
   
 

 
 

This work has been submitted to ChesterRep – the University of Chester’s 
online research repository 

 
http://chesterrep.openrepository.com 

 
 
 
Author(s): Nikos I Kavallaris ; Andrew A Lacey, ; Christos V Nikopoulos, ; Dimitrios E 
Tzanetis  
 

Title: On the quenching behaviour of a semilinear wave equation modelling MEMS 
technology 
 
 
Date: March 2015 
 
Originally published in: Discrete and Continuous Dynamical Systems - Series A 
 
 
Example citation: Kavallaris , N. I., Lacey, A. A., Nikopoulos, C. V., & Tzanetis, D. E. 
(2015).  On the quenching behaviour of a semilinear wave equation modelling 
MEMS technology. Discrete and Continuous Dynamical Systems - Series A, 35(3), 
1009-1037. doi: http://dx.doi.org/10.3934/dcds.2015.35.1009 
 
 
Version of item: Authors’ post-print 
 
 
Available at: http://hdl.handle.net/10034/333835 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ChesterRep

https://core.ac.uk/display/33794199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Abstract. In this work we study the semilinear wave equation of the form

utt = uxx + λ/(1− u)2,

with homogeneous Dirichlet boundary conditions and suitable initial conditions, which,
under appropriate circumstances, serves as a model of an idealized electrostatically actu-
ated MEMS device. First we establish local existence of the solutions of the problem for
any λ > 0. Then we focus on the singular behaviour of the solution, which occurs through
finite-time quenching, i.e. when ||u(·, t)||∞ → 1 as t → t∗− < ∞, investigating both
conditions for quenching and the quenching profile of u. To this end, the non-existence
of a regular similarity solution near a quenching point is first shown and then a formal
asymptotic expansion is used to determine the local form of the solution. Finally, using
a finite difference scheme, we solve the problem numerically, illustrating the preceding
results.

1. Introduction

The main purpose of this work is to study the singular behaviour of the hyperbolic
problem

utt = uxx +
λ

(1− u)2
, 0 < x < 1, t > 0, (1.1a)

u(0, t) = 0, u(1, t) = 0, t > 0, (1.1b)

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x), 0 < x < 1 , (1.1c)

where λ is a positive parameter. Problem (1.1) can model the deformation of an elastic
membrane inside an idealized electrostatically actuated MEMS.

“MEMS” stands for micro electro-mechanical systems, and refers to precision devices
which combine mechanical processes with electrical circuits. MEMS devices range in size
from millimetres down to microns, and involve precision mechanical components that can be
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constructed using semiconductor manufacturing technologies. MEMS devices are widely
applied as sensors and have also fluid mechanical, optical, radio frequency (RF), data
storage, and biotechnology applications. In particular, examples of microdevices of this
kind include microphones, temperature sensors, RF switches, resonators, accelerometers,
data-storage devices etc., [7, 37, 41].

The key part of such a MEMS device usually consists of an elastic plate suspended
above a rigid ground plate. In the simplest geometry, the elastic plate (or membrane) is
rectangular and held fixed at two ends while the other two edges remain free to move.
An alternative configuration could entail the plate or membrane (no longer necessarily
rectangular) being held fixed around its entire edge. When a potential difference Vd is
applied between the membrane and the plate, the membrane deflects towards the ground
plate. Under the realistic assumption that the width of the gap, between the membrane
and the bottom plate, is small compared to the device length, then the deformation of the
elastic membrane is described by a dimensionless equation of the form

ϵ2utt + ut −∆u =
λ fd(x, t)

(1− u)2
, x ∈ Ω ⊂ R2, t > 0, (1.2a)

u = 0, x ∈ ∂Ω, t > 0, (1.2b)

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x), x ∈ Ω, (1.2c)

where u = u(x, t) stands for the (dimensionless) deflection of the membrane,

ϵ2 =
inertial terms

damping terms
and λ =

V 2
d L

2
cε0

2Tml2c
∝ V 2

d .

Here u0(x) and u1(x) represent the initial deflection and velocity, respectively, of the elastic
membrane. The function fd(x, t) describes the varying dielectric properties of the mem-
brane; for simplicity we assume here that fd(x, t) ≡ 1. Furthermore, Tm stands for the
tension in the membrane, Lc is the width of the parallel plates, each of them denoted by Ω,
lc is the unperturbed width of the gap between the membrane and the ground electrode,
and ε0 is the permittivity of free space. The boundary condition represents the membrane
being kept in its unperturbed position along its edge.

When the damping terms dominate, i.e. when ϵ2 ≪ 1, then (1.2) reduces to the parabolic
problem

ut −∆u =
λ

(1− u)2
, x ∈ Ω ⊂ R2, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) < 1, x ∈ Ω,

which has been extensively studied in [7, 10, 13, 21].
On the other hand, when the contribution of the inertial terms dominates, i.e. ϵ2 ≫ 1,

we derive, after rescaling, the model

utt −∆u =
λ

(1− u)2
, x ∈ Ω ⊂ R2, t > 0, (1.3a)

u = 0, x ∈ ∂Ω, t > 0, (1.3b)

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x), x ∈ Ω. (1.3c)

In general, the two parallel plates are of arbitrary shape. However, if the parallel plates
are thin and narrow homogeneous strips of fixed width Lc, see [1, 34], then, with suitable
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scaling, (1.3) can be reduced to the one-dimensional model (1.1). The one-dimensional
problem can also be used as a simple model to get better insight into the operation of devices
with more general geometries, and especially for the two-dimensional radially symmetric
case, i.e. when Ω is a disk, which will be investigated in a forthcoming paper. For certain
MEMS-type devices, e.g. resonators and some devices with applications in data storage
and optical engineering, [14, 39, 40, 41], the rectangular geometry is practical and it is in
fact used. The investigation of the one-dimensional model (1.1) is thus of importance in
its own right.

When the MEMS device is connected in series with a voltage and a fixed capacitor one
can derive a non-local model of the form

ϵ2utt + ut −∆u =
λ

(1− u)2
(
1 + γ

∫
Ω

1

1− u
dx

)2 , x ∈ Ω ⊂ R2, t > 0, (1.4a)

u = 0, x ∈ ∂Ω, t > 0, (1.4b)

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x), x ∈ Ω, (1.4c)

where the parameter γ represents the ratio of a fixed capacitance to a reference capacitance,
see [10]. Model (1.4), depending on the contribution of the inertial and damping terms,
gives rise to the non-local parabolic problem

ut −∆u =
λ

(1− u)2
(
1 + γ

∫
Ω

1

1− u
dx

)2 , x ∈ Ω ⊂ R2, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) < 1, x ∈ Ω,

which has been studied in [16, 17, 19, 35], or to the hyperbolic non-local model

utt −∆u =
λ

(1− u)2
(
1 + γ

∫
Ω

1

1− u
dx

)2 , x ∈ Ω ⊂ R2, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x), x ∈ Ω,

whose behaviour for the one-dimensional case was investigated in [22].
Recently some authors initiated the investigation of fourth-order models, using the bi-

laplacian operator which models the moving part of a MEMS device as an elastic plate
(with non-zero thickness), rather than as a simple, thin, membrane, [18, 25]. There are
also papers investigating the quenching behaviour for fourth order parabolic equations,
[24, 32]. Some recent works investigate the wave equation with damping, [9, 30, 31].

For a more detailed study of the modelling of MEMS devices, see the books [7, 37, 41].
From the above, it is clear that the applied voltage Vd controls the operation of the

MEMS device. Indeed, when Vd takes values above a critical threshold Vcr, called the
pull-in voltage, this can lead to the phenomenon of touch-down (or pull-in instability as it
is also known in MEMS literature) when the elastic membrane touches the rigid ground
plate, possibly causing destruction of the device in some applications. (The designers of
such MEMS devices consequently need to tune the voltage load so that stays away from
the pull-in voltage.) Equivalently, this means that there should be some critical value λcr,
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depending upon the initial data, of the parameter λ above which singular behaviour should
be expected for the solution of problem (1.1). Looking at the nonlinear term of problem
(1.1), one can notice that singular behaviour is possible only when u takes the value 1, a
phenomenon known in the literature as quenching, see also Section 4. From the point of
view of applications it is important to determine whether quenching occurs and, if it does,
to clarify when, how and where it might happen. We address two of these questions in this
manuscript.

