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ABSTRACT 

This study investigated changes in anthropometry and performance, and their inter-

relationships, across three consecutive seasons (under-15 to under-17 age group) in elite 

youth rugby league players. Each player took part in annual anthropometrical and 

performance assessments, comprising measurements of stature; body mass; limb lengths and 

circumference; skinfolds, predicted muscle cross-sectional area (CSA); 20 m speed, counter-

movement jump height, vertical power and aerobic power. Lean body mass % changed (P < 

0.05) between the under-15 (70.9 ± 5.9 %), under-16 (72.0 ± 5.8 %) and the under-17 age 

groups (74.1 ± 5.7 %). Likewise, predicted quadriceps muscle cross-sectional area (CSA) 

also changed (P < 0.05) between each age group (under-15 = 120.9 ± 37.8 cm2; under-16 = 

133.2 ± 36.0 cm2; under-17 = 154.8 ± 28.3 cm2). Concomitant changes between the under-15 

and under-16 group were found for 20 m speed (3.5 ± 0.1 cf. 3.4 ± 0.2 s; P = 0.008) and 

predicted jumping power (3611.3 ± 327.3 W cf. 4081.5 ± 453.9 W; P = 0.003). Both lean 

body mass and quadriceps muscle CSA consistently, related to both 20 m sprint time and 

jumping power, with r-values ranging between -0.39 to –0.63 (20 m sprint time) and 0.55 to 

0.75 (jumping power). Our findings demonstrate the importance of gains in lean body mass 

across later-adolescence that support the ability to generate horizontal speed and predicted 

vertical power. This information should inform the expectations and subsequent training 

programs of elite rugby league practitioners.  

 

Key words: team sport; speed; power 
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INTRODUCTION  

Rugby league is a contact team sport, played professionally in Australasia (National Rugby 

League and Europe (Super League). Super League clubs based in the UK are often engaged 

in talent development programs, co-ordinated by the Rugby Football League (RFL). Between 

the under-15 and under-16 age group, young players are contracted via Scholarship to an elite 

Super League club. At this stage, players begin to play competitively for their club and take 

part in formal competition with other elite clubs. At the final stage of development (16 to 18 

years), players reach the Academy squad, which marks their transition from junior to senior 

standard. During this stage, players may also be accelerated to the full senior squads.  

 

Adult rugby league involves prolonged periods of low-to-moderate intensity movement, 

interspersed by multiple sprints and contacts with the opposition (18,38,48). Adolescent 

youth players perform a similar pattern of activities during a match, with a notable 10-min 

annual increase in match duration. An increase in match duration is accompanied by an 

inevitable increase in the exposure to physical contacts during match time. Given that body 

mass and body composition have a known relationship to tackling ability among adult rugby 

league players (17), the development of such characteristics among adolescent players is 

clearly warranted.   

 

During later adolescence, a marked development in physical dimensions should be 

anticipated after the occurrence of peak maturity at approximately 13.8 years (39). Such a 

period is accompanied by significant increases in serum testosterone over six month intervals 

and a concomitant increase in stature, body mass and testicular volume (25,47). Increases in 
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circulating growth androgens, such as testosterone and dihydrotestosterone, have an anabolic 

effect on structural protein production, leading to muscular and skeletal development (8). 

Among youth sports players, increases in physical size are related to improvements in 

functional performance in the years after the onset of puberty (3,26,27,40). However, there is 

currently no data to show the time-course of typical changes in anthropometry and physical 

performance during later adolescence among elite, youth rugby league players. Developing 

further understanding of physical growth among adolescent rugby league players and the 

relationship to performance would help to inform the expectations and subsequent training 

programs of elite rugby league practitioners. Accordingly, the aim of this study was to 

monitor changes in selected anthropometrical variables and performance, and their inter-

relationships, across three consecutive seasons (under-15 to under-17 age group) among elite 

rugby league players.      

