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Abstract

We give introductions to delay di�erential equations, stochastic di�erential equations,

numerical approximations, Brownian motion and Ito calculus, stability and bifurcation

points and Lyapunov exponents. Using these methods we replicate the calculations in

the paper by Neville J. Ford & Stewart J. Norton, entitled �Noise-induced changes to

the behaviour of semi-implicit Euler methods for stochastic delay di�erential equations

undergoing bifurcation�. We present our results that correspond to some of the tables

and equations presented in their paper. We then apply the same methodology using

a Milstein numerical method with the same parameters and random distributions and

compare these results with our �ndings from the Euler-Maruyama scheme.

We �nd that the Milstein scheme exhibits the same relational behaviours between the

bifurcation approximations from the Lyapunov exponents and step length as was pre-

sented in Ford and Norton's paper for the Euler-Maruyama scheme, we also �nd that

the Milstein scheme maintains its greater accuracy up to and including the bifurcation

approximation.

2



Contents

1 Introduction 4

2 Delay di�erential equations 5

3 Stability of delay di�erential equations 6

4 Characteristic equations and roots 7

5 Numerical solutions and theta methods for delay di�erential equations 8

6 Brownian motion 14

7 Ito calculus 16

8 Euler-Maruyama for stochastic di�erential equations 19

9 Order and convergence of numerical methods 22

10 Milstein method 23

11 Bifurcation & Lyapunov exponents 26

12 Methodology 28

13 Veri�cation of Norton's results 31

14 Comparison of Milstein results 34

15 Conclusion 45

16 Further research and discussion 46

17 Appendix 49

3



1 Introduction

We will investigate whether the �ndings of Ford and Norton in their paper entitled �Noise-

induced changes to the behaviour of semi-implicit Euler methods for stochastic delay dif-

ferential equations undergoing bifurcation� [1] hold for the higher order Milstein scheme,

in particular the relationship between step length and the approximation of the bifurcation

point in stochastic delay di�erential equations (SDDE) and the resulting relational equations.

We suspect there is an equally strong relationship when using the Milstein scheme but will

this be the same or similar to the Euler-Maruyama or signi�cantly di�erent?

Ford and Norton's paper is based on Norton's PHD thesis [2] where much of the references

and methodology for this paper come from. Initially we intend to follow Norton's method-

ology and con�rm his �ndings for the Euler-Maruyama scheme and then apply the same

methodology and conditions to using the Milstein scheme which will give us a direct com-

parison from our own results. This means that any deviation in our results should be purely

down to the change in the numerical method used.

We begin by discussing the theory behind the methods used, starting with an introduction

to delay di�erential equations (DDE) and how the stability regions of these equations can

be calculated numerically from their characteristic equations. We discuss the numerical

methods for approximating DDE and derive an Euler scheme using matrices to store and

calculate the history caused by the delay in the equations. We then introduce Brownian

motion and Ito calculus which allows us to incorporate stochastic terms into a di�erential

equation and apply numerical methods. We then demonstrate the Euler-Maruyama method

for stochastic di�erential equations (SDE). Following a brief discussion on the accuracy and

order of numerical methods we then introduce the Milstein scheme. We discuss bifurcation

points and using Lyapunov exponents to estimate them and some of the limitations of this

method that justify why we have chosen to neglect the investigation of varying the noise

levels that Norton conducted as part of his work.

The remainder of this paper is then dedicated to presenting our methodology, results and

observations. Using Norton's parameters we run simulations for the Euler-Maruyama scheme,

we show that we had comparable results before then applying the same techniques and

parameters to the Milstein scheme.
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2 Delay di�erential equations

It is assumed that the reader is familiar with ordinary di�erential equation (ODE) and the

methods of solving them, in particularly for linear ordinary di�erential equations. ODE's

are not always an accurate representation for some models. A method for introducing some

more realistic behaviour into a mathematical model is by using delay variables, forming delay

di�erential equations (DDE). These account for situations where there is a time delay between

a change in a variable and the e�ect on a system. Normal ODE's assume everything depends

on the current state, DDE's allow for systems where a change at another state (usually time)

can in�uence the current or next state. A typical example of this is the 'adjusting the water

temperature in the shower' example, where there is a slight delay after adjusting the taps

that the e�ects are then observed. The e�ects of incorporating a delay into mathematical

model are numerous, some of them include; an initial function needs to be speci�ed instead

of an initial value, they generate in�nitely dimensional systems, when computing them the

history has to be stored, discontinuities can propagate and the systems can be prone to

breaking down unexpectedly and exhibiting chaotic behaviours that weren't present in an

ODE version of a similar type.

Delay di�erential equations can be used to model many di�erent things which involve some

kind of lag, time delay or feedback loop. They appear in many areas of modelling in medicine

and biology, economics, physics and mechanics and many more.

DDE are di�erential equations of the form:

y′ (t) = f (t , y (t) , y (t − τ1 (t , y (t))) , y (t − τ2 (t , y (t))) , ...) ,

where (τ) can be a constant, a function of time only or a function of time and state (of

t and y itself). If (τ) < 0 then the DDE is known as a retarded DDE, it relies on terms

from the past. If (τ) > 0 then it is advanced and relies on term in the future of the system.

Many of the examples we found use a constant delay, sometimes because the exact nature

of what causes the delay is not known precisely and is therefore estimated or varied and the

e�ects studied. There are also Neutral DDE where the derivative is dependent on a previous

derivative in the system (so the delay appears in a derivative term as well). There are also

stochastic delays that rely on random variables. Although we will be looking a DDE with a

stochastic term it will have a constant delay rather than the delay term being stochastic.

The DDE we will consider is the following linear DDE:

y′ (t) = λy (t− 1) (1)
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3 Stability of delay di�erential equations

A solution to a DDE is said to be stable as t→ ∞ if given two positive numbers t0and εt

there exists a corresponding δ > 0 such that for every continuous solution y(t)that satis�es

maxt0≤t≤t0+n |y (t)− x (t) | ≤ δ

will also satisfy

maxt0≤t |y (t)− x (t) | ≤ ε

It is asymptotically stable if:

• It is stable

• For t0 ≥ 0 there is a δ such that every solution y(t) also satisi�es

limt→∞ |y (t)− x (t) | = 0

y (t) ≡ 0 is an equilibrium solution which will remain asymptotically stable if all roots remain

asymptotically stable.

For y′ (t) = λy (t− 1) the asymptotic stability will depends on λ as shown in following section.
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4 Characteristic equations and roots

For all continuous solutions to approach zero as t→∞, all roots of it's characteristic equation

must have negative real parts.

As in the case for linear ODE's, for a linear DDE we want a solution of the form:

u (t) = eat

Which gives:

u′ (t) = aeat

Replacing y′ (t) for aeat in (1) we get:

aeat = λea(t−1)

aeat = λeate−a

Cancelling eat gives:

a = λe−a

This is the characteristic equations for (1).

For the system to be stable all the real roots of this characteristic equation need to be

negative. For the above example this is the case for values of λ > −π
2 , however, for values

of λ < −π
2 , the characteristic functions grow without bounds. The point at λ = −π

2 is the

point where the behaviour of the system changes and it loses stability. This is a bifurcation

point (see section 11).
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5 Numerical solutions and theta methods for delay di�erential

equations

Some ODE and DDE are not possible to solve analytically, in these cases we use numerical

methods to solve them. Numerical methods involve discretizing the scheme into time steps

and evaluating the system at each time step. There are two main types, linear multipstep

methods and Runge-kutta methods. Linear multipstep methods use small increments in time

to derive the next time step of the solution and continue in the same fashion to map out

the entire solution. Runge-kutta methods split each step into intervals to create a higher

order method but then discard these values and starts over for the next step. Within these

methods there are implicit and explicit variations. Explicit methods calculate the next state

entirely from the previous one, for example:

Y (t+ M t) = F (Y (t))

Whereas implicit methods use a combination of the previous state and the new one:

Y (t+ M t) = G (Y (t) , Y (t+ M t))

To derive a numerical scheme we start by using Taylor expansion to derive a �nite di�erence

approximation for the di�erential f ′ (x):

f ′ (x) =
f (x+ h)− f (x)

h

We then substitute this for the di�erential in our approximation. Applied to our delay

di�erential equation this gives:

x′ (t) = λx (t− 1) (2)

u (t+ h)− u (t)

h
= λx (t− 1)

x (t+ h) = x (t) + hλx (t− 1)

We then introduce t = nh such that Nh = 1, which splits each time interval into N steps of

size h
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This gives:

x (nh+ h) = x (nh) + hλx (nh−Nh)

x ((n+ 1)h) = x (nh) + hλx ((n−N)h)

Let

x (nh) = xn

xn+1 = xn + hλxn−N

The following is the numerical scheme for the Euler-Theta methods:

xn+1 = xn + h [θλxn−N+1 + (1− θ)λxn−N ]

Here there are two instances of αx with a new parameter θ. The value of θ determines which

of the Euler methods is implemented.

When θ = 0 we have the forward Euler method, where the next solution is derived entirely

from the λxn−N term.

When θ = 1 we have the backwards Euler method, where the next solution is derived entirely

from the λxn−N+1 term.

