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Sex allocation theory has been a remarkably productive field in behavioural 

ecology with empirical evidence regularly supporting quantitative theoretical 

predictions. Across mammals in general and primates in particular however, 

support for the various hypotheses has been more equivocal. Population level sex 

ratio biases have often been interpreted as supportive, but evidence for small 

scale facultative adjustment has rarely been found. The helper repayment (HR) 

also named the local resource enhancement (LRE) hypothesis predicts that, in 

cooperatively breeding species, mothers invest more in the sex which assists 

with rearing future offspring, and that this bias will be more pronounced in 

mothers who require extra assistance (i.e. due to inexperience or a lack of 

available alloparents). We tested these hypotheses in captive cotton-top 

tamarins (Saguinus oedipus) utilising the international studbook and birth records 

obtained through a questionnaire from ISIS registered institutions. Infant sex, 

litter size, mother’s age, parity and group composition (presence of non-

reproductive subordinate males and females) were determined from these 

records. The HR hypothesis was supported over the entire population, which was 

significantly biased towards males (the ‘helpful’ sex). We found little support for 

helper repayment at the individual level, as primiparous females and those in 

groups without alloparents did not exhibit more extreme tendencies to produce 

male infants. Primiparous females were, however, more likely to produce 

singleton litters. Singleton births were more likely to be male, which suggests 

that there may be an interaction between litter size adjustment and sex 

allocation. This may be interpreted as supportive of the HR hypothesis, but 

alternative explanations at both the proximate and ultimate levels are possible. 

These possibilities warrant further consideration when attempting to understand 

the ambiguous results of primate sex ratio studies so far. 
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Sex allocation (the relative proportion of parental resources invested in 

sons and daughters) has been a highly productive area of research within 

behavioural ecology, demonstrating the remarkable precision of, and constraints 

on adaptation (West, Herre & Sheldon, 2000). Empirical evidence has frequently 

been found to support theoretical predictions in systems where a mechanism for 

the facultative adjustment of offspring sex is known to exist (West et al. 2000; 

West, Pen & Griffin, 2002). Probably the most notable case is in the haplodiploid 

insects, where offspring sex is dependent on whether or not a female fertilises an 

egg (resulting in a daughter or son respectively; Charnov, 1982). Parasitoid and 

fig-pollinating wasps, for instance, produce sex ratios very close to those 

predicted by local mate competition (LMC) which occurs in spatially structured 

populations and leads to female-biased sex ratios when sons experience fraternal 

competition over mates (Hamilton, 1967). 

  Fisher's (1930) principle explains the 1:1 birth sex ratio observed in many 

species (Charnov, 1982; West, 2009) using an economic metaphor. If, due to a 

genetic tendency, more animals of one sex are born, individuals of the rarer sex 

will become more valuable as parental fitness returns will be higher (assuming 

that the genetic contribution to future generations is equal for male and female 

offspring at 1:1). The rarer sex will consequently be favoured by natural 

selection, causing the sex ratio to return to equilibrium (Frank, 1990; West, 

2009). The theory base initiated by Fisher (1930) was extended by Hamilton 

(1967) who showed that reasons other than frequency-dependent mating 

success will contribute to parental fitness, for instance in situations of extreme 
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LMC where a female should produce only enough sons to inseminate all of her 

daughters; doing so would maximise a female’s grand-offspring production. More 

broadly, parents should invest more in producing the sex which provides them 

with higher fitness returns (Hamilton, 1967; Charnov, 1982).

The initial insights of Fisher and Hamilton provided the foundation for 

several hypotheses to explain why fitness returns from each sex differ and 

subsequently the generation of quantitative predictions as to the optimal sex 

ratio an organism should produce given various parameters. In their 'maternal 

condition' hypothesis (TWH), Trivers and Willard (1973) predicted that mothers in 

good condition will produce more sons, endowed with high competitive abilities 

due to increased maternal resource allocation. Additionally, females in poor 

condition will bias the sex ratio towards female offspring, which will reproduce 

regardless of condition (Trivers & Willard, 1973). 