Many authors have investigated the occurrence of quenching for the hyperbolic problem
(1.1), [5, 6, 29, 20, 38]. However, to the best of our knowledge, the behaviour close to
quenching, i.e. the quenching profile, has not been studied previously. In the current work,
we first prove some quenching results for problem (1.1) which improve some of the results in
[5] for the one-dimensional case and in [29, 38] for higher dimensions. Although we mainly
focus on the one-dimensional case, our quenching results can be easily extended to higher
dimensions as we note in the text.

The outline of the current work is as follows. In Section 2 the local and global existence
of solutions to problem (1.1) are studied, while the steady problem is briefly looked at in
Section 3. Then, in Section 4, we establish some conditions under which the solution u
of (1.1) quenches in finite time, see Theorems 4.2, 4.4 and 4.6. Section 5 is devoted to
the investigation of the question of existence of a regular self-similar quenching solution
and we finally give a negative answer, see Theorem 5.1. This result is rather surprising
since, in standard semilinear wave equations with nonlinearities leading to blow-up, the
local behaviour close to blow-up is usually of self-similar type, see [2, 3, 11, 33]. The result
is also in contrast to the existence of a self-similar quenching profile for the corresponding
parabolic problem, [10]. In Section 6 we go on to use an asymptotic expansion to obtain the

local form of the quenching profile as const.×(x−quenching point)
4
3 . Finally, in Section 7,

a moving mesh adaptive method is used to obtain a numerical solution of the problem,
corroborating the results regarding the quenching profile. We close the paper with a short
discussion of our results.

2. Local and Global Existence

In this section we establish local existence of problem (1.1) where u0, u1 ∈ C1 ([0, 1]) and
satisfy the compatibility conditions u0(0) = u0(1) = 0.

Definition 2.1. We say that u is a weak solution of (1.1) in QT ≡ (0, 1)×(0, T ), for some
T > 0, if:

• (i) u is continuous in Q̄T and satisfies the initial and boundary conditions there,

• (ii) u ≤ 1− δ in Q̄T , for some δ > 0 and for x ∈ (0, 1),

• (iii) u has weak derivatives, ux, ut ∈ L2(Q̄T ) and for all t ∈ (0, T ), ux, ut ∈
L2 ([0, 1]) ,
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• (iv) for any function ζ(x, t) ∈ C2(Q̄T ) satisfying the boundary conditions (1.1b) and
for 0 ≤ t ≤ T , the following equality holds:∫ 1

0

ζ(x, t)ut(x, t)dx =

∫ t

0

∫ 1

0

[ζτ (x, τ)uτ (x, τ)− ζx(x, τ)ux(x, τ)]dxdτ

+ λ

∫ t

0

∫ 1

0

ζ(x, τ)dxdτ

(1− u(x, τ))2
, (2.1)

where ζ(x, 0) = 0.

By Sobolev’s and Poincaré’s inequalities,

||u||∞ ≤ C ||ux||2, C > 0, (2.2)

where C depends only on the interval (0, 1), and we get that a weak solution of (1.1) is
actually a C1,1

x,t−solution. Under the assumptions u0 ∈ C2((0, 1)) and u1 ∈ C1([0, 1]) we

obtain, via D’Alembert’s formula, that u(x, t) is a regular C2,2
x,t−solution to (1.1) except

(possibly) on the set

{(x, t) ∈ (0, 1)× [0, T ] |x− t or x+ t is an integer},
see also [5].

Moreover, the total energy of any weak solution of (1.1) is preserved, i.e.

ET (t) =
1

2

∫ 1

0

(u2x + u2t ) dx+

∫ 1

0

λ

1− u
dx = ET (0) := E0, 0 < t < T. (2.3)

Regarding local existence of problem (1.1) we have:

Theorem 2.2. [5] : For any λ > 0, if the initial data u0(x) and u1(x) ∈ C1([0, 1]) satisfy
the condition

||u0||∞ + T ||u1||∞ < 1− 2δ, for some positive δ > 0, (2.4)

with T sufficiently small, then problem (1.1) has a unique weak C1,1
x,t−solution on QT .

Furthermore, the solution can be extended to any interval of the form [0, T + τ ] for τ
sufficiently small and positive as long as |u| < 1 on Q̄T .

We notice that Theorem 2.2 implies that the solution of problem (1.1) ceases to exist by
quenching. For local existence results in the higher dimensions N = 2, 3, see [29, 38]. For
a different existence proof see [30].

For small initial data and for 0 < λ < λ∗R0
≤ λ∗, the following global existence result is

available.

Theorem 2.3. [5, 29] : If the initial data u0(x) and u1(x) satisfy the condition

||u0||2H1
0 ((0,1))

+ ||u1||2L2((0,1)) < R0, for some small enough positive R0 > 0,

then there exists λ∗−(R0) ≤ λ∗, where λ∗ is the critical parameter for the steady problem
(3.2), see below, so that for 0 < λ < λ∗−(R0) problem (1.1) has a global-in-time solution,
i.e. there exists a constant K = K(λ,R0) < 1 such that ||u(·, t)||∞ ≤ K for any t ≥ 0.

Remark 2.4. Athough it is conjectured that supR0
λ∗−(R0) = λ∗ there is still no proof of

this equality.

Remark 2.5. By the definition of λcr in the introduction, if ||u0||2H1
0 ((0,1))

+

||u1||2L2((0,1)) < R0, then λcr ≥ λ∗−(R0).
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3. The steady-state problem

The steady-state problem of (1.1) is

w′′ +
λ

(1− w)2
= 0 , 0 < x < 1 , w(0) = w(1) = 0 , 0 < w < 1. (3.1)

For the steady problem it is known that there exists a critical value λ∗ such that problem
(3.1) has exactly two solutions (the minimal solution w and the maximal one w) for any
λ < λ∗, moreover, there is a unique solution 0 < w∗ < 1 for λ = λ∗ and no solution for
λ > λ∗ (see [12, 27]).

We can actually calculate the critical value λ∗. If we set W = 1− w then (3.1) becomes

W ′′ = λ/W 2 , 0 < x < 1 , W (0) = W (1) = 1 . (3.2)

Multiplying both sides of (3.1) by W ′ and integrating from m = min{W (x), x ∈ [0, 1]} =
W (1/2) to W (x), we derive∫ W ′

0

W ′dW ′ =

∫ x

1
2

W ′′W ′dx = λ

∫ x

1
2

W ′

W 2
dx = λ

∫ W

m

dW

W 2
.

Hence
1

2
(W ′)

2
= λ

(
1

m
− 1

W

)
.

This gives, equivalently,

dx

dW
=

√
m

2λ

√
W

W −m
,

which implies

x− 1
2
=

√
m

2λ

[√
W (W −m)− 1

2
m ln(m) +m ln

(√
W +

√
W −m

)]
.

The latter yields, on setting x = 1 so that W = 1,

λ = 2m

[√
1−m− 1

2
m ln(m) +m ln

(
1 +

√
1−m

)]2
.

By the above relation we conclude that the maximum of m = m(λ) is attained for λ =
λ∗ ≈ 1.4, see Figure 1.

The computation of the value λ∗, by a different way, is also given in [10].

4. Finite-Time Quenching

By Theorem 2.2 we derive that the solution of (1.1) ceases to exist only when u reaches
the value 1 at some point (x, t) ∈ [0, 1] × (0,∞], i.e. for finite or infinity quenching time.
This phenomenon is usually called quenching or touch-down (or pull-in instability) since it
corresponds to the situation where the elastic membrane touches down on the rigid plate
in the MEMS device. Rather more mathematical discussions of this phenomenon can be
found in Sections 5 and 6.

Definition 4.1. The solution u(x, t) of problem (1.1) quenches at some point x∗ ∈ [0, 1] in
finite time 0 < t∗ <∞ if there exists sequences {xn}∞n=1 ∈ (0, 1) and {tn}∞n=1 ∈ (0,∞) with
xn → x∗ and tn → t∗ as n → ∞ such that u(xn, tn) → 1− as n → ∞. In the case where
t∗ = ∞ we say that u(x, t) quenches in infinite time at x∗.
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Figure 1. Bifurcation diagram for problem (3.1). Here µ stands for the
principal eigenvalue of the linearized problem (4.2).

We now present two results regarding the finite-time quenching of solution u(x, t) of
(1.1). The first one proves that finite-time quenching occurs when the parameter λ is too
big for steady-state solutions to exist. This resembles a result valid for the corresponding
parabolic problem, [13, 21]. The occurrence of quenching for λ > λ∗ resembles also the
results obtained in [18, 25] for the fourth order wave equation.