 

METHODS 

Experimental Approach to the Problem 

A longitudinal study was performed, whereby elite, youth rugby league players took part in 

annual anthropometrical and performance assessments. As part of their support program, the 

players’ hydration and nutritional status was regularly monitored and, if required, adjusted 

(weekly) by sports scientists employed by the club. The assessments were undertaken within 

the same month of each year, before the start of the competitive playing season, at the same 

time of day (15:00 – 18:00). At each age group, correlational analyses were performed to 

establish the relationship between functional performance and various physical dimensions.  
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Subjects 

Thirteen elite, youth rugby league Scholarship/Academy consented to take part in a three-

season longitudinal study, beginning at the under-15 age group (15.1 ± 0.3 y) and 

subsequently transitioning to the under-16 (16.2 ± 0.3 y) and under-17 age groups (17.0 ± 0.3 

y). Consent was also obtained from the players’ parent/guardians and the Rugby Football 

League (RFL) pursuant to law and Institutional Board approval for the study was granted by 

the Faculty of Applied Health Sciences Ethics Committee. The players followed a supervised 

training program, attending three-four sessions per week, comprising field-based aerobic 

training, gym-based resistance training, small-sided rugby games, as well as playing 

competitively for the club. During the early pre-season stages, the resistance sessions 

comprised high-volume, low-intensity (i.e. 4-5 sets of 3 x 15 repetitions), using a range of 

simple multi-joint exercises, such as squats, lunges and bench press. After 3-4 weeks, this 

was progressed to lower-volume, higher-intensity training (i.e. 3 sets of 3 x 10 repetitions) 

leading to the start of the season. During this time, the players completed a cycle of additional 

upper- and lower-body movements (i.e. shoulder-press, wide-grip pull-downs, seated-rows, 

chin-ups, upright-rows, dumbell-flys, leg-press and deadlifts). The loads used by players 

were generally increased each year based on their individual progression in technique, 

strength and body mass. Throughout the competitive season, a maintenance program was 

administered to the players, comprising short sessions (i.e. 3 x 1-2 sets x 6 repetitions) of 

functional, power-based movements, such as bench-throws, gladiator twists and a variety of 

Olympic-style lifts, depending on the experience and technique of the player. Conditioning 

sessions were based on the movement profiles observed during competition and employed a 

variety of repeated-sprint and high-intensity interval field sessions. In addition, a variety of 

small-sided games were delivered by the coaching staff that varied depending on the tactical 

or technical requirements of the squad. The players were involved in between six to eight 
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competitive matches for the elite club each year, which were played against other elite super 

league teams in the UK.     

 

Skinfold measurement  

Participants were required to stand in an anatomical position whilst being palpated by the 

researcher for body land marks. Once the appropriate land mark had been located, a total of 

six skinfold sites, included within the International Society for the Advancement of 

Kinathropometry (ISAK) standard criteria (37), were marked on the right hand side of the 

participant’s body using a fine point felt tip pen and a tape measure. The sites included; 

triceps, biceps, sub-scapular, abdomen, front-thigh and pectoral. Skin-folds were measured 

using pre-calibrated Harpenden (British Indicators, UK) callipers. Each site was measured 

three times from which the median value was recorded (37). Body fat percentage was 

predicted using the equation of Jackson and Pollock (30). Intra-tester reliability from two 

trials performed on different occasions ranged from 1.2% to 3.5% (CV).  

 

Stature, mass and limb length measurement 

Stature and seated stature were measured using a portable stadiometer (Seca, Leicester height 

measure, Hamburg, Germany). For the measurement of seated stature, participants were 

seated on a flat, hard surfaced bench of a known vertical height, which was used throughout 

the three-year period. The stretch-stature technique was used in each case with measurements 

being recorded to the nearest 0.1 cm. Leg length was derived from the subtraction of seated 

stature form overall stature (34). Body mass was measured using Seca beam scales (Seca, 

Hamburg, Germany) to the nearest 0.1 kg, with players wearing only the standard squad 
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shorts and socks (the kit being worn was weighed and subsequently deducted from the final 

result). The approximate length of the humerus was measured through palpation of the 

acromion, following from the lateral lip to the greater tuberosity, which is inferior to the 

acromion’s internal edge. From this point, the examiner measured the length of the humerus 

to the lateral epicondyle to complete the measurement, which was recorded with a tape 

measure on the right hand side of the body to the nearest 0.1 cm. Femur length was obtained 

by initially seating the participant at the appropriate height in order to reach 90° flexion of the 

knee joint (which was verified using a goniometer on the right hand side). Femur length was 

measured as the distance from the anterior superior iliac spine to a square plate positioned on 

the surface of the patella. Each site was measured three times from which a median value was 

obtained. Intra-tester reliability (CV%) from two trials, separated by one hour was 1.8% and 

1.5% for the humerus and femur measurements, respectively. The maturity of the players (i.e. 

age at peak height velocity; APHV) required the assessment of stature, body mass, seated 

stature and leg length, that are substituted into the equation; maturity offset = -9.236 + 

0.0002708 · (leg length · sitting height) - 0.001663 · (age · leg length) + 0.007216 · (age · 

sitting height) + 0.02292 · (weight/height), with R2 = 0.891, and standard error of estimate = 

0.592 (39). The maturity offset values were later subtracted from the chronological age of the 

players to calculate APHV. 

