

This work has been submitted to ChesterRep – the University of Chester’s

online research repository

http://chesterrep.openrepository.com

Author(s): Paul Botel

Title: Component based development: A methodology proposal

Date: 1 May 1999

Originally published as: University of Liverpool MSc dissertation

Example citation: Botel, P. (1999). Component based development: A methodology
proposal. (Unpublished master’s thesis). University of Liverpool, United Kingdom.

Version of item: Submitted version

Available at: http://hdl.handle.net/10034/317669

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 2 Date: 01/05/1999

Table of Contents

i. Dedication 7

ii. Acknowledgements 8

1. INTRODUCTION 9
1.1 Background 9

1.2 Components and Information Systems 9

1.3 Scope and Literature Review 10

1.4 Original Material and Methodology Proposal 11

1.5 Discussion, Evaluation and Conclusions 12

1.5.1 Discussion and Evaluation 12

1.5.2 Conclusions 12

2. LITERATURE SURVEY 14

2.1 TECHNICAL ARCHITECTURES 14

2.1.1 Introduction 14

2.1.2 Terminal Based Architectures 15

2.1.3 Client Server Architectures and the Distributed Systems Model 15

2.1.3.1 Client Server Architecture 15

2.1.3.2 Alternatives to the PC - New types of desktop 16

2.1.3.3 Middleware and Component Architecture in the Distributed Environment 16

2.1.4 Component Development Languages 18

2.1.5 Conclusions on Technical Architectures 19

2.2 TECHNOLOGY APPLICATION 20

2.2.1 Introduction 20

2.2.2 Smartcards 20

2.2.3 Internet and Intranet Developments 21

2.2.4 Conclusions on Technology Application 22

2.3 METHODOLOGY 22

2.3.1 Introduction 22

2.3.2 Object Orientation 23

2.3.3 Objects and Components 23

2.3.4 Components and Services 24

2.3.5 Historical Grounding 25

2.3.6 The Development Process 25

2.3.7 Modelling Standards 26

2.3.8 Conclusions on Methodology 28

2.4 ARCHITECTURAL REQUIREMENTS 29

2.4.1 Introduction 29

2.4.2 Purpose : Why do we need an architecture? 29

2.4.3 Management of Architectural Scale 30

2.4.4 Service Based Architecture 32

2.4.5 Layered Architecture 32

2.4.6 Conclusions on Component Architecture 33

3. ORIGINAL MATERIAL 34

3.1 FRAMEWORK INTRODUCTION 34

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 3 Date: 01/05/1999

3.2 INCEPTION 36

3.3.1 Introduction 36

3.3.2 Business Requirements for the Insurance Claims Case Study 36

3.3.3 Model Business Processes 37

3.3.4 Select System Functions for Use Case Definition 37

3.3.5 Identify Non-Functional Requirements 37

3.3.6 Use Case Definition 38

3.3.6 Use Case Diagram 39

3.3.7 Identify Domain Service Package Architecture 40

3.3.8 Architectural components in place on completion of the Inception Phase 41

3.4 ELABORATION 42

3.4.1 Introduction 42

3.4.2 Use Case : Pre & Post Conditions 43

3.4.3 Use Case : Define Business Rules 44

3.4.4 Use Case: Requirements Visualization 45

3.4.5 Use Case : Define Steps 45

3.4.6 Service Identification 45

3.4.7 Service Packages 46

3.4.8 Service Allocation to Service Packages 47

3.4.9 Service Package Layering 49

3.4.10 Define Service Package Deployment 50

3.4.11 Service Catalogue 52

3.4.12 Service Definition 53

3.4.13 Architectural Components in Place on Completion of Elaboration 55

3.5 CONSTRUCTION 56

3.5.1 Introduction 56

3.5.2 Design Package Class Structures for the Deployment Architecture 57

3.5.4 Architectural Components in Place on Completion of Construction 58

3.6 TRANSITION 59

4. DISCUSSION AND EVALUATION 60

4.0 Evaluation Methodology 60

4.1 Activities in the Component Process 62

4.1.1 Process Modelling 62

4.1.2 Use Cases 64

4.1.3 Domain Service Packages 66

4.1.4 Allocation of Services (User, Business and Data) to Packages 67

4.1.5 Service Definition for Service Packages 68

4.1.7 Service Package Deployment 69

4.2 Use, Reuse and Traceability 70

4.2.1 Use Cases 70

4.2.2 Services 71

4.2.3 Specification and Model Reuse 72

4.3 What is needed to make this work? 73

4.4 General Feedback 76

5. CONCLUSIONS 79

5.1 Areas covered in the Conclusion 79

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 4 Date: 01/05/1999

5.2 Meeting the Requirements of the Literature Survey. 79

5.3 Suitability of the Development Lifecycle 80

5.4 Suitability of the Proposed Methodology Activities 80

5.4.1 Inception Phase Activities 80

5.4.2 Elaboration Phase Activities 80

5.4.3 Construction Phase Activities 81

5.4.4 Use, Reuse and Traceability 82

5.4.5 What is needed to make this work? 82

5.4.6 General Feedback 83

5.5 Summary 83

5.6 Direction of Future Work 85

5.6.1 The Panel 85

5.6.2 My own interests 85

APPENDIX 1 - TECHNOLOGY AND APPLICATION NOTES 87
A1.1 Java and ActiveX 87

A1.1.1 Java 87

A1.1.2 ActiveX 88

A1.2 Java’s Growth 88

A1.3 Java and Smartcard Developments 88

A1.4 Examples of Smartcard Applications 89

A1.5 Examples of Internet Developments 89

APPENDIX 2 - CLIENT-SERVER NOTES 91
A2.1 Server Options 91

A2.2 Operating Systems 91

A2.3 Client Server Costs 91

A2.4 Thin Client 92

A2.5 Technology Adoption 93

APPENDIX 3 - INDUSTRY EXPERIENCE WITH DISTRIBUTED OBJECTS94
A3.1 Microsoft and DCOM Difficulties 94

