how delays can be introduced to significant equations, we shall
take note of these techniques in the next chapter when we introducing delays to the model
(3.11a) - (3.11b).



Chapter 5

Introducing delays to the model
(3.11a) - (3.11b)

The next several chapters follows the work done by Joharee and Roberts [32], however,
we have elongated and elucidated proofs and methods used to provide a more thorough
explanation of the mathematics occurring1.

Considering the model (3.11a) - (3.11b)

dN1

dt
=

(
r1 −

b1N1

1 + α12N2
− d1N1

)
N1

dN2

dt
=

(
r2 −

b2N2

1 + α21N1
− d2N2

)
N2,

we can introduce a delay into the equations to reflect the idea that mutualistic effects on
the population are not realised instantaneously, the model now takes the following form

dN1

dt
=

(
r1 −

b1N1

1 + α12N2(t− τ2)
− d1N1

)
N1 (5.1a)

dN2

dt
=

(
r2 −

b2N2

1 + α21N1(t− τ1)
− d2N2

)
N2, (5.1b)

in order to obtain a specific solution, this model must be coupled with a pair of initial
functions;

N1(t) = ξ1(t) for − τ1 ≤ t ≤ 0, (5.2a)

N2(t) = ξ2(t) for − τ2 ≤ t ≤ 0, (5.2b)

where each initial function is differentiable over its domain and that its range be the set
of positive real numbers. In this chapter, we shall try to prove that the system (5.1a)
- (5.1b) displays asymptotic stability, however before we can do this we must prove the
following inequality is true.

1When studying this paper, a number of discrepancies in the form of typing errors were found, correc-
tions have been made for this dissertation.

25
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Lemma 5.1. If r1, r2, b1, b2, d1, d2 ∈ (0,∞), α12, α21 ∈ [1,∞) then

α12α21b1b2(N
∗
1N
∗
2 )2

(1 + α12N∗2 )2(1 + α21N∗1 )2
< r1r2 (5.3)

Proof. When finding the non-trivial equilibrium point, we ignore the delay aspect of (5.1a)
- (5.1b) as it has no bearing on our equilibrium. Hence we obtain the same point as the
system (3.11a) - (3.11b), we can refer back to Chapter 3 to recall the process of finding it.
Recall that

E = (N∗1 , N
∗
2 ) =

(
r1 (1 + α12N

∗
2 )

b1 + d1 (1 + α12N∗2 )
,

r2 (1 + α21N
∗
1 )

b2 + d2 (1 + α21N∗1 )

)
Note that multiplying N∗1 by N∗2 , we get

N∗1N
∗
2 =

r1r2 (1 + α12N
∗
2 ) (1 + α21N

∗
1 )

(b1 + d1 (1 + α12N∗2 )) (b2 + d2 (1 + α21N∗1 ))
(5.4)

and solving for r1r2 gives us

r1r2 =
N∗1N

∗
2 (b1 + d1 (1 + α12N

∗
2 )) (b2 + d2 (1 + α21N

∗
1 ))

(1 + α12N∗2 ) (1 + α21N∗1 )
. (5.5)

Since b1, b2, d1, d2 ∈ (0,∞), α12, α21 ∈ [1,∞) and (N∗1 , N
∗
2 ) 6= (0, 0) it is clear to see that

b1 < b1 + d1 (1 + α12N
∗
2 ) and b2 < b2 + d2 (1 + α21N

∗
1 ) , (5.6)

therefore it follows from (5.6) that

α12α21b1b2(N
∗
1N
∗
2 )2

(1 + α12N∗2 )2(1 + α21N∗1 )2

<
α12α21 (b1 + d1 (1 + α12N

∗
2 )) (b2 + d2 (1 + α21N

∗
1 )) (N∗1N

∗
2 )2

(1 + α12N∗2 )2(1 + α21N∗1 )2
(5.7)

is true. For the sake of simplicity let

Θ =
α12α21 (b1 + d1 (1 + α12N

∗
2 )) (b2 + d2 (1 + α21N

∗
1 )) (N∗1N

∗
2 )2

(1 + α12N∗2 )2(1 + α21N∗1 )2
.

Therefore by substituting the value for N∗1N
∗
2 from equation (5.4) into the RHS of (5.7)

we get

Θ =

(
α12α21 (b1 + d1 (1 + α12N

∗
2 )) (b2 + d2 (1 + α21N

∗
1 ))

(1 + α12N∗2 )2(1 + α21N∗1 )2

)

×
(

r1r2 (1 + α12N
∗
2 ) (1 + α21N

∗
1 )

(b1 + d1 (1 + α12N∗2 )) (b2 + d2 (1 + α21N∗1 ))

)2
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which simplifies to the single fraction

Θ =
α12α21 (r1r2)

2 (1 + α12N
∗
2 )2 (1 + α21N

∗
1 )2 (b1 + d1 (1 + α12N

∗
2 )) (b2 + d2 (1 + α21N

∗
1 ))

(1 + α12N∗2 )2(1 + α21N∗1 )2 (b1 + d1 (1 + α12N∗2 ))2 (b2 + d2 (1 + α21N∗1 ))2

cancelling gives us

Θ =
α12α21 (r1r2)

2

(b1 + d1 (1 + α12N∗2 )) (b2 + d2 (1 + α21N∗1 ))
(5.8)

removing 1× r1r2 from (5.8) we get

Θ =
α12α21r1r2

(b1 + d1 (1 + α12N∗2 )) (b2 + d2 (1 + α21N∗1 ))
(r1r2)

(5.9)

we now replace the r1r2 that has been taken out of the fraction with the expression for
r1r2 found in equation (5.5);

Θ =

(
α12α21r1r2

(b1 + d1 (1 + α12N∗2 )) (b2 + d2 (1 + α21N∗1 ))

)

×
(
N∗1N

∗
2 (b1 + d1 (1 + α12N

∗
2 )) (b2 + d2 (1 + α21N

∗
1 ))

(1 + α12N∗2 ) (1 + α21N∗1 )

)

cross-cancelling gives us a more simple fraction

Θ =
α12α21r1r2N

∗
1N
∗
2

(1 + α12N∗2 ) (1 + α21N∗1 )

that can be rearranged to

Θ = r1r2

(
α12N

∗
2

1 + α12N∗2

)(
α21N

∗
1

1 + α21N∗1

)
.

Now, since we know that

α12, α21 ∈ [1,∞) and (N∗1 , N
∗
2 ) 6= (0, 0)

this implies that (
α12N

∗
2

1 + α12N∗2

)
,

(
α21N

∗
1

1 + α21N∗1

)
∈ (0, 1).

Therefore it is clear to see that
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α12α21b1b2(N
∗
1N
∗
2 )2

(1 + α12N∗2 )2(1 + α21N∗1 )2
= r1r2

(
α12N

∗
2

1 + α12N∗2

)(
α21N

∗
1

1 + α21N∗1

)
< r1r2

holds true, hence the proof of the lemma (5.3) is completed.

Next, let’s introduce some preliminary to characteristic equations and stability theory.

5.1 Preliminaries

5.1.1 Characteristic equations with regard to delays

Characteristic equations are used in the process of determining a system’s stability. Through-
out the remainder of this chapter, we will notice that the characteristic equations for the
delay model differ to those of our ODE model. It is mentioned by Kuang [17] that as
with linear ODEs, stability properties of linear DDEs can be characterised and analysed
by studying their characteristic equations. For example, the characteristic equation for
x′(t) = ax(t)+bx(t−τ) is λ−a−be−λτ = 0. The roots λ of the characteristic equation are
called characteristic roots. Notice that the root appears in the exponent of the last term
in the characteristic equation, causing the characteristic equation to possess an infinite
number of roots [18]. We shall use this information when determining the asymptotic
stability of our delay model.

5.1.2 A note on asymptotic stability

It is written in Braun (1993) [4] that

”...suppose a vector-valued function

g(x)

||x||
≡ g(x)

max{|x1|, . . . |xn|}
is a continuous function of x1, . . . xn which vanishes for x = 0. Then, the equilibrium
solution x(t) ≡ 0 of dx

dt = Ax + g(x) is asymptotically stable if the equilibrium solution

x(t) ≡ 0 of the linearised equation dx
dt = Ax is asymptotically stable. Equivalently, the

solution x(t) ≡ 0 of dx
dt = Ax + g(x) is asymptotically stable if all the eigenvalues

of A have negative real part....”

Now, we are not interested in linearising our system, so let’s focus on the second part of
this text which is on bold. We can now state and prove the following stability theorem.

