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Computational methods for a mathematical model of propagation of nerve
impulses in myelinated axons
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Abstract

This paper is concerned with the approximate solution of a nonlinear mixed type functional differential
equation (MTFDE) arising from nerve conduction theory. The equation considered describes conduction in
a myelinated nerve axon. We search for a monotone solution of the equation defined in the whole real axis,
which tends to given values at ±∞. We introduce new numerical methods for the solution of the equation,
analyse their performance, and present and discuss the results of the numerical simulations.

Keywords: Discrete FitzHugh-Nagumo equation, Mixed-type functional differential equation, method of
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1. Introduction

In 1952, A. Hodgkin and A. Huxley [11] introduced a mathematical model that describes the excitation
and flow of electrical current through the surface of a giant nerve fibre from a squid. This model (usually
known as the HH-model) consists of a system of four ordinary differential equations with four unknowns
(the state variables V,m, h, n), of which V is the membrane potential difference and the remainder are con-
ductance variables. An extensive mathematical analysis of this model has been carried out by R. FitzHugh
[8], [9]. In order to explain the main features of the HH-model, R. FitzHugh reduced it to a system of two
ODES, still conserving the main properties of the original system. The reduced system, which he called the
Bonhoeffer-Van der Pol (BVP) model, has the form:{

dx
dt = c(y + x− x3/3 + z)
dy
dt = −(x− α+ βy)/c

, (1)

where z is a known function (the so-called stimulus intensity, which corresponds to membrane current in
the HH-model); α, β, c are constants satisfying

1− 2β

3
< α < 1, 0 < β < 1, β < c2. (2)
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In the case α = β = z = 0, system (1) reduces to the well-known Van der Pol equation. R. FitzHugh used
phase space and stability theory to investigate the qualitative behaviour of system (1).

Comparing system (1) with the original HH-model, FitzHugh concluded that the HH variables V and m
together behave like x, while h and n behave like y. He also says that “the coordinates x and y are not to be
identified physically, except to say that x shares the properties of both membrane potential and excitability,
while y is responsible for accommodation and refractoriness”.

The study of nerve excitation and conduction has been continued by Nagumo and his co-authors [17],
who made an active phase transmission line, using tunnel diodes, and simulated an animal nerve axon.
These authors started by simulating electronically the behaviour of the HH and the FitzHugh models in
the case of the “space clamp”, that is, when the excitation of a nerve axon is spatially uniform. Then, in
order to consider propagation of excitation, they considered x as a function of two variables s, t where s is
the space variable. Following Hodgkin and Huxley, they assumed that the current intensity z in the first
equation of the system (1) can be replaced by

z(t) =
1

r

∂2x

∂s2
,

where r is a constant (depending from the axoplasmical resistance and membrane capacitance). In this
case, from the system (1) one obtains the following system of partial differential equations:{

1
r
∂2x
∂s2 = 1

c
∂x
∂t − y − (x− x3/3)

c∂y∂t + βy = α− x
, (3)

which are usually known as the FitzHugh-Nagumo equations.
In all the above-mentioned models of nerve excitation and propagation of electronic impulses, nerves

are considered as electric cables, through which electric current flows. This is the case for the squid nerve,
studied by Hodgkin and Huxley, but in other animals (like frogs, for example) nerve axons have a different
structure. The nerve membrane is insulated by a substance called myelin (see fig. 1). According to Bell
[3], “ myelination of an axon allows it to conduct neuroelectric signals by exciting only a small portion
of membrane exposed to the extracellular medium at the nodes of Ranvier. This permits transmission
at greatly reduced energy expenditure and higher speeds than comparably sized unmyelinated axons”. In
models of myelinated axons, the following hypothesis is assumed: the myelin has such high resistance and
low capacitance that it completely insulates the membrane (pure saltatory condition).

Under this hypothesis the nodes of Ranvier can be represented as active point sources of electric current.
Moreover, basic transmission is accomplished by sufficiently stimulating a node so that its transmembrane
potential reaches a certain threshold level. Then local ionic currents are generated which excite the neigh-
bouring node enough to achieve the threshold potential. As a consequence, new local currents are generated
at the neighbouring node and the process propagates across the nerve axon, giving the effect of excitation
jumping from node to node.

As remarked by R. FitzHugh in [9], this case requires that the active membrane equations be solved at
far fewer points along the fibre than does the case of a continuous axon. In the paper FitzHugh suggests
that in the case of myelinated axons the HH equations are used to represent the membrane current only at
the nodes. At other nerve points, nerve conduction is modelled just by an equation of the form:

C
∂V

∂t
=
∂2V

∂x2
− V

r
, (4)
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Figure 1: Structure of a myelinated axon

where V is the membrane potential, C and r are constants.
This model yields a large system of equations: four ODEs at each node of Ranvier and the PDE (4).

However, only the PDE (4) has to be solved in the whole axon, which makes the case of the myelinated
axon more suitable for computation. This was remarked on by R. FitzHugh in 1962, when the potential
computational possibilities were quite different from nowadays.

Modelling of impulse propagation in myelinated axons can be simplified if the nerve excitation at the
nodes is represented by the system (1), instead of the HH equations. In this way J. Bell [3] obtained the
following system of differential-difference equations:{

1
R (vk+1 − 2vk + vk−1) = C dvk

dt − f(vk) + wk
σvk − γwk = dwk

dt

, k ∈ Z, (5)

where vk and wk are the potential and the recovery variables, respectively, at the k − th node of Ranvier.
σ and γ are non-negative rate constants, R and C are the axoplasmical resistance and the nodal membrane
capacitance. The function f represents a current-voltage relation and is supposed to satisfy the following
conditions:

f ∈ C1([0, b]), f(0) = f(a) = f(1) = 0,
f(v) < 0, if 0 < v < a;
f(v) > 0, if a < v < 1.

