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Abstract 26 

The application of spatial modelling to epidemiology has increased significantly over the past 27 
decade, delivering enhanced understanding of the environmental and climatic factors affecting 28 
disease distributions and providing spatially continuous representations of disease risk (predictive 29 
maps). These outputs provide significant information for disease control programmes, allowing 30 
spatial targeting and tailored interventions. However, several factors (e.g. sampling protocols or 31 
temporal disease spread) can influence predictive mapping outputs. This paper proposes a 32 
conceptual framework which defines several scenarios and their potential impact on resulting 33 
predictive outputs, using simulated data to provide an exemplar. It is vital that researchers recognise 34 
these scenarios and their influence on predictive models and their outputs, as a failure to do so may 35 
lead to inaccurate interpretation of predictive maps. As long as these considerations are kept in 36 
mind, predictive mapping will continue to contribute significantly to epidemiological research and 37 
disease control planning. 38 
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Introduction 41 

In recent years, there has been a significant increase in the application of spatial modelling tools to 42 
disease studies. This has been driven by the increasing availability of epidemiological, 43 
environmental and climatic datasets with spatial (and temporal) dimensions, increased 44 
computational capacity, the development of geographical information systems (GIS) and a growing 45 
number of spatial analytical tools and platforms capable of handling spatial and space-time datasets. 46 
Traditional, non-spatial methods of epidemiological analysis can fail to adequately address major 47 
determinants of disease risk. The spatial distributions of many diseases are linked explicitly to 48 
environmental conditions (e.g. climatic factors or land cover) and these relationships are most 49 
effectively explored, quantified and utilised via spatial visualisation and analysis (Bergquist, 2001). 50 
The increasing application of spatial analysis is not unique to epidemiology; there is a close parallel 51 
in biodiversity studies, where species distribution modelling (SDM) has proliferated (Elith and 52 
Leathwick, 2009). Pathogens can be considered in this context: the tools and theories developed in 53 
SDM have useful applications in epidemiological research and vice versa. 54 
 55 
The cartographic representation of epidemiological data has many benefits over presentation using 56 
tables or plots; images are attention-grabbing, of more interest and allow immediate visual 57 
interpretation of spatial patterns (Koch, 2005). Detailed information on the spatial distribution of 58 
diseases also provides significant benefits for disease control programmes, particularly for spatially 59 
heterogeneous disease distributions (Snow et al., 1996; Simarro et al., 2010). However, just as in the 60 
mapping of biodiversity, obtaining comprehensive spatial coverage of a disease within a region of 61 
interest is not always possible using disease surveilance data (particularly in developing countries 62 
here the infrastructure is often poor). Additionally, the large-scale surveys required to provide 63 
complete information are commonly impractical due to financial constraints, logistical issues, 64 
security needs and time limitations (Snow et al. 1996; Brooker et al. 2000). These limitations may 65 
be overcome, at least in part, using predictive modelling, as described below. 66 
 67 
Statistical methods can be used to fit regression models of the relationship between disease and 68 
environment; thus, quantifying the effects of covariates (i.e. variables representing environmental, 69 
climatic or landscape factors) on epidemiological measures of disease such as occurrence 70 
(presence/absence), prevalence or incidence rates. Models based on covariates, which are measured 71 
at the same locations for which epidemiological information is available, but where precise 72 
geographical coordinates are absent, and their spatial relationships to one another are not accounted 73 
for, focus on environmental space (Elith and Leathwick, 2009). Where covariate information is 74 
available covering the full area of interest (e.g. as a raster), these models can be interpolated or 75 
extrapolated (prediction within or beyond the range of the training data, respectively) over 76 
continuous space; hence, predicting disease at locations for which observed data are not available 77 
(Elith and Leathwick, 2009). Prediction with respect to new sites is based on the disease’s location 78 
in environmental space. These types of models provide information regarding factors driving the 79 
observed spatial distribution of disease. The resulting output is a predictive map, also known as a 80 
“risk map” (Brooker, 2007), which are is widely used (without incorporating the geographical 81 
coordinates)  in biodiversity studies (Austin, 2002; Elith and Leathwick, 2009). It can be argued that 82 
such models are capable of producing predictive (risk) maps because the main processes 83 
determining occurrences are aspatial: it is assumed that species do not respond to location per se.  84 
 85 
One potential problem with the approach discussed above is the inability to account for spatial 86 
autocorrelation in the residuals (where values close together in space are more similar than values 87 
further apart, which occurs commonly when studying the distributions of infectious diseases). This 88 
can (i) violate the underlying assumptions of the statistical methods used; and (ii) result in 89 
inaccurate models, biased regression parameters, underestimated standard errors, falsely narrow 90 
confidence intervals and an overestimation of the significance of covariates, ultimately leading to 91 
misinterpretation of the relationships between observations and covariates (Legendre, 1993; 92 