5.2 Stability of the DDE

Theorem 5.1. Assume that r1, r2, b1, b2, d1, d2 ∈ (0,∞), α12, α21 ∈ [1,∞). Then the
positive steady state E = (N∗1 , N

∗
2 ) of the delay differential system (5.1a) - (5.1b) with

initial functions (5.2a) - (5.2b) is asymptotically stable
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Proof. Recall again that our on-trivial equilibrium point is

E = (N∗1 , N
∗
2 ) =

(
r1 (1 + α12N2)

b1 + d1 (1 + α12N2)
,

r2 (1 + α21N1)

b2 + d2 (1 + α21N1)

)
.

Let us construct the Jacobian matrix (see Appendix A) of our system (5.1a) - (5.1b).
Firstly by defining the new functions f2 and g2 as

dN1

dt
=

(
r1 −

b1N1

1 + α12N2(t− τ2)
− d1N1

)
N1 = f2(N1, N2)

dN2

dt
=

(
r2 −

b2N2

1 + α21N1(t− τ1)
− d2N2

)
N2 = g2(N1, N2).

Next we calculate the following partial derivatives ∂f2
∂N1

, ∂f2
∂N2

, ∂g2
∂N1

and ∂g2
∂N2

that shall
become the elements in our Jacobian matrix

J =


∂f2
∂N1

∂f2
∂N2

∂g2
∂N1

∂g2
∂N2

 .

Firstly, for ∂f2
∂N1

and ∂g2
∂N2

∂f2
∂N1

=
∂

∂N1

((
r1 −

b1N1

1 + α12N2(t− τ2)
− d1N1

)
N1

)
.

Using the product rule2

∂f2
∂N1

=

(
b1

1 + α12N2(t− τ2)
− d1

)
N1 +

(
r1 −

b1N1

1 + α12N2(t− τ2)
− d1N1

)
× 1

= r1 − 2N1

(
b1

1 + α12N2(t− τ2)
+ d1

)

hence

∂f2
∂N1

= r1 − 2N1

(
b1 + d1 (1 + α12N2(t− τ2))

1 + α12N2(t− τ2)

)
.

Similarly we can show that

∂g2
∂N2

= r2 − 2N2

(
b2 + d2 (1 + α21N1(t− τ1))

1 + α21N1(t− τ1)

)
.

Next, for ∂f2
∂N2

and ∂g2
∂N1

we have

∂f2
∂N2

=
∂

∂N2

((
r1 −

b1N1

1 + α12N2(t− τ2)
− d1N1

)
N1

)
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Using the product rule

∂f2
∂N2

=

(
0− b1N1 ×

∂

∂N2

(
1

1 + α12N2(t− τ2)

)
− 0

)
N1 +

(
r1 −

b1N1

1 + α12N2(t− τ2)
− d1N1

)
× 0

∂f2
∂N2

= −b1N2
1 ×

∂

∂N2

(
1

1 + α12N2(t− τ2)

)

removing constants from the differential gives us

∂f2
∂N2

= −b1N2
1 (−α12)

(
1

(1 + α12N2(t− τ2))2

)
× ∂

∂N2
N2(t− τ2)

⇒ ∂f2
∂N2

=
α12b1N

2
1

(1 + α12N2(t− τ2))2
× ∂

∂N2
N2(t− τ2)

hence

∂f2
∂N2

=
α12b1N

2
1

(1 + α12N2(t− τ2))2
e−λτ2 .

Similarly we can show that

∂g2
∂N1

=
α21b2N

2
2

(1 + α21N1(t− τ1))2
e−λτ1 .

So, our Jacobian matrix takes the following form

J =

r1 − 2N1

(
b1+d1(1+α12N2(t−τ2))

1+α12N2(t−τ2)

)
α12b1N2

1

(1+α12N2(t−τ2))2
e−λτ2

α21b2N2
2

(1+α21N1(t−τ1))2
e−λτ1 r2 − 2N2

(
b2+d2(1+α21N1(t−τ1))

1+α21N1(t−τ1)

)
 .

.

Now, we can construct the Jacobian matrix of the system evaluated at our equilibrium
point E = (N∗1 , N

∗
2 );

JE =


r1 − 2N∗1

(
b1+d1(1+α12N∗

2 )
1+α12N∗

2

)
α12b1(N∗

1 )
2

(1+α12N∗
2 )

2 e
−λτ2

α21b2(N∗
2 )

2

(1+α21N∗
1 )

2 e
−λτ1 r2 − 2N∗2

(
b2+d2(1+α21N∗

1 )
1+α21N∗

1

)
 .

.
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The diagonal elements in the matrix JE can be simplified as follows

r1 − 2N∗1

(
b1 + d1 (1 + α12N

∗
2 )

1 + α12N∗2

)
= r1 − 2

(
b1 + d1 (1 + α12N

∗
2 )

1 + α12N∗2

)(
r1 (1 + α12N2)

b1 + d1 (1 + α12N2)

)
= r1 − 2r1

= −r1

and

r2 − 2N∗2

(
b2 + d2 (1 + α21N

∗
1 )

1 + α21N∗1

)
= r2 − 2

(
b2 + d2 (1 + α21N

∗
1 )

1 + α21N∗1

)(
r2 (1 + α21N1)

b2 + d2 (1 + α21N1)

)
= r2 − 2r2

= −r2.

So our the Jacobian matrix of the system evaluated at the equilibrium point E now looks
like

JE =


−r1

α12b1(N∗
1 )

2

(1+α12N∗
2 )

2 e
−λτ2

α21b2(N∗
2 )

2

(1+α21N∗
1 )

2 e
−λτ1 −r2

 . (5.10)

.

Using

(JE − λI) =


−r1 − λ

α12b1(N∗
1 )

2

(1+α12N∗
2 )

2 e
−λτ2

α21b2(N∗
2 )

2

(1+α21N∗
1 )

2 e
−λτ1 −r2 − λ

 , (5.11)

.

we can now find our characteristic equation by
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det (JE − λI) = 0

⇒ det


−r1 − λ

α12b1(N∗
1 )

2

(1+α12N∗
2 )

2 e
−λτ2

α21b2(N∗
2 )

2

(1+α21N∗
1 )

2 e
−λτ1 −r2 − λ

 = 0

⇒

(
λ2 + (r1 + r2)λ+ r1r2

)
−

(
α12b1 (N∗1 )2

(1 + α12N∗2 )2
e−λτ2

)(
α21b2 (N∗2 )2

(1 + α21N∗1 )2
e−λτ1

)
= 0

⇒ λ2 + (r1 + r2)λ+ r1r2 −
α12α21b1b2 (N∗1 )2 (N∗2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
e−λ(τ1+τ2) = 0, (5.12)

.

which, for convenience we shall write (5.12) as

λ2 +Aλ+B − Ce−λτ = 0, (5.13)

where

A = r1 + r2 (5.14)

B = r1r2 (5.15)

C =
α12α21b1b2 (N∗1 )2 (N∗2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
(5.16)

τ = τ1 + τ2. (5.17)

Our equilibrium point E is asymptotically stable if the roots of the characteristic equation
(5.13) have negative real part3.

Substituting λ = x+ iy into (5.13) gives us

(x+ iy)2 +A (x+ iy) +B − Ce−(x+iy)τ = 0

which expands to

x2 + 2ixy − y2 +Ax+Aiy +B − C
(
e−xτ cos(yτ)− ie−iyτ sin(yτ)

)
= 0. (5.18)

Separating real and imaginary part of (5.18) yields the following two equations

3It is well known that if the characteristic equation associated with a linear neutral equation has roots
only with negative real parts, and if all the roots are uniformly bounded away from the imaginary axis,
then the trivial solution of the linear neutral equation is uniformly asymptotically stable [17]. We also
refer back to our preliminary at the start of this chapter.
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Real ⇒
(
x2 − y2

)
+ (Ax+B) = Ce−xτ cos(yτ) (5.19)

Imaginary ⇒ 2xy +Ay = −Ce−xτ sin(yτ). (5.20)

Squaring and adding (5.19) - (5.20) we get

( (
x2 − y2

)
+ (Ax+B)

)2
+ (2xy +Ay)2 =

(
Ce−xτ cos(yτ)

)2
+
(
−Ce−xτ sin(yτ)

)2
which expands to

x4 − x2y2 + x3A+ x2B − x2y2 + y4 − xy2A− y2B + x3A− xy2A+ x2A2 + xAB

+ x2B − y2B + xAB +B2 + 4x2y2 + 2Axy2 + 2Axy2 +A2y2

− C2e−2xτ
(
cos2(yτ) + sin2(yτ)

)
= 0.

