
   
 

 
 

This work has been submitted to ChesterRep – the University of Chester’s 
online research repository 

 
http://chesterrep.openrepository.com 

 
 
 
Author(s): Neville J Ford ; M Luisa Morgado ; Magda Rebelo 
 

Title: A nonpolynomial collocation method for fractional terminal value problems 
 
 
Date: February 2015 
 
Originally published in: Journal of Computational and Applied Mathematics 
 
 
Example citation: Ford, N. J., Morgado, M. L., & Rebelo, M. (2015). A nonpolynomial 
collocation method for fractional terminal value problems. Journal of Computational 
and Applied Mathematics, 275, 392-402. doi: 
http://dx.doi.org/10.1016/j.cam.2014.06.013 
 
 
Version of item: Authors’ post-print 
 
 
Available at: http://hdl.handle.net/10034/322216 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ChesterRep

https://core.ac.uk/display/33794131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A nonpolynomial collocation method for fractional

terminal value problems

N. J. Ford

Department of Mathematics, University of Chester, CH1 4BJ, UK

M. L. Morgado

CM -UTAD, Department of Mathematics, University of Trás-os-Montes e Alto Douro,

Quinta de Prados 5001-801, Vila Real, Portugal

M. Rebelo

Department of Mathematics, Facudade de Ciências e Tecnologia, Universidade Nova de
Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

Abstract

In this paper we propose a non-polynomial collocation method for solving a
class of terminal (or boundary) value problems for differential equations of
fractional order α, 0 < α < 1. The approach used is based on the equivalence
between a problem of this type and a Fredholm integral equation of a partic-
ular form. Taking into account the asymptotic behaviour of the solution of
this problem, we propose a non-polynomial collocation method on a uniform
mesh. We study the order of convergence of the proposed algorithm and
a result on optimal order of convergence is obtained. In order to illustrate
the theoretical results and the performance of the method we present several
numerical examples.
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1. Introduction

There is rapidly increasing interest in the study of fractional differential
equations because recent investigations in science and engineering have indi-
cated that the dynamics of many systems can be described more accurately
by using differential equations of non-integer order.

The theory for initial value problems is well established, but much less is
known concerning terminal (or boundary) value problems. In this work we
are concerned with the solution of boundary fractional differential equations
of order α, 0 < α < 1, of the form

Dα
∗
y(t) = f(t, y(t)), t ∈ [0, a], (1.1)

y(a) = ya, (1.2)

where f is a suitably behaved function andDα
∗
denotes the Caputo differential

operator of order α /∈ N ([5]), defined by

Dα
∗
y(t) := Dα(y − Tk−1[y])(t), k − 1 < α ≤ k, k ∈ N,

where Tk−1[y] is the Taylor polynomial of degree k − 1 for y, centered at 0,
and Dα is the Riemann-Liouville derivative of order α ([19]):

Dαy(t) := Dk
(
Jk−αy

)
(t),

where Dk is the classical integer order derivative and Jk−α is the Riemann-
Liouville integral operator, given by

Jk−αy(t) :=
1

Γ(k − α)

∫ t

0

(t− s)k−α−1y(s)ds.

If a = 0, the problem (1.1)-(1.2) reduces to an initial value problem, that
has been investigated by several authors. We refer, for example, to the
work of Diethelm and Ford ([10]) where the authors, by considering the
equivalence of the problem with a Volterra integral equation, established
sufficient conditions for the existence and uniqueness of the solution, and
investigated the sensitivity of the solution to changes in the parameters of
the problem, namely, in the initial value, in the order of the derivative and in
the right-hand side function f . Concerning the numerical solution of (1.1)-
(1.2) with a = 0 we refer, for instance, to the articles [6], [8], [12], [13], [15],
[17] among many others.
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The case where a > 0 has not been discussed in much detail. That is,
the case where the initial condition is not prescribed at the basis point of the
fractional differential operator, which in this paper is assumed to be zero.
This kind of problem, called a terminal (or boundary) value problem, arises
naturally in the simulation of processes that are observed (i.e. measured) at
a later point, some time after the process has started. In other words, one
does not know the values of the quantities of interest at t = 0. Recently, in
[14], Ford and Morgado considered the case where a > 0 and they proved
that the boundary value problem (1.1)-(1.2) is equivalent to the following
Fredholm integral equation:

y(t) = y(a) +
1

Γ(α)

∫ a

0

(
(t− s)α−1χ[0,t](s)− (a− s)α−1

)
f(s, y(s))ds, (1.3)

where χ[0,t] is the indicator function of the interval [0, t]. Furthermore, using
the reformulation of (1.1)-(1.2) as a Fredholm integral equation, existence
and uniqueness results were established.

Lemma 1.1. If the function f is continuous and satisfies a Lipschitz condi-
tion with Lipschitz constant L > 0 with respect to its second argument, and

if
2Laα

Γ(α + 1)
< 1, then the boundary value problem (1.1)-(1.2) is equivalent

to the integral equation (1.3). Furthermore the boundary (or terminal) value
problem (1.1)-(1.2) has a unique solution on [0, a].