When θ = 1
2 we have the trapezium method, where the solution is derived from a combination

of both terms.

The Euler-theta methods can be represented as matrices:



xn+1

xn

xn−1
...
...

xn−N+1


=



1 0 0 · · · hλθ hλ(1− θ)
1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...

0 0 0 · · · 1 0





xn

xn−1

xn−2
...
...

xn−N


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which is of the form:

xn+1 = Axn

Where A is called the companion matrix and each n step can be determined as follows:

xn+2 = A2xn

xN = ANx0

The matrix Xn contain the values for the previous time steps that are being used to calculate

the current one, the 'history' of the system needed due to the delay term. The matrix Xn+1

also contains Xn to Xn−N+1 of them. The dimensions of these matrices will be determined

by the number of the steps the interval has been split into (N). We use this property when

we construct our code for the Euler-Maruyama scheme later.

Groovy code for the Euler-theta method for DDE:

import Jama.*

f = new File('ThetaOutput130-N10-T0.txt')

T = 1000

N = 10

h = 1/N

Theta = 0

def Infunc = {y -> y+0.5}

lambda = -1.30

Matrix Xn = new Matrix(N+1,1)

for (j in 0..N){

Xn.set(j,0,Infunc(j/N)*-1)

}

Matrix AMatrix = new Matrix(N+1,N+1)

AMatrix.set(0,0, 1)

AMatrix.set(0,N,h*lambda*(1-Theta))

AMatrix.set(0,(N-1),h*lambda*Theta)

for (k in 1..N){

AMatrix.set(k,k-1,1)

}

def Sln = []

Sln[0] = Xn.get(0,0)
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for (i in 0..T-1){

Matrix Xn1 = AMatrix.times(Xn)

Sln[i] = (Xn1.get(0,0))

Xn = Xn1

}

for (j in 0..T-1){

f.append(Sln[j] + '\n')

}

The graphs in Figures 1 and 2 illustrate the approximate solutions given by the Euler-Theta

method for (2) for θ = 0, 0.5, 1. Figure 1 have N = 4 and with λ = −1.30 and λ = −1.80

these are the extreme ends of the values of λ we will be using later in this paper and show

the extreme di�erences in the system. The graphs on the left show that the system is stable

for values of λ = −1.30 with all solutions converging to 0, whereas the graphs on the right

with λ = −1.80 show that the system is diverging and is no longer stable. As mentioned

previously, we expect the value at which this change occurs to be approximately −1.57.

Figure 2 illustrates the same thing but for N = 10 and shows the impact of increasing the

number of steps used in the numerical approximation.

11



Figure 1:
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Figure 2:
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6 Brownian motion

Some random events can have di�erent probability distributions, making some outcomes

more or less likely, it can consist of a form of noise or interference on a deterministic system

simply muddling or masking the true event. Random variables in mathematical models crop

up in �nance, medicine, enigineering, game theory, the list is endless. One of the most proli�c

forms of random model that appears in most of the areas mentioned above is the Wiener

process (otherwise known as Brownian motion). It is a normally distributed random variable,

the discretised version (limited to values of +/-1) is often decribed as a simple random walk,

or drunken walk (where each step the drunk makes is in an unknown direction, one step at

a time).

Brownian motion was named after the biologist Robert Brown. He observed how particles of

pollen suspended in water moved erratically in seemingly random and unpredictable patterns.

Brown never managed to describe the behaviour mathematically, this has been acredited to

Louis Bachelier who �rst de�ned Brownian motion as a stochastic process in 1900, closely

followed by Einstein in 1905.

Brownian motion is a stochastic process which sati�es the following properties:

• W0= 0 , initial condition

• If 0 ≤ s < t then Wt −Ws ∼ N (0, t− s) , normally distributed with mean = 0 and

standard deviation t− s

• Future changes are independent of past and present, if 0 ≤ r ≤ s < t then Wt −Ws

and W r are independent

• The paths t→Wt are continuous with probability 1

Einstein and Bachelier did not prove these properties however, it was Norbert Weiner (1923)

who did and also developed related mathematical theories. Because of this it has become

convention to use the term Brownian motion with regards to the physical phenomenon and

Wiener process for the mathematical model.

Brownian motion is a continuous function which is nowhere di�erentiable.
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Using Taylor expansion as before to derive a �nite di�erence approximation and taking the

limit for the di�erential dWt gives:

lim
h→0

(
dWt =

|Wt+h −Wt |
h

)
= lim

h→0

c√
h

=∞

Which shows that the di�erential should not exist.

Re-arranging gives:

dWt+h = Wt+h −Wt

15



7 Ito calculus

As stated above, one of the properties of Brownian motion is the fact that it is nowhere

di�erentiable, so it will cause an otherwise easily solved system of simple di�erential equations

to become complex. Developed by Kiyoshi Ito and published in 1942, Ito calculus is a method

that enables the solutions of such systems and models.

In Lectures 3 and 4 of his lecture notes for Mathematical modelling as part of an Msc course

in Financial Engineering, Raymond Brummelhuis [4] explains some of the key similarities

and di�erences between classical and Ito calculus. Firstly, dt is restricted to being a positive

di�erential. We also want to consider in�nitesimally small time increments on the interval

[t, t+ dt] where dt is interpreted as being a number so small that higher powers can be

discarded.

dt 6= 0, (dt)2 = (dt)3 = · · · = 0

Ito calculus uses the property that a normal random variable has mean 0 and variance dt

and as stated previously, if 0 ≤ s ≤ t then W t −Ws ∼ N (0, t− s)

then with h = dt we have:

E (|dWt|) = c
√
dt

If dWt is a di�erential of size
√
dt then for very small dt it is bigger than itself,

√
dt ≥ dt,

Brummelhuis gives the numerical example 10−50 ≥ 10−100.

It follows:

E
(

(dWt)
2
)

= dt

and

V ar
(

(dWt)
2
)

= (dt)2 = 0

This shows that dW t is no longer a random variable but a value with no variance and equal

to its mean.

To see how this works the following is an example of calculating the di�erential:
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d
(
W 2
t

)
= (Wt+dt)

2 −W 2
t

= (Wt + dWt)
2 −W 2

t

=
(
W 2
t + 2WtdWt + (dWt)

2
)
−W 2

t

= 2WtdWt + (dWt)
2

= 2WtdWt + dt

Rather than fully derive Ito's Lemma for the purpose of this paper the following is a summary

of some of the basic rules:

• (dt)3 dWt = 0

• (dt)2 dWt = 0

• dt (dWt)
2 = 0

• dt2 = 0

• dtdWt = 0

Returning to Brownian motion and applying the concepts of Ito calculus as described we get

the following:

df (Wt) = f (Wt+dt)− f (Wt)

since

Wt+dt = Wt + dWt

Using Taylor expansion up to order k = 2 we have the following:

f (Wt+dt) = f (Wt) + f ′ (Wt) dWt +
1

2
f ′′ (Wt) (dWt)

2 +O
(

(dWt)
3
)
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Which when applying the basic rules of Ito calculus reduces to:

f (Wt+dt) = f (Wt) + f ′ (Wt) dWt +
1

2
f ′′ (Wt) dt

This is the method we employ to di�erentiate our stochastic term in our numerical ap-

proximation. Combining this with the Euler-Theta method already shown, this gives the

Euler-Maruyama scheme.

We will return to Ito calculus in more detail and how it is used to derive the numerical scheme

included in this paper when we discuss the Milstein scheme in section 10.
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8 Euler-Maruyama for stochastic di�erential equations

The Euler-Maruyama method is essentially the Euler-Theta method for stochastic di�erential

equations with Ito calculus applied to the stochastic term. It is often referred to as one of

the easiest forms of numerical methods for stochastic di�erential equations ([7] p305).

We will �rst illustrate an example of the Euler-Maruyama method and then adapt this for

our delay equation.

dYt = (Yt) dt+ µ (Yt) dWt

xn+1 = xn + θhxn−N+1 + (1− θ)xn−N + µxn∆Wn

which is:

xn+1 = xn + h [θxn−N+1 + (1− θ)xn−N ] + µxn∆Wn

It can be seen here that when µ = 0, the system reverts to the theta method.

