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Abstract

Let RG denote the group ring of the group G over the ring R and U(RG) denote the unit group of
RG. The objective of this thesis is to become familiar with the techniques used to establish U(RG)
in a recently published article.

We begin with an introduction to groups, rings and fields. Group rings are then discussed and in
particular, the decomposition of RG. We conclude with the structure of U(F3kD6).
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Chapter 1

Introduction to Groups

We begin this investigation by defining some basic terminology associated with group theory and
cite some examples as well. A good understanding of groups would enhance the comprehension of
subsequent chapters. We establish what groups and subgroups are and go further to consider some
types of groups and subgroups like dihedral group, quotient group, normal subgroup, commutator
subgroup etcetera.

1.1 Groups

Definition 1.1 [9] Let (G, ∗) denote a nonempty set G together with a binary operation ∗ on G.
That is, the following condition must be satisfied.

(i) Closure: For all a, b ∈ G, the element a ∗ b is a well-defined element of G.
Then G is called a group if the following properties hold.

(a) Associativity: For all a, b, c ∈ G, we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(b) Identity: There exists an identity element e ∈ G, that is, an element e ∈ G such that
e ∗ a = a and a ∗ e = a for all a ∈ G.

(c) Inverses: For each a ∈ G there exists an inverse element a−1 ∈ G, that is, an element
a−1 ∈ G such that a ∗ a−1 = e and a−1 ∗ a = e.

Definition 1.2 [9] A group G is abelian if a ∗ b = b ∗ a for all a, b ∈ G.

Example 1.3 [9] (Mn(R) under addition)
The set of all n×n with entries in R forms a group under matrix additon. Since addition is defined
componentwise, the zero matrix is the identity of Mn(R), and the additive inverse of a matrix is
it’s negative.
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Definition 1.4 [9] A group G is said to be a finite group if the set G has a finite number of
elements. In this case, the number of elements is called the order of G, denoted by |G|. If G is not
finite, it is said to be an infinite group.

We have different types of groups which we will discuss much later in the chapter but we need
to introduce what a subgroup is to understand them better.

1.2 Subgroups

A very important extension of groups is a what we call a subgroup, these are formed from
subsets of groups. Here we consider a type of subgroup called normal subgroups and commutator
subgroups citing examples and proofs where necessary.

Definition 1.5 [9] Let G be a group, and let H be a subset of G. Then H is called a subgroup of
G if H is itself a group, under the operation induced by G.

Example 1.6 [9] We know Z,Q,R, and C to be groups under ordinary addition. Furthermore, as
sets we have
Z ⊆ Q ⊆ R ⊆ C
and each group is a subgroup of the next since the given operations are consistent.
If we consider multiplicative groups of nonzero elements, we also have the subgroups Qx ⊆ Rx ⊆ Cx

Example 1.7 [9] (SL2(R) ⊆ GL2(R)).

Let GL2(R) be the set of all 2 × 2 invertible matrices over the real numbers R. The set of 2 × 2
with determinant equal to 1 is a subgroup of GL2(R), which can be seen easily as follows: if
A,B ∈ GL2(R) with det(A) = 1 and det(B) = 1, then we have det(AB) = det(A)det(B) = 1. The
associative law holds for all 2× 2 matrices. The identity matrix certainly has determinant equal to
1, and if det(A) = 1 then det(A−1) = 1.
The set of all n × n matrices over R with determinant equal to 1 is called the special linear group
over R, denoted by SLn(R). Thus we have shown that SL2(R) is a subgroup of GL2(R).

Example 1.8 [9] In the group GL2(R) of all invertible 2 × 2 matrices with real entries, let H be
the following set of matrices: [

1 0
0 1

]
,

[
−1 0
0 1

]
,

[
1 0
0 −1

]
,

[
−1 0
0 −1

]
.

This set of matrices form the direct product of the ring of order two C2 × C2 because the elements
in the set of matrices are of order two, hence cannot be C4. It is easy to see that the product of any
two of these matrices is a diagonal matrix with entries ±1, which again will be in the set. Since the
set is finite and closed under matrix multiplication



Proposition 1.9 [9] Let G be a group with identity element, and let H be a subset of G. Then H
is a subgroup of G if and only if the following conditions hold:

(i) ab ∈ G for all a, b ∈ H;

(ii) e ∈ h;

(iii) a−1 ∈ H for all a ∈ H.

Proof. First, assume that H is a subgroup of G. Since H is a group under the operation of G,
the closure axiom guarantees that ab must belong to H whenever a, b belong to H. There must
be identity element, say e

′
, for H. Then considering the product in H, we have e

′
e
′

= e
′
. Now

consider the same product as an element of G. Then we can write e
′
e
′

= e
′
e, and the cancellation

law yields e
′

= e. Finally, if a ∈ H, then a must have an inverse b in H, with ab = e. But then
in G we have ab = e = aa−1, and the cancellation law implies that a−1 = b is an element of H.
Conversely, suppose that H is a subset of G that satisfies the given conditions. Condition i shows
that the operation of G defines a binary operation on H, and so the closure axioms hold. If
a, b, c ∈ H, then in G we have the equation a(bc) = (ab)c, and so by considering this as an
equation in H we see that H inherits the associative law. Conditions (ii) and (iii) assure that H
has an identity element, and that every element of H has an inverse in H, since these elements have
the same properties in H as they do when viewed as elements of G.
Using the previous proposition, it is easy to see that for any group G, the entire set G is certainly
a subgroup. At the other extreme, the set e consisting of only the identity element is always a
subgroup of G, called the trivial subgroup.

The next corollary shortens the subgroup conditions. In applying these conditions, it is crucial to
show that the subset H is nonempty. Often the easiest way to do this is to show that H contains
the identity element e. �

Corollary 1.10 [9] Let G be a group and let H be a subset of G. Then H is a subgroup of G if
and only if H is a nonempty and ab−1 ∈ H for all a, b ∈ H.

Proof. First assume that H is a subgroup of G. Using condition (ii) of the previous proposition,
we see that H is nonempty since e ∈ H. If a, b ∈ H, the b−1 ∈ H by condition (iii) of the
proposition, and so condition (i) implies that a b−1 ∈ H.
Conversely, suppose that H is a nonempty subset of G such that ab1 ∈ H for all a, b ∈ H. Since
H is nonempty, there is at least one element a that belongs to H. Then e ∈ H since e = aa−1, and
this product belongs to H by assumption. Next, if a ∈ H, then a−1 can be expressed in the form
a−1 = ea−1, and this product must belong to H since e and a belong to H. Finally, we must show
that H is closed under products: if a, b ∈ H , then we have already shown that b−1 ∈ H. We
can express ab in the form a(b−1)−1, and then the given conditions show that ab must belong to H.



If the subset in question known to be finite(and nonempty), then it is only necessary to check the
closure axiom. This is a bit surprising, but very useful. The crucial step in the proof of the next
corollary is to show that in this case the inverse of each element in the set can be expressed as a
positive power of the element. �

Corollary 1.11 [9] Let G be a group, and let H be a finite, nonempty subset of G. Then H is a
subgroup of G if and only if ab ∈ H for all a, b ∈ H.

Proof. If H is a subgroup of G, then Proposition ?? implies that ab ∈ H for all a, b ∈ H.
Conversely, assume that H is closed under the operation of G. We can use the previous corollary,
provided we can show that b−1 ∈ H whenever b ∈ H. Given b ∈ H, consider the powers
b, b2, b3, ... of b. These must all belong to H, by assumption, but since H is a finite set, they cannot
all be distinct. There must be some repetition, say bn = bm for positive integers n > m. The
cancellation law then implies that bn−m = e. Either b = e or n −m > 1, and in the second
case we then have bbn−m−1 = e, which shows that b−1 = bn−m−1. Thus b−1 can be expressed as a
positive power of b, which must belong to H. �

Proposition 1.12 [9] Let G be a group, and let a ∈ G.

(a) The set < a > is a subgroup of G.

(b) If K is any subgroup of G such that a ∈ K, then < a > ⊆ K.

Proof.

(a) The set < a > is closed under multiplication since if am, an ∈ < a >, then am an = am+n ∈
< a >. Furthermore, < a > includes the identity element and includes inverses, since by definition
a0 = e and (an)−1 = a−n.

(b) If K is any subgroup that contains a, then it must contain all positive powers of a since it is
closed under multiplication. It also contains a0 = e, and if n < 0, then an ∈ K since an = (an)−1.
Thus < a > ⊆ K.

Thus the intersection of any collection of subgroups is again a subgroup. Given any subset S of a
group G, the intersection of all subgroups of G that contains S is in fact the smallest subgroup that
contains S. In the cases S = a, by the previous proposition we obtain < a >. In the cases of two
elements a, b of a nonabelian group G, it becomes much more complicated to describe the smallest
subgroup of G that contains a and b. The general problem of listing all subgroups of a given group
becomes difficult very quickly as the order of the group increases. �

Corollary 1.13 [9] Let G be a finite group of order n.

(a) For any a ∈ G , ◦(a) is a divisor of n.



(b) For any a ∈ G, an = e.

Proof.

(a) The order of a is the same as the order of < a >, which by langrange’s theorem is a divisor
of the order of G.

(b) If a has order m, then by part (a) we have n = mq for some integer q. Thus
an = amq = (am)q = e. �

Corollary 1.14 [9] Any group of prime order is cyclic.

Proof. Let G be a group of order p, where p is a prime number . Let a be an element of G different
from e. Then the order of < a > is not 1, and so it must be p since it is a divisor of p. This implies
that < a >= G, and thus G is cyclic. �

1.3 Normal Subgroups

Definition 1.15 [2] Let H be a subgroup of the group G. We say that H is a normal subgroup if
gH = Hg, for all g ∈ G. If H is a normal subgroup, we can safely talk about it’s cosets. We denote
the set of all these cosets by G/H.

Theorem 1.16 [2] Let H be a subgroup of the group G. Then H is normal in G if and only if
g−1Hg = H,for all g ∈ G. Infact, this is true if and only if g−1Hg ⊆ H, for all g ∈ G.

Proof. Suppose that H is normal in G and g ∈ G; then Hg = gH. So for any h ∈ H, there exists
h1 ∈ H such that hg = gh1. But then g−1hg = h1 ∈ H. Thus, g−1Hg ⊆ H.

Conversely, suppose that g−1Hg = H for all g ∈ G. Given any element h ∈ H, this means that
h = g−1h1g, for some h1 ∈ H. But then gh = h1g; that is, gH ⊆ Hg. �

Example 1.17 Suppose a dihedral group G = D6 = {1, x, x2, y, xy, x2y} and N = {1, x, x2} is a
subgroup, then yN = {y, yx, yx′} = {y, x2y, xy} = {y, xy, x2y} = Ny. Hence a normal subgroup.

Theorem 1.18 [2] Let H be a normal subgroup of G. Then the set G/H of cosets of H in G is a
group, under the operation (Ha)(Hb) = Hab.

Proof. We must first check that the operation specified in the statement of the theorem is well
defined; that is, it should be independent of coset representatives. This verification is the crucial
part of the proof, and will depend in an essential way on the fact that H is normal.

Suppose then that Ha = Hc and Hb = Hd. We claim that Hab = Hcd, this amounts to checking



that ab(cd)−1 ∈ H. Because Hb = Hd, we know that bd−1 ∈ H. Now H is a normal subgroup, and
so aH = Ha. This means that a(bd−1) = ha for some h ∈ H.

Thus, ab(cd)−1 = abd−1 = hac−1

But Ha = Hc means exactly that ac−1 ∈ H, and so therefore hac−1 ∈ H too. This completes the
proof that the operation is well defined.

The operation is clearly associative:

(HaHb)(Hc) = HabHc = H(ab)c = Ha(bc) = HaHbc = Ha(HbHc).

The element H1 serves as the identity for G/H: H1Ha = H1a = Ha = Ha1 = HaH1.

