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One of the greatest challenges in biology is to improve the understanding of the mechanisms which underpin
aging and how these affect health. The need to better understand aging is amplified by demographic changes,
which have caused a gradual increase in the global population of older people. Aging western populations
have resulted in a rise in the prevalence of age-related pathologies. Of these diseases, cardiovascular disease is
the most common underlying condition in older people. The dysregulation of lipid metabolism due to aging im-
pinges significantly on cardiovascular health. However, themultifaceted nature of lipidmetabolism and the com-
plexities of its interaction with aging make it challenging to understand by conventional means. To address this
challenge computational modeling, a key component of the systems biology paradigm is being used to study the
dynamics of lipidmetabolism. Thismini-review briefly outlines the key regulators of lipidmetabolism, their dys-
regulation, and how computational modeling is being used to gain an increased insight into this system.
© 2014 . Mc Auley and Mooney. Published by Elsevier B.V. on behalf of the Research Network of Computational

and Structural Biotechnology. This is an open access article under the CC BY 3.0 license
(http://creativecommons.org/licenses/by/3.0/).
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1. What is Aging and why Study it Using Computational Systems
Biology?

The progress of biomedical science, together with improvements in
nutrition and public heath interventions has resulted in a remarkable
demographic shift in favor of older people. It is projected that by 2050,
25% of the world's population will be over 60 years of age [1]. There
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has also been a staggering rise within western populations of those in-
dividuals over 85 years of age. For example, in the UK it is predicted
that by 2050 almost 5% of the populationwill comprise of these individ-
uals that are referred to as the ‘oldest old’ [2]. Despite such a dramatic
change in population demographics, gerontology remains devoid of a
reasonable explanation as to what aging is. Irrespective of this ambigu-
ity, aging is generally recognized as a process that gradually results in
the progressive decline of an organism over-time which results in its
eventual mortality [3,4]. The fact that aging comprises every facet of a
biological system makes it an inherently difficult phenomenon to
study. Therefore the question arises why study aging? If populations
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are living longer is there a necessity? The answer is that althoughwe are
living longer, the extra few years that are gained are not necessarily
spent in optimum health. For example, in the UK 37.1% of individuals
≥85 years have underlying cardiovascular disease (CVD), which ham-
pers their quality of life [5]. For this reason it is imperative to gain a
mechanistic understanding of the impact of aging on the regulation of
biological systems. Historically investigating the potential mechanisms
which underpin aging has been constrained by their complex and mul-
tifaceted nature [6]. This has resulted in aging being studied in a reduc-
tionistmanner. Fortunately, the last decade and a half haswitnessed the
growth of systems biology, a discipline which is grounded in under-
standing biology from an integrated perspective [7,8]. Dynamic compu-
tational modeling resides firmly within the systems biology paradigm
[9–11]. The impact computational modeling is having on lipid metabo-
lism, a system that offers a potential avenue for extending healthy aging
will be the focus of this mini-review.

2. Lipid Metabolism and Healthy Aging

Aging is underpinned by changes to a number of complex biological
mechanisms [12]. Consequently, it is necessary to investigate this phe-
nomenon holistically and where possible examine the impact of age-
related changes to biological systems in an interconnected fashion
[13]. Of the diseases associated with old age, CVD remains the most
prevalent cause of morbidity among older people [14,15]. The dysregu-
lation of lipid metabolism is known to impact several parameters of
cardiovascular health [16]. For instance, there is a well-established rela-
tionship between elevated levels of low-density lipoprotein cholesterol
(LDL-C) and risk of CVD [17–19]. Elevated levels of plasma triglycerides
(TGs) have also been suggested as a risk factor for CVD, although their
association remains a controversial one [20]. Intriguingly, it has also
been revealed that certain long lived individuals have a ‘finely-tuned’
lipid profile whichmay have helped them avoid CVD [21]. From a nutri-
tion perspective adult western diets contain between 30 and 40% of en-
ergy from lipids, of which 92–96% are long chain TGs [22]. TGs are
composed of a unit of glycerol together with three fatty acids [23].
Long chain TGs are classified on the basis of the number and type of
chemical bonds they possess [23]. There are three general classes, satu-
rated fatty acids (SFAs) which have no double bonds, monounsaturated
fatty acids (MUFAs) which have one double bond and polyunsaturated
fatty acids (PUFAs) which contain two or more double bonds [24,25].
SFAs are usually solid at room temperature and are mainly found in an-
imal sources such as cream, butter, cheese, milk and animal fats [22].
The main fatty acid in MUFA is oleic acid which is found in olive oil, ca-
nola and peanuts [26]. The most ubiquitous PUFA is linoleic acid; its
double bonds are in the omega n-6 position. Linoleic acid is foundmain-
ly in seed oils, such as sunflower and corn oils [27].