(6)

In [3] and [5] this function is taken as

f(v) = bv(v − a)(1− v), (7)

where b > 0 and a ∈]0, 1[ is the threshold potential . In this paper we will be concerned only with a function
f of the type (7). According to [3] two basic properties of the myelinated axon are the following:

• it possesses threshold behaviour; this means that there are conditions which guarantee either the decay
of a solution (subthreshold response) or non-decay of a solution (suprathreshold response);

• it is able to conduct pulses.

In order to study the threshold behaviour, the system (5) can be further simplified by neglecting the recovery
process (that is, it is assumed that the constants σ and γ are so small that the recovery process has no
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influence on any threshold condition). In this case, the system (5) reduces to the following equation:

1

R
(vk+1 − 2vk + vk−1) + f(vk) = C

dvk
dt

, k ∈ Z. (8)

Equations of the form (8) were the basis of a mathematical model of electrical properties of a myelinated
nerve which describes the time course of events following stimulus application and up to the initiation of
the action potential. This model, described in [16], was validated by experiments.

By studying equation (8) J.Bell and C.Cosner [4] obtained sufficient conditions on the function f to
guarantee that every node goes to the fully activated state. That is,

lim
t→∞

vj(t) = 1, ∀j ∈ Z.

In particular, we must have
∫ 1

0
f(t)dt > 0, from where it follows that a < 0.5. Systems like (8) are often

called lattice equations. They can be easily reduced to a mixed-type functional differential equation, if we
assume that

vk+1(t) = vk(t− τ),

where τ is a certain delay, more precisely, the time taken by an electrical signal to reach the neighbour
node, which is proportional to the space between nodes and to the reciprocal of the propagation speed. By
assuming this, we consider that the Ranvier nodes are uniformly distributed and that the electric pulse is
propagating with a constant speed. Acording to [3], neurons in the central nervous system tend to have much
more variability than those in the peripheral nervous system; therefore, when we assume that the nodes are
identical electrically and uniformly distributed, the model is more appropriate for describing processes in the
peripheral nervous system. Under these assumptions, in [5], Chi and his co-authors obtained the following
equation

1

R
(v(t− τ)− 2v(t) + v(t+ τ)) + f(v(t)) = C

dv(t)

dt
, (9)

where v represents the potential at a certain node (in this case, the potential at the neighbouring nodes is
represented by v(t− τ) and v(t+ τ)). In the rest of this paper we will be concerned with equation (9), called
the discrete FitzHugh-Nagumo equation.

During the last 20 years, equations of the type (9) have been the subject of research in many works, both
theoretical and computational. In [15] and [23] important existence results were obtained. Computational
approaches for the numerical solution of this and related problems have been presented by different authors,
including Abell et al. [1], Elmer and Van Vleck [6], Hupkes and Verduyn-Lunel [12], Lima et al.[14].

We emphasize that the mathematical modelling of nerve conduction in myelinated axons is an active
subject of research and very recently new approaches to this topic have appeared in the literature. We
refer to a stochastic version of the FitzHugh-Nagumo equations (3), analysed in [10], and a new method for
computing the characteristic length of myelinated segments in axons, described in [18].

The outline of this paper is as follows. In section 2, we set boundary conditions and analyse the asymp-
totic behaviour of solutions at infinity. In section 3, we discuss computational methods for numerical
approximation. In section 4, we provide some numerical results and we finish with some conclusions in
section 5.

2. The discrete FitzHugh-Nagumo equation

2.1. Statement of the boundary value problem

Let us rewrite equation (9) in the form

RCv′(t) = f(v(t)) + v(t− τ)− 2v(t) + v(t+ τ). (10)
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As in [5], we introduce the new variables t′ = t/RC, τ ′ = τ/RC, in order to obtain a nondimensionalised
model. Moreover, for the sake of simplicity, we keep the previous notation for the variables, so that we
consider the following equation:

v′(t) = f(v(t)) + v(t− τ)− 2v(t) + v(t+ τ). (11)

Due to the form of f , given by (7), equation (11) has two stable equilibrium points: v = 0 (resting
potential) and v = 1 (fully activated potential). Therefore, we are interested in a solution of (11), increasing
on ]−∞,∞[, which satisfies the boundary conditions

lim
t→−∞

v(t) = 0, lim
t→+∞

v(t) = 1. (12)

These conditions will be satisfied by the potential at any node. In order to guarantee uniqueness of solution,
we add the condition

v(0) = 1/2. (13)

We are interested in a monotone solution of problem (10)-(13), that is, we assume that once the signal
starts propagating, the potential will increase at every node, tending to its maximal value (v(t) = 1). Such
a solution exists for a certain value of τ , which must be computed.

2.2. Asymptotic approximation at infinity

Since in the next section we describe computational methods for the numerical solution of the given
problem, it is desirable to study the asymptotic behaviour of the required solution at infinity, so that we
can truncate the domain where this solution needs to be computed.

An extensive analysis of this behaviour has been provided in [5], so here we will just recall the main
results from that paper.

Let us first consider the case where t → −∞. According to the conditions (12), v(−∞) = 0, so that in
order to linearise equation (10) about this point, we first use the Taylor expansion for the function f :

f(v) = f(0) + vf ′(0) +
v2

2
f ′′(0) + o(v2) = vf ′(0) +

v2

2
f ′′(0) + o(v2), (14)

where f is given by (7).
As usual, in order to obtain a characteristic equation for (11) at −∞ we replace f by the main term of

its Taylor expansion and assume that v has the form

v−(t) = ε−e
λ(t+L), (15)

where L is a sufficiently large parameter and ε− is an estimate for v−(−L). In this way we obtain the
equation

λ+ 2− f ′(0)− 2 cosh(λτ) = 0. (16)

This equation has two real roots; since we are interested in a function v− that tends to 0 at −∞, we choose
the positive one, which we denote by λ+.