Theorem 4.2. If λ > λ∗ the solution u(x, t) of problem (1.1) quenches in finite time.

Proof. For the proof we use the spectral method developed in [23]. We assume that for
λ > λ∗ problem (1.1) has a solution for 0 < t < Tmax ≤ ∞, i.e.

u(x, t) < 1 almost everywhere in (0, 1) for any 0 < t < Tmax. (4.1)

We first provide some results for the associated linearized eigenvalue problem

ϕ′′ +
2λ

(1− w)3
ϕ = µϕ, 0 < x < 1, ϕ(0) = ϕ(1) = 0. (4.2)

Set µ1 = µ1(λ;w), the principal eigenvalue of problem (4.2), then µ1(λ;w) > 0 and
µ1(λ;w) < 0 for any 0 < λ < λ∗, [12], which indicates the stability of w and the in-
stability of w, see also Figure 1. Moreover, µ1 → µ∗

1 = µ1(λ
∗;w∗) = 0 as λ → λ∗−, as

stated in Theorem 1.3 of [12]. Let ϕ∗ be the eigenfunction corresponding to the eigenvalue
µ∗
1 = 0, taken to be strictly positive, [12], and normalized so that∫ 1

0

ϕ∗dx = 1, (4.3)

i.e. ϕ∗ satisfies

ϕ∗′′ +
2λ∗

(1− w∗)3
ϕ∗ = 0, 0 < x < 1, ϕ∗(0) = ϕ∗(1) = 0. (4.4)

For λ > λ∗, set u(x, t, ;λ) = w∗(x) + z(x, t;λ), then z satisfies

utt = ztt = w∗′′ + zxx +
λ

(1− u)2
. (4.5)
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Now define the functional

A(t) =

∫ 1

0

z(x, t)ϕ∗(x)dx.

Multiplying both sides of equation (4.5) with the eigenfunction ϕ∗, integrating over the
interval [0, 1], using Green’s identity and equation (4.4), we then obtain

A′′(t) =

∫ 1

0

w∗′′ϕ∗dx+

∫ 1

0

zxxϕ
∗dx+ λ

∫ 1

0

ϕ∗

(1− u)2
dx

=− λ∗
∫ 1

0

ϕ∗

(1− w∗)2
dx+

∫ 1

0

zϕ∗′′dx+ λ

∫ 1

0

ϕ∗

(1− u)2
dx,

=− λ∗
∫ 1

0

ϕ∗

(1− w∗)2
dx− λ∗

∫ 1

0

2ϕ∗

(1− w∗)3
zdx+ (λ− λ∗)

∫ 1

0

ϕ∗

(1− u)2
dx

+ λ∗
∫ 1

0

ϕ∗

(1− u)2
dx

=(λ− λ∗)

∫ 1

0

ϕ∗

(1− u)2
dx+ λ∗

∫ 1

0

[
1

(1− u)2
− 1

(1− w∗)2
− 2 z

(1− w∗)3

]
ϕ∗dx, (4.6)

for λ > λ∗.
From conservation of energy, (2.3),

||ux||22 ≤ 2E0 − 2λ

∫ 1

0

1

1− u
dx < 2E0,

and we then derive, on combining Sobolev’s and Poincaré’s inequalities (2.2), that

u(x, t) > −C0 for any x ∈ [0, 1], 0 < t < Tmax, (4.7)

where C0 is a positive constant depending only upon λ and the initial data.
Note that due to (4.7) the first term of the right-hand side of (4.6) is estimated from

below by

(λ− λ∗)

∫ 1

0

ϕ∗

(1− u)2
dx ≥ (λ− λ∗) inf

t∈(0,Tmax)

∫ 1

0

ϕ∗

(1− u)2
dx ≥ (λ− λ∗)

(1 + C0)2
,

since also (4.3) holds.
On the other hand, the integrand of the second term of the right-hand side of (4.6) is

non-negative since

1

(1− u)2
− 1

(1− w∗)2
− 2 z

(1− w∗)3
≥ 3 z2

(1− ξ)4
> 0, (4.8)

for some ξ ∈< w∗, u >, where < w∗, u >= {ξ : ξ = θw∗ + (1− θ)u, θ ∈ [0, 1]}.
Thus, we obtain the differential inequality

A′′(t) ≥ (λ− λ∗)

(1 + C0)2
= K > 0, for λ > λ∗,

which integrated twice yields

A(t) ≥ K
t2

2
+ A1t+ A0 = G(t), for any 0 < t < Tmax, (4.9)
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where

A0 =

∫ 1

0

z(x, 0)ϕ∗(x)dx =

∫ 1

0

(u0(x)− w∗(x))ϕ∗(x)dx < 1,

and

A1 =

∫ 1

0

zt(x, 0)ϕ
∗(x)dx =

∫ 1

0

u1(x)ϕ
∗(x)dx.

It is readily seen that the positive root of the equation G(t) = 1 is

0 < t+ =
−A1 +

√
A2

1 − 2K(A0 − 1)

K
<∞, (4.10)

thus limt→t1 A(t) = 1− for some t1 ≤ t+ by (4.9). However, the latter, since

A(t) =

∫ 1

0

z(x, t)ϕ∗(x) dx ≤ ∥u− w∗∥∞ ≤ ∥u∥∞, for w∗ > 0 ,

implies that limt→t∗ ||u(·, t)||∞ = 1 for some t∗ ≤ t+. �
Theorem 4.2 improves the result of Theorem 3.2 of [5] where quenching was proved only

for λ > λ∗+, for some λ∗+ > λ∗, and left a gap for the range (λ∗, λ∗+].
Moreover, the result of Theorem 4.2 can be easily extended to the practically important

two-dimensional case and indeed to three dimensions. The proof follows exactly the same
steps. The existence of λ∗ <∞ for the higher-dimensional steady-state problem

∆w +
λ

(1− w)2
= 0 , x ∈ Ω, w(x) = 0, x ∈ ∂Ω, 0 < w < 1,

for Ω being a bounded domain of RN , N = 2, 3, is guaranteed by the results in [7, 12],
where the C2−regularity of the extremal solution w∗(x) = w(x;λ∗) is also proved. In
[7, 12], it is additionally proved that the principal eigenvalue of the linearized problem

∆ϕ∗ +
2λ∗

(1− w∗)3
ϕ∗ = µ∗ϕ∗, x ∈ Ω, ϕ∗(x) = 0, x ∈ ∂Ω,

is µ∗ = 0. Moreover, a lower estimate of the form (4.7) still holds due to Sobolev’s in-
equality holding for N = 2, 3. Therefore the quenching result in [38] can also be improved.
In addition, the estimates of the quenching time presented in the next remark are also
applicable for N = 2, 3.

Remark 4.3. The upper bound of the quenching time obtained in Theorem 4.2 can be used
to estimate the quenching time, from above, in the asymptotic limit of λ→ λ∗+.

For u1 ≥ 0 and not identically zero, so that A1 > 0, taking λ → λ∗+ so that K → 0,
(4.10) gives t+ → (1 − A0)/A1. For λ close to the critical value, any upward perturbation
leads to quenching in an order-one time, or less. With u1 identically zero, so that A1 = 0,
t+ = (2(1−A0)/K)1/2 and thus t∗ ≤ t+ = O((λ− λ∗)−1/2) for λ→ λ∗+. With u1 ≤ 0 and
not identically zero, so that A1 < 0, taking λ → λ∗+, so that K → 0 in (4.10) now gives
t+ ∼ −2A1/K. Then t∗ ≤ t+ = O((λ− λ∗)−1).

The middle estimate of the quenching time agrees with one which holds for the corre-
sponding parabolic problem, see [13, 23].

We cannot easily get a good bound in the same way in the opposite limit of λ→ ∞. This
is due to C0 being potentially unbounded.