Simplifying terms gives us

x4 +2x2y2 +y4 +x2A2 +2xy2A+A2y2−2y2B+2x3A+2x2B+2xAB+B2−C2e−2xτ = 0

which can now be factorised into the following equation

(
x2 + y2

)2
+x2A2+y2

(
2xA+A2 − 2B

)
+2x

(
x2A+ xB +AB

)
+B2

(
1− C2

B2
e−2xτ

)
= 0.

(5.21)
Using our Lemma (5.1), we have the additional information that

0 <
α12α21b1b2(N

∗
1N
∗
2 )2

(1 + α12N∗2 )2(1 + α21N∗1 )2
< r1r2

that is

0 < C < B (5.22)

It is also clear that AB > 0 and A2 − 2B > B. If we assume that x ≥ 0 then (5.21) is
only satisfied if x = y = 0 and B = C. This contradicts (5.22) and so x = Re(λ) < 0.
Therefore we conclude that every root of the characteristic equation (5.13) has a negative
real part and hence asymptotic stability of the equilibrium point E is confirmed. This
concludes our proof.

Asymptotic stability of this system is not conditional on the delay, to show this we shall
determine stability of the underlying ODE without delays.
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5.3 Stability of the underlying ODE

Setting the delays τ1, τ2 = 0 we can confirm asymptotic stability of the underlying ordinary
differential system in a similar manner, we have the system of equations f3 and g3

dN1

dt
=

(
r1 −

b1N1

1 + α12N2
− d1N1

)
N1 = f3(N1, N2)

dN2

dt
=

(
r2 −

b2N2

1 + α21N1
− d2N2

)
N2 = g3(N1, N2)

with equilibrium points

E = (N∗1 , N
∗
2 ) =

(
r1 (1 + α12N2)

b1 + d1 (1 + α12N2)
,

r2 (1 + α21N1)

b2 + d2 (1 + α21N1)

)
.

Again, calculating the following partial derivatives ∂f3
∂N1

, ∂f3
∂N2

, ∂g3
∂N1

and ∂g3
∂N2

, as before

∂f3
∂N1

= r1 − 2N1

(
b1 + d1 (1 + α12N2)

1 + α12N2

)
similarly,

∂g3
∂N2

= r2 − 2N2

(
b2 + d2 (1 + α21N1)

1 + α21N1(t

)
calculating ∂f3

∂N2
is slightly different as there is no delay term to differentiate,

∂f3
∂N2

=
∂

∂N2

((
r1 −

b1N1

1 + α12N2
− d1N1

)
N1

)
.

Using the product rule we get

∂f3
∂N2

=

(
0− b1N1 ×

∂

∂N2

(
1

1 + α12N2

)
− 0

)
N1 +

(
r1 −

b1N1

1 + α12N2
− d1N1

)
× 0

= −b1N2
1 ×

∂

∂N2

(
1

1 + α12N2

)
.

Using the chain rule, we arrive at

∂f3
∂N2

=
α12b1N

2
1

(1 + α12N2)
2
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and again, we can show that

∂g3
∂N1

=
α21b2N

2
2

(1 + α21N1)
2 .

The Jacobian matrix takes the following form

J =

r1 − 2N1

(
b1+d1(1+α12N2)

1+α12N2

)
α12b1N2

1

(1+α12N2)
2

α21b2N2
2

(1+α21N1)
2 r2 − 2N2

(
b2+d2(1+α21N1)

1+α21N1

)
 .

which, when evaluated at our equilibrium point simplifies to

JE =


−r1

α12b1(N∗
1 )

2

(1+α12N∗
2 )

2

α21b2(N∗
2 )

2

(1+α21N∗
1 )

2 −r2

 . (5.23)

.

We can hence find our characteristic equation by

det (JE − λI) = 0

⇒ det

 −r1 − λ
α12b1N2

1

(1+α12N2)
2

α21b2N2
2

(1+α21N1)
2 −r2 − λ

 = 0

⇒

(
λ2 + (r1 + r2)λ+ r1r2

)
−

(
α12b1 (N∗1 )2

(1 + α12N∗2 )2

)(
α21b2 (N∗2 )2

(1 + α21N∗1 )2

)
= 0

⇒ λ2 + (r1 + r2)λ+ r1r2 −
α12α21b1b2 (N∗1 )2 (N∗2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
= 0

.

which can simplify to

λ2 +Aλ+ (B − C) = 0 (5.24)

where
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A = r1 + r2

and

B − C = r1r2 −
α12α21b1b2 (N∗1 )2 (N∗2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
.

We can now solve our characteristic equation by using the quadratic formula. So we get

λ =
−A±

√
A2 − 4 (B − C)

2

which yields two solutions

λ1 =
−A+

√
A2 − 4 (B − C)

2

and

λ2 =
−A−

√
A2 − 4 (B − C)

2
.

To confirm asymptotic stability of the system, we must show that the real part of λ is
negative i.e. to show that the real parts of both solutions λ1 and λ2 are negative.

Now, consider the discriminant4, let’s call it ∆, if ∆ > 0 then there exists no imaginary
part in the solution. So let’s show this; We know that A,B,C > 0 and that B > C

∆ = A2 − 4 (B − C)

⇒ ∆ = (r1 + r2)
2 − 4

(
r1r2 −

α12α21b1b2 (N∗1 )2 (N∗2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

)

⇒ ∆ = r21 + 2r1r2 + r22 − 4r1r2 + 4
α12α21b1b2 (N∗1 )2 (N∗2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

⇒ ∆ = r21 − 2r1r2 + r22 + 4
α12α21b1b2 (N∗1 )2 (N∗2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

⇒ ∆ = (r1 + r2)
2 + 4

α12α21b1b2 (N∗1 )2 (N∗2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

∴ ∆ > 0.

4The discriminant of the quadratic formula is b2 − 4ac that is under the square root sign.
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Now that we know ∆ > 0 then of course
√

∆ > 0, so it is clear to see that λ2 < 0. Next
is to show that λ1 < 0, which is essentially to show that

0 > −A+
√
A2 − 4 (B − C). (5.25)

We know that multiplying the RHS of (5.25) by 1
2 will make no change to its sign. So,

0 > −A+
√
A2 − 4 (B − C)

A >
√
A2 − 4 (B − C)

A2 > A2 − 4 (B − C)

0 > −4 (B − C)

which holds true since B > C. Therefore λ1 < 0 hence λ < 0 which of course implies that
Re(λ) since λ has no imaginary part. Asymptotic stability is now confirmed for our delay
system in the special case of τ1, τ2 = 0.



Chapter 6

Discrete time models

6.1 Introduction to discrete time models

6.1.1 What is a discrete time model?

time

fu
n

ct
io

n

Figure 6.1: Graph showing continuous behaviour (red) compared with discrete behaviour
(blue) of an arbitrary function of time

Dealing with discrete time is to think of time as occurring at distinct, separate points.
The idea that time jumps from once point to the next is considered as opposed to the idea
that time moves in a continuous manner. We can take the often used example of clocks
to visualise this concept better, many analogue clocks have the minute and the hour hand
moving around the face in a slow continuous circular motion whereas a digital clock will
jump from say, 19:59pm to 18:00pm; each minute in the digital clock is a discrete time
period. See figure 6.1 for an illustrative example of continuous behaviour versus discrete
behaviour.

6.1.2 Why is a discrete model necessary in modelling population dy-
namics?

Often in nature, births of organisms occur during regular ’breeding seasons’ that are mostly
very specific. For example, many insects will reproduce during their lifespan and lay their
eggs before they die. This leaves a period of time between generations.

38
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Most models are considered to have a constant environment, meaning the model is assumed
to be autonomous, that is, all biological and environmental parameters have been assumed
to be constants in time. However, this is rarely the case in real life, because many of
these parameters do in fact vary in time (naturally subject to seasonal fluctuations for
example). When this is taken into account, a model must be nonautonomous. This is of
course, more difficult analyse in general but in doing so, one can take advantage of those
varying parameters [8]. It has been argued by Freedman [10] that the discrete time models
governed by difference equations are more appropriate than the continuous ones with the
populations have non-overlapping generations.

6.2 Discretising our mutualism model (3.11a) - (3.11b) using
piecewise constant arguments

Let’s start by proposing discrete analogues of the model (3.11a) - (3.11b) and use an
approach described and applied in the work by Fan and Wang, 2002 [8]. In order to do
this we take the system (3.11a) - (3.11b) which we recall after dividing both sides by N1

and N2 respectively looks like;

1

N1(t)

dN1

dt
= r1 −

b1N1(t)

1 + α12N2(t)
− d1N1(t)

1

N2(t)

dN2

dt
= r2 −

b2N2(t)

1 + α21N1(t)
− d2N2(t).