And the element Ha has an inverse; namely, Ha−1Ha.
Thus, G/H is a group, as we claim. �

Example 1.19 [2] Consider the subgroup H = {ι, (12)} of a symmetric group S3. We obtain three
distinct right cosets, as follows:

Hι = H(12) = {ι, (12)} = H,

H(123) = H(23) = {(123), (23)},
and,

H(132) = H(13) = {(132), (13)}.
The subgroup H is obviously a coset of itself; we obtained this by choosing the two elements in H
itself. The other two cosets also have two elements each.

Example 1.20 [2] Consider the group

U(Z21) = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.
Let’s compute the right cosets of the subgroup H = {1, 4, 16}:

We obtain:
H1 = H4 = H16 = 1, 4, 16,

H2 = H8 = H11 = 2, 8, 11,

H10 = H13 = H19 = 10, 13, 19,

and H5 = H20 = H17 = 5, 20, 17.

Theorem 1.21 [2] (The Coset Theorem)
Let H be a subgroup of a group G, and a, b ∈ G. Then

(a) If Ha ⊆ Hb, then Ha = Hb.

(b) If Ha ∩Hb 6== ∅, then Ha = Hb.

(c) Ha = Hb, if and only if ab−1 ∈ H.



(d) There exists a one-to-one and onto function between any two right cosets Ha and Hb. Thus, if
H has finitely many elements, every right coset has the that same number of elements.

Proof.

(a) Suppose that H is a subgroup of the group G, and a and b are elements of the group for
which Ha ⊆ Hb. Then

a = 1a ∈ Ha ⊆ Hb,

and so there exists h ∈ H such that a = hb. But then b = h−1a ∈ Ha. Now, if k ∈ H, kb = kh−1a ∈
Ha, and so Hb ⊆ Ha. That is, Ha = Hb.

(b) Suppose that Ha ∩Hb 6= ∅. Choose c in this intersection. Then c ∈ Ha, and so Hc ⊆ Ha.
But then by apart (a), Hc = Ha. But similarly, Hc = Hb, and so Ha = Hb.

(c) If Ha = Hb, then a = 1a ∈ Ha = Hb, and so there exists h ∈ H such that a = hb. But then
ab−1 = h ∈ H, as required. Conversely, if ab−1 ∈ H, then a = ab−1b ∈ Hb. But then a ∈ Ha ∩Hb,
and so by part (b) Ha = Hb.

(d) Define the function ϕ : Ha → Hb by ϕ(x) = xa−1b. First, note that if x ∈ Ha, then
x = ha, for h ∈ H. But then ϕ(x) = ϕ(ha) = (ha)(a−1b) = hb ∈ Hb. Thus, our function is well
defined. It is one-to-one, because if ϕ(x) = ϕ(y), then xa−1b = ya−1b, and multiplying on the right
by b−1 a gives us that x = y. It is onto, because if we choose the arbitrary element hb ∈ Hb, then
ϕ(ha) = ha(a−1b) = hb. �

Theorem 1.22 [2] Let G be a group, S be a subgroup of G and N be a normal subgroup of G.
Then

1. The product SN is a subgroup of G,

2. The intersection S ∩N is a normal subgroup of S, and

3. The quotient groups SN/N and S/(S ∩N) are isomorphic.



S ∩N

SN

1

S N SN/N ∼= S/S ∩N

SN/N

S/S ∩N

Theorem 1.23 [2] Let G be a group and H a normal subgroup of G. Then the operation ∗ given
by (Q) is well defined.

Proof. We need to show that if g1, g2, k1, k2 ∈ G are such that g1H = g2H and k1H = k2H, then
g1k1H = g2k2H.
If g1

−1g2 ∈ H and k1
−1k2 ∈ H, then (g1k1)

−1g2k2 ∈ H.

So, assume that g1
−1g2 ∈ H and k1

k2 ∈ h. Then there exist h, h
′ ∈ H such that g1

−1g2 = h and
k1
−1k2 = h

′
, and thus k2 = k1h

′
.

Hence, (g1k1)
−1g2k2 = k1

−1g1
−1g2k2 = k1

−1hk1h
′
= (k−11 hk1)h

′
.

Since H is normal, k1
−1hk1 ∈ H, and so (k−11 hk1)h

′ ∈ H.
Thus, theorem is proved. �

Example 1.24 [2] Let G = Z and H = nZ. H is a subgroup and, since G is abelian, it is normal.
The right cosets of H ∈ G are: H,H + 1, ... , H + (n− 1). It should be clear at this point that these
cosets coincide with the congruence classes mod n:

H = [0] H + 1 = [1] .̇. H + (n− 1) = [n− 1].

Moreover, the binary operation is given by: H + a ∗H + b = H + (a+ b), which is better written as

(H + a) + (H + b) = H + (a+ b) i.e [a] + [b] = [a+ b],

which is the usual addition mod n. Hence,

Z/nZ = Zn.

That is, the definition of addition modn is exactly the binary operation that Z\ inherits as the
quotient group of Z over nZ.

Definition 1.25 [14] Let G be a group. An element g ∈ G is called a commutator if

g = xyx−1y−1



for elements x, y ∈ G. The commutator subgroup (also called a derived group) of a group G denoted
by G

′
or [G,G] is the subgroup generated by the commutators of its elements. It is the unique

smallest normal subgroup of G such that G/[G,G] is Abelian.

For better understanding of the examples below, see Example 1.32 and 1.33 for the structure of
D6 and D10 respectively.

Example 1.26 [10] The commutator subgroup of D6; D
′
6 = {1, x2, x4} Ṫhe set D6/D

′

6 of all the
left cosets of D

′
6 is given by

1D
′

6 = {1, x2, x4}, x D′6 = {x, x3, x5}
y D

′

6 = {y, y x2, y x4}, y x D′6 = {y x, y x3, y x5}

Thus we have two generators for this group, namely xD
′
6 and y D

′
6. Therefore, D

′
6 is Abelian given

by D6/D
′

6
∼= C2 × C2.

Example 1.27 [10] The commutator subgroup of D10 ; D
′

10 = {1, x, x2, x3, x4} ∼= C5

1.4 Quotient Group

Definition 1.28 [11] Given a group G and a normal subgroup H, the group (G/H, ∗), or simply
G/H, is known as the quotient (factor) group of G over H.

Let G be a group and H a subgroup of G. Denote by G/H the set of distinct(left) cosets with
respect to H. In other words, we will list all the cosets of the form gH(with g ∈ G ) without
repetitions and consider each coset as a single element of the newly formed set G/H. The set G/H
(pronounced G mod H) is called the quotient set.
Next we would like to define a binary operation ∗ on G/H such that (G/H, ∗) is a group.It is natural
to try to define the operation ∗ by the formula
gH ∗ kH = gkH for all g, k ∈ G.

1.5 Dihedral Group

Dihedral groups form an important part of this study as the dihedral group of order six D6 is
used in most calculations and proofs in the group ring and unit algebra chapters. For the sake of
this study, the dihedral group of order 8 is considered in detail and a cayley table is constructed
alike.

Definition 1.29 The dihedral group Dn is the symmetry group of an n-sided regular polygon for
n > 1. The group order of Dn is 2n. Dihedral groups Dn are non-Abelian permutation groups for
n > 2 [10].

This means that a regular polygon with n sides has 2n different symmetries: n rotational symmetries
and n reflection symmetries. The associated rotations and reflections make up the dihedral group



Dn. If n is odd each axis of symmetry connects the midpoint of one side to the opposite vertex.

If n is even there are
n

2
axes of symmetry connecting the midpoints of opposite sides and

n

2
axes

of symmetry connecting opposite vertices. In either case, there are n axes of symmetry altogether
and 2n elements in the symmetry group.

Definition 1.30 Group Structure {D8}
Consider a square:
There are eight motions of this square which, when performed one after the other, form a group
called the Dihedral Group of order 8. They are:

(i) R1 0◦ rotation (clockwise)
(ii) R2 90◦ rotation (clockwise)
(iii) R3 180◦ rotation (clockwise)
(iv) R4 270◦ rotation (clockwise)
(v) S1 reflection about horizontal axis AB
(vi) S2 reflection about vertical axis EF
(vii) S3 reflection about diagonal 1-O-3
(viii) S4 reflection about diagonal 2-O-4

The Dihedral Group of the Square then is given by G = [R1, R2, R3, R4, S1, S2, S3, S4].

Multiplication in G consists of performing two of these motions in succession. Thus the product
S3R2 corresponds to first performing operation S3, then operation R2. A multiplication table for
G is shown in Figure. Entries in the table contain the product ab where a corresponds to the row
and b corresponds to the column. Thus in the table S3R2 = S2.

The eight motions R1, R2, R3, R4, S1, S2, S3, S4 can be represented as permutations of the numbers
1, 2, 3, and 4 where these numbers correspond to the four vertices of the square as shown in Figure
[1.1]The permutation representation of G is:

G = [(1), (1432), (13)(42), (1234), (14)(23), (12)(43), (42), (13)]

Where,



R1 =

(
1 2 3 4
1 2 3 4

)
= (1)(2)(3)(4) = 1

R2 =

(
1 2 3 4
2 3 4 1

)
= (1 2 3 4)

R3 =

(
1 2 3 4
3 4 1 2

)
= (1 3)(2 4)

R4 =

(
1 2 3 4
4 1 2 3

)
= (1 4 3 2)

S1 =

(
1 2 3 4
2 1 4 3

)
= (1 2)(3 4)

S2 =

(
1 2 3 4
3 2 1 4

)
= (1 3)(2)(4) = (13)

S3 =

(
1 2 3 4
4 3 2 1

)
= (1 4)(2 3)

S4 =

(
1 2 3 4
1 4 3 2

)
= (1)(2 4)(4) = (24)

The table below corresponds to the multiplication of permutations in G. See [12] for clarity.

R1 R2 R3 R4 S1 S2 S3 S4

R1 R1 R2 R3 R4 S1 S2 S3 S4

R2 R2 R3 R4 R1 S4 S1 S2 S3

R3 R3 R4 R1 R2 S2 S1 S4 S3

R4 R4 R1 R2 R3 S3 S4 S2 S1

S1 S1 S3 S2 S4 R1 R3 R2 R4

S2 S2 S4 S1 S3 R3 R1 R4 R2

S3 S3 S2 S4 S1 R4 R2 R1 R3

S4 S4 S1 S3 S2 R2 R4 R3 R1

Table 1.1: Cayley table for G

Example 1.31 Let D8 = 〈x, y| x4 = 1, y2 = 1, xy = yx−1〉 such that D8 = {yixi| 0 ≤ i ≤ 3, 0 ≤
j ≤ 1} where x denotes rotation and y reflection. We prepared a Cayley table showing the direct
product of D8

Example 1.32 [10] D6 = 〈x, y : x2 = y2 = (xy)3 = 1, 〉.

The group elements can be listed as D6 = {xi, yxi : 0 ≤ i ≤ 5}.

Example 1.33 [10] D10 = 〈x, y : x5 = y2 = 1, xy = yx−1〉. The group elements can be listed as
x, x2, x3, x4, y, xy, x2y, x3y, and x4y



1 x x2 x3 y yx yx2 yx3

1 1 x x2 x3 x yx yx2 yx3

x x x2 x3 1 yx yx2 yx3 y

x2 x2 x3 1 x yx2 yx3 y yx

x3 x3 1 x x2 yx3 y yx yx2

y x yx3 yx2 yx 1 x3 x2 x

yx yx y yx3 yx2 x 1 x3 x2

x2 yx2 yx y yx3 x2 x 1 x3

yx3 yx3 yx2 yx y x3 x2 x 1

Table 1.2: Cayley table for D8

Definition 1.34 [6] Given any subset a of a group G, the centralizer of {a} denoted as CG(a),
is defined as the subgroup of G comprising all x such that xg = gx for all g ∈ a. For any S, the
centralizer CG(a) is a subgroup of the group G.

Theorem 1.35 Let (G, ◦) be a group and let a ∈ G. Then CG (a), the centralizer of a in G, is a
subgroup of G.

Proof.[15] Let (G, ◦) be a group.