We should note, however, that in this one-dimensional case we can proceed slightly dif-
ferently.
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Writing F (x, t) = λ/(1 − u(x, t))2 and F̃ (x, t) = F (x, t) for 0 < x < 1, F̃ (x, t) =
−F (−x, t) for −1 < x < 0 and F̃ (x, t) = −F (2 − x, t) for 1 < x < 2, the D’Alembert
solution for (1.1), applying for t ≥ 0, gives

u(x, t+ 1) =
1

2
(ũ(x− 1, t) + ũ(x+ 1, t)) +

1

2

∫ x+1

x−1

ũt(y, t) dy

+
1

2

∫ 1

0

∫ x+1−s

x−1+s

F̃ (y, t+ s) dy ds

=− 1

2
(u(1− x, t) + u(1− x, t)) +

1

2

∫ 1

0

∫ min{x+1−s,1−x+s}

max{1−s−x,x−1+s}
F (y, t+ s) dy ds

>− u(1− x, t) ,

where ũ is the (odd) extension of u defined by ũ(x, t) = u(x, t) for 0 < x < 1, ũ(x, t) =
−u(−x, t) for −1 < x < 0, and ũ(x, t) = −u(2 − x, t) for 1 < x < 2. We deduce that if u
falls to −1 at some time t1, quenching must then occur before t1 + 1.

Combining this result with the estimate got from (4.10) (based on assuming that u remains
greater than −1) gives the quenching time estimate t∗ . 1 for λ→ ∞.

Since u(x, t) represents the deflection of the elastic membrane inside MEMS device, one
expects touch-down to occur when the initial deformation u0(x) of the elastic membrane
is big enough and/or there is movement towards the rigid plate, meaning that u1(x) is
positive. This expectation is verified by the following.

Theorem 4.4. Let 0 < λ ≤ λ∗, then the solution of problem (1.1) quenches in finite time
provided that the initial data u0(x) is greater than or equal to the maximal steady-state
solution w(x;λ) and u1(x) is non-negative, with u0(x) > w(x;λ) or u1(x) > 0 for some x.

Proof. Again we proceed as in [23]. Let us assume that the maximum existence time of
problem (1.1) is 0 < Tmax ≤ ∞. For any 0 < λ ≤ λ∗ set u(x, t;λ) = w(x;λ) + z(x, t;λ),
(note that w = w∗ for λ = λ∗). Then z satisfies

utt = ztt = w′′ + zxx +
λ

(1− u)2

= λ

[
1

(1− u)2
− 1

(1− w)2
− 2 z

(1− w)3

]
+ zxx +

2λ z

(1− w)2
− µ1 z + µ1 z. (4.11)

Let (µ1, ϕ1) be the principal eigenpair of the problem:

ϕ′′ +
2λ

(1− w)3
ϕ = µϕ, 0 < x < 1, ϕ(0) = ϕ(1) = 0, (4.12)

where ϕ1 is considered to be positive and normalized according to (4.3) and µ1 is known
to be non-negative, since w is unstable, see [7, 12].

We now define A(t) by

A(t) =

∫ 1

0

z(x, t)ϕ1(x) dx. (4.13)
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Differentiating (4.13) twice and using equation (4.11) combined with Green’s identity,
we obtain

A′′(t) =

∫ 1

0

ztt(x, t)ϕ1(x) dx

=

∫ 1

0

λ

[
1

(1− u)2
− 1

(1− w)2
− 2 z

(1− w)3

]
ϕ1 dx

+

∫ 1

0

[
ϕ′′
1 +

2λϕ1

(1− w)3
− µ1 ϕ1

]
z dx+ µ1

∫ 1

0

z ϕ1 dx. (4.14)

Since ϕ1 satisfies (4.12) with µ = µ1, the second term on the right-hand side of (4.14)
vanishes, hence

A′′(t) ≥ λ

∫ 1

0

3 z2 ϕ1

(1 + C0)4
dx+ µ1A(t) (4.15)

taking also into account

1

(1− u)2
− 1

(1− w)2
− 2 z

(1− w)3
≥ 3 z2

(1− ξ)4
> 0, for some ξ ∈< u,w >,

as well as the fact that (4.7) is still valid. By virtue of Jensen’s inequality, (4.15) yields

A′′(t) ≥ ΛA2(t) + µ1A(t), for any 0 < t < Tmax, (4.16)

where Λ = 3λ
(1+C0)4

. Now the differential inequality (4.16) under the initial conditions

A(0) = A0 =

∫ 1

0

z(x, 0)ϕ1(x) dx =

∫ 1

0

(u0(x)− w(x))ϕ1(x) dx ≥ 0, (4.17)

and

A′(0) = A1 =

∫ 1

0

zt(x, 0)ϕ1(x) dx =

∫ 1

0

u1(x)ϕ1(x) dx ≥ 0, (4.18)

with A(0) > 0 or A′(0) > 0 implies that A(t) > 0 for any 0 < t < Tmax. Therefore the
right-hand side of (4.16) is positive, since µ1 ≥ 0, so

A(t) > A1t+ A0, for 0 < t < Tmax .

Substituting back into (4.16), and integrating again twice, gives

A(t) > A1t+ A0 + Λ

(
A2

0t+ A0A1t
2 +

1

3
A2

1t
3

)
, for 0 < t < Tmax .

This yields that limt→t1−A(t) = 1 for some finite positive t1. Since

A(t) =

∫ 1

0

z(x, t)ϕ1(x) dx ≤ ∥u− w∥∞ ≤ ∥u∥∞, for w > 0,

we also have that ||u(·, t)||∞ → 1− as t → t∗ ≤ t1 < ∞, which also implies, [6, 22], that
||utt(·, t)||∞ → ∞ as t→ t∗. �
Remark 4.5. Theorem 4.4 can be easily extended to the higher dimensions N = 2, 3 since
the linearized problem for 0 < λ ≤ λ∗,

∆ϕ+
2λ

(1− w)3
ϕ = µϕ, x ∈ Ω, ϕ(x) = 0, x ∈ ∂Ω,
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has non-negative principal eigenvalue as well as a lower estimate of the form (4.7) still
valid.

We close this section with a quenching result applying for higher dimensions N > 3,
where the estimate (4.7) obtained via Sobolev’s inequality is no longer available. For a
similar result see also [10, 18].

Theorem 4.6. If λ > λ∗+ = 4ν1/27 ≥ λ∗, where ν1 > 0 is the principal eigenvalue of the
problem

−∆ψ = νψ, x ∈ Ω, ψ = 0, x ∈ ∂Ω, (4.19)

then the solution of problem

utt −∆u =
λ

(1− u)2
, x ∈ Ω ⊂ RN , u = 0, x ∈ ∂Ω, (4.20a)

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x) , x ∈ Ω, (4.20b)

quenches in finite time.

Proof. We define the functional

F (t) =

∫
Ω

u(x, t)ψ1(x) dx ≤ ||u(·, t)||∞ , (4.21)

where ψ1 > 0 is the eigenfunction of (4.19) normalized so that
∫
Ω
ψ1 dx = 1. Differentiating

F (t) twice and using integration by parts together with equation (4.20a) and Jensen’s
inequality, yield the differential inequality

F ′′(t) =

∫
Ω

(
∆u+

λ

(1− u)2

)
ψ1 dx =

∫
Ω

u∆ψ1 dx+

∫
Ω

λψ1

(1− u)2
dx,

≥ −ν1 F (t) +
λ

(1− F (t))2
, (4.22)

with associated initial conditions

F (0) = F0 < 1 and F ′(0) = F1 . (4.23)

It can be easily seen that for λ > λ∗+ = 4ν1/27,

λ

(1− s)2
− ν1s > 0 , for any 0 ≤ s < 1 ,

which, by virtue of (4.22) and (4.23), guarantees that

F ′′(t) > C2 > 0 for any 0 < t < Tmax ,

thus
F (t) > C2t

2 + F1t+ F0 for any 0 < t < Tmax . (4.24)

But relation (4.24) implies that limt→t2 F (t) = 1 for some t2 ≤ t+ where

0 < t+ =
−F1 +

√
F 2
1 + 4C2(1− F0)

2C2

<∞ . (4.25)

Finally, (4.21) implies that ||u(·, t)||∞ → 1 as t→ t∗ ≤ t+.
The statement that λ∗+ ≥ λ∗ is clear by contradiction (on assuming that λ∗ > λ∗+ and then

taking λ∗ > λ > λ∗+ with initial conditions u0 = w (or w) and u1 =
0 ). �
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Remark 4.7. An estimate on the quenching time for large λ can easily be obtained by
(4.25) (c.f. Remark 4.3).

Remark 4.8. For convenience the proofs of all the quenching results given in the current
section concern smooth solutions. However, the same results can be proved for the weak
solutions defined by Definition 2.1 under the assumption that u0(x), u1(x) ∈ L2([0, 1]).