We are going to discretise the RHS such that it takes the following form

1

N1(t)

dN1

dt
= r1 −

b1N1([t])

1 + α12N2([t])
− d1N1([t]) (6.1a)

1

N2(t)

dN2

dt
= r2 −

b2N2([t])

1 + α21N1([t])
− d2N2([t]) (6.1b)

where [t] represents the integer part of t, t ∈ (0,∞). Equations of the type (6.1a) - (6.1b)
are known as differential equations with piecewise constant arguments and these equations
occupy a position midway between differential equations and difference equations [32].

On any interval [k, k + 1], k = 0, 1, 2, . . . , we can integrate (6.1a):

⇒
∫ t

k

1

N1(t)

dN1(t)

dt
dt =

∫ t

k

dN1

N1(t)
=

∫ t

k

(
r1 −

b1N1([t])

1 + α12N2([t])
− d1N1([t])

)
dt
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⇒
∫ t

k

dN1

N1(t)
=

∫ t

k
r1dt−

∫ t

k

b1N1([t])

1 + α12N2([t])
dt−

∫ t

k
d1N1([t])dt

⇒
[

ln (N1(t))
]t
k

=
[
r1t
]t
k
−
[

b1N1(k)

1 + α12N2(k)
t

]t
k

−
[
d1N1(k)t

]t
k

⇒ ln (N1(t))− ln (N1(k)) =
[

(r1t)− (r1k)
]
−
[(

b1N1(k)

1 + α12N2(k)
t

)
−
((

b1N1(k)

1 + α12N2(k)
k

))]
−
[

(d1N1(k)t)− (d1N1(k)k)
]

⇒ ln (N1(t))− ln (N1(k)) = r1(t− k)− b1N1(k)

1 + α12N2(k)
(t− k)− d1N1(k)(t− k)

we can use the laws of logs to rewrite the LHS and take out a factor of (t−k) on the RHS
to obtain

ln

(
N1(t)

N1(k)

)
=

(
r1 −

b1N1(k)

1 + α12N2(k)
− d1N1(k)

)
(t− k).

Taking exponentials of both sides yields

N1(t)

N1(k)
= e

((
r1− b1N1(k)

1+α12N2(k)
−d1N1(k)

)
(t−k)

)

we can now multiply both sides by N1(k) to give us

N1(t) = N1(k)e

((
r1− b1N1(k)

1+α12N2(k)
−d1N1(k)

)
(t−k)

)
.

By letting t→ k + 1, we obtain the discrete analogue of (3.11a) - (3.11b):

N1(k + 1) = N1(k)e

(
r1− b1N1(k)

1+α12N2(k)
−d1N1(k)

)
(6.2a)

N2(k + 1) = N2(k)e

(
r2− b2N2(k)

1+α21N1(k)
−d2N2(k)

)
. (6.2b)

We can also show, very similarly, that we can construct a discrete model with delays in
the effect of mutualistic reactions represented as follows

N1(k + 1) = N1(k)e

(
r1− b1N1(k)

1+α12N2(k−τ2)
−d1N1(k)

)
= f4(N1, N2) (6.3a)

N2(k + 1) = N2(k)e

(
r2− b2N2(k)

1+α21N1(k−τ1)
−d2N2(k)

)
= g4(N1, N2). (6.3b)
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The discrete systems also possess a nontrivial equilibrium point and this point coincides
with that of the continuous model from which they are derived. So, by setting N1(k+1) =
N1(k) = N∗1 in (6.3a), and ignoring any points where one or more species are extinct,

N1(k + 1) = N1(k)e

(
r1− b1N1(k)

1+α12N2(k−τ2)
−d1N1(k)

)
gives

N∗1 = N∗1 e

(
r1−

b1N
∗
1

1+α12N
∗
2
−d1N∗

1 )

)

⇒ 1 = e

(
r1−

b1N
∗
1

1+α12N
∗
2
−d1N∗

1 )

)

we can take natural logs of both sides to obtain

ln(1) = r1 −
b1N

∗
1

1 + α12N∗2
− d1N∗1

⇒ 0 = r1 −N∗1
(

b1
1 + α12N∗2

+ d1

)

r1 = N∗1

(
b1 + d1(1 + α12N

∗
2 )

1 + α12N∗2

)

∴ N∗1 =
r1(1 + α12N

∗
2 )

b1 + d1(1 + α12N∗2 )
.

Again we can similarly show that by setting N2(k + 1) = N2(k) = N∗2 in the (6.3b), we
can find N∗2 and obtain our equilibrium point for the discrete model;

E = (N∗1 , N
∗
2 ) =

(
r1(1 + α12N

∗
2 )

b1 + d1(1 + α12N∗2 )
,

r2(1 + α21N
∗
1 )

b2 + d2(1 + α21N∗1 )

)
. (6.4)

Now, let’s evaluate the Jacobian for the delay model at this point. Next, consider (6.3a)

f4(N1, N2) =N1e

(
r1− b1N1

1+α12N2
−d1N1

)

Using the product rule

∂f4(N1, N2)

∂N1
=N1 ×

∂

∂N1

(
e

(
r1− b1N1

1+α12N2
−d1N1

))
+

∂

∂N1

(
N1

)
× e

(
r1− b1N1

1+α12N2
−d1N1

)
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Using the chain rule for the first term

∂f4(N1, N2)

∂N1
=−N1

(
b1 + d1 (1 + α12N2)

1 + α12N2

)(
e

(
r1−N1

(
b1+d1(1+α12N2)

1+α12N2

)))
+ e

(
r1−N1

(
b1+d1(1+α12N2)

1+α12N2

))

Substituting in our value for N∗1

∴
∂f4(N

∗
1 , N

∗
2 )

∂N1
= −

(
r1(1 + α12N

∗
2 )

b1 + d1(1 + α12N∗2 )

)(
b1 + d1 (1 + α12N

∗
2 )

1 + α12N∗2

)
×

(
e

(
r1−

(
r1(1+α12N

∗
2 )

b1+d1(1+α12N
∗
2 )

)(
b1+d1(1+α12N

∗
2 )

1+α12N
∗
2

)))

+ e

(
r1−

(
r1(1+α12N

∗
2 )

b1+d1(1+α12N
∗
2 )

)(
b1+d1(1+α12N

∗
2 )

1+α12N
∗
2

))

which cancels down to

∂f4(N
∗
1 , N

∗
2 )

∂N1
= −r1er1−r1 + er1−r1

= −r1e0 + e0

= −r1 + 1

= 1− r1,

similarly, we can show that

∂g4(N
∗
1 , N

∗
2 )

∂N2
= 1− r2.

Next, we compute the remaining two elements of J

f4(N1, N2) =N1e

(
r1− b1N1

1+α12N2
−d1N1

)
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using the chain rule

∂f4(N1, N2)

∂N2
=N1e

(
r1− b1N1

1+α12N2
−d1N1

)(
−b1N1 ×

∂

∂N2

(
1

1 + α12N2(k − τ2)

))

=N1e

(
r1− b1N1

1+α12N2
−d1N1

)(
−b1N1 ×

∂

∂N2

(
1 + α12N2(k − τ2)

)−1)

=b1N
2
1 e

(
r1− b1N1

1+α12N2
−d1N1

)
(1 + α12N2(k − τ2))−2 α12 ×

∂

∂N2

(
N2(k − τ2)

)
=

α12b1N
2
1

(1 + α12N2(k − τ2))2
e

(
r1− b1N1

1+α12N2
−d1N1

)
× ∂

∂N2

(
N2(k − τ2)

)

=
α12b1N

2
1

(1 + α12N2(k − τ2))2
e

(
r1−N1

b1+d1(1+α12N2)
1+α12N2

)
λ−τ2 ,

hence

∂f4(N
∗
1 , N

∗
2 )

∂N2
=
α12b1 (N∗1 )2

(1 + α12N∗2 )2
e

(
r1−

(
r1(1+α12N

∗
2 )

b1+d1(1+α12N
∗
2 )

)(
b1+d1(1+α12N

∗
2 )

1+α12N
∗
2

))
λ−τ2

the exponential term cancels down to

∂f4(N
∗
1 , N

∗
2 )

∂N2
=
α12b1 (N∗1 )2

(1 + α12N∗2 )2
e(r1−r1)λ−τ2

=
α12b1 (N∗1 )2

(1 + α12N∗2 )2
e0λ−τ2

therefore

∂f4(N
∗
1 , N

∗
2 )

∂N2
=
α12b1 (N∗1 )2

(1 + α12N∗2 )2
λ−τ2 .