We have that: ∀a ∈ G: e ◦ a = a ◦ e =⇒ e ∈ CG (a)
Thus CG (a) 6= ∅.

Let x, y ∈ CG (a). Then:

x ◦ a = a ◦ x
y ◦ a = a ◦ y
=⇒ x ◦ y ◦ a = x ◦ a ◦ y
= a ◦ x ◦ y
=⇒ x ◦ y ∈ CG (a)

Thus CG (a) is closed under ◦.

Let x ∈ CG (a). Then:

x ◦ a = a ◦ x
=⇒ x−1 ◦ x ◦ a ◦ x−1 = x−1 ◦ a ◦ x ◦ x−1
=⇒ a ◦ x−1 = x−1 ◦ a
So: x ∈ CG (a) =⇒ x−1 ∈ CG (a) �

Definition 1.36 [4] Given a group G, we define the exponent of G as exp (G) = min{n ≥ 1 : gn = 1, ∀g ∈ G}.
We use the convention that exp (G) =∞ if the set that we are minimizing over is empty.

It is the least common multiple of the orders of all elements of the group. If there is no least common
multiple, the exponent is taken to be infinity (or sometimes zero, depending on the convention).



1.6 Group Homomorphism

This is an important function in groups theory that maps groups together. It is a crucial subject
to consider to fully comprehend the final two chapters. Here, we define and cite some examples
of group homomorphism and go further to describe other terminologies in group theory like; the
centraliser of a group, direct and indirect semiproducts etcetera.

Definition 1.37 Let G together with the operation ◦, and H together with operation ∗, be groups.
A function ϕ : G→ H such that

ϕ(g ◦ k) = ϕ(g) ∗ ϕ(k),

for all g,k ∈ G is a group homomorphism.

Speaking more coloquially, a group homomorphism is a function between groups that preserves
the group operation.Note that because g and k are elements of G, we are combining them via the
operation ◦ in G. But ϕ(g) and ϕ(k) are elements of H, and so we are combining them via the
operation ∗ ∈ H.

Example 1.38 :

(1) Consider the groups R under addition, and R+ of positive real numbers, under multiplication.
Recall the function log : R+ → R, the natural logarithm function. ( That is, log(r) is the exponent
needed on the irrational number e so that elog(r) = r. )
Recall first of all that this function is only defined for positive real numbers. The most important
and useful property of the logarithmic function is:

log(ab) = log(a) + log(b).

That is, the logarithm turns multiplication into addition. And this equation is exactly what is re-
quired to assert that log is a homomorphism! This example shows us that the group operations in
two groups connected by a homomorphism can be quite different.

(2) Consider another famous function, this time between the groups U(M2(mathbbR)), the group
of units of the 2 × 2 real-valued matrices, and R∗, the multiplicative group of non-zero reals. Re-
call that U(M2(R)) are precisely those matrices in M2(R) with non-zero determinant . Here, the
operation in the first group is matrix multiplication, while in the second it is ordinary real number
multiplication. The function is the determinant function det:

det

[
a b
c d

]
= ad− bc

Let’s show that this is homomorphism. For that purpose, we need to choose two arbitrary matrices,[
a b
c d

]
and

[
r s
t u

]
,

where the entries are all real numbers. The product of these two matrices is



[
ar + bt as+ bu
cr + dt cs+ du

]
, and the determinant of this matrix is ardu+ btcs− bucr − asdt.

But the product of the determinants is (ad− bc)(ru− ts),
which is the same. Thus, the determinant function preserves multiplication. To paraphrase, the
determinant of a product is the product of the determinants.

(3) Consider the group

D3 = {ι, ρ, ρ2, ϕ, ρϕ, ϕρ} of symmetries of the equilateral triangle, whose operation is functional
composition. Consider also the multiplicative subgroup {1,−1} of the integers. Define the function
The pattern of F and R we observed there shows us that a rotation times a rotation is a rotation,
flip times a flip is a rotation, and a rotation times a flip (in either order) is a flip. Now replace
’rotation’ by 1 and ’flip’ by −1 in the previous sentence. This is just the way multiplication in the
group {1,−1} works.

Definition 1.39 [7] A group G is called an extension of a group K by a group H if there exists
an epimorphism ϕ from G onto K with kernel H. The extension is called a split extension if there
exists a homomorphism ψ : K → G such that ϕ ◦ ψ is the identity map of K.

Proposition 1.40 [7] Let H and K be subgroups of a group G. Then G is a split extension of K
by H ⇐⇒ G ∼= H oK ′, where K ′ ∼= K.

Definition 1.41 [7] Let H, K be subgroups of a group G. We say that G is the internal direct
product of H and K and write G = H o K, if the following holds:

(i) G = HK,

(ii) H ∩K = {1},
(iii) H / G and K / G.

Definition 1.42 [1] Let G be a group, N a normal subgroup of G and H a subgroup of G. If[
G = NH and N ∩H = {1}

]
, we say that G is a semi-direct product of N and H, written G =

N oH.

Definition 1.43 [1] A group G is the internal semidirect product of N by A, which we denote by
G = N o A, when G contains subgroups N and A such that NA = G, N ∩ A = {1}, and N / G.

Definition 1.44 [1] Let X and A be groups, and let θ be a given action of A on X; that is, a
homomorphism θ : A 7→ Aut(X), where Aut(X) denotes the group of automorphisms of X. Then
, for c ∈ A, θ(c) : X 7→ X, and if b ∈ X, we denote its image under this automorphism by θ(c)(b).
The external semidirect product XoθA of the group X and the group A relative to θ is, as a set,
simply X o A. We make this into a group by defining (d, c)(b, a) =

(
dθ(c)(b), ca

)
. When θ is

clear, we write X × A.



Chapter 2

Ring Theory

This is another aspect that forms the foundation of our study. In this chapter we treat rings and
subsets of rings called subrings. A special type of ring(division ring) is discussed; the zero divisors,
integral domain and units of ring are considered as it relates to fields. We also consider a special
behaviour of rings in ’ring homomorphism’ as well. Some examples are given to make clear our
points throughout the chapter.

2.1 Rings

Definition 2.1 [2] A ring R is a set together with two binary operations + and × (called addition
and multiplication) satisfying the following axioms:

(i) (R,+) is an abelian group

(ii) Associative on multiplication: (a× b)× c = a× (b× c) for all a,b,c ∈ R,

(iii) The distributive laws hold in R: for all a, b, c ∈ R
(a+ b)× c = (a× b) + (b× c) and a× (b+ c) = (a× b) + (a× c).

The ring is commutative if multiplication is commutative, and said to have an identity (or
contain a 1) if there is an element 1 ∈ R with 1× a = a = a for all a ∈ R.

Example 2.2 [6]

(1) The simplest examples of rings are the trivial rings obtained by taking R to be any commutative
group (denoting the group operation by + and defining the multiplication × on R by: a×b = 0
for all a,b ∈ R. It is easy to see that this multiplication defines a commutative ring. In
particular, if R = 0 is the trivial group, the resulting ring R is called the zero ring, denoted
R = 0. Except for the zero ring, a trivial ring does not contain an identity (R = 0 is the only
ring where 1 = 0; we shall often exclude this ring by imposing the condition 1 6= 0). Although
trivial rings have two binary operations, multiplication adds no new structure to the additive
group and the theory of rings gives no information which could not already be obtained from
(abelian) group theory.
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(2) The quotient group Z/nZ is a commutative ring with identity (the element 1) under the op-
erations of addition and multiplication of residue classes (frequently referred to as ’modular
arithmetic’). We saw that the additive abelian group axioms followed from the general prin-
cipals of the theory of quotient groups (indeed this was the prototypical quotient group). We
shall shortly prove that the remaining ring axioms (in particular, the fact that multiplication
of residue classes is well defined) follow analogously from the general theory of quotient rings.
In all of the examples so far, the rings have been commutative. Historically, one of the first
non-commutative rings was discovered in 1843 by Sir William Rowell Hamilton (1805-1865).
This ring, which is a division ring , was extremely influential in the subsequent development
of mathematics and it continues to play an important role in certain areas of mathematics
and physics.

2.2 Subrings

Definition 2.3 [17] A subring of a ring R is any subset S ⊆ R which forms a ring with respect
to the operations of R.

To show that a subset of a ring is a subring it suffices to check that it is nonempty and closed under
subtraction and under multiplication.

Theorem 2.4 [6] (The Subring Theorem)
A non-empty subset of a ring is a subring under the same operations if and only if it is closed under
multiplication and subtraction.

Proof. It is obvious that a subring is closed under multiplication and subtraction. For the converse,
suppose that R is a ring and S a non-empty subset, which is closed under multiplication and
subtraction. We wish to show that S is a ring. Now, because S is non-empty, we can then choose
an element of it, which we call s. First note that because S is closed under subtraction, then s−s = 0
∈ S. That is, the additive identity belongs to S. Next, suppose that a ∈ S. Because S is closed
under subtraction, −a = 0 − a ∈ S. This means that S is closed under taking additive inverses.
Now suppose that a, b ∈ S. Then we have just seen that −b ∈ S. But then a + b = a− (−b) ∈ S,
and so S is closed under addition as well.
To show that S is a ring, it remains to show that additive is commutative, that addition and
multiplication are associative, and that multiplication distributes over addition. But all these
properties hold in R, and so are automatically inherited for S.
Commutativity is automatically inherited by a subset, it follows that a subring of a commutative
ring is also commutative. Note that a subring of a non-commutative ring may be commutative,
because the zero ring is a commutative subring of any ring. �

We now consider examples of subrings:

Example 2.5 [3] Let mZ = {mn : n ∈ Z}, where m is an integer greater than 1. That is, mZ is
the set of integer multiples of m. We claim that mZ is a subring of Z. For ma,mb ∈ mZ, then

• ma−mb = m(a− b) ∈ Z



and so mZ is closed under subtraction. Similarly,

• (ma)mb = m(mab) ∈ mZ,

and so mZ is closed under multiplication.

2.3 Division Ring

Now we know what rings and subrings are, we now discuss a type of ring called division ring. We
must comprehend this section especially as it is a prelude to the next chapter ’Fields’.

Definition 2.6 [7] A ring R is called a division ring if all its non-zero elements R are invertible
(i.e., if R {0} = U).

R, C, Z, and Mn(R) are examples of division rings which we look consider in detail under examples
of division rings.

Definition 2.7 [18] A commutative ring with unity is a commutative ring with an element such
that a × 1 = 1 × a = a for all a ∈ R.

Definition 2.8 [18] A commutative ring is a ring such that for all a, b ∈ R, a × b = b × a.

Definition 2.9 [2] A division ring R is called a field if R is a commutative ring.

See next Chapter for clarity.

There are some basic definitions we need to note to fully understand in detail the division ring
defined above. We define:

Definition 2.10 [2] In a ring R, if aḃ = 0 but a 6= 0 and b 6= 0 then a and b are called zero
divisors.

See Section 2.5 for clear examples.

Definition 2.11 [2] If a ring has no zero-divisors, then R is called an integral domain.

See Section 2.6 for example.

Definition 2.12 [7] Let R be a ring. An element a ∈ R is invertible in R if there exists a−1 ∈ R
such that aa−1 = a−1a = 1. The set

U(R) = {a ∈ R : a is invertible}

is called the group of units of R.

We now consider examples of division rings we stated earlier on. There exists commutative and
non-commutative division rings. Common commutative rings are:



Definition 2.13 [18] The ring of integers modulo n is (Zn,+, ·) (where n ∈ Z, n > 0). In fact this
is a commutative ring.

Example 2.14 [18] Consider (Z5,+, ·) :

Z5 has elements 0, 1, 2, 3, and 4. This ring has an identity 1 ∈ Z5 since [1] × [a] = [1 × a] = [a].
Also, Z5 is a commutative ring since [a] × [b] = [a × b] = [b × a] = [b] × a, where a × b = b × a.
This ring does not have zero divisors since if [a] × [b] = [a × b] = [0], then 5 divides a × b. Since
5 is prime, it must either divide a or b, in the first case [a] = [0] and in the second case [b] = [0].
Therefore, if a product of elements is [0], then one of them must be [0]. Hence, Z5 is an integral
domain.
Finally, this ring has inverses since [1] × [1] = [1], [2] × [3] = [6] = [1], [3] × [2] = [6] = [1],
and [4] × [4] = [16] = [1]. Therefore Z5 is a division ring and hence a field.