The metabolic fate of dietary lipids can significantly impact health.
When SFAs predominate in the diet they tend to raise plasma LDL-C
[28]. It is suggested that SFAs increase LDL-C by suppressing the activity
and reducing the number of LDL-receptors [29,30]; the mechanism re-
sponsible for the removal of LDL from the circulation [31–33]. It is also
suggested that SFAs cause an increase in the synthesis of LDL-C [34,
35]. Conversely, MUFAs and PUFAs decrease plasma LDL-C levels [36,
37] with evidence indicating that they increase hepatic LDL receptor
number and LDL turnover [32]. Thus, the metabolic impact of dietary
fats can be viewed as a combination of SFAs, MUFAs and PUFAs [38,
39]. In terms of the metabolic impact of dietary cholesterol, there has
been considerable debate as to its effect on plasma cholesterol. For ex-
ample, dietary cholesterol intake has been shown to result in increases
of LDL-C levels even when dietary SFAs are maintained at a low level
[40]. On the other hand meta-analysis studies have shown that the ef-
fect of dietary cholesterol on plasma cholesterol levels is negligible
[41,42]. In addition dietary cholesterol has only a minimal effect on en-
dogenous cholesterol synthesis, as it is thought whole-body balance is
mainly regulated via intestinal absorption [43]. Moreover, studies
whichmonitored plasma cholesterol levels have shown that individuals
vary significantly in their responses to dietary cholesterol [44,45], possi-
bly due to intrinsic differences in cholesterol absorption [46] and have
resulted in normolipidemic individuals being classified as either hypo
or hyper responsders [47,48]. Similarly, it has recently been suggested
that certain individuals are hyperproducers of cholesterol while others
are hyperabsorbers [49]. These findings endorse the view that regula-
tion of whole-body lipid metabolism is underpinned by a variety of ex-
trinsic and intrinsic factors acting simultaneously. It is therefore logical
to investigate lipid metabolism using a whole-body framework which
is capable of both representing and exploring individual differences in
these factors.

