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Abstract

In this dissertation, we consider numerical methods for solving space-fractional PDEs. We
first consider finite difference method then we consider finite element methods for solving
space-fractional PDEs. The error estimates are obtained. Finally we consider the matrix
transform technique (MTT) for solving space-fractional PDEs which include finite differ-
ence and finite element method. Numerical examples are given.
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Chapter 1

Introduction

The importance of fractional calculus is noticeable in the mathematical research in re-
cant years. Because the use of derivative of fractional order in mathematical models has
become increasingly in demand. Many mathematical models with fractional derivative

have been successfully applied in finance [12][29][31], biology [37], physics [25][2][26][39],
chemistry and biochemistry [1] and hydrology [16][15][3]. These models are effective for
description of the memory and inherent properties of different substances [28]. The great

use of fractional order derivative include specific properties of the process are reformu-
lating the integer order of the diffussion, advection diffusion and Fokker-plank equations.
The fractional PDEs can be arranged into two kinds :space-fractional partial differential
equations and time-fractional partial differential equations. Evaluation of the analytic
solutions of the fractional order partial differential equations are difficult beacuse it ob-
tained Green functions [22]. The evolution of numerical techniques to solve the fractional
order problem is increasing in a rapid way. Many authors have discussed the numerical
methods for solving the space-fractional derivatives [28]. Liu et al.[15] transform the space
fractional Fokker-Plank equation into a system a differential equations. In 2004, Meer-
chaet and Tadjeran [21] obtained the numerical solution of space FADE in one dimension
and [23] presented a shifted Griinwald estimation for the two-sided space FPDE. Also in
(L], [13],[24], [ 14],[23],[36],[ 15],[20] and [7],]9],[40] authors are discussed the finite difference
method and finite element method, respectively for solving space-fractional partial differ-
ential equations.

In this dissertaion, we consider the following space-fractional partial differential equa-
tions for % <a<l

d**u
Ut_W:f7 O<zxz<l, t>0 (11)
subject to the boundary and initial conditions are given by
u(t,0) =u(t,1) =0 (1.2)
u(0,z) = up(x) =0 (1.3)
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Here,
d**u(z) 1 o o
~gae = D2 () + FD3u(r)|
2 cos (71'04)

and FDPu(t, z) denotes the left Riemann- Liouville fractional derivative with respect to x

defined by
1 d?

T'(2—3)da?

and ®D?%u(t, ) denotes the right Riemann- Liouville fractional derivative with respect to
x defined by

EDRu(t, ) — | =0 a1 < <2 (1.4)
0

1 d?

ADVu(t,x) = T2 = B) da?

/Xy—@hﬂwwd%1<6<2 (1.5)
0
Where I' denotes the gamma function.

There are different numerical methods to solve the equations (1.1)-(1.3).In this disser-
tation we will discuss finite difference and element methods and then we will also discuss
about matrix transform technique (MTT) for space-fractional PDEs. In this dissertation
include

e Introduction of fractional calculus which contains definitions and relavent functions.

e Finite difference and element methods to solve space-fractional partial differential
equations with matrix transform technique.

In chapter 2 we consider some basic functions, definitions and relations of fractional
derivatives.

In chapter 3 we consider the finite difference method to solve the space-fractional
PDEs.

In chapter 4 we discuss the finite element method to solve elliptic, parabolic and
space-fractional partial differential equations. We also discusse some useful func-
tional spaces and their properties.

In chapter 5 we discuss matrix transform technique for solving space-fractional PDEs
which include finite difference and finite element methods.

In chapter 6 we we summarize the dissertation and mention some future work in this
topic.



Chapter 2

Fractional calculus

2.1 Basic functions and transforms

We will discuss about some functions which play an important role in the definition of
fractional operators. In this section we outline important definitions and lemmas used
throghout the remaining chapters of this papers. First include here information on the
gamma functions, beta functions, the mittag-leffler functions, laplace transform, fouriar
transform.

Gamma function: Occurs in the definition of fractional differential and integral
operators. The basic function of fractional calculus namely the Euler Gamma func-
tion is important for generalization of factorial function which only accept positive
integer. For o > 0 the Gamma function in the integral form as [28]

MNa) = /000 et tdt (2.1)

Properties of the Gamma function:
1.The Gamma function reduction formula:
MNa+1)=al(a)=a!, Rea>0

Example:
(1) =0!

2. Ratio of Gamma functions:

I'z—a) T(z—a)—z2[z—a-1)

I'(z+1) I'(z+1)
_ ['(—a)—2[(z —a—1)
M(—a—-1)T(z+1)




Beta function: The Beta function is defined by

! Fal'B
B(a,B) = 11— Py = — 2 2.2
@)= [ a-n) o (22)
The beta-function can be express in terms of gamma-functions [17]
Lal's
B =
&) = Tt )

The Mittag-LefHler function:The Mittag-Leffler function is an entire function de-
fined by the series

2.
ZFak+ @ =0 (2:3)

k=0

Example: Let o = 1 the (2.3) becomes

=

k=0

For the two parameters the Mittag-Leffler function is given by

oo k
H=S — " 4>0,8>0 2.4
) kzz(] I'(ak + B) “ b (24)
Example: Let a = § = 2 the (2.4) becomes
= (=) sint
E = .
2.2 Z T2k +2) ¢
k=0
Laplace transform:[!7] Let a function f(z) is defined for 0 < = < oo, then the
Laplace transform F'(s) is defined as
L) = F(s) = [ e 2:5)
0

at least for those s for which the integral converges. Let f(x) be a continuous function
on the interval [0, co) which is of exponential order, that is, for some ¢ € R and x > 0

If( )I

sup

In this case the Laplace transform (2.5) exists for all s > ¢ [0].



Inverse Laplace transform: The Inverse Laplace Transform of F'(s) is defined as

L0 = F) = [ e o (2.6)

Fourier transform: [28] Let f(¢) is a continuous function of a real variable ¢ €
(—00,400). Then the Fourier transform of f(¢) is defined by

+oo )
F{f@) = Fw)= [ e (2.7)
Inverse Fourier transform: The inverse Fourier transform is defined as
1 [t
FUI@Y =0 =50 [ e 238)

Convolution of Fourier transform: Let f and g be two functions. The convolution

of f and g is defined by
(Fr9)0) = [ f(t-wgludu, 1R

Now , the Fourie transform of above becomes
F{f*g)(w)} = F{f()}F{g()} = F(w)G(w)

Fourier transformation of Riemann-Liouville integral:[25],[9] Let & > 0, then
the Fourier Transfor of the Riemann-Liouville integral with a lower terminal of —oo
is defined as

FUELDT ()} = (iw) ™ F(w)

2.2 Definitions of fractional derivatives

There are several definitions given to fractional calculus. In this section we will give some
important definitions of fractional both the integral and derivative.

Gruwald-Letnikov fractional integral:

Let 0 < a < 1, the Gritwald-Letnikov fractional integral ([28] pp. 47) defined by

a 1 ! o
SO0 = [ =) (2.9
Here §D;*f(t) is the Griiwald-Letnikov fractional integral of order o with respect
to t, where « is non-integer.



Riemann-Liouville fractional integral: The Riemann-Liouville fractional inte-
gral of order 0 < v < 1, defined by

o 1 t o
IDC () = g [ (=) (2.10)
Reimann-Liouville fractional derivative: The Riemann-Liouville fractional deriva-
tive ([28]pp.55) is defined with a > 0 and n — 1 < a < n as

1

SDIF(0) = DUIDI (0] = Doy

/ (t — )" f(r)dr (2.11)

Caputo fractional integral: For a > 0 the Caputo fractional derivative ([28]pp.79)
is defined with n — 1 < @ < n and a = n are, respectively , given by

1 t
o DY f(t :—/ t—7)" D" f(7))d 2.12
IDEI0) = e [ (=T D (212)

dn
0 Dif(t) = £ (1) (2.13)
Riesz fractional operator:[36][30] For n—1 < a < m on an open interval 0 < x < 1
is defined as
Jmult) = ~CoED3ult.x) + EDfu(r, ) (2.14)
€T (63

2

N B 1 ar [ u(t)
D0 ) = i |, G g

where C, = ——,a # 1 and
QCOS(E>

N B 1 v [* u(,t)
D00 ) = i |, G

2.3 Relations between the different fractional deriva-
tives

Lemma 2.3.1. [90][50] For a function u(z) defined on the infinite domain [—oo <
x < 0], the following equality holds:
d*u

-~ dja

el

6
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Proof: Fractional power of the Laplace operator defined as
~(=A)2u(x) = ~F(|al* Fu())
where F and F~! are Fourier transform and inverse Fourier transform respectively.

By the definition of Fourier transform and inverse Fourier transform, we get

(AP () = — 2 [T e / " () dy d

27T —00 o0

=5 [ e fun S|~ [ v ) de

= —% _: u' (1) [z /_ Z e‘i“"‘x)%dﬁ] dn

_ _% > u’(n)i[/oo emin—r)ga=lge /OO e—ié(x—n)fa—ldf} dn
oo 0 0
=~ T ()

= o |0 e

[By Gamma function for 0 < o < 1]

1 [ sign(x — n)lal’'(1 — «

_ (g ana =TT~ a)
|(z = n)|*T(1 - a)

ca—1 Na—1
_ a —* 14
= it (=)

and i*! + (—i)*"! = 2sin™2, we obtain

Using I'(a)['(1 — ) = pem—

—1

. oo >/ (n)
~(=8)"u(@) = 20051 [m - ) / e % - r<11— ) / ( —nxﬂ

Note that, for 0 < a < 1, the Riemann -Liouville fractional derivative in [a,x] is given
by

ey A RO
R N L SN
:F(1—a)%[u(a) 1-a +/a“(’7) 1—a d”}

=i o) [u(a)(:c —a)™*+ / u'(n)(x — n)’“dn}

w(@)(e—a) " () — )~
) +/a Mo




z —n)Te
Therefore, ali)r_noo(é%Dgu) =" D= / u (711)<(1x— 017)) dn

—00

[0}

mn—=x)”
Il —a)

] ul(
Similarly, we can write D% y = / dn
x

Finally, we get

a 1
_ d ua - (_A)Q/Qu = [I_%OODgu + ngou] for0<a<1
d|x| 2 cos(%)
where
1 d [*  u(n)
R D%y = —_/ g
T T ey de ) -
—1 d [ un)
RDa _ _ — = d
D i

Further, when n — 1 < a < n then

o 1
SN (W S | Dgu+ FDu
d|z|* 2 cos(ﬂ)
2
where
1 v [* u(n)
R «
D%y = d

—oozll ['(n — «) dx» /Oo (x —np)oti-n "

D" dr [ um)
RDa — ( /
= ool I'(n—a)dz™ ), (n—x)etl—n "

Lemma 2.3.2. By lemma 2.3.1, we have with 1 < o < 2 the Riemann-Liouville
fractional derivatives on [0,1] are respectively express as

Rpya, _ wW0)(@—0)" u/(0)(z—0)'"" 1 vou'(y)

oD =TT T T resa) TT2-w /O Ty (215
o _uwM)(@—z)m W) —z) 1 bd(y)

D T T T Te—a) TTE—a) / a1 (210



Proof: We first prove (2.15). By definition [30]

ﬁ% /:(93 — )" u(y)dy

1 d? (x —y)*>™
:F(Q—a)@[u(y) 2—a o 2—-«

_ 1 (TN 1L & [ (x—y**,
BT R 7oA vy by [/0 2—a <y)dy]

X
1 d2 2
X

Rno,,
ODacu’_

[T )

d
@(3;2—@) * F(21— Q) dd_ [u’(y) ( (Z_E:Ca_)(g)—_ZQ w+

0

v (2—y)*
O e=ryre=ry d?/]

1 e, 1, & (z)3e
=Ty Vg )+r(z—a)“(o)@<(2_a)(3—a)>+

1 d2 /0m U,H(y)( (l’ B y)3—a dy

[(2 - «)da? 2—a)(3—a)
1 d o 1 Lo d o (3—a)(z)
= TG =) g iR+ me— 5 (0%((2 (B a)>+
1 d ¢ (3 — O‘)(m B y)2_a "
T2 —a) %{/0 C_a)G_a) VW
u(0)(z=*) | w'(0)(z'7%) 1

"Tl-a)  T2-a T2-a /0 (z —y)' """ (y)dy

Similarly, we will prove (2.16). By definition

R 1 d2 ' 1
Doy = —— " — )l d

B 1 d? (y —x)*™
_r(z—a)@[“( A

- /xl () x)Mdy]

xT




1 d?