 
 

Thomson et al., 1999). In practice, the effect of spatial autocorrelation on prediction accuracy varies 93 
among modelling techniques and represents one source of uncertainty in SDM (Marmion et al., 94 
2009). However, extension of traditional modelling methods allows the explicit inclusion of spatial 95 
information in the modelling process, e.g., the inclusion of both environmental and geographic 96 
space in the model. Such extension deals appropriately with the potential problem above. One 97 
potential solution involves inclusion of geostatistical spatial prediction of the residuals in a mixed 98 
regression model (Diggle and Ribeiro Jr, 2007). Geostatistical methods incorporate information on 99 
the precise location of each observation in relation to other observations to represent spatial 100 
autocorrelation, giving increased accuracy of estimates of covariate effects, measures of uncertainty 101 
and predictive outputs (Diggle et al., 2002).  102 
 103 
Predictive mapping of disease (or species distributions more generally) can help overcome the 104 
problems associated with sparse datasets. Data from a sample of locations (surveys or surveillance) 105 
can be used to fit a model, and subsequent interpolation or extrapolation can provide a spatially 106 
continuous prediction of disease (Brooker, 2007), alleviating the need for comprehensive and large-107 
scale surveys. These outputs can allow the consideration of spatial heterogeneity in disease 108 
distributions during planning, implementation and monitoring of interventions, including targeting 109 
interventions to areas with the greatest predicted risk of disease (Clements et al., 2006), 110 
identification of areas with a low risk of disease (which can be considered low priority for 111 
intervention) (Clements et al., 2010) and recognition of areas in which intervention may be 112 
detrimental (Diggle et al., 2007). The consideration of uncertainty in outputs allows the delineation 113 
of areas from which additional information is required; thus, allowing targeted data acquisition 114 
(Clements et al., 2006).  115 
 116 
The integration of predictive maps and population distribution data allows the estimation of 117 
populations at risk of disease and disease burden, providing information to support the allocation of 118 
resources (e.g., delivery of adequate supplies of drugs) as described by Gething et al. (2011). The 119 
types of outputs described above can also provide valuable resources for advocacy purposes, aiding 120 
communication to Government bodies, international organisations and the general public. 121 
Additional benefits from predictive mapping include enhanced understanding of the ecology of 122 
disease transmission, identification of landscape risk factors and the implication of environmental 123 
factors in the spread or distribution of disease (Wardrop et al., 2010), each of which can allow the 124 
development of tailored interventions for specific epidemiological settings. 125 
 126 
The underlying theoretical basis for SDM and predictive mapping is ecological niche theory, 127 
particularly Hutchison’s model (Austin, 2002). Hutchison (1959) envisaged the niche as a hyper-128 
volume in multi-dimensional space (each axis being an environmental characteristic) that defines 129 
the conditions, under which a population can maintain a positive net growth rate (Pearman et al., 130 
2008). The fundamental niche (constrained by genetics and physiology) is defined as distinct from 131 
the realised niche (with limitations on resource-use caused by competing species): the realised niche 132 
usually seen as a subset of the fundamental niche (see Pulliam, 2000 for exceptions). Vector-borne 133 
diseases are interesting in this context since modelling may focus on the vector, the host(s) and/or 134 
the disease itself. Furthermore, the vector and host(s) are essentially part of the niche of the disease 135 
and, indeed, may control its survival to such an extent that they act as the full niche in certain parts 136 
of the life cycle.  137 
 138 
When predictive models are extrapolated (and to some extent interpolated) to new locations (and 139 
time periods), two ecological assumptions are necessary: (a) the species is in equilibrium with the 140 
environment in the area used to train the model; and (b) the niche is conserved across space and 141 
time, i.e. the species-environment relationship is spatially homogeneous (Broennimann and Guisan, 142 
2008; Nogues-Bravo, 2009). Assumption (a) is violated when ranges are expanding (Elith et al., 143 
2010) or where parts of a range are unoccupied by the species (e.g., due to chance or human 144 