As pointed out in [14], after proving the existence of y(0), existence and
uniqueness results for t > a are inherited from the corresponding initial
value problem theory. In order to approximate the solution of (1.1)-(1.2),
the authors of this paper previously proposed a simple shooting method. We
considered the initial value problem

Dα
∗
y(t) = f(t, y(t)), t ∈ (0, T ] (1.4)

y(0) = y0, (1.5)

and for a certain value of y0, we determined its numerical solution using
standard initial value problem solvers. Then we used an iterative scheme to
find the appropriate y0, for which the solution of the initial value problem
passes throught the point (a, ya).

In this paper, we follow a different approach. We develop a nonpolynomial
collocation method to approximate the solution of (1.3), which is equivalent
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to approximating the solution to the terminal value problem (1.1)-(1.2). A
similar approach was used in [15] in the case where in (1.1)-(1.2) we have a =
0. Although the extension to the case a > 0 may at first seem straightforward,
a closer look shows that this is not the case, either analytically or numerically.
As remarked in (1.3), in the case a > 0 problem (1.1)-(1.2) is equivalent to
a Fredholm equation, while in the case a = 0, we have an equivalence with a
Volterra integral equation.

A well known feature of fractional differential equations is that, in general,
we cannot expect the solution of (1.1) to be smooth, even if the right-hand
side is smooth, a fact that makes the construction of numerical methods
with a reasonable order of convergence difficult. A result concerning the
smoothness of the solution of (1.4)-(1.5) can be found, for example in [7] and
establishes the following:

Lemma 1.2. Assume that the solution of (1.4)-(1.5) exists and is unique
on [0, T ], for a certain T > 0. If α = p

q
, where p ≥ 1 and q ≥ 2 are two

relatively prime integers and if the right-hand side function f can be written
in the form f(t, y(t)) = f(t1/q, y(t)), where f is analytic in a neighborhood of
(0, y0), then the unique solution of the problem (1.4)-(1.5) can be represented
in terms of powers of t1/q:

y(t) =
∞∑

i=0

ait
i/q, t ∈ [0, r), (1.6)

for some 0 < r < T , where the coefficients ai are constants.

Therefore, if the solution of (1.1)-(1.2) exists and is unique, problem (1.1)-
(1.2) coincides with a unique initial value y0 = y(0)

y0 = ya −
1

Γ(α)

∫ a

0

(a− s)α−1f(s, y(s))ds,

and from Lemma 1.2 it follows that the solution can be written as a sum
y = y1 + y2 where, for a fixed integer m, y1 ∈ Cm([0, T ]) and y2 is the
nonsmooth part of the solution. This result will be the starting point to the
construction of the numerical method presented here. The paper is organised
as follows: in section 2 we describe the numerical scheme to approximate the
solution of (1.1)-(1.2). In section 3 we present the error analysis in the linear
case. Finally, in section 4 we consider several terminal value problems for
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which the analytical solution is known, and we present for each one of them
the numerical results we obtained which illustrate the performance of the
proposed method, ending with some conclusions.

2. A numerical method based on a nonpolynomial approximation

In this section we approximate the solution of (1.3) and consequently the
solution of the terminal value problem (1.1)-(1.2). In order to do that we
take Lemma 1.2 into account and follow the approach in [2], also used in [4],
and [15]. In [15], we used this approach to approximate the solution of (1.1)-
(1.2), and in that paper we mentioned that the initial value problem solver
we obtained could be used to approximate the solution of fractional terminal
value problems of the form (1.1)-(1.2), on the basis of a shooting method: first
we consider the initial value problem (1.4)-(1.5) for some arbitrary value(s) of
y0. Next, we determine its numerical solution using the initial value problem
solver. Then we use an iterative scheme (the bisection method, for example)
to find the appropriate y0, for which the solution of the initial value problem
passes through the point (a, ya). Here, in order to avoid the shooting method,
we derive a similar nonpolynomial collocation method for terminal value
problems. The main difference between the method presented in [15] and
the method presented here is that while in the first one we had to discretise
a Volterra integral equation, in this one we are dealing with a Fredholm
integral equation.

For t > 0, m ∈ N and 0 < α < 1 let us define a finite dimensional space
V α
m , with dimension ℓ = #V α

m , of nonpolynomial functions by

V α
m = span

{
ti+jα : i, j ∈ N0, i+ jα < m

}
. (2.1)

Introducing the index set

Wα,m = {i+ jα : i, j ∈ N0, i+ jα < m} = {νk : k = 1, 2, ..., ℓ},

we can write V α
m as

V α
m = span {tνk , k = 1, ..., ℓ} . (2.2)

Denoting by Pm the space of polynomials of degree ≤ m − 1, clearly Pm ⊂
V α
m . Moreover, the space V α

m contains the polynomial and nonpolynomial
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functions tνj , j = 1, . . . , ℓ, which may reflect the nonregularity of the solution
of (1.3) (see 1.6).