The case where t → ∞ can be handled in an analogous way. In this case, we have the following Taylor
expansion for f :

f(v) = f(1) + (v − 1)f ′(1) +
(v − 1)2

2
f ′′(1) + o((v − 1)2) (17)

Moreover, as t→ +∞, we assume that v has the form

v+(t) = 1− ε+eλ(t−L), (18)
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where ε+ is an estimate of 1− v+(L). In this way we obtain the characteristic equation

λ+ 2− f ′(1)− 2 cosh(λτ) = 0 (19)

In this case we choose the negative root of the characteristic equation, which we will denote by λ−, in order
to have v+(t)→ 1, as t→ +∞.

Now we have obtained two representations for the solution of our problem, (15) and (18), which we shall
use to approximate the solution, for t < −L and t > L, respectively, where L is a sufficiently large number.
According to the form of equation (11), L must be a multiple of the delay τ ; in our computations we have
used L = kτ , where 2 ≤ k ≤ 9, depending on the specific problem (as discussed in Sec. 4).

These representations of the solution are used in the computational methods to replace the boundary
conditions (12). In the next section we will show how this can be achieved.

3. Computational methods

In this section we will describe and compare some computational methods that can be applied to obtain
approximate solutions of the problem (11), (12), (13). Since the problem is nonlinear, some of the considered
methods require initial approximations, which must be sufficiently close to the true solution, to guarantee
the convergence of the process. Thus we begin by presenting some preliminary results, which can help us to
build a rough approximation of the solution.

3.1. Finding an initial approximation for the iterative process

The evaluation of τ (which represents both the unknown advance and delay in equation (11)) is a key
point for the solution of the problem. As stated before, τ is one of the unknowns of the problem and
physically is the reciprocal of the propagation speed. It is possible to approximate the value of τ in the
problem by considering the parabolic equation

∂u

∂t
=
∂2u

∂s2
+ bu(u− 1)(a− u), (20)

which looks like the first equation of system (3). A function φ is said to be a travelling wave solution of (20)
if for some solution u of (20) and some positive constant d we have

φ(x+ d t) = u(x, t), ∀x, t ∈ IR. (21)

In this case d is called the propagation speed of the travelling wave. This problem was analysed, for example,
in [2], [7], [19], [20]. In [2] and [7] the authors have studied the existence and stability of travelling waves
which satisfy the conditions φ(−∞) = 0, φ(∞) = 1, for a class of diffusion equations, which includes (20)
as a particular case. By substituting (21) into the original partial differential equation a singular boundary
value problem is obtained for a second order ordinary differential equation of the form:

u′′(x)− gu(x) + n(x)f(u) = 0,

where g and and n are a constant and a given function, respectively. Equations of this form were analysed,
for example, in [22].

As shown in [2] and [7], the boundary value problem is solvable only for a certain value of d. In the
particular case of (20), assuming that a < 1/2, this value can be determined analytically (see [13] ):

d =
(1− 2a)

√
b√

2
. (22)
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Since τ , as we have said, is proportional to the reciprocal of the propagation speed, from (22) we can obtain
the following estimate of τ :

τ ≈ τ0 =
1

d
=

√
2

(1− 2a)
√
b
. (23)

Once τ0 is computed from (23), approximate values of the characteristic roots λ+ and λ− can be computed
from (16) and (19), respectively.

An approximate solution of the problem (11),(12), (13) can then be found in the form:

v0(t) =

{
C1e

λ+t, for t < 0,
1− C2e

λ−t, for t ≥ 0,
(24)

where the constants C1 and C2 can be determined from the condition that

lim
t→0−

v0(t) = lim
t→0+

v0(t) =
1

2
.

Some numerical results illustrating this approximation will be presented in section 4.
We shall now describe an alternative approach to obtain an estimate of τ and an approximate solution,

which does not require the use of the formula (22). Taking into account the conditions (12) and (13) and
the asymptotic behaviour of v for large values of t, described by (15) and (18), we search for an approximate
solution of the considered problem in the form

v1(t) =
1

2
(1 + tanh(ct)), (25)

where c ∈ IR+. In order to evaluate c we use the condition that v1 satisfies equation (11) at t = 0. More
precisely, we write:

v′1(0) = v1(τ) + v1(−τ)− 2v1(0) + f(v1(0)) (26)

Taking into account that tanh is an odd function, from (25) and (26) it follows that

v′1(0) = f(v1(0)) = f(1/2). (27)

On the other hand, we have

v′1(0) =
c

2
(28)

From (27) and (28) we finally conclude that

c = 2f(
1

2
). (29)

Now we can use the approximate solution v1 to obtain estimates of λ+ and τ . We can easily observe that

v1(t) =
1

2

(
1 +

e2ct − 1

e2ct + 1

)
= e2ct +O(e4ct), as t→ −∞. (30)

Taking into account the asymptotic behaviour of v as t → −∞, given by (15), we obtain the following
approximation for λ+:

λ+ ≈ 2c = 4f(
1

2
). (31)
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Finally, having an approximate value for λ+, we can evaluate τ from (16), which gives us the estimate

τ1 =
1

λ+
arccosh

(
λ++2−f ′(0)

2

)
. (32)

By similar arguments, we can obtain the following approximation for λ−:

λ− ≈ −2c = −4f(
1

2
). (33)

Using (33) and (19) we can also obtain an estimate for τ .
Finally we present a more sophisticated estimate, which results from approximating the solution by a

piecewise differentiable function. We search for an approximate solution of the considered problem in the
form

v2(t) =



ε−e
λ+(t+2τ), if t < −2τ ;

a0 + a1t+ a2t
2, if − 2τ ≤ t < −τ ;

1
2 + b1t+ b2t

2 + b3t
3, if − τ ≤ t < 0;