 
 

intervention), but may otherwise hold. There is considerable uncertainty over the applicability of 145 
assumption (b) and, indeed, whether it is the realised niche, the fundamental niche, or both that 146 
might vary between areas (Pearman et al., 2008). Additionally, careful consideration should be 147 
given to the observed epidemiological data and covariate data used in the modelling process. To 148 
illustrate how these theoretical underpinnings affect disease modelling in conjunction with the 149 
limitations imposed by incomplete or unrepresentative sampling, we applied predictive modelling 150 
methods to a simulated dataset under four scenarios. 151 
 152 
Materials and methods 153 
 154 
Study area and data 155 
A hypothetical disease was simulated across an area of East Africa (between latitude 27° and 5° and 156 
longitude 22° and 42°; Figure 1). This choice was arbitrary and the disease simulated is not meant 157 
to represent any particular existing disease. Environmental data for the disease distribution 158 
simulations were downloaded from Worldclim as raster layers at the spatial resolution of 10' and 159 
cropped to the study area (Hijmans et al., 2005). Data for mean monthly temperature and mean 160 
monthly precipitation were converted to annual averages. Altitude and mean temperature of the 161 
wettest quarter were also used in the modelling. 162 
 163 
The disease was simulated to occur in areas with a mean annual temperature between 18.0 and 164 
22.5ºC and mean annual precipitation between 60 and 170 mm but was not constrained by altitude. 165 
As a result of these choices, approximately one quarter of the study area was classified as suitable 166 
for disease transmission (26.4 %; Figure 2). 167 

 168 
Disease scenario sampling 169 
The four scenarios described in Table 1 were investigated using the hypothetical disease described 170 
above. Sampling for each of the disease scenarios was performed using the randomPoints function 171 
from the dismo package (Hijmans et al., 2013). In each scenario, 300 presence or absence locations 172 
were extracted from a true suitability raster and used for model fitting (see Figure 3). In scenarios a) 173 
and c) (full information and missing covariates scenarios, respectively), these points were 174 
distributed completely randomly across the study area. For scenario b) (heterogeneous sampling 175 
effort) these locations were biased towards Kenya (200 locations) rather than the remaining study 176 
area (100 locations). For scenario d) (disease not in equilibrium) the presence or absence values for 177 
the locations were manipulated so that the disease was recorded normally in Kenya (present/absent), 178 
hile all of the locations in the remaining study area were recorded as absent: this could represent a 179 
situation where the disease is not occupying its full niche due to chance or human intervention. 180 
 181 
Model fitting and testing 182 
Generalised linear models were fitted to the observed (presence/absence) data from each of the four 183 
scenarios: environmental data were extracted for the sample data locations, and logistic regression 184 
analysis was applied to quantify the relations between disease presence and the covariates. In each 185 
scenario, mean annual temperature, mean annual precipitation and altitude were strongly correlated 186 
with one another (Pearson's c > 0.5). To avoid problems associated with collinearity, only mean 187 
annual precipitation and altitude were included in candidate models for scenarios a), b) and d), and 188 
only altitude and mean temperature of the wettest quarter for scenario c). To make meaningful 189 
comparisons across scenarios we chose to fit the same model (or its equivalent in the missing 190 
covariates scenario) in each case. Based on prior knowledge of the disease distribution, we included 191 
an interaction term between altitude and mean annual precipitation (or mean temperature of the 192 
wettest quarter for scenario c). For each scenario, 100 simulated sets of sample data were used in 193 
the epidemiological distribution models. 194 
 195 