A3.2 Distributed Objects : Example Applications 94

APPENDIX 4 - QUESTIONNAIRE & COVERING DETAILS 95

Methodology Proposal – Feedback 95

Guidelines for Feedback 98

Activities in the Component Process 99

Process Modelling 99

Use Cases 99

Domain Service Packages 101

Allocation of Services (User, Business and Data) to Packages 101

Service Definition for Service Packages 102

Layering of Service Packages 102

Service Package Deployment 102

Package Class Structure and Component Design 103

Others Techniques 103

Use, Reuse and Traceability 103

Use Cases 103

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 5 Date: 01/05/1999

Services 104

Specification and Model Reuse 104

What is needed to make this work? 105

General Feedback 106

Reviewer Details 107

APPENDIX 5 – CONSOLIDATED QUESTIONNAIRE FEEDBACK 108

A5-4. EVALUATION 108

A5-4.1 Activities in the Component Process 108

A5-4.1.1 Process Modelling 108

A5-4.1.2 Use Cases 110

A5-4.1.3 Domain Service Packages 112

A5-4.1.4 Allocation of Services (User, Business and Data) to Packages 113

A5-4.1.5 Service Definition for Service Packages 114

A5-4.1.7 Service Package Deployment 115

A5-4.1.8 Package Class Structure and Component Design 115

A5-4.1.9 Others Techniques 116

A5-4.2 Use, Reuse and Traceability 116

A5-4.2.1 Use Cases 116

A5-4.2.2 Services 117

A5-4.2.3 Specification and Model Reuse 117

A5-4.3 What is needed to make this work? 118

A5-4.4 General Feedback 120

GLOSSARY 123

BIBLIOGRAPHY 125

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 6 Date: 01/05/1999

Table of Illustrations

Figure 1-1 : The Relationship of Components in Information Systems 10

Figure 1-2 : Research Roadmap 13

Figure 2-1 : Technical Architecture Survey 14

Figure 2-2 : Middleware Perspective 17

Figure 2-3 : Component Connectivity 18

Figure 2-4 : Technology Application Survey 20

Figure 2-5 : Methodology Survey 22

Figure 2-6 : Characteristics of Components 24

Figure 2-7 : UML Adoption 27

Figure 2-8 : Architectural Requirements Survey 29

Figure 2-9 : Architectural Scale 31

Figure 3-1 : Methodology Framework 34

Figure 3-2 : Inception Phase Activities 36

Figure 3-3 : Claims Business Process Model 37

Figure 3-4 : Use Case Template 38

Figure 3-5 : New Claim Use Case – Inception Phase 38

Figure 3-6 : Authorize Claim Use Case – Inception Phase 39

Figure 3-7 : Pay Claim Use Case – Inception Phase 39

Figure 3-8 : Use Case Diagram 39

Figure 3-9 : Domain Service Package Architecture - High Level 40

Figure 3-10 : Elaboration Phase Activities 42

Figure 3-11 : New Claim Use Case – Elaboration Phase 43

Figure 3-12 : Authorize Use Case – Elaboration Phase 43

Figure 3-13 : Pay Claim Use Case – Elaboration Phase 44

Figure 3-14 : Sequence Diagram Template 47

Figure 3-15 : New Claim : Business and Data Services 48

Figure 3-16 : Authorize Claim : Business and Data Services 48

Figure 3-17 : Pay Claim : Business and Data Services 49

Figure 3-18 : New Claim : User, Business and Data Services 49

Figure 3-19 : Domain Service Package Architecture - Layered 50

Figure 3-20 : Service Package Deployment - NT Desktop PC 51

Figure 3-21 : Service Package Deployment - Browser Environment 51

Figure 3-22 : Service Catalogue – User Service Packages 52

Figure 3-23 : Service Catalogue – Business Service Packages 52

Figure 3-24 : Service Catalogue – Data Service Packages 52

Figure 3-25 : Service Definition Template 53

Figure 3-26 : Add Claim Service Definition 54

Figure 3-27 : Verify Cover Service Definition 54

Figure 3-28 : Construction Phase Activities 56

Figure 3-29 : Policy Component Package - Business Classes 57

Figure 3-30 : New Claim Component Package - User Classes 58

Figure 3-31 : Transition Phase Activities 59

Figure 4-1 : Questionnaire Recipients & Feedback Panel Members 60

Figure 5-1 : Revised Component Delivery Activities – Post Feedback 84

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 7 Date: 01/05/1999

i. Dedication

I dedicate this work to my dear departed Parents, and particularly to my Mother who

saw the start of this research, but sadly did not live to see its completion.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 8 Date: 01/05/1999

ii. Acknowledgements

I would first like to offer my thanks to my tutor Garfield Southall, Deputy Head of

University College Chester’s Department of Computer Science and Information

Systems, for his advice and guidance throughout the course of this project.

I would also like to thank my target audience for taking the time to study my research

proposal and complete the associated questionnaire, namely: Len Hall, Patricia

Johnson, Michael Lowcock, Martin Morris, Neil Peachey and Steve Walley. I

especially appreciated the timely return and quality of their feedback, given that they

are all senior IT professionals with project responsibilities and schedules to maintain.