1 d? (1—x)3@
REEES A

N m@[ul( ST

1 . ( — )3
/m B (y)(23a)(i)’>—a)dy}

__1 d —a 1 d,  (3—a)(l—ax)*"
B W) e W e B =)

)2—a

1 d [t —B-a)y—x)>"
S el A e s

a0 dO- 1 ()
~ T-a) '@ o) *m—a)/x oy
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Chapter 3

Finite difference method for solving
space-fractional partial differential
equations

3.1 Finite difference approximations

One of the simplest and of the oldest methods to solve differential equations is the finite
difference method. L.Euler(1707-1783) ca. 1908 and C.Runge(1856-1927) ca.1908 shall
probably be credited for formulating finite difference method in one dimension of space
and extended one dimension to two dimensions, respectively. The development of finite
difference techniques in numerical application introduced in the early 1950s and develop-
ment reproduce by the appearence of computers that offered a easy system to working with
complex problems of science and technology.

The principle of this method is replacing the region over which the independent vari-
ables in the PDE are defined by a finite mesh points at which the dependent variable is
approximated. The partial derivative in the PDE at each mesh point are approximated
from neighbouring values by Taylor’s theorem.

Let u(x) have the n derivatives over the interval [a,b], then for a < xy < 2o+ h < b the
Taylor series gives

2“%(730) NI hn—lu("*l)(xo)

2! -1 o)

u(zo + h) = u(x) + h uy(xo) + h

= u(ro + h) = u(xg) + h uz(xo) + O(h?)

[Truncating after first derivative term]

u(zo + h) — u(zg)
h

= Uy () = + O(h)

11



Neglecting the O(h) term gives

u(zo + h) — u(zo)
h
which is called a first order finite difference approximation to u,(xg).

Uz (o) =

Example: Let us recall the heat equation

ou 0%u
Ty g<a<1
ot  0z2 =T=

with the initial and boundary conditions :

u(z,0) = ug(x),
u(0,t) = u(l,t) =0,

(3.1)

(3.2)
(3.3)

Let 0 =29 < 11 < 29 < 23 < x4 = 1 be a partition of [0,1] and h=1/4 be the step size.

At z = z;, j=1,2,3, we have

9%u

T=x; 8x2

ou

E :O

By Taylor formula, we have

Pu U’(l’j—la t) - QU(ZL']‘, t) + (xj-‘rh t)

ou _ 2
6.132 T=x; h2 + O(h )
Thus we get
ou w(zj_1,t) — 2u(z;,t) + (Tj41, 1) o
Ew:%— % +O(h*)=0

Denote Uj(t) =~ u(z;,t) the approximate solution of u(x;,t). Then we get

d Uj_1(t) = 2U;(t) + Uja(t)
EUj(t)— 2 =0
Ui(t)
Denote U(t) = |Us(t)
Us(?)
We get
. [0 2 -1 0] [t
Y]+ -1 2“1 |{m@)| =0
A ) 0 —1 2| |Us()

12
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2 -1 0
Denote, A= |—-1 2 -1
0o -1 2
and we can write

d
ZU() +AU() =0

U(0) = Uy

Here (3.4) is an ordinary differential system which can be solved by MATLAB.

The exact solution of (3.4) is U(t) = E(t)Uy, where E(t) = =4

3.2 Finite difference method for space-fractional par-

tial differential equations

In this section, we provide a numerical solution for solving the following space-fractional

partial differential equation with 1 < o < 2,

da
U— =0, O0<z<l, t>0
d|z|
u(t,0) = u(t,1) =0
u(0,z) = up(x) =0
where,
< 1
——d ua = (—A)a/Qu = [(?Dg‘u + ﬁD?u]
dfx| 2cos<%>
and
EDou(t )—;d—2 z( — ) u(y) dy,1 < a < 2
o U ’:E_F(Q—a)dﬁ o x Yy uly Y, «
R N« 1 d2 ’ -«
« Diu(t,z) = T2 —a)de? /, (y—a) " uly) dy, 1 <a <2

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Let, 0 =29 <21 < a9+ <21 < Ty_1 <y = 1 be a partition. Since we know that
u(t,0) = u(t,1) = 0, we only need to find the numerical solutions at z;,[ = 1,2,3,... N —1.

Atz =ux, 1=1,2,...N — 1, we have by (2.15) and (2.16)

13



ou L pu0)) | (o)) e
Ot la Zl—i_QCos(%)[F(l_la) " F(Q—ZOC) + ['2-a) / : (w1 = &)de+

(L)X —a)™ () —z) 1 T e

- al) B r(2-— Oj) T r2—a) /0 & (2 + f)df} =0
(3.12)

Note that, [21]

_a / 61 a // 33' _f
:—r@_a)Z[ ¢ (wy — €)dg

7=0 J

1 =1 Tj+1
=~ m Z/ gl—au//(xl i ij)df
j=0 Y %j
-1

1 w(x) — xjp1) — 2u(z; — xj) + u(z;, — zj-1) /xj+1 -
~ ad
F<2 — Oé) ]Z:O: B2 ’ f f

J

B ﬁ > Julan = wy0) = 2u(er = ) 4 ulw = 2,0) |16+ 17 = 777
Since,
ot 11—« _ 1 2 q =41
/ B Rk M
= P @ = 1

Again, for [ =1,2,... N — 1 we have

1 o —a, M
raoa ), €l

1 e —a, I
_M/ &7 (1 + €)de

[ [ e
“ (@ + §)dg
2—Oé x0 xNZ'H—l
N—-Il-1

u(wy +xjo1) = 2u(e + ) +ule +an) [P,
Z h? &g

Jj=0 :

F(2 —a)

14



—_

poa Nl

— m JZ; [u(ﬂfl + xj_1) — 2u(xl + :vj) + U($l + xj+1) [(j + 1)2_a _ j2_a]

Denote u(x;,t) ~ U(t), I =1,2...N — 1, (3.12) can be approximated by

a L b -2 a)l() | 2-a)
2 cos(%) L3 —a) [ e Ja—1

§=0 (Ul_jﬂ T Ul_j_l) G+ 1)2_a - jQ_Q]] i 2 cos <%> I'3—a)

[(1—oz)(2—a)UN(t) (2—a)

(N _ l)a (N _ l)o‘_l (UN(t> - UNfl(t))‘i‘

-1

i <Ul+j—1 —2Ui45 + Ul+j+1> [(G+1)** - jQ_a]] =0

_ (3.13)

We can express this equation in matrix form

d
SU() +AU®) =0 (3.14)

where

Ui (t)
Us(t)
Us(t)

Uy (2)]

Up(t) = u(0,t) =0, Un(t) = u(1,t) =0
And Aisa (n—1) x (n—1).

For example, when n=6, we have with ¢; = [(j + 1)*"* — j>7°], j = 1,2,3,4,5.

—201 C1 0 0
—a —202 + C1 Coy — 201 C1 0
1 h
A= (3 —263 + ¢y C3 — 262 + Cy — 261 C1
2 cos (%) (3-a) —2¢c4+c3 ¢4 —2c3+cy c3—2c+ ¢ cy — 2¢4 c
—2c54+c4 5 —2ca+c3 ca—2c3+Cy c3— 200+ ¢ cog— 2¢

o O O

15



62—201 63—262+Cl C4—2C3+CQ C5—2C4+C3 —205+C4

1 B C1 Cy — 201 C3 — 202 +c ¢y — 203 + ¢ —204 + C3
+ T3 - a) 0 c1 Cy — 20y c3 — 2o+ ¢ —2c3+ cs
2 cos(%) 0 0 1 cy — 204 —2¢9 + ¢
0 0 0 C1 —201
[2 — « 2—«
000 ———
104—1 (N _ 1)a—1
2 —« 2 —«
— 00 0 —0——+—
2(171 (N _ 2)0171
n 1 h—« 2—« 00 0 2 —«
ra\ ['(3 — 3a—1 B N_3a—1
O R
Jo—1 B (N — 4)o—1
2—« 2—«
— 00 0 ——0————
= (V=5).

The system (3.13) can be solved by using MATLAB.

The stability and error estimates can be found from the reference [30].
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Chapter 4

Finite element method for solving
space-fractional partial differential
equations

The German Mathematician Ricard Courant (1888-1972) shall probably be credited for
formulating the finite element method [Courant, 1943].The great use of FEM are in almost
every field of engineering analysis. The FEM method is known as one of the most powerful
and versatile method for solving boundary value problems. The principle of FEM method
is nearly similar to FDM method. Both methods consider a partition of the domain into
a number of small pieces. In the FEM, the domain is subdivided into a partition or mesh
or a collection of geometrically simple elements and the approximation space is composed
of piecewise polynomial functions on each element of the partition. The main idea of the
FEM is to replace the Hilbert space V in which the variational formulation is posed by a
finite dimensional subspace. Ervin and Roop [9] [10] employed the finite element method
to find the variational solution of fractional advection equation, in where the fractional
derivative depends on the space, related to the nonlocal operator.

4.1 Finite element method for solving elliptic equa-
tion
Consider the elliptic problem

—u"=f 0<z<l1 (4.1)

u(0)=u(1)=0 (4.2)

Definition 4.1.1. (Classical solutions)

17



We say that equation (4.1) has the classical solution if there exists u € C?[0,1] N
(50, 1]such that equation (4.1) holds.Here u € C?[0,1] and Cy[0, 1] denote the some con-
tinuous function spaces defined by

C[0,1]={ wu(x) is continuous on [0,1] }

C?0,1] = {u : v/(x),u”"(z) are continuous on [0,1] }

Co[0,1] = { wu(x) is continuous on [0,1] and u(0)=u(1)=0}

In application, the equation (4.1) has no classical solution for any f.

Therefore we need to find weak solution of equation (4.1).To introduce weak solution
of equation (4.1), we need to introduce some sobolev spaces or integrable function spaces.

Definition 4.1.2. (Sobolev spaces) We define,
H = L50,1) = {u: /1 u?(z)dr < 0o}
0
HY0,1) ={u: u,u’ € Ly(0,1)}
H?(0,1) = {u : u,u,u" € Ly(0,1)}
Hg(0,1) = {u:u € H}(0,1) and u(0) = u(1) = 0}

Lo(0,1) = {u : |u(x)| is bounded almost everywhere}

Theorem 4.1.1. The space H = L5(0,1) is a Hilbert space with respect to the inner
1 1 1
product (u,v)r,0,1) = / u(x)v(z)dx . The induced norm is ||u||r,0,1) = [/ u2(x)dx} °)
0

0

Theorem 4.1.2. The spaces H"(0,1),r = 1,2 are Hilbert spaces with respect to the inner
1 1

1
product (u,v)p101) = / u(x)v(:c)dx—l—/ u'(z)v'(x)dx and (u, v)g2(0,1) = / u(x)v(x)de+
0 0 0

1 1
/ u’(x)v'(x)dm—l—/ u"(z)v" (x)dx = (u,v) 1,00+ (W, V") o0, + (U, 0" ) Ly (0,1) Tespectively.