5. Non-Existence of Regular Similarity Solutions

In many cases the existence of a similarity solution can provide us with a description of
the solution profile during quenching. However, as we will see in this section, we do not
have such a similarity solution for our problem. Our analysis will also be a guide towards
obtaining an asymptotic expansion describing the quenching profile in the following section.
For simplicity, we take the quenching time to be t = 0 and position to be x = 1

2
both in

this section and in Section 6, provided we consider initial data symmetric with respect to
x = 1

2
. Also for simplicity we may consider λ = 1.

We take an alternative form of the local hyperbolic problem by setting U = 1− u. Thus
we have

Utt = Uxx − 1/U2, 0 < x < 1, t > 0, (5.1a)

U(0, t) = 1, U(1, t) = 1, t > 0, (5.1b)

U(x, 0) = U0(x), Ut(x, 0) = U1(x), 0 < x < 1 , (5.1c)

with 0 < U < 1 and quenching occurring when U = 0.
We set U = (−t)αv(η), for η = (x− 1

2
)/(−t) and we have ∂η/∂t = (x− 1

2
)/t2. Then the

terms in equation (5.1a) become:

∂2U

∂t2
= (−t)α−2

[
α(α− 1)v − (2αηv′ − 2ηv′) + η2v′′

]
,

∂2U

∂x2
= (−t)α−2v′′,

1

U2
= (−t)−2αv−2.

To eliminate time we must take α − 2 = −2α or that α = 2
3
and we obtain the relevant

equation for v,

η2v′′(η) +
2

3
ηv′(η)− 2

9
v(η) = v′′(η)− 1

v2(η)
,

or

(1− η2)v′′(η)− 2

3
ηv′(η) +

2

9
v(η) =

1

v2(η)
. (5.2)

A constant and regular solution of this equation is v = a with a =
(
9
2

) 1
3 .

We want to show that v = a is the only symmetric regular positive solution of the
equation and thus there is no non-trivial similarity solution of the problem. This means
that not all of the conditions v(0) > 0, v′(0) = 0, v(η) → +∞ for η → ∞ and v being
smooth in its domain can be satisfied simultaneously. Indeed we have the following:

Theorem 5.1. The solution v = a is the only symmetric regular positive solution of equa-
tion (5.2).
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Proof. We set v = a+ V and then for V = V (η) we get

(1− η2)V ′′(η)− 2

3
ηV ′(η) +

2

9
a+

2

9
V (η)− 1

a2
+

2V (η)

a3
− g(η) = 0,

or

(1− η2)V ′′(η)− 2

3
ηV ′(η) +

2

3
V (η)− g(η) = 0, (5.3)

for

g(η) =
1

(a+ V (η))2
− 1

a2
+

2V (η)

a3
=

(3a+ 2V (η))V 2(η)

a3 (a+ V (η))2
≥ 0 .

Noting that V = η is a solution of (5.3) if the g term is neglected, thus we set V = ηq and
obtain

(1− η2) (ηq′′ + 2q′)− 2

3
(ηq′ + q) +

2

3
ηq = g(η) ,

or

η(1− η2)q′′ + 2

(
1− 4

3
η2
)
q′ = g(η),

and

q′′ +
2
(
1− 4

3
η2
)

η(1− η2)
q′ =

g(η)

η(1− η2)
.

Using the integating factor η2(1− η2)
1
3 we obtain(

η2(1− η2)
1
3 q′
)′

= η(1− η2)
2
3 g(η).

This gives

η2(1− η2)
1
3 q′ = Ac +G(η),

where

G(η) =

∫ η

0

s(1− s2)
2
3 g(s)ds .

Then we get

q(η) = Bc −
∫ 1

η

Ac +G(s)

s2(1− s2)
1
3

ds = Bc −
∫ 1

η

(
Ac +G(s)

s2(1− s2)
1
3

− Ac

s2
+
Ac

s2

)
ds

= Bc −
Ac

η
+ Ac −

∫ 1

η

(
Ac +G(s)

s2(1− s2)
1
3

− Ac

s2

)
ds.

Thus due to the fact that V = ηq we have

V (η) = η

[
Bc + Ac −

∫ 1

η

(
Ac +G(s)

s2(1− s2)
1
3

− Ac

s2

)
ds

]
− Ac .

In order to obtain regularity at η = 0, with v′(0) = V ′(0) = 0, (i.e. demand the symmetry
condition) we have

Bc =

∫ 1

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac

s2

)
ds− Ac ,



QUENCHING OF A HYPERBOLIC MEMS EQUATION 15

and thus

V (η) = η

∫ η

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac

s2

)
ds− Ac .

For 0 < c = v(0) < a, we have −a < V (0) = −Ac < 0 and 0 < Ac < a. Also for V > −a
we have g(V ) ≥ 0 which additionally implies that G(s) ≥ 0. Now for 0 < η < 1 we have

dV

dη
=

∫ η

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac

s2

)
ds+ η

(
Ac +G(η)

η2(1− η2)
1
3

− Ac

η2

)

> η

(
Ac +G(η)

η2(1− η2)
1
3

− Ac

η2

)
>
Ac

η

(
1

(1− η2)
1
3

− 1

)
→ ∞ as η → 1− ,

which implies that the solution, V , develops a singularity at η = 1.
Hence any regular symmetric solution must have v(0) > a, i.e. V (0) > 0. From (5.2), it

is clear that v is then decreasing for η small and positive. Since v must remain positive,
either it must reach a positive local minimum, say v∗, at some point η∗ in (0, 1), or v
remains decreasing throughout [0, 1], taking some positive value v0 at η = 1. We examine
the former case first.

As before,

V (η) = η

∫ η

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac

s2

)
ds− Ac

and

V ′(η) =

∫ η

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac

s2

)
ds+

Ac +G(η)

η(1− η2)
1
3

− Ac

η
. (5.4)

Given that V has a minimum at η = η∗, V ′(η∗) = 0 so∫ η∗

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac

s2

)
ds =

Ac

η∗
− Ac +G(η∗)

η∗(1− η∗2)
1
3

(5.5)

and hence

V (η) = η

[∫ η

η∗

(
Ac +G(s)

s2(1− s2)
1
3

− Ac

s2

)
ds+

Ac

η∗
− Ac +G(η∗)

η∗(1− η∗2)
1
3

]
− Ac . (5.6)

In particular,

V (η∗) = −Ac +G(η∗)

(1− η∗2)
1
3

. (5.7)

Turning again to (5.2), it is seen that for v and V to have local minima at η = η∗, v < a
and hence V is negative at that point. It follows that

Ac +G(η∗) = −(1− η∗2)
1
3V (η∗) > 0 . (5.8)

Now Ac +G(η) = Ac +G(η∗) +
∫ η

η∗
s(1− s2)

2
3 g(s)ds ≥ Ac +G(η∗) > 0 for η > η∗ and from

(5.4) we again see that V ′ → ∞ as η → 1− so that V develops a singularity at η = 1.
For the other case, if v is to be regular, it will have a first derivative, say v1, at η = 1.

Then (5.2) gives

v1 =
1

3
v0 −

3

2

1

v20
=

1

3
v−2
0 (v30 − a3) .
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We see that for v0 > a, v1 > 0 so that v is locally increasing, contradicting the assumption
of v decreasing in [0, 1]. Taking v0 = a, v1 = 0, and we regain the trivial solution v ≡ a
(contradicting v(0) > a). We are left with 0 < v0 < a and v1 < 0, so that now v decreases
in a neighbourhood of η = 1.

If v is to be smooth, we can differentiate (5.2) to get

(η2 − 1)v′′′ +
8

3
ηv′′ =

2v′

v3
− 4v′

9
=

4v′

9v3

(
9

2
− v3

)
. (5.9)

At η = 1, v = v0 < a and v′ = v1 < 0 so v′′ < 0. As long as v′′ ≤ 0, v′ < 0 for η ≥ 1.
Supposing that there is a first point η∗ > 1 where v′′ = 0, so that v′′′ ≥ 0 at η = η∗, v > 0
(for the solution to still exist) and v′ < 0 at that point. Then (5.9) gives v′′′(η∗) < 0,
another contradiction. This means that v′′ < 0 for η ≥ 1, so that v must fall to 0, and the
solution ceases to exist, at a finite value of η. �
Remark 5.2. The local behaviour of solutions which are singular at η = 1 can be deter-
mined formally. We write η = 1 + σ so that for σ small we are close to η = 1 and the
equation has the form

(2σ + σ2)
d2v

dσ2
+

2

3
(1 + σ)

dv

dσ
− 2

9
v + v−2 = 0 .