1
2 + c1t+ c2t

2 + c3t
3 if 0 < t < τ ;

d0 + d1t+ d2t
2, if τ ≤ t < 2τ ;

1− ε+eλ−(t−2τ), if t ≥ 2τ ;

(34)

From the form of v2 if follows that this function satisfies the boundary conditions (12) and (13). We easily
see that v2 depends on 17 parameters: τ ,ε−, ε+,λ−,λ+, a0,a1,a2,b1,b2,b3,c1,c2,c3,d0,d1, d2. These coefficients
are computed from a system of 17 equations, which include

• the two characteristic equations (16) and (19);

• two equations that assure the continuity of v2 and v′2 at −2τ ;

• two equations that assure the continuity of v2 and v′2 at −τ ;

• two equations that assures the continuity of v′2 and v′′2 at 0;

• two equations that assure the continuity of v2 and v′2 at τ ;

• two equations that assure the continuity of v2 and v′2 at 2τ ;

• five equations that assure that v2 satisfies (11) at t = −2τ, t = −τ, t = 0, t = τ and t = 2τ .

The nonlinear system of equations can be solved by the Newton method. The stimates for λ−,λ+ and τ
from above can be used as initial approximations. As follows easily from the construction, v2 ∈ C1(IR).
Some examples of application of this approximation will also be given in section 4.

Though it is not possible to prove theoretically the convergence of the Newton method applied to this
system, there is numerical evidence showing that it converges when a and b are within the ranges considered
in this work. Moreover, analytical arguments support this evidence. In particular, all the equations of this
system are given by continuously differentiable functions, so that the system has a continuous Jacobian
matrix. We cannot prove a priori that this matrix is invertible in all the cases of interest, but we have used
Mathematica software [21], which warns the user whenever it is close to a singular matrix. Moreover, the
fact that we use as initial approximations for λ−, λ−+, τ values that we have obtained from (31),(32),(33)
explains the success of the Newton method. Finally, we emphasise that all the numerical results obtained
from the solution of this nonlinear system (which will be discussed in Sec. 4), have the correct qualitative
behaviour and are in agreement with the results obtained by other methods.
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3.2. A method of steps approach

In this section we describe an approach, based on the method of steps, to find a solution to the problem
considered by Chi, Bell and Hassard in [5] and outlined in section 2 of this paper. For the convenience of
the reader we repeat the four relevant equations here.

λ+ + 2− f ′(0)− 2 cosh(λ+τ) = 0 (35)

λ− + 2− f ′(1)− 2 cosh(λ−τ) = 0 (36)

v−(0) = 0.5 (37)

v+(0) = 0.5 (38)

Following the approach in [5] we use the approximations v−(t) = ε−e
λ+(t+L) for t < −L and v+(t) =

1− ε+eλ−(t−L) for t > L. We set L = mτ,m ∈ N. We observe that for a specified value of τ equations (35)
and (36) can be solved using the Newton-Raphson method to find λ+ and λ− respectively. With λ+ and
λ− known, each of equations (37) and (38) involve only one unknown parameter, and a bisection method
can be used to find the associated values of ε− and ε+.

Given that values of λ+, λ−, ε+ and ε− can be found for a specified value of τ the problem then becomes
one of choosing the appropriate value of τ . We require that the solution be smooth at the origin. Following
experimentation with the aim of finding τ such that v′−(0) = v′+(0), and encountering problems with
numerical instability affecting the gradient, we have adopted the following method to establish τ . We use
equation (11) with f(v) = bv(1 − v)(v − a), a central difference approximation for v′(t) and a step length
h = τ

N , and write
1

2h
(vn+1 − vn−1) = bvn(1− vn)(vn − a) + vn−N − 2vn + vn+N . (39)

We can rearrange (39) to give

vn+N =
1

2h
(vn+1 − vn−1)− bvn(1− vn)(vn − a)− vn−N + 2vn, (40)

which, when we let i = n+N , leads to

vi =
1

2h
(vi−N+1 − vi−N−1)− bvi−N (1− vi−N )(vi−N − a)− vi−2N + 2vi−N . (41)

Using (41) for t ≥ −L, and v−(t) = ε−e
λ+(t+l) for t < −L, we can compute a solution for t ≥ −L. In a

similar way we can derive

vj =
1

2h
(vj+N+1 − vj+N−1)− bvj+N (1− vj+N )(vj+N − a)− vj+2N + 2vj+N

and use this, along with v+(t) = 1 − ε+e
λ−(t−L) for t > L, to compute a solution for t ≤ L. We have

thus found a solution forwards for t ≥ −L and a solution backwards for t ≤ L. Ideally these solutions
would be identical in order to be consistent with the equation in use. To obtain as smooth a solution as
possible near to the origin we find forwards and backwards solution vectors, F1 and F2, on an interval of

the form [−kτ, kτ ] and choose τ to minimise (F2−F1).(F2−F1)
2kN+1 , that is, we find τ to minimise the average

squared ‘distance’ between the two solutions at the grid points. The solution curve can then be plotted
using the calculated parameter values. The numerical resultes obtained by this method will be presented
and discussed in Sec. 4.2.
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3.3. Finite difference method

In this section we describe a finite difference scheme for the solution of problem (11), (12), (13). This
scheme has some common features with the one described in [5], but it has the advantage that it can be
easily solved by the Newton iterative method, without using the continuation algorithm. As an initial
approximation for the Newton method we have used the function v2, defined by (34).