Using an exact solution calculated from

X (t) = X (0) exp((λ− 1
2
µ2)t+µW (t))

The following code is a groovy translation of the code used in [5]:

Code for Euler-Maryama for SDE:

import Jama.*

import java.security.*

SecureRandom random = new SecureRandom()

T = 1

n = 2**8

X0 = 1

dt = T/n

19



def Gnums = [ ]

def dW = [ ]

def W = [ ]

for (i in 0..n){

dW[i] = Math.sqrt(dt)*random.nextGaussian()

}

lambda = 2

mu = 1

def f = {x -> x*lambda}

def g = {x -> x*mu}

N = 1

deltaT = N*dt

int steps = n/N

Matrix Xzeros = new Matrix(steps,1)

Xn = X0

Matrix Soln = new Matrix(steps,1)

for (k in 0..steps-1){

dWt = W[N+k]-W[k]

Xzeros.set(k,0, Xn + deltaT*f(Xn) + g(Xn)*dWt)

XOld = Xzeros.get(k,0) Soln.set(k,0, X0*Math.E**(((lambda-(0.5*mu**2))*k*dt)+(mu*W[k])))

}

def ApproxSol = [ ]

def ExactSol = [ ]

for (m in 0..steps-2){

ApproxSol[m] = Xzeros.get(m,0)

ExactSol[m] = Soln.get(m+1,0)

}

for (n in 0..steps-2){

println ApproxSol[n] + "\t" + ExactSol[n]

}

20



The graph in Figure 3 shows the Euler-Maruyama approximation plotted again the exact

solution:

0 50 100 150 200 250

5
1

0
1

5

Steps

Y
(n

)

exact
approx

Figure 3:

Although the numerical methods performs relatively well when it comes to approximating

the solution of the system there is a fair amount of deviation. The degree of how far the

approximate solution di�ers from the exact solution (the error) or the accuracy is classi�ed

under the order of the method and is the topic of the next section.
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9 Order and convergence of numerical methods

How accurately a numerical method represents the actual solution of a di�erential equation

is known as the convergence of the system and is usually refered to as being either strong or

weak. Strong convergence refers to the step by step �t (pathwise �t) of the approximation

and is assessed by means of the total absolute error between the approximation and the

exact solution of the system. It is a measure of how closely the numerical method maps

each point along the entire path. Weak convergence is a measure at moments only. As we

are considering the approximations of entire trajectories of solutions in this paper, we are

primarily interested in the order of the strong convergence of the numerical methods used.

As can be seen in the graphs in section 5, strong convergence can be a�ected by the step size

chosen for the model. For the Euler schemes it can be shown using the log of error against

the log of the step size, that the absolute error is proportional to
√
h where h is the step size.

We state the de�nition given in [2]:

Strong convergence:

A method is said to have strong convergence of order γ if there exists a constant C such that,

for a su�ciently small step length h, E|Y − Y (tn) | ≤ Chγ where Y (tn)is the exact value of

the solution at gridpoint tnε [0, 1].

Weak convergence uses mean error and is also proportional to
√
h.

Again we state the de�nition given in [2]:

Weak convergence:

A method is said to have weak convergence of order γ if there exists a constant C such that,

for su�ciently small step length h, |E (Yn)− E (Y (tn)) | ≤ Chγ .

The Euler-Maruyama scheme we have already introduced is known to be strongly convergent

of order 0.5 and weakly convergent of order 1.
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10 Milstein method

The choice of the numerical method used can be shown to in�uence the skew from the

theoretic value of the root of the characteristic equation. Wulf [3] indicated that although

the numerical methods retain the information they deviate depending on the order of the

method used.

�Numerical methods for DDE retain qualitative features for DDE undergoing Hopf bifurca-

tions.

For general linear θ − methods - found higher order methods behaved better in that they

approximate the bifurcation points to a higher order.�

The Milstein numerical method is known to be both strongly and weakly convergent of order

1.

Milstein in his paper [11] showed that schemes such as the Euler-Maruyama have a mean

square deviation of Et0,x0 (X (t0 + T ))−
( ¯X (t0 + T )

)2
which is a value of O (h), he proposed

a method that by using only W k+1 and additional random variables at each stage gave an

accuracy of O
(
h2
)

The Milstein scheme simply has an extra term that was not used in the Euler-Maruyama

scheme. To explain where this comes from we need to return to Ito calculus for a moment.

Ito's formula, which we did not include earlier, states that for a given function that is twice

di�erentiable we can write:

f (Xs) = f (Xti) +

sˆ

ti

(
f ′ (Xu) a (Xu) +

1

2
f ′′ (Xu) b (Xu)2

)
du+

sˆ

ti

f ′ (Xu) b (Xu) dWu

If we apply this to the following SDE as described in [38]

dXt = a (Xt) dt+ b (Xt) dWt
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We get:

Xt+1 = Xt+

ti+1ˆ

ti

a (Xti) +

sˆ

ti

(
a′ (Xu) a (Xu) +

1

2
a′′ (Xu) b2 (Xu)

)
du+

sˆ

ti

a′ (Xu) b (Xu) dWu

 ds

+

ti+1ˆ

ti

b (Xti) +

sˆ

ti

(
b′ (Xu) a (Xu) +

1

2
b′′ (Xu) b2 (Xu)

)
du+

sˆ

ti

b′ (Xu) b (Xu) dWu

 dWs

We then discretise the time intervals and using the following properties and discard terms of

order higher than 1:

• δt · δt = O
(

(δt)2
)

• ∆W · δt = O
(

(δt)
3
2

)
• ∆W ·∆W = O (δt)

We get:

Xti+1 ≈ Xti +

ti+1ˆ

ti

a (Xti) ds+

ti+1ˆ

ti

(
b′ (Xu) b (Xu) dWu

)
dWs

≈ Xti + a (Xti) δt+ b (Xti) ∆Wi +

ti+1ˆ

ti

sˆ

ti

b′ (Xu) b (Xu) dWudWs

≈ Xti + a (Xti) δt+ b (Xti) ∆Wi + b′ (Xti) b (Xti)

ti+1ˆ

ti

sˆ

ti

dWudWs

≈ Xti + a (Xti) δt+ b (Xti) ∆Wi + b′ (Xti) b (Xti)
1

2

(
(∆W )2 − δt

)
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In our SDDE a = 1, b = µ and δt = h, substituting for these we get:

xn+1 = xn + (xn)h+ µ (xn) ∆Wn +
1

2
µ′ (xn)µ (xn)

(
(∆Wn)2 − h

)

This does not yet include our delay term, adding this in the same way as we did for the

Euler-Maruyama scheme we get:

xn+1 = xn + h [θλxn−N+1 + (1− θ)λxn−N ] + µxndWt +
1

2
µ2xn

(
dW 2

t − h
)
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11 Bifurcation & Lyapunov exponents

When systems become unstable they display chaotic behaviours. The point at which these

occur are described as various types of bifurcation points. Some local examples of these

include Hopf bifuractions, pitchfork, saddle-node, period doubling and transcritical.

These points are easy to see when results are graphed and there has been much work sur-

rounding the stability regions of systems. However it is not always an easy or accurate

method. Another alternative approach is with Lyapunov exponentials. Lyapunov exponents

are a measure of how solution trajectories diverge over time. This method will detect when

a system converges to a �xed point or displays periodic cycling. We are interested in using

them here to detect when a change in the system parameters results in instability.

When a Lyapunov exponent is positive it is an indicator of a chaotic system. In stochastic

delay di�erential equations (SDDE) there will be an in�nte number of Lyapunov exponents

describing the system. We are only concerned with the largest of the Lyapunov exponents as

this one indicates the largest divergence and therefore the greatest amount of instability in

the system.

S = sup
T−ε,T

(|Y (t) |)

Λ = lim
t→∞

supE

(
1

t
log |Y (t) |

)

One of the downfalls of using Lyapunov exponents to detect the bifurcation points in stochas-

tic systems is that they are used to detect deterministic chaos and and can lead to 'false

positives' in systems where there is too much noise or randomness . Jonathan Dingwell [12]

among many other authors [17,19] claims that �nding a positive Lyapunov exponent by itself

should not be taken as proof of chaos, Franca and Savi [19]also showed that some algorithms

(in particular Wolf's algorithm [9]) was especially sensitive to noise. As we are using them

to determine an approximation for bifurcations points in a stochastic system, and although

Norton investigated the impact of varying the level of noise, there will be a point where you

are guaranteed a positive Lyapunov exponent due to the noise rather than the underlying

system.

Yonemoto and Yanagawa [14] claim that

�Lyapunov exponents are reliable if the data are abundant, if the measurement error is near

0 and if the data really come from a deterministic system. However, with limited data or a

system subject to non-negligable stochastic pertubations, it is well known that the estimates
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may be incorrect or ambiguous.�

Dennis, Desharnais, Cushing, Henson and Constantino [17] showed it was possible for the

stochatic Lyapunov exponents to be positive when the Lyapunov exponents of the underlying

deterministic model is negative and vice versa. They also claimed it �should not be viewed

as a hallmark of chaos� and Argyris and Andreadis [15] found that the largest Lyapunov

exponent keeps growing under the in�uence of noise.

There are plenty of examples in research such as Dingwell [12], Lui, Dai, Li, Gong [13] and

Kostelich and Yorke [18] where methods are suggested for either removing the noise from

data or making a 'correction' for the noise before calculating the Lyapunov exponents. As

it appears to be such a mine�eld and we do not want to introduce any factors that may not

be due to the numerical method or step size we have chosen but due to the performance of

the Lyapunov exponents as an indicator when we increase or decrease noise levels, we have

decided to �x µ at 0.1 throughout this paper.
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12 Methodology

Wulf [3] proved that numerical methods retain information about bifurcation points and

perturbations are O (hn) where n is the order of the numerical scheme.

There are several di�erent DDE's solvers available. Many use a Runge-Kutta method. One of

the �rst things to consider is whether the method used in a DDE solver is appropriate for the

model it is to be applied to. Some are general whereas some can be speci�cally for a certain

type of DDE. Other considerations include the amount of memory needed to calculated the

solutions due to the amount of history of the sytem that needs to be stored to calculate the

solution. Also, the way discontinuities are tracked and handled. Some numerical solvers can

create 'ghost' solutions where theoretically they don't exist.