A number of processes are responsible for maintaining lipid metab-
olism and changes to any of thesemechanisms can disrupt its dynamics,
for example as eluded in the previous section whole-body cholesterol
balance can be sensitive to changes in cholesterol absorption [50], syn-
thesis [51] and ingestion [52]. Fig. 1 presents a coarse grained overview
of the key components of whole-body lipid metabolism. The diagram
commences with the dietary intake of lipids. Due to the insolubility of
lipids, specialized carriers known as lipoproteins are required to trans-
port them throughout the body [53]. After digestion lipids are taken
up by enterocytes and packaged in a lipoprotein called a chylomicron
[54,55]. Absorbed chylomicrons are acted on by lipoprotein lipase
(LPL)which hydrolyzes TG releasing free fatty acids (FFAs) and glycerol
[56]. The chylomicron remnants are removed hepatically and the FFAs
are taken up by muscle and liver for either oxidation or re-
esterification [57]. Hormone sensitive lipase (HSL) acts on adipose tis-
sue to release FFAs during lipolysis [58], a process suppressed in fat
cells by insulin during the fed state [59]. Hepatic TGs together with cho-
lesterol can be released as part of very low density lipoproteins (VLDLs)
[60]. VLDLs are hydrolyzed by LPL, forming VLDL remnants and inter-
mediate density lipoproteins (IDLs). IDLs are either taken up by the
liver or hydrolyzed to LDLs, the main cholesterol transporter [60]. LDL
is taken up by the liver or by peripheral cells, either independently
[61–63] or via the LDL-receptor [64,65]. Reverse cholesterol transport
(RCT) is the only route for removal of excess cholesterol fromperipheral
tissue [66]. Crucial to RCT are high density lipoproteins (HDLs) which
uptake cholesterol in the peripheral tissue to become high density lipo-
protein cholesterol (HDL-C), the so-called ‘good cholesterol’. The excess
cholesterol is transferred from the peripheral tissue to the liver where
hepatocytes take up the cholesterol and excrete it into the bile either
as free cholesterol or as bile salts after conversion [67]. Subsequently,
cholesterol and bile salts end up in the feces. Fundamental to RCT is
the transport of free cholesterol and phospholipids to lipid-free apo A-
I in a process mediated by ATP-binding cassette transporter (ABCA1)
[68]. The intimate relationship between ABCA1 and apo A-I leads to
the lipidation of apo A-I and generation of a discoid nascent pre-β
HDL particle [69,70]. Following this initial event in RCT, the nascent
HDL thenmatures through the esterification of cholesterol which is me-
diated enzymatically by lecithin-cholesterol acyltransferase (LCAT) [71].
Mature HDLs can transfer cholesterol directly to the liver in a process
mediated by scavenger receptor class B, type I (SR-BI) or alternatively
it can transfer cholesterol indirectly by using cholesteryl ester transfer
protein (CETP) to reallocate cholesterol to other lipoproteins including
LDL and VLDL [72].

3. The Impact of Aging and Genetic Variability on the Dynamics of
Lipid Metabolism

It is known that plasma lipids increase with age in both males and
females [73]. Although the underlying reasons for this rise are not
completely delineated, several putative mechanisms have been pro-
posed. For example, in rodents TG absorption can be impaired by as
much as 50% with advancing age [74]. This could be due to a defect in
lipoprotein assembly or due to a decline in the abundance of fatty
acid-binding proteins [74,75]. Moreover the decrease in TG absorption