 

Circumference measurement and predicted muscle cross-sectional area (CSA) 

Circumference measurements were taken from each player in accordance with the guidelines 

of Malina et al. (34) and Mandleco (36). These included: chest, quadriceps, mid upper-arm 

(bicep), and calf circumferences, recorded on the right-hand side of the body where 

appropriate. The participants were firstly marked using a fine-point felt tip pen and 
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subsequently measured using a measuring tape to the nearest 0.1 cm on the appropriate 

anatomical landmarks. The median value of three measurements was recorded. The 

quadriceps and calf circumferences required the participant to stand with their right hip, knee 

and ankle flexed in front of them, placing their foot in a 90° position on a bench (verified 

using a goniometer). The measurement of the mid-line of the quadriceps was obtained half-

way between the greater trochanter and the lateral epicondyle. Whilst in this position, the 

maximum circumference of the calf was also recorded. The measurement of the upper-arm 

circumference was obtained with the participant in the anatomical position. The upper-arm 

circumference was identified as the mid-point of the humerus measurement previously 

described. The chest circumference was taken by horizontally passing the measuring tape 

around the body of the participant at the level of the nipples. The reliability (CV%) was 

established as: quadriceps = 2.3%; upper arm = 1.2%; calf = 1.1%; chest = 1.4% The muscle 

cross-sectional area (CSA) of the right quadriceps region was predicted using the multiple 

regression equation of Housh et al. (28), whereby; CSA = (4.68 		quadriceps circumference) 

– (0.64	  quadriceps skinfold) - 22.69. The equation of Housh and colleagues has an error of 

between 5 cm2 and 14.3 cm2 for quadriceps muscle CSA and has been suggested as a viable 

indirect alternative to criterion measurements in young athletic populations (28). 

 

Counter-movement jump (CMJ) height and predicted vertical power 

Maintaining a stance at shoulder width, participants flexed their knees in a rapid downward 

motion, reaching approximately 90º, before rapidly extending their knees and driving in an 

upward motion to complete the jump. The participants performed three jumps with the 

highest jump used for analysis. CMJ height (cm) was calculated as the difference between 

landing and take-off time recorded using a timing mat system (Just Jump System, Probotics 
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Inc., Huntsville, AL). Vertical power (W) was estimated based on the equation; CMJ power 

(W) = 61.9  jump height (cm)  36.0 	body mass (kg) – 1822. This equation was selected 

since reports have demonstrated no systematic difference to power recorded on a force 

platform (9). The reliability of the CMJ height was 2.1% (CV). 

 

20 m sprinting speed 

The protocol consisted of two maximal sprint efforts, starting from a standing position, 

separated by a period of three minutes of recovery. The sprinting course was marked with a 

pre-measured (tape measure) straight painted line, upon which timing gates were positioned 

at 0 and 20 m. Timing gate height was set at 60 cm (12). On both occasions, participants were 

instructed to start sprinting from 30 cm behind the first timing gate, from their preferred foot, 

until they had passed through the final gate. A split time was recorded at 20 m from a 

wireless receiver (Brower timing systems, Utah, USA) accurate to 0.01 s. The best time 

performed by participants over each interval was recorded for statistical analysis. The CV% 

for sprinting time was 1.4% 

 

Aerobic endurance 

Maximal aerobic endurance was estimated using the multistage fitness test (33).  Players 

were required to run back and forth between two cones placed 20 m apart, keeping in time 

with a series of audio signals played through a CD player. The frequency of the signals and 

subsequent running speed was progressed by 0.138 m·s-1 (0.5 km·h-1) increments, starting 

from 2.22 m·s-1 (8 km·h-1), until participants reached volitional exhaustion. Maximal aerobic 

capacity (VO2max) was later determined using a linear regression equation (41). Among rugby 
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league players ranging between the ages of 15 to 18 years, the intra-class correlation 

coefficient for test re-test reliability and typical error of measurement for the multistage 

fitness test have previously been reported as 0.9% and 3.1%, respectively (20). 