Example 2.15 [18] Consider (Z6,+, ·) :

This ring has an identity 1 since [1] × [a] = [1 × a] = [a]. Similarly as shown in Z5, Z5 is a
commutative ring. However, this ring has zero divisors since [2] × [3] = [2 × 3] = [6] = [0] hence
Z6 is not an integral domain. There exist no inverses in this ring which we can see by inspection.
[1] × [2] = [2], [2] × [2] = [4], [3] × [2] = [0], [4] × [2] = [2], and [5] × [2] = [4], none of
which are equal to [1]. Therefore, Z6 is a commutative ring with unity.

There also exist non-commutative division rings and one common example of such is theM(2,R,+,×)
ring.

Example 2.16 [18] M(2,R,+,×) : is the set of all 2× 2 matrices

This ring has an identity

(
1 0
0 1

)
because for any

(
a b
c d

)
∈ M(2,R),

(
a b
c d

)
=

(
a b
c d

)
×
(

1 0
0 1

)
.

This ring has zero divisors since (
0 1
0 0

)
×
(

0 0
1 0

)
=

(
0 0
0 0

)

but neither

(
0 1
0 0

)
or

(
0 0
1 0

)
are zero matrices.

It is not commutative since(
0 0
1 0

)
×
(

0 1
0 0

)
=

(
0 0
1 0

)
6=
(

0 0
0 0

)
.



Then, if we multiply the expression for zero divisors on the left by A, we would have

A×
(

0 1
0 0

)
×
(

0 0
1 0

)
= A×

(
0 0
0 0

)
=

(
0 0
0 0

)
but A×

(
0 1
0 0

)
=

(
1 0
0 1

)
and so the original expression is also

A ×
(

0 1
0 0

)
×
(

0 0
1 0

)
=

(
1 0
0 1

)
×
(

0 0
1 0

)
=

(
0 0
1 0

)
6=
(

0 0
0 0

)
.

This means

(
0 1
0 0

)
cannot have an inverse. Therefore M(2,R) is a division ring.

2.4 The Multiplicative Identity

It is an important part of the definition of a ring that it has an additive identity or 0. We make
no such assumption about a multiplicative identity; many rings do possess a multiplicative identity
however.

Definition 2.17 [6] We call an element u of a ring R a ’unity’ or ’multiplicative identity’ if
ua = au = a for all elements a ∈ R.

Example 2.18 Obviously, the integer 1 is the unity of Z. Similarly, 1 is the unity for the rings Q,

R, and C. In Q[x], the constant polynomial 1 is the unity. In the ring M2(Q), the unity is

(
1 0
0 1

)
.

The residue class [1] plays the role of multiplicative identity in Zm. On the other hand, the ring
2Z has no unity, because in the integers 2a = 2 holds exactly when a = 1, an element which 2Z
lacks. More generally, mZ lacks unity for all m > 1.

2.5 Zero Divisors

Definition 2.19 [6] Let R be a commutative ring. An element a 6= 0 is a zero divisor if there
exists an element b ∈ R such that b 6= 0 and ab = 0. Of course, then b is a zero divisor also.

Example 2.20 [6] As shown clearly in Example 2.15, the elements 2 and 3 in Z6 are zero divisors
because 2.3 = 0. Another example is found in the ring of complex numbers (C,+, ·) [18]. This ring
does not have zero divisors because for any complex number a and b, a × b = 0, then a = 0
or b = 0. Hence C is an integral domain. This ring is also commutative since for complexes,
a × b = b × a hence a commutative ring with unity since 1 = 1 + 0i ∈ C.

2.6 Integral Domain

Definition 2.21 [6] A commutative ring with unity that has no zero divisors is called an integral
domain, or simply a domain.



Example 2.22 (Z5,+, ·) and (C,+, ·) are examples of an integral domain. See 2.14 for verifica-
tion.

Theorem 2.23 (Multiplicative Cancellation)
Suppose R is an integral domain and a,b,c are elements of R, with a 6= 0. If ab=ac, then b=c

Proof. Suppose that R is a domain, a 6= 0, and ab = ac. Then ab− ac = 0. But then a(b−c) = 0,
and because R is a domain with a 6= 0, we must have b− c = 0, or b = c, as required.

2.7 Units

Definition 2.24 [6] Suppose R is a ring with unity 1. Let a be any non-zero element of R. We say
a is a ’unit’ if there is an element b of R such that ab = ba = a. In this case, b is a (multiplicative)
inverse of a. b is also a unit with inverse a.

First note that the unity 1 is always a unit, because 1.1 = 1. What other elements are units? In Z,
the units are just 1 and −1, because the only integer solutions of ab = 1 are ±1. In Q and R, all
non-zero elements are units. In Z6 we have 5.5 = 1, and so 5 is a unit, as well as 1. Furthermore,
there are no elements a and b for which ab = 1 is true.
Note that the concept of multiplicative inverses makes good sense in non-commutative rings. For
example, in the (non-commutative) ring of matrices M2R, the elements(

1 2
3 4

)
and

(
−2 1
3
2
−3

2

)
are units, because their product in either order is the multiplicative identity. We now claim that
multiplicative inverses, if they exist, are unique. To show this, suppose that a has multiplicative
inverses b and c; then 1 = ba = ca. Multiply through the right hand equations by b; W e then have
b = bab = cab = c (where the last equation holds because ab = 1 also). But b = c, as required.
Consequently, we will denote the (unique) inverse of an element a (if it exists) by a−1. This is of
course consistent with the ordinary notation for multiplicative inverses which we use in R.
We denote the set of units of a ring R by U(R). Thus, U(Z) = {1,−1}, U(Q) = Q {0}, and
U(Z6) = {1, 5}.

Example 2.25 U(Z) = {+1,−1}, the cyclic group of order 2 (written C2).

Example 2.26 U(Mn(R)) = {A ∈Mn(R)| detA 6= 0} = GLn(R)

Example 2.27 U(Q) = Q {0}.{
(
a

b
)
}−1

=
b

a
where a 6= 0, b 6= 0



2.8 Ring Homomorphism

This is an important behaviour of rings that is vital in our study of ′group rings′. Here, we are
given a handy knowledge of the subject ′Ring Homomorphism′. It is expected that the reader must
have understood what the term ′homomorphism′ means in the first place.

Definition 2.28 [7] Let R and S be rings. f : R −→ S is a ring homomorphism if

• f(a+ b) = f(a) + f(b) ∀ a, b ∈ R.

• f(ab) = f(a)f(b) ∀ a, b ∈ R.

Definition 2.29 A ring homomorphism that is one-to-one and onto is called a ring isomorphism
[?BnB].

Example 2.30 [2] Consider φ : Z→ M2(Z) defined by φ defined by φ(a) =

[
0 0
a a

]
for all a ∈ Z.

Then for all a, b ∈ Z

• φ(a) + φ(b) =

[
0 0
a a

]
+

[
0 0
b b

]
=

(
0 0

a+ b a+ b

)
= φ(a+ b)

• φ(a)φ(b) =

[
0 0
a a

] [
0 0
b b

]
=

(
0 0
ab ab

)
= φ(ab).

It is easy to see that φ(R) =

{[
0 0
a a

]
|a ∈ Z

}
. Also, Ker(φ) = {0}.

Note that φ is one-to-one, but not onto.

Example 2.31 [2] Consider φ : Z→ Z6 defined by φ(a) = amod6 for all a ∈ Z. Then for a, b ∈ Z:

• φ(a) + φ(b) = (a mod 6) + (b mod 6) = (a+ b)mod 6 = φ(a+ b)

• φ(a)φ(b) = (a mod 6) (b mod 6) = (ab)mod 6 = φ(ab).

It is easy to see that φ(R) = Z6. also, Ker(θ) = 6Z.

Note that φ(0) = 0 = φ(6), so φ is not one-to-one but is onto.

Theorem 2.32 [7] Let θ : R→ S be a ring homomorphism. Units in R get mapped to units in S.

Proof. Let r1, r2 ∈ R, where r1r2 = 1R. Clearly

θ(r1 r2) = θ(1R)

θ(r1) θ(r2) = 1S

Therefore θ(r1) and θ(r2) are invertible in S. Thus units in R get mapped to units in S. �

Definition 2.33 [7] Let f : R→ S be a ring homomorphism. Then, the image of f is the subring



Im(f ) = {y ∈ S : (∃x ∈ R)f (x) = y}

The kernel of f is the ideal

Ker(f ) = {x ∈ R : f (x) = 0}).

Now, we shall show that every two-sided ideal of a ring R is the kernel of a homomorphism defined
on R. Let I be an ideal of a ring R. Then the additive factor group R/I can be made into a ring by
defining multiplication in a natural way r̄s̄ = r̄s̄.

Definition 2.34 [7] A ring homomorphism f : R→ S is called an epimorphism if it is surjective;
i.e., if Im(f) = S and it is called a monomorphism if it is injective; i.e., if f(x) = f(y) =⇒ x = y,
for x, y ∈ R. It is easy to see that f is a monomorphism if and only if Ker(f) = (0)
Finally, f is called an isomorphism if it is both surjective and injective. In this case, we say that R
and S are isomorphic and write R ' S.

A homomorphism of a ring R to itself is called an endomorphism and, if it is also an isomorphism,
then it is called automorphism of R.



Chapter 3

Field Theory

The definition of division ring was necessary for introducing what is called a ’field’. Here, we discuss
fields, subfields using examples. We go further to explain the order and characteristics of a field
and consider a finite field otherwise known as the Galois field-we then construct fields F2 and F22 .

3.1 Field

Definition 3.1 A field is a commutative ring in which all nonzero elements are invertible. It is a
set of elements F for which addition, multiplication, subtraction and division operations performed
with its elements result in another element of the same set.For addition and multiplication opera-
tions, the following conditions define a field:

• F+ is a commutative group with respect to the addition operation. The identity element for the
addition is called ′0′.

• F ∗ is a commutative group for the multiplication operation. The identity element for multiplica-
tion is called ′1′.

• Multiplication is distributive with respect to addition: a(b+ c) = ab+ ac

Example 3.2 (Q,+,×) :

This is a ring of rational numbers. The ring has an identity since 1 ∈ Q and 1 × a = a = = a × 1
for any real number a and in particular it holds for rational numbers. Also, this ring has inverses,
for a non zero element of this ring is of the form p/q where neither p nor q is 0. The inverse of
p/q is q/p, we only must show that this is in Q. q/p is in Q since p 6= 0. This ring does not have
zero divisors since for real numbers, if a × b = 0, then either a = 0 or b = 0, thus for rationals,
this also holds. Finally, it is a commutative since for real numbers a × b = b × a, which holds for
rationals in particular. Therefore Q is a field.

Example 3.3 (Z5,+, ·) is also an example of a field. See Example 2.14 for (Z5,+, ·).

Definition 3.4 The number of element of a field is called the order of that field.
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Definition 3.5 [16] The characteristics of a field M denoted by char(M) = k is the smallest
positive integer such that

k.1 = 1 + 1 + ... + 1︸ ︷︷ ︸
k times

= 0.

If no such k exists then the field is said to have characteristic 0-which implies char(M)=0.

The following lemma gives useful properties of the characteristic.

Lemma 3.6 [16] Let M be a field.

1. If the characteristic of M is positive, char (K) is prime.

2. Finite fields have char (M) > 0. By the first part of this lemma we even have that a finite field
has a prime characteristic.

Proof. 1. Assume on the contrary that there exists a nontrivial factorization char(M) = n = p.q.
Then

0 = n.1 = (p.q).1 = p.(q.1) = (p.1).(q.1) = (1 + 1 + ...+ 1).(1 + 1 + ...+ 1)

We encountered earlier that fields have no zero divisors, that means that one of the terms in the
product must be zero which contradicts the minimality of the characteristic.