We assume that v has the form of a power-series expansion v ∼ v0 + v1σ
α + . . . , for some

constants v0, v1 and α. Then the equation becomes

2α(α− 1)v1σ
α−1 + · · ·+ 2

3
αv1σ

α−1 + · · · − 2

9
v0 + · · ·+ v−2

0 + · · · = 0 . (5.10)

The leading-order terms, which must balance, are either the first and second, for α ≤ 1, or
the third and fourth, for α ≥ 1.

Taking the first two terms to be small gives v0 = a. This is the special case of v ≡ a.
With all the terms of the same size, α = 1 and we obtain, to first-order, v ∼ v0 + v1σ with
v1 =

1
3
v0 − 3

2
v−2
0 . These are the locally regular, but non-trivial, solutions noted in the above

theorem.
With the first two terms dominating, so v1 ̸= 0, 2α(α − 1) + 2

3
α = 2α(α − 2

3
) = 0.

Clearly we want α to be non-zero to get a locally varying solution so α = 2
3
. We then have

a two-parameter family of locally singular solutions, v ∼ v0 + v1σ
2
3 (as indicated by the

earlier estimates on the first derivative of v).

Remark 5.3. Asymmetric regular solutions can also be eliminated. Taking 0 < c = v(0) <
a, we are no longer able to fix Bc since we do not know that V ′(0) = v′(0) vanishes.
However, Ac = −V (0) = a− v(0) is again positive, so the key steps for this case still apply
and it is still clear that the solution to (5.2) is singular at η = 1.

With v(0) ≥ a, we may assume, without loss of generality, that v′(0) < 0. We again
have the two possible cases to consider: (i) v attains some positive minimum (which must
be less than a) at some η∗ in (0, 1); or (ii) v is decreasing in [0, 1], taking a positive value
v0 at η = 1. Case (ii) is ruled out as before. Case (i) is likewise eliminated since, although
Bc is not fixed, (5.5) again applies so that (5.6) - (5.8) all follow and a singularity occurs
at η = 1.

6. Formal Asymptotics for the Quenching Profile

For simplicity we again consider initial data u0(x) and u1(x) symmetric with respect to
x = 1

2
then quenching is expected to take place at x = 1

2
.
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Now we rescale time as τ = − ln(−t) and set η = (x− 1
2
)/(−t). We then have dτ/dt =

1/(−t), ∂η/∂t = (−t)−1η and we set U = U(x, t) = (−t) 2
3v, with v = v(η, τ). Thus

Ut = −2

3
(−t)−

1
3v + (−t)−

1
3vτ + (−t)−

1
3ηvη,

Utt = (−t)−
4
3

(
vττ + 2ηvητ −

1

3
vτ + η2vηη +

2

3
ηvη −

2

9
v

)
Uxx = (−t)−

4
3vηη, U−2 = (−t)−

4
3v−2.

Therefore equation (5.1a) becomes

vττ + 2ηvητ −
1

3
vτ + η2vηη +

2

3
ηvη −

2

9
v = vηη − v−2,

or

vττ + 2ηvητ −
1

3
vτ = (1− η2)vηη −

2

3
ηvη +

2

9
v − v−2. (6.1)

We initially investigate the form of the solution near the quenching point.

Inner Solution. We expect that v tends to a, with a =
(
9
2

) 1
3 , near the quenching point

and therefore we assume that v has an expansion of the form v ∼ a+ v1 + v2 + . . . . Thus
equation (6.1) gives

v1ττ + 2ηv1ητ −
1

3
v1τ = (1− η2)v1ηη −

2

3
ηv1η +

2

9
v1 +

2

9
a− a−2 + 2a−3v1 + . . . ,

on neglecting terms in v21, v2, etc. Given that 2a−3 = 4
9
,

v1ττ + 2ηv1ητ −
1

3
v1τ = (1− η2)v1ηη −

2

3
ηv1η +

2

3
v1 . (6.2)

Supposing that v1 decays algebraically in τ , (6.2) reduces to

(1− η2)v1ηη −
2

3
ηv1η +

2

3
v1 = 0 ,

which is (5.3) without the g(η) term, has no regular non-trivial solution, and is therefore
not of interest.

Therefore the next reasonable choice is to assume that v1 has a τ dependence of the form
v1 = e−ατp(η). In such a case we obtain the equation for p

(1− η2)p′′ + 2

(
α− 1

3

)
ηp′ +

(
2

3
− α

3
− α2

)
p = 0 . (6.3)

From what we have seen before, it might be expected that for general α, (6.3) has no
non-trivial regular solution. We now look for values of α for which there is a non-trivial
solution for all η.
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We seek an even (symmetric) solution of (6.3) as a power series, p(η) =
∑∞

n=0 an
η2n with a0 ̸= 0 and get

0 =
∞∑
n=0

((
2

3
− α

3
− α2

)
+ 4n

(
α− 1

3

)
− 2n(2n− 1)

)
anη

2n

+
∞∑
n=1

2n(2n− 1)anη
2n−2

= −
∞∑
n=0

(α− (2n− 1))

(
α−

(
2n+

2

3

))
η2n +

∞∑
n=0

2(n+ 1)(2n+ 1)an+1η
2n,

which gives

an+1

an
=

(2n− 1− α)(2n+ 2
3
− α)

2(n+ 1)(2n+ 1)
. (6.4)

We see from (6.4) that the radius of convergence of the power series for p(η) is (in general)
1, consistent with p having a singularity at η = 1. However, the series terminates, with p
being a polynomial, p±n (η), and hence smooth for all η, for α = α±

n with α−
n = 2n − 1 for

n = 1, 2, 3, . . . and α+
n = 2n+ 2

3
for n = 0, 1, 2, . . . .

For the dominant, slowest decaying, behaviour, with spatial variation, i.e. dependence
upon η, we need α = α−

1 = 1 and then a1 = a0/3 and v−1 = ce−τ (η2+3) on writing a0 = 3c.
On the other hand, a slower shrinking solution still, but without η dependence, is given

by α = α+
0 = 2

3
, so that we have v+1 = de−

2
3
τ , on writing a0 = d.

Therefore we have that the solution to the v problem near the quenching time has the
form

v ∼ a+ ce−τ
(
η2 + b0

)
+ de−

2
3
τ

and therefore for U we get approximately

U ∼ e−
2
3
τ
[
a+ ce−τ (η2 + 3) + de−

2
3
τ
]
∼ e−

2
3
τ
[
a+ ce−τη2 + de−

2
3
τ
]
,

for large η as well as large τ , or, in terms of t and x,

U ∼ (−t)
2
3

[
a+ c

(x− 1
2
)2

−t
+ d(−t)

2
3

]
. (6.5)

Outer Solution. We want an approximation for the solution of equation (6.1) valid for η
large. For η ≫ 1 the equation becomes

vττ + 2ηvητ −
1

3
vτ = −η2vηη −

2

3
ηvη +

2

9
v − v−2,

i.e. vηη is negligible compared with η2vηη. The neglected term corresponds to the diffusion
term, Uxx of the original equation Utt = Uxx − 1/U2. Therefore to determine the outer
solution we must solve the equation

d2U

dt2
= − 1

U2
. (6.6)

Multiplying both sides of (6.6) with dU/dt and integrating results in(
dU

dt

)2

=
2

U
+ b =

2 + bU

U
,
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where b is a constant of integration. Therefore we have

dt

dU
= −

(
U

2 + bU

) 1
2

,

and

t0 − t =

∫ (
U

2 + bU

) 1
2

dU.

We set U = 2
b
tan2(θ) with dU = 4

b
tan(θ) sec2(θ)dθ and we obtain

t0 − t =
4

b
3
2

∫ (
tan2(θ)

sec2(θ)

) 1
2

tan(θ) sec2(θ)dθ,

=
4

b
3
2

∫
tan2(θ) sec(θ)dθ.

In addition we have∫
tan2(θ) sec(θ)dθ =

∫ (
sec2(θ)− sec(θ)

)
dθ

= tan(θ) sec(θ)−
∫ (

sec(θ) + sec(θ) tan2(θ)
)
dθ,∫

sec(θ) tan2(θ)dθ =
1

2
tan(θ) sec(θ)− 1

2

∫
sec(θ)dθ,∫

sec(θ)dθ = ln (tan(θ) + cos(θ)) .