 
 

Models were tested using the area under the curve (AUC) of the receiver operating characteristic 196 
(ROC) curve (Fielding and Bell, 1997), where a threshold probability of occurrence of 0.5 was used 197 
to classify predicted disease presence (or suitability). AUC scores range between 0 and 1: those 198 
greater than 0.5 are considered to have predictive ability better than random (for predicting 199 
presence), while scores above 0.7 indicate a good predictive ability. ROC plots were constructed 200 
and AUC values were calculated using the ROCR package (Sing et al., 2005). Along with the AUC 201 
score we assessed the predicted binary distribution (predicted presence, based on a threshold 202 
probability of 0.5) from each modelling scenario against the true suitability and calculated the 203 
proportion of the study area predicted correctly. These testing metrics were calculated for each 204 
scenario over 100 simulations to obtain a full picture of the variability in predictions for each 205 
scenario. 206 
 207 
All modelling was performed in R (R Development Core Team, 2013). Spatial functions from the 208 
'raster' (Hijmans, 2013),  'rgdal' (Bivand et al., 2013), 'sp' (Pebesma and Bivand, 2005; Bivand et al., 209 
2008) and 'maptools' (Bivand and Lewin-Koh, 2013) packages were also used during the model 210 
simulations. 211 
 212 
Results 213 

 214 
Spatial predictions 215 
The models differed with respect to the spatial predictions across the study area (Figure 4) that can 216 
be interpreted as predicted probability of occurrence, or predicted suitability for disease. The full 217 
information model (scenario a)) predicted an area which broadly matched the actual spatial 218 
distribution. However, the predicted area of suitability was slightly larger, particularly in the South 219 
of the study area. The missing covariates model (scenario c)) also predicted an area of similar 220 
pattern to the simulated disease. However, in this case the area of predicted suitability was broader 221 
still and included a patch in the South-west of the study area, which was unsuitable for the disease. 222 
The heterogeneous sampling effort model (scenario b)) predicted inaccurately overall with areas on 223 
the edges of the study area, outside of the range of the simulated disease, predicted to be suitable. 224 
The disease 'not in equilibrium' model (scenario d)) predicted almost all of the study area to be 225 
unsuitable. Some small pockets were predicted to be suitable in the north of the region. However, 226 
the majority of these pockets were outside the distribution of the simulated disease. 227 
 228 
Model testing 229 
Figure 5 shows the ROC curves from each of the scenarios, and Figure 6 shows the proportion of 230 
the study area that was correctly predicted. The full information model (scenario a)) produced the 231 
highest median scores for both AUC (0.77) and the proportion of the study area predicted correctly 232 
(0.71). These scores suggest the model has good predictive power. The missing covariates model 233 
(scenario c)) was closest to the full information model in terms of performance (median AUC = 234 
0.71; median proportion of the study area predicted correctly = 0.68). The AUC scores for both the 235 
disease 'not in equilibrium' model (scenario d)) and the heterogeneous sampling effort model 236 
(scenario b)) suggest that they perform no better than random in terms of prediction. The disease 237 
'not in equilibrium' model performed more accurately in terms of correct prediction of the study 238 
area (median = 0.62) than AUC score (median = 0.5). The heterogeneous sampling effort performed 239 
less accurately than the other scenarios for both metrics (median AUC = 0.45; median proportion of 240 
study area predicted correctly = 0.53). 241 
 242 
Overall, the full information scenario (scenario a)) performed the most accurately in terms of both 243 
the proportion of the study area predicted correctly and the AUC score, followed by the missing 244 
covariates scenario (scenario c)). The least accurate model was the scenario representing 245 
heterogeneous sampling effort (scenario b)) which, along with the disease spreading/control 246 
programme scenario, failed to predict disease suitability in the majority of the study area. 247 