 

Statistical analyses 

After the appropriate diagnostic checks for normality and sphericity, one-way repeated-

measures analyses of variance (one-way RM-ANOVA) were used to identify overall 

differences in measurements of anthropometry and performance amongst the players 

competing within the under-15, -16 and -17 age groups. Specific differences were identified 

using paired t-tests and a Benjamini Hochberg false discovery rate adjustment to control the 

type I error rate (6). Pearson’s correlation coefficient (r) was used to assess the bivariate 

relationships between each anthropometric variable (aside from individual skinfold 

measurements) and the tests of physical performance for each year of competition. The r- 

value was interpreted according to Cohen (11) where 0.1 = poor, 0.3 = moderate and 0.5 > = 

strong. Data analysis was performed with the SPSS version 19. 

 

RESULTS 

There was a significant age group effect on stature (F (2,24) = 12.321, P < 0.001), with the 

group growing taller between the under-15 and under-16 age groups (179.2 ± 4.6 cm cf. 

179.9 ± 4.5 cm, respectively; P  = 0.004) (Figure 1). An age group effect was also found for 

seated stature (F (2,24) = 14.624, P < 0.001), with follow-up paired t-tests showing specific 

differences between the under-15 group and under-16 groups (93.4 ± 2.3 cm cf. 94.5 ± 2.2 

cm, respectively; P = 0.003). Whilst there was an incremental trend for leg length, there were 
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no significant age group effects (F (2,24) = 1.395, P = 0.267) (Table 1). Femur length increased 

over time (F (2,24) = 5.261, P = 0.013) with specific differences between the under-15 group 

and under-16 group (44.2 ± 1.9 cm cf. 45.2 ± 2.2 cm, respectively; P = 0.003) and the under-

15 and under-17 group (44.2 ± 1.9 cm cf. 45.3 ± 2.5 cm, respectively; P = 0.004). No changes 

in humerus length were observed over time (F (2,24) = 0.91, P = 0.913) (Table 1). The APHV 

increased on an annual basis (F (2,24) = 100.766, P < 0.001), with differences observed from 

the under-15 group to -16 group (1.31 ± 5.48 y cf. 1.73 ± 0.27 y, respectively; P < 0.001), 

followed by the under-16 group to under-17 group (1.73 ± 0.27cf. 2.16 ± 0.31 y, respectively; 

P < 0.001) (Table 1). 

 

********************Table 1 near here********************* 

 

As shown in Figure 1, quadricep circumference changed over time (F (2,24) = 3.866, P = 

0.035) between the under-15 group and under-17 group (58.1 ± 3.9 cm cf. 59.9 ± 4.7 cm, 

respectively; P = 0.040) and the under-16 group and under-17 group (58.1 ± 3.9 cm cf. 59.9 ± 

4.7 cm, respectively; P = 0.043). The ANOVA also revealed age group effects for chest 

circumference (F (2,24) = 5.402, P = 0.012), which were a result of annual changes between 

the under-16 group and under-17 group (103.0 ± 6.2 cm cf. 105.3 ± 5.4 cm, respectively; P = 

0.006) and between the under-15 group and under-17 group (102.2 ± 5.8 cm cf. 105.3 ± 5.4 

cm, respectively; P = 0.013) (Table 1). Whilst the upper-arm circumference (F (2,24) = 1.138, 

P = 0.337) and calf circumference (F (2,24) = 1.448, P = 0.225) did not change over time 

(Table 1), predicted quadriceps muscle cross-sectional area (CSA) did show age group-

related changes (F (2,24) = 11.140, P < 0.001) (Figure 1). Paired t-tests showed that there were 

differences between the under-15 and under-16 group (120.9 ± 37.8 cm2 cf. 133.2 ± 36.0 cm2, 
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respectively; P = 0.015), the under-16 and under-17 group (133.2 ± 36.0 cm2 cf. 154.8 ± 28.3 

cm2, respectively; P = 0.006) and the under-15 and under-17 group (120.9 ± 37.8 cm2 cf. 

154.8 ± 28.3 cm2, respectively; P = 0.004) (Figure 1).  

 

Body mass changed over time (F (2,24) = 2.339, P = 0.011) between the under-15 group and 

under-17 group (81.9 ± 9.1 kg cf. 86.3 ± 9.4 kg, respectively; P = 0.017) and the under-15 

group and -16 group (81.9 ± 9.1 kg cf. 86.1 ± 6.0 kg, respectively; P = 0.020) (Table 1). 