Local resource competition (LRC; Hamilton 1967; Charnov 1982) occurs 

when there is sex biased dispersal, as the philopatric (non-dispersing) sex will 

compete for resources and so, in net fitness terms, will be more costly to produce 

leading to the prediction of a sex-ratio bias towards the dispersing sex. Another 

key concept in sex allocation theory is local resource enhancement (LRE) which is 

also known as the ‘helper repayment’ hypothesis. In many cooperatively 

breeding species, males and females differ in their tendency to assist in the 

rearing of future offspring. The helper repayment (HR) hypothesis predicts a sex 

ratio bias towards the more helpful sex, as individuals who invest more in helping 

increase their parents’ net fitness and will effectively ‘pay back’ their own rearing 

costs (Emlen, Emlen & Levin, 1986).

Generally sex allocation studies yield smaller effect sizes for vertebrates, 

probably due to chromosomal sex determination (sex is determined by whether 

3



an individual is homo- or heterogametic for the sex chromosomes) combined 

with their complex life histories (West, Shuker & Sheldon, 2005). Despite this, 

population sex ratios across the vertebrates are often biased (Sheldon & West, 

2004; Silk & Brown, 2008) and Thogerson et al (2013) showed clearly the 

adaptive value of sex allocation in terms of grand-offspring production in the 

mammals. Sex allocation in the primates has yielded a substantial body of 

literature, and the predictions differ with social system and life history. Despite 

the copious amount of research into sex allocation in the primates, results have 

often been inconsistent and difficult to interpret. For instance, when dominance 

is matrilineally inherited, high ranking mothers are predicted to produce 

daughters and low ranking mothers should produce sons (which will disperse to a 

new group without the constraints of their mother’s low rank) but support has 

been mixed (supportive: Rhesus macaques (Macaca mulatta, Meikle, Tilford & 

Vessey, 1984; Long-tailed macaques (M. fascicularis), van Schaik, Netto, van 

Amerongen & Westland, 1989; Japanese macaques (M. fuscata), Aureli et al. 

1990; and no trend/female bias: Bonnet macaques (M. radiata), Silk, Clark-

Wheatley, Rodman & Samuels, 1981; Savannah baboons (Papio cynocephalus),  

Altmann, Hausfater & Altmann, 1988). Furthermore, a meta-analysis by Brown 

and Silk (2002) suggested that that in studies which consider sex allocation 

according to dominance rank in the primates, effect size (skewness of sex ratio) 

decreases in larger samples, implying that the observed trends may be caused 

by stochastic variation in small samples. In a later meta-analysis, Silk and Brown 

(2008) suggested that local resource competition (LRC) and helper repayment 

(HR) played more of a role than maternal condition (TWH) in population sex ratio 

biases seen regularly in the primates. In cooperatively breeding primates there is 

a significant population bias towards males (such as in callitrichids), where males 

are typically better helpers than females, through increased investment in infant 
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carrying, food provisioning (Dunbar, 1995) and later dispersal, providing help in 

the natal environment for longer  (McGrew & McLuckie, 1986). However, Pen & 

Weissing (2000) argue that if parents are facultatively adjusting the sex of their 

offspring according to the benefit of having helpers, the population sex ratio will 

not necessarily be biased towards the helpful sex. Often, systems with sex biased 

cooperative breeding will also have sex biased dispersal so any effect of 

adjusting offspring sex according to the helper repayment hypothesis (HR) may 

be countered by local resource competition (LRC, Koenig & Walters, 1999; Pen & 

Weissing, 2000). In the Seychelles warbler (Komdeur, 1992; Komdeur, 1996; 

Komdeur et al. 1997), for example, helpers are only beneficial on good quality 

territories; on poor territories it is better to produce an unhelpful, but dispersive 

female to alleviate resource competition. In early tests of helper repayment, 

Gowaty and Lennartz (1985) did find a significant bias towards the helpful sex 

(males) in the cooperatively breeding red cockaded woodpecker (59% males) but 

Walters (1990) did not (49% males); a population level sex ratio bias alone does 

not unequivocally support or refute the HR hypothesis. 

Koenig and Walters (1999) suggest investigation into the individual level 

effects of certain factors, in accordance with the predictions of the helper 

repayment hypothesis, in order to facilitate greater understanding of these 

processes across the vertebrates. For instance, in cooperatively breeding 

mammals such as alpine marmots (Marmota marmota; Allainé, 2004) and African 

wild dogs (Lyacon pictus; Griffin, Sheldon & West, 2005), birth sex ratios are 

more biased towards the helpful sex in young, primiparous mothers than in older, 

multiparous mothers. This is adaptive because a young female who has recently 

dispersed from her natal group must establish her own group, which may only 

consist of herself and her mate. Producing more of the helpful sex early on will be 

beneficial in terms of future reproduction, as a mother can benefit most from 
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their help in rearing the subsequent litter. Further support for this possibility 

comes from the cooperatively breeding carrion crow (Corvus corone corone).  In 

this species, males are the helpful sex and Canestrari, Vila, Marcos and Baglione 

(2012) found that in groups with few subordinate male helpers, more male chicks 

were fledged. 