Fig. 1. A coarse grained overview of the dynamics of lipid metabolism. The mechanisms outlined in Fig. 1 are discussed in detail in the main body of the article. The Greek letter theta rep-
resents utilization, inhibition is represented by an arrowwith a flat head, enzymatic activity is represented by rounded headed arrows and conversion or synthesis is represented by con-
ventional arrow heads. Changes to any of the components can have a dramatic impact on lipid metabolism and health.
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could be underpinned by a decline in the secretion rate of the key diges-
tive enzyme pancreatic lipase [76]. Conversely, outbred CD-1mice have
demonstrated that intestinal cholesterol absorption efficiency can in-
crease significantly during aging, with 41% of intestinal cholesterol
absorbed in oldmice compared to 25% in youngmice [77]. A gradual re-
duction in the receptor-mediated clearance of plasma lowdensity LDL-C
has also been observed in healthy human males [78,79] and in rodents
[80] with increasing age. This is perhaps a result of a decrease in the
number of hepatic LDL receptors [81]. This is consolidated by thefinding
that old rats can have up to 57% less LDL receptors than young rats [80].
In terms of fatty acid metabolism it has been demonstrated that fatty
acid oxidation is impaired in aged muscle during basal conditions,
which has been suggested to contribute to TG accumulation with age
[82]. Several of the major enzymes involved in lipid metabolism under-
go a dramatic change to their behavior with age. For instance, the activ-
ity of LPL has been reported to reduce by as much as 55–60% [83–85].
Inhibition of LPL activity is likely to result in hypertriglyceridemia [86].
It has also been suggested that LPL activity is altered by age-related
changes to a broad range of hormones, including cortisol, epinephrine,
norepinephrine and leptin (reviewed in [16]). In rodents HSL can suffer
a 24% decline in its activity due to age [82]. RCT also suffers from an age-
related decline that is suggested to have a ripple effect on the other
components of cholesterol metabolism [87]. The decline in RCT could
be induced by alterations to CETP, as polymorphisms in the promoter
region of the CETP gene have recently been implicated in longevity
[88]. Therefore it can be tentatively suggested that CETP is a hub for
the regulation of lipid metabolism and even subtle alterations to it
could result in dyslipidemia and impact cardiovascular health. It re-
mains unknown exactly how many other genes and single nucleotide
polymorphisms (SNPs) influence the dynamics of lipid metabolism
and how these can be differentiated from intrinsic aging. One polymor-
phism that is known to significantly impact lipid metabolism and lon-
gevity is that of Apolipoprotein E (apo E) [89,90]. apo E is a protein
associated with chylomicrons, VLDL, and HDL cholesterol. It acts as a li-
gand for the LDL receptor. The apo E locus has 3 common alleles, E4, E3,
and E2 [91]. apo E deficiency results in high levels of cholesterol-
enriched lipoproteins, with apo E 4 variant having the most significant
impact on lipid metabolism due to its association with elevated LDL-C
[92]. Other studies have hinted at as yet undiscovered polymorphisms
that could affect lipidmetabolism. For example, it has been demonstrat-
ed that individuals (Ashkenazi Jewish centenarians) with exceptional
longevity and their offspring have significantly larger HDL and LDL par-
ticle sizes, indicating that this phenotype could be protective against
cardiovascular disease [93].

4. The Role Computational Modeling can Play in Understanding
Lipid Metabolism

Computational models have been used for decades in biological re-
search to help understand the dynamics of complex phenomena
[94–96]. Constructing a model requires an intimate knowledge of the
system of interest, a hypothesis to test using themodel and experimen-
tal data to both informmodel buildings and to validate themodel [9,97].
Due to the increasing use of the systems biology paradigm there is now
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an abundance of data that can be used to inform model building [98].
For example, the systems biology approach has resulted in the generation
of a diverse array of data which includes metabolic profiles of a variety of
organisms under a range of conditions [99,100]. As a consequence of this
‘new’ data novel computational models can be developed that more fully
describe the biochemical reactions within a biological system [101]. The
goal of a computer model is to both qualitatively and quantitatively rep-
resent the architecture of a biochemical system and to consider the inter-
activity and dynamics of the various biological entities within the system.
Mathematics underpins the reactions within the model with equations
used to describe the dynamics of the biochemical mechanisms (reviewed
in [97]). There are several differentmathematical frameworks that can be
employed (reviewed in [97]). The most ubiquitously used framework in-
volves using a set of coupled ordinary differential equations (ODEs) [102].
This was emphasized by Hübner et al. (2011) when over 300 hundred
computational systems biology models were surveyed and summarized
over a ten year period, with the majority of models found to be ODE
based [103]. The ODE framework assumes that the variables behave in a
continuous and deterministic manner and makes the assumption that
variability is not an important consideration for the model. If on the
other hand it is known that variability is an inherent feature of the bio-
logical system under consideration, a stochastic model is used. An ex-
ample of a biological process that is intrinsically stochastic is gene
expression [104]. This phenomenon is routinely captured using this
modeling approach [105]. The use of stochastic modeling to study
lipid metabolism has to date been limited and the majority of models
Fig. 2. The generic steps involved in constructing a computational systemsmodel and how the
cess of interest is identified and then represented mathematically; usually with ordinary diffe
knowledge. These are generally kinetic rate constants. Themodel is then simulated on a comput
can inform further experimental work, which leads to further model refinement and the cycle
utilize the ODE approach. The reason for this is that in the main models
of lipid metabolism have focused on lipoprotein dynamics, whole body
cholesterol metabolism and reverse cholesterol transport and it has
been assumed that these systems contain large numbers of molecules
whose overall behavior is deterministic, with stochasticity being
negligible. Therefore to date it has largely been assumed that a stochas-
tic approach would not present significant advantages. This does not
mean however that we should completely ignore the possibility that
stochasticity has a role to play in the dynamics of lipid metabolism. Re-
gardless of the mathematical framework that is adopted, the computer
simulates the interactions between the entities which results in a
graphical account of how the biochemical species interact over time.
In Fig. 2 the steps involved in the model building process are outlined.
The process should be integrated with wet-laboratory experimentation
so that each stage informs the other.Model predictions then provide the
direction for further experimentation.