In order to approximate the solution we introduce on [−Kτ,Kτ ] a uniform mesh with stepsize h = τ/N .
Let ti = −Kτ + ih, i = 0, ..., 2KN be the nodes of this mesh. Here K is a sufficiently large integer so that
ε1 = v(−Kτ) is comparable with h2 (the reason for this choice will be explained below). As in [5], the first
derivative is approximated by a 4-th order finite difference:

v′(ti) ≈ Lh(v)i =
1

h

(
2

3
(v(ti+1)− v(ti−1))− 1

12
(v(ti+2)− v(ti−2))

)
. (42)

By using this approximation at each node ti we obtain 2KN + 1 equations of the form:

Lh(v)i = v(ti + τ) + v(ti − τ)− 2v(ti) + f(v(ti)) + rhi , (43)

where ‖rih‖ = O(h4) . Note that for ti > (K − 1)τ and ti < −(K − 1)τ equation (43) involves the value of
v at one or more points that do not belong to the interval [−Kτ,Kτ ]. In this case the boundary conditions
(12) are applied, by considering the fact that v satisfies (15) or (18), when v < −Kτ or v > Kτ , respectively.
In this way, we write

v(−Kτ − x) = v(−Kτ)e−λ+x, (x > 0), (44)

1− v(Kτ + x) = (1− v(Kτ))e−λ−x, (x > 0). (45)

Finally, by ignoring rhi in (43), we obtain (2K − 2)N finite difference equations of the form:

Lh(v)i = vi+N + vi−N − 2vi + f(vi), i = N + 1, ..., (2K − 1)N + 1. (46)

Here as usual vi represents the approximate value of v(ti). For 0 ≤ i < N+1 and (2K−1)N+1 < i ≤ 2KN+
1, we have modifications of equation (46) which result from applying formulae (44) or (45), respectively. This
gives a system of 2KN + 1 equations, which is then completed with the equation vKN = 1/2, resulting from
(13). Moreover, we have the characteristic equations (16) and (19), making a total of 2KN + 4 equations.
Note that the number of unknowns is also 2KN + 4: 2KN + 1 entries of the vector v = (v0, ..., v2KN ) , λ−,
λ+ and τ .

This nonlinear system is then solved by the Newton method. The Jacobian matrix for the Newton
method has at most 8 nonzero entries at each row: 7 corresponding to the unknowns vi−N , vi−2, vi−1, vi,
vi+1, vi+2, vi+N ; one corresponding to τ .

Although the condition number of the Jacobian matrices increases with the the number of gridpoints in
the scheme (as could be expected), it is remarkable that even for the finest meshes it doesn’t become very
large. Even in the case of n = 28 and K = 9, the condition numbers do not get higher than 105. As we
shall see below, this enables us to obtain accurate results, within a large range of values of a and b.

It is well known that the Newton method is very sensitive to the choice of initial approximation, especially
in the case of large dimensional systems. In our case, as stated above, we have overcome this problem by
using as initial approximation to v the function v2, described in the previous section, and the corresponding
approximations to λ−, λ+ and τ .
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a τ0 τ1 τ2 τ3 τ λ− λ+
0 0.3651 0.2987 0.3101 0.38186 0.38029 −6.22752 5.1007

0.05 0.4057 0.3318 0.3461 0.43482 0.43511 −5.44866 4.5111
0.1 0.4564 0.3734 0.3910 0.50376 0.5056 −4.6909 3.9297
0.15 0.5216 0.4267 0.4485 0.59156 0.5993 −3.95523 3.3586
0.2 0.6086 0.4978 0.5250 0.69607 0.73001 −3.32594 2.6073
0.25 0.7303 0.5973 0.6318 0.83500 0.92525 −2.55197 2.2691
0.3 0.9129 0.7467 0.7916 0.97366 1.2515 −1.88069 1.66568
0.35 1.2172 0.9956 1.0575 0.97515 1.9371 −1.2111 1.08772

Table 1: Estimates of τ , λ− and λ+ for different values of a, with b = 15

.

b τ0 τ1 τ2 τ3 τ λ− λ+
1 1.571 1.540 1.652 0.9835 1.6250 −0.4333 0.4096
5 0.7027 0.6447 0.6639 0.7517 0.7229 −2.0677 1.8678
11 0.4738 0.4034 0.4325 0.5087 0.5008 −4.1869 3.5574
16 0.3928 0.3184 0.3296 0.4231 0.4227 −5.7499 4.7354
21 0.3429 0.2666 0.2656 0.3678 0.3744 −7.1795 5.7840
51 0.2200 0.1443 0.1216 0.1200 0.2554 −14.0692 10.6338

Table 2: Estimates of τ , λ− and λ+ for different values of b, with a = 0.05

.

4. Numerical results

4.1. Comparison of initial approximations

In this subsection we compare the estimates of τ and v obtained by the different methods described in
Sec. 3.1. In all the cases we consider the problem (11), (12), (13). We denote by τ0 the estimate obtained by
(23); τ1 is the estimate obtained by (32) and τ2 is the one obtained when using the approximating function
v2, defined by (34); τ stands for the value obtained by the finite difference method with N = 64, which is the
most accurate approximation (see detailed analysis in the next subsection). Table 1 contains the estimates
of τ , for b = 15, with different values of a. The values of τ obtained in the case a = 0.05, for different values
of b, are displayed in Table 2.

In the same tables we also give for comparison the estimates of τ (denoted as τ3) obtained by the method
of steps, described in Sec 3.2. For a more detailed discussion of these results see the next subsection. The
errors of τ0, τ1 , τ2 and τ3 can be obtained by comparing these estimates with τ , which can be considered
as the exact value for this purpose. Notice that the presented values of τ coincide with those obtained in
[5], within the given precision.

The approximate values of λ− and λ+ obtained by the finite difference method, with N = 64, are given
in the two last columns of the mentioned tables.