Accordingly, lean body mass % also changed over time (F (2,24) = 6.522, P = 0.005) with 

differences found between under-15 and the under-16 group (70.9 ± 5.9 % cf. 72.0 ± 5.8 %, 

respectively; P = 0.033 under-16 group and under-17 group (72.0 ± 5.8 % cf. 74.1 ± 5.7 %, 

respectively; P = 0.007) and the under-15 group and the under-17 group (70.9 ± 5.9 % cf. 

74.1 ± 5.7 %, respectively; P = 0.008) (Table 2).  

 

********************Figure 1 near here********************* 

 

********************Table 2 near here********************* 

 

As demonstrated in Table 2, the ANOVA showed an age group effect for the tricep skinfold 

(F (2,24) = 5.595, P = 0.010) with a specific decrease in skinfold thickness between the under-

16 group and under-17 group (12.7 ± 4.1 mm cf. 10.4 ± 3.0 mm, respectively; P = 0.001) and 

between the under-15 group and under-17 group (12.8 ± 5.5 mm cf. 10.4 ± 3.0 mm, 

respectively; P = 0.048). There were further time effects present for the quadricep skinfold (F 
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(2,24) = 4.113, P = 0.029) which was attributable to a reduction in skinfold thickness between 

the under-15 group and under-17 group (19.8 ± 8.0 mm cf. 16.1 ± 5.7 mm, respectively; P = 

0.038) and the under-16 and under-17 group (18.0 ± 6.7 mm cf. 16.1 ± 5.7 mm, respectively; 

P = 0.038). No significant time effects were apparent for the bicep skinfold (F (2,24) = 1.709, P 

= 0.202), the sub-scapula skinfold (F (2,24) = 0.564, P = 0.576), the abdominal skinfold (F 

(2,24) = 0.731, P = 0.492) and the pectoral skinfold (F (2,24) = 0.840, P = 0.444). There were no 

no changes in the sum of six skinfolds (F (2,24) = 0.755, P = 0.481) or the predicted 

percentage of body fat (F (2,24) = 0.307, P = 0.739) between the age groups. 

 

There were age-group effects for 20 m sprint time (F (2,24) = 11.9, P < 0.001), with post-hoc 

tests revealing differences between the under-15 group and under-16 group (3.5 ± 0.1 cf. 3.4 

± 0.2 s, respectively; P = 0.008). There were further differences between the under-15 group 

and under-17 group for 20 m sprint time (3.5 ± 0.1 c.f. 3.3 ± 0.1 s, respectively; P < 0.001) 

(Table 3). However, no differences (P > 0.05) were found in sprint time between the under-

17 group and the under-16 group. There were no age group effects for countermovement 

jump height (F (2,24) = 1.409, P = 0.906); however, there were differences for predicted 

vertical power between age groups (F (2,24) = 14.845, P < 0.001). An age group effect was 

found for predicted VO2max (ml·kg-1·min-1) (F (2,24) = 5.789, P < 0.001), which was 

attributable to lower values in the under-16 group compared to the under-17 group (48.3 ± 

3.6 ml·kg-1·min-1 cf. 52.2 ± 3.5 ml·kg-1·min-1, respectively; P < 0.001) and in the under-15 

group compared to the under-17 group (48.1 ± 3.4 ml·kg-1·min-1 cf. 52.2 ± 3.5 ml·kg-1·min-1, 

respectively; P < 0.014). As with all other performance measurements, post-hoc tests showed 

differences between the under-15 group and under-16 group (3611.3 ± 327.3 W cf. 4081.5 ± 

453.9 W, respectively; P = 0.003) and the under-15 group and under-17 group in favour of 

the older age groups (3611.3 ± 327.3 W cf. 4141.3 ± 397.1 W, respectively; P < 0.001).  
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********************Table 3 near here********************* 

 

During each age group, lean body mass was strongly related to predicted vertical power, with 

annually developing r-values of 0.55 (under-15), 0.67 (under 16) and 0.70 (under 17) (Table 

4). Similarly, quadricep CSA was strongly related to vertical jump power, with annually 

developing r-values of 0.67 (under-15), 0.68 (under-16) and 0.75 (under-17). There were 

further moderate-strong (inverse) relationships between 20 m sprint time and quadriceps 

CSA, with r-values developing each year from -0.41 (under-15), -0.55 (under-16) and -0.63 

(under-17). Similarly, lean body mass was also inversely related to 20 m sprint time at the 

under-15 (r = -0.39), under-16 (r = -0.48) and under-17 age groups (r = -0.57). Predicted 

VO2max and CMJ were not related (P < 0.05) to any of the anthropometrical variables at any 

age group.    