Consider a partition of the interval [0, a] into N subintervals of equal size
h = a/N

∆N = {ti = i h, i = 0, 1, ..., N} . (2.3)

In each one of the subintervals σ0 = [0, t1] , σi = (ti, ti+1], i = 1, . . . , N − 1,
we define ℓ collocation points tik = ti+ckh, k = 1, 2, . . . , ℓ, where c1, c2, ..., cℓ
are some fixed collocation parameters which do not depend on i and N and
satisfy

0 ≤ c1 < c2 < ... < cℓ ≤ 1, (2.4)

and the set

V α
m (∆N) = {v : v|σi

∈ V α
m , i = 0, 1, . . . , N − 1} .

In what follows, for two given Banach spaces E and F , we denote by
L (E,F ) the Banach space of bounded linear operators A : E → F with the
norm ‖A‖L(E,F ) = sup{‖Az‖F : z ∈ E, ‖z‖E ≤ 1}.

In order to define the interpolation operator

PN ≡ PN,ℓ : C([0, a]) −→ V α
m (∆N)

on the interval [0, a], we define the Lagrange piecewise polynomial basis func-
tions by setting, for j = 0, 1, ..., N − 1, k = 1, 2, ..., ℓ,

Ljk(t) =





ℓ∑

p=1

βj
kpt

νp , t ∈ σj

0, otherwise

, (2.5)

where the ℓ coefficients
{
βj
kp

}
p=1,...,ℓ

may be determined by solving, for each

j = 0, 1, ..., N − 1 and k = 1, . . . , ℓ, the linear systems of equations

Ljk(tjγ) = δkγ, γ = 1, . . . , ℓ (ℓ = #V α
m). (2.6)

The linear system of equations (2.6) has a unique solution as long as the
interpolation points, tjγ, are all distinct (cf. [4]).
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The operator PN is then defined by

(PNg) (t) =
N−1∑

i=0

ℓ∑

j=1

g(tij)Lij(t), t ∈ I = [0, a]. (2.7)

It is obvious that (PNg) (tij) = g(tij), i = 0, 1, ..., N − 1, j = 1, ..., ℓ and the
interpolation operators PN are uniformly bounded,

‖PN‖L(C([0,a]),L∞([0,a])) ≤ c, (cf. [4]). (2.8)

On the other hand, from [4] we have the following global convergence result
for the interpolation operator PN .

Theorem 2.1. Let PN be the interpolation operator defined in (2.7) asso-
ciated with the partition ∆N , m ∈ N and 0 < α < 1. Suppose that g has a
decomposition g = u + v, where u ∈ Cm and v ∈ V α

m. Then, there exists a
positive constant c independent of N such that for all such functions g

‖g − PNg‖∞ ≤ cN−m.

In this work, we seek a u ∈ V α
m (∆N) that satisfies (1.3) at the collocation

points, that is:

u(tik) = y(a) +
1

Γ(α)

∫ a

0

(
(tik − s)α−1χ[0,tik](s)− (a− s)α−1

)
f(s, u(s))ds

= y(a) +
1

Γ(α)

N−1∑

j=0

∫ tj+1

tj

(
(tik − s)α−1χ[0,tik](s)− (a− s)α−1

)
f(s, u(s))ds,

i = 0, 1, ..., N − 1, k = 1, 2, ..., ℓ. (2.9)

As an approximation of g(s) = f(s, u(s)) we consider

f(s, u(s)) ≈ (PNg) (s), s ∈ [0, a], (2.10)

meaning that

f(s, u(s)) ≈
ℓ∑

k=1

Ljk(s)f(tjk, u(tjk)), s ∈ σj. (2.11)
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Substituting (2.5) and (2.11) in (2.9), and denoting by yik the approxi-
mated value of y(tik), we obtain the following discretisation of (1.3):

yik = ya +
1

Γ(α)

N−1∑

j=0

ℓ∑

k=1

f(tjk, yjk)×

l−1∑

p=0

∫ tj+1

tj

(
(tik − s)α−1χ[0,tik](s)− (a− s)α−1

)
sνpdsβj

kp

= ya +
N−1∑

j=0

ℓ∑

k=1

f(tjk, yjk)
l−1∑

p=0

wi,p
jk β

j
kp, (2.12)

i = 0, 1, . . . , N − 1, k = 1, . . . , ℓ, where the weights are given by

Γ(α)wi,p
jk =





∫ tj+1

tj

(
(tik − s)α−1 − (a− s)α−1

)
sνpds, 0 ≤ j < i

∫ tik

ti

(
(tik − s)α−1 − (a− s)α−1

)
sνpds−

∫ ti+1

tik

(a− s)α−1sνpds, j = i

−
∫ tj+1

tj

(a− s)α−1sνpds, i < j < N

.