The comparison of the listed estimates leads us to the conclusion that, for 0 ≤ a ≤ 0.3 and 5 ≤ b ≤ 21

|τ3 − τ | < |τ0 − τ | < |τ2 − τ | < |τ1 − τ |,

that is, for this range of values of a and b the most accurate approximation among those studied in Sec.
3.1 and Sec. 3.2. is τ3 and the least acurate is τ1. All the estimates preserve the main characteristics of
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b v′1(0) v′2(0) v′3(0) v′(0)
1 0.1125 0.1224 − 0.112695
5 0.5625 0.6045 0.59429 0.58339
11 1.2375 1.2821 1.2795 1.2774
16 1.8000 1.83603 1.83803 1.84116
21 2.3625 2.39174 2.39578 2.40116
51 5.7375 5.7504 4.33730 5.76174

Table 3: Estimates of v′(0) for different values of b, with a = 0.05

.

a v′1(0) v′2(0) v′3(0) v′(0)
0 1.875 1.9171 1.9019 1.9181

0.05 1.6875 1.72515 1.71512 1.72889
0.1 1.5000 1.53326 1.52735 1.53918
0.15 1.3125 1.34141 1.33830 1.34891
0.2 1.125 1.1496 1.14711 1.1580
0.25 0.9375 0.957907 0.955325 0.96647
0.3 0.7500 0.76624 0.760515 0.774237
0.35 0.5625 0.57463 0.55987 0.58131

Table 4: Estimates of v′(0) for different values of a, with b = 15.

τ , as a function of a and b: they increase with a and decrease, as b increases.This behaviour agrees with
the physical meaning of the variables. Since a is the threshold potential, the propagation speed is supposed
to decrease as a increases, and therefore we observe τ increasing. On the other hand, increasing b means a
higher potential at the nodes and this leads to a greater propagation speed and the decreasing of τ .

It is worth remarking that for values of a, greater then 0.3 large discrepancies between the different
estimates arise. This is connected with the numerical instability of the different methods which is observed
for the values of a we considered. In particular, in the case a ≥ 0.3, the value τ obtained by the finite
difference method seems to have a larger error than the other approximations (and this does not arise
elsewhere). The explanation for this may be the instability which is also visible in the graphs of Figure 8.
Note that according to the theoretical results, described in Sec.2, existence of a solution can be proved only
for a < 0.5. The accuracy of the results is also reduced for values of b, greater than 21.

According to Keener [13], the discrete Nagumo equation has a “propagation failure” for sufficiently small
coupling coefficient. When the equation is written in the form (11), a small coupling corresponds to high
values of b. Thus when b is large the problem (11),(12),(13) becomes unsolvable. This explains why for high
values of b estimates obtained by different methods differ signifficantly.

In Tables 3 and 4 numerical approximations for v′(0), obtained by diferent methods, are given for a
set of values of a and b. In agreement with the notation used in Tables 1 and 2, we denote by v′i(0) the
estimate obtained by the method, corresponding to τi, i = 1, 2, 3. The approximations obtained by the
finite difference method, with N = 64, are denoted simply by v′(0). In this case the differences between
the estimates obtained by different methods are not so large as in the case of the evaluation of τ . Even for
a > 0.3 or b > 21, these differences are not greater than 5 per cent. This suggests that the gradient of the
solution at the origin is not so sensitive to computational errors as the value of τ .

The graphs of v0, v1 and v2 are plotted in fig.2, for a = 0.3 and b = 15.
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Figure 2: Graphs of v0 (gray), v2 (left side,black) and v1 (right side, black).
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Figure 3: Absolute error of v1 (left side) and v2 (right side), with respect to the finite difference approximation.

In Figures 3 and 4 the absolute errors of the approximate solutions v1, v2 and v0 are plotted (respectively),
in the case a = 0.05, b = 15. By absolute error of vi, we mean the difference |vi − vh|, where vh is the finite
difference approximation of the solution, obtained with N = 256. Note that, for all the approximations,
the largest errors occur close to t = 0, where the solution changes faster. In this region the error can reach
about 10 per cent of the solution value.

We remark that by differentiating v1 and v2 we obtain reasonable approximations of v′. In the case of
v0, the derivative is not continuous at t = 0 and the approximation is therefore much worse. The derivatives
of v1 and v2 are plotted in fig.5. In both cases, the approximation of the derivative, obtained by the finite
diference method, is also given, for comparison.

4.2. Numerical results by the method of steps

In this subsection we present results obtained by the method of steps, described in Sec. 3.2. Some of
these results were also included in Tables 1 and 2, presented in Sec. 4.1.

To illustrate the application of this approach, and to provide some justification for the values of k and
N used, we present some results arising from solving the problem with m = 3, a = 0.05 and b = 15 with
several different step lengths and different values of k. In Table 5 we give estimated values of τ for k = 0.5,
1, 2 and 3 and include the mean square distance (shown in italics) between the two solution vectors F1 and
F2 ) defined as in Section 3.2) We observe greater numerical instability for larger intervals (or larger values
of k) and for smaller step lengths (or larger values of N). Although smaller mean squared differences (msd)
are observed for smaller intervals, as can be seen from the equation, the derivative at t = 0 depends on the
solution values at −τ and +τ . To take these two values into account the solution vectors for k = 1 (that is,
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Figure 4: Absolute error of v0, with respect to the finite difference approximation.
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Figure 5: Approximations of the solution derivative: by the finite difference method (dotted line); using v1 (continuous line,
left side); and using v2 (continuous line, right side).
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a solution vector on an interval of length 2τ) have been used in the derivation of τ3 in Tables 1 and 2. In
Table 1 we use N = 32 and in Table 2 we use N = 8.