5. Computational Models of Lipid Metabolism

A variety of different levels of abstraction have been used to repre-
sent lipid metabolism, from cellular models to whole body representa-
tions. Models can be divided into two broad categories: those that
focus on fatty acid metabolism and those that deal with the dynamics
of cholesterol regulation. A recent example of a cellularmodel of choles-
terol biosynthesis regulation showed that, the down-regulation of en-
zyme activity elicited a graduated reduction in flux along the pathway
process dovetails with experimental work. It is a cyclical process whereby a biological pro-
rentiation equations. The parameters of the model are informed by current experimental
er and a decisionmadewhether to accept its output or to further refine it. Model prediction
continues (see also reference [149]).
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[106]. In contrast, modeling pharmacological interventions resulted in a
similar degree of down-regulation in cholesterol synthesis, in a step
change manner [106]. The authors suggest that the coordinate regula-
tion of this pathway demonstrates a long-term evolutionary advantage
over single enzyme regulation.Models that focus on lipoprotein dynam-
ics have also been the focus of recent attention. Hübner et al. (2008) de-
veloped an interestingmodel of lipoprotein dynamicswhichwas able to
represent the lipoprotein profiles of healthy subjects and revealed het-
erogeneous lipoprotein distributions within the lipoprotein sub-
fractions and predicted changes in lipoprotein distribution as a result
of disease [107]. More recently the lead author of this article was in-
volved in building a whole-body systems model of cholesterol metabo-
lism that investigated the interaction of cholesterol metabolism with
aging. The model was able to show that alterations to the absorption
of intestinal cholesterol due to intrinsic aging could result in a signifi-
cant increase in LDL-C [108]. The model also showed that decreasing
the rate of hepatic clearance of LDL-C from half its initial value by age
65 years can result in the significant rise in LDL-C [108]. These findings
helped to confirm that age-related alterations to key regulators of cho-
lesterol metabolism have implications for CVD risk and suggested
areas for potential therapeutic intervention. In a similar fashion van de
Pas et al. (2012) developed a whole-body model of plasma cholesterol
concentrations in humans [109]. This physiologically based pharmaco-
kinetic model was adapted from a previous model designed for mice
studies. The model was validated by comparing model predictions on
plasma cholesterol levels of subjects with different genetic mutations
with experimental data. Average model predictions on total cholesterol
were accurate within 36% of the experimental data. A sensitivity analy-
sis suggested that HDL-C concentration was mainly dependent on he-
patic transport of cholesterol to HDL, cholesterol ester transfer from
HDL to non-HDL, and hepatic uptake of cholesterol from non-HDL-C.
Lu et al. (2014) focused specifically on RCT and constructed an in silico
model of this process [110]. This ODE model was calibrated using a vir-
tual population, and was used to explore potential ways of raising HDL-
C. Intriguingly, the model suggested that CETP inhibition would not re-
sult in an increased RCT rate, contradicting the proposed role of CETP in-
hibition as a therapeutic target for improving RCT [111]. Recent models
focusing on fatty acid metabolism include a model by Micheloni et al.
(2014)which includes the key pathways of an adipocyte [112]. VLDL as-
sembly in human liver has also been represented computationally [113]
. Thismodelwas able to predict the plasma FFA composition required to
generate a given alteration in the fatty acid composition of a lipoprotein.
It is important to emphasize that regardless of the nature of themodel, it
can be used to examine the interaction of aging with lipid metabolism.
This simply involves adjusting the parameters to reflect the impact of
aging on a ‘normal’ biological system. Therefore in theory any of the
computational systems models that have been discussed are capable
of doing this.