We can show in the same manner that the final element is

∂g4(N
∗
1 , N

∗
2 )

∂N1
=

α21b2 (N∗2 )2

(1 + α21N∗1 )2
λ−τ1 ,

thus our Jacobian matrix looks like
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JE =


1− r1

α12b1(N∗
1 )

2

(1+α12N∗
2 )

2λ
−τ2

α21b2(N∗
2 )

2

(1+α21N∗
1 )

2λ
−τ1 1− r2

 . (6.5)

Before we state our characteristic equation for this matrix, let’s introduce some new ideas.

6.2.1 Preliminary

The following preliminary is from the work done by Elaydi [7]
Consider the kth order equation

x(n+ k) + p1x(n+ k − 1) + p2(n+ k − 2) + · · ·+ Pkx(n) = 0 (6.6)

where the pi’s are real numbers.

The zero solution of equation (6.6) is asymptotically stable if and only if |λ| < 1 for
every characteristic root λ of equation (6.6), that is for every zero of the characteristic
polynomial

p(λ) = λk + p1λ
k−1 + · · ·+ pk. (6.7)

We present the Schur-Cohn criterion which defines the conditions for the characteristic
roots of equation (6.6) to fall inside the unit circle . Hence, this criterion is also a criterion
for asymptotic stability.

Definition 5 (Inners of a matrix A). The inners of a square matrix A are the matrix
itself and all the other matrices obtained by omitting successively the first and last rows
and the first and last columns. For example, the inners for the following matrices are
highlighted

A3×3 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33



A4×4 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



A5×5 =


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55


Definition 6 (Positive Innerwise). A matrix A is said to be positive innerwise if the
determinants of all of its inners are positive.
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Theorem 6.1 (Shur-Cohn criterion). The zeros of the characteristic polynomial (6.7) lie
inside the unit circle if and only if the following hold:

1. p(1) > 0,

2. (−1)kp(−1) > 0,

3. the (k − 1)× (k − 1) matrices

A±k−1 =


1 0 · · · 0
p1 1 · · · 0
...

...
pk−3
pk−2 pk−3 · · · p1 1

±


0 0 · · · pk
0 0 · · · pk pk−1
...

...
...

0 pk p3
pk pk−1 · · · p3 p2


are positive innerwise.

Example 6.1. Consider the equation

x(n+ 2) + p1x(n+ 1) + p2x(n) = 0 (6.8)

Its characteristic polynomial is given by

p(λ) = λ2 + p1λ+ p2.

Let us attempt to discover the conditions which make the zero solution of equation (6.8)
asymptotically stable. Using the Schur-Cohn criterion (see Theorem 6.1), we require

p(1) = 1 + p1 + p2 > 0

and

p(−1) = 1− p1 + p2 > 0.

This implies that 1 + p2. From condition 3 we stipulate that 1− p2 > 0 or p2 < 1.
Thus a necessary and sufficient condition for the zero solution of equation (6.8) to be
asymptotically stable is

1. 1 + p1 + p2 > 0,

2. 1− p1 + p2 > 0,

3. p2 < 1.

See [7].

We shall use this information when determining the stability of our discrete model of
mutualism. We notice that the Jacobian matrix (6.5) leads to a characteristic polynomial
of the form

λτ+2 −Qλτ+1 +Rλτ − S = 0 (6.9)
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where

Q = 2− (r1 + r2),

R = (1− r1)(1− r2),

S =
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
λ−τ ,

τ = τ1 + τ2.

We focus on the special case, τ1 = τ2 = 0 of our derived model and show that this model
corresponds to a different stability region to that of (3.11a) - (3.11b). For the non-delay
case, our characteristic equation becomes

λ0+2 −Qλ0+1 +Rλ0 − S = 0

which can be more simply written as

λ2 −Qλ+R− S = 0

where

Q = 2− (r1 + r2),

and

R− S = (1− r1)(1− r2)−
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
.

We notice that Q = 2 − (r1 + r2) is equal to the trace1 of J . We also notice that the
determinant of J is equal to R−S. So, with this information at hand we can re-write our
characteristic polynomial as a quadratic in the form

λ2 − Tr(J)λ+ det(J) = 0 (6.10)

where

Tr(J) = 2− (r1 + r2),

and

det(J) = (1− r1)(1− r2)−
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
.

We can now prove the following result:

1The trace of an n× n square matrix A is the sum of the leading diagonal elements of A i.e. Tr(A) =
n∑
i=1

aii
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Theorem 6.2. Assume that r1, r2, b1, b2, d1, d2 ∈ (0,∞), α12, α21 ∈ [1,∞). Then the
positive steady state E = (N∗1 , N

∗
2 ) of the discrete system (6.2a) - (6.2b) with initial

conditions N1(0) > 0, N2(0) is asymptotically stable providing that

2 +
Φ

2
> (r1 + r2) > Φ (6.11)

where

Φ = r1r2 −
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
.

Proof. It is stated (see preliminary section earlier) that, for asymptotic stability of a second
order system we require the following conditions to hold

1. 1 + Tr(J) + det(J) > 0,

2. 1− Tr(J) + det(J) > 0,

3. det(J) < 1.

Let’s prove the first condition. Using our identities for Tr(J) and det(J) we get

1 + Tr(J) + det(J) = 1 + 2− (r1 + r2) + (1− r1)(1− r2)−
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

= 1 + 2− r1 − r2 + 1− r1 − r2 + r1r2 −
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

= 4− 2(r1 + r2) + Φ

with Φ as stated in the theorem. Let’s assume that this is greater that zero, we get

4− 2(r1 + r2) + Φ > 0.

Dividing both sides by 2 yields

2− (r1 + r2) +
Φ

2
> 0

which can be rearranged to

2 +
Φ

2
> (r1 + r2)

which we know is true from (6.11). Hence, the first condition holds.

For the second condition, using our identities for Tr(J) and det(J) we have
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1− Tr(J) + det(J) = 1− [2− (r1 + r2)] + (1− r1)(1− r2)−
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

= 1− 2 + r1 + r2 + 1− r1 − r2 + r1r2 −
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
,

= r1r2 −
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

by lemma (5.1) we know that

r1r2 >
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

hence it is clear to see that

r1r2 −
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
> 0

is true, thus proving our second condition.

Finally we shall prove our third condition. Using our identity for det(J), consider

1− det(J) = 1−

(
(1− r1)(1− r2)−

α12α21b1b2 (N∗1N
∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

)

= 1− (1− r1)(1− r2) +
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

= 1− (1− r1 − r2 + r1r2) +
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

= r1 + r2 − r1r2 +
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

= r1 + r2 −

(
r1r2 −

α12α21b1b2 (N∗1N
∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

)

= r1 + r2 − Φ

by (6.11), we know that

r1 + r2 > Φ
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therefore, it is clear to see that

r1 + r2 − Φ > 0

hence

1− det(J) > 0

i.e.

det(J) < 1.

So our third and final condition holds, thus proving the theorem and confirming asymp-
totic stability for the system (6.2a) - (6.2b).

6.3 Numerical Methods

6.3.1 Introduction to Numerical Methods

It is very often not possible to solve differential equations analytically, take the following
initial-value problem for instance

y′(t) = f(t, y), y(t0) = y0. (6.12)

Therefore, in order for such differential equations to have any practical use to us, we must
devise ways of obtaining accurate approximations of the solution y(t) of (6.12). Now,
there’s no way we could approximate a function on an entire interval t0 ≤ t ≤ t0 + a
since this would require an infinite amount of information. However, what we can do
is approximate values y1, y2, . . . , yN of y(t) at a finite number of points t1, t2, . . . , tN to
obtain an approximation of y(t) on the entire interval t0 ≤ t ≤ t0 + a [4].

6.3.2 Euler’s Scheme

The following construction of Euler’s scheme is heavily based on a similar construction
taken from Braun [4]. Let ŷ(t) be the function whose graph on each interval [ti, ti+1] is the
straight line connecting the points (ti, yi) and (ti+1, yi+1) (see Figure 6.2), we can express
ŷ(t) analytically by the equation

ŷ(t) = yi +
1

h
(t− ti)(yi+1 − yi), ti ≤ t ≤ ti+1.
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y

t
t0 t1 t2 t3 t4

ŷ(t)

y(t)

(t0, y0)

(t1, y1)

(t2, y2)

(t3, y3) (t4, y4)

Figure 6.2: Graph showing the comparison between ŷ(t) and y(t)

If ŷ(t) is close to y(t) at t = ti; that is, if yi is close to y(ti), and if ti+1 is close to ti, then
ŷ(t) is close to y(t) on the entire interval ti ≤ t ≤ ti+1. This follows immediately from
the continuity of both y(t) and ŷ(t). Thus, we need only devise schemes for obtaining
accurate approximations of y(t) at a discrete number of points t1, t2, . . . , tN in the interval
t0 ≤ t ≤ t0+a. For simplicity, we will require the points t1, t2, . . . , tN to be equally spaced.
This is achieved by choosing a large N ∈ Z and setting tn = t0 + k

(
a
N

)
, n = 1, 2, . . . , N .