2. In a finite field, not all of 1, 2 · 1 , 3 · 1 , ... can be distinct, for example, r · 1 = s · 1 for some s > r.
Then =⇒ (s− r) · 1 = 0 and so char (K) |s− r > 0. �

Lemma 3.7 [16] k must be a positive number ≥ 2.

Proof. Since 1 6= 0 we have k ≥ 2. Suppose k = k1 · k2 where k1 > 1, k2 > 1.

Then, 1 + 1 + ...+ 1 = (1 + 1 + ...+ 1).(1 + 1...+ 1). But L.H.S equals 0 which implies that at least
one of the R.H.S terms equals 0, which is a contradiction. Hence k must be a prime number. This
is called the characteristics of the field. If F is a finite field of characteristic p, then the order of F
is a prime power q = pr for some positive integer r, and we write F = Fpr or F = Fp. If F and F

′

are two fields of order q, then F and F
′
are isomorphic. Thus we can talk about the finite field Fq. �

3.2 Galois Fields

Definition 3.8 [16] A finite field is a field with a finite number of elements; the number of elements
is the order of the field. GF (q) is used to represent a finite field. However, the notation Fq is
preferred for the purpose of this study. Finite fields are often called Galois fields(in honour of
evariste Galois).

Definition 3.9 [19] If F is a finite field of characteristic k, then the order of F is a prime power
q = pr for some positive integer r, and we write F = Fpr or F = Fq.



Definition 3.10 [19] A subfield of a field F is a subset K ⊂ F containing 0 and 1, and closed under
the arithmetic operations-addition, subtraction, multiplication and division (by non-zero elements).

Proposition 3.11 [19] Suppose F is a field. Then F contains a smallest subfield P .

Proof. Any intersection of subfields is evidently a subfield. In particular, the intersection of all
subfields of F is a subfield P contained in every other subfield. �

Definition 3.12 [19] We call the smallest subfield P of a field F the prime (or rational) subfield
of F .

If F and F
′

are two fields of order q, then we F and F
′

are isomorphic i.e φ : F → F
′
. Thus

we can talk about the

Definition 3.13 [16] If F is any field, then F [x] denotes the ring of polynomials in the variable
x with coefficients in F , i.e., expressions of the form f (x) = adx

d + ad−1x
d−1 + · · ·+ a1x + a0

with the ai ∈ F .

Definition 3.14 [16] The integer d is the degree of f . A polynomial f of degree d is monic if
ad = 1. A polynomial f (x) of degree d is irreducible if there is no way to write f (x) = g(x)h(x)
with deg g < deg f and deg h < deg f . Any polynomial f ∈ F [x] can be written uniquely as a
product of a scalar a ∈ F and monic irreducible polynomials f1, ... , fl ∈ F [x].

Definition 3.15 [16] If f ∈ F [x] is a polynomial, a root of f is an element α ∈ F with f = 0.
Any polynomial f ∈ F [x] of degree d has at most d roots in F .

Definition 3.16 A field F is algebraically closed if it contains all of the roots of the polynomials
in F[x].

Example 3.17 C is algebraically closed.

3.3 Characterizing Finite Fields.

Lemma 3.18 [16] Let F be a finite field containing a subfield K with q elements. Then F has qm

elements, where m = [F : K].

Proof. F is a vector space over K, finite-dimensional since F is finite. Denote this dimension by
m; then F has a basis over K consisting of m elements, say b1, ... , bm. Every element of F can be
uniquely represented in the form k1b1 + ... kmbm (where k1, ... , km ∈ K). Since each ki ∈ K can
take q values, F must have exactly qm elements. �

Theorem 3.19 [16] Let F be a finite field. Then F has pn elements, where the prime p is the
characteristic of F and n is the degree of F over it’s prime subfield.



Proof. Since F is finite, it must have characteristics p for some prime p. Thus the prime subfield
K of F is isomorphic to Fp, and so contains p elements. �

Lemma 3.20 [16] If F is a finite field with q elements, then every a ∈ F satisfies aq = a.

Proof. Clearly aq = a is satisfied for a = 0. The non-zero elements form a group of order q − 1
under multiplication. Using the fact that a|G| = 1G for any element a of a finite group G, we have
that all 0 6= a ∈ F satisfy aq−1 = 1, i.e aq = a �

Lemma 3.21 [16] If F is a finite field with q-elements and K is a subfield of F , then the polynomial
xq − x in K[x] factors in F [x] as

xq − x =
∏

a∈F
(x− a)

and F is a splitting field of xq − x over K.

Proof. Since the polynomial xq − x has degree q, it has at most q roots in F . By Lemma 3.20, all
the elements of F are roots of the polynomial, and there are q of them. Thus the polynomial splits
in F as claimed, and cannot split in any smaller field. �

We go on to prove the ’main characterization theorem’ for finite fields.

Theorem 3.22 (Existence and Uniqueness of finite fields) [?fFFF] For every prime p and
every positive positive integer n, there exists a finite field with pn elements. Any finite field with
q = pn elements is isomorphic to the splitting f of xq − x over Fp.

Proof. (Existence) For q = pn, consider xq − x in Fp [x], and let F be its splitting field over V .
Since its derivatives is q xq−1 − 1 = −1 in Fp [x], it can have no common root with xq − x and so,
xq − x has distinct roots in F . Let S = {a ∈ F : aq − a = 0}. Then S is a subfield of F since

• S contains 0;

• a, b ∈ S (by Freshmen’s Exponentiation) that (a− b)q = aq − bq = a− b, so a− b ∈ S;

• for a, b ∈ S and b 6= 0 we have (aqb−q)
q

= aqb−q = ab−1, so ab−1 ∈ S.

On the other hand, xq − x must split in S since S contains all its roots, i.e it’s splitting field F
is a subfield of S. Thus F = S and, since S has q elements, F is s finite field with q = pn elements.
Then F has characteristic p by Theorem 3.19, and so contains Fp as a subfield. So by Lemma 3.21,
F is a splitting field of xq − x. The result now follows that the uniqueness (up to isomorphism) of
splitting fields.

As a result of the uniqueness part of Theorem 3.22, we may speak of the finite field (or the
Galois field) of q elements. We shall denote this field by Fq, where q denotes a power of the prime
characteristic p of Fq. �



Example 3.23 [16] The field L = {αi + bjθ| αi, βj ∈ F3} of 9 elements, where θ is a root of
the polynomial x2 + x+ 2 ∈ F3[x]. By Theorem [], L is the field of 9 elements, i.e F9.

Example 3.24 [16] The field L = {αi + bjθ| αi, βj ∈ F2} of 4 elements, where θ is a root of
the polynomial x2 + x+ 1 ∈ F2 [x]. By Theorem [], L is the field of 4 elements, i.e F4.

Theorem 3.25 [16] For every finite field Fq, the multiplicative group F∗q of nonzero elements of
Fq is cyclic.

Proof. We may assume q ≥ 3. Set h = q − 1, the order of Fq∗ , and let h = p1
r1p2

r2 ...pm
rm be its

prime factor decomposition. For each i, 1 ≤ i ≤ m, the polynomial xh/p
i − 1 has at most h/pi roots

in Fq. Since h/pi < h, it follows that there are nonzero elements of Fq which are not roots of this
polynomial. Let ai be such an element, and bi = ai

h/pi
ri . Now, bi

pi
ri

= 1, so the order of bi divides
pi
ri and so has the form pi

si for some 0 ≤ si ≤ ri. On the other hand,

bi
pi

ri−1

= ai
h/pi

ri 6= 1,

so the order of bi is precisely prii .
Let b = b1b2 ... bm. We claim: b has order h(equalssq − 1), i.e. is a generator for the group. Sup-
pose, on the contrary, that the order of b is a proper divisor of h. It is therefore a divisor of at last
one of the m integers h/pi, 1 ≤ i ≤ m; wlog, say of h/p1. Then

1 = bh/p1 = b1
h/p1b2

h/p1 ...bm
h/p1 .

Now, if 2 ≤ i ≤ m, then prii divides h/p1, and so bi
h/p1 = 1. This forces bi

h/p1 = 1. Thus the order
of b1 must divide h/p1, which is impossible since the order of b1 is p1

r1 . Thus F∗q is a cyclic group
with generator b. �

3.4 Constructing finite field F22

To construct F22 ; we first need to construct F2 and then extend it to F22

Example 3.26 F2 :

Since this F2 is a field of characteristics 2, then we must have |F | = 2m where m in this case is 1.
For m = 1, a field exists, namely F2 = {0, 1}. Note however 2 = 0 in F2. We construct the smallest
example possible using addition and multiplication in F2.

+ 0 1

0 0 1

1 1 0

Table 3.1: F2 : Addition



• 0 1

0 0 0

1 0 0

Table 3.2: F2 : Multiplication

Example 3.27 F22 :

Let us now construct the finite field F22 where [22 = 4] using the prime degree-2 polynomial
g(x) = x2 + x+ 1 ∈ F2[x]. There are four remainder polynomials mod(x2+x+1), namely {0, 1, x, 1 + x}.
Addition is componentwise mod2. For multiplication, note that x∗x = x+1 since x2 mod (x2 + x+ 1) = x+ 1.
Also x ∗ x ∗ x = x ∗ (x ∗ 1) = 1 since x3 mod (x2 + x+ 1) = 1. The three nonzero elements {1, x, x+
1} thus forms a cyclic group under mod− g(x) multiplication.

The complete mod−g(x) addition and multiplication cayley table for F22 which is constructed below
clearly validates this:

• 1 x 1 + x

1 0 1 + x x
x 1 + x 0 1

1 + x x 1 0

Table 3.3: Cayley table showing addition in F22

• 1 x 1 + x
1 1 x 1 + x
x x 1 1 + x

1 + x 1 + x 1 x

Table 3.4: Cayley table showing multiplication in F22



Chapter 4

Group Ring

We learned about groups and rings in the first and second chapter respectively. A group ring is
basically a ring and a group functioning as a set of linear combinations. But the question is ’how
does this set behave?’. Is it likely to behave more like a group or conversely, like a ring? With the
help of few examples in this chapter, we have been able to establish the behaviour of a ’group ring’.
This chapter summarily introduces the definition of group rings, and it’s structure. We study the
structure of group rings such as F2C2, F2C3 and F2C4, we establish the units and zero divisors in
each case and use a little bit of software to validate our findings.

4.1 Definition

Definition 4.1 [7] Given a group G and a ring R, define the Group Ring RG to be the set of all
linear combinations

∑
g∈G

agg

where ag ∈ R and where only finitely many of the ag’s are non-zero.

4.2 Order of a Group Ring

Theorem 4.2 [7] Let R be the a ring of order m and G be a group of order n. Then RG is a finite

group ring of order |R||G| = mn.

Proof. RG =

{∑
g∈G

agg| ag ∈ R

}
. For each g, there are m choices for ag.

So there are m ·m · · · m-elements in RG.

Hence mn = |R||G| �

35



Definition 4.3 Let RG be the group ring of the group G over the ring R. An element of the form
rg where r ∈ U(R) and g ∈ G, has an inverse r−1g−1. Elements of this form are called trivial units
of RG.

4.3 Structure of some Group Rings

Example 4.4 Let R = F2 and G = C2. Writing down the elements: F2 = {0, 1} and

C2 = 〈a|a2 = 1〉 = {1, a}. Clearly |RG| = |R||G| = 22 = 4.

F2C2 =

{∑
g∈C2

agg|ag ∈ F2

}
= {ag.g1 + ag.g2|ag ∈ F2}
= {ag.1 + ag.a|ag ∈ F2}
= {0.1 + 0.a, 1.1 + 0.a, 0.1 + 1.a, 1.1 + 1.a}
= {0, 1, a, 1 + a} .

We shall now construct a Cayley table (multiplication) for F2C2:

• 1 a 1+ a

1 1 a 1 + a

a a 1 1 + a

1+ a 1 + a 1 + a 0

Table 4.1: Cayley table for F2C2

Therefore U(F2C2) = {1, a} ∼= C2 and ZD(F2C2) = {1 + a}.