6. Integrating Lipid MetabolismWith Other Metabolic Systems

It is clear age related changes to awide range of biological systems sig-
nificantly impact the dynamics of lipid metabolism. Therefore, models of
lipid metabolism should be as holistic as possible to account for the wide
range of factors that can impact its behavior. For instance, an integrated
whole body model of cholesterol metabolism together with fatty acid
metabolismwould certainly beworthwhile developing in the near future.
Moreover, it would be worthwhile developing a model that captures the
interplay of lipid metabolism with whole-body insulin–glucose dynam-
ics. Model integration has been facilitated by the advent of a number of
frameworks that have been developed specifically for the representation
of biological models [114]. These frameworks allow models to be shared
and reused by researchers even if they do not use the same modeling
software tool. Presently, the leading exchange format is the systems biol-
ogy markup language [115]. Models that have been encoded in this
framework can be archived in the BioModels database, a repository
designed specifically for housing SBML models [116]. We searched the
BioModels database with a specific focus on holistic/physiological
models. It was discovered that BioModels contains a number of models
of insulin–glucose dynamics. It would be worthwhile using the integrat-
ed model of glucose and insulin regulation (MODEL1112110004 [117])
to create a holistic physiological model of these systems. Another
model that was identified which could equally be used is a hierarchical
whole-body model of insulin signaling and glucose homeostasis
(BIOMD0000000372 [118]). The major advantage of such models is
that they have been encoded in SBML, which aids their future manipula-
tion and potential assimilationwithin a lipidmodel. The aforementioned
integrated models could be used to address the important question of
the crosstalk between hepatic TG levels and insulin sensitivity, as recent-
ly increased circulating lipid levels have been associated with insulin re-
sistance [119]. Insulin resistance is the result of an inability to suppress
hepatic glucose production or to stimulate peripheral glucose uptake. It
is not clear if the increased production of hepatic TG affects insulin sen-
sitivity, therefore this would be a worthwhile area for a combined
model to investigate. It would also be useful to include the effects of ge-
netic polymorphisms associatedwith lipidmetabolism. For example, the
presence of two defective alleles in the gene locus of LPL results in a sig-
nificant loss in the activity of LPL and causes hypertriacylglycerolemia
[120]. Thus, it is logical that examining suchperturbationswould present
an additional insight into how a variety of mechanisms affect lipid
metabolism. Combined lipid-stress hormone models are also needed,
as chronic exposure to stress impacts cardiovascular health. Recent find-
ings suggest that the dysregulation of cortisol homeostasis is a notable
contributor to CVD [121]. This could be the result of a number of interac-
tions. For instance, cortisol abnormalities are associated with increased
abdominal obesity [122]. This suggests that alterations to adipose tissue
are dependent on an increase in insulin, provoked by cortisol excess.
Additionally it is suggested that obesity, with a disproportional increase
of visceral fat depots, is a condition associated with elevated cortisol se-
cretion [123]. These factors need to be investigated and it would be
worthwhile applying a combined cortisol–lipid model to do this. The
construction of this combined model could be facilitated by using one
or a combination of a number of pre-existing models of cortisol homeo-
stasis [124–126]. However, it is important to emphasize that multi-scale
modeling is not straight forward, as the challenge of representing spatial
and temporal scale has yet to be fully resolved. Moreover combining
models of different scales is not a trivial task as one needs to consider
different time scales and different levels of detail which invariability
characterize each model. In our opinion it is necessary to focus initially
on combining models of biological systems whose behavior has been
well characterized. The issue of model parameterization also needs to
be considered, as the larger the model becomes the more parameters it
has. Furthermore, it is important to emphasize that even if two models
are coded in SBML difficulties persist as inconsistencies often exist in
the nomenclature of species and reactions from one model to another.
A proposed solution to this difficulty is to use, The Minimal Information
Required in the Annotation of Models (MIRIAM) project, which has the
goal of generating a set of guidelines for the standard annotation and
curation of computational models in biology [127]. It is suitable for use
with any structured format for computational models. In the penulti-
mate section we will explore these issues in more detail and present a
number of models that have endeavored to overcome these challenges.