Although Silk & Brown (2008) found support for the helper repayment 

hypothesis in primates, their meta-analysis only considered population sex ratio 

biases. Recently Rapaport, Kloc, Warneke, Mickelberg and Ballou (2013) 

considered how factors such as mother’s age and group size might affect sex 

allocation strategies at the invididual level in two cooperatively breeding captive 

primate species, golden-lion tamarins (Leontopithecus rosalia) and callimicos 

(Callimico goeldii) which typically produce twin and singleton litters respectively. 

Although they showed that group size does influence offspring survival, they did 

not find any adaptive response in terms of sex allocation within species. Young 

and first time mothers were no more likely to produce sons and there was no 

effect of group size on male offspring production. 

The aim of the current study was, like Rapaport et al (2013), to test the 

predictions of the HR hypothesis at the individual level in a cooperatively 

breeding callitrichid, the cotton-top tamarin (Saguinus oedipus). Like C. goeldii 

and L. rosalia, reproductive success in S. oedipus is constrained largely by the 

presence of helpers (males in particular) to assist in offspring rearing (Bardi, 

Petto & Lee-Parritz, 2001). Despite a lack of support for the HR hypothesis, 

Rapaport et al (2013) did find that in the twinning species, L. rosalia, the sex 

ratio in singleton births was 65% male compared to 55% in twin litters. They 

suggest the population male bias results from in-utero litter size reduction which 

is instigated by male fetuses (at the expense of female litter mates). If males are 
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competitively superior then this may mask any facultative control the mother 

exerts. Unlike C. goeldii and L. rosalia, which typically produce singleton and twin 

offspring respectively, S. oedipus females produce litters ranging in size from 1 to 

4 (although 69% are dizygotic twins). An additional aim of the current study is to 

test whether litter size modification might interact with birth sex ratio, for 

instance, if, as Rapaport et al (2013) propose, there is sex-biased reabsorbtion of 

fetuses or if one fetus is competitively superior in-utero (and this competitive 

superiority is also sex biased; Jaquish, Tardif, Toal & Carson, 1996; Tardif & 

Jaquish, 1994; Rapaport et al, 2013). We will also investigate whether females 

vary their litter size depending on environmental and life history variables (such 

as parity, age and group size) which provide reliable information on likely infant 

survival (Tardif, Ross, & Smucny, 2013).

METHODS

Data were compiled using an electronic questionnaire which was sent by 

email to all ISIS (2008) registered (International Species Information System) 

institutions housing cotton-top tamarins (Saguinus oedipus) requesting details of 

the sex of any infants born, litter size and dates of all births, deaths and transfers 

as well as the mother’s date of birth and parity (which were contained in their 

ARKS; Animal Record Keeping System database). Additionally the international 

studbook keeper and EEP (European endangered species breeding programmes) 

coordinator were approached in order to gain access to the Single Population 

Analysis and Record Keeping System (SPARKS ) records for S. oedipus.  The 

international studbook for the cotton-top tamarin was established in 1986, but 

only data from a 10 year period (13/01/1999 – 25/07/2009) were included in this 
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study as many earlier entries were from wild caught animals whose age and 

parity could not be reliably determined.

Age of the mother (in months, at the estimated time of conception, 6 

months prior to parturition French, De Vleeschouwer, Bales & Heisterman, 2002) 

and parity (primiparous or multiparous) as well as litter size were then 

determined using the ARKS data provided by institutions and the birth records 

listed in the SPARKS database. Additionally, the ARKS data (on births, deaths and 

transfers) were used to determine the total group size and composition (number 

of non-reproductive males and non-reproductive females) present at the time of 

conception. 

Statistical analysis

Once datasets were combined and all un-sexed births and duplicated data 

points had been removed, a total of 1784 infants (from 1146 litters and 387 

mothers in 208 zoos) were available for statistical analysis of maternal age, 

parity and litter size; this included 267 singletons (15%), 1235 twins (69.2%), 270 

triplets (15.1%) and 12 quadruplets (0.7%). These births represented data 

extracted from the SPARKS database and combined with ARKS records provided 

by individual institutions. Forty-eight institutions also provided information 

regarding group size and composition; these data were available for 576 infants 

(representing 294 litters from 90 mothers).  