Thus

t0 − t =
2

b
3
2

[tan(θ) sec(θ)− ln (tan(θ) + sec(θ))]

=
2

c
3
2

[
2−

1
2 b

1
2U

1
2

(
1 +

bU

2

) 1
2

− ln

(
2−

1
2 b

1
2U

1
2 +

(
1 +

bU

2

) 1
2

)]
.

Finally we have that

t0 − t =
U

1
2

b
(2 + bU)

1
2 − 2b−

3
2 ln

[
1√
2
b

1
2U

1
2 +

(
1 +

bU

2

) 1
2

]
. (6.7)

The quantity inside the logarithm can be written in the following way[
1√
2
b

1
2U

1
2 +

(
1 +

bU

2

) 1
2

]
∼ 1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . . .
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Therefore we have that

t0 − t ∼2
1
2U

1
2

b

(
1 +

bU

4
− b2U2

32

)
− 2b−

3
2

[(
1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . .

)
−1

2

(
1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . .

)2

+
1

3

(
1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . .

)3

−1

3

(
1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . .

)4

+
1

5

(
1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . .

)5

+ . . .

]
.

Expanding the quantities in the brackets we obtain

t0 − t ∼ 2
1
2U

1
2

b
+ 2−

3
2U

3
2 − b2−

9
2U

5
2

−2b−
3
2

[
1√
2
b

1
2U

1
2 +

bU

4
− bU

4
− 1

4
√
2
b

3
2U

3
2 +

1

6
√
2
b

3
2U

3
2 − b2U2

32

−b
2U2

32
+

1

8
b2U2 − 1

16
b2U2 + 2−

11
2 b

5
2U

5
2 + 2−

9
2 b

5
2U

5
2

−2−
5
2 b

5
2U

5
2 +

1

5
2−

5
2 b

5
2U

5
2 + . . .

]
.

After doing the appropriate eliminations we get, to leading order, that

t0 − t ∼
√
2

3
U

3
2 +

3

5
bU

5
2 + . . . .

This implies that

U
3
2 ∼ 3√

2
(−t)

(
1 + t0(−t)−1 − 3

5
b(−t)−1U

5
2 + . . .

)
or alternatively

U ∼ a(−t)
2
3

(
1 + t0(−t)−1 − 3

5
b(−t)−1a

5
2 (−t)

5
3 + . . .

) 2
3

∼ a(−t)
2
3

(
1 +

2

3
t0(−t)−1 − 2

5
ba

5
2 (−t)

2
3 + . . .

)
,

and we obtain an expression for the outer approximation.
An alternative way for solving the equation for the outer solution is the following: We

have the equation dt
dU

= −
(

U
2−bU

) 1
2 , or that t0 − t =

∫ (
U

2−bU

) 1
2 dU and we set U = 2

b
sin2(θ)

with dU = 4
b
sin(θ) cos(θ)dθ. Then t0 − t = 4b−

3
2

∫
sin2(θ)dθ = 2b−

3
2

∫
(1− cos(2θ)) dθ =

2b−
3
2

(
θ − 1

2
sin(2θ)

)
= 2b−

3
2

(
θ − 1

2
cos(θ) sin(θ)

)
.

Thus again

t0 − t = 2b−
3
2

[
sin−1

(
bU

2

) 1
2

−
(
bU

2

) 1
2
(
1− bU

2

) 1
2

]
.
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The same leading-order approximation results.
Matching. We have the approximation for the inner region being in the form, for

v ∼ a+ ce−τ
(
η2 + b0

)
+ de−

2
3
τ ,

and U = (−t 32 )v(η),

U ∼ (−t)
2
3

[
a+ c

(x− 1
2
)2

−t
+ d(−t)

2
3

]
.

In addition the approximation for the outer region has the form

U ∼ a(−t)
2
3

(
1 +

2

3
t0(−t)−1 − 2

5
ba

5
2 (−t)

2
3 + . . .

)
,

and in an intermediate region these expressions should be the same and therefore we must

have 2
3
at0 = c(x − 1

2
)2 or t0 =

3c(x− 1
2
)2

2a
. Similarly −2

5
ba

7
2 = d or b = −2

5
a−

7
2d and we get

t0 and b from c and d which are determined by the initial and boundary conditions of the
problem.

Finally for b > 0 and by equation (6.7), we have

U
1
2

b
(2 + bU)

1
2 − 2b−

3
2 ln

[
1√
2
b

1
2U

1
2 +

(
1 +

bU

2

) 1
2

]
∼

3c
(
x− 1

2

)2
2a

− t

and as t→ 0−

U
1
2

b
(2 + bU)

1
2 − 2b−

3
2 ln

[
1√
2
b

1
2U

1
2 +

(
1 +

bU

2

) 1
2

]
∼

3c
(
x− 1

2

)2
2a

,

while for x→ 1
2
and U → 0 we obtain

3c
(
x− 1

2

)2
2a

∼
√
2

3
U

3
2 ,

or that the profile of the solution at the quenching point is

U ∼
(

9c

2
√
2a

) 2
3
(
x− 1

2

) 4
3

.

This gives us an (x− 1
2
)
4
3 dependence of the solution profile near the quenching point x = 1

2
.

Note also that if we rescale to put the factor λ back into the equation, so that (5.1a)
is replaced by Utt = Uxx − λ/U2, then, according to the above analysis, we have that

U(1
2
, t) = 1− u(1

2
, t) ∼ aλ

1
3 (t∗ − t)

2
3 for t→ t∗−.

We note that this asymptotic behaviour for the semilinear hyperbolic problem differs
substantially from that for the corresponding parabolic problem, see [15] for results specifi-
cally for MEMS devices and [8] for general results on the monotonic quenching of solutions
of problems which can be written in the form ut − uxx = λ(1 − u)−β. For the parabolic
problem, centre manifold techniques have been used in showing (i) that the spatially uni-
form quenching solution is unstable and (ii) that the quenching profile differs from that
suggested by the apparently obvious similarity solution (const.×|x − x∗|2/3 for β = 2 and
x∗ the blow-up point) by a factor of | ln |x − x∗||−1/3. For the hyperbolic PDE, although
the simple-minded guess of a self-similar solution again suggests an |x− x∗|2/3 profile, our
formal asymptotics now give local behaviour like |x − x∗|4/3, a quite different power of
distance, apparently without logarithmic dependence.
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These formal asymptotic results are not yet rigorously proved. It is possible that a centre
manifold-type approach might be useful in trying to do so.

7. Numerical Solution

We now carry out a brief numerical study of problem (1.1), with a variety of initial
conditions. A moving mesh adaptive method, based on the techniques suggested in [4], is
used. This captures the behaviour of the solution near a singularity.

More specifically we take initially a partition of M + 1 points in [0, 1], 0 = ξ0, ξ0 + δξ =
ξ1, · · · , ξM = 1. For the solution u = u(x, t), we introduce a computational coordinate ξ
in the interval [0, 1] and we consider the mesh points Xi to be the images of the points
ξi (uniform mesh) under the map x(ξ, t) so that Xi(t) = x(iδξ, t), i = 0, 1, ...,M. Given
this transformation, we have, for the approximation of the solution ui(t) ≃ u(Xi(t), t), that
du(Xi(t),t)

dt
= ut(Xi, t) + uxẊi or ut =

du
dt

− uxxt.
The way that the map, x(ξ, t), is determined is controlled by the monitor function M(u)

which, in a sense, follows the evolution of the singularity. This function is determined by
the scale invariants of the problem ([4]). In our case for the semilinear wave equation of
the form Utt = Uxx − 1/Up for U = 1 − u, p = 2 an appropriate monitor function should
be M(U) = |U |−(p+1)/2.

At the same time we need also a rescaling of time of the form du
dt

= du
dτ

dτ
dt

for dt
dτ

= g(u),
where g(u) is a function determining the way that the time scale changes as the solution
approaches the singularity, and is given by g(u) = 1

∥M(u)∥∞ (see [4]).

In addition the evolution of Xi(t) is given by a moving mesh PDE (see [4]) which has the

form −xτξξ = g(u)
ε

(M(u)xξ)ξ. Here ε is a small parameter accounting for the relaxation
time scale.