Length of interval for solution vectors F1 and F2

N 6τ (k=3) 4τ (k=2) 2τ (k=1) τ (k=0.5) 0.5τ (k=0.25)
4 0.43350 0.43959 0.45625 0.43179 0.45567

2.0522×105 2.5647 5.0617×10−2 7.3949×10−3 1.0284×10−2

8 0.54313 0.46286 0.43693 0.41537 0.36073
3.0469×106 6.9371 5.4510×10−2 1.6380×10−2 1.8850×10−3

16 0.52188 0.50615 0.46576 0.41254 0.41770
1.8547×107 9.1956 9.1752×10−2 1.6982×10−2 4.1313×10−3

32 0.44313 0.44136 0.43482 0.42594 0.42745
6.6563×1013 8.9280 ×102 2.5809 ×10−1 1.4856×10−2 2.6730×10−3

64 0.43118 0.43596 0.45791 0.41636 0.41649
4.2084×1030 1.6415×108 1.2501×101 2.1327×10−2 1.1144×10−2

Table 5: Estimates for τ and the mean square difference (in italics) as k and N vary. [m = 3, a = 0.05, b = 15, h = τ
N

]

A graphical representation of the tools used in the method is given in fig.6. Here we have used the values
m = 3, a = 0.1 and b = 15. Diagram (a) illustrates the minimisation process used to find the best value of τ .
Diagram (b) illustrates the forwards and backwards solutions, indicated by +++ and *** respectively, and
gives a clear indication of why larger intervals for the solution vectors are inappropriate. Diagram (c) shows
the two solution vectors for the value of τ selected by the method and diagram (d) shows the corresponding
solution. Diagrams (e) and (f) have been included to illustrate the solution vectors and solution for an
incorrect value of τ . We observe the larger variation in the msd and the lack of smoothness in the solution
near the origin.

4.3. Numerical results for a test problem

With the purpose of testing the convergence and accuracy of the proposed numerical schemes it is useful
to apply them to a test problem, whose exact solution is known. Such a problem is described in [5]. The
function f on the right-hand side of (11) is replaced by

fθ(v) =
1 + 2θ(2v − 1)− (1 + θ)(2v − 1)2 − θ(3− 2v)(2v − 1)3

2(1− θ(2v − 1)2)
, (47)

where θ > 0. In this case the exact solution is

v(t) =
1 + tanh(t)

2
, τ = tanh−1(

√
θ). (48)

We have focused our attention on two test cases: θ = 0.35 and θ = 0.7; the corresponding values of τ
can be obtained by (48): τ = 0.6801362704 and τ = 1.209935121, respectively. Numerical results for the
first of these cases are also presented in [5].

By applying our numerical algorithm to this problem our main purposes are: 1) to test its accuracy and
stability; 2) to observe how the error depends on the stepsize h and on the interval length L; 3) to choose
optimal values for these parameters, in order to minimise the error.
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Figure 6: A graphical illustration of the method of steps approach:[m = 3, a = 0.1, b = 15, h = 1
32

]
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h eh(K = 3) eh(K = 6) eh(K = 9)
τ/23 7.3E − 4 2.60E − 6 2.47E − 6
τ/24 7.9E − 4 2.89E − 7 1.55E − 7
τ/25 8.3E − 4 1.48E − 7 9.72E − 9
τ/26 8.5E − 4 1.42E − 7 6.35E − 10
τ/27 8.6E − 4 1.42E − 7 6.76E − 11
τ/28 8.6E − 4 1.43E − 7 3.22E − 11
ε 0.017 2.96E − 4 5.29E − 6

Table 6: Errors in the approximation of τ , in the case of the test problem with θ = 0.35, for different values of h and K

Concerning h, since we are using a sheme of 4-th order approximation, we expect an error of the order
O(h4). In order to keep the dimension of the matrices in the finite difference scheme not too high, we have
chosen to use stepsizes not smaller than hmin = τ/28. In this case we have in most examples 10−12 <
h4min < 10−11.

The choice of the interval length L is based on the values of ε1 = v(−L) and ε2 = 1−v(L) (see (15),(18)).
We recall that when replacing f by its Taylor expansion as v ≈ 0 and v ≈ 1 (see (14) and (17)) we introduce
errors of the order ε21 and ε22, respectively. Therefore, it makes sense to choose L such that ε2 has the same
order as h4min, where ε = max(ε1, ε2). In this way the error introduced by the truncation of the real line
has approximately the same order as the discretisation error. Since in our finite difference scheme we have
L = Kτ , the choice of the integer K determines the value of L. Thus we must choose K large enough to
obtain ε ≈ h2min. Of course ε depends not only on the length L but also on the decay rate of the solution,
so the optimal value of K (and L) may differ substantially from one problem to another.

This can be seen in Tables 6 and 7, which contain the errors eh = τh−τ , where τh denotes the approximate
value obtained with stepsize h. In each table, the errors are given for different values of h and K; the value
of ε is also given for each K. Table 6 contains the results for the case θ = 0.35. In this case it is clear
that when using K = 3 (L = 3τ ≈ 2.04) the approximation error is never less than 0.00073, no matter how
much the stepsize is reduced. By increasing the value of K to 6 it is possible to improve the accuracy: using
the stepsize h = τ/26 the error reduces to 1.42 × 10−7. This accuracy can be improved further by using
K = 9; in this case the error becomes as small as 3.22× 10−11 (with stepsize h = τ/28) . This is nearly the
optimal value of K (for the given minimal stepsize), since further increasing K doesn’t change the results
significantly. In this way we confirm the above criterion for the choice of L: we must choose L such that
ε ≈ h2min (see the values of ε in the same table).

The corresponding values for the case θ = 0.7 are displayed in Table 7. In this case it can be seen that
the optimal value of K is 6 (by choosing K = 9 no significant change is obtained in the results). This again
confirms the criterion for the choice of L.