Whilst Rapaport et al (2013) excluded infants who were hand reared, 

rearing status was unavailable for Saguinus oedipus and we considered the sex 

ratio of litters where all infants were born alive and the sex was determined.

Generalised linear mixed models (GLMMs using lme4 in R) were used to 

determine whether any of the aforementioned variables influenced the 
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probability of giving birth to a male. Binary logistic regression with a binomial 

error structure (0 = female, 1 = male) and a logit link function were used (after 

calculating dispersion parameters which indicated the data were not 

overdispersed) to determine the effects of the independent variables on the 

binary (dichotomous) dependent variable (sex). Independent variables were 

mother’s age in months (entered as a covariate) and parity (a fixed factor; 

primiparous or multiparous). Litter size (1 – 4) was also entered as a fixed factor; 

additional fixed factors included alloparent presence (whether there were non-

reproductive subordinate (NRS) animals of either sex in the group at the time of 

conception) and the sex of NRSs (i.e. the number of non-reproductive males or 

females were considered separately). Zoo population, mothers’ identity and litter 

identity were entered as nested random factors in the model as infants from the 

same population, mother and litter cannot be treated as independent 

observations (Bolker et al. 2008; Krackow & Tkadlec, 2001). An additional GLMM 

included the same random and predictor variables (mother’s age, parity & 

alloparent presence and sex) with litter size as the outcome variable 

(Quasipoisson error structure, which is robust to over and underdispersion) to 

determine whether females appear to modify their litter size in response to social 

or life-history variables.

RESULTS

Sex ratio

Birth sex ratio was determined by the proportion of males born (BSRM). 

From complete litters in the entire sample the BSRM was 0.53; this male bias was 

shown to be significantly different from the expected 0.5 (1:1) (Chi-square: X2
1 = 

4.72, p = 0.03). Singleton births were more likely to be male than litters 

containing multiple infants (Figure 1). The sex ratio was significantly more male 
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biased in singleton births than litters containing multiple infants (Table 1). No 

variables other than litter size significantly predicted infant sex (Table 1). When 

the model included the complete dataset (ARKS and SPARKS; which did not 

include group size or composition, see supplementary material) the results did 

not change; litter size remained the only significant predictor of infant sex.

FIGURE 1

TABLE 1

Removing litter size from the model did not suggest that any other variables 

(which may be correlated with litter size) were related to the birth sex ratio. 

Furthermore, an additional model considered only twin births in order to 

determine whether life history variables and group size/composition have any 

effect on the sex ratio independently of litter size, but results did not differ from 

the original model (see supplementary material).

Litter size

Fifteen percent of all births were single infants, 69.2% were twins and 

15.1% were triplets. Out of the entire sample only 12 quadruplet litters were born 

(0.7%). Litter size could be under proximate maternal control and therefore an 

additional GLMM was used to determine whether mother’s age, parity and 

presence of NRSs had any effect on litter size (Table 2). Only parity had a 

significant effect on litter size; the first (primiparous) birth was more likely to be a 

single infant than subsequent births (Figure 2). The effect of parity increased, but 

remained the only significant predictor of litter size when the complete dataset 

(ARKS and SPARKS) was used (see supplementary material).

TABLE 2

FIGURE 2
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DISCUSSION

The results of the current study indicate that in the captive cotton-top 

tamarin (Saguinus oedipus) the overall birth sex ratio (BSR) was significantly 

male biased. On a simple level, this is consistent with the predictions of the 

Helper Repayment (HR) hypothesis (Emlen et al. 1986), but despite this 

consistency, the HR hypothesis may not explain the male bias observed. Pen & 

Weissing (2000) argue that a population sex ratio bias alone does not 

unequivocally support or refute the HR hypothesis as environmental conditions 

might interact to reduce the benefit of producing the helping sex. Furthermore, 

other factors may contribute to population level male bias seen here (i.e. Silk & 

Brown, 2008; Rapaport et al. 2013), for instance greater potential fitness returns 

from sons, who, in the wild at least, have more opportunities for extra-group 

mating than subordinate daughters who are reproductively supressed by the 

dominant female in a group (Ziegler, Savage, Scheffler & Snowdon, 1987). 