 

 

********************Table 4 near here********************* 

 

 

DISCUSSION 

This is the first study to document longitudinal developments in physical performance and 

anthropometric dimensions during late adolescence in rugby league players. Notably, the 

period between the under-15 and the under-16 age groups showed the greatest improvements 
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in short, powerful movements. For example, there were reductions (faster) in 20 m sprinting 

time and concomitant increases in predicted vertical power between these age groups (Table 

3). Interestingly, between the under-16 and under-17 age groups (later period), there were no 

differences in speed or vertical power, yet an improvement in predicted O2max was observed. 

That improvement in aerobic and anaerobic fitness qualities occurred at distinctly different 

time points during the late adolescence of rugby league players provides a useful insight for 

practitioners. Fundamentally, our findings inform practitioners of when to expect 

developments in speed and power, which have been shown to relate to tackling performance 

among adult rugby league players (17). Furthermore, the later developments in aerobic power 

are likely to support high-intensity running during matches as player’s progress toward the 

professional level (18).   

 

The larger improvements between the under-15 and under-16 age groups in functional tests 

of performance should be expected owing to the anticipated rate of physical growth at this 

age (7). At the age of 15, the players were approximately one year post-peak height velocity 

(on average), which has been associated with significant increases in serum testosterone and 

concurrent increases physical size (25,47). Such changes reflect a post-pubertal period of 

muscular development, resulting in increased sprinting, jumping and (3, 22,26). Indeed the 

progressively stronger relationships found between 20 m sprint time and both quadriceps 

muscle CSA and lean body mass at each age group (Table 4), highlights the importance of 

muscular growth to short term, maximal sprint performance. Whilst limited by their cross-

sectional design, research with regional standard rugby league players has also shown 

differences in short explosive movements, such as vertical jumping (4.8% to 17.8%; 

15,16,45) and 10 m sprint performance (1.6% to 2.7%; 15,16,45) between the earlier ages of 

either 14 to 15 and 15 to 16 years. However, between the later age groups of 16 and 18, 
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reports from Australia have showed no change in various parameters of performance, such as 

speed, agility and aerobic capacity (15,16). Such findings are in partial agreement with the 

current study and signify a delayed developmental period in maximal, short-term 

performance during later adolescent years.  

 

An important development between the under-15 and under-16 groups appears to be the 

predicted power output from the vertical jump performance. This was not the case with 

absolute values for countermovement jumping, which has been reported as a predictor of 

selection in other related sports, such as Australian Football (32). Moreover, there was a 

strong relationship between both lean body mass and quadriceps muscle CSA at each age 

group (Table 4). These relationships are consistent with changes in peak explosive power, 

which may be developed from an increase in type II muscle fibre composition and 

neuromuscular firing patterns (amongst other factors) as a function of biological maturity 

(1,42). Such relationships also highlight the intimate relationship between muscle volume and 

anaerobic performance at post-pubertal stages (4). Indeed, cross-sectional muscle area is 

dictated by the number of sarcomeres arranged in parallel, which, in turn, is related to the 

force production of the muscle (1). Therefore, the increase in quadriceps CSA, and 

subsequent number of sarcomeres in series, increases the time available for actin and myosin 

interaction, thus increasing the force and eventual power production of the muscle during 

shortening sequences (2). Predicted vertical power represents an additional dimension of 

relative short-term, power output and supports the assertion that gains in lower-limb power 

development should be considered in accordance with concomitant developments in fat-free, 

propulsive mass. Given that CMJ height did not improve at any age group, our findings might 

indicate the future scope to apply ‘ratio’ techniques to performance assessment with youth 

rugby league players. That is, the assessment of performance measures in relation to 
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anthropometric variables, such as body mass and stature (13). Adopting such an approach 

might help to better understand the development of short, maximal performance among youth 

rugby league players. 

 

The 8% increase in predicted O2max between the under-16 and -17 age groups represents a 

large progression in aerobic power. Similar improvements have been reported among 18 

year- old soccer players, along with increases (6.7%) in running economy (23). Our findings 

provide evidence of the time-point that improvements in shuttle running performance can be 

expected and are similar to data published on elite male field hockey players of the same age 

group (14). Indeed, among adolescent boys, changes in absolute O2max continue into later 

adolescence (4,5). While changes in aerobic power are often attributed to concurrent 

increases in lean body mass, we found no relationship between these measurements. 