If the fractional differential equation (1.1) is linear, the system of equa-
tions (2.12) is linear; if not, in order to solve the nonlinear system (2.12), we
use Newton’s method with the vector [y(a), y(a), · · · , y(a)]T (N × ℓ compo-
nents) as initial approximation.

Having determined the yik, i = 0, 1, . . . , N − 1, k = 1, . . . , ℓ, the solution
of (1.1)-(1.2) is given by

y(t) =
ℓ∑

k=1

Lik(s)yik, t ∈ σi, i = 0, 1, . . . , N − 1.

3. Convergence analysis

In this section we prove the convergence of the proposed algorithm ap-
plied to the boundary value problem (linear case):

Dα
∗
y(t) = βy(t) + g(t) = f(t, y(t)), t ∈ [0, a], (3.1)

y(a) = ya, (3.2)
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where g is a continuous function and β ∈ R.
In this case we can rewrite equation (1.3) as

y(t) = (Tαy) (t) + g(t), t ∈ [0, a], (3.3)

where Tα is the integral operator given by

(Tαy) (t) =
β

Γ(α)

∫ a

0

(
(t− s)α−1χ[0,t](s)− (a− s)α−1

)
y(s)ds (3.4)

and

g(t) = y(a) +
1

Γ(α)

∫ a

0

(
(t− s)α−1χ[0,t](s)− (a− s)α−1

)
g(s)ds.(3.5)

Therefore, the method described in the previous section for problem (3.1)-
(3.2) consists of obtaining an approximate solution uN ∈ V α

m(∆N) such that

uN(tik) = (TαuN) (tik) + g(tik), i = 0, 1, ..., N − 1, k = 1, 2, ..., ℓ. (3.6)

Conditions (3.6) have an operator equation representation in the form:

uN(t) = (PNTαuN) (t) + (PNg) (t), (3.7)

where PN is the interpolation operator defined by (2.7).
In order to obtain uN we must solve a linear system of equations with respect
to the coefficients uN(tjk) = ujk:

ujk =
N−1∑

i=0

ℓ∑

µ=1

uiµ (TαLiµ) (tjk) + g(tjk), j = 0, 1, ..., N − 1, k = 1, 2, ..., ℓ,(3.8)

where Liµ are the Lagrange functions defined by (2.5). After solving (3.8)
an approximation to the solution of (3.2) will be given by

y(s) ≈ uN(s) =
N−1∑

j=0

ℓ∑

k=1

ujkLjk(s), s ∈ [0, a].

In the next theorem we prove the convergence of the proposed algorithm
and prove the convergence order for arbitrary collocation parameters c1, ..., cℓ
satisfying (2.4).
Note that taking Lemma 1.2 into account, the solution of (3.1)-(3.2) may be
written in the form y = y1 + y2 where, for a fixed integer m, y1 ∈ Cm([0, T ])

and y2 ∈ V α
m whenever g(t) = g̃

(
t
1

q

)
, and g̃ is analytical in the neighborhood

of t = 0.
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Theorem 3.1. Let y be the unique solution of the boundary value problem
(3.1)-(3.2), which may be written as a sum y = y1 + y2 where, for a fixed
integer m, y1 ∈ Cm([0, T ]) and y2 ∈ V α

m. Then, there exists an integer N0 ∈ N

such that for all N ≥ N0 equation (3.6) has a unique solution uN ∈ V α
m(∆N)

and

‖y − uN‖∞ = O(N−m). (3.9)

Proof.

Let uN(s) = (PNy) (s) =
N−1∑

j=0

ℓ∑

k=1

y(tjk)Ljk(s). From (3.3) and (3.7) we

have

(I − PNTα) (y − uN) = y − uN − PNTαy + PNTαuN + PNg − PNg

= y − uN − PN (Tαy + g) + PNTαuN + PNg

= y − uN − PNy + uN (3.10)

= y − PNy

For 0 < α < 1, the operator Tα, from L∞((0, a)) into C([0, a]), is obviously
linear and is compact (since it is an integral operator with a weakly singular
kernel). Moreover, equation z = Tαz has a unique solution in L∞((0, a)), the
trivial solution z = 0. Therefore, there exists an inverse operator

(I − Tα)
−1 ∈ L (L∞((0, a)), L∞((0, a))) . (3.11)

On the other hand, since the interpolation operators PN , N ∈ N, are uni-
formly bounded (see (2.8)), then

‖y − PNy‖∞ −→ 0 as N → ∞. (3.12)

From (3.11), (3.12) and using a standard argument (see e.g. [1], [3]), we
conclude that there exists an integer N0 such that for N ≥ N0 the operators
I − PNTα are invertible in L∞(0, a) and there exists a positive constant C,
that does not depend on N , such that

‖(I − PNTα)
−1‖L(L∞((0,a)),L∞((0,a))) ≤ C, N ≥ N0. (3.13)

Using the above result on (3.10) we obtain

y − uN = (I − PNTα)
−1 (y − PNy) , N ≥ N0, (3.14)
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and consequently,

‖y − uN‖∞ ≤ C‖y − PNy‖∞, N ≥ N0. (3.15)

From Theorem 2.1 it follows that ‖y − PNy‖∞ → 0 (for every y satisfying
the conditions of the function g in that theorem) as N → ∞ and

‖y − PNy‖∞ = O(N−m).