In this study, we found little support for the prediction that young and 

primiparous mothers, or even those with no non-reproductive alloparents, would 

produce more of the helpful sex (sons) than older or multiparous mothers with 

helpers. The failure for young/primiparous mothers to increase son production 

could result from alloparental care which is not fully sexually asymmetric in 

callitrichids. Subordinate females do assist in infant care, but to a lesser extent 

than males (Price, 1992). If the fitness benefit of producing a son versus a 

daughter is not sufficient to increase fitness substantially there would be no 

expected effect of age, parity and alloparent presence on birth sex ratio itself. 

Price (1992) found that juvenile daughters actually provide more care than 

juvenile sons. Females do not continue this investment into adulthood, 

suggesting that they use this experience to assist their own reproduction later in 
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life (Sánchez, Peláez & Gil Bürmann, ‐ 2002). As such, the sex of the first offspring 

may not matter enormously, particularly given the low probability of survival of 

the first infant; in captive colonies maternal experience explains 16.8% of the 

variance in infant survival (Bardi et al. 2001).

Although the proximate mechanisms underlying mammalian sex allocation 

have often been fairly speculative, it seems unlikely that there would be no 

proximate mechanism for biasing offspring sex in mammals, given its potential 

adaptive value (Thogerson et al. 2013). A recent study has shown that female 

pigs can modify the oviductal environment in response to sperm type, suggesting 

that female mammals are capable of biasing offspring sex through differential 

local immune responses to  X or Y bearing spermatozoa (Almiñana et al. 2014). 

In the callitrichids, female energy status is a key variable influencing 

reproductive investment (Tardif et al. 2013), with high levels of glucose 

enhancing male blastocyst development (Navara & Nelson, 2009). This could 

potentially explain both the male bias in captive populations (due to reduced 

nutritional stress) and why females do not seem to adjust sex allocation 

according to the variables under investigation here (mother’s age, parity & 

alloparent presence). If females can use their energetic status as a proxy for 

current conditions (be they life history, environmental or social) any ability to 

allocate sex adaptively may be masked by a lack of variation in nutritional status 

(van Dooren & Leimar, 2003; Schwanz & Proulx, 2008). This is consisent with the 

results of the current study; if this kind of phenotypic plasticity dictates sex 

allocation decisions according to maternal energy status then we would expect 

both a surplus of males in captivity and insufficient variation in maternal 

condition to see the outcome of sex allocation decisions at the individual level. In 

captivity, alloparental presence and female age/experience may thus not 

influence maternal energy status sufficiently (due to the dominant effect of 
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enhanced nutrition) to observe individual level variation in sex allocation 

decisions. 

Although the current study found only circumstantial evidence for helper 

repayment, we did find evidence to suggest that primiparous females are more 

likely to produce a single infant. In captivity, litter size may be a more important 

reproductive outcome than infant sex. This might reflect the fact that the key 

determinant of reproductive fitness in captivity, where availability of resources is 

not an issue, is infant mortality due to maternal inexperience (whereas in the 

wild the limiting factor for infant survival is resource availability; Snowdon, 

Savage & McConnell, 1985). The rate of stillbirth and subsequent neonatal 

mortality is particularly high for the first litter a female produces (Leong, Terrell & 

Savage, 2004; Tardif et al, 2013) and in captive callitrichids, infants born in 

smaller litters are more likely to survive the neonatal period (Jaquish, Gage & 

Tardif, 1991; Leong et al. 2004). A primiparous female should, therefore 

concentrate her efforts on gestating and rearing a single infant in order to 

improve survival. Investing more resources into a single infant will increase 

survivorship when mothers are inexperienced. This will result in a higher net 

fitness gain both directly through care for future offspring by non-reproductive 

subordinates and indirectly through inclusive fitness. Females may thus 

potentially benefit by not over-investing (i.e. in multiple infants) in early 

reproductive attempts where the likelihood of success is low. 