0 0

The induced norms are |[ul|3r 1) = Z ! (2)]]7,,7 = 1,2.
1=0

There are some sobolev embedding theorems which show the relations between contin-
uous function spaces and Sobolev spaces.

Theorem 4.1.3. (Sobolev embedding theorem) Assume thatu € H*(0,1) thenu € L (0,1).
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Proof: By using embedding inequality, we have
lull e < Cllul [ (4.3)

Thus if u € H*(0,1), we get u € Ly(0,1).

Theorem 4.1.4. (Poincare inequality)[5] Assume that w € H'(0,1) then

||U||L2(0,1) < O||“’||L2(0,1) (4.4)
Proof: Note that, u(z )+ f
Since u € Hj(0,1), we have u(0) = 0 then

||U||L201)—/ |u(x |d$—/ / (y)dy|*dx

Using Cauchy-Schwartz inequality i.e. (f,9) <||f||L.ll9]|L,

or. [ e < ([ )’ ([ o)’
Il < [ ([ t0) [ iy
= /01 </01 dy) /01 [/ (y)|*dydz
< [ Py

< HUIH%Q(OJ)

We get,

Which implies
[l 2501y < ClIW | 2201

Now we come to the weak solution of (1.1). Assume that u is a classical solution of
(4.1). That is , u satisfies

—u"=f 0<z<l1 (4.5)
u(0)=u(l)=0
Multiplying a smooth test function v € C§°(0, 1).
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Here C°(0,1) = {u(x) : w € C*°(0,1) and u has compact support on (0,1) i.e.
supp(u) C (0, and supp(u) = {z : u(z) £ 0}}
Of course, if v € C§°(0, 1), then u(0) = u(1) = 0.

Thus equation (4.5) becomes

Integrating on (0,1), we get

1 1
/ (—u" - v)dx = / f-vdx, ve C§(0,1)
0 0

Integrating by parts, noting that v(0) = v(1) = 0, we get

1 1
/ w'v'de = / foudz, ve Ce(0,1) (4.6)
0 0

Now we see that to get (4.4) from (4.5), we only need v € H}(0,1)

Definition 4.1.3. (Weak solution) We say that u € H}(0,1) is a weak solution of equation
(4.1) if u € H}(0,1) satisfies

1 1
/ u'v'dr = / fvdx, v e Hy(0,1) (4.7)
0 0

The equation (4.7) is also called variational form of (4.1).

Definition 4.1.4. (Strong solution) We say that u is a strong solution of (4.1) if u €
H?(0,1) N Hy(0,1) such that (4.1) hold.

Theorem 4.1.5. Assume that u is strong solution of (4.1). Then u is also a weak solution
of equation (4.7). On the other hand, assume that u is a weak solution of equation (4.7)
and u € H*(0,1), then u is also a strong solution of (4.1).

We have the following Lax-Milgram lemma [33].

Theorem 4.1.6. (Laz-Milgram Lemma)
Let H be a Hilbert space with norm ||.||p and inner product (-,-)g. Let V be Hilbert
space with norm || - ||y and inner product (-,-)y. Let V. C H be a subspace of H. Let

a(u,v) : VxV — R be a bilinear form on Vx V. Let F: V — R be a linear fractional on
V.
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Assume that

1) a(-,-) is bounded on V' x V

ie. |a(u, v)] < Cilfully - [v]lv.
2) a(-,-) is coercivity on V' x V/

ie. |a(u,v)] > Col|v]|}, Cy>0.

3) F: V — R is bounded on V
Le.|F(v)| < Csllv||v.

Then there exist a unique solution u € V such that a(u,v) = F(v) Yv € V and
lulloV < ClE||Lvm).-

Existence and uniqueness of the weak solution of (4.7): Assume that f €
L5(0,1). There exists a unique solution v € H'(0, 1) such that

a(u,v) = (f,v), Yve€ HY0,1) (4.8)

1 1
Here a(u,v) :/ uv'de, (f,v) :/ fodx .
0 0
Then (4.7) can be written into , find u € H}(0, 1), such that, with F(v) = (f,v)
a(u,v) = F(v), Yve€ HY(0,1) (4.9)
We will use Lax-Milgram Lemma to prove the existence and uniqueness of (4.9).

Choose V' = H'(0,1), with norm || - ||z and inner product (u,v); = (u,v)p2 +
(v, ") 2, v € HY(0,1).

1
Choose H = L*(0,1) with norm || - ||z, and inner product (u,v)z, = / v?(z)dx.
0

Let us check the conditions in Lax-Milgram lemma

1) a(-,-) is boundedness of a(-,-) on V. x V, V = H'(0,1). In fact we have
la(u,v)| = |(v/,0")] < ||W]|L, - [|V']|L, [By Cauchy-Schwartz inequality]

< [lullgr - o]l
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2) Coercivity of a(-,-) on V' x V. In fact a(u,v) = (v/,v") = ||[V'|[3,.
By poincare inequality, if v € HJ(0, 1), we have ||v||z, < Co||v']|1, for some Cy > 0.

lollz = IlollZ, + 11112, < GRlIVIIE, + 1112, < (€5 + DI,

ie, [V, > GrllvliE = Collollin
3) F': V — R is bounded on V. In fact, we have

[E ()] = [(f; )l <l lollzo < 1 [0l |- (4.10)

Thus, by Lax-Milgram lemma (4.9) has an unique solution u € H'(0, 1).

Further, by (4.10) we have ||F|| ) < |[f]|L,

Regularity: Let f € Ly(0,1). Assume that u € H'(0,1) is the weak solution of
equation (4.8) then u € H?(0,1). In other words, if u is the weak solution of (4.8)
i.ew € HY(0,1) satisfies

a(u,v) = f(u,v), Yue€ H'0,1)

then we can expect u has more regularity v € H*(0,1).

Based on the above theorems, we know that if f € Ly(0,1), then the weak solution
of (4.8) actually is a strong solution. Therefore we are now confident to work on the
weak solution.

Now, we use finite element method to solve the variational form of (4.7) i.e. find
u € H}(0,1) such that

or, (u',v")=(fv) (4.11)

To do this we need to introduce the finite element basis functions. Let 0 = zy <
x1 < z9- < xpr = 1 be a partition of [0,1].

Then define some finite element basis functions

r—=I .
, ifxg <x <
¢1 ({]j) = o — I1
0, otherwise
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r — T

, ifxy < < a9
To — I

_ r — T3 .
Po(7) = , if oy <x <3
Ty — I3
0, otherwise
T —T51 .
—ifx o <<
el
() = —Tjp1 .
¢;(z) = — ifry <z <zjp
i = Xj+1
0, otherwise

where, j =1,2,... M — 1

Let us define a finite element space

Sy, = {up(z) : Upis piecewise linear and continuous functions on [0,1] and

up(0) = un(1) = 0}
Any element in S, can be written into the linear combination of the basis function

¢;, j=1,2,3,...M —1.ie. Uy(x Za]qjj

Here we don’t need to consider ¢(z), ¢ps since we consider the homogeneous bound-
ary conditions. If we consider non-homogeneous boundary condition, we then need
to include basis functions ¢o(z), dns ().

The finite element method of (4.11) is to find wy, € Sy, such that
(upX') = (f:x)s VX € Sh (4.12)

To find the solution of (4.12), let the solution of (4.12) have the form

M-1
up(z) = Y og(x) (4.13)
j=1
Substituting (4.13) into (4.12) and choosing x = ¢;(x), we get

M-1

S (@ ey = (f.d), 1=12.. . M-1 (4.14)

Jj=1

In matrix form, we have

)y
*
Q1
I
E11
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_( /17925/1) ( /lvgbIQ) ( llvqsg) """ ( /17¢§\/I—1) |
(05, @) (05, ¢5) (D5, ¢5) oo oo, Phyy)
Where, S;:
(65,00) (S 08) (6h0) o o (Fhyrs Gra)]
[ 631 ] [ (fad)l) |
Qg (f7¢2)
and @ = a3 ’ ﬁ: (f7¢3>
_Oé]V.[_l_ _(f7 'Q;]\./[‘—l)_

Here S is a positive definite matrix, hence S-1 exists. We can get

a=S1'xF

Therefore we get the approximate finite element solution
M-1
un(z) =Y ajé;()
j=1

where up, (1) = a1, up(we) = g, up(Tp—1) = anr—1.

Error estimate:

Now, we will consider the error estimates of the finite element method for solving
elliptic problem.

We have the following error estimates [13].

Theorem 4.1.7. Let uy, and u be the solutions of (4.12) and (4.11) respectively.
Then we have

lun —ullz, < CP?|Jullpz, |Ju, — u'l|, < Chllullp
where h is the step size.

To prove this theorem, we need the error estimates for the interpolation function
on S,. Let 0 = g < 1 < 19+ < xp be a partition. Let V be a smooth function,
say v € H?(0,1). Then we can define the Lagrange piecewise linear interpolation
polynomial [,v(x) such that [yv(z) = v(z;), j=1,2,... M.
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Lemma 4.1.1. (Interpolation error) Let v € H*(0,1) N H*(0,1).
Let I, : H*(0,1) N H(0,1) — Sy, be the interpolation operator. We have

w0 = vl[, + WIV(Iho — )|, < CR?||v]|n2 (4.15)
Here ¥V denote the derivative i.e. Vv =" in 1-d case.
We also need the following finite element orthogonality i.e.

Lemma 4.1.2. (Finite element orthogonality) Let uy, and u be the solutions of (4.12)
and (4.11) respectively. Then we have

(V(up, —u),Vx) =0, ¥Yx € Sh (4.16)

Proof: By (4.11) we have
(Vu, Vv) = (f,v), Yo € H, (4.17)

By (4.12) we have
(Vup, Vx) = (f.x), Vx € Sy (4.18)

Since S, C H} is a subspace of HJ, (4.17) implies that
(Vu, Vx) = (f.x), VX € Su (4.19)
Thus we have, by (4.18) and (4.19),
(V(up, —u),Vx) =0, ¥y € S (4.20)

To prove an Lo-norm error estimate of the finite element approximation to elliptic
problem, we also need the following so called the elliptic regularity inequality.

Lemma 4.1.3. (Elliptic reqularity) Let f € Ly(0,1). Letu € H* (| H} be the solution
of (4.1).Then we have the following elliptic regularity estimate

lullmz < Cllu”|l2 < CII ]2

Note that here
ullFz = llullfz + ]3> + [|u"]]7a

Remark: In general, we have
1"l z2 < [Jullg2, Yu € H?
However, if u is the solution of (4.1), we can get
lullzz < Cllu"[|z2, Yu € H* C Hy
Now we are ready to prove theorem 4.1.7.
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Proof of theorem 4.1 :We will prove this theorem step by step.

Step 1 : We first prove
IV (un — w)|| < Chlful| 4

Note that ||V (up, — w)||? = (V(up, — u), V(up — u))
= (V(up =), V(up = x + X —u))
= (V(un —w), V(un = x)) + (V(un —u), V(x —u))
= (V(un —u), V(x —u))
(finite element orthogonality)
< |IV(un = w)|[IV(x —w)l, Vx € S

Hence, we get
IV (un = )| < [IV(x —w)ll, VX € Sn

ie. |[V(up —u)|| < inf [[V(x —u)]
XESh

By the interpolation error, we have
inf [[V(x —u)l| < Chlful| g2
XESh

Hence, we get
IV (un = w)| < Chllu|12

Next we prove the Lo -norm of error estimate.