This is a reflection on the caliber of the individuals involved, their degree of interest

in this field of work, and their willingness to support my research objectives.

Without the support of these individuals, I would have been unable to complete this

research. Their help, encouragement and support has been deeply appreciated.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 9 Date: 01/05/1999

1. INTRODUCTION

1.1 Background

Enterprise information systems have undergone considerable change with recent

developments in client server technologies, middleware, and development languages.

Each in turn has had a significant impact on the way systems are architected and

designed, and while most recent software has been developed according to the object-

oriented paradigm, a more component-based approach to development has begun to

emerge.

The Butler group described the component as: “… a black box accessed only via

interfaces, and has only superficial similarities with an object. Developing an object-

oriented application requires high skill levels, and can deliver a monolithic, object-

oriented application. We advise our clients to deliver software applications as

components and then the internals and design approach can be object-oriented or

conventional” (Goodwin, 1998).

If we accept this statement on its merits, it would appear that the definition of the

black-box interface is all-important. The method of implementation is then a separate

choice, and this is by no means simple. If an Information Technology (IT) department

made the wrong decision, this could have a significant impact on the profitability of

the business.

IBM (1998) observed that from a business perspective the technology never seems to

be there when it is needed, and software frequently lags behind business needs. They

posed a number of questions including:

 “How do you keep up?”

 “How do you make the right guess about what you will need before you need it?”

 “How do you preserve the viability of software investments you have already

made?”

Again, if we accept this statement on its merits, trying to predict which technology to

invest in can be a bit of a gamble. The key statement here concerns the preservation of

existing investments in information technology.

Taking the key elements of component based development, black-box service

definition, advances in technology and architecture, and the need to protect legacy

investment, this led me to consider how best I could contribute to the debate with

meaningful applied research.

1.2 Components and Information Systems

In order to determine the scope of my research, my preliminary investigations were to

determine the role that components play in the development of information systems,

and in order to carry out that role, what processes needed to be there to support their

development. The resulted in the relationships profiled in Figure 1-1. It can quickly be

seen from this diagram that component-based development is central to the

development of information systems, and are influenced by technology and

architecture, and require support from appropriate methodology.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 10 Date: 01/05/1999

Technology

MethodologyArchitecture

Component

Service

Based

Development

Business

Applications

Figure 1-1 : The Relationship of Components in Information Systems

Further investigations identified that while the design and construction of components

such as Java applets and ActiveX controls for internet Web-enabled applications was

increasingly understood, there had been little progress in terms of the methodology

needed to define the black-box component interfaces, and more importantly manage

the whole process. This led me to focus on the requirements for an appropriate

framework and methodology within which the component interfaces could be

designed as reusable services for development as components.

1.3 Scope and Literature Review

In order to determine the requirements for an appropriate methodology to support

component-based development, I first had to understand the influences of current

technology and systems architecture on component build and deployment, and review

current methodology and techniques in order to establish a firm foundation for my

proposals. I undertook this task within the Literature Search of Section-2.

I first looked at current technical architectures and developments in client-server, and

the middleware components and languages required to support distributed

applications in Section-2.1. This was necessary in order to establish the requirements

for the definition of service layers and their distribution, and recommend appropriate

techniques in the methodology approach.

I followed this with a review of the current use of distributed technology including

internet/intranet and smartcard type developments in Section-2.2. This was required in

order to establish the sort of integration between old and new technologies that might

be required, and that the methodology would need to satisfy.

I then reviewed the current state of systems development methodology in Section 2-3.

This was necessary in order to establish why object-oriented methods were seen to be

at too low a level of granularity to deliver the promise of application re-use, and to

establish the advantages of the component approach based on the provision of system

services as contracts between the user and the system. I then established how

component techniques were grounded in earlier approaches and that the Universal

Modelling Language could satisfy the modelling requirements. I also reviewed the

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 11 Date: 01/05/1999

process frameworks used by several of the leading object-oriented methodologists to

determine a suitable framework for the component-based development approach.

I concluded the Literature Survey with an analysis of system architecture in Section-

2.4 in order to determine why system architecture is important to the understanding

and development of application systems. This also established the architectural

requirements that the methodology had to satisfy in order that an optimal environment

for component management and reuse could be achieved.

Supplementary notes on technology are provided in the appendices and include:

Technology and Application (Appendix-1), Client-Server (Appendix-2), and Industry

Experience with Distributed Objects (Appendix-3). A Glossary is also provided to

further describe some of the terms introduced in this section.

1.4 Original Material and Methodology Proposal

The conclusion from the Literature Review was that while we now have the Unified

Modelling Language as universal notation for design modelling, there is currently no

consistent standard for the definition of components.

I am proposing, therefore, that a better way of controlling technology can be achieved

by adopting a service based approach to design and development, which concentrates

on pragmatic techniques and models that add value through reuse within a sound

architectural framework.

While the proposed framework includes all phases of the systems development

lifecycle, the starting point for the proposed techniques is a set of business

requirements. How they are obtained and documented is outside of my scope.

Likewise how the components are actually built and deployed is also outside my

scope.

My focus is on business oriented component modelling techniques e.g. process

models, use cases, service allocation, and the delivery of a complete component

design specification e.g. service definitions and service package architecture. From an

object-oriented viewpoint my approach is unusual in that I do not advocate the

definition of a domain class model, but rather the definition of implementation

independent, and therefore reusable, services (or contracts) that component packages

will deliver. The component package is the „black box‟ from which components will

be designed and built by specialists in the technology of the component domain. This

approach also provides the means for legacy and packaged applications to be reused

as component packages in the same way.