7. Obstacles and Opportunities for the Future

The impact of aging on lipidmetabolism is complicated by a number
of factors. If we take cholesterol metabolism as an example, it is known
that LDL-C rises significantly with age (by ~40% between the 20th and
60th decade) [73]. Accounting for this rise should be the goal of any suc-
cessful computational model of cholesterol metabolism. However,
achieving this objective is hampered to a degree by the large number
of factors that we have discussed that play a role in the rise of LDL-C.
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This issue is further complicated by the fact that there are sex-related
differences in the development of hypercholesterolemia with age
(reviewed in [128]). This issue adds another dimension to modeling
lipid metabolism, for example is it feasible to integrate the key compo-
nents of lipid metabolism with other biological systems such as cortisol
or estrogen regulation. Another challenge centers on individual hetero-
geneity. As an example it is known that cholesterol absorption can vary
from ~29% to ~80% [46]. Moreover, recent findings suggest that individ-
ual differences in cholesterol synthesis are an important consideration
also [129]. These are factors that should be considered when designing
a model of lipid metabolism. Regardless of the factors that are selected
for inclusion in a model of lipid metabolism assumptions will remain a
necessity, as themathematics that underpins the biology has not always
been fully delineated. In the absence of a detailedmathematical descrip-
tion, alternative approaches could be used. For instance, several recent
models have successfully adopted constraint based modeling, a tech-
nique that represents a biological systembyusing a series of constraints,
which characterizes its possible dynamics, facilitating amechanistic de-
scription of metabolic physiology [130]. This approach could be used to
help investigate the metabolic behavior of human cells and tissues to
help unravel the mechanisms that underlie the changes to lipid metab-
olismwith age. By introducing a successive series of constraints, an idea
of the behavior of cells, tissues and organs during a range of scenarios
could be obtained, thereby improving the available information to de-
termine the underlying mechanisms [130]. This approach was recently
successfully applied to lipid metabolism by Galhardo and colleagues
(2014) to integratively study data from human adipogenesis, together
with data on gene expression, genome-wide ChIP-seq profiles for per-
oxisome proliferator-activated receptor (PPAR), a nuclear receptor
that regulates fatty acid storage, along with a variety of other informa-
tion including microRNA data [131]. Another method that has been
employed to integrate diverse data sets was utilized by Gupta and col-
leagues (2011) when they integrated metabolomics and transcripto-
mics data with legacy knowledge to create a worthwhile model of the
sphigolipid pathway [132]. A further way to alleviate the problem
would be to formulate experimentally testable hypotheses based on
the in silico analysis of a well experimentally characterized regulatory
circuit, perform the experiments, and update the models based on the
‘true’ predictions. This type of approach is ubiquitously employed to
help understand the underlying regulatory networks in microbial me-
tabolism [133]. This would undoubtedly lead to a better understanding
of the mechanisms embedded within the systems and ultimately to an
improvement of models of this nature. If this approach was adopted
for lipid metabolism the challenge would be to determine which com-
ponents to work with. Lipid absorption would be difficult as it remains
poorly understood, whereas, cholesterol biosynthesis may be a suitable
starting place as it has been well characterized. The recent models of
cholesterol biosynthesis by Bhattacharya et al. (2014) [134] and the
model by Mazein and colleagues (2013) are both suitable starting
points [135]. The latter model is particularly useful, as it has been
encoded in systems biology graphical notation (SBGN), an emerging
standard for the graphical representation of systems biology models
[136].