Step 2: We now prove
[1(u = up)|| < CR?[[ul| a2

Let g € L, consider
—)" =g, 0<z<l1
(

¥(0) =4(1) =0
We have, by elliptic regularity,

1¢]la2 < ClIPl|L,

Hence, we have
(un —u,g) = (un — u, =") = (V(up —u), Vi)
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= (V(up —u), V(¢ — x)) [Orthogonality]
< [[(V(un = )] [V (& = X)L,

< [I(V(up —w)|[r, inf [[V(¢ — X)L,
XESh

Note that, by step 1,
IV (un — w)|| < Chllul|n

and
inf 190 = llzs < IV = L)l < Chllglle < O

Thus we get
(un — u, g) < (Chlul|z2).(Chl|g]|L,)

= Ch?||ul|g2[|¥]]

Choose g = up, — u. we get

[lun = wllz, < CH?|lullpz2lun — ul|z,

which implies that
llun — ullz, < Ch?||ullpe

4.2 Finite element method for solving parabolic
equation

Consider the parabolic problem

du(t,x) 0*u(t, x)

5 . f(t,x) (4.21)
with the initial condition :
uw(0, ) = up(x), 0<z<1 (4.22)
and subject to the boundary conditions :
u(t,0) = u(t,1) =0, 0<t<T (4.23)

We will describe step by step to solve equation (4.21)- (4.23) by finite element method
as follows :
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Step 1: Variational formulation in an infinite dimensional space, V = H{.

Consider the following Hilbert space:

={v(z):(0,1) = R: /0 (v*(x) + (V'(2))*)dz < 00,v(0) = v(1) = 0}

Now, multiplying equation (4.21) by test function v(x) € H} and integrate by parts
on the limit [0,1] to get

/Olaugj’ﬂv(a:)dx—/o 626( d:z:—/ f(z, t)
(1)+/0 8uéxt , /f:vt
or,/()l%()dx—l—/ "(, d:v—/fa;t

Thus the variational form is to find u(-,¢) € H} such that [34]

/Olau(aa;’)()dx—i—/ (x, dx_/fxt dr, ve H

Denote the inner product (u,v) := [u(z,t)v(zx)dx for any fixed time t.

Y ou(w,t) Ou(x,t)
or,/o o v(x)dx — U(:C)T

We can write our variational form as

(%w) + (uy,vh) = (f,0), Vo€ H (4.24)

By well known Lax-Milgram theorem, we can say equation (4.24) has a unique solu-
tion.

Step 2: Variational formulation in the finite dimensional space, S},.
First divide the interval [0,1] into 0 = x¢ < 21 < @9+ -+ < xpr = 1.

Then define some linear finite element basis functions ¢y, ¢o, -¢pr_1 where ¢; € Sy, for
1=1,2,... M — 1. defined by

1, ifi=y
pi(z;) = e o
0, ifis#



More precisely for 7 =1,2,... M — 1 can be express as

Tr—Tj .
I i <z <a;
o — 1 j j
2zl
() = — Tj41 .

Gyl = { LT e
Lj = Tj+1
0, otherwise

where ¢;(x) is a linear continuous function on the mesh [zg, z,,].

For the grid parameter h define the finite element space Sy by the basis function as

Sy =A{up :up =11 + aode + -+ apy1dn-1}

= {uy, : uy, is a piecewise continuous linear function, u,(0) = u,(1) = 0}

The function wy, is a finite element solution of equation (4.21).

The finite element method is to find wy(-,t) = uy(t) € Sy i.e. for fixed t such that

8uh

(0 + (W x) = (f.x), Vx€eSne Hy (4.25)

where / is for derivative with respect to space variable x.
Step 3: Discretization with respect to time [1]:

Let 0 =ty < t; <ty <---<t, =T bea partition of [0,T]. We will discretize from
time to, tla c tn

When time t = t, we get uy(0) = Pyug, where P, = Ly — S, is Ly projection
operator.

Let, PhUO = Z]j\/izl Oéjgbj .
By definition, (Pyug, ¢;) = (uo, ¢1),l =1,2,3... M — 1
= (0 @iy, d1) = (uo, )

= S0 (6, d1) = (o, 1)
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= a* mass = right hand vector

At time t; the equation (4.24) becomes

8uh ’ ’
<W’ x) thl )|, =) (4.26)
By the backward Euler method, we know
(%) _ un(t1) — un(to)
ot / li=t, At
So, equation (4.26) can be written as
up(t1) — up(?
( ul 1)At 2 0),x> + (uh(t), X') = (f,x), X € Sh
or, (un(t1), x) + At(uj,(t), X") = At(f,x) + (un(to), x), x € Sh
M-1
Let, up(t1) = Z a;j(t1)¢;, ¢, is basis function.
j=1
M-1 M-1
(3 astt)onx) + At( D2 asta)dh, ¥ ) = AL ) + (unlto), ), x € S
j=1 j=1

Choose x = ¢y, [=1,2,...M — 1 and we obtain:

3 3
(D ast)s. on) + At D as(t)6). 1) = AUF.60) + (wn(ta), ). x € Sh

In matrix form, e.g. M=4, we get

% o (f, ¢1) (un(to), 1)
[(@5,00] |az| +2t[(@), 0] [a2| = At [ (£,02)| + |(un(to), &2)
as as (fs ¢3) (un(to), ¢3)

or,(mass + At x stif fness) d(t)) = At F + initial vector

or,@(ty) = (mass + At * stif fness) ™" @(t)[At F + initial vector]
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(01, 01) (¢h,¢5) (¢, %)
Here, stiffness=| (&5, ¢1) (5, ¢5) (%, ¢5)
(05, 91) (¢, 05) (¢, 05)

(d1,01) (D1.02) (é1,¢3)
) mass = (¢2,¢1) (¢27¢2) (¢2,¢3) )
(¢3,01) (P3,02) (03, P3)

ay e (un(to), ¢1)
and @ = |ao|, F=|(f,02)|, Initial vector = |(up(to), d2)
Qs (f, #3) (un(to), ¢3)

Step 4: Construction of co-efficients:
We will construct stiffness matrix, mass matrix, right vector and initial vector.

Construction of stiffness matrix: In general form, the local stiffness matrix on
element e; = [x;, x;41] is

Tit1 Tit1
6. (2).(x)dx / 8. (0) B (2)de

local stiffness matrix= T Ty
/ ¢;+1<x>¢;<m>dx/ &1 (@) (2)da

By refferencing method we can redefine our basis function ¢;(x) as ¢;(y)

where, [z;,x;11] = [0,1]

Ti — 0, Tip1 — 1

= ) r=x;+hy

Tit1 — X

T — Ti41 -Ti+hy_le n
gbz(l‘): = = s :1_y: z<y>
Ti — Tit1 Ti — Ti4+1
xr— x;, +hy —z; -
and  ¢ipq1(x) = = =y = ¢ir1(y)
X Tit1 Ty — Ti1
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d . d —
Therefore, ¢(x) = @gbz(:v) _ diy(gbz(y))_y .

dy 1

P (7) = %@H(ﬂ?) (¢5z+1( W =%

Now we will estimate elements of local stiffness matrix.

| d@stiars = [ b=

Tit1l -1
| st =

Tit1l -1
[ @@=

Local stiffness matrix becomes

Denote global stiffness matrix is

_/czsl )6,z d:v/% )6, (x drv/cbg 6, (@
/¢1 o) d:v/@ o) dzv/cbg A
_/¢1 YAC d:v/% YAC d:v/(bs )l

On element ey = [z, 1] the global stiffness matrix is

/qslcbld:c/@qmdx/%cbl

/ B (2) 4 () da / )y () / (@) ()

%1 E)101 %1
1 (z) ¢ (x)dx ()P (x)d O3(x) () d

LY Zo o zo

On element e; = [z1, x2] the global stiffness matrix is
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/ 6, (2) (2)dx / 6 (2) 6 () da / S| 11
37&2 x&z "E&Q E —
[Cawa@a [Coawawa [Cawawae =2 1
ko Tho Lo h h
¢} ()¢ () d h(2) Py (x)d ()¢ (x)dw 000
similarly, on element ey = [z, x3] the global stiffness matrix is
| a@dwis [Ca@amd [Cg@a@] oo
T Y T3 1 —1
/ 8, (2) 6 (x) e / 61 ()6 () de / dwh@r| =0 7
23 s T3 0 —_1 1
s@)d@dr | o@s@dr [ 0)d)d nooh

On element e3 = [z3, 24 the global stiffness matrix is

_/x:wx)asa(x)dx /w:(‘%(xwx)dx /z:%(xwx)dx ;
/ ¢ (x) Py (x)dx / @y () (x)dz / et = {8

1%4 I?M J:?M
¢ ()¢5 (x)dx ¢y ()P (x)dw ¢3(x) ¢y (x)dw

O O
[ |

LY T Z xT

Now, we will assemble all elements matrix to get our required global stiffness matrix,
which is

2

— 0
L
hhé»
—1
R

Construction of mass matrix: In general form, the local mass matrix on element
€; = [iCi,%H] is

| etmsda [ a@onis
[ @i [ @)oo

local mass matrix=
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In construction of stiffness matrix we discussed about refferencing é;(z) to ¢;(y). So,
we can estimate all elements of mass matrix by refference method.

/%Hl ¢i(x)pi(x)dx = /0 (1—y)(1—y)hdy = g

[ s@an=1

(=)

h

/’ - Git1(2) i1 (z)dr = 3

Local mass matrix becomes

1
o >w| >
w| o =
I — |

Denote global mass matrix is

_ | @i [ awowis | oa(2)1(2) |
/0 1(@)ba(0)dr [ $a(2)n(z)dz / 63(2)ba(a)d
_ / 61(2)0s(x)dz [ 6a(2)s(x)de / a(w)oa(a)dr|

On element ey = [z, z1] the global mass matrix is

[Co@oawis [ e@o@i [ awe @)
s i s 200
/ ¢1(x)p2(x)dx / Po(x)po(z)dz o3(z)pa(x)dx | = [0 0 0]
7y, 7 =0 00 0
¢1 (%) @3 (x)dx $2(2)3(x)dz [, " d3(x)s(x)d
On element e; = [x1, x| the global mass matrix is
[ [Comawd [Cawe@el o O
x?m x?m 1&2 — 6
[Coawan@a [Cowawa [ awewa) = |
o Tk Tho 6
/ b1 () pg(x)da / do(2) s () d / bs(2)py(x)da 0 0
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similarly, on element ey = [z, x3] the global mass matrix is

[t [Cewawd [Cawe@al oo
s e e h o h
¢1(x)da(z)dx ¢2(2)po(x)d ¢s()a(w)dz| = |0 3 5
I I, I, g
¢1(z)d3(x)dx Ga(z)@3(x)dx ¢3(z)¢s(z)dx 6 3

On element e3 = [z3, z4] the global mass matrix is

/%4¢1<x>¢1<x>dx /%qsx:c)qsl(x)dx /%qsswsm(x)dx Do
¢1(x)da(z)dx ¢o(2)po(z)dx () (w)dz| = |0 0 O
/90%4 L§U4 /x§m O 0 E
¢1(z)p3(w)dw Po(z) 3 (x)dx bs(2)ps3(z)da 3

Now, assembling all elements matrix to get our required global mass matrix, which
is

2 b
hothon
63 4

2
05 3

Construction of right vector: The right hand vector is denoted by

/f & (x
/ F(x) éale) da
_ / (@) daf) da

We will estimate all elements by midpoint method to get the right hand vector.

gl
I

By midpoint method, we can define
Ti+ Tip1
Lmid = 9

So, we get
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/le(x) b1 (z)dx = [/+/x+/+/}f(x) 61 (2)d
=[/z:1+/:}f(x) 1 (2)dx

[f (Tmia®1 (Tmia) / e + f(@mia®1(Tmia) /x N dw}

zo

Q

= ) + 2 )

=h f(xmzd)
1
Similarly, / f(x) ¢o(x) de = h f(Zmia)
0

and / [(&) d3(x) dx = b f(@mia).