In terms of project team structure, this approach also provides more flexibility. It

enables business oriented non-technical analysts to define system services, reserving

potentially more scarce technical specialists for the work of technical component

design and build. However, that is not to say the team should be structured this way,

merely to illustrate greater role flexibility, and potentially better use of resources in

this respect.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 12 Date: 01/05/1999

The methodology should deliver business benefit without the need for significant

investment in tools and training. It is designed to minimise risk and maximise return

on investment by leveraging investment in legacy systems. Since the use case is the

focal point for analysts, designers and developers, this approach also provides the

means to more closely relate business requirements to each phase of the development

process.

My methodology proposal is defined in Section-3. I have used the Objectory project

phases of Inception, Elaboration, Construction and Transition to establish a

framework within which to define the processes and techniques of the methodology. I

have also defined a simple case study based on the registration and payment of an

insurance claim. This is used to illustrate the application of the techniques throughout

the proposal.

1.5 Discussion, Evaluation and Conclusions

1.5.1 Discussion and Evaluation

In order to test the feasibility of the methodology I chose to present my arguments in

the form of a number of claims, and design a questionnaire in order to obtain

appropriate feedback for evaluation. The questionnaire and covering note explaining

the reason for the research (included in Appendix-4) was issued to my target audience

together with a copy of my methodology proposal (Section-3).

The methodology proposal is a comprehensive document and introduces numerous

techniques with which many IT practitioners may not be familiar. Since I am

presenting the methodology as an architecture for the development process, I wanted

to target the proposal on a small number of senior IT staff who could take a more

holistic view of the component development process, and its implications both to IT

and the business. In order to obtain this quality feedback, I selected a small peer group

of six experienced and senior IT professionals, representing a stratified sample from

the insurance and financial services sectors. I refer to this group as my Panel, which

collectively represents over 110 years of industry experience with over 58 years at a

senior and management level. The Panel are introduced in Section-4.0, together with

my rationale for the design of the questionnaire.

Following the return of all completed questionnaires I consolidated the results into

one document as shown in Appendix-5. I removed the identity of the respondents in

order to present and evaluate the feedback collectively, and not at a personal level.

My analysis of their feedback and evaluation of the results follows from Section-4.1.

1.5.2 Conclusions

The conclusions on the research are documented in Section-5.

I first summarise in Section-5.2 how the methodology relates to the issues raised in

the Literature Review of Section-2. I then review the suitability of the Objectory

framework in Section-5.3, before presenting a summary of the main findings on the

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 13 Date: 01/05/1999

suitability of the proposed methodology in Section-5.4. This is based on a summary of

the key elements from my evaluation in Section-4.

I then present an updated process model in Section-5.5, which incorporates updates to

address several of the concerns raised by the Panel. I conclude with suggestions for

future research on this topic in Section-5.6.

I finish this introduction with an overall roadmap for the project as illustrated in

Figure 1-2 below.

Technical

Architectures

Technology

Application

Methodology

 Component Based

Architecture Model

(Proposal)

Circulate for Review
Conclusions

& Recommendations

Review

Feedback

Literature

Review

Original Work

(Methodology Proposal)
Discussion Conclusion

Architectural

Requirements

Figure 1-2 Research Roadmap

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 14 Date: 01/05/1999

2. LITERATURE SURVEY

2.1 TECHNICAL ARCHITECTURES

2.1.1 Introduction

The purpose of this section is to review the evolution of technical architectures in the

distributed environment. Each evolution defines a new architecture within which

systems have to be built. Such technology advances can bring significant business

benefits and allow companies to re-engineer their business processes e.g. electronic

commerce over the Internet. However, a legacy of business applications is always left

behind, and has to be managed as the next wave of new opportunities and

technologies are explored.

This technology review will establish the complexity of this area, and the importance

of seeking a stable enterprise architectural framework within which emerging

technical architectures can be managed. The general structure of this review is

illustrated in Figure 2-1 below.

Client Server

2 Tier

Host Terminal

Technical Architectures

3 Tier

Components

Middleware

Standards Languages

Thin Client Desktops

Figure 2-1 : Technical Architecture Survey

I will first introduce the host terminal based architectures common to the earlier

mainframe and minicomputer based technologies, before moving on to the significant

developments in the area of client server systems, the architectural layers, and the

different types of client desktop. I will then examine the development of middleware

technologies which are so fundamental to the evolution of distributed systems, before

progressing to the current component based technologies, and the standards and

languages applicable to them.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 15 Date: 01/05/1999

2.1.2 Terminal Based Architectures

Traditional mainframe and minicomputer architectures relied on dumb terminals using

emulation software to access programs on the host machine, from which all

transaction and data processing was performed. Applications were designed on a

functional basis, using the approaches common to structured analysis and design, and

information engineering techniques (Gane & Sarson (1979), Martin & Finkelstein

(1981), Jackson (1983), Rock-Evans(1992)).

A major constraint of the host based system was that the user interface, business and

data manipulation logic tended to be mixed throughout the host based code (Allen &

Frost, 1998). This resulted in systems that became difficult to use, hard to change, and

inflexible given the advances in desk-top computing, storage technologies, databases,

and network communications.