Alternatively, we may write tn+1 = tn + h where h = a
N .

Now, the only thing we know about y(t) is that it satisfies a certain differential equation
(i.e. (6.12)), and that its value at t = t0 is y0. We shall use this information to approximate
a value for y1 of y at t = t1 = t0 + h. Then, we will use the approximation y1 to find an
approximate value for y2 of y at t = t2 = t1 + h and so on. In order to accomplish this
we must use a theorem which enables us to compute the value of y at t = tn + h from the
knowledge of y at t = tn. The theorem we shall use, is Taylor’s Theorem,

y(tn + h) = y(tn) + h
dy(tn)

dt
+
h2

2!

d2y(tn)

dt2
+ · · · (6.13)

Thus, if we know the value of y and its derivatives at t = tn, then we can compute the
value of y at t = tn + h. Now, y(t) satisfies the initial-value problem (6.12). Hence, its
derivative, when evaluated at t = tn, must equal f(tn, y(tn)). Moreover, by repeated use
of the chain rule of partial differentiation (see Appendix A), we can evaluate

d2y(tn)

dt2
=

[
∂f

∂t
+ f

∂f

∂y

]
(tn, y(tn))

and all other higher-order derivatives of y(t) at t = tn. Hence, we can rewrite (6.13) as an
equation in the form

y(tn + h) = y(tn) + hf(tn, y(tn)) +
h2

2!

[
∂f

∂t
+ f

∂f

∂y

]
(tn, y(tn)) + · · · (6.14)

The simplest approximation of y(tn+1) is obtained by truncating the Taylor series (6.14)
after the second term. This gives rise to the numerical scheme

y1 = y0 + hf(t0, y0), y2 = y1 + hf(t1, y1),
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and, in general

yn+1 = yn + hf(tn, yn), y0 = y(t0). (6.15)

Notice how we use the initial-vlaue y0 and the fact that y(t) satisfies the differential
equation y′(t) = f(t, y) to compute an approximation y1 of y(t) at t = t1. Then, we use
y1 to approximate y2 at t = t2, and so on.

Equation (6.15) is known as Euler’s scheme [4].

6.4 Discretising the model (3.11a) - (3.11b) through applica-
tion of Euler’s Scheme

Applying Euler’s scheme to our earlier system

dN1

dt
=

(
r1 −

b1N1

1 + α12N2
− d1N1

)
N1

dN2

dt
=

(
r2 −

b2N2

1 + α21N1
− d2N2

)
N2

yields the following discrete system

N1(tn+1) = N1(tn) + hN1(tn)

(
r1 −

b1N1(tn)

1 + α12N2(tn)
− d1N1(tn)

)
(6.16a)

N2(tn+1) = N2(tn) + hN2(tn)

(
r2 −

b2N2(tn)

1 + α21N1(tn)
− d2N2(tn)

)
. (6.16b)

Let’s find the nontrivial equilibrium points in a similar manner as before. SettingN1(tn+1) =
N1(tn) = N∗1 , equation (6.16a) becomes

N∗1 = N∗1 + hN∗1

(
r1 −

b1N
∗
1

1 + α12N∗2
− d1N∗1

)
⇒ 0 = hr1N

∗
1 −

hb1 (N∗1 )2

1 + α12N∗2
− hd1 (N∗1 )2

dividing both sides by N∗1 gives us

0 = hr1 −
hb1N

∗
1

1 + α12N∗2
− hd1N∗1

which can be rearranged to obtain

hr1 =
hb1N

∗
1

1 + α12N∗2
+ hd1N

∗
1 .



CHAPTER 6. DISCRETE TIME MODELS 52

Taking out a factor of N∗1 on the RHS yields

hr1 = N∗1

(
hb1

1 + α12N∗2
+ hd1

)
,

we can find a common denominator on the RHS to obtain a single fraction

hr1 = N∗1

(
hb1 + hd1 (1 + α12N

∗
2 )

1 + α12N∗2

)
and solving for N∗1 ;

N∗1 =
hr1 (1 + α12N

∗
2 )

h (b1 + d1 (1 + α12N∗2 ))

the h’s cancel on the RHS and we arrive at

N∗1 =
r1 (1 + α12N

∗
2 )

b1 + d1 (1 + α12N∗2 )

and we can find again that

N∗2 =
r2 (1 + α21N

∗
1 )

b2 + d2 (1 + α21N∗1 )

giving us our non-trivial equilibrium point

E = (N∗1 , N
∗
2 ) =

(
r1 (1 + α12N

∗
2 )

b1 + d1 (1 + α12N∗2 )
,

r2 (1 + α21N
∗
1 )

b2 + d2 (1 + α21N∗1 )

)

for the system. We notice that it corresponds to those found before. We can now find the
partial derivatives required to construct our next Jacobian matrix. Let

N1(tn+1) = N1(tn) + hN1(tn)

(
r1 −

b1N1(tn)

1 + α12N2(tn)
− d1N1(tn)

)
= f5

N2(tn+1) = N2(tn) + hN2(tn)

(
r2 −

b2N2(tn)

1 + α21N1(tn)
− d2N2(tn)

)
= g5

consider f5

f5 = N1 + hN1

(
r1 −

b1N1

1 + α12N2
− d1N1

)

expanding brackets gives us

f5 = N1 + hN1r1 −
hb1N

2
1

1 + α12N2
− hd1N2

1
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differentiating f5 with respect to N1 yields

∂f5
∂N1

= 1 + hr1 − 2
hb1N1

1 + α12N2
− 2hd1N1

= 1 + hr1 − 2hN1

(
b1

1 + α12N2
+ d1

)

= 1 + hr1 − 2hN1

(
b1 + d1 (1 + α12N2)

1 + α12N2

)

the partial derivative at our equilibrium point is therefore

∂f5 (N∗1 , N
∗
2 )

∂N1
= 1 + hr1 − 2hN∗1

(
b1 + d1 (1 + α12N

∗
2 )

1 + α12N∗2

)
.

Substituting our value for N∗1 into the RHS gives us

∂f5 (N∗1 , N
∗
2 )

∂N1
= 1 + hr1 − 2h

(
r1 (1 + α12N

∗
2 )

b1 + d1 (1 + α12N∗2 )

)(
b1 + d1 (1 + α12N

∗
2 )

1 + α12N∗2

)

which simplifies down to

∂f5 (N∗1 , N
∗
2 )

∂N1
= 1 + hr1 − 2hr1

= 1− hr1.

Again, we can similarly show that

∂g5 (N∗1 , N
∗
2 )

∂N2
= 1− hr2.

Next, we have

f5 = N1 + hN1r1 −
hb1N

2
1

1 + α12N2
− hd1N2

1

differentiating with respect to N2 gives us

∂f5
∂N2

= − hb1N
2
1

1 + α12N2
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use of the chain rule yields

∂f5
∂N2

= −hb1N2
1

(
−α12

(1 + α12N2)
2

)

the partial derivative at our equilibrium point is therefore

∂f5 (N∗1 , N
∗
2 )

∂N2
=
hα12b1 (N∗1 )2

(1 + α12N∗2 )2
.

Again, we know that we can show that also

∂g5 (N∗1 , N
∗
2 )

∂N1
=
hα21b2 (N∗2 )2

(1 + α21N∗1 )2
,

thus giving us our Jacobian matrix for our system

JE =


1− hr1

hα12b1(N∗
1 )

2

(1+α12N∗
2 )

2

hα21b2(N∗
2 )

2

(1+α21N∗
1 )

2 1− hr2

 . (6.17)

.

Next, we state our final result and give a proof.

Theorem 6.3. Assume that r1, r2, b1, b2, d1, d2 ∈ (0,∞), α12, α21 ∈ [1,∞). Then the
positive steady state E = (N∗1 , N

∗
2 ) of the discrete system (6.16a) - (6.16b) with initial

conditions N1(0) > 0, N2(0) is asymptotically stable in the limit as h→ 0.

Proof. We can find the characteristic equation of the Jacobian matrix (6.17) in the fol-
lowing manner

det (JE − λI) = 0

⇒ det


1− hr1 − λ

hα12b1(N∗
1 )

2

(1+α12N∗
2 )

2

hα21b2(N∗
2 )

2

(1+α21N∗
1 )

2 1− hr2 − λ

 = 0

which yields

(1− hr1 − λ) (1− hr2 − λ)−

(
hα12b1 (N∗1 )2

(1 + α12N∗2 )2

)(
hα21b2 (N∗2 )2

(1 + α21N∗1 )2

)
= 0
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expanding brackets gives us

λ2 − λ− λ− hr1 − hr2 + λhr1 + λhr2 + h2r1r2 + 1− h2α12α21b1b2 (N∗1N
∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
= 0.