Here the units are clearly the trivial units, since U(F2C2) ∼= C2. A program was written in GAP
to validate the above calculation. See Appendix A.1 for further details. Another example of group
rings whose units are trivial units is F2C3. We consider this in the next example.

Example 4.5 Let R = F2 and G = C3. Like the previous example, we write down the elements:
F2 = {0, 1} and C3 = 〈a|a3 = 1〉 = {1, a, a2}. Here |RG| = |R||G| = 23 = 8.

F2C3 =

{∑
g∈C3

agg| ag ∈ F2

}

=
{
0, 1, a, 1 + a, a2, a + a2, 1 + a2, 1 + a + a2

}
We now construct a Cayley table (multiplication) for F2C3:



• 1 a a2 1+ a a+ a2 1+ a2 1+ a+ a2

1 1 a a2 1 + a a+ a2 1 + a2 1 + a+ a2

a a a2 1 a+ a2 1 + a2 1 + a 1 + a+ a2

a2 a2 1 a 1 + a2 1 + a a+ a2 1 + a+ a2

1+ a 1 + a a+ a2 1 + a2 1 + a2 1 + a a+ a2 0

a+ a2 a+ a2 1 + a2 1 + a 1 + a a+ a2 1 + a2 0

1+ a2 1 + a2 1 + a a+ a2 a+ a2 1 + a2 1 + a 0

1+ a+ a2 1 + a+ a2 1 + a+ a2 1 + a+ a2 0 0 0 1 + a+ a2

Table 4.2: Cayley table for F2C3

Therefore U(F2C3) = {1, a, a2} ∼= C3 and ZD(F2C2) = {1 + a, 1 + a2, a+ a2, 1 + a+ a2}.

As seen here, the unit elements of F2C3 are trivial units as well. We used GAP to verify these
calculations, see Appendix A.1 for further details. The next example studies F3C2 whose units are
not the trivial units.

Example 4.6 Let R = F3 and G = C2. F3 is a group of order three. This time the elements are:
F2 = {0, 1, 2} and C2 = 〈a|a2 = 1〉 = {1, a, }. Here |RG| = |R||G| = 32 = 9.

F3C2 =

{∑
g∈C2

agg| ag ∈ F3

}

= {0, a, 1, 2a, 1 + a, 1 + 2a, 2, 2 + a, 2 + 2a}
We now construct a Cayley table (multiplication) for F3C2:

• 1 2 a 1+ a 1+ 2a 2a 2+ a 2+ 2a

1 1 2 a 1 + a 1 + 2a 2a 2 + a 2 + 2a

2 2 1 2a 2 + 2a 2 + a a 1 + a 1 + a

a a 2a 1 1 + a 2 + a 2 1 + 2a 2 + 2a

1+ a 1 + a 2 + 2a 1 + a 2 + 2a 0 2a+ 2 0 1 + a

1+ 2a 1 + 2a 2 + a 2 + a 0 2 + a 1 + 2a 1 + 2a 0

2a 2a a 2 2a+ 2 1 + 2a 1 2 + a 1 + a

2+ a 2 + a 1 + 2a 1 + 2a 0 1 + 2a 2 + a 2 + a 0

2+ 2a 2 + 2a 1 + a 2 + 2a 1 + a 0 1 + a 0 2 + 2a

Table 4.3: Cayley table for F3C2

Therefore U(F3C2) = {1, 2, a, 2a} ∼= C2 × C2 and ZD(F3C2) = {1 + a, 1 + 2a, 2 + a, 2 + 2a}. We
used GAP to verify these calculations, see Appendix A.1 for further details.

Example 4.7 Let R = F2 and G = C4. The elements are: F2 = {0, 1, 2} and C4 = 〈a|a4 = 1〉 = {1, a, a2, a3}.
Here |RG| = |R||G| = 24 = 16.



F2C4 =

{∑
g∈C2

agg| ag ∈ F2

}

=
{
0, 1, a, a2, a3, 1 + a, 1 + a2, 1 + a3, a + a2, a + a3, a2 + a3, a3 + â, a2 + â, a + â, 1 + â, â

}
Clearly {1, a, a2, a3} ∈ U(F2C4). Now

• (1 + â)2 = (a+ a2 + a3)2 = a2 + a4 + a6 = 2a2 + 1 = 1. Similarly (a2 + â)2 = 1.

• (a+ â)2 = (1 + a2 + a3)2 = 1 + 1 + a2 = a2, therefore (a+ â) has order 4. Similarly (a3 + â)
has order 4.

Also

• (â)2 = (1 + a+ a2 + a3)2 = 1 + a2 + a4 + a6 = 2a2 + 2 = 0.

• â(1+a) = â+ â.a = â+ â = 2â = 0. Similarly â(1+a2) = â(1+a3) = â(a+a2) = â(a+a3) =
â(a2 + a3) = â(1 + a).

A Cayley table can be constructed in this case if desired just like in previous examples.
Now |U(F2C4)| = 8 since U(F2C4) = {1, a, a2, a3, 1 + â, a + â, a2 + â, a3 + â}. Now every
element in U(F2C4) has order 4 or 2. Therefore U(F2C4) ∼= C2×C4. We used GAP to verify these
calculations, see Appendix A.1 for further details.

4.4 Decomposition of Group Ring RG

This is a very vital part of our discuss as it shows how a group ring can be split into a direct sum of
finitely many parts. What form do these decomposed parts take? Are likely questions this chapter
would help to answer. We consider the decomposition of group algebra like F7D6 and F3kD6.

Definition 4.8 [7] Let RG be the group ring of the group G over the ring R. Let α ∈
∑
g∈G

agg ∈ RG,

then the support of α (denoted by supp(α)) is:

supp(α) = {g ∈ G | ag 6= 0}.

Example 4.9 Let α = 1 + a+ a3 ∈ F2C4. then supp(α) = 3.

Theorem 4.10 (Wedderburn-Artin Theorem) [7] R is a semisimple ring if and only if R can
be decomposed as a direct sum of finitely many matrix rings over division rings.

i.e. R ∼= Mn1(D1)⊕Mn2(D2)⊕ · · ·Mns(Ds)

where Di is a division ring and Mni
(Di) is the ring of ni × ni matrices over Di.



Theorem 4.11 [7] Let R be a semisimple ring. Then the wedderburn-artin decomposition above
is unique.

Theorem 4.12 [7] Let G be a group and R a ring. Then RG is semisimple if the following
conditions hold:

(i) R is semisimple

(ii) G is finite

(iii) |G| is invertible in R.

Corollary 4.13 [7] Let G be a group and K a field. Then KG is semisimple if and only if G is
finite and the characteristics K † |G|

Proof. First note that any field K is semisimple (K = M1(K) and use a previous lemma).
(⇐) Let |G| <∞ and charK † |G|. So |G| ∈ K {0}.
(⇒) |G| is invertible in K. Now apply Maschke’s Theorem =⇒ let KG be semisimple. G is finite
by Maschke’s and also |G| is invertible in K so semisimple. G :∈: K : {0}. So |G| is not a multiple
of charK ∈ K. Therefore, K † |G|. �

Theorem 4.14 [7] Let G be a finite group and K a finite field such that char(K) † |G|. Then
KG ∼= ⊕si=1Mni(Di) where Di is a division ring containing K in it’s center and

|G| =
s∑
i=1

(ni
2 · dimk(Di))

Corollary 4.15 [7] Let G be a finite group and K an algebraically closed field, where char(K)†|G|.
Then

V KG ∼= ⊕si=1(K) and |G| =
s∑
i=1

ni
2

Example 4.16 [7] CC3
∼= ⊕si=1Mni

(Di) = ⊕si=1Mni
(C) by the corollary above

Counting dimensions we see that 3 =
s∑
i=1

ni
2 =

2∑
i=1

. Therefore, Di = C, ni = 1 ∀ i and s = 3.

Therefore, CC3
∼= C⊕ C⊕ C. Therefore U(CC3) ∼= U(C⊕ C⊕ C) = U(C)× U(C)× U(C).

Example 4.17 [7] CS3. S3 is finite and C = 0 † 6 so Maschke’s Theorem does apply and

CS3
∼= ⊕si=1Mni

(Di) = ⊕si=1Mni
(C)



6 = 12 + 12 + 12 or 6 =
6∑
i=1

12. So C ∼= C⊕ C⊕M2(C) or CS3
∼= C⊕ C⊕ C⊕ C⊕ C⊕ C.

But ⊕6
i=1 is a commutative ring so CS3 � ⊕6

i=1C. Therefore, CS3
∼= C⊕ C⊕M2(C) and

U(CS3) ∼= U(C)× U(C)×GL2(C).

Theorem 4.18 [7] Let G be a finite group and K a field such that char K † |G|.
Then

KG ∼= ⊕si=1Mni
(Di) ∼= K ⊕⊕s−1i=1Mni

(Di)

(i.e. the field itself appears at least once as a direct summand in the Wedderburn-Artin decomposi-
tion).

Lemma 4.19 [7] Let K be a finite field. Then if char K † |G| < ∞, then

KG ∼= ⊕si=1Mni
(Ki)

where the Ki are fields (i.e. all the division rings appearing are fields).

Proof. Clearly KG ∼= ⊕si=1Mni
(Di) where the Di are division rings. But Di is a division ring that

dimKDi < ∞ (since G is finite). Now Wedder-burn’s theorems implies that Di must be a field. �

Lemma 4.20 [7] Let R be a commutative ring and I an ideal of RG. Then RG/I is commutative
if and only if ∆(G,G

′
) ⊂ I

Proposition 4.21 [7] Let G be a finite. Let RG be semisimple (i.e. RG ∼= ⊕si=1Mni
(Di)).

Here R(G/G
′′
) is the direct sum of all the commutative summands of the decomposition of RG and

δ(G,G
′′
) is the direct sum of all the non-commutative summands of the decomposition of RG.

Proof. Clearly RG ∼= R(G/G
′′
) ⊕ ∆(G,G

′
). Now it is also clear that R(G/G

′′
) ∼= ⊕ sum of

the commutative summands of RG. It suffices to show that ∆(G,G
′
) contains no commutative

summands.
Assume ∆(G,G

′
) ∼= A ⊕ B whereA is commutative (and 6= {0}). ThusRG ∼= R(G/G

′
) ⊕ A ⊕ B.

Now RG/B ∼= R(G/G
′
) ⊕ A (check). (In general, R ∼= C ⊕ D =⇒ R/C ∼= D). So RG/B is

commutative, so by the previous lemma, δ(G,G
′′
) ⊂ B. Thus ∆(G,G

′′
) ∼= A⊕B ⊂ B which is a

contradiction. �

Example 4.22 F7D6. Note that Maschke applies so F7D6
∼= ⊕si=1Mni

(Di) ∼= ⊕si=1Mni
(Ki) (where

Ki are finite fields containing F7) F7 ⊕⊕ti=1Mni
(Ki)

Note: D6 = 〈x, y : x2 = y2 = (xy)3 = 1, 〉 from Example 1.32: hence D6
∼= S3, where S3 is the

symmetric group of degree three.

Therefore, F7D6
∼= F3(D6/D

′
6)⊕ ∆(G,G

′
) ∼= F7C2 ⊕ non-commutative part,

where,



F7C2 = F7 ⊕ F7 ⊕M2(F72).

The units group U(F7C2) ∼= U(F7)× U(F7)×GL2(F72)

We used GAP to verify the decomposition of F7D6. See Appendix A.3.

Theorem 4.23 U(F3kC2) ∼= C3k−1 × C3k−1

Proof. Consider F3kC2, clearly 3 † 2 as Maschke Theorem/ Wedderburn Decomposition applies.

Now by Theorem 4.18,

F3kC2
∼= F3k ⊕ ?

F3kC2 is abelian and implies F3kC2
∼= F3k ⊕ F3k.

The unit group UF3kC2
∼= UF3k ⊕ UF3k.