 
 

 248 
Discussion 249 
As discussed above, statistical models are now used widely to map disease, supplementing 250 
traditional epidemiological methodologies leading to enhanced characterisation and understanding 251 
of disease distributions and epidemiology. The four scenarios presented above highlight the 252 
dependence of predictive mapping outputs on (i) sampling and data considerations; and (ii) 253 
contextual factors, such as temporal disease spread in the study area. It is vital that researchers 254 
recognise these factors and their influence on predictive models and their outputs as inadvertent use 255 
of incomplete or biased data and thethe use of inadequate covariates may lead to inaccurate 256 
interpretation of predictive maps. In addition, absence of consideration for the on-going dynamics 257 
of disease transmission and spread within the study area can easily result in erroneous guidance. 258 
 259 
Scenario a), which represents the ideal situation where the disease is in equilibrium, representative 260 
samples are available and appropriate covariates are being used, is the ideal situation for predictive 261 
modelling of disease, although it is likely that many practical examples do not fulfil these criteria. 262 
Scenario b) (heterogeneous sampling effort) should be avoided where possible. Indeed, disease 263 
prediction studies do not normally make use of spatially biased data as described in this scenario. In 264 
addition to the spatial coverage of sampling, statistical models should not be used to provide 265 
predictions in areas which are materially different from the area for which training data are 266 
available, as the modelled relationships may not be the same (Fitzpatrick and Hargrove, 2009). The 267 
example disease provided in this paper was a simulated disease; hence, full information was 268 
available on the covariates driving its spatial distribution. However, in real applications, the precise 269 
factors which drive the observed distribution are not necessarily known in advance; thus, the subset 270 
of potential covariates is selected based on (1) biological understanding; and (2) statistical 271 
modelling. This subset may not always represent the most appropriate subset for the disease under 272 
consideration, so a lack of data often results in important covariates being omitted from the 273 
modelling altogether. Thus, scenario c) (missing covariates) can be considered a frequent 274 
occurrence in practical applications.  275 
 276 
The final scenario (disease not occupying its full niche) is likely to be the most common scenario 277 
encountered in spatial epidemiology applications. As an example, Rhodesian sleeping sickness 278 
(caused by the parasite Trypanosoma brucei rhodesiense) has been spreading in Uganda over the 279 
past two to three decades, with the movement of infected livestock implicated in the most recent 280 
introductions (Fèvre et al., 2001; Wardrop et al., 2010). This indicates that historically, the recorded 281 
spatial distribution of Rhodesian sleeping sickness did not cover all areas environmentally suitable 282 
for the disease and any predictive modelling based upon this distribution would not necessarily be 283 
providing the output intended. Most SDM are blind to the mechanisms that promote dispersal from 284 
affected to unaffected areas (e.g., human movements, contact patterns and trade), or factors that 285 
may inhibit spatial spread of a disease (e.g., human intervention), so resulting predictions are at best 286 
maps of potential risk. Most ecosystems are dynamic, and the spatial dispersal of a disease over 287 
time is not uncommon, enabling the disease to occupy a larger proportion of its potential range 288 
(Reisen, 2010). The identification and quantification of factors influencing this expansion would be 289 
required to ascertain the future risk of disease within currently unaffected areas. As Soberon (2010) 290 
argues, the fundamental ecological factors that determine species distributions are environment, 291 
biotic interactions and movements; without all three of these, modelled outputs of predicted 292 
occurrence and hence risk are compromised.  293 
 294 
The four scenarios developed here should be taken into consideration when designing surveys and 295 
collecting data, fitting statistical models and during subsequent interpretation of predictive outputs. 296 
The goal of mapping should be clear from the outset (e.g., to map the present distribution or to map 297 
suitability) due to the impact of data acquisition choices on the final outputs. The consideration of 298 
whether an epidemiological situation may incorporate one (or more) of these scenarios should 299 