In addition to finding that primiparous females were more likely to give 

birth to a single infant, we also found that the probability of producing a male 

infant was greater in singleton births. The majority of callitrichid litters are 

dizygotic (non-identical) twins and triplets, but litter sizes of up to 6 have been 

recorded in captive Callithrix jacchus (Tardif et al. 2013). Although litter size is 
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dictated largely by the number of ova matured and released (Tardif & Ross, 

2009), single infant births typically result from reabsorption of one or more 

embryos (in the callitrichids this is facilitated by delayed embryonic 

development; females have an extended period of time in which to cease 

investing in a reproductive attempt if it is no longer profitable to do so; Tardif & 

Ross, 2009). This suggests that primiparous females may reabsorb one or more 

embryos to reduce their current reproductive burden and optimise their future 

reproductive success (Jaquish et al, 1996; Tardif & Jaquish, 1994; 1997). The male 

bias in singleton births could result from either a maternal preference for 

reabsorbing female embryos or asymmetric embryonic competitive ability, as 

suggested by Rapaport et al (2013). Whether maternal embryo preference or 

differential competitive ability exists requires investigation, but may be a 

promising avenue for future research given the potential for altering reproductive 

investment post-insemination. Regardless of the proximate explanation, 

producing a male infant early on is expected to help maximise future 

reproduction if the quality of male alloparental care is higher (McGrew & 

McLuckie, 1986; Dunbar, 1995). 

 There does appear to be an interaction between litter size and sex 

allocation; these reproductive decisions may not be independent. Many 

reproductive decisions appear to be related to maternal energy balance or 

condition as well as cortisol levels (Grant, 1996; 2007), which we expect to vary 

with age and parity (Bales, French, Hostetler & Dietz, 2005), as well as previous 

reproductive investment (which will also relate to the amount of alloparental care 

available).  Although the direct effect of parity on sex ratio was not statistically 

significant, the finding that a primiparous female is more likely to produce a 

single infant, and that a single infant is more likely to be male does suggest some 

degree of facultative control over sex after insemination.  In a similar way, 

14



female carrion crows can maximise male fledgling success by allocating offspring 

sex ratio along the hatching sequence (the first chicks to hatch have higher 

survivorship; Canestrari et al. 2013). By doing so, carrion crow mothers can 

produce more sons in a group which was previously short of (helpful) subordinate 

males. It is possible that in Saguinus oedipus too, a mother producing a single 

male infant increases this offspring’s chances of survival and, therefore also 

increases the success of her future offspring due to increased alloparent 

availability. Data in the studbook could be further utilised to test this prediction 

and whether the secondary sex ratio (that is infant survival to independence 

from the mother) is greater for males in first births depending on litter size.  

A recent study has highlighted the potential for natural selection to act on 

the facultative adjustment of birth sex ratio; Thogerson et al (2013) found, using 

data from captive breeding programmes for 198 mammalian species, that 

grandparents which produced sex ratios which were biased in the predicted 

direction had more grand-offspring. Clearly, primates and other mammals can 

maximise their fitness returns by allocating sex, even in captivity (Thogerson et 

al. 2013), but the results of the current study suggest that reproductive decisions 

are not so unequivocal. Other reproductive decisions, such as how many infants 

to gestate and support, may take initial precedence in terms of maximising 

fitness returns. These decisions may, however, interact with the primary or 

secondary sex ratio, perhaps due to maternal preference or asymmetric pre- and 

post-natal competition between the sexes. The callitrichid primates represent a 

valuable study system for further investigation and modelling of mammalian 

reproductive decisions in the wild and captivity.  
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Figure 1 Variation of sex ratio ( proportion males) with litter size. Infants in single litters 

are more likely to be male than in triplet litters  
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Table 1 Summary of GLMM examining the effect of litter size, mother’s age, parity and 

NRS presence & sex on offspring sex ratio (df = 3 for litter size, df = 1 for all other 

predictors) 

 

  B		estimate	±	SE X2	 P	

Intercept 0.13	(0.30)
	

Litter size 
	 	

6.42 0.04	

                 Single vs twin ‐0.30	(0.28) 0.28	

                 Single vs triplet ‐0.76	(0.33) 0.02	

                 Twin vs triplet ‐0.59	(0.34) 0.08	

Parity ‐0.18	(0.34)
	
0.10 0.74	

Mother’s age ‐0.00	(0.00)
	
0.16 0.69	

All NRSs 0.49	(0.59)
	
0.45 0.50	

Male NRSs ‐0.36	(0.44)
	
0.69 0.41	

Female NRSs ‐0.02 (0.34) 0.00 0.95	

	

	

	

	

	

	

	

	

	