Therefore, it is likely that more specific alterations in muscle morphology and metabolism 

explain the marked increase in aerobic power at later adolescent years (8).   

 

This is the first study to evaluate the longitudinal development of anthropometric 

characteristics among youth rugby league players during later adolescence. This period 

coincided with an increase in stature, seated stature and femur length during the first 

transitional period, followed by a lagged increase in quadriceps circumference, chest 

circumference, lean body mass and predicted muscle CSA of the quadriceps among the 

under-16 to under-17 age groups. The biological events that occur during the post-pubertal 

years are complex and include changes in the nervous and endocrine systems that, in turn, co-

ordinate anthropometric and physiological alterations (34). The observed patterns, which 

showed a change in various indications of bone length (stature, seated stature and femur 
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length) during post-PHV stages, are consistent with the normal male growth curves presented 

by previous authors and represent the anticipated slowing of growth velocity during later 

teenage years (31,43). However, the initial age (~15 y) of the current participants was 

marginally greater (~1-2 y) compared to the starting age reported within previous 

longitudinal or cross-sectional rugby league studies (16,45) or other team-based sports (29, 

40), thereby increasing the likelihood of advanced biological maturity. Indeed, the height 

velocity demonstrated between the under-15, -16 and -17 age groups (mean change < 1 

cm·year-1) was much smaller than expected for players in comparable age ranges in field 

hockey (14) and soccer (40). This is perhaps related to the later initial measurement of stature 

which was approximately 3 cm larger than the aforementioned reports, coupled with the 

likelihood of advanced biological maturity among players in British-based youth rugby 

league (45).   

 

The body mass of the rugby league cohort was 81.9 kg and increased by 4.2 kg·year-1 at the 

first transitional stage. This matches the rate reported in previous longitudinal studies but 

highlights the superior mass of rugby league players compared to that of normal populations 

(~60-67 kg; 43,44) or samples of soccer (~58 kg; 35), hockey (58 kg; 14) and basketball 

players (~67 kg; 10) of the same chronological age. Notwithstanding the discrepancies 

between different skinfold sites and body composition estimations, the body fat percentage 

and sum of six skinfolds in the current study was also similar to previous research among 

youth rugby league players (45). Therefore, the most logical mechanisms accounting for such 

similarities in body mass velocity between the age groups of the under-15 group and -16 

group may be related to changes in fat-free mass dimensions. Indeed, changes in quadriceps 

and chest circumference are also consistent with training-induced adaptations and were likely 

related to the annually-phased resistance training programs undertaken by the players. The 
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training of the current cohort consisted of specific hypertrophy cycles during non-competitive 

stages, that were similar to programs that develop muscle CSA with team sports participants 

of this type (21). The large gains from 71.8% to 74.1% in fat-free mass (2.3% increase) over 

later adolescence in Scholarship rugby league players develops at a rate beyond that in other 

sports, such as soccer, where less than a 1% change in fat-free mass has been reported 

between the same age groups (29,47). These findings have relevance for rugby league 

practitioners and show that increases in quadriceps muscle CSA, upper arm circumference 

and, consequently, both fat and lean body mass distinguishes young rugby league players 

from other team sports players.  

 

PRACTICAL APPLICATIONS 

 

This study demonstrates the time-course of change in physical development and performance 

among elite youth rugby league players across later adolescence. This information can be 

used to gain a greater understanding of player development patterns in youth rugby league. 

For example, the notable gains in lean body mass appear to characterize youth rugby league 

players and are much larger than previously demonstrated in other team sports, such as soccer 

and field hockey (29,47). Such changes, coupled with the increase in predicted muscle mass 

of the quadriceps, supports the ability to generate horizontal speed and predicted vertical 

power. The later gain in aerobic capacity provides practitioners with a notion of when to 

expect changes of this type. The continual use of each of the field-based measurement 

techniques utilised in the current study would be beneficial to clubs wishing to monitor 

changes in performance across age-groups. Future research should consider evaluating the 

efficacy of training interventions across similar time-periods in order to further understand 
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their influence on physical development and performance that have been demonstrated 

herein.  
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Figure 1. Average and individual annual data plots for stature (panel A), quadriceps 

circumference (circ; panel B) and quadriceps cross-sectional area (CSA; panel C) (n = 13).    
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Table 1. Annual data (mean ± SD) for age, stature, body mass, circumferences 
and limb lengths across three consecutive youth rugby league age groups (n = 13). 