Hence UF3kC2
∼= C3k−1 × C3k−1 by Theorem 3.25 �



Chapter 5

The Unit Group of the Group Algebra
F3kD6

The group algebra F3kD6 forms the focus of this thesis. In the previous chapter we talked about
groups and rings functioning cohesively as a group ring. In this case however, it is more about a
group and a field hence the term ′group algebra′. The reference used in this chapter is Gildea and
Creedon’s research paper [5]. We seek to explain in detail the calculations done in that paper as it
seemed quite implicitly conclusive and I predict a huge reliance on software was employed in the
course of that paper to validate results. What is contained in this chapter is an alternative approach
to verify calculations in the referenced paper.
We start by explaining a ring homomorphism θ which is a mapping from F3kD6 to F3kC2 and justify
it using proofs. We then restrict θ to the unit group of F3kD6, a group epimorphism θ

′
is constructed

by mapping unit group U(F3kD6) and U(F3kC2). A kernel of θ
′

(i.e ker(θ
′
)) with an exponent 3 is

established, it attains congruence with U(F3kD6) by forming a semiproduct with U(F3kC2). We go
further to prove the centraliser of h (where H = ker(θ

′
), h ∈ H) exists, is commutative and hence

abelian. The consequence of this implies any subset T ∈ H forms a subgroup in H and becomes
congruent to ′C3

k ′, hence H can be written as the multiplication T and CH(x) (where x ∈ H). This
opens up on how a group algebra-in this case F3kD6 can be written as a multiplication of abelian
and non-abelian parts.

Theorem 5.1 Define the mapping θ : F3kD6 −→ F3kC2 given by

2∑
i=0

aix
i +

2∑
j=0

bjx
jy 7→

2∑
i=0

ai +
2∑
j=0

bjx̄.

Then θ is a ring homomorphism.
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Proof. Let α =
2∑
i=0

aix
i +

2∑
j=0

bjx
jy ∈ F3kD6 and β =

2∑
i=0

cix
i +

2∑
j=0

djx
jy ∈ F3kD6 where ai, bj, ck, dm ∈

F3k . Then

θ(α + β) = θ

(
2∑
i=0

aix
i +

2∑
j=0

bjx
jy +

2∑
i=0

cix
i +

2∑
j=0

djx
jy

)

= θ

(
2∑
i=0

(ai + ci)x
i +

2∑
j=0

(bj + dj)x
jy

)

=
2∑
i=0

(ai + ci) +
2∑
j=0

(bj + dj)x̄

=

(
2∑
i=0

ai +
2∑
j=0

bjx̄

)
+

(
2∑
i=0

ci +
2∑
j=0

djx̄

)
= θ(α) + θ(β).

Now

αβ = a0c0 + a0c1x+ a0c2x
2 + a0d0y + a0d1xy + a0d2x

2y

+ a1c2 + a1c0x+ a1c1x
2 + a1d2y + a1d0xy + a1d1x

2y

+ a2c1 + a2c2x+ a2c0x
2 + a2d1y + a2d2xy + a2d0x

2y

+ b0d0 + b0d2x+ b0d1x
2 + b0c0y + b0c2xy + b0c1x

2y

+ b1d1 + b1d0x+ b1d2x
2 + b1c1y + b1c0xy + b1c2x

2y

+ b2d2 + b2d1x+ b2d0x
2 + b2c2y + b2c1xy + b2c0x

2y

and

θ(αβ) =

(
c0

2∑
i=0

ai + c1

2∑
i=0

ai + c2

2∑
i=0

ai + d0

2∑
j=0

bj + d1

2∑
j=0

bj + d2

2∑
j=0

bj

)
.1

+

(
d0

2∑
i=0

ai + d1

2∑
i=0

ai + d2

2∑
i=0

ai + c0

2∑
j=0

bj + c1

2∑
j=0

bj + c2

2∑
j=0

bj

)
x̄

=

[(
2∑
i=0

ai

)(
2∑
i=0

ci

)
+

(
2∑
j=0

bj

)(
2∑
j=0

dj

)]
.1 +

[(
2∑
i=0

ai

)(
2∑
j=0

dj

)
+

(
2∑
j=0

bj

)(
2∑
i=0

ci

)]
x̄

= θ(α)θ(β).

Finally, θ
(
1F

3k
D6

)
= (1 + 0 + 0).1 + (0 + 0 + 0)x̄ = 1 = 1F

3k
C2 . �

Now if we restrict θ to U(F3kD6), by Theorem 2.32, we can construct a group epimorphism θ′ :
U(F3kD6)→ U(F3kC2).



Proposition 5.2 Let ψ : U(F3kC2)→ U(F3kD6) be the mapping given by a+ bx̄ 7→ a+ by. ψ is a
group homomorphism.

Proof. Let α = a+ bx̄ ∈ U(F3kC2) and β = c+ dx̄ ∈ U(F3kC2) where a, b, c, c ∈ F3k , then

ψ(αβ) = θ ((a+ bx̄)(c+ dx̄)) = ψ((ac+ bd) + (bc+ ad)x̄) = (ac+ bd) + (bc+ ad)y = ψ(α)ψ(β).

Now let α = x̄ ∈ U(F3kC2),

θ′ ◦ ψ(α) = θ′(a+ by)

= (a+ 0 + 0).1 + (b+ 0 + 0)x̄

= a+ bx̄

= α.

By Proposition 1.40, U(F3kD6) ∼= H o U(F3kC2) where H = ker(θ). �

Theorem 5.3 H = ker(θ′) has exponent 3.

Proof. Let α =
2∑
i=0

aix
i +

2∑
j=0

bjx
jy ∈ U(F3kD6) where ai, bj ∈ F3k . Then α ∈ H iff

2∑
i=0

ai = 1 and

2∑
j=0

bj = 0. Thus every element of H takes the form

1 +
2∑
i=1

(aix
i − ai) +

2∑
j=1

(bjx
jy − bjy)

where ai, bj ∈ F3k . Now

1 +
2∑
i=1

(aix
i − ai) +

2∑
j=1

(bjx
jy − bjy) = 1 + a1x− a1 + a2x

2 − a2 + b1xy − b1y + b2x
2y − b2y

= 1 + a1(x− 1) + a2(x
2 − 1) + b1(x− 1)y + b2(x

2 − 1)y

= 1 + (x− 1)(a1 + b1y) + (x2 − 1)(a2 + b2y)

= 1 + B1 + B2

where B1 = (x− 1)(a1 + b1y) and B2 = (x2 − 1)(a2 + b2y).

Now Let κ = 1 + B1 + B2 ∈ H where B1 = (x− 1)(a1 + b1y) and B2 = (x2 − 1)(a2 + b2y), then

κ2 = (1 + B1 + B2)
2

= 1 + 2B1 + 2B2 + (B2
1 + B1B2 + B2B1 + B2

2).

Now



•

B2
1 = [(x− 1)(a1 + b1y)]2

= a21x
2 + a1b1x

2y − a21x− a1b1xy + a1b1y + b21 − a1b1xy − b21x
− a21 − a1b1xy + a21 + a1b1y − a1b1x2y − b21x2 + a1b1y + b21
= (a21 + 2b21)x̂+ 3a1b1(1− x)y

= (a21 + 2b21)x̂.

•

B1B2 = (x− 1)(a1 + b1y)(x2 − 1)(a2 + b2y)

= a1a2 + a1b2y − a1a2x− a1b2xy + a2b1x
2y + b1b2x

2 − a2b1xy − b1b2x
− a1a2x2 − a2b1x2y + a1a2 + a1b2y − a2b1xy − b1b2x+ a2b1y + b1b2

= (2a1a2 + b1b2)x̂+ (2a1b2 + a2b1)x̂y.

•

B2B1 = (x2 − 1)(a2 + b2y)(x− 1)(a1 + b1y)

= a1a2 + a2b1y − a1a2x2 − a2b1x2y + a1b2xy + b1b2x− a1b2x2y − b1b2x2

− a1a2x− a2b1xy + a1a2 + a2b1y − a1b2x2y − b1b2x2 + a1b2y + b1b2

= (2a1a2 + b1b2)x̂+ (a1b2 + 2a2b1)x̂y.

•

B2
2 = [(x2 − 1)(a2 + b2y)]2

= a22x+ a2b2xy − a22x2 − a2b2x2y + a2b2y + b22 − a2b2x2y − b22x2

− ax22− a2b2x2y + a22 + a2b2y − a2b2xy − b22x+ a2b2y + b22
= (a22 + 2b22)x̂+ 3a2b2(1− x2)y
= (a22 + 2b22)x̂.

Recall that B2
1 = (a21 + 2b21)x̂, B1B2 = (2a1a2 + b1b2)x̂+ (2a1b2 + a2b1)x̂y,

B2B1 = (2a1a2 + b1b2)x̂+ (a1b2 + 2a2b1)x̂y and B2
2 = (a22 + 2b22)x̂. Therefore

B2
1 + B1B2 + B2B1 + B2

2 = (a21 + 2b21 + 4a1a2 + 2b1b2 + a22 + 2b22)x̂+ (3a1b2 + 3a2b1)x̂y

= (a21 + a1a2 + a22 + 2(b21 + b1b2 + b22))x̂

= ((a1 − a2)2 + 2(b1 − b2)2)x̂
= γx̂

where γ = (a1 − a2)2 + 2(b1 − b2)2. Finally,



κ3 = (1 + B1 + B2)
2(1 + B1 + B2)

= (1 + 2B1 + 2B2 + γx̂)(1 + B1 + B2)

= 1 + 3B1 + 3B2 + 2(B2
1 + B1B2 + B2B1 + B2

2) + γx̂+ γx̂B1 + γx̂B2

= 1 + 2γx̂+ γx̂+ γx̂(x− 1)(a1 + b1y) + γx̂(x2 − 1)(a2 + b2y)

= 1 + 3γx̂+ γ(x̂− x̂)(a1 + b1y) + γ(x̂− x̂)(a2 + b2y)

= 1.

�

Theorem 5.4 Let CH(x) = {h ∈ H |hx = xh}, then CH(x) ∼= C3k
3 .

Proof. Let α =
2∑
i=0

aix
i +

2∑
j=0

bjx
jy ∈ H where

2∑
i=0

ai = 1,
2∑
i=0

bj = 0 and ai, bj ∈ F3k . Then

αx− xα =

(
2∑
i=0

aix
i +

2∑
j=0

bjx
jy

)
x− x

(
2∑
i=0

aix
i +

2∑
j=0

bjx
jy

)

=
2∑
i=0

aix
i+1 +

2∑
j=0

bjx
jyx−

2∑
i=0

aix
i+1 −

2∑
j=0

bjx
j+1y

=
2∑
j=0

bjx
j−1y −

2∑
j=0

bjx
j+1y

= (b1 − b2)y + (b2 − b0)xy + (b0 − b1)x2y

Now αx− xα = 0 iff b0 = b1 = b2. Therefore every element of CH(x) takes the form

2∑
i=0

aix
i + bx̂y

where
2∑
i=0

ai = 1 and ai, b ∈ F3k . Let α =
2∑
i=0

aix
i + bx̂y ∈ CH(x) and β =

2∑
i=0

cix
i + dx̂y ∈ CH(x)

where
2∑
i=0

ai = 1,
2∑
i=0

ci = 1 and ai, cj, b, d ∈ F3k . Then



αβ =

(
2∑
i=0

aix
i + bx̂y

)(
2∑
i=0

cix
i + dx̂y

)

=

(
2∑
i=0

aix
i

)(
2∑
i=0

cix
i

)
+

(
2∑
i=0

aix
i

)
(dx̂y) + (bx̂y)

(
2∑
i=0

cix
i

)
+ bd (x̂y)2

=

(
2∑
i=0

aix
i

)(
2∑
i=0

cix
i

)
+ d

(
2∑
i=0

aix̂y

)
+ b

(
2∑
i=0

cix̂y

)

and

βα =

(
2∑
i=0

cix
i + dx̂y

)(
2∑
i=0

aix
i + bx̂y

)

=

(
2∑
i=0

cix
i

)(
2∑
i=0

aix
i

)
+

(
2∑
i=0

cix
i

)
(bx̂y) + (dx̂y)

(
2∑
i=0

aix
i

)
+ bd (x̂y)2

=

(
2∑
i=0

cix
i

)(
2∑
i=0

aix
i

)
+ b

(
2∑
i=0

cix̂y

)
+ d

(
2∑
i=0

aix̂y

)
.