2.1.3 Client Server Architectures and the Distributed Systems Model

2.1.3.1 Client Server Architecture

In order to manage the technical complexity of large-scale systems, a number of

layered architectures have emerged which separate the application model into discrete

tiers. I will reserve my discussion in this paper to the more popular 2-tier and 3-tier

layered architectures (Allen & Frost (1998), Bleasdale (1998), Pressman (1997)),

although 4-tier and 5-tier have been defined (Mowbray & Malveau, 1997).

The 2-tier model can be referred to as being „user-driven‟. An event driven GUI puts

control in the user‟s hands, and the GUI can integrate data from a server with desktop

productivity tools like spreadsheets etc. It also enables some reuse of business rules

and processes.

The major problem with this approach is where you put the business logic : on the

client or on the server? Only business logic on the server is reusable across several

clients (e.g. database stored procedures). However, if the logic is embedded in a

particular database (e.g. Sybase, Oracle, DB2 etc) then you limit what is otherwise

general business logic to that particular database server.

With the 3-tier model, there is clear separation or layering, between the presentation

logic, business logic and database logic. This provides a closer match between the

architecture of the business and that of the technology. However, this is an

architecture primarily driven by the technology, and implies a strict client-server

interaction between software layers. These logical layers can then be applied across

the network consisting of Services, Communications Middleware, and Client(s) as

shown in Bleasdale‟s (1998) illustration in Figure 2-2, and further explored in

Appendix 2.

Many new technologies are beginning to emerge and co-exist with older technologies,

and such integration is essential given the legacy of hierarchical and relational

databases, transaction processing systems and applications, which are at the heart of

most commercial organisations.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 16 Date: 01/05/1999

2.1.3.2 Alternatives to the PC - New types of desktop

The client element of the architecture has been traditionally provided by the Personal

Computer. However, Gartner (1997) estimate the total cost of ownership for a PC

within a business organisation at $10,000 per annum per user, including the costs of

procurement, maintenance and upgrade.

As a result, several cheaper alternatives to the PC known as „thin-clients‟ have

emerged where processing power can be more closely matched to the requirements of

the user. As Gartner (1997) also observed: “It is almost as inappropriate to provide a

worker with too much functionality as not enough. Functionality adds complexity,

complexity adds cost”.

The Ovum Report “Network Computers: Risks and Rewards for Business, 1998”

identified four types of „thin client‟ : the Network Computer, NetPC, Intranet

Terminal and Windows Terminal (Griffiths, 1998). They all run across a network,

depend on a server and differ in functionality - see Appendix 2 for a more detailed

description.

Ovum concluded that Windows terminal and NetPCs will dominate over the next 5

years because they serve Windows users, whereas intranet terminals and network

computers only designed for Java will achieve: “only niche success”. This is also due

to the lack of Java applications compared to 10,000 Windows applications

(Griffiths,1998). Gartner confirm this view that a hybrid model will continue to

prevail: some applications being better for fat clients, others for thin (Computing,

1998b).

Just to complicate the issue even further, and possibly negate one of the reasons for a

PC alternative in the first place, “Emachines”, a Korean PC manufacturer in a joint

venture between KDS and Trigem, has just announced plans to produce PCs for under

£300, designed to be “…NetPC and network computer killers” (Clarke, 1998b). This

reduction will undercut network computer prices and allow users to continue with

their Windows based applications, rather than having to adopt the NC‟s Java

operating system.

One thing that is for certain, Gartner confirm that network computing will be a major

part of an increasingly complex enterprise architecture, requiring middleware to tie

the differing systems together, with message brokers becoming increasingly popular

by 2001 (Computing, 1998b).

2.1.3.3 Middleware and Component Architecture in the Distributed
Environment

Middleware is the software layer that lies between the application and the underlying

complexities of the network, and provides the developer with an easy to use API in

order to access the resources that the application needs (Linthicum, 1997). This

provides transparent access not just to database access operations, but to other systems

and services by using a naming service, and invoking a remote process which then

returns a response to the calling process. This is shown in Figure 2-2 below.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 17 Date: 01/05/1999

Application Server

Middleware

Directory ServerSecurity Server

Client Desktop

NT Server
Proprietory Operating

System Server

Firewall

Internet

Services

Figure 2-2 : Middleware Perspective

The development of middleware and especially the emergence of Microsoft‟s DCOM,

and the Object Management Group‟s CORBA industry standard models for object

communication, have had a dramatic effect on the approach to component

distribution. There is no longer a single address space, and an application can span

different technical configurations, operating systems, and across multi-language

environments (Allen & Frost, 1998), (Anderson, 1998), (Pressman, 1997).

To enable this interoperability between components across a network, it is the

component‟s interface that is defined to the middleware. Language neutral interface

standards are used to do this, with Microsoft using their proprietary vtable standard,

and OMG the open IDL standard.

The CORBA framework is an example of a good open architecture which has enabled

suppliers to compete without jeopardizing the compatibility of components e.g.

VisiBroker from Visgenic Software, Orbix from Iona Technologies. (Morris &

Ferguson,1993), unlike DCOM which is the proprietary reserve of Microsoft.

Which is the right choice? Butler Group chairman Martin Butler has branded CORBA

the “Betamax of object technology” claiming that business would adopt DCOM since

it is free with Windows NT (Kelly,1998d). However, research by Neil Ward-Dutton,

senior analyst at Ovum indicated that while the installed base of NT servers

(3.1million) will outnumber Unix (0.5million) by six times in 2002, revenues for

DCOM/COM on NT will be under $1m, against those of Java and CORBA of $2.5m.