Further rearranging and factorisation occurs over the next two steps

λ2 − 2λ− h (r1 + r2) + λh (r1 + r2) + h2r1r2 + 1− h2α12α21b1b2 (N∗1N
∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
= 0

λ2 − λ (2− h(r1 + r2)) + 1− h (r1 + r2) + h2

(
r1r2 −

α12α21b1b2 (N∗1N
∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

)
= 0.

.
We note again that the trace and the determinant of the Jacobian matrix (6.17) are

Tr(J) = 2− h(r1 + r2)

det(J) = 1− h (r1 + r2) + h2Φ

respectively, where

Φ = r1r2 −
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
.

We therefore notice that the characteristic equation can be rewritten as

λ2 − Tr(J) + det(J) = 0. (6.18)

In order to determine asymptotic stability in the limit as h → 0, we again need to show
that the following conditions hold;

1. 1 + Tr(J) + det(J) > 0,

2. 1− Tr(J) + det(J) > 0,

3. det(J) < 1.

Let’s begin, this time, with the third condition,

det(J) < 1

substituting our expression for det(J) gives us

1− h (r1 + r2) + h2Φ < 1

which simplifies down to

h2Φ < h (r1 + r2) .
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Dividing both sides by h, we get

hΦ < (r1 + r2)

which holds true since Φ > 0 (from Lemma (5.1)), since we can only choose r1, r2 ∈ (0,∞)
in the limit h→ 0. Next, let’s prove the first condition,

1 + Tr(J) + det(J) > 0

may be rewritten as

1 + 2− h(r1 + r2) + 1− h (r1 + r2) + h2Φ > 0

⇒ 1 + 2− h(r1 + r2) + 1− h (r1 + r2) + h2

(
r1r2 −

α12α21b1b2 (N∗1N
∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

)
> 0

⇒ 4− 2h(r1 + r2) + h2r1r2 − h2
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
> 0

taking the limit as h→ 0 yields

lim
h→0

(
4− 2h(r1 + r2) + h2r1r2 − h2

α12α21b1b2 (N∗1N
∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

)
= 4

The first condition holds since 4 > 0. Finally, for the second condition,

1− Tr(J) + det(J) > 0

may be rewritten as

1− (2− h(r1 + r2)) + 1− h (r1 + r2) + h2

(
r1r2 −

α12α21b1b2 (N∗1N
∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2

)
> 0

⇒ 1− 2 + h(r1 + r2) + 1− h(r1 + r2) + h2r1r2 − h2
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
> 0.

Thus

h2r1r2 − h2
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
> 0

⇒ h2
α12α21b1b2 (N∗1N

∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
< h2r1r2
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dividing through by h2 gives us

α12α21b1b2 (N∗1N
∗
2 )2

(1 + α12N∗2 )2 (1 + α21N∗1 )2
< r1r2

which we know to be true from Lemma (5.1) thus proving our second condition. All three
conditions are now proved to be true, this confirms asymptotic stability for the system
(6.16a) - (6.16b).
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6.5 Graphical Comparison of Discrete Models

There are a range of parameter values that exist for which the discrete model, derived using
the methodology of piecewise constant arguments does not possess an asymptotically stable
equilibrium in the positive quadrant. We must be very careful when using this approach
when creating discrete models: the underlying stability properties do not transfer across
so readily [32].

Figure 6.3: Graph showing the piecewise discrete model (6.2a) - (6.2b) with parameter
values α12 = α21 = b1 = b2 = d1 = d2 = 1, r1 = 3, r2 = 4 and a step size h = 0.1
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Figure 6.4: Graph showing the Euler scheme model (6.16a) - (6.16b) with parameter values
α12 = α21 = b1 = b2 = d1 = d2 = 1, r1 = 3, r2 = 4 and a step size h = 0.1

The above graphs illustrate, quite clearly, the differences between the two models when
the same parameter values are used. Figure 6.3 shows persistent oscillatory behaviour
from both species for the discrete model (6.3a) - (6.3b). Figure 6.4 shows clear asymptotic
stability from both species as they plateau, as we would expect, species 2 reaches a higher
plateau since r2 > r1. Despite the fact that all parameter values are the same, as is the
step size of both methods used on exactly the same model (3.11a)-(3.11b) (in fact, only
the methods themselves are different), we see dramatically different results.



Chapter 7

Conclusion

7.1 What have we found?

We have found that simply changing the signs of a simple competition model to create
a positive interaction yields unrealistic long term population behaviour. We have found
that the improved models we have constructed are asymptotically stable at their non-
trivial equilibrium point for the non-delay ODE and the DDE. Our discrete models are
also asymptotically stable although we have found that when discretising our model, it is
important to do so with caution as different techniques can yield substantially different
behaviour over time. We see in chapter 6 that using piecewise constant arguments yields
tremendously different results than when the Euler scheme is implemented. We note that
our model (3.11a)-(3.11b) may not be applicable to every real world situation, there may
indeed be situations where behaviour from figure 6.3 is displayed and other situations
where behaviour from figure 6.4 is displayed.

7.2 Future work

When considering further work to undertake beyond this dissertation, we must contem-
plate where the area of mutualism within population dynamics is heading with regard to
the world of mathematics. Now, this field of study is remarkably vast, hence there are
many directions in which the research we have done may head.

Alternative numerical schemes

We can create even more accurate models by applying more complicated numerical schemes
instead of our Euler one, such schemes may include the improved-Euler scheme, Runge-
Kutta and the Newton-Raphson methods. Care should be taken though since application
of more complicated schemes will undoubtedly create very difficult difference equations
and problems in computing such schemes may arise on MATLAB etc.

Stochastic models

We can make our models more complicated and thus more realistic through a number of
ways, one of which could be to note that we have featured fixed constants in our systems
throughout this dissertation. The constants b1, b2, for example denote the birth rate for
species 1 and species 2 respectively, however, it is very naive to assume that the birth
rate is a constant as it is much more likely to be a function. Let’s assume that all of our

60
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constants are now functions of time, the system (3.11a)-(3.11b) now takes the following
form;

dN1(t)

dt
=

(
r1(t)−

b1(t)N1(t)

1 + α12(t)N2(t)
− d1(t)N1(t)

)
N1(t)

dN2(t)

dt
=

(
r2(t)−

b2(t)N2(t)

1 + α21(t)N1(t)
− d2(t)N2(t)

)
N2(t).

Occurrences such as death, for example, may not always be subject to time. Especially in
nature, death is something that can happen at any time from many different factors. In
fact, population systems in reality are often subject to environmental noise making it even
more difficult for mathematicians to entertain the idea of having parameters as absolute
constants. As a result of this, the field of study has seen the rise of stochastic population
systems, Mao et al [24] put across the conclusion that even a sufficiently small noise can
suppress explosions in population dynamics. Qiu et al [30] also looks into this by taking
the following mutualism model originally proposed by Gopalsamy; [11]

dN1(t)

dt
= r1(t)N1(t)

(
K1(t) + α1(t)N2(t)

1 +N2(t)
−N2(t)

)
(7.2a)

dN2(t)

dt
= r2(t)N2(t)

(
K2(t) + α2(t)N1(t)

1 +N1(t)
−N1(t)

)
, (7.2b)

transforming (7.2a)-(7.2b) into the system of the following form

dx(t)

dt
= x(t)

(
a1(t) + a2(t)y(t)

1 + y(t)
− c1(t)x(t)

)
(7.3a)

dy(t)

dt
= y(t)

(
b1(t) + b2(t)x(t)

1 + x(t)
− c2(t)y(t)

)
(7.3b)

and by taking into account the effects of a randomly fluctuating environment, they in-
corporate white noise in each equation of the system (7.3a) - (7.3b). Therefore the non-
autonomous stochastic system can be described by the following Itô equation

dx(t) = x(t)

(
a1(t) + a2(t)y(t)

1 + y(t)
− c1(t)x(t)

)
dt+ σ1(t)x(t)dB1(t) (7.4a)

dy(t) = y(t)

(
b1(t) + b2(t)x(t)

1 + x(t)
− c2(t)y(t)

)
dt+ σ2(t)y(t)dB2(t) (7.4b)

where ai(t), bi(t), ci(t), σi, i = 1, 2 are all positive, continuous and bounded functions
on [0,+∞) and B1(t), B2(t) are independent Brownian motions and σ1, σ2 represent the
intensities of white noise. The paper goes on to consider dynamical properties of the
stochastic system (7.4a) - (7.4b). For future work, we would look to study this further
and use similar techniques in order to introduce stochasticity to our models.