Using these results on (3.15) we prove the convergence, ‖y − uN‖∞ → 0, as
N → ∞, and (3.9).

4. Numerical examples

In this section we illustrate the theoretical results we have obtained
and the performance of the proposed nonpolynomial collocation method,
(NPCM), presented in Section 2. In order to do this we consider several ex-
amples. We compare the numerical results obtained by the proposed method
with the numerical results obtained with the shooting algorithm based on the
secant method where the initial value problem solver used is the nonpolyno-
mial collocation method proposed in [15].
All the numerical experiments have been coded in Mathematica and run on
a personal computer with processor Intel(R) Core(TM) i5-3230M, CPU 2.60
GHz under operating system Microsoft Windows 8.

Throughtout this section, εN and ε̂N represent the errors at the colloca-
tion and discretisation points, respectively, and p the experimental order of
convergence:

εN = max
j=0,1,...,N−1

max
k=1,...,ℓ

|y(tjk)− uN(tjk)| , (4.1)

ε̂N = max
j=0,1,...,N

|y(tj)− yN(tj)| (4.2)

p = log

(
εN
ε2N

)
/ log(2). (4.3)

First we consider a simple boundary value problem (BVP):

{
D

1/2
∗ y(t) = 1

2
y, t ∈ [0, 1]

ya = y(1) = E1/2(0.5) = 1.952360489182557223787530..., a = 1
, (4.4)
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where E1/2 denotes the Mittag-Leffler function, E1/2(z) =
∞∑

k=0

zk

Γ(k
2
+ 1)

, z >

0, and the exact solution is y(t) = E1/2(0.5
√
t).

In Tables 1 and 2 we present the numerical results obtained by the ap-
plication of the nonpolynomial collocation method for different values of N .
From Tables 1 and 2 we can see that the maximum of the errors, using the
NPCM on the space V 1/2

m (∆N), at the mesh points, converges to zero with
order m which is in agreement with the result provided by Theorem 3.1.

Table 1: Maximum of the errors and experimental order of convergence for the NPCM, ap-

plied to the BVP (4.4) on the spaces V
1/2
1

(∆N ) and V
1/2
2

(∆N ), with collocation parameters
c1 = 0.5, c2 = 1 and c1 = 0.25, c2 = 0.5, c3 = 0.75 and c4 = 1, respectively.

NPCM on the space V
1/2
1

(∆N ) NPCM on the space V
1/2
2

(∆N )
N ε̂N p εN p ε̂N p εN p
10 2.2513 · 10−2 − 2.1556 · 10−4 − 1.3317 · 10−4 − 7.8782 · 10−7 −
20 1.0473 · 10−2 1.10 7.9273 · 10−5 1.43 3.0172 · 10−5 2.14 1.3021 · 10−7 2.60
40 4.9805 · 10−3 1.07 2.9419 · 10−5 1.44 7.0415 · 10−6 2.10 2.1931 · 10−8 2.57
80 2.4042 · 10−3 1.05 1.0878 · 10−5 1.45 1.6775 · 10−6 2.07 3.7446 · 10−9 2.55
160 1.1727 · 10−3 1.04 3.9937 · 10−6 1.45 4.0538 · 10−7 2.05 6.4573 · 10−10 2.54
320 5.7622 · 10−4 1.03 1.4555 · 10−6 1.46 9.8954 · 10−8 2.03 1.1215 · 10−10 2.53

Table 2: Maximum of the errors and experimental order of convergence for the NPCM , ap-

plied to the BVP (4.4) on the space V
1/2
3

(∆N ) with collocation parameters c1 = 0.165, c2 =
0.33, c3 = 0.495, c4 = 0.66, c5 = 0.825 and c6 = 1.

NPCM on the space V
1/2
3

(∆N )
N ε̂N p εN p
10 4.6753 · 10−7 − 1.5895 · 10−9 −
20 5.1999 · 10−8 3.17 1.2765 · 10−10 3.64
40 5.9899 · 10−9 3.12 1.0544 · 10−11 3.60
80 7.0652 · 10−10 3.08 8.8751 · 10−13 3.57
160 8.2977 · 10−11 3.09 7.4607 · 10−14 3.57

The numerical results obtained by the shooting algorithm are similar to
the ones obtained by the proposed method. However, by looking at the rela-
tive CPU times in Figure 1 we can see that the computational cost (measured
by the running time) of the shooting algorithm is considerably higher.
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Figure 1: Example 4.4: The computational cost of the nonpolynomial collocation method
(grey line) and shooting method (black line) on the spaces V α

m(∆N ), m = 1 (left), m = 2
(center) and m = 3 (right).