Table 2 Summary of GLMM examining the effects of mother’s age, parity and NRS 

presence & sex (df = 1 for all predictors) on the litter size 

 
B	estimate ±	SE X2	 P	

Intercept 											0.67	(0.05)

Parity 										0.05	(0.03) 0.17 0.05	

Mother’s age 											‐0.00 (0.00) 0.01 0.60	

All NRSs 											‐0.03	(0.05) 0.02 0.54	

Male NRSs 											0.02	(0.04) 0.01 0.71	

Female NRSs 											0.03	(0.03) 0.06 0.23	



 

 

 

 

 

 

 

 

 

Figure 2 Percentage of infants born as singletons, or in twin or triplet litters by parity 
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SUPPLEMENTARY MATERIAL

Table i. Summary of GLMM (binomial error distribution, dispersion 

parameter = 1.00) examining the effect of litter size, parity and 

mother’s age on offspring sex ratio (df = 3 for litter size, df = 1 for all 

other predictors) which included the complete SPARKS & ARKS dataset 

(N = 1743 infants)

 
B  estimate ± 

SE X2 P
Intercept 0.47 (0.24)

Litter size
12.1

9 0.007
                 Single vs twin -0.49 (0.13) 0.004
                 Single vs triplet -0.38 (0.19) 0.04
                 Single vs quad -0.51 (1.01) 0.61
                 Twin vs triplet 0.11 (0.15) 0.48
                 Twin vs quad -0.02 (1.00) 0.98
                 Triplet vs quad -0.13 (1.02) 0.90
Parity  0.11 (0.13) 0.72 0.39
Mother’s age -0.00 (0.00) 1.03 0.30

Table ii. Summary of GLMM (binomial error distribution, dispersion 

parameter = 1.01) examining the effect of parity and mother’s age on 

1



offspring sex ratio (df = 3 for litter size, df = 1 for all other predictors) 

which included the ARKS dataset (N = 373 infants)

 
B  estimate ± 

SE X2 P
Intercept 0.67 (0.55)

Parity -0.35 (0.33)
0.8

5 0.36

Mother’s age 0.00 (0.00)
0.0

8 0.78

All NRSs 0.60 (0.58)
0.2

9 0.59

Male NRSs -0.42 (0.44)
0.9

0 0.34

Female NRSs 0.07 (0.33)  
0.0

5 0.82
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Table iii. Summary of GLMM (binomial error distribution, dispersion 

parameter = 1.00) examining the effect of parity and mother’s age on 

offspring sex ratio (df = 3 for litter size, df = 1 for all other predictors) 

which included the ARKS dataset (N = 1274 infants)

 
B  estimate ± 

SE X2 P
Intercept 0.13 (0.22)

Parity 0.05 (0.13)
0.1

9 0.66

Mother’s age -0.00 (0.00)
0.9

2 0.34
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Table iv. Summary of GLMM (binomial error distribution, dispersion 

parameter = 1.03) examining the effect of parity, mother’s age, 

alloparent presence and sex on offspring sex ratio (df = 1 for all 

predictors) which included only twin births from the ARKS dataset (N = 

207 infants)

 
B  estimate ± 

SE X2 P
Intercept 1.23 (0.73)

Parity -0.72 (0.12)
2.4

4 0.12

Mother’s age -0.00 (0.00)
0.0

0 0.98

All NRSs 0.27 (0.74)
0.2

0 0.66

Male NRSs -0.26 (0.56)
0.2

9 0.59

Female NRSs 0.16 (0.43)  
0.1

5 0.69

Table v. Summary of GLMM (binomial error distribution, dispersion 

parameter = 1.00) examining the effect of parity and mother’s age on 

offspring sex ratio (df = 1 for all predictors) which included only twin 

births from the SPARKS & ARKS dataset (N = 1274 infants).

 
B  estimate ± 

SE X2 P
Intercept 0.16 (0.27)

Parity 0.02 (0.15)
0.0

2 0.19

Mother’s age -0.00 (0.00)
1.7

2 0.87
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Table vi. Summary of GLMM (quasipoisson error distribution, dispersion 

parameter = 0.16) examining the effect of mother’s age and parity on 

litter size (df = 1 for all predictors) which included the complete 

SPARKS & ARKS dataset (N = 972 litters)

 
B  estimate ± 

SE X2 P
Intercept 0.46 (0.04)

Parity 0.09 (0.02)
2.9

7 0.0007

Mother’s age -0.00 (0.00)
0.0

0 0.85
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