Data Collection

One important aspect of mathematical modelling that has eluded us here is the ability
to verify the models through collection of data, an aim for our future work would be to
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do this. An example of data collection in population modelling can be found in the book
by Braun [4] in which we can find an equation for population as a function of time. The
model is used to predict the population of the U.S. from the years 1790-1950 at seventeen
intervals, this is then compared with the actual data. This could be extended to population
numbers of insects and plants for example.

Considering the specificity of the mutualism

The ’specificity’ of the mutualism interaction is a way of classifying the mutualism in terms
of the number of species involved, we have the terms specialised mutualism which involves
a one-to-one interaction and diffuse mutualism which involves many species. So far, we
have only considered specialised mutualism models, but of course in the reality of nature
there is very rarely only ever two species in any given space. Suppose that we consider a
model for diffuse mutualism that involves n > 2 species, could it be that all species benefit
each other’s existence? If this is the case, then what would happen to the model? Well,
firstly we would need n equations representing the growth rate (with respect to time) of
each species whose populations shall be denoted as before, i.e. N1, N2, . . . , Nn. We would
also have (n − 1) × αij parameters representing the strength of the mutualistic effects of
species j on species i, where i = 1, 2, . . . , n, j = 1, 2, . . . , n, i 6= j within each of our n
equations. Each equations shall also include bn, dn, rn terms as before, e.g.

dN1

dt
= f1(N1, N2, . . . Nn)

dN2

dt
= f2(N1, N2, . . . Nn)

...

dlNn

dt
= f2(N1, N2, . . . Nn)

where fi, i = 1, . . . , n represents a function of all n species. Such a model would of course
be very difficult to be investigated and its behaviour would prove even more difficult since
phase portraits would only be available through graphical representation at a maximum
of three species in a 3D graph.

Vicinity dependent models

An interesting assumption is being made when modelling this subject matter. We assume
that vicinity has no impact on our models; that mutualists are readily available for the
species we are modelling. Now, this makes sense due to the fact that if two species help each
other thrive then they should naturally tend towards each other. However, many species
of animals do not travel individually, they travel in groups. An intriguing suggestion for
further work would be that modelling certain species that we assume to exist in ’herds’,
and that their herd covers a certain area, would there be a point at which mutualism
between two species can reach an optimum should their respective ’herds’ interact to
form, in essence, a virtual Venn diagram? Would there be a certain area of the Venn
diagram that would make the model unstable?
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N1 N2

y

x

Figure 7.1: Visual representation of the idea of a vicinity based model in which the species
1 and 2 occupy the blue and red circles respectively and the mutualistic strength of the
model is dependent of the area of the intersection (purple).

More parameters must be introduced to facilitate this idea. A two-dimensional plane (see
figure 7.1) could be modelled with the mutualistic effects of each species being a function
of both space and time e.g. α12(x, y, t).

Spatial models

In reality, certain geographical locations may not be ideal for mutualism to occur at the
best rate, constants within the models that we construct may be influenced as a result of
the location in which the model is based. Also, in light of the idea of a vicinity dependent
model, we realise that groups of organisms do not conveniently position themselves into
uniform patterns. It has been found, however, that their distribution is not random
either; in fact, they form some sort of spatial pattern. Natural environments are spatially
structured by various ecological processes, which in combination with the behavioural
response of the species, generally results in gradients (steady directional change in numbers
over a specific distance), patches (a relatively uniform and homogenous area separated by
gaps) and noise variation (random fluctuations) [35]. As interesting and idea as this is, it
is also noteworthy that there are few models of this kind that exist due to nature rarely
following an expected order, mostly observational data has been collected in this area
as opposed to theoretical models. Spatially structured models look heavily into PDEs
(partial differential equations).

Continuous time Discrete time

Continuous space Reaction-diffusion equations Integrodifferential equations

Discrete space Coupled-patch models Coupled lattice maps
Metapopulation models Cellular automata

Table 7.1: Table taken from Kot [16] displaying examples of spatially structured models
as they differ between continuous and discrete time and continuous and discrete space.

The recent research letter [36] by Suweis et al looks at how an optimisation principle
aimed at maximising the species abundance in mutualistic communities can give rise to
the emergence of nested1 interaction networks.

1Nestedness is a measure of order in an ecological system, referring to the order in which the number
of species is related to area or other factors. The more a system is ”nested” the more it is organized [29].
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Further evidence that the aspects of structure, nestedness and optimisation in the research
area of mutualistic models is becoming more and more important can be found by Rohr
et al [33] in which it is investigated to what extent different network architectures2 of
mutualistic systems can provide a wider range of conditions under which species can exist.
It is noted in the article that framework of structural stability has not been as dominant
in past research into theoretical ecology as has the concept of local stability. The article
also highlights the need for a stochastic aspect in this field as they use a mean field
approximation for the competition parameters in models that are used.

Diverting from mutualism

If we were to take a step aside from mutualism, and avoid the well-researched predator-prey
models, there are numerous other symbiotic interactions that may be studied in depth.
Notable interactions include;

Parasitism

Parasitism is where one species benefits at the expense of the other e.g. leeches suck blood
from its host in order to survive.

Commensalism

Commensalism is an interaction that involves one species benefiting and the other receiving
no effect e.g. trees provides homes for birds whilst receiving no beneficial return.

Amensalism

Amensalism is when the existence of one species has a detrimental effect on another but
remains unaffected in return. An example of this includes the black walnut tree which
secretes a chemical from its roots that harms plants and vegetation within its vicinity.

Type of symbiosis Effect of species 1 on species 2 Effect of species 2 on species 1

Mutualism + +

Parasitism + -

Commensalism + 0

Amensalism - 0

Table 7.2: Displaying effects of different types of symbiosis where ”+” denotes a positive
effect, ”-” denotes a negative effect and ”0” denotes no effect. Similar tables express this
idea, e.g. the one found in Kot [16]

2Rohr defines network architectures as ’combinations of nestedness, mutualistic strangth and mutualistic
trade off’
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Appendix A

Chain rule for partial differentiation
Let f = f(x1, . . . , xn) and xj = gj(y1, . . . , ym), j = 1, . . . , n, k = 1, . . . ,m. If f and
g are differentiable, then

∂f

∂yk
=

n∑
j=1

∂f

∂xj

∂xj
∂yk

.

This is the chain rule of partial differentiation [4]

Jacobian Matix
In vector calculus, the Jacobian matrix is the matrix of all first-order partial deriva-
tives of a vector values function. Suppose F : Rn → Rm is a function given by
m real-valued component functions, F1(x1, . . . , xn), . . . , Fm(x1 . . . , xn). Should they
exist, the partial derivatives of all these functions with respect to the variables can
be organised in an m× n matrix, the Jacobian matrix J of F , as follows

J =



∂F1
∂x1

∂F1
∂x2

· · · ∂F1
∂xn

∂F2
∂x1

∂F2
∂x2

· · · ∂F1
∂xn

...
...

. . .
...

∂Fm
∂x1

∂Fm
∂x2

· · · ∂Fm
∂xn


,

See [13].

Appendix B

MATLAB code used to create figure 6.3

h=0.5;

tmax=100;

N1=zeros(1,tmax/h+1);

N2=zeros(1,tmax/h+1);

N1(1)=1;

N2(1)=1;

r1=3;

b1=1;

a12=1;

d1=1;

r2=4;

b2=1;

a21=1;

d2=1;

for k=1:(tmax/h)

N1(k+1)=N1(k)*exp(r1-((b1*N1(k))/(1+a12*N2(k)))-d1*N1(k));

N2(k+1)=N2(k)*exp(r2-((b2*N2(k))/(1+a21*N1(k)))-d2*N2(k))

end

t=0:h:tmax;
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plot(t,N1,t,N2);

MATLAB code used to create figure 6.4

h=0.01;

tmax=100;

N1=zeros(1,tmax/h+1);

N2=zeros(1,tmax/h+1);

N1(1)=1;

N2(1)=1;

r1=3;

b1=1;

a12=1;

d1=1;

r2=4;

b2=1;

a21=1;

d2=1;

for n=1:(tmax/h)

N1(n+1)=N1(n)+(h*N1(n)*(r1-((b1*N1(n))/(1+a12*N2(n)))-d1*N1(n)));

N2(n+1)=N2(n)+(h*N2(n)*(r2-((b2*N2(n))/(1+a21*N1(n)))-d2*N2(n)))

end

t=0:h:tmax;

plot(t,N1,t,N2);
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