 
 

provide greater awareness of the potential impacts on the modelling process and predictive maps. 300 
Model coefficients and estimates of uncertainty can only take us so far; the interpretation of these 301 
outputs needs to be undertaken with the four scenarios presented in this framework in mind to 302 
ensure accurate comprehension of meaning and consequent sound action in relation to decision-303 
making. The premise of SDM is that predictive outputs will represent environmental suitability. 304 
However, where input data is not comprehensive, or where dynamic factors have not been taken 305 
into account, the predictive outputs may not represent environmental suitability, but may more 306 
accurately be described as representing the current distribution of the disease of interest. 307 
 308 
Using a simulated dataset, this paper provides an overview of predictive mapping of disease and the 309 
linkages with ecological SDM, and has introduced some important considerations, which are rarely 310 
discussed in the predictive mapping literature. Care must be taken when carrying out predictive 311 
mapping when the distribution of the disease of interest is changing, and a full understanding of the 312 
disease’s ecology alongside historical, recent and current spatial distributions of the disease should 313 
be used to inform the process of modelling and interpretation. Every mapping scenario will have 314 
different complexities which may influence the interpretation of resulting predictions, but time 315 
spent considering what the observed data represent and the implications of the possible scenarios 316 
detailed above will provide a starting point for more accurate interpretation of predictive maps. As 317 
long as the considerations introduced here are kept in mind, predictive mapping will continue to 318 
contribute significantly to epidemiological research and disease control planning. 319 
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Table titles: 416 
Table 1. Four scenarios for disease modelling 417 
 418 
Figure titles: 419 
Figure 1. Map of Africa showing the bounding box of the study area in green. 420 
Figure 2. Environmental suitability for hypothetical disease: suitable areas are shown in green and 421 
unsuitable areas in grey. 422 
Figure 3. Example sample data used for the disease modelling scenarios showing (a) the full 423 
information scenario, (b) the heterogeneous sampling effort scenario, (c) the missing covariates 424 
scenario and (d) the disease not in equilibrium scenario: 100 simulated datasets were created for 425 
each scenario. Presence records are shown in red and absence records in black. Actual 426 
environmental suitability for disease transmission is shown in green. 427 
Figure 4. Actual suitability for disease occurrence (top) and predicted probability of disease 428 
presence across the study area for each of the four scenarios: scenario a) full information (centre 429 
left), scenario b) heterogeneous sampling effort (centre right), scenario c) missing covariates 430 
(bottom left) and scenario d) disease not in equilibrium scenario (bottom right). 431 
Figure 5. Mean ROC curves for 100 simulations of the four scenarios with 95% confidence 432 
intervals (dotted lines) showing (a) the full information scenario, (b) the heterogeneous sampling 433 
effort scenario, (c) the missing covariates scenario and (d) the disease not in equilibrium scenario. 434 
Figure 6. Results of 100 simulations for the four scenarios showing (a) proportion of the study area 435 
for which predictions were correct (based on a cut-off probability of 0.5) and (b) AUC scores. 436 
 437 
 438 



 
 

Table 1. 
 
Scenario Situation 
a) Full information The disease is in equilibrium with its environment 

and data are available for a spatially representative 
sample of its range. 
 

b) Heterogeneous 
sampling effort 

The disease is in equilibrium with its environment, 
but there is spatial bias in the detection of the 
disease (i.e. a heterogeneous sampling effort). 
 

c) Missing covariates The disease is in equilibrium with its environment 
and there is a spatially representative sample 
available, but the covariates used for prediction do 
not fully reflect the species environmental 
constraints. 
 

d) Disease not in 
equilibrium with 
the environment 

The disease is not in equilibrium with its 
environment due to either successful disease control 
(disease no longer occupying its full niche) or on-
going spatial spread (the disease does not yet 
occupy its full niche). 
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