Now we consider two linear terminal value problems whose analytical
solutions are not smooth:





D1/2
∗

y(t) = −1

4
t3/2 +

3
√
π

4
t+

1

4
y, t ∈ [0, a],

ya =
1

2
√
2
, a = 1/2.

(4.5)





D1/2
∗

y(t) = t, t ∈ [0, a],

ya = 1 +
4

3
√
π
, a = 1.

(4.6)

The exact solution of the terminal value problems (4.5), (4.6) are y(t) = t3/2

and y(t) =
4

3
√
π
t3/2 + 1, respectively.

The maximum of the absolute errors using the NPCM on the space
V

1/2
1 (∆N) are presented in Table 3.
In Table 4 we compare the results obtained by the NPCM and the shoot-

ing method, at t = 0 for examples (4.5) and (4.6). The shooting method
seems to converge with a higher order than the NPCM. However, by look-
ing at the relative CPU times in Table 5 we observe, once again, that the
computational cost of the shooting method is considerably higher.

Next we consider another example





D1/2
∗

y(t) =
2

Γ(5/2)
t3/2 − 1

Γ(3/2)
t1/2 + t2 − t− y, t ∈ [0, a],

ya = 0, a = 1,
(4.7)
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Table 3: Maximum of the errors, εN , and experimental order of convergence for the NPCM

and shooting method on the space V
1/2
1

(∆N ) with collocation parameters c1 = 0.5, c2 = 1
applied to the BVPs (4.5) and (4.6).

BVP (4.5) BVP (4.6)
NPCM Shooting method NPCM Shooting method

N εN p εN p εN p εN p
10 7.52 · 10−4 - 1.56 · 10−2 - 1.57 · 10−3 - 3.31 · 10−2 -
20 2.90 · 10−4 1.38 5.53 · 10−3 1.49 6.07 · 10−4 1.37 1.17 · 10−2 1.49
40 1.10 · 10−4 1.40 1.96 · 10−3 1.50 2.31 · 10−4 1.39 4.17 · 10−3 1.49
80 4.09 · 10−5 1.43 6.95 · 10−4 1.50 8.65 · 10−5 1.42 1.48 · 10−3 1.5
160 1.51 · 10−5 1.44 2.46 · 10−4 1.50 3.20 · 10−5 1.44 5.24 · 10−4 1.5

Table 4: Values for y(0) for the BVPs (4.5) and (4.6), and obtained by the NPCM on the

space V
1/2
1

(∆N ) with collocation parameters c1 = 0.5, c2 = 1 and shooting method (with

non polynomial collocation method on the space V
1/2
1

(∆N ) and collocation parameters
c1 = 0.5, c2 = 1 to solve the IVP).

BVP (4.5) BVP (4.6)
N NPC method shooting method NPC method shooting method
10 −0.155754 · 10−1 0.389817 · 10−3 0.966934 1.000766
20 −0.552759 · 10−2 0.110050 · 10−3 0.988257 1.000217
40 −0.196098 · 10−2 0.30524 · 10−4 0.995832 1.000060
80 −0.695319 · 10−3 0.835930 · 10−5 0.998521 1.000016
160 −0.246415 · 10−3 0.226749 · 10−5 0.999476 1.000004

p 1.5 1.9 1.5 1.9

Table 5: The CPU running-time, in seconds, for the NPCM and shooting method on the

space V
1/2
1

(∆N ), applied to the BVPs (4.5) and (4.6).

Example 4.6 Example 4.4
N NPC method Shooting method NPC method Shooting method
10 0.5 1.828 0.485 1.735
20 1.985 7.922 1.969 7.265
40 8.296 30.39 8.375 29.594
80 33.844 114.563 32.609 115.984
160 140.281 463.015 131.094 453.172

whose analytical solution is known and is given by y(t) = t2 − t. In this case
the solution is smooth but the fractional derivative D1/2y is nonsmooth.
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For this example, the maximum of the errors and the experimental orders of
convergence are presented, for different values of the stepsize h, in Table 6.
From Table 6, we observe that the values obtained by the two methods are the
same, in this example. For the approximation on the nonpolynomial space
V

1/2
1 the convergence orders increase and is approximately 1. On the other

hand, for the approximation on the nonpolynomial space V
1/2
2 a convergence

order 2 is obtained for all values of the step size.

Table 6: Maximum of the errors and experimental orders of convergence for the NPCM

and shooting method, applied to the BVP (4.7), on the spaces V
1/2
1

(∆N ) and V
1/2
2

(∆N )
with collocation parameters c1 = 0.5, c2 = 1 and c1 = 0.25, c2 = 0.5, c3 = 0.75, c4 = 1,
respectively.