In their defence, Richard Soley chairman of OMG suggested that: “DCOM will be

increasingly used as people move to NT, but existing legacy systems are not going to

be replaced. Diversity is here to stay in operating systems and CORBA is the only

bridge”. I have noted recent industry experience with this middleware in Appendix 3.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 18 Date: 01/05/1999

The key issues here are whether you are committed to the Microsoft NT route, or

require a more open approach, with greater options for the integration of legacy

systems, and choice of operating system. The choice may be governed by what

components are available. DCOM has evolved from the desktop and has only recently

emerged as a model for distributed applications, whereas CORBA and Java were

originally designed for network use. The facilities they provide, however, are

fundamental to the ability to deploy components at execution time in order to optimise

the technology to deliver the most business benefit. A key example is the Internet

which applies the concept on a global scale.

2.1.4 Component Development Languages

While the DCOM and CORBA technologies provide for clear component interfaces,

separate from implementation and therefore isolating change, we now need to

consider how components are actually implemented, and how they relate to the

middleware.

The two dominant component technologies are Microsoft‟s ActiveX - machine

dependent binary for Windows applications, and Sun Microsystems Java - machine

independent byte compiled code (Allen & Frost(1998), Anderson(1998)). Using this

technology, families of components can be developed based on a published interface

without knowledge of their internal details. Such components can range from user

interface icons and controls to complete software products. How the components

attach to the middleware is shown in Figure 2-3 below.

Component-A

Component-B

M
id

d
le

w
a
re

Ea ch co mpon ent h as

a p u b l i c i n te r f a c e

co n fo rm i n g t o t h e

C OR B A o r D CO M

middleware standard.

Th e midd lewa re al lows

c o m p o n e n ts t o b e

p l ug g e d to ge th er a nd

co mm u n ica te wi th o u t

knowledge of location or

implementation.

Figure 2-3 : Component Connectivity

Java has become tremendously popular as a development language based on its „write

once, run anywhere‟ philosophy. Research by International Data Corporation revealed

an average payback for Java developments of 14.6 months (Kelly, 1998a). This was

endorsed by ObjectShare who experienced a two to four times cost reduction over

similar development in C++. It is also being adopted for desktop and server strategy

by manufacturers e.g. Hewlett Packard (McGinn, 1998).

JavaBeans is the component architecture for the Java platform, and most Java

development tools now use JavaBean components. Enterprise JavaBeans is a newer

specification that runs on the server in a distributed application (Anderson,1998).

While Java has its own RMI technology for communication between distributed

objects, Sun will standardise on CORBA‟s IIOP (Anderson, 1998), which clearly

shows Sun Microsystems commitment to this industry standard.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 19 Date: 01/05/1999

Being a new technology some problems are still in evidence. When the “Liffe”

automated brokerage service was implemented for the London Futures and

International Petroleum Exchanges, it was discovered that the Internet Explorer and

Netscape Browsers used different versions of the Java Virtual Machine, and that the

download of an application applet could take 10 minutes (Kelly, 1998b).

Poor performance was also identified by a Bloor Research survey of 100 UK sites

across industry sectors, together with a lack of support for platforms, and insufficient

development tools (Kelly, 1998c). On the other hand its strengths included ease of

deployment, built in security, and the portability of the application. More

significantly, Bloor identified that 9% of respondents reported doing something

strategic or significant with Java (estimated 41% by 2002), and 79% were seriously

looking at the language.

This was in contrast to the Butler Group whose research showed that less than 5% of

corporations were using Java, and there were no cases of large successful server based

systems (Goodwin, 1998). Clearly, there is a conflict here, and the research criteria

would have to be examined to determine the discrepancy. While the problems with

performance of server based systems are reflected by the Liffe example, this could be

due to many factors and development in network technology will minimise these

problems.

Regardless of choice, across a network Java Beans and ActiveX are memory hungry

component architectures and demand considerable processing power. Providing the

network performance can be managed, the Java approach is characterised as thin

client, fat server with a wider network bandwidth requirement. Microsoft‟s approach

is to load more features onto a fat client, with ActiveX managing the interworking of

Microsoft applications both locally and over a distributed network of servers (Pal,

Ring, & Downes, 1996). While this will find favour with Microsoft sites and should

deliver better local client performance and integration with other Microsoft products,

it carries the increasing costs already identified for a PC desktop solution. I have

included further information on this topic in Appendix 1.

2.1.5 Conclusions on Technical Architectures

The technology is now available to deploy objects where they are needed, and not

where traditional host based solutions would otherwise have dictated. This has

resulted from the development of the CORBA open component based middleware,

and Microsoft‟s proprietary DCOM middleware, together with client server and

distributed network technologies. Together, these technologies enable the

interoperability between components. There may still be some performance problems

to overcome e.g. Java download times, but as Butler Group(1998b) observe, this

should not be an excuse to ignore component based development.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 20 Date: 01/05/1999

2.2 TECHNOLOGY APPLICATION

2.2.1 Introduction

Having now reviewed the increasing complexity of technology, and identified where

we are in terms of client-server, middleware, components and component

development languages, I will now illustrate how that technology is currently being

applied.

IBM (1998) describe electronic commerce (or e-commerce) as systems designed and

developed using internet technology and access methods, to allow companies to

conduct business both internally using intranets or externally via the Web. In terms of

the next steps with Java technology, Bloor Research predicted that: “The next wave of

computing will involve networks and distributed processors linked into the web.

These will use Java to manage machinery, buildings, vehicles and the home” (Farrell,

1998a). However, I will limit my review to the world of electronic commerce,

following the approach shown in Figure 2-4 below.