Construction of initial vector : Denote the initial vector is

(un(to). 1)
(unlto). 61) = |(unlto). 62)
(un(t). 03)

Let uy(to) = Z a; ¢;,which implies

7j=1

(un(to), (Z% b5, ¢z> i ) (95, &)

In matrix form

(un(to), 1) a1 (to)
(i) )| = (65 @0)] |aulto)

Q3 (to)

3
or, (uh(to), qbl) = mass * Ad(ty)
=1
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Error estimate : First we rewrite equation (4.23) and (4.24) for

w(®)= 3 a6, w(t) € S,
(ug,v) + (Vu, Vo) = (f,v) Yv € Hy (4.27)
(une, X) + (Vur, Vx) = (f,x) YV x € S (4.28)

Now we have the error estimates [34].

Theorem 4.2.1. Let u, and u be the solutions of (4.28) and (4.27), respectively.
Then

t
Jun(t) = w(Ollcs < [luna ~ woll, + CH (lluolln + [ Ihea(s)llmds) — (129)
0

To prove this error estimates we need to introduce so called elliptic or Ritz projection

R;, on S},
Ritz projection: Let v € Hy, we defined Ry, : Hj — Sy, by

(VRw,VY) = (Vv,VY), Vx €S, v € H) (4.30)

It is easy to see that Ry : H} — Sy, is well define. In fact, let v € H}. Assume that,

5
RhU: Z O‘j(ﬁj

j=M—1
Then we have by (4.30), with y = ¢y,
M-1
> (Ve Vér) = (Vo,Vey), 1=1,2,...M—1.
J=1
or, in the matrix form

stiffness * @ = F

where stiffness and @ are defined and
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(VU, qul)

. (VU, v¢2)

F = (Vv,Vs)
(Yo, Vour 1)

1

It is easy to check that stiffness matrix is positive definite, therefore stiffness™ exists.

We therefore obtain
a = stiffness ™ * F

Remark: The Ritz projection Ryv € S, is the finite element approximation of v,
where v is the solution of the elliptic problem

(VU’VX> = (f7 X)v X € Sh»

for some f € Ly. Hence we have

Lemma 4.2.1. Ritz projections: Let v € H> N H}. Let Ry, : Hi — Sy be the Ritz
projections. We have

[|Ryv — ||, + B||V(Rpv — )|, < CR?||v||g2, v € H*NH,
Proof of Theorem 4.2.1: Step 1: We write
up(t) — u(t) = 0(t) + p(t), where 0(t) = up(t) — Rpu(t), p(t) = Ryu(t) — u(t)
By Lemma 4.2.1, we have

o)L, = [[Rnu(t) — u(t)l|z, < CR?||u(t)]]n2

Note that .
u(t) = u(0) +/ u(s)ds
0
We get
t
IMMWSWMW+/HMﬂmMS
0
Hence

t
oIz, < Ch2 (Il + / fue(s) |12 ds)

Step 2: Estimate 0(t) = u(t) — Ruu(t).

38



0(t) satisfies the equations
(eh X) + (ve7 VX) = (uh,t7 X) + <VUh, VX) - (Rhuta X) - (VRh'LLt, VX)

= (f,x) — (Rpus, x) — (Vu, V)
= (ut — Rpuy, X)

= <_pt7 X)
Hence 0 satisfies
(01, x) + (VO,VX) = —(pt, x), VX € Sh

Choose, x = 0(t), we get
(Qt, 6) + (Ve, VG) = _(pt7 9)
1d
2dt
Note that |[V8||7, > 0, we get

10117, +1IVOI[Z, = —(p, 0) < [lp(t)||L.-|10]]1.

1d
16112, < 11p(0)]l2-116]]2,

2dt
d
= 10122 W10l < lpell2a- 11011,

d
= 2 l6lls. < Ioilz

By integration on [0,t]
t
= [10)], = 16(0)[], < /0 |o1(5)]| L.ds
t
= 100, = 1160}z, < / Ch?[uy(s)|| L,ds
0
t
= [10)[[, < 116(0)]]L, +/ Ch?|uy(s)||rr2ds
0

t
= (10|, < [[un(0) — Rru(0)]|, +/ Ch?[uy(5)||12ds
0
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= (10|, < [[un(0) — w(0)]], +[|u(0) — Ruu(0)||L, +/ Ch?|uy(5)|| 12

0

t
= 100)1lz, < [lun(0) = u(O)l|z, + CB?||u(0)||2 +/ C?|ug(s)||rr2ds
0

Thus, combining step 1 and step 2, we get

t
s (=01 < Ol H100) 1 < Nt o=t0les O ([l | () s

4.3 Finite element method for solving space-fractional
PDEs

In this section, we will consider finite element method to solve the space-fractional PDEs.
Consider, with % <a<l1

d?y

Ut_W:f7 O<z<l, t>0 (431)
u(t,0) = u(t,1) =0 4.32)
u(0,2) = ug(x) =0 4.33)
where,
d*@u 1 R
. —(_ a, - D2a RD2a
d|x|?® (=A)% 2 cos(am) [0 AR
0? 0? 0?
Here, A = with respect to the x denotes the Laplacian opera-

8x12 + a$22 + 81'32
tor, D%u(t, z) denotes the left Riemann- Liouville fractional derivative with respect to x
1 ("
defined by FD%u(t,z) = m@/o (x —y)"* u(y) dy,1 < o < 2 and ZD%u(t, z)
denotes the right Riemann- Liouville fractional derivative with respect to x defined by
1 2 [*
EDYu(t, ) = mw/o (y — )" u(y) dy, 1 < a < 2. Where T' denotes the
gamma function.

Preparation : Before solving equation (4.31)-(4.33) we will recall some useful defi-
nitions and properties. There are two ways to define fractional Sobolev space on R! and
then confine them on bounded domain.[9] Another way is to define the fractional sobolev
spaces on bounded domain by the Riemann -Liouville fractional derivatives directly. This
way enables us to deduce some useful results for bounded domain [25].
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Definition 4.3.1. We define C*(Q2) = {u € C*(Q), u has compact support in § i.e.
supp(u) = {z : u(z) # 0} C Q}. C§(Y) denotes the space of infinitely differentiable

compactly supported functions.

Definition 4.3.2. Let a > 0, we define
H§ (Q)={the restriction on Q of the closure of C§°(§2) in H*(R)}
={ue L)) :a G =W there exist u,, € C§°(Q) C C§(R)
such that ||u, — @||gew) — 0,7 € H*(R).

Since u,, € C§°(Q2) and ||uy, — @||ga@) — 0, we see that @ =0 on z ¢ Q.

Definition 4.3.3. For any a > 0, we define
"H*(0,1) = v : [0}t ga(oqy < 00 with

1
[0t grao,1) = (HUH 01) T [V a0.1)? a0 [0ligra oy = [l Devl|za)

Definition 4.3.4. Let a > 0, 'Hg(0,1) denotes the closure of C5°(0,1) with respect

to the norm |[v|]iga g1y i-e.

"H*(0,1) = {v : there exists ¢, € C5°(0,1)such that ||¢, — |[tgra(0.1) — O}
Similarly, we can define "H*(0,1) and "H§(0,1)

Definition 4.3.5. Let o« >0, a #n+3, n>0, ne Z".
We define, “H*(0,1) = {v : ||[v||cgo(o,1) < oo}

with H*(0,1) = (HUHZ(o,l) +v
Here we have

1

gHO‘(O,I)) and |v]e o) = ‘(RDO‘ .2 DY U) :

1
(602 0,505 v) = cos(xa) D3I o #n+ 3

Definition 6: Let o > 0, “H{(0,1) denotes the closure of C§°(0,1) with respect to the
norm ||v

°H*(0,1)

Definition 4.3.6. Let a > 0,we define
H*(0,1) = {v e L*(0,1), there exists v € H*(R), such that 0|1 = v}
with norm ||v||ge(0,1) = inf||0||mew).In particular, if v € C§°(0, 1), then
[vllge0,0) = [|0]| ey,

v(x), forax € (0,1)

0, for = ¢ (0,1)

N
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Definition 4.3.7. Let o« >0, o« #n+3, n>0, n€ Z".

We define, “H*(D) to be the closure of C§°(D) with respect to the norm ||v||ege(p),
where

19112410y = [0l L2(D))

Property 4.31: 23] If0<p<1,0< ¢ < 1,u(0) =0, > 0 then

p+q,, P 9, — q '3
ODx u = UonDxu = OonDx'LL.

Lemma 4.3.1. [95]Let 0 < a < 1 ifu € H*(0,1),v € C§(0,1) then
(FDgu(@), () = (u(@), ED5v())
Proof: By using integration by parts , we get

(8020 o@) = [ (505000 oo

- /01 (ﬁ% /0 - 7) " u(r)dr) o (2)de

- % /ox(x_T)_a“(T)dT = /01 (5= /O (a—7) " u(r)dr) ole)d
= (v e C3(0,1),0(0) = v(1) = 0)

i [ ([ =) v

- m_—_la) /0 1 ( / (o — ) ulr) v(a)de ar)

[exchange the integration variables]

= /01 11(1_—_10[)(/71 T(x — 1) v(:c)d:z:)u(r)dT

: o —1 ! —a
Claim that, ZDu(r) = m/T (z — 1) (2)dx

Infact,

1 d
EDju(r) =

—F(l_— o) dx /T T(x — 1) v(x)de

-1 d (z—71) L (w—7) !
B vy G e - [ @ s

= (v(z) = 0)
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Thus we get,

(FDsu(@),v@)) = (ul@), FDfu())

Lemma 4.3.2. [19/Let 0 < a < 1 if u,v € C§(0,1)

then
(§D2u(@),0(2)) = (EDsu(@), FDFo(x))

(#D3u(),v(@)) = (ED5u(x), ED20())
Proof : Since v € H§, by definition there exist v, € C§(0, 1) such that

l[vn —v||He — 0asn — «

By property 4.31 and for all u € H§ we get

<§Di°‘u(a:),vn) = (?Dgu(x),ngu(x)vn>, v, € C§(0,1)

By lemma 4.3.1, we have

(§pssDzu(@),0.) = (§D2u(2), 2D, )

Thus we get
((})%D?cau(x)? Un) = <§D5U($), fD(llvn>
Note that,
lim (é{Dgu(x),vn) = ((?Dg‘u(x),v>
n—oo
Since
|(Fp2u(), o) = (FD2u(e), v))
= ‘ <ORD§QU(I), v, — U)
< |l D3*u(@)||zs-|lon — 0]z, — 0
Note that,
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lim (ORDgu(x),fD?vn) = (?Dju(x),fo‘v)

n—oo
Since
(fD2u(z), D50, ) — (ED2u(x), 2D30) |
= |(fD2u(@), 2Dg (0, = v) )
< o' D2*u(@)l|za-Jvn = o]l — 0
Thus we get

(FD2u(@),0(2)) = (EDsu(e), £DFu(x)), wv € H(0,1)
Similarly, we can prove
(#D%u(),v(@)) = (2Dfu(@), ED20()), w0 € H(0,1)
Lemma 4.3.3. Poincare inequality: For v € H§ (D), % < a <1, we have
lullz20) < Clulig o)

andf0r0<s<u,s7én—%,n€/\/',

ulag ) < Clulmy (o)

Lemma 4.3.4. Leto >0, 0 #n—2%, n € Z. The spaces'HJ(D),” H (D), “HS (D)andHg (D)
are equal in the sense that all the norms || - ||zHg(p)> | - ||*Hg(D)> | - ||CHg(D), [| - ||Hg(p) are

equivalent.

Finite element method : In this section we will consider how to solve the one
dimensional space fractional partial differential equation by finite element method.