NPC method Shooting algorithm
m = 1 m = 2 m = 1 m = 2

N ε̂N p ε̂N p ε̂N p ε̂N p
10 5.17 · 10−2 - 3.06 · 10−3 - 5.17 · 10−2 - 3.06 · 10−3 -
20 3.06 · 10−2 0.76 7.65 · 10−4 2 3.06 · 10−2 0.76 7.65 · 10−4 2
40 1.65 · 10−2 0.89 1.91 · 10−4 2 1.65 · 10−2 0.89 1.91 · 10−4 2
80 8.54 · 10−3 0.95 4.78 · 10−5 2 8.54 · 10−3 0.95 4.78 · 10−5 2
160 4.34 · 10−3 0.98 1.20 · 10−5 2 4.34 · 10−3 0.98 1.20 · 10−5 2

Finally, we consider a nonlinear example:

Dα
∗
y(t) =

40320

Γ(9− α)
t8−α − 3

Γ(5 + α/2)

Γ(5− α/2)
t4−α/2 +

9

4
Γ(α + 1)

+

(
3

2
tα/2 − t4

)3

− (y(t))3/2 , t ∈ [0, 1],

y(1) = 1.

(4.8)

The exact solution of this terminal value problem is y(t) = t8−3t4+α/2+
9

4
tα,

meaning that the solution y(t) can be written as y(t) = u(t) + v(t) with
u(t) = 9

4
tα ∈ V α

m and v(t) = t8 − 3t4+α/2 ∈ Cm([0, 1]), m = 1.

We consider the NPCM on the space V α
1 (∆N) applied to the problem

(4.8), for several values of α. For α = 1/2 and α = 2/3 we have ℓ = 2 and in
these cases the following collocation parameters have been used c1 = 0.5 and
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c2 = 1.0. For α = 1/4 and α = 1/3 we have, ℓ = 4 and ℓ = 3, respectively,
and then in these cases we have set c1 = 0.25, c2 = 0.5, c4 = 0.75, c3 = 1,
for α = 1/4 and c1 = 0.3, c2 = 0.6, c3 = 1, for α = 1/3.

In Table 7 some results of numerical experiments for different values of the
stepsize h are presented. We also compare these with the numerical results
obtained by the shooting method.

Table 7: Maximum of the errors and experimental order of convergence for the NPCM
and shooting method on the space V α

1
(∆N ), applied to the BVP (4.8).

α = 1/4 α = 1/3 α = 1/2 α = 2/3
N εN p εN p εN p εN p

NPCM
10 8.69 · 10−5 - 6.88 · 10−4 - 5.08 · 10−3 - 5.25 · 10−3 -
20 6.24 · 10−6 3.80 1.05 · 10−4 2.71 1.16 · 10−3 2.13 2.04 · 10−3 1.37
40 4.39 · 10−7 3.83 1.55 · 10−5 2.76 3.40 · 10−4 1.77 6.97 · 10−4 1.55
80 3.03 · 10−8 3.86 2.21 · 10−6 2.81 1.22 · 10−4 1.48 2.08 · 10−4 1.74
160 2.04 · 10−9 3.89 3.08 · 10−7 2.84 3.82 · 10−5 1.68 5.81 · 10−5 1.84

Shooting method
10 1.67 · 10−2 - 3.23 · 10−3 - 1.18 · 10−3 - 5.21 · 10−3 -
20 9.69 · 10−4 4.10 2.69 · 10−4 3.58 8.50 · 10−4 - 2.21 · 10−3 1.24
40 5.63 · 10−5 4.10 2.67 · 10−5 3.33 3.83 · 10−4 1.15 7.26 · 10−4 1.61
80 3.27 · 10−6 4.11 3.03 · 10−6 3.14 1.32 · 10−4 1.54 2.13 · 10−4 1.77
160 1.89 · 10−7 4.11 3.71 · 10−7 3.03 4.00 · 10−5 1.72 5.87 · 10−5 1.85

Finally in Table 8 we list the approximations of y(t) at t = 0, for several
values of α, obtained by the NPCM on the space V α

1 (∆N).

Table 8: Comparison with the exact solution y(t) of the BVP (4.8), for several values of
α, at t = 0 (NPCM on the space V α

1
(∆N )).

N Approximations of y(0)
α = 1/4 α = 1/3 α = 1/2 α = 2/3 α = 9/10

5 2.8443 · 10−1 −4.5403 · 10−2 −7.7533 · 10−4 5.6169 · 10−3 3.9180 · 10−2

10 1.6625 · 10−2 −3.2275 · 10−3 6.4858 · 10−4 5.2140 · 10−3 1.4152 · 10−2

20 9.6863 · 10−4 −2.6901 · 10−4 8.5029 · 10−4 2.2136 · 10−3 4.1093 · 10−3

40 5.6318 · 10−5 −2.6677 · 10−5 3.8329 · 10−4 7.2568 · 10−4 1.1073 · 10−3

80 3.2678 · 10−6 −3.0257 · 10−6 1.3159 · 10−4 2.1260 · 10−4 2.8863 · 10−4

160 1.8926 · 10−7 −3.7056 · 10−7 3.9975 · 10−5 5.8671 · 10−5 7.3927 · 10−5
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Figure 2: Example 4.8: The computational cost of the nonpolynomial collocation method
(grey line) and shooting method (black line) on the sapace V α

1
(∆N ), for several values of

α.