However, for this investigation we have chosen to build a model using the Java scripting

language Groovy. This allowed us to understand fully the structure of the numerical process

and how each one can be adapted and extended to allow further modi�cations to the model.

The code is saved as a groovy �le and can be run from the command line.

For example, from starting with a basic θ −method for simple deterministic DDE's we were

able to add the stochastic term which turned the model into an Euler-Maryama type model

that allows delays and then simply needed to add an extra term again to create an Milstein

version of the same thing (seen later in section 14).

Combining them is simply adding the brownian motion term (with reverence to the xn term

from the matrix not the xn+1).

which gives:

xn+1 = xn + h [θλxn−N+1 + (1− θ)λxn−N ] + µxndWt

The stochastic terms were stored in text �les so that the same values could be used for all

calculations, this way the only in�uencing factor should be the changes to the models and not

due to random skews between di�erent runs of random values. It would also allow for di�erent

sources of random numbers to be used, so instead of relying on just a pseudo RNG we could

also test the results with 'true' random numbers (ie, from a source such as Random.org).

As previously stated, Lyapunov exponents become ine�ective as an indicator of chaos/ stabil-

ity when the level of noise in the system goes beyond a certain level. To avoid introducing any

false results due to this and to enable us to establish a relational equation for the Lyapunov
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exponent in terms of h and λ,we intend to keep the stochastic term µ �xed at 0.1 throughout.

In the following code we use the fact that the matrices for calculating the delay terms store

the history and we reference the xn term using Xn1.get(1,0) and Xn1.get(0,0) for the xn+1 term.

Combined code for SDDE:

import Jama.*

f = new File('OutputTest1-50.txt')

for (r in 1..250){

def LE = 0

epsilon = 50

T = 5000

N = 10

h = 1/N

Theta = 0

def Infunc = {y -> y+0.5}

lambda = -1.50

mu = 0.1

def Gnums = [ ] new File(r + 'Gaussian.txt').eachLine{ Gnums.add(it.toFloat()) }

def dW = [ ]

def W = [ ]

for (i in 0..T*N){

dW[i] = Math.sqrt(h)*Gnums[i]

W[i] = dW.sum()

}

Matrix Xn = new Matrix(N+1,1)

for (j in 0..N){

Xn.set(j,0,Infunc(j/N)*-1)

}

Matrix AMatrix = new Matrix(N+1,N+1)

AMatrix.set(0,0, 1)

AMatrix.set(0,N,h*lambda*(1-Theta))

AMatrix.set(0,(N-1),h*lambda*Theta)

for (k in 1..N){

AMatrix.set(k,k-1,1)

}

def Sln = [ ]

Sln[0] = Xn.get(0,0)
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for (i in 0..T-1){

dWt = W[i+N]-W[i] //Delta Wn

Matrix Xn1 = AMatrix.times(Xn)

Sln[i] = (Xn1.get(0,0) + mu ∗ dWt ∗ Xn1.get(1, 0)︸ ︷︷ ︸
extra stochastic term

)

Xn = Xn1

}

def LEtemp = [ ]

for (n in 0..epsilon-1){

LEtemp[n] = Math.abs(Sln[T-epsilon+n])

}

The graphs in Figure 4 are the solutions for our �rst simulations with λ = −1.30 and

λ = −1.80 which show the same behaviours as the non-stochastic DDE:

Figure 4:
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13 Veri�cation of Norton's results

We followed Norton's methodology (as stated in [1]) initially using T = 5000 and ε = 5

and for all values of λ, the Lyapunov exponents for 500 trajactories were calculated. The

following tables are the original tabulated results published in [1] with our results for θ = 0,

h = 0.1, µ = 0.1. All our results had p-values approaching zero for a KS test.

Norton's results: Our results:

λ min mean max st dev

-1.80 0. 125696 0.127203 0.129467 0.000636

-1.78 0.117992 0.119548 0.121777 0.000577

-1.76 0.110093 0.111871 0.113710 0.000607

-1.74 0.102413 0.104070 0.105727 0.000623

-1.72 0. 094544 0.096156 0.097865 0.000572

-1.70 0.086109 0.088214 0.090290 0.000607

-1.68 0.078722 0.080134 0.081711 0.000559

-1.66 0.068938 0.071973 0.073805 0.000628

-1.64 0.061837 0.063713 0.065542 0.000618

-1.62 0.053654 0.055401 0.057312 0.000611

-1.60 0.045156 0.046968 0.048924 0.000636

-1.58 0.036722 0.038417 0.040472 0.000639

-1.56 0.027892 0.029741 0.032026 0.000658

-1.54 0.018852 0.021045 0.022701 0.000633

-1.52 0.010178 0.012110 0.014359 0.000628

-1.50 0.001550 0.003210 0.005319 0.000643

-1.48 -0.007740 -0.005871 -0.003872 0.000643

-1.46 -0.016888 -0.015106 -0.013391 0.000633

-1.44 -0.026084 -0.024429 -0.022442 0.000663

-1.42 -0.035916 -0.033894 -0.031982 0.000686

-1.40 -0.045154 -0.043385 -0.041458 0.000654

-1.38 -0.054813 -0.053148 -0.051360 0.000642

-1.36 -0.065142 -0.062943 -0.060652 0.000658

-1.34 -0.74742 -0.072934 -0.070458 0.000684

-1.32 -0.085634 -0.083084 -0.081031 0.000650

-1.30 -0.095153 -0.093354 -0.090911 0.000666

λ min mean max st dev

-1.80 0.126142 0.126895 0.127347 0.000182

-1.78 0.119004 0.119499 0.119882 0.000169

-1.76 0.111195 0.111720 0.112142 0.000166

-1.74 0.103230 0.103803 0.104270 0.000170

-1.72 0.095429 0.095834 0.096316 0.000157

-1.70 0.087571 0.088098 0.088506 0.000164

-1.68 0.079516 0.079953 0.080373 0.000157

-1.66 0.071215 0.071728 0.07219 0.000160

-1.64 0.062908 0.063433 0.063914 0.000166

-1.62 0.054741 0.055152 0.055590 0.000134

-1.60 0.046339 0.046768 0.047153 0.000144

-1.58 0.037815 0.038189 0.038555 0.000138

-1.56 0.029171 0.029522 0.029956 0.000134

-1.54 0.020272 0.020755 0.021207 0.000144

-1.52 0.011328 0.011895 0.012302 0.000150

-1.50 0.002457 0.002932 0.003340 0.000148

-1.48 -0.023987 -0.011764 -0.010222 0.000897

-1.46 -0.019375 -0.019337 -0.019300 0.000012

-1.44 -0.027535 -0.027202 -0.026907 0.000099

-1.42 -0.036117 -0.036539 -0.035755 0.000123

-1.40 -0.046005 -0.045570 -0.045199 0.000126

-1.38 -0.055918 -0.055536 -0.055204 0.000112

-1.36 -0.066500 -0.066345 -0.066197 0.000048

-1.34 -0.092474 -0.081519 -0.078252 0.002101

-1.32 -0.086639 -0.085429 -0.084636 0.000301

-1.30 -0.095080 -0.094164 -0.093505 0.000241

Our results di�er slightly from those presented in the paper, however apart from the obvious

reason of having di�erent Gaussian numbers, this could be down to having used groovy and
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java instead of Matlab as they use di�erent algrithms for scaling the uniform random numbers

from the RNG to Gaussian distributed numbers, Matlab changed from using a Polar (double

Box-Muller) method to a Ziggurat algorithm from versions 5 and up whereas Java uses the

Polar algorithm, or possibly just advances and changes in computer processing power since

Norton's original work was conducted.

We have lower values overall and a much tighter standard deviation. We achieved the compa-

rable results from 250 trials with T=5000 instead of 500 whilst maintaining a much smaller

standard deviation. For this reason and to save a considerable amount of time needed in

runnning the simulations, we base the rest of our results on just 250 trials as we are attempt-

ing to simply verify Stewart's results before investigating whether the claims hold when using

a higher order method, in this case the Milstein method.

Having generated values for the Lyapunov exponent for each value of λ shown in the table

above, we used R to perform a linear regression to determine an equation for the average

Lyapunov exponent (Lmean) in terms of λ.The following are the equations we derived for

θ = 0, 0.5, 1 for 250 trials:

For θ = 0:

Lmean = −0.448422λ− 0.674168

L0 = −1.506899

For θ = 0.5:

Lmean = −0.464863λ− 0.735214

L0 = −1.581571

For θ = 1:

Lmean = −0.483876λ− 0.801878

L0 = −1.657197
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Although the values for λ and the intersect in the linear regressions deviate from those pub-

lished in [2], the values for L0 are comparable. Norton's values for L0 were−1.4942, −1.5741, −1.652

for θ = 0, 0.5, 1 respectively.

Although we know that the actual value of the bifurcation point of the deterministic equation

is -pi/2 (from the characteristic equation in section 2), this will be di�erent when applying

the Lyapunov exponents to a numerical scheme which is an approximation. We determined

that the Lyapunov exponents for the deterministic equations and the bifurcation values were

-1.499821 for θ = 0, -1.579603 for θ = 0.5, and -1.654062 for θ = 1. Although the value for

θ = 0.5 is close to the actual value it is still not exact.