Consider the space fractional partial differential equation with the Reimann -Liouville

type:
1
up + FD*u + EDiy| = f, 0<x<l1l, t>0 (4.36)
2cos am
u(t,0) =u(t,1) =0 (4.37)
u(0,z) = up(x) =0 (4.38)
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The variational form of (4.36) is to find u € H§(0,1)

(utvv) +

By lemma 4.3.2 we can write equation (4.39) as

2cos am [(?chau, U) T (fD%%L, Uﬂ = (f,v), ve Hy(0,1) (4.39)

(ue,0) + 5—— (5w, 7Dgv) + (EDpu, fD20) | = (f,0),v € H(0,1)

The finite element method is to find a solution u; € S}, such that

1
(unss ) + [(EDsun, 205 ) + (ED7un, £D2x) | = (£ x € S

2cos aT

Where S), denote the set of piecewise linear functions on [0,1] i.e.

Sp = {v(z) : v(z) is a piecewise continuous function on[0,1] and v(0) = v(1) = 0}

m—1
Let uy(t) = Z a;(t)¢; and choose x = ¢;
j=1
We get,
m—1 m—1
(65, 000}(1) + 5——— > | (D263, £D20:) + (FD7os, D261 ) [eatt) = ()
7j=1 Jj=1
In matrix form
o Et;
04/2 t 1 m—1
(¢J7 qb’b)z,j:ll + 2COS ar [( ¢j7 D gbl)ijl
()
al(t) (fv ¢1>
-1 O-/Q(t) (fv ¢2)

Denote, M is the mass matrix
~1
M = (95, ¢i)i5—
and S; and S, are stiffness matrix such as
-1

5= (§D26,.2D701)
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-1

S, = (EDge;, §D50:)

m
l7j:1

F is the vector values at the right hand side

and

Construction of matrices :
To < T1 < ooenne.

1
"(t)=M"! S+ S)a(t)+ MR
or, o/ (t) 20080&#( 1+ Spa(t) +

and a(0) = ag

(4.40)

For construct the matrices let us consider the nodes
< x, = 1. Moreover, from the stiffness matrices, one can see that

S; = ST .Here the inner product of the piecewise linear function ¢; is by [37]

DY gi(x) =

T

fD?@(I) =

(

0,

@(w — 1),

@[(93 =)' T = 22— 2y)' 7,

m[(fﬁ — 1) T = 200 — ) T+ (2= i)' T,
@m — )17 = 2 = 1) o (g — )],
@[(IHI — )7 = 2(z; — )77,

m(ﬂfm — )7,

0,

46

O<x<xig

Ti1 < T <x5
T, < T < Ty

$i+1<l’<1

O<zx<xig
Til < T <x;

T, < T < Tiy1

$i+1<£€<1



Remark:
1. fD2¢;(x) has compact support on [z;_1, 1], i.e. fD%¢i(x) =0 for 0 < x < z;_1.

2. BD2¢;(x) has compact support on [0, 2;41], i.e. ED%¢;(2) = 0 for 24, < z < 1.
Note that,

(51)5@@:),517?%(:0)) - [/+/ﬁ++/ +....+/ ' }g%D:@(a:),ijm(x) dx

€T
Tn—1

We will consider the integral element by element i.e.we first consider the integral on
(g, 1], then [z1, o], then [z, x3].Finally we assemble them to obtain our matrix .S;
and S,.On the element [z; 1, 2;], when [ > i+ 1 or m > i — 2 we get

EDShy(x) =0 or, EDSe,(x) =0.

Hence in this case ({ng(m(;c), fo‘qﬁm(:c)) =0.

Therefore, the element [z;_1,x;] will give contribution to the following elements

(#Dgo0 EDg0iy) oo (ED26i1 Do) (BDs6n EDR6 )
(§D2o0 DE0) o (BD3oEDger)  (ED3on D)
(FD2e0.fDg0n) o (D501 FDRON)  (§D500 FDR0N)

Now let us find the contribution on [z;_1,z;] on (i-1)th row, we have
(FDzo. o) = [ (sD2a).(FDg0 Yo
x 1 - 1 .
= — -z ) (z; — aq
/ e - ) e
1 2 xi l-a l—a
m] g 1(:1c — i) Y(x; —x) Ydr

i—

|
= (1= I o) = th, (=) = (1= 1))

(Ii - iL‘z‘—l)
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1 2 ! 2—2a 41—« l—«
[m] R e ) e

h1—2a

= T oe /0 (1 —t)tdt

1
=L / (1 — )" *dt, where L =
0

h1—2a

(M2 =a))?

Similarly, we have
<§D§¢i_1,fD?¢i_1> = / <§D§¢i—1>-(fD?¢i—1)d$
Ti—1

Zi 1 l-a T — 1 1-a T:i— 1T l-a €T
- /;u1 m[(x_xi_Q) 2( l> ]( Z ) !

2—«
h1—2a

:L/O (0= =20) (1), where L= s

(FDzoatDgors) = [ (FDz002).(MD50 )do

/:; m“m — i)' = 2w — i)

(x — 2i_1) 7 (2; — 2)"%dx

= L/1 2+ ) > =21+ ) + 171 — t)dt,

h172a

where L = m

(é%D?@fg, ;}jD?@‘—l) = / (é%D;Y(bzel) . (fD(ll(ﬁifl)dx
Ti—3

= L/1 [(B4+8)* =22+ )+ (L + )7 (1 — t)'dt,

h172a
T(2-a))?

(FDzon. EDpons) = [ (£D50). (D56 ) ds

zo

where L =

= L/l [+ =20 —14+8)"*+ (i —2+) (1 —t)' dt,
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Now let us find the contribution on [z;_1, ;] on ith row, we have
<RDO‘¢' RDa(b') — /xl <RDO{¢') (RDagﬁ)dQZ
0~z 1% ‘71011‘112
= /xil W(I—Ii_l)lia[(SL’H.l—Jf)lia—z(l’i—l’)lia]dl'
1
:L 11—« 2 _ 1—a_21_ 1—ad
A CEU R TR
(Do tpge) = [ (8D2ors).(Djen)ds
_ . ; o l-a o 11—«
B /:ti1 (hF(Q - a))Q [(‘T IZ_Q) 2(I xz—1> ]
(i1 —2)17% = 2(z; — 2)'7%]d
1
I / (14 4% — 26170] [(2 — £)1= — 2(1 — £)*"]gt,
0
(FDs0atDg0) = [ (D20rs).(D10)do
_ " ; o —a o 11—«
- / iz =yl mi-g) 7= 2w —mia) T
(z = 2i) " [(wi1 — )7 = 2(2; — @) %]da
1
= L/ [(248) 7 =2(1+8) 2 o] [(2—-1) * —2(1—1) ' ]dt
0
(FDzontDt0) = [ (FD200). (FD76:) o
y 1
= L/ [(i+6)" =260 =1+ 8"+ (i —2+1)"]
0
[(2—t)'>—2(1 —t)72]at

Now let us find the contribution on [x;_1,x;] on (i+1)th row, we have

T e A (R R T
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P =202 =)+ (1 — 1) )dt,

(FD3611, EDg 0111 ) = RD%Z )-(ED5 6001 ) d

[(t+1) =2t [(B—t) " —2(2— 1) "+ (1 —t)' ~*dt,

(8D500. 1D 6111) = / ,Z (£D200). (D611 ) da
= L/1 [(t+i) =20t +i—1)"" = (t+i—2)""
0

[(B—t)'7 —2(2 =)= + (1 — ¢)9]dt,

Now let us find the contribution on [x;_1, ;] on nth row, we have

(D201, 5000, ) = (D261, 2D 6111
1
L [ B2 =i = = 2 L= ) (- )
0
<RDa¢o, D%n) - (é%D?%afD?dmn_l)
1
= L/ [(E+0) ™ =2t +i— 1) — (t 40— 2)7
0
[(n+2—i—t)'""*=2(n+1—i—t)'""*+(n—i—t)'"*] dt,

Error estimate : We can rewrite the variational form of equation (4.31) for v €
H§ (D).

1
2cos am

(ug,v) + [(g'Dﬁu,fo‘U) + <fD?u, (?ijv)] = (f,v), ve HF(D) (4.41)

Denote, B, (u,v) = 5— [(é%Dg‘u, fD?v) + (fo‘u,ézngﬂ

2cos am

Then the finite element method of (4.39) to find wuy(t) € Sy, such that

(uh,t7 X) + Ba(uha X) = (f7 X)a VX € Sh (442)

Up, (O) = uhp
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M—-1

Assume that up(t) € S, has the form wy(t) = Z a;j(t)p;(x),

j=1
In this case we get the matrix equation (4.40) as

-

or, a/(t) + Ay« @(t) = F(t)

where A, = massx stiff-alpha

Denoted that, M is the mass matrix
M—1
M = (¢j7¢i)i,j:1

and stiff-alpha matrix =[Bs(¢;, ¢1)]}_1
F is the vector values at the right hand side

and

Now we have the following error estimates.

(4.43)

Theorem 4.3.1. Let uy, and u be the solutions of (4.41) and (4.39), respectively. Then

t
1
Jun(e) = u®)lz < llno = wollzs + C* (laalle + [ fi(s)llds) 5 < <1
0

(4.44)

To prove this error estimates we need to introduce so called elliptic or Ritz projection

Rh on Sh.

Ritz projection: Let v € Hf, % < a <1, we define R, : H} — Sj, by

Bo(Ranv, X) = Ba(v,X), VX € Sp, v € HY
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It is easy to see that R,y : HS — S, is well defined. In fact, let v € Hf. Assume

M-—1
that Ropw = ) a;(t)g;(z)
j=1
Thus we have by (4.45), with x = ¢,
M—1
3" @y[Ba(¢y,60)] = Balv,dn), ¢ € S, 1=1,2,... M 1.
j=1

or, in the matrix form,
stiff-alpha x & = I’ (4.46)

where stiff-alpha and @ are defined as above. It is easy to check that stiffness alpha
is positive definite. In fact, we have,

M-1 M-1
a® x stiff-alpha * @ = Ba< a(t)p;(x) Z Q; (t)@(m))
j=1 J=1
M-1
> Cll¢Deei( Y a;)|P >0
j=1

where we use the fact that the norms in 'H$ (D) and “Hg (D) are equivalent. Further,
by using the poincare inequality, Lemma 4.3.4, assume that

M-1 M-1
Ba( Y ai(065(2) Y a()65(2)) =0,
j=1 j=1
we have
M-1 M-1 M-1 M-1
1> asoilid, < 1ED2 (D asen )iz, < C(§02( D2 as05) 205 (D as5) ) =0
j=1 7=1 j=1 =1
M-1
which implies that Z a;¢; = 0 and therefore a; =0, j =1,2,... M — 1.
j=1

Hence stiffness alpha is positive definite. Thus we get the unique solution of (4.46).

Lemma 4.3.5. (Interpolation error)Let v € H**(0,1)NHS(0,1). Let I, : H**(0,1)N
H§(0,1) — Sy, be the interpolation operator. We have
1o = vll, < CW o], 7 < 20

Hfhv _UHH(‘)" S ChTiaHUHHr, r S 200
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Lemma 4.3.6. (Ritz projection) Let v € H** N HS. Let Ry : HY — Sy, be the Ritz
projection, we have

[|Ranv — V||, + hY||Ranv — v||ge < CR"||0||gr, a <71 <2 (4.47)

Note that R,,v is the finite element solution of the elliptic problem with exact solu-
tion v.