Therefore αβ = βα and CH(x) is abelian. Clearly |CH(x)| = (3k)3 = 33k, therefore CH(x) ∼= C3k
3 . �

Theorem 5.5 Let T be the subset of H consisting of elements of the form

1 + r
2∑
i=0

ixi(1 + y)

where r ∈ F3k , then T ∼= Ck
3 .

Proof. Let α = 1 + r
2∑
i=0

ixi(1 + y) ∈ T and β = 1 + s
2∑
i=0

ixi(1 + y) ∈ T where r, s ∈ F3k . Then

αβ =

(
1 + r

2∑
i=0

ixi(1 + y)

)(
1 + s

2∑
i=0

ixi(1 + y)

)

= 1 + s

2∑
i=0

ixi(1 + y) + r

2∑
i=0

ixi(1 + y) + rs

(
2∑
i=0

ixi(1 + y)

)2

.



Now (
2∑
i=0

ixi(1 + y)

)2

=
(
(x+ 2x2)(1 + y)

)2
= (x+ 2x2)(1 + y)(x+ 2x2)(1 + y)

= (x+ 2x2)(x+ 2x2)(1− y)(1 + y)

= (x+ 2x2)2(1− y2)
= 0.

Therefore αβ = 1 + (s+ r)
2∑
i=0

ixi(1 + y) ∈ T and T is closed under multiplication. Additionally,

βα =

(
1 + s

2∑
i=0

ixi(1 + y)

)(
1 + r

2∑
i=0

ixi(1 + y)

)

= 1 + r
2∑
i=0

ixi(1 + y) + s
2∑
i=0

ixi(1 + y) + rs

(
2∑
i=0

ixi(1 + y)

)2

= 1 + (r + s)
2∑
i=0

ixi(1 + y)

= αβ.

Now |T | = 3k and T is a subgroup of H by Corrollary 1.11. Therefore T ∼= Ck
3 . �

We need to prove that the product of CHx and T equals H

Theorem 5.6 H = T.CH(x).

Proof. Let c = 1 + a1(x − 1) + a2(x
2 − 1) + bx̂y ∈ CH(x) and t = 1 + r

2∑
i=0

ixi(1 + y) ∈ T where

ai, b, r ∈ F3k . Consider CH(x) ∩ T . Clearly b = 0 =⇒ r = 0 =⇒ CH(x) ∩ T = {1}. By Theorem
1.22, T.CH(x)/CH(x) ∼= T/T ∩ CH(x) =⇒ |T.CH(x)/CH(x)| = 3k. Therefore |T.CH(x)| = 33k.3k =
34k = |H| and H = CH(x).T .



T ∩ CH(x)

T.CH(x)

1

T CH(x)

33k 3k

3k

�

Theorem 5.7 CH(x)CH.

Proof. Let h ∈ H, c = 1 + a1(x− 1) + a2(x
2 − 1) + bx̂y ∈ CH(x) and t = 1 + r

2∑
i=0

ixi(1 + y) ∈ T

where ai, b, r ∈ F3k . We need to show ch ∈ CH(x), however it remains to show ct ∈ CH(x) since
H = T.CH(x).

ct = t−1ct

= t2ct

=

(
1 + r

2∑
i=0

ixi(1 + y)

)2 (
1 + a1(x− 1) + a2(x

2 − 1) + bx̂y
)(

1 + r
2∑
i=0

ixi(1 + y)

)

=

(
1 + 2r

2∑
i=0

ixi(1 + y)

)(
1 + a1(x− 1) + a2(x

2 − 1) + bx̂y
)(

1 + r
2∑
i=0

ixi(1 + y)

)

=

(
1 + 2r

2∑
i=0

ixi(1 + y)

)
( 1 + r

2∑
i=0

ixi(1 + y) + a1(x− 1) + ra1(x− 1)
2∑
i=0

ixi(1 + y)

+ a2(x
2 − 1) + ra2(x

2 − 1)
2∑
i=0

ixi(1 + y) + bx̂y + brx̂y

2∑
i=0

ixi(1 + y) ) .

• brx̂y
2∑
i=0

ixi(1 + y) = 0.

• ra1(x− 1)
2∑
i=0

ixi(1 + y) = 2a1rx̂(1 + y).

• ra2(x2 − 1)
2∑
i=0

ixi(1 + y) = a2rx̂(1 + y).



Thus

ct =

(
1 + 2r

2∑
i=0

ixi(1 + y)

)(
1 + a1(x− 1) + a2(x

2 − 1) + bx̂y + r

2∑
i=0

ixi(1 + y) + (2a1r + a2r)x̂(1 + y)

)

= 1 + a1(x− 1) + a2(x
2 − 1) + bx̂y + r

2∑
i=0

ixi(1 + y) + (2a1r + a2r)x̂(1 + y) + 2r
2∑
i=0

ixi(1 + y)

+ 2a1r
2∑
i=0

ixi(1 + y)(x− 1) + 2a2r
2∑
i=0

ixi(1 + y)(x2 − 1) + 2br
2∑
i=0

ixi(1 + y)x̂y

+ 2r2

(
2∑
i=0

ixi(1 + y)

)2

+ 2r(2a1r + a2r)
2∑
i=0

ixi(1 + y)x̂(1 + y)

• 2a1r
2∑
i=0

ixi(1 + y)(x− 1) = a1rx̂(1 + 2y).

• 2a2r
2∑
i=0

ixi(1 + y)(x2 − 1) = a2rx̂(2 + y).

• 2br
2∑
i=0

ixi(1 + y)x̂y = 0.

• 2r2

(
2∑
i=0

ixi(1 + y)

)2

= 0.

• 2r(2a1r + a2r)
2∑
i=0

ixi(1 + y)x̂(1 + y) = 0.

Thus

ct = 1 + a1(x− 1) + a2(x
2 − 1) + bx̂y + (2a1r + a2r)x̂(1 + y) + a1rx̂(1 + 2y) + a2rx̂(2 + y)

= 1 + a1(x− 1) + a2(x
2 − 1) + bx̂y + 2a1rx̂+ 2a1rx̂y + a2rx̂+ a2rx̂y + a1rx̂+ 2a1rx̂y + 2a2rx̂+ a2rx̂y

= 1 + a1(x− 1) + a2(x
2 − 1) + (b+ a1r + 2a2r)x̂y ∈ CH(x).

Therefore CH(x)CH. �

Theorem 5.8 H ∼= CH(x)o T .

Proof. Clearly H = CH(x)T , CH(x)∩T = {1}, CH(x)CH and T < H. Therefore H ∼= CH(x)oT .
�



Theorem 5.9 U(F3kD6) ∼= (C3k
3k
o Ck

3k
)o (C3k−1 × C3k−1)

Proof. Recall that U(F3kD6) ∼= H. By Theorem 4.23 & 5.8 & 5.7,

U (F3kD6) ∼= H o U (F3kC2)

∼=
(
C3k

3 o Ck
3

)
o (C3k−1 × C3k−1) .

�

With this established, we have been able to validate results in the referenced paper.
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Appendix A

Appendix

A.1 Verification of Calculations in Chapter 4

A program was written to output the units and zero divisors for any group ring RG. In this section
we verify all the calculations performed at the beginning of Chapter 4. The code for the program
can be found in Appendix A.2.

gap> f1(GF(2),CyclicGroup(2));

[R,G]=[ GF(2), "C2" ]

|RG|=4

#I LAGUNA package: Computing the unit group ...

Unit Group: C2

Elements: [ (Z(2)^0)*<identity> of ..., (Z(2)^0)*f1 ]

Zero Divisors: 1

Elements: [ (Z(2)^0)*<identity> of ...+(Z(2)^0)*f1 ]

gap> f1(GF(2),CyclicGroup(3));

[R,G]=[ GF(2), "C3" ]

|RG|=8

Unit Group: C3

Elements: [ (Z(2)^0)*<identity> of ..., (Z(2)^0)*f1, (Z(2)^0)*f1^2 ]

Zero Divisors: 4

Elements: [ (Z(2)^0)*<identity> of ...+(Z(2)^0)*f1,

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f1^2,

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1^2, (Z(2)^0)*f1+(Z(2)^0)*f1^2 ]

\begin{verbatim}

\begin{verbatim}

gap> f1(GF(3),CyclicGroup(2));

[R,G]=[ GF(3), "C2" ]

|RG|=9

Unit Group: C2 x C2
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Elements: [ (Z(3)^0)*<identity> of ..., (Z(3))*<identity> of ..., (Z(3)^0)*f1, (Z(3))*f1 ]

Zero Divisors: 4

Elements: [ (Z(3)^0)*<identity> of ...+(Z(3)^0)*f1,

(Z(3)^0)*<identity> of ...+(Z(3))*f1,

(Z(3))*<identity> of ...+(Z(3)^0)*f1, (Z(3))*<identity> of ...+(Z(3))*f1 ]

gap> f1(GF(2),CyclicGroup(4));

[R,G]=[ GF(2), "C4" ]

|RG|=16

#I LAGUNA package: Computing the unit group ...

Unit Group: C4 x C2

Elements:

[(Z(2)^0)*<identity> of ..., (Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2,

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f1*f2,

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f2+(Z(2)^0)*f1*f2,

(Z(2)^0)*f1, (Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2,

(Z(2)^0)*f2, (Z(2)^0)*f1*f2 ]

Zero Divisors: 7

Elements: [ (Z(2)^0)*<identity> of ...+(Z(2)^0)*f1,

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2,

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f2, (Z(2)^0)*<identity> of ...+(Z(2)^0)*f1*f2,

(Z(2)^0)*f1+(Z(2)^0)*f2, Z(2)^0)*f1+(Z(2)^0)*f1*f2, (Z(2)^0)*f2+(Z(2)^0)*f1*f2 ]

A.2 Code for Program

Here’s a code for the program to output the units and zero divisors of a group ring.

f1:=function(ring,group)

local RG,U,M,N,K,i,j,ZD;

ZD:=[];

RG:=GroupRing(ring,group);

Print("[R,G]=",[ring,StructureDescription(group)],"\n","|RG|=",Size(RG),"\n");

U:=Units(RG);

Print("Unit Group: ",StructureDescription(U),"\n","Elements: ", Elements(U),"\n");

M:=Elements(RG);

N:=[Zero(RG)];

K:=Difference(M,N);

for i in [1..Size(K)] do

for j in [1..Size(K)] do

if K[i]*K[j]=Zero(RG) then Add(ZD,K[i]);

fi;od;od;

Print("Zero Divisors: ",Size(SSortedList(ZD)),"\n","Elements: ",SSortedList(ZD),"\n");

end;



A.3 Verification of the decomposition of F7D10

A program was written to validate the decomposition of F7D10 in chapter 4.

gap> FG:=GroupRing(GF(7),DihedralGroup(6));

<algebra-with-one over GF(7), with 2 generators>

gap> WedderburnDecomposition(FG);

[ ( GF(7)^[ 1, 1 ] ), ( GF(7)^[ 1, 1 ] ), ( GF(7)^[ 2, 2 ] ) ]



Conclusion

This study has been such an enjoyable experience so far. Although it seemed unrealisable at the
early stages of this thesis, my drive and commitment towards unwinding the puzzle surrounding the
conclusive solutions in Gildea and Creedon’s paper never dwindled. That aim has been achieved and
has become obvious that approaches to mathematical problems are very subjective due to varying
perspectives. But a fascinating discovery will be to find out if and how this technique can be applied
to group algebra (UF3kD2,3x). More alternatively, can a new technique be constructed to decompose
the group algebra (UF3kD2,3x)? If the latter is achievable, can the technique be generalized so it
can apply to most group algebras? These are some aspects of this study that can be ascertained
through further research.
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