This gives us a reference for the accuracy of the results of Milstein scheme and is in keeping

with Wulf's �ndings [3].
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14 Comparison of Milstein results

Using the same random numbers for the stocastic term that we used for the Euler-Maruyama

method we then conducted the same calculation and methodolgy using a Milstein scheme.

Code for Milstein:

import Jama.*

f = new File('OutputTest1-50.txt')

for (r in 1..250){

def LE = 0

epsilon = 50

T = 5000

N = 10

h = 1/N

Theta = 0

def Infunc = {y -> y+0.5}

lambda = -1.50

mu = 0.1

def Gnums = [ ] new File(r + 'Gaussian.txt').eachLine{ Gnums.add(it.toFloat()) }

def dW = [ ]

def W = [ ]

for (i in 0..T*N){

//dW[i] = Math.sqrt(h)*random.nextGaussian()

dW[i] = Math.sqrt(h)*Gnums[i]

W[i] = dW.sum()

}

Matrix Xn = new Matrix(N+1,1)

for (j in 0..N){

Xn.set(j,0,Infunc(j/N)*-1)

}

Matrix AMatrix = new Matrix(N+1,N+1)

AMatrix.set(0,0, 1)

AMatrix.set(0,N,h*lambda*(1-Theta))

AMatrix.set(0,(N-1),h*lambda*Theta)

for (k in 1..N){

AMatrix.set(k,k-1,1)

}

def Sln = [ ]

34



Sln[0] = Xn.get(0,0)

for (i in 0..T-1){

dWt = W[i+N]-W[i]

Matrix Xn1 = AMatrix.times(Xn)

Sln[i] = (Xn1.get(0,0) + mu*dWt*Xn1.get(1,0))+(0.5 ∗ (mu ∗ ∗2) ∗ Xn1.get(1, 0) ∗ ((dWt ∗ ∗2)− h)))︸ ︷︷ ︸
extra term for Milstein

Xn = Xn1

}

def LEtemp = [ ]

for (n in 0..epsilon-1){

LEtemp[n] = Math.abs(Sln[T-epsilon+n])

}

LE = N*(Math.log(LEtemp.max()))/T

println LE

}

Computational considerations

We used a Dell R510 server with 8 virtual CPU's and 32.768 GB memory running 64 bit

Ubuntu Linux. When calculating the approximations for 20 steps, the ones with the largest

computational demand, 12 instances at a time took approximately 3 days to complete for

the Euler-Maruyama scheme. There was no di�erence seen in the CPU capacity or the

completion time needed when running the same for the Milstein scheme. The addition term

in the calculation had little to no impact on the overall computations and the complexity

is due solely to the delay term that is a component of both schemes. No advantage or

disadvantage could be discerned between either of the two schemes.
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The following results are our �ndings from the Euler-Maruyama for 250 trials alongside the

results from the Milstein method, also for 250 trials with h = 10 and µ = 0.1, we have

included the tables for θ = 0.5 and θ = 1 to illustrate that the results are not isolated to just

θ = 0:

Tables of results for θ = 0

Euler-Maruyama results: Milstein results:

λ min mean max st dev

-1.80 0.126142 0.126911 0.127325 0.000178

-1.78 0.119026 0.119503 0.119881 0.000158

-1.76 0.112114 0.111726 0.112114 0.000160

-1.74 0.103342 0.103814 0.104270 0.000170

-1.72 0.095459 0.095840 0.096313 0.000159

-1.70 0.087695 0.088103 0.088506 0.000153

-1.68 0.079522 0.079961 0.080373 0.000149

-1.66 0.071273 0.071741 0.072194 0.000160

-1.64 0.062908 0.063446 0.063887 0.000168

-1.62 0.054750 0.055147 0.055507 0.000133

-1.60 0.046342 0.046769 0.047153 0.000139

-1.58 0.037815 0.038195 0.038554 0.000134

-1.56 0.029171 0.029533 0.029956 0.000136

-1.54 0.020272 0.020769 0.021207 0.000141

-1.52 0.011488 0.011908 0.012302 0.000150

-1.50 0.002943 0.002474 0.003338 0.000154

-1.48 -0.023987 -0.011839 -0.01036 0.001071

-1.46 -0.019369 -0.019336 -0.01930 0.000012

-1.44 -0.027535 -0.027209 -0.026943 0.000102

-1.42 -0.036539 -0.036125 -0.035798 0.000127

-1.40 -0.046005 -0.045579 -0.045244 0.000131

-1.38 -0.055918 -0.055544 -0.055244 0.000116

-1.36 -0.06650 -0.066349 -0.066216 0.000049

-1.34 -0.09042 -0.081677 -0.078459 0.002204

-1.32 -0.086639 -0.085451 -0.084722 0.000313

-1.30 -0.09508 -0.094182 -0.093579 0.000251

λ min mean max st dev

-1.80 0.126258 0.126921 0.127383 0.000184

-1.78 0.119025 0.119510 0.119918 0.000159

-1.76 0.111254 0.111734 0.112162 0.000166

-1.74 0.103377 0.103824 0.104340 0.000178

-1.72 0.0954612 0.095851 0.096389 0.000169

-1.70 0.087710 0.088111 0.088557 0.000157

-1.68 0.079521 0.079971 0.0804312 0.000157

-1.66 0.071308 0.071752 0.072265 0.000169

-1.64 0.062920 0.063459 0.063960 0.000180

-1.62 0.054778 0.055158 0.055585 0.000142

-1.60 0.046371 0.046779 0.047206 0.000148

-1.58 0.037831 0.038208 0.038625 0.000144

-1.56 0.029176 0.029547 0.030063 0.000147

-1.54 0.020286 0.020782 0.021313 0.000154

-1.52 0.011499 0.011922 0.012413 0.000164

-1.50 0.002491 0.002957 0.003413 0.000169

-1.48 -0.006498 -0.006115 -0.005667 0.000160

-1.46 -0.015696 -0.015302 -0.014890 0.000155

-1.44 -0.024971 -0.024597 -0.024213 0.000155

-1.42 -0.034436 -0.034015 -0.033604 0.000158

-1.40 -0.043964 -0.043559 -0.043136 0.000160

-1.38 -0.053641 -0.053234 -0.052810 0.000162

-1.36 -0.063466 -0.063051 -0.062659 0.000164

-1.34 -0.073420 -0.073011 -0.072580 0.000174

-1.32 -0.083568 -0.083134 -0.082605 0.000185

-1.30 -0.093835 -0.093427 -0.092780 0.000187
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Tables of results for θ = 0.5

Euler-Maruyama results: Milstein results:

λ min mean max st dev

-1.80 0.095251 0.095734 0.096185 0.000174

-1.78 0.087585 0.087972 0.088348 0.000151

-1.76 0.079396 0.079855 0.080233 0.000154

-1.74 0.071197 0.071656 0.072118 0.000154

-1.72 0.062782 0.063380 0.063772 0.000160

-1.70 0.054728 0.055035 0.055463 0.000143

-1.68 0.046319 0.046731 0.047099 0.000138

-1.66 0.037779 0.038192 0.038551 0.000137

-1.64 0.029255 0.029573 0.029956 0.000130

-1.62 0.020432 0.020861 0.021299 0.000132

-1.60 0.011696 0.012047 0.012472 0.000133

-1.58 0.002711 0.003128 0.003604 0.000146

-1.56 -0.007915 -0.007009 -0.006402 0.000252

-1.54 -0.017825 -0.016794 -0.016131 0.000280

-1.52 -0.028054 -0.026813 -0.026062 0.000324

-1.50 -0.038476 -0.036908 -0.036043 0.000386

-1.48 -0.048482 -0.046693 -0.045762 0.000424

-1.46 -0.057415 -0.055860 -0.054999 0.000384

-1.44 -0.065926 -0.064705 -0.063962 0.000320

-1.42 -0.074643 -0.073632 -0.072977 0.000276

-1.40 -0.083711 -0.082822 -0.082223 0.000249

-1.38 -0.093156 -0.092345 -0.091786 0.000230

-1.36 -0.103021 -0.102271 -0.101744 0.000215

-1.34 -0.113415 -0.112730 -0.112238 0.000199

-1.32 -0.124671 -0.124103 -0.123677 0.000169

λ min mean max st dev

-1.80 0.095250 0.095745 0.096259 0.000184

-1.78 0.087584 0.087980 0.088399 0.000155

-1.76 0.079408 0.079864 0.080272 0.000162

-1.74 0.071209 0.071667 0.072188 0.000162

-1.72 0.062796 0.063392 0.063831 0.000171

-1.70 0.054731 0.055048 0.055538 0.000156

-1.68 0.046349 0.046741 0.047150 0.000146

-1.66 0.037805 0.038204 0.038633 0.000147

-1.64 0.029256 0.029587 0.030015 0.000142

-1.62 0.020433 0.020876 0.021407 0.000145

-1.60 0.011695 0.012061 0.012576 0.000147

-1.58 0.002726 0.003142 0.003713 0.000161

-1.56 -0.006238 -0.005870 -0.005418 0.000166

-1.54 -0.015451 -0.014988 -0.014522 0.000169

-1.52 -0.024688 -0.024212 -0.023748 0.000167

-1.50 -0.034001 -0.033547 -0.33106 0.000165

-1.48 -0.043427 -0.043002 -0.042565 0.000166

-1.46 -0.053016 -0.052582 -0.052118 0.000171

-1.44 -0.062758 -0.062292 -0.061785 0.000177

-1.42 -0.072551 -0.072138 -0.071616 0.000182

-1.40 -0.082551 -0.082129 -0.081530 0.000181

-1.38 -0.092583 -0.092181 -0.091583 0.000168

-1.36 -0.102691 -0.102238 -0.101680 0.000192

-1.34 -0.113023 -0.112584 -0.112093 0.000184

-1.32 -0.123647 -0.123183 -0.122721 0.000179
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Tables of results for θ = 1