Technology Application

Smartcards Internet Intranet

Figure 2-4 : Technology Application Survey

I will first explore the application of Java in smartcard applications, and then the

impact of the internet and intranets on business practices, opportunities for growth and

new ways of doing business in the global environment.

This will again highlight the requirement for a stable architectural framework in order

to manage application development from a business perspective, while now applying

these new technologies. I will then illustrate in Section 2.3 what methodologies that

have been used to develop these type of systems, their limitations, management issues

and the requirements for an architectural framework to better manage the

development process.

2.2.2 Smartcards

Where Java has been notably successful is in the development of smartcards.

Smartcard technology has been identified by International Data Corporation as one of

the fastest growing and dynamic branches of the IT industry in Western Europe today,

with 308 million microprocessor based cards expected to be sold in 1998

(Tober,1998).

Mark Stevenson, independent consultant and co-author of an Ovum report on smart

cards, predicted that: “By 2003 there will be around five billion smart cards in use –

as many cards as there are people on earth” (Tober, 1998). Indeed the number and

scale of smartcard developments seems to bear this out. Visa Cash have 60,000 cards

in circulation in Leeds (Tober, 1998). London Transport anticipate six million

contactless smart cards in circulation (Clarke, 1998a), Co-operative Bank is working

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 21 Date: 01/05/1999

on an ISA system (Tober,1998), and Aberdeen Council will soon have 40,000 cards in

circulation (Phillips,1998). Take up will no doubt accelerate further when Microsoft

release their equivalent development technology in 1999 (Saran, 1998). I have

provided more background information on these topics in Appendix 1.

2.2.3 Internet and Intranet Developments

Access to the internet is provided by a Web browser, which is also a good example of

a component container. Netscape and Microsoft‟s Internet Explorer both support Java,

and IE supports ActiveX. (Anderson, 1998). As a result, applications are increasingly

being developed with the client component running in a Web browser, with middle

tier components running on servers, supported by back end data sources of various

kinds (Anderson, 1998).

Bloor indicated that electronic commerce via the Internet was growing at the rate of

8% per month, and as a result predicted that banking, retailing and insurance will

undergo dramatic change (Farrell, 1998b). One of the drivers for this is that web

based business costs are about one tenth of those of traditional business methods. In

the United States Bloor indicated that 20% of all stock market transactions were web-

based, but that people were less happy to buy and sell insurance over the internet.

Given the level of competition in the banking, retail and insurance sectors, Bloor

predicted dramatic change in this area. This would result in the retail and insurance

sectors seeing levels of competition exceeding anything experienced before, forcing

rationalization on a world wide scale.

Gartner (1998) predicted that by Year 2003, 80 percent of enterprises will be using the

Internet for telecommuting, accessing mobile users and communicating with trading

partners (0.8 probability). He also noted that due to focusing resources on Year2000

development, that most organisations will have failed to invest in Internet

technologies, and will be forced to use systems integrators throughout 2001 to

overcome the shortage of skills and lack of internal expertise (0.8 probability).

Examples of successful Internet developments in the financial sector include

Equitable Life with an investment tracking system for 500,000 clients (McLeod,

1998), and Lloyds TSB with an online service to allow Lloyds customers to pay bills,

transfer money between accounts, view statements and adjust standing orders over the

Net (Poston, 1998). These developments are detailed in Appendix 1.

Intranets have increasingly grown as the means to simplify document publication and

distribution within an organisation. While they can reduce costs and improve

information flow, they are not viewed as mission critical (Pal, Ring, & Downes,

1996). They provide added value, rather than major business benefits.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 22 Date: 01/05/1999

2.2.4 Conclusions on Technology Application

This new technology has been applied under several guises including electronic

commerce (or e-commerce), and includes the emergence of smartcards, and the

Internet.

Over the Internet, applications are being developed for deployment on a global scale

with networks and distributed processors linked into the Web. Intranets are also being

developed for internal use within organisations, and use the same Internet technology

and access methods. Most of the „thin‟ client processing in this environment is

performed using a simple to use Web Browser which is a good example of a

component container.

The emerging challenge is to integrate these applications into the core business

processes of the organisation. Indeed, as Web technology offers more capabilities, its

complexity will increase – as will the job of managing the infrastructure (Pal, Ring, &

Downes, 1996). This again identifies the need for a comprehensive software

component architecture within which the distributed functionality of Web clients and

servers can be managed, and integrated with other applications. Further information

on Java and Microsoft‟s ActiveX components is provided in Appendix 1.

2.3 METHODOLOGY

2.3.1 Introduction

Having now reviewed the technology and its application we now need to examine the

parallel progress of methodology, and I have used the steps shown in Figure 2-5

below.

Methodology

Object Orientation
Components

and Services

Historical

Grounding

Development

Process

Modelling

Standards

Figure 2-5 : Methodology Survey

Jayaratna (1994) defines Methodology as: “… an explicit way of structuring one‟s

thinking and actions”, and this will be the driving force behind my proposals in

Section 3. He goes on to say that: “Methodologies contain model(s) and reflect

particular perspectives of „reality‟ based on a set of philosophical paradigms.”, and it

is the paradigms of object orientation, and components that I will now examine.

I will first discuss how the object-oriented approach to development has failed to

deliver the promises of application reuse, and then introduce how the component, as a

higher level of abstraction than the object, will achieve this. I will then discuss how

this service based component approach is grounded in earlier work. I follow this with

a review of the latest thinking on the organisation of the development process from

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 23 Date: 01/05/1999

the perspective of project management, and review recent developments in object-

oriented modelling standards that can be used to support the component approach.