Proof : We first prove

||Rpv — v||ge < Ch"™||0||lgr, a <71 <2« (4.48)
By definition, we have B, (v — Ropv, x) =0, Vx € Sh.
Thus B, (v — Rapv,v — Rapv) = Ba(v — Rapv, v — X + X — Ranv)
= B,(v — Rapv,v — X)
= |[v = Ranv||mg () ||v — x| g (D)

Note that By (v — Ranv,v — Rapv) > ||v — Rahvﬂzg(p)

Thus we get ||v — RahUH?{g(D) < |lv = xllug @), x € H§(D)

Le. [[v— Rath%{g‘(D) < Xlélsfh v = Xlugo) < [lv— IhUHJZLIg(D)

By using interpolation error, Lemma 4.3.5 we get
v — Rath%{g‘(D) < Ch = v[lar, 7 < 20
We next prove the Ly error estimate (4.47). i.e.

||Ranv — 0|1, < CR"||Jv||lgr, a<r <2«

Let ¢ € Ly. Consider the elliptic problem

(~8) = o [ED2 () + EDR()| = 6, 0 < <1

2 cos(an)



We first show the following regularity result:

[ 20 (DY) < C|Dl|Lo(D)

Infact, we have C, = m
16117,y = (=2)%, (=A)*1))
= oy [T D8 0(@) + ED80(@). E D0 @) + D0 )

= C2|(F D2 (), ED2 (@) + 2(ED3 (@), D2 (@) +

(D3 (@), ED¥ ()]
> CW’H?{M(D)

where in the last inequality we use the facts that the norms in H2*(D), H2*(D),” H3*(D)
and “HZ%(D) are equivalent.

Hence we have,
(Ranv — v, 0) = (Ranv — v, (—A)*)
= By (Ronv —v,1)
= By(Ronv — v,1 — x) (Orthogonality)
<|[Ranv — v||mg() |V — X||lHg(D), ¥ X € Sh
Therefore (Ropv — v, @) < ||Ranv — v||H3(D)||¢ — ]h@ZJHHg(D)
where [, is the interpolation operator I, : HY — S.

By (4.48), we get

[ Ranv — v|| g0y < Ch*||v]| 20

By interpolation error and regularity, we get, we get r = 2a,

¥ = I [mg 0y < CR™|[¢|[gr < ChY|9]]1,

Thus
(Ranv — v, ¢9) < (Ch*|[v]| 20 ) (ChY|9]]1,)

< Ch*[v]| 2] |91,
Choose ¢ = R,pv — v, we get
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1
[[(Ranv — v||1, < Ch*||v]| g2, 5 <« < 1.

Combining these estimates complete the proof of Lemma 4.3.6.
Now we are ready to prove Theorem 4.3.1.

Proof of theorem 4.3.1: We write

up(t) —u(t) = 0(t) + p(t), where 0(t) = up(t) — Ranu(t), p(t) = Rapu(t) — u(t)

By lemma 4.3.4, we have

p(O)||L, < Ch™Ju(t)||gr, a <r <2a, 0<a<1

Note that .
u(t) = u(0) +/ u(s)ds
0
We get
t
u@[mr < [[uollnr +/0 ||we(s)|| 1 ds
Hence

t
o1z < O (lunllr + [ Jas(s) - )
We next consider 0(t) = up(t) — Ranu(t).
0(t) satisty the equations
(62, X) + Bal0, x) = (unt; X) + Balun, X) = (Bpug, x) = Ba(u, X)

= (fa X) - (Rahutv X) - Ba(ua X)
= (ur — Rpuyg, X)

= (=pu,x)
Choose, x = 0(t), we get

(6,0) + Ba(6,0) = —(pt, 0)

1d

5 771011z + 1611, < =(p,6) < llp@®)]]2- 161,
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Note that ||0||g= > 0, we get

1d

5 771011z < lp(®)]].-116]] .

d
= 10122 W10l < flpell2- 11011,

d
= 01z, < lpellz,

By integration on [0,t]
t
102, < 116(0)]]L, +/0 [lpe(8)]].ds
t
= |00z, < [16(0)]]L, +/0 Ch|[u(s)l|z,ds
t
= 100, <160z, +/0 Ch||u(s)|| s

t
= [[0®)|]2, < [[ua(0) = Ranu(0)|]L, +/ Ch [Ju(s)|| >ds

0

= |[0(t)]|, < [|un(0) — u(0)]|z, + [[w(0) = Ranu(0)||L, +/ Ch?||ue(s)|| rrds

0

t
= [10@®)|]2, < [[ua(0) — u(0)[|L, + CR[|u(0)]|ar +/ Ch"|[ue(s)||rrds

0

Thus,

t
s (=01 < N1 < N a=tl O (Jllr | () i)
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Chapter 5

Matrix transform technique (MTT)
for solving space-fractional partial
differential equations

In this chapter we will use Matrix Transform Technique ( MTT) for solving the space-
fractional equation. The MTT for solving space-fractional equation proceed by noting
that numerical discritizations of the standard equation. A is the matrix representation
of the laplacian obtained via a chosen discretisation method, such as the finite difference,
finite volume, finite element method.Here we include finite differnce method and finite el-
ement method.

Laplace operator: Let A = —A, D(A) = H}(0,1) N H?*(0,1). Assume that A has
orthonormal eigenfunction e; corresponding to eigenvalues \;, j = 1,2,3... i.e. Ae; =
Ajej, 7 =1,2,3... Then we have with 1 <a <2

. 5
AQGJ‘ = )\j €;

5.1 Finite differnce method

Let us consider the example of space-fractional partial diffrential equations to apply matrix
transform technique.

ou o
o HATu=0 (5.1)
u(0) = ug
where A = —& D(A) = H}(0,1) N H*(0,1).

Solution:[!3]Assume that the solution of (5.1) has the form
+oo
u(a,t) = Ca(t)e; (5.2)
n=1
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Substituting (5.2) into (5.1), we get
+o0 +00 o
D Cht)en+ D Cult)Aien =0
n=1 n=1
Cn(0) = (uo, €n),

1.e.

Cl(t) + Ch(t)AE =0
Cn(0) = (uo, €n)

Thus

Thus the exact solution of (5.1) is
+00 g
u(a,t) =Y Co(0)e ™ e, ()
n=1

When C,(0) = fol uo(w)v/2sin(nrz)dr = \/§f01 uo(z)sin(nmz)dz

or,

+00
u(z,t) = ansm(mrx)e’("%z)ﬂ
n=1

where

1
bo = 2/ uo(z)sin(nmx)dz
0
To find the approximate solution. We denote Z,, = L(eq, ea, €3, ... €,).

The approximate solution can be defined by uy(z,t) € Z,, where

N o
un(@,t) =Y Cr(0)e ™ e, (2)
n=1
Matrix representation of the finite difference method:[32][13] We use spectral

method to solve the equation (5.1). But in application, we don’t know the eigenvalues
and eigenfunctions of the operator A. We have to use the finite difference method to
solve (5.1).

Consider the eigen value problem
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—u"(z) = Au(z), 0<z<1 (5.3)
u(0) =u(l) =0
Here A = \; = 5272, u(z) = e;(x) = V2sinjnz.

Let 0 =29 < x1--- <axy_1 =an = 1, be a partition of [0,1].
Atz =2, j=1,2,... N — 1. We have
u(zj—1) — 2u(z;) + u(zj41)

12
Let U; = u(xj), j =1,2,...N — 1 be the approximate solution of u(z;),

+ O(h?)

U,/(ZL') |$=$j =

then we have

AU ~ XU (5.4)
U, 2 -1 0
U, -1 2 -1
with U = , A= h—12 .
. L -
Un_1 Lo —12

Note that A has eigenvalues
U; = [%W(%)} N?% = 4N23m2<%)

It is easy to see that U; — \; = 5?72
Since

; sin? (4%
U; = 4N?sin? <£> = #.(]’WV — (jm)? =\jas N — oo

2N

JmT
2N

Thus Uj is the approximation of A;, j = 1,2,... N In otherword, Alis an approxima-
tion of A. We hope that A? is a good approximation of A%.

5.2 Finite element method

Let us consider the elliptic equation [32],

—Au=f 0<z<l (5.5)
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The abstract form is

Au=f (5.6)
where A = —A,D(A) = H}(0,1) N H%(0,1).
The finite element method is to find u;, € S}, such that
(VUh,VX) = (fv X)7 VX € Sh
N
Let up = » aj¢jand y = ¢, 1 =1,2,...N
j=1
We get
N
ZV¢]JV¢I (f7¢l>7 l:17273aN
j=1

The matrix form is

Sa=f (5.7)
[ a1 ] I (f7 ¢1) |
%) (f? ¢2)
Here S = (Vo;, V) is called the stiffness matrix, & = as . = (£,s)
_aN_ _(f7 ¢N)_
Multiplying M ! in both sides. We get
(M'S)a=M~'T
Denote A, = M~1S, we get B o
Apd=M'f (5.8)

We will prove that Aj, : R — R is a good approximation of A : D(A) — H

Remark: In (5.8), we have
Sa=f
But S : RY — RY is not a good approximation of A. Instead

— —

A, = M'S
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is good approximation in same sense.

Now we consider the fractional equation
Atu=f (5.9)

We define the approximate solution of (5.9) by

2a=Mf (5.10)

By (5.10), we have

=A%) M= (A7) Pt
Here we use the following definitions and lemmas:

Definition 5.2.1. We define the operator Py : H — RN by

(f7 (bl)
PNf:M—lf: M—l (f7¢2)

(fa ¢N)
Definition 5.2.2. We define the operator Ex : RY — S, C H by

N
Ena = Zai@@) € 5y
i=1

Lemma 5.2.1. 1. PvEya=a

2.P,f = ExnPyf where P, : H — S}, is the Ly projection defined by

(th7X>:<f7X)7 VXESh

3 nfIl < ClIA

Lemma 5.2.2. ||Eydl| < C||d]|
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Proof:
N
[ENaI? =11 aigi()]?
i=1
N N
= <Zai¢i(x)azai¢i(x)>
i=1 i=1
—a"Ma = (Ma,a) <||nid||)|a|
< ||M]]]|a
Note that [|M]| = sup Nh < Ch* < C.
J

Thus
|Exal| < Clla]|

Definition 5.2.3. [72][/] A non-negative Stieltjes function is a function

f:(0,00) = [0,00) which can be written in the form

~ ]
A) = —pdt
fN) Z+/O p—r

where z > 0, z = lim f(\)

A—00

are non-negative constant and p is a measure on [0, 0o)such that fooo %Hudt < 00.We
denote the family of all Stieltjes functions by S.

Example : f(\) = \*"1 0 < a <1 is a Stieltjes function.

Proof:[32] Choose p dt = ST yo1 gy
7r

2= lim A\ ' =0
A—00

Then we have

AN+t 7

S |
/ — gy
0 A+t

1 oo
— (— = / e Mets ds)
A+t 0
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—/ e‘As</ totets dt)ds
0 0
:/ e 57T (a)ds
0

™

=\ Tl (1 —a) =

sinam
Further, we note that

< 1 sinam,, sinam [ 1 sinom
— 197 dt = 19 dt = < o0
o 1+t s o 141 7r

Denote g(t) =72, 1 < a < 2. The solution of (5.9) can be written into

u=g(A)f (5.11)
The solution of (5.10) can be written into
—Q -1 —
uy = Eyd = Ey (Aﬁ,) Pyf=Ey g(An)Pxf (5.12)
Now we have the following theorem.

Theorem 5.2.1. [72] Let u and uy be the solutions of (5.11) and (5.12) respectively.
Then we have
[l —un|] < ChP[|Af]]

Proof:
Step 1:Since g(t) =t~ 2 is a Stieltjes function . So, we have
o) = [ RO ()
0

Where R(A\; A) = (M + A)™!, [ fadu(t) < o

Thus we get ~
u—uy =g(A)f — Ex g(An)Pn f

- /OOO [R()\; A)f — Ex R(\; AN)PNf] dpi(A)

Step 2:For this step first we recall Resolvent equality lemma.
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Lemma 5.2.3. (Resolvent equality)
RN A) = R(p; A) = (1 — M R(X A)R(p; A)

where

RN A) = (M = A)7Y R(p; A) = (ul — A)~™
Proof of Resolvent equality: We can write
p—A=pu—A

=l —A)—(NM—-A)=p—A
Divide by (A — A) in both sides

(AT = A) " (ul = A) = T = (AT = A) (s — N

= (AT = A) ™" — (ul — A))(ul = A) = (M — A) (= \)

Divide by (ul — A) in both sides

(AT = A)™ = (ul = A) ] = (M = A) (= A)(ul — A)~

= R(AA) — R(ps A) = (n— A R(A; A)R(p; A)

So that , from Resolvent equality we get

R(N A) — Exn R(X\; An) Py
= (T+ (0= N Ey R An) Py ) (RO 4) = By RO Ax)Py ) (A+ D) RO A))
where A\, A\ € [0, 00).