Euler-Maruyama results: Milstein results:

λ min mean max st dev

-1.80 0.064573 0.064949 0.065295 0.000137

-1.78 0.056172 0.056583 0.056968 0.000141

-1.76 0.047682 0.048057 0.048437 0.000142

-1.74 0.039080 0.039462 0.039893 0.000138

-1.72 0.030402 0.030779 0.031205 0.000138

-1.70 0.021577 0.022003 0.022449 0.000146

-1.68 0.012725 0.013127 0.013542 0.000150

-1.66 0.003843 0.004182 0.004579 0.000141

-1.64 -0.009440 -0.007992 -0.007166 0.000364

-1.62 -0.030953 -0.023219 -0.019816 0.002107

-1.60 -0027075 -0.027055 -0.027033 0.000007

-1.58 -0.035622 -0.035363 -0.035145 0.000083

-1.56 -0.044819 -0.044488 -0.044219 0.000104

-1.54 -0.054453 -0.054137 -0.053878 0.000099

-1.52 -0.064584 -0.064395 -0.064233 0.000061

-1.50 -0.076835 -0.076208 -0.075685 0.000200

-1.48 -0.087604 -0.085308 -0.084255 0.000499

-1.46 -0.094143 -0.093066 -0.092382 0.000290

-1.44 -0.103035 -0.102156 -0.101563 0.000246

-1.42 -0.112688 -0.111904 -0.111357 0.000224

-1.40 -0.12976 -0.122266 -0.121759 0.000206

-1.38 -0.134095 -0.133488 -0.133039 0.000180

-1.36 -0.147764 -0.147661 -0.147555 0.000037

-1.34 -0.156505 -0.155577 -0.154960 0.000257

-1.32 -0.166374 -0.165630 -0.165105 0.000214

λ min mean max st dev

-1.80 0.064589 0.064960 0.065372 0.000145

-1.78 0.056201 0.056593 0.057021 0.000149

-1.76 0.047682 0.048068 0.048509 0.000152

-1.74 0.039087 0.039475 0.039963 0.000148

-1.72 0.030406 0.030794 0.031314 0.000151

-1.70 0.021576 0.022018 0.022556 0.000160

-1.68 0.012735 0.013140 0.013617 0.000165

-1.66 0.003844 0.004196 0.004656 0.000156

-1.64 -0.005221 -0.004846 -0.004449 0.000146

-1.62 -0.014366 -0.014013 -0.013650 0.000144

-1.60 -0.023695 -0.023277 -0.022902 0.000146

-1.58 -0.033071 -0.032645 -0.32237 0.000151

-1.56 -0.042511 -0.042125 -0.041703 0.000156

-1.54 -0.052140 -0.05172 -0.051286 0.000159

-1.52 -0.061865 -0.061436 -0.060998 0.000162

-1.50 -0.071721 -0.071282 -0.070874 0.000166

-1.48 -0.081665 -0.081257 -0.080847 0.000173

-1.46 -0.091848 -0.091377 -0.090851 0.000185

-1.44 -0.102095 -0.101645 -0.101088 0.000184

-1.42 -0.112209 -0.111845 -0.111292 0.000184

-1.40 -0.122637 -0.122206 -0.121697 0.000188

-1.38 -0.133379 -0.132915 -0.132461 0.000187

-1.36 -0.144237 -0.143822 -0.143381 0.000177

-1.34 -0.156505 -0.155577 -0.154960 0.000257

-1.32 -0.166131 -0.165607 -0.165042 0.000204
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The corresponding linear regression formulae are follows:

For θ = 0:

Lmean = −0.439580λ− 0.659155

L0 = −1.499511

For θ = 0.5:

Lmean = −0.458195λ− 0.723688

L0 = −1.579432

For θ = 1:

Lmean = −0.486329λ− 0.804402

L0 = −1.654028

Even at a quick glance the results are not signi�cantly di�erent from the Euler-Maruyama

ones for values of λ that are greater than the bifurcation value (the value where λ changes

from negative to positive). However, the results deviate for the stable values of λ. Could this

be a characteristic of the Lyapunov exponents rather than the numerical method? In other

words, does using the Milstein method return more accurate values and it is the results of

the Lyapunov exponents when the system turns chaotic that behave the same irrespective of

the numerical method used? Or is it simply a characteristic of the system? That once the

system passes a bifurcation point, the rate of divergence is the same?
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To see if there are any further di�erences we investigate more of Norton's published equations

and explorations and compare them with our Euler-Maruyama and Milstein ones:

Table of regression formulae published in [1]:

Equation R

Lmean = 0.4795h2 + 0.00074 0.954

Lmean = 0.2641
√
h− 0.007847 0.995

Lmean = 0.2835h− 0.02506 0.998

Lmean = 0.170250h+ 0.107215
√
h− 0.047085 0.99993

Lmean = −0.143577h2 + 0.362442h− 0.031696 0.999997

Lmean = −0.1215886h2 + 0.3323459h+ 0.0170465
√
h− 0.0341816 1

Lmean = −0.2140995h1.5 + 0.4660743h− 0.0180839
√
h− 0.0309053 1

Equations for our Euler-Maryama results:

Equation R

Lmean = 0.4760191h2 + 0.0005359 0.8952

Lmean = 0.261823
√
h− 0.077958 0.9875

Lmean = 0.281224h− 0.025040 0.9952

Lmean = 0.175069h+ 0.100497
√
h− 0.045681 0.9998

Lmean = −0.1351h2 + 0.3555h− 0.03128 1

Lmean = −0.1259889h2 + 0.3430317h+ 0.0070656
√
h− 0.0323112 1

Lmean = −0.2212686h1.5 + 0.4807996h− 0.0289973
√
h− 0.0289602 1

Equations for our Milstein results:

Equation R

Lmean = 0.4759483h2 + 0.0005513 0.9127

Lmean = 0.261776
√
h− 0.077928 0.9896

Lmean = 0.281177h− 0.025020 0.996

Lmean = 0.175173h+ 0.100354
√
h− 0.045631 0.9998

Lmean = −0.1349h2 + 0.3554h− 0.03125 1

Lmean = −0.1258169h2 + 0.3429066h+ .0070497
√
h− 0.0322798 1

Lmean = −0.2209703h1.5 + 0.4804916h− 0.0289661
√
h− 0.0289331 1

40



Although we see some di�erence between our results and Norton's, the di�erences between

our Euler-Maruyama and Milstein results are negligable. So, the Milstein scheme exhibits the

same relational behaviour between the step length the bifurcation approximation from the

Lyapunov exponents. The following tables are simply more comparisons between our results

from the Milstein scheme and Norton's original results, they all exhibit the same di�erences

as seen before.

Table published in [2] (θ = 0):

λ Quadratic equation R2

-1.8 L=−0.1109031h2 + 0.303866h+ 0.097956 1

-1.7 L=−0.126717h2 + 0.322257h+ 0.057182 1

-1.6 L=−0.133858h2 + 0.341172h+ 0.014109 1

-1.5 L=−0.143577h2 + 0.362442h− 0.031696 1

-1.4 L=−0.152311h+ 0.383909h− 0.080388 1

-1.3 L=−0.164308h2+0.408497h− 0.132665 1

Our Milstein results (θ = 0):

λ Quadratic equation R2

-1.8 L=−0.1109h2 + 0.2976h+ 0.09836 1

-1.7 L=−0.12159h2 + 0.31763h+ 0.05745 1

-1.6 L=−0.1262h2 + 0.3348h+ 0.01452 1

-1.5 L=−0.1349h2 + 0.3554h− 0.03125 1

-1.4 L=−0.07977h2 + 0.3759h− 0.07977 1

-1.3 L=−0.15695h2+0.40121h− 0.13198 1

Norton's results: Our Milstein results:

λ Bifurcation value of h

-1.8 No value

-1.7 No value

-1.6 No value

-1.5 0.0907

-1.4 0.2305

-1.3 0.3841

λ Bifurcation value of h

-1.8 No value

-1.7 No value

-1.6 No value

-1.5 0.0911

-1.4 0.2328

-1.3 0.3878
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Following Norton's methodology further we then investigate the relationships between the

Lyapunov exponents and both step length and λ. When plotted the results show an obvious

relationship between the variables with the points forming a well structured plane as seen in

Figure 5.