4.4. Numerical results for the target problem

In this subsection we present numerical results for the problem (11)-(13), obtained by the method
described in Sec.3.3. We have tested numerically the convergence order of the method. When the exact
solution is not known, an estimate of the convergence order can be obtained from three finite difference
solutions, obtained with different stepsizes: v2h, vh, vh/2, where h > 0. The estimate of the convergence
order is then given by

p = log2

‖vh − v2h‖
‖vh − vh/2‖

,
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h eh(K = 3) eh(K = 6)
τ/23 9.53E − 6 9.34E − 6
τ/24 8.30E − 7 6.05E − 7
τ/25 2.92E − 7 3.81E − 8
τ/26 2.71E − 7 2.39E − 9
τ/27 2.76E − 7 1.49E − 10
τ/28 2.79E − 7 9.33E − 12
ε 7.3E − 4 4.95E − 7

Table 7: Errors in the approximation of τ , in the case of the test problem with θ = 0.7, for different values of h and K

h ‖vh − v2h‖ p
τ/24 1.51E − 5 6.22
τ/25 2.03E − 7 3.981
τ/26 1.29E − 8 3.994
τ/27 0.07E − 10 3.998
τ/28 5.05E − 11

Table 8: Estimates of convergence order in the case a = 0.05, b = 5, with K = 9.

where the maximum norm is used. The numerical results displayed in Tables 8, 9, 10 suggest that the
method has 4-th order convergence, as could be expected. The value of K, which determines the interval
length, was chosen in each example using the criterion described in the previous section, based on the value
of ε. In order to illustrate the application of this criterion, in Table 11 we display the values of ε, for the
three considered examples, with different values of K. Note, that when the chosen value of K is not large
enough, there is a drop in the estimated convergence order, which is due to the error resulting from the
truncation of the interval. On the other hand, the use of too large a value of K makes the method less
efficient, requiring the use of large matrices, without improving the accuracy.

The large differences between the estimates of τ , obtained by various methods, observed in Sec. 4.1, for
certain values of a and b suggest that some of the computational methods may become unstable for such
values, in particular, when a is close to 0.5 or b is large. This is true, in particular, in the case of the finite
difference method, as is shown by the graphs of the approximate solutions plotted in fig.7 and fig.8.

As mentioned in subsection 3.3, the finite difference method developed in this work was inspired by the
method described in [5] . However, the algorithm described in that work relies on the continuation method,
that is, a numerical solution is first computed for a test problem and then, by a continuous change of a
parameter, a sequence of auxiliary equations is solved, until reaching the target problem. Possibly following

h ‖vh − v2h‖ p
τ/24 0.015 7.42
τ/25 8.80E − 5 5.11
τ/26 2.55E − 6 3.97
τ/27 1.63E − 7 3.99
τ/28 1.02E − 8

Table 9: Estimates of convergence order in the case a = 0.05, b = 15, with K = 6.
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h ‖vh − v2h‖ p
τ/24 0.00041 6.518
τ/25 4.48E − 6 3.973
τ/26 2.85E − 7 3.992
τ/27 1.79E − 8 3.998
τ/28 1.12E − 9

Table 10: Estimates of convergence order in the case a = 0.05, b = 21, with K = 6

K b = 5 b = 15 b = 21
3 1.29E − 2 1.80E − 3 2.50E − 3
6 2.30E − 4 4.98E− 6 1.91E− 6
9 3.96E− 6 1.37E − 8 2.63E − 9

Table 11: Values of ε, for different K, in the three examples considered above. The value corresponding to the chosen K is
written in boldface.

on from this, the results reported in [5] are limited to the cases where a ≤ 0.2 and b ≤ 20. In our numerical
experiments, the initial approximations for the Newton method were obtained by the numerical methods
described in subsection 3.1; this enabled us to solve the problem for a wider range of values of a and b.
Moreover, our algorithm worked with stepsizes as small as 0.001, while in the case of the numerical results
reported in [5] the typical stepsize was h = 0.05.

5. Conclusions

We have applied several computational approaches to the solution of the problem (11)-(12), analysed
and compared the numerical results. The most accurate results are obtained by the finite difference method,
described in Sec. 3.3. The convergence of this method was tested in a model problem, whose exact solution
is known, and its performance is very good, showing 4-th order convergence and giving results with up to
11 exact digits, within a reasonable computational effort.

This is also true for the case of the target problem, when the problem parameters satisfy 0 ≤ a < 0.3
and 5 ≤ b ≤ 51. However, for other values of the parameters computational instability arises.
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Figure 7: Graph of the numerical solution obtained by the finite difference method with N = 64, in the case a = 0.1, b = 15.
Here the numerical solution preserves the smoothness of the true solution.
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Figure 8: Graphs of numerical solutions obtained by the finite difference method with N = 64, in the cases a = 0.3, b = 15 (left
side), a = 0.35, b = 15 (right side). Here the effect of numerical instability is evident.

The approach based on the method of steps, described in Sec. 3.2, gives a good approximation but its
accuracy is limited by the fact that the discretisation step cannot be very small (for N > 32 numerical
instability arises). The estimates of τ obtained by this method have a relative error of about 1 per cent.

Three other approximation methods were discussed in Sec. 3.1 . The computational effort required by
these methods is very small and the algorithms are very simple. Although their accuracy is reduced, they
can provide good initial approximations for the finite difference method.

The numerical results obtained in our paper confirm the main features of the considered mathematical
model. In particular, it was observed that the propagation speed (1/τ) increases as the threshold potential
a decreases (see table 1) and as the intensity of the ionic currents (represented by b) increases (see table
2). The typical S-shaped form of the solution graphic (illustrated by fig. 7, for example) means that the
potential changes slowly when it is close to its resting or fully activated value; and changes fast, when it is
close to the average value. As a consequence, the solution derivative takes its highest values when t is close
to 0, and these values are particularly high when a is small and b is large (as it follows from tables 3 and
4). Finally, the fact that the method fails to produce an acceptable solution approximation for a > 0.3 is
not surprising, since it is known that propagation failures may occur for high values of a.
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