If the mathematics that underpins a well characterized component
of lipid metabolism is established, it is then necessary to obtain suitable
model parameters. Parameter uncertainty is currently an issue for
mathematically modeling lipid metabolism and remains an issue for
the field generally. The problem of parameter uncertainty was empha-
sized recently when a number of systems models within the BioModels
databasewere investigated and found to have issueswith their sensitiv-
ities [137]. For kinetic based models the velocity of a reaction in a sys-
tems model is generally described by a rate equation that typically
assumes mass action kinetics or is based on an enzyme kinetic law
(e.g. Michaelis–Menten kinetics). There are several databases which ar-
chive kinetic data [138–140], although the parameters they archive can
vary significantly depending on the circumstance inwhich their kinetics
was quantified. Obtaining human in vivo kinetic data is challenging due
to the difficulties associatedwithmeasuring these parameters. Oneway
to overcome this problem may be to quantify enzyme kinetics under
carefully controlled in-vivo like conditions [141,142].

The ultimate test of any computationalmodel is its ability to provide
additional insight into a complex problem, and effective parameter in-
ference is central to achieving this. Recently, a broad range of statistical
approaches has been applied to this field [143–147]. The final challenge
is one of scale. In order for computer models to accurately capture the
dynamics of lipidmetabolismand aging in the future itwill be necessary
for them to bemulti-scaled in nature. This means that to be an accurate
representation of biological reality systems models need to incorporate
the circuitry between differing spatial and temporal scales. For lipidme-
tabolism this means being able to connect a model of intracellular cho-
lesterol homeostasis/fatty acid metabolism all the way through to the
physiological behavior of lipoproteins and their interactions. Overcom-
ing this problem is an enormous challenge for the future of computa-
tional modeling in this area. Recently, a tentative step towards
representing multi-scale biochemical relationships was developed by
Karr and colleagues (2012)who created a “whole cell”model of the bac-
terium Mycoplasma genitalium [148]. The total functionality of the cell
was divided into twenty eight sub-models. Each sub-model was
modeled independently and then integrated with the other models.
The model provided insights into cellular behavior, including in vivo
rates of protein-DNA association and DNA replication. It is possible
that an approach similar to this could beused tomodel lipidmetabolism
in a multi-scale manner in the future. Such a comprehensive model
could provide the groundwork for interventions which extend health-
span by delaying the onset of age related diseases such as CVD.

8. Conclusions

The aging process is characterized by changes affecting all aspects of
an organism and results in an increased vulnerability to disease with
time. The dysregulation of lipidmetabolism has a long standing relation-
ship with cardiovascular disease; the main cause of both morbidity and
mortality in older people. To study the dynamics of lipid metabolism,
computational models are becoming increasing used. The goal is to use
the models to represent the dynamics of lipid metabolism in a quantita-
tive fashion which is capable of encapsulating the key mechanisms of
this complex system. In the future it is important to use these models
to investigate how age-related changes to other biological systems im-
pinge on lipid metabolism. For example, a plethora of hormonal fluctua-
tions has an impact on lipid metabolism; therefore it is imperative they
are included in future models. A major limitation of computational
models of lipidmetabolism is that there is a significant disparity between
the current biological understanding andhow the biologicalmechanisms
are describedmathematically, thus there is an urgent experimental need
to characterize the biological mechanisms further. Another challenge for
computational modeling this area centers on determining suitable pa-
rameters that capture the ‘true’ dynamics of lipidmetabolism. Recent ad-
vances in this area have witnessed efforts to suitably quantify enzyme
kinetics and have also focused on using techniques such as constraint
basedmodeling. Overcoming these challenges is important for the future
progress of computational models that represent the dynamics of lipid
metabolism and for the development of novel strategies which augment
health-span.
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