2.3.2 Object Orientation

Many claims have been made for the benefits of object orientation. Objects are meant

to reflect the real world in software. Allen & Frost (1998) observed that they are

meant to: “… provide the reuse, clarity and adaptability that are lacking in client-

server applications and the interoperability required by distributed technology”.

However, they also identified that implementation dependencies can often be exposed

through the programming language interfaces. It is recommended that technology

such as CORBA‟s IDL is used to define component interfaces (which are separate to

the implementation), and thereby provide the necessary isolation from change.

Mowbray & Malveau (1997) also identified problems in a lack of distinction between

interface and implementation in object oriented analysis and design, suggesting that

most of the modelling relates to the characteristics of the implementation and not to

its interface. This can result in a lack of reuse outside that particular environment,

since objects are not treated as service providers but as parts of applications that often

fail to address the wider needs of the business. In practice: “…the application-based

mind-set is indeed “alive and kicking” in many organizations today” (Allen & Frost,

1998).

While reuse has often been heralded as another major benefit of object orientation, a

recent survey at Object World UK revealed that only 5% of respondents were

managing to reuse more than half their code (Goodwin, 1998).

It is evident, therefore, that while object oriented approaches can be effective in the

construction of software, they can be misused. Indeed, how object oriented a design is

does not guarantee the quality of the deliverable. As Mowbray & Malveau (1997)

suggest: “…there needs to be something more sophisticated than „objects are things

you can touch‟, in order to design effective OO systems.”

New paradigms, therefore, need to take account of the difference between interface

and implementation. It is this separation of implementation from interface that will

guarantee reuse. Providing the interface is well defined and specified, it can be reused

to build components specific to whatever target environments are required e.g. C++ or

Java. This separation is also the basis for the architectural boundaries, which is a

feature of both the CORBA and DCOM distributed component technologies.

2.3.3 Objects and Components

Allen & Frost (1998) draw the distinction between objects and components as

follows:

 “Although it is objects that form the underlying fabric of software solutions, it is

components that provide the effective granularity of reuse through consistent

published interfaces that encapsulate the implementation…A component-based

approach removes the tight coupling of an application‟s parts and eases reuse of parts

across different applications. In fact the application has disappeared: instead model

items are packaged as components, which are configured in network fashion to meet

business needs.”

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 24 Date: 01/05/1999

Butler Group (Goodwin, 1998) similarly referred to the component as: “… a black

box accessed only via interfaces, and has only superficial similarities with an object.

Developing an object oriented application requires high skill levels, and can deliver a

monolithic, object-oriented application. We advise our clients to deliver software

applications as components and then the internals and design approach can be object-

oriented or conventional”.

This has the advantage that legacy code and third party software can be wrapped up

and treated as a component, as long as they have a standard interface with the outside

world.

To summarise in the words of Allen & Frost (1998): “A component is an executable

unit of code that provides physical black-box encapsulation of related services. Its

services can only be accessed through a consistent, published interface that includes

an interaction standard. A component must be capable of being connected to other

components (through a communications interface) to form a larger group.”.

2.3.4 Components and Services

The focus on services is seen to be the key to providing reusable software

components. Allen & Frost (1998) define service as: “…cohesive collections of

related functionality, accessed through a consistent interface that encapsulated the

implementation. Each service has a published specification of interface and

behaviour. Components provide the interfaces.”

Services offered through interfaces should not change, and such interfaces are often

referred to as being „immutable‟ (Butler Group, 1998a). While the physical

implementation of the component might change, the service offered via an interface

should not, i.e. the how can change but not the what. The essential and desirable

characteristics of components as described by Butler Group (1998a) are illustrated in

Figure 2-6 below.

Figure 2-6 : Characteristics of Components - Source: Butler Group (1998a)

The impact of the component based approach has been researched by Ovum in their

report “Componentware: Building It, Buying It, Selling It” (Mannion & Keepence,

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 25 Date: 01/05/1999

1998). They suggest that the software component approach will make a “silent coup”,

with dramatic impact on both user companies and software suppliers, and see sales of

component products reaching $3bn in 1998, taking off to $64bn in 2002. Ovum does

not see the component approach immediately becoming an alternative to traditional

development for IT departments, but as a new technology for in-house development.

They see most companies gradually adopting componentware: “…as a packaging, re-

facing and integration technology rather than as an application development

technique”.

2.3.5 Historical Grounding

An analysis of Wirfs-Brock, Wilkerson, & Wiener (1990), Coad and Yourdon (1991),

and Jacobson, Christerson, Jonsson, & Overgaard (1992) has identified that the

concepts of the component, and the service based approach, are firmly grounded in

their work.

Wirfs-Brock, Wilkerson, & Wiener (1990) introduced the concept of a subsystem as:

“…a set of classes (and possibly other subsystems) collaborating to fulfill a set of

responsibilities.” They affirmed that although subsystems do not exist as the software

executes, they are useful conceptual entities treated as black boxes by other

subsystems, and are another example of encapsulation. The interface of the

component was described as a “contract” supported by the subsystem.

Coad & Yourdon (1991) also introduced two key concepts. Firstly that a service

should carry out one, and only one function. Secondly, the concept of “packaging” as

a means for the designer to organise a design so that it is resilient to change, the

objective being for the package to remain stable over time.

Jacobson, Christerson, Jonsson, & Overgaard (1992) also used the subsystem

description as: “… a way of structuring the system for further development and

maintenance…At the lowest level we call these units service packages”. This was to

be performed on the basis of objects with a strong mutual functional coupling being

placed in the same subsystem. Reference was also made to the work of