Step 3:Note that Ey, Py are bounded and

Kn

A A <
RO ANl < 77

YA+ wy >0,

Ky
XA < VA
1RO A < L2 w0

We get
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[|R(A\;A) f — En RN\ An) P f]]

K

< (1 (o = M) lI(B w3 A) = Ex R(; Ax)Py)RO A)(A+ XD f|
A + wn

Note that, with A\g = 0

(R()\O; A) — Ex RO AN)PN)wH

= ||A_1w — EN A]_VIPN(A)H

< OR?||w]]
Thus we get
[[R(A; A) f — Exy R(A; An) Py f]|
Ky 9
< —AN)——|Ch*|[|R(N; A)|].||A
< (14 o= Ny ) CRIRO A LA
Ky 5 1
- _ A
Y R wrte) S e [
Hence

Ju —un|] < | /OOO [R(NA)f — Eyn R<)‘;AN>PN]C} dpu(t)||

< <1+()\o—)\))\fv (J)Ch?[/ooo —du(V)][147]

WN A4 w
< CR?||Af]]
Since [° si5du(A) < 0o

Thus,
|lu —un|] < CR?||Af]|
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5.3 Numerical example

5.3.1 Example:Finite difference method

Solve the given space-fractional PDEs from[32]

(-A)cu=f l<a<2 0<z<l (5.13)

by using finite difference method.

Here f(z) = nsinmz, Au = —%u = Au and D(A) = H}(0,1) N H%(0,1).
Solution: We will solve this equation step by step.

Step 1:We are solving

(=A)u=0, 0<z<l
uw(0)=u(1)=0
Let 0 =29 < 21 <...xp =1, be a partition of [0,1].
Ator=uw;,7=123,45...,M—1. we get

Uj_l — QUJ + Uj+1

or,
2 -1 0 Uy f(z1)
L2 0 Uy f(x2)
ﬁ U3 = f(l‘g)
2 -1 .
0 0 _1 2 (M—l)X(M—l) UM—l f(xM—l)
We get . .
Ah x Q= Fh
where
2 -1 0 0
-1 2 0 0
h — . )
0 0 2 -1
0 0 -1 2
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and
Uy f(z1)
U, . f
a=| Us |, Fp=| [f(xs)
U]'\/.['fl f(fol)

Step 2:The finite difference solution of (5.13) is defined by

—!

NI

*&:Fh

>

where

UM—l

is the solution of (5.13) .
Step 3:Matlab program will calculate a.
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Figure 5.1

Finite difference method with al =1.9, f=r' sin (Ttx)
0 T T

error

L
0 50 100 150

Student Version of MATLAB

Figure 5.1: Error in Finite Difference Method for example 5.3.1
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5.3.2 Example:Finite element method

Solve the given space-fractional PDEs from[32]

by using finite element method.

Here f(z) = nsinmz, Au= —%u = Au.

Solution: We will solve this equation step by step.

Step 1:We are solving
(—A)u=0, 0<z<l

u(0)=u(l)=0

Let 0 =29 <11 < ...z = 1, be a partition of [0,1] i.e step size h = <+

Define the finite element basis functions ¢;(z), p2(x), p3(x), pa(x), . ..

M-1
Let Up(t) Z a;¢;(z) be the finite element solution of 5.15 .
Jj=1

Then we have
(Up,X') = (f,x), VYx €Sy

or,
M-1

> ai(¢),x) = (£,X), Vx € S

Jj=1

Choose x = ¢y, 1=1,2,3,4,5..., M — 1.We get

M-—1
S a6 = (fodr), 1=1,2,3,4,5,..., M1
7j=1

—
—

or, stiffness x @ = f
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ap-1 (fs drr-1)
( /17 /1> """" ( /17 /]\/[—1) % % 0 0
(@6} oo (8 Sh1) '
stif fness = | ... Ll :% 0 5 % 0
( {7\/[—17925,1) """" ( {7\/[—17¢3\4—1) 00 % %
(B1,01) oo (61, Prr—1) 2 1 .. 0 0
(P2, 01) e (P2, Orr—1) -1 2 . 0 0
Denote, mass = | ... s . =h|0 -1 .. -1 0
CITEN S (Gar—1, dri1) 0 0 ~1 2
Thus we get .
mass~ '« stif fness x @ = mass % f
or, /Yh * Q= ﬁh
aq
Q9 5
When we get @ = | as |, we get the finite element solution Uy (z) = Z ;¢ (x).
..... j=1
Qpr—1
M-1
Step 2: The finite element solution of (5.14) is defined by Uy (z) = Z o ().
j:
_)E * O_f = ﬁh

Step 3:Matlab program will calculate a.
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Figure 5.2

Finite element method with al =1.9, f=r@ sin (tx)
0 T T

error

L
0 50 100 150

Student Version of MATLAB

Figure 5.2: Error in Finite Element Method for exampleb.3.2
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Chapter 6

Conclusion and future work

In this dissertation, we consider numerical methods for space-fractional PDEs and obtain
the error estimates for the finite element method. In the future work, we will consider
numerical methods for linear space-fractional PDEs in 2-dimensional case. We can also
consider nonlinear space-fractional PDEs.
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Chapter 8

Appendix

MATLAB program for equation (5.3) of example 5.3.1

hfinite difference method

JReference: Simpson, Turner and Illic, "A general matrix transfer technique for
Jthe numerical solution of space-fractional PDEs".

% A~{al/2}u=f, O<x<1

%hu(0)=u(1)=0;

Jwhere A~{al/2}=(-\Delta) {al/2}, 1<al<2,

%hlet us consider, f(x)=pi~al* sin(pi*x);

% exact solution \sum_{j=1}"{infty} lambda_{j} {-al/2} {f, e_{j}) e_{j};
By finite difference the approximate solution is

hA_h*alpha=F_h

%for the nodes 0=x_0<x_1<x_2<x_3<x_4<x_b<x_6=1, i.e h=1/6

% where A_h=-(1/h"2)*[-2 1 000; 1 -2100; 001-21; 000 -1 -2,
WF_h=[f(x_1); £(x_2); £(x_3);f(x_4); £(x_5)]

function [] =my_fractional_pde()
clear
al =default(’al= is the fractional order, (default is al=1.9)’,1.9);

h=1/150; % step size
x=[0:h:1]; % x-coordinate

n=size(x,2); % the number of the nodes

A_h= (-2)*diag(ones(n-2,1),0)+diag(ones(n-3,1),1)+diag(ones(n-3,1),-1);
A_h=-(1/h"2)*A_h;

A_h_al=expm((al/2)-logm(A_h));

xinnodes =x(2:n-1);

F_h=pi~(al)*sin (pi.*xinnodes’);
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Ul=A_h_al\F_h;
U=[0;U1;0];

exact=0;

for i=1:10

y=quad (@ (t) ((pi~(al)*sin(pix*t)).*(sqrt(2)*sin(i*pi.*t))),0,1,1e-10);
exact=exact+(i*xpi) ~(-al)*y*sqrt(2)*sin(i*pi*x’);
end

error=U-exact;

error=error (2:end-1) ;

figure(1)

plot(error,’r’)

title(’Finite difference method with al =1.9, f=\pi~{al} sin (\pi x)’)
xlabel (’x’)

ylabel(’error’)

function reply = default(query,value)

global BATCH FID

if exist(’BATCH’) & BATCH==1,
replycell=textscan(FID,’%f%*x["\n]’,1);
reply=deal (replycell{:});

disp(query)

disp(reply)

else

reply=input ([query,’ : ’1);

if isempty(reply), reply=value; end

end

return

MATLAB program for equation (5.4) of example 5.3.2

%finite element method

J#Reference: Simpson, Turner and Illic, "A general matrix transfer technique for
%the numerical solution of space-fractional PDEs".

% A~{al/2}u=f, O<x<1

%u(0)=u(1)=0;

%where A~{al/2}=(-\Delta)"{al/2}, 1<al<2,

%let us consider, f(x)=pi~al* sin(pi*x);

% exact solution \sum_{j=1}"{infty} lambda_{j}~{-al/2} {f, e_{j}) e_{j};
7By finite element the approximate solution is

%A_h*alpha=F_h

Ywhere A_h=mass”{-1}*stiffness, F_h=mass”{-1}*F

% and for the finite element basis function (varphi_j),F=(f, varphi_j).
% Denote that,
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% mass=hx[2/3 1/6 0 0; 1/6 2/3 1/6 0; 0 1/6 2/3 1/6;0 0 1/6 2/3]
%stiffness=1/h[2 -1 0 0; -1 2 -1 0; 0-1 2 -1; 0 0 -1 2]

function [] =my_fractional_pdeelement ()
clear
al =default(’al= is the fractional order, (default is al=1.9)’,1.9);

h=1/150; % step size
x=[0:h:1]; % x-coordinate

n=size(x,2); % the number of the nodes

nodesl=1:n-1;
nodes2=2:n;

for i=1:n-1;
nodes(i,1)=nodes1(i);
nodes(i,2)=nodes2(i);
end

A=zeros(n,n);
b=zeros(n,1);
mass=zeros(n,n) ;
stiffness=zeros(n,n);

for el=1:n-1
[localmass,localstiffness,db]=elementcontributions_elliptic(x,nodes,el,al);
nn=nodes(el,:);

mass (nn,nn)=mass(nn,nn)+localmass;
stiffness(nn,nn)=stiffness(nn,nn)+localstiffness;

b(nn)=b(nn)+db;

end

A=inv(mass)*stiffness;
b=inv(mass)*b;

innodes=2:n-1;
Al1=A(innodes,innodes) ;

A1_al_2= expm((al/2)-logm(Al1));
bl=b(innodes) ;
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U1l=A1_al_2\bi;

U=[0;U1;0];

hexact sol

exact=0;

for i=1:10

y=quad (@ (t) ((pi~(al)*sin(pix*t)).*(sqrt(2)*sin(i*pi.*t))),0,1,1e-10);
exact=exact+(i*xpi) ~(-al)*y*sqrt(2)*sin(i*pi*x’);

end

error=U-exact;

error=error(2:end-1);

figure(1)

plot(error,’r’)

title(’Finite element method with al =1.9, f=\pi~{al} sin (\pi x)’)
xlabel (’x’)

ylabel(’error’)

function [localmass,localstiffness,db]=elementcontributions_elliptic(x,nodes,el,al)
ni=nodes(el,1);

n2=nodes(el,2);

x1=x(nl1);

x2=x(n2) ;

length=x2-x1;

mid_point=(x2+x1)/2;

f=(pi)~(al)*sin(pi*mid_point);

%f=mid_point

localmass=[1/3*length 1/6*length;1/6xlength 1/3*length];
localstiffness=[1/length -1/length;-1/length 1/length];
db=f*length*[1/2;1/2];

function reply = default(query,value)
global BATCH FID

if exist(’BATCH’) & BATCH==1,
replycell=textscan(FID,’%f%*["\n]’,1);
reply=deal (replycell{:});

disp(query)

disp(reply)

else

reply=input ([query,’ : ’1);

if isempty(reply), reply=value; end
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end
return
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