−1.8 −1.7 −1.6 −1.5 −1.4 −1.3

−
0
.2

0
−

0
.1

5
−

0
.1

0
−

0
.0

5
 0

.0
0

 0
.0

5
 0

.1
0

0.0

0.1

0.2

0.3

0.4

0.5

Lambda

S
te

p
 s

iz
eL
m

e
a

n

Figure 5: Milstein with θ = 0

A simple linear regression yields the following equation:

Lmean = −0.42657λ+ 0.27410h− 0.66626

When this plane is added to the plot it can be seen that there is a slight curvature that

implies a quadratic �t would be better (Figure 6).
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Figure 6: Milstein with θ = 0 and regression plane

The quadratic �t indeed has an R value closer to 1. Norton presented quadratic formulas

in both [1] and [2], the following tables show the comaprisons again between our results and

his:

Quadratic regression formula published in [1] and [2] (µ = 0.1):

θ Equation R

0 Lmean = −0.13188λ− 0.13950h2 − 0.83524λ− 0.35312h− 0.98643 0.999

0.5 Lmean = −0.13789λ− 0.13472h2 − 0.88053λ− 0.00010h− 1.04244 1

Our regression formula using Milstein (µ = 0.1):

θ Equation R

0 Lmean = −0.13015λ2 − 0.1317h2 − 0.83002λ− 0.34651h− 0.98209 0.9979

0.5 Lmean = −0.13474λ2 − 0.12916h2 − 0.87011λ− 0.00540h− 1.03355 0.9994
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We are starting to see some signi�cant di�erences in our results, until now we had been within

2 decimal places of Norton's but for θ = 0.5 we are not. This is where we would expect any

di�erences to be most obvious due to the increased order of the Euler scheme when θ = 0.5

and so the same with the Milstein scheme for θ = 0.5.
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15 Conclusion

One of the interesting observations from this investigation was the fact that the Milstein

scheme retains the same degree of accuracy for all values of λ when compared to the results for

the deterministic equation for, yet the Euler-Maruyama scheme is signi�cantly less accurate

for the stable regions (as expected) but they have similar values and deviations beyond the

bifurcation point. The following table shows this for h = 10 (step length = 0.1):

Milstein Euler-Maruyama Deterministic

λ θ = 0 θ = 0.5 θ = 1 θ = 0 θ = 0.5 θ = 1 θ = 0 θ = 0.5 θ = 1

-1.30 -0.09343 -0.13397 -0.17700 -0.09418 -0.14306 -0.17784 -0.09350 -0.13403 -0.17705

-1.32 -0.08313 -0.12318 -0.16561 -0.08545 -0.12410 -0.16563 -0.08322 -0.12325 -0.16562

-1.34 -0.07301 -0.11258 -0.15558 -0.08168 -0.11273 -0.15558 -0.07310 -0.11264 -0.15498

-1.36 -0.06305 -0.10224 -0.14382 -0.06635 -0.10227 -0.14766 -0.06313 -0.10226 -0.14388

-1.38 -0.05323 -0.09218 -0.13292 -0.05554 -0.09235 -0.13349 -0.05332 -0.09233 -0.13297

-1.40 -0.04356 -0.08213 -0.12221 -0.04558 -0.08282 -0.12227 -0.04365 -0.08221 -0.12225

-1.42 -0.3402 -0.07214 -0.11184 -0.03613 -0.07363 -0.11190 -0.03412 -0.07222 -0.11189

-1.44 -0.02460 -0.06229 -0.10165 -0.02721 -0.06470 -0.10216 -0.02472 -0.06238 -0.10172

-1.46 -0.01530 -0.05258 -0.09138 -0.01934 -0.05586 -0.09307 -0.01544 -0.05268 -0.09145

-1.48 -0.00612 -0.04300 -0.08126 -0.01184 -0.04669 -0.08531 -0.00627 -0.04310 -0.08133

-1.50 0.00296 -0.03355 -0.07128 0.00294 -0.03691 -0.07621 0.00279 -0.03366 -0.07135

-1.52 0.01192 -0.02421 -0.06144 0.01191 -0.02681 -0.06440 0.01177 -0.02434 -0.06151

-1.54 0.02078 -0.01499 -0.05172 0.02077 -0.01679 -0.05414 0.02064 -0.01513 -0.05180

-1.56 0.02955 -0.00587 -0.04213 0.02953 -0.00701 -0.04449 0.02942 -0.00603 -0.04222

-1.58 0.03821 0.00314 -0.03265 0.03820 0.00313 -0.03536 0.03810 0.00297 -0.03275

-1.60 0.04678 0.01206 -0.02328 0.04677 0.01205 -0.02705 0.04669 0.01190 -0.02341

-1.62 0.05516 0.02088 -0.01401 0.05515 0.02086 -0.02322 0.05508 0.02073 -0.01417

-1.64 0.06346 0.02959 -0.00485 0.06345 0.02957 -0.00799 0.06336 0.02946 -0.00503

-1.66 0.07175 0.03820 0.00420 0.07174 0.03819 0.00418 0.07167 0.03811 0.00402

-1.68 0.07997 0.04674 0.01314 0.07996 0.04673 0.01313 0.07990 0.04667 0.01299

-1.70 0.08811 0.05505 0.02202 0.08810 0.05503 0.02200 0.08806 0.05493 0.02187

-1.72 0.09585 0.06339 0.03079 0.09584 0.06338 0.03078 0.09576 0.06329 0.03066

-1.74 0.10382 0.07167 0.03947 0.10381 0.07166 0.03946 0.10376 0.07158 0.03936

-1.76 0.11173 0.07986 0.04807 0.11173 0.07985 0.04806 0.11168 0.07980 0.04798

-1.78 0.11951 0.08798 0.05659 0.11950 0.08797 0.05658 0.11950 0.08795 0.05652

-1.80 0.12692 0.09575 0.06496 0.12691 0.09573 0.06495 0.12684 0.09795 0.06490
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The Milstein scheme has the same relationship between the approximations and step length

as the Euler-Maruyama scheme. So the two methods behave the same when applied to this

method but Milstein has greater accuracy up to and including the bifuraction point.

If we are only interested in calculating moments and statistics of a system then there is no

advantage to using a Milstein scheme over an Euler-Maruyama (as stated in the section 9),

if we are interested in a pathwise �t then Milstein maintains its higher accuracy up to and

including the bifurcation point but both schemes are the same once the systems passes the

bifurcation point.

16 Further research and discussion

On �rst reading of Ford and Norton's paper [1] we initially wondered if the distribution of

the Lyapunov exponent would be distributed in line with the type of noise experienced in the

system, would a gamma distributed noise results in gamma distributed Lyapunov's? This

was answered during the investigations for this paper. The noise in the SDDE used here is

not enough to skew the entire system. If a system was governed by the distribution of the

stochastic elements then the Lyapunov exponents are likely to fail due to the fact that they

detect deterministic chaos and return a guaranteed positive in purely random systems. Also,

as the methodology is constructed from running multiple simulations then the Lyapunov

exponents are simply results from repeated experiments. Even if the system was naturally

skewed the Lyapunov exponents would still be normally distributed round the expected value

for the system at those parameters.

There are many ways of furthering the work conducted in this paper, the �rst of which would

be examining di�erent forms of SDDE's or other numerical methods. We used a linear SDDE

with a �xed delay and an additive Gaussian/Brownian stochastic term. We could look at the

e�ects of variable delays, mixed delays or where the stochastic term is part of the delay to

see if the same relational behaviours exist. We could examine other numerial methods, again

to see if the �nding of this paper hold for other methods or if there are some that deviate

in any signi�cant way. We could also look at the in�uence of di�erent types of noise in

greater detail, this could entail applying di�erent methods not covered in this paper such as

Malliavin calculus (instead of Ito) and di�erent methods for assessing the bifurcation points

that are less prone to erroneous solutions than the Lyapunov exponents (false positives for

chaos in the presence of too much randomness). We suspect that simply increasing the level

of noise would increase the deviations in the approximation but other types of noise may yield

something interesting. Works such as Lu and Ding [26] have shown that 'jumps' in a model

can a�ect the system signi�cantly and Zhao and Lui [32] investigated an SDDE with Poisson

jumps using a backwards Euler method. Bocharov and Rihan [27] presented an HIV model
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with Gamma distributed delays. We could also look at nonlinear systems such as Santonia

and Shalkhet [22], who examined an obesity epidemic via a nonlinear stochastic delay model

with additive noise and an Euler-Maruyama scheme.

One of the particularly interesting prospects of this work is the ability to apply the techniques

in applied areas. There appear to be many applications that have used Euler-Maruyama

schemes, some of which may bene�t from the increased accuracy of using a Mistein scheme

without any overall di�erence to the behaviour or computation. Carletti's paper [21] in partic-

ular uses a linear SDDE with stochastic perturbations and Lyapunov exponents to examine

the coexistence of phage and bacteria in work examining marine bacteriophage. Carletti

found that the longer the incubation time, the longer the two can coexist in equilibrium in a

noisy enviroment. Several papers on this topic [21,29,39] claim that this area of study is of

particular interest due to the prospect of using phage as an alternative to antibiotic therapy

in bacterial infections and Lui, Lui and Tang [39], claims that one question that remains

outstanding is under which conditions they will coexist permanently.