  Under-15 Under-16 Under-17 
Age (y) 15.1 ± 0.3 16.2 ± 0.3 17.0 ± 0.3 
Seated stature (cm) 93.4 ± 2.3 94.6 ± 1.9* 94.7 ± 2.1* 
Leg length (cm) 85.3 ± 4.2 85.7 ± 4.0 85.7 ± 3.9 
Body mass (kg) 81.9 ± 9.1 86.1 ± 6.0* 86.3 ± 9.4* 
Upper-arm circ (cm) 33.6 ± 2.0 33.9 ± 2.6 34.4 ± 2.6 
Calf circ (cm) 38.5 ± 2.6 39.1 ± 2.8 39.0 ± 3.1 
Chest circ (cm) 102.2 ± 5.8 103.0 ± 6.2 105.3 ± 5.4*† 
Femur length (cm) 44.2 ± 1.8 45.2 ± 2.2* 45.3 ± 2.5* 
Humerus length (cm) 34.9 ± 1.2 34.9 ± 1.2 34.9 ± 1.5 
Maturity offset (y) 1.04 ± 0.40 1.73 ± 0.27* 2.16 ± 0.31*†

Note: circ = circumference; * = sig. different (P < 0.05) from under-15 age group; † = sig. 
different from under-16 age group. Age was not considered as an outcome variable.  
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Table 2. Annual data (mean ± SD) for skinfolds, predicted body fat and lean body 
mass across three consecutive youth rugby league age groups (n = 13). 

  Under-15 Under-16 Under-17 
Bicep SKF (mm) 6.0 ± 2.0 6.8 ± 2.1 6.1 ± 1.8 
Tricep SKF (mm) 12.8 ± 5.5 12.7 ± 4.1* 10.4 ± 3.0*† 
Sub-scapular  SKF (mm) 15.1 ± 7.4 14.8 ± 5.0 13.8 ± 4.3 
Abdominal SKF (mm) 20.8 ± 8.1 20.2 ± 7.7 22.4 ± 7.0 
Pectoral SKF (mm) 9.4 ± 3.1 8.5 ± 2.7 9.0 ± 2.7 
Quadricep SKF (mm) 19.8 ± 8.0 18.0 ± 6.7* 16.1 ± 5.7*† 
Sum of 6 SKF (mm) 83.9 ± 30.3 81.0 ± 25.0 77.8 ± 20.8 
Predicted body fat (%) 13.1 ± 5.0 13.4 ± 4.4 13.7 ± 4.0 
Lean body mass (%) 70.9 ± 5.9 72.0 ± 5.8* 74.1 ± 5.7*† 

Note: SKF = skinfold; * = sig. different (P < 0.05) from under-15 age group; † = sig. different 
from under-16 age group. 

 

 

 

 

Table 3. Annual performance data (mean ± SD) for across three consecutive youth rugby league 
age groups (n = 13). 

  Under-15 Under-16 Under-17 
20 m sprint time (s) 3.5 ± 0.1 3.4 ± 0.2* 3.3 ± 0.1* 
CMJ height (cm) 47.0 ± 3.0 47.3 ± 4.9 47.6 ± 5.5 
Predicted vertical power (W) 3611.3 ± 327.3 4081.5 ± 454.9* 4141.3 ± 397.1*
VO2max (ml·kg-1·min-1) 48.1 ± 3.4 48.3 ± 3.6 52.2 ± 3.5*† 

Note: CMJ = counter-movement jump; * = sig. different (P < 0.05) from under-15 age group; † = sig. different 
from under-16 age group. 
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Table 4. Relationships between selected anthropometric and performance variables  

 

                                                                     Pearson correlation coefficient r (P-value) 

    
Quadricep CSA (cm2) Lean Body Mass (%)

Under-15 20 m Sprint time (s) -0.41(0.022) -0.39 (0.034) 

 Predicted vertical power (W) 0.67 (0.014) 0.55 (0.011) 

Under-16  20 m Sprint time (s) -0.55 (0.010) -0.48 (0.017) 

  Predicted vertical power (W) 0.68 (0.006) 0.67 (0.001) 

Under-17 20 m Sprint time (s) -0.63 (< 0.001) -0.57 (0.002) 

  Predicted vertical power (W) 0.70 (< 0.001) 0.75 (< 0.001) 