Remark 4.1.

In order to compute the coefficients βj
kp, p = 0, . . . , ℓ−1, k = 1, . . . , ℓ, j =

0, . . . , N − 1, that define the nonpolynomial approximation u ∈ V α
m(∆N) of

the boundary fractional differential equation of order α (1.1)-(1.2), we must
solve the systems (2.6). One possible drawback of the proposed method is
that for high values of ℓ, the systems (2.6) can be strongly ill-conditioned.
In order to solve the ℓ × ℓ linear systems we use the function LinearSolve[]
of the software Mathematica.
Let CondℓN = max

j=0,1,...,N−1, k=1,2,...,ℓ
cond(Aj,k), with cond(A) = ‖A‖∞‖A−1‖∞

and Aj,k be the ℓ × ℓ matrices associated with the linear systems (2.6) and
ResℓN = max

j=0,1,...,N−1, k=1,2,...,ℓ
‖Aj,kβj,k − δk‖∞, where βj,k is the solution com-

puted and δk the independent vector associated to the systems of equations
(2.6). In Tables 9 and 10 we list CondℓN , ℓ = #V α

m(∆N), for m = 1, 2, a = 1
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and several values of N and α. In each case we observe that the values of
ResℓN are approximately zero.

Table 9: The maximum of the condition numbers associated with the matrices of the
systems (2.6) and the maximum of the residues ResℓN , for several values of N and α
(ℓ = #V α

1
(∆N ))

V α
1
(∆N )

α = 1/4; ℓ = 4 α = 1/3; ℓ = 3 α = 1/2; ℓ = 2 α = 2/3; ℓ = 2

N CondℓN ResℓN CondℓN ResℓN CondℓN ResℓN CondℓN ResℓN
10 6 · 107 10−94 8 · 104 10−96 2 · 102 10−99 1 · 102 10−99

20 5 · 108 10−93 3 · 105 10−96 3 · 102 10−98 2 · 102 10−98

40 4 · 109 10−92 1 · 106 10−95 6 · 102 10−98 5 · 102 10−98

80 3 · 1010 10−91 6 · 106 10−94 1 · 103 10−98 1 · 103 10−98

160 3 · 1011 10−90 2 · 107 10−94 3 · 103 10−98 2 · 103 10−98

320 2 · 1012 10−89 9 · 107 10−93 5 · 103 10−97 4 · 103 10−97

640 2 · 1013 10−88 4 · 108 10−93 1 · 104 10−97 8 · 103 10−97

1280 1 · 1014 10−86 1 · 109 10−92 2 · 104 10−97 2 · 104 10−97

Table 10: The maximum of the condition numbers associated with the matrices of the
systems (2.6) and the maximum of the residues ResℓN , for several values of N and α
(ℓ = #V α

2
(∆N ))

V α
2
(∆N )

α = 1/4; ℓ = 8 α = 1/3; ℓ = 6 α = 1/2; ℓ = 4 α = 2/3; ℓ = 5

N CondℓN ResℓN CondℓN ResℓN CondℓN ResℓN CondℓN ResℓN
10 5 · 1018 10−84 3 · 1012 10−90 8 · 106 10−94 6 · 109 10−92

20 7 · 1020 10−82 9 · 1013 10−88 6 · 107 10−93 1 · 1011 10−91

40 9 · 1022 10−80 3 · 1015 10−86 5 · 108 10−93 2 · 1012 10−89

80 1 · 1025 10−78 1 · 1017 10−85 4 · 109 10−92 3 · 1013 10−88

160 2 · 1027 10−76 3 · 1018 10−83 3 · 1010 10−91 4 · 1014 10−87

320 2 · 1029 10−74 1 · 1020 10−82 3 · 1011 10−90 7 · 1015 10−86

640 3 · 1031 10−71 3 · 1021 10−80 2 · 1012 10−89 1 · 1017 10−85

1280 3 · 1033 10−69 1 · 1023 10−79 2 · 1013 10−88 2 · 1018 10−82

5. Conclusions

In this paper we have presented a nonpolynomial collocation method
for solving fractional terminal value problems. As previously established,
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these problems are equivalent to Fredholm integral equations. Therefore, we
have developed our previous approach for initial value problems (equivalent
to Volterra integral equations), and have discretised the integral equation
directly. As expected, the convergence order of the numerical scheme is also
optimal as it was for initial value problems. Some numerical examples are
considered in order to illustrate the performance of the method. The solution
can also be determined by using a shooting method. Although the numerical
results obtained by the two approaches are similar (in terms of convergence
order and errors), the direct discretisation of the Fredholm equation presents
an advantage against shooting when we compare the computational time,
which in most cases, reduces significantly when using the nonpolynomial
collocation method proposed here.
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