Another topical area of interest is ecological and enviromental. The Azimuth project [34]

includes SDDE's as part of its ongoing working studying the El Nino Southern Oscillator

phenomenon where SDDE's can build on the work of Richard Kleeman's �Stochastic theories

for the irregularity of ENSO� [28]. There also seems to be potential in areas such as Lui,

Gang, Yang, Junhui, Jigang and Lei's paper on predicting wind power [30] where SDDE's

were not used but could be.

Medicine and biology is another �eld where the popularity of using SDDE's as a modelling

tool is emerging. Population dynamics continually appear in recent research papers such as de

la Hoz and Vadillo [33] and Xia, Jiang and Li [37] and the techniques from these translate to

studies in epidemics and diseases. Examples of which include Li, Sun and Jin [24], Krsti�c [36]

and Saker [25] . In medicine there also seems to be a preference for using Gillespie algorithms,

a variation of Monte Carlo simulations designed for simulating chemical or biological systems,

perhaps there is merit in understanding these methods and whether they could be combined

with some of the concepts included here. Ion and Georgescu [31] studied bifurcations in a

leukemia model using Lyapunov exponents, this combined with Brent Neiman's slightly older

work [23] using delays to account for unobservable or slow moving changes in a three stage

mathematical model of chronic myelogenous leukemia is yet another medical application that

could potentially bene�t signi�cantly with further research using some of the techniques we

have used, in particular by adding stochastic elements to account for triggering the transition

of the model to the chronic stage.

So far we have not cited examples from economics and �nance, engineering or physics. These
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�elds are proli�c in examples of DDE's, SDE's and SDDE's, however many of the examples

mentioned here have been published within the last year and go some way to illustrate the

current e�orts using the techniques presented in this paper. Advances in technology is espe-

cially allowing greater experimentation with stochastics and delay equations that is building a

far greater understanding of concepts that were relatively undocumented in previous decades.

48



17 Appendix

Code for generating the Gaussian numbers:

Random random = new java.security.SecureRandom()

i=0

while (i<500){

i++

f = new File(i + 'Gaussian' + '.txt')

n = 100000

for (i in 1..n){

BM = random.nextGaussian()

f.append(BM + '\n')

}

}

R scripts:

Hdata<-read.table("hdata.txt", sep="\t", header=F, col.names=c("steps","LE"))

model<-lm(Hdata$T0~I(Hdata$steps^2))

model<-lm(Hdata$T0~I(sqrt(Hdata$steps)))

model<-lm(Hdata$T0~Hdata$steps)

model<-lm(Hdata$T0~Hdata$steps + I(sqrt(Hdata$steps)))

model<-lm(Hdata$T0~Hdata$steps + I(Hdata$steps^2))

model<-lm(Hdata$T0~Hdata$steps + I(Hdata$steps^2) + I(sqrt(Hdata$steps)))

model<-lm(Hdata$T0~Hdata$steps + I(Hdata$steps^1.5) + I(sqrt(Hdata$steps)))

summary(model)

library(scatterplot3d)

mydata<-read.table("ScatterData05.txt",header=F,sep="\t",col.names=c("x","y","z"))

�t<-lm(mydata$z~mydata$x + mydata$y)

s3d<-scatterplot3d(mydata$x,mydata$y,mydata$z,type="p",color="blue",pch=20, main ="Scatterplot",

xlab="Lambda",ylab="Step size",zlab="Lmean",box=F, angle=-50)

s3d$plane3d(�t)
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Full Milstein results for θ = 0

λ 0.5 0.25 0.2 0.125 0.1 0.0625 0.05

-1.30 0.02939 -0.04159 -0.05798 -0.08413 -0.09343 -0.10784 -0.11212

-1.32 0.03825 -0.03200 -0.04816 -0.07391 -0.08313 -0.09692 -0.10202

-1.34 0.04700 -0.02250 -0.03849 -0.06410 -0.07301 -0.08682 -0.09160

-1.36 0.05561 -0.01316 -0.02896 -0.05419 -0.06305 -0.07692 -0.08140

-1.38 0.06410 -0.00392 -0.01956 -0.04444 -0.05323 -0.06665 -0.07159

-1.40 0.07249 0.00519 -0.01028 -0.03492 -0.04356 -0.05686 -0.06139

-1.42 0.08077 0.01419 -0.00112 -0.02551 -0.3402 -0.04735 -0.05187

-1.44 0.08895 0.02308 0.00795 -0.01617 -0.02460 -0.03749 -0.04196

-1.46 0.09693 0.03185 0.01689 -0.00695 -0.01530 -0.02812 -0.03265

-1.48 0.10492 0.04053 0.02573 0.00214 -0.00612 -0.01890 -0.02307

-1.50 0.11270 0.04912 0.03442 0.01111 0.00296 -0.00951 -0.01391

-1.52 0.12047 0.5758 0.04305 0.01999 0.01192 -0.00058 -0.00470

-1.54 0.12811 0.06592 0.05160 0.02878 0.02078 0.00861 0.00443

-1.56 0.13562 0.07415 0.05994 0.03744 0.02955 0.01746 0.01324

-1.58 0.14303 0.08224 0.06830 0.04599 0.03821 0.02624 0.02234

-1.60 0.15037 0.09028 0.07642 0.05445 0.04678 0.03502 0.03082

-1.62 0.15763 0.09826 0.08460 0.06281 0.05516 0.04345 0.03973

-1.64 0.16480 0.10615 0.09254 0.07108 0.06346 0.05211 0.04804

-1.66 0.17190 0.11396 0.10054 0.07926 0.07175 0.06029 0.05645

-1.68 0.17893 0.12152 0.10827 0.08736 0.07997 0.06881 0.06498

-1.70 0.18589 0.12914 0.11615 0.09536 0.08811 0.07677 0.07295

-1.72 0.19278 0.13672 0.12370 0.10323 0.09585 0.08516 0.08151

-1.74 0.19958 0.14406 0.13132 0.11094 0.10382 0.09292 0.08931

-1.76 0.20617 0.15141 0.13884 0.11856 0.11173 0.10114 0.09705

-1.78 0.21288 0.15877 0.14615 0.12623 0.11951 0.10876 0.10543

-1.80 0.21944 0.16581 0.15350 0.13385 0.12692 0.11665 0.11291
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Full Milstein results for θ = 0.5

λ 0.5 0.25 0.2 0.125 0.1 0.0625 0.05

-1.30 -0.15868 -0.13953 -0.13718 -0.13450 -0.13397 -0.13329 -0.13285

-1.32 -0.14874 -0.12903 -0.12651 -0.12392 -0.12318 -0.12230 -0.12258

-1.34 -0.13895 -0.11869 -0.11625 -0.11336 -0.11258 -0.11196 -0.11150

-1.36 -0.12932 -0.10851 -0.10589 -0.10296 -0.10224 -0.10179 -0.10143

-1.38 -0.11984 -0.09847 -0.09572 -0.09285 -0.09218 -0.09120 -0.09114

-1.40 -0.11049 -0.08858 -0.08581 -0.08267 -0.08213 -0.08110 -0.08093

-1.42 -0.10117 -0.07874 -0.07598 -0.07290 -0.07214 -0.07132 -0.07118

-1.44 -0.09207 -0.06907 -0.06622 -0.06303 -0.06229 -0.06131 -0.06101

-1.46 -0.08303 -0.05957 -0.05661 -0.05329 -0.05258 -0.05156 -0.05154

-1.48 -0.07417 -0.05011 -0.04713 -0.04378 -0.04300 -0.04215 -0.04165

-1.50 -0.06537 -0.04084 -0.03777 -0.03439 -0.03355 -0.03244 -0.03240

-1.52 -0.05667 -0.03164 -0.02852 -0.02504 -0.02421 -0.02314 -0.02282

-1.54 -0.04809 -0.02258 -0.01939 -0.01582 -0.01499 -0.01403 -0.01371

-1.56 -0.03961 -0.01361 -0.01037 -0.00671 -0.00587 -0.00473 -0.00449

-1.58 -0.03123 -0.00474 -0.00144 0.00227 0.00314 0.00413 0.00459

-1.60 -0.02293 0.00404 0.00740 0.01114 0.01206 0.01323 0.01338

-1.62 -0.01474 0.01272 0.01614 0.01994 0.02088 0.02204 0.02246

-1.64 -0.00664 0.02130 0.02479 0.02863 0.02959 0.03072 0.03094

-1.66 0.00139 0.02983 0.03335 0.03721 0.03820 0.03945 0.03985

-1.68 0.00936 0.03824 0.04176 0.04571 0.04674 0.04782 0.04814

-1.70 0.01726 0.04656 0.05014 0.05411 0.05505 0.05642 0.05662

-1.72 0.02507 0.05478 0.05845 0.06242 0.06339 0.06455 0.06506

-1.74 0.03279 0.06291 0.06656 0.07064 0.07167 0.07303 0.07304

-1.76 0.04044 0.07097 0.07471 0.07877 0.07986 0.08095 0.08162

-1.78 0.04802 0.07894 0.08268 0.08683 0.08798 0.08929 0.08942

-1.80 0.05553 0.08683 0.09063 0.09481 0.09575 0.09702 0.09727
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