Thus finally we obtain a system of ODEs for Xi and ui. We set du
dt

= v and the ODE
system takes the form

dt

dτ
= g(u),

uτ − xτux = g(u)v,

vτ − xτvx = g(u)

(
uxx − λ

1

(1− u)2

)
,

−xτξξ =
g(u)

ϵ
(M(u)xξ)ξ .

We may apply now a discretization in space and we have

ux(Xi, τ) ≃ δxui(τ) :=
ui+1(τ)− ui−1(τ)

Xi+1(τ)−Xi−1(τ)
,

uxx(Xi, τ) ≃ δ2xui(τ) :=

(
ui+1(τ)− ui(τ)

Xi+1(τ)−Xi(τ)
− ui(τ)− ui−1(τ)

Xi(τ)−Xi−1(τ)

)
2

Xi+1(τ)−Xi−1(τ)
,

xξξ(ξi, τ) ≃ δ2ξxi(τ) :=
Xi+1(τ)− 2Xi(τ) +Xi−1(τ)

δξ2
,

(M(u)xξ)ξ ≃ δξ(Mδξx) :=

(
Mi+1 −Mi

2

xi+1 − xi
δξ

− Mi −Mi−1

2

xi − xi−1

δξ

)
1

δξ
.
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Therefore the resulting ODE system to be solved, for

y =(t(τ), v1(τ), v2(τ), . . . vM(τ), u1(τ), u2(τ), . . . uM(τ), X1(τ), X2(τ), . . . XM(τ)) ,

=(t(τ),v,u,X) , v, u, X ∈ RM ,

will have the form

A(τ, y)
dy

dτ
= b(τ, y),

where the matrix A ∈ R3n+1 has the block form

A =


1 0 0 0
0 I 0 −δxu
0 0 I −δxv
0 0 0 −δ2ξ

 , y =


t(τ)
u
v
X

 , b = g(u)


1
v

δ2u− λ 1
(1−u)2

δξ(Mδxξ)

 .
For the solution of the above system a standard ODE solver can be used such as the matlab
function “ode15i”, see [4].
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Figure 2. The numerical solution of problem (1.1) against space and time
for λ = 1.5.

In the figures of this section, the results of various numerical simulations are presented.
In the numerical method we took M = 161.

The parameter used in the differential equation was λ = 1.5, this value being chosen so
as to be slightly greater than the approximate value 1.4 found in Section 3 for λ∗, above
which quenching should occur by Theorem 4.2.

In Figure 2, u(x, t) is plotted against x ∈ [0, 1] and t ∈ [0, T ] for T = 1.1547. In the
next plot, Figure 3, u(x, t) is plotted against x for various times. The uppermost line
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corresponds to the solution of the problem near quenching. The initial conditions were
u0 = 0 and u1 = 0.

Similar numerical simulations were carried out for smaller values of λ, still with zero
initial data. Taking λ approaching 1.4 from above, the same quenching behaviour was
observed. This indicates that, for u0 = u1 = 0, λcr ≈ 1.4. The same was seen to happen
for non-zero initial data u0 lower than w still with u1 = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

u(
x,

t)

Figure 3. Profile of the numerical solution of problem (1.1) for various
times, taking λ = 1.5.

From the numerical solution of problem (1.1) we have that near quenching time t∗,
ln
(
1− u(1

2
, t)
)
∝ ln (t∗ − t) with constant of proportionality 2

3
. This is demonstrated in

Figure 4, where the fluctuations for t beyond t∗ − e−30 are apparently due to numerical
errors.

A similar plot of ln u(x, t∗) against ln(x − 1
2
), in Figure 5, shows that u(x, t∗) behaves

like C(x − 1
2
)
4
3 near quenching. The agreement is also illustrated in Figure 6, where the

solid line shows the numerical solution of problem (1.1) at the quenching time t∗, while the

dotted curve displays 1−
(

9c
2
√
2a

) 2
3
(x− 1

2
)
4
3 . The constant c = 2.1 is chosen in such a way

so that there is agreement of the plots at the boundaries, x = 0, 1.

Similarity solution. It is also of some interest to investigate numerically the behaviour of
possible similarity solutions, even though we have seen that they do not give local behaviour
near quenching. We recall that we have taken 1− u = U = (−t)αv(η), η = (x− 1

2
)/(−t),

with U the solution of the equation Utt = Uxx − 1/U2. In this case the equation for v
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Figure 4. Plot of y = ln
(
1− u(1

2
, t)
)
(solid curve) against ln (t∗ − t) for

λ = 1.5. The straight line (dashed) has slope 2
3
and indicates good agreement

between 1 − u(1
2
, t) and const.×(t∗ − t)

2
3 . The straight line, based on the

analysis of Section 6 from which we have 1 − u(1
2
, t) ∼ aλ

1
3 (t∗ − t)

2
3 for

t→ t∗−, shows y = ln
[
aλ

1
3 (t∗ − t)

2
3

]
= 0.6365+ 2

3
ln(t∗− t) for λ = 1.5 with

a = (9/2)
1
3 .

becomes

(η2 − 1)v′′ − 2

3
ηv′ − 2

9
v = − 1

v2
. (7.1)

For equation (7.1) with initial conditions v(0) = c, a positive constant, and v′(0) = 0,
we consider a uniform partition of an interval [0, L] of M points with δη = L

M−1
and

ηj = (j− 1)δη. Using a simple finite difference scheme and writing vj = v(ηj), j = 1 . . .M ,
we have

(−1)
2v2 − 2v(0)

δη2
− 2

9
v(0) = − 1

v(0)2
(7.2)

for j = 1,

(η22 − 1)
v3 − 2v2 + v(0)

δη2
− 2

3
η2
v3 − v1
2δη

− 2

9
v2 = − 1

v22
(7.3)

for j = 2 and

(η2j − 1)
vj+1 − 2vj + vj−1

δη2
− 2

3
ηj
vj+1 − vj−1

2δη
− 2

9
vj = − 1

v2j
, (7.4)
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Figure 5. Plot of ln(1−u(x, t∗)) (solid curve) against ln(x− 1
2
), for λ = 1.5.

The straight line (dotted) has slope 4/3 and the constant 1.091 is chosen so
that it passes through the point (−5.075,−5.675) on the curve ln(1−u(x, t∗)).
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Figure 6. Plot of u(x, t∗) against x (solid curve) together with the curve(
9c

2
√
2a

) 2
3
(x− 1

2
)
4
3 for c = 2.1, (dotted).
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for j = 3, . . . ,M . From equation (7.2) we can determine v2, from equation (7.3) we can
determine v3 and then using equation (7.4) we can obtain a recursive relation giving us
successively vj+1 for j = 3, . . . ,M − 1.

In Figure 7 the numerical solutions of problem (7.1) are shown for v(0) = a− 1, a, a+1,

where a = 3

√
9
2
and M = 750 for η ∈ [0, L], L = 3.2. We notice that for v(0) = a − 1 the

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

η

v(
η)

a−1

a

a+1

Figure 7. Plots of the solutions v(η) of equation (7.1) against η for v(0) =
a− 1, a, a+ 1 .

solution attains a singularity at η = 1, for v(0) = 1 we get the constant solution v ≡ a,
while for v(0) = a+1 the solution falls to zero at some η <∞ – as indicated by the analysis
of Section 5.

Discussion

In the current work we have investigated the quenching behaviour of a one-dimensional
semilinear wave equation modelling the operation of an electrostatic MEMS device. After
establishing local existence, we have proved that the solution u of the equation quenches
in finite time, i.e. ||u(·, t)||∞ → 1 as t→ t∗− <∞ whenever the parameter of the problem
λ > λ∗, where λ∗ is the supremum of the spectrum of the associated stationary problem.
Although this type of result is fairly standard for related parabolic problems, it is (as far
as we are aware) new for nonlinear hyperbolic equations. We also showed that quenching
occurs in the parameter range 0 < λ < λ∗ if the initial conditions are large enough. Similar
results were also found for the practically important two-dimensional case, and indeed for
the three-dimensional case. Furthermore, in the second part of this work the quenching
profile of the solution was studied. In particular, the existence of self-similar solutions
was investigated and our main result in this direction was the surprising one that no non-
constant regular self-similar solutions occur. With the aid of this result we studied the
profile of the solution near a quenching point and, by use of formal asymptotics, we got
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that the solution resembles a curve of the form (x−quenching point)4/3. Finally, numerical
solutions of the problem confirmed the results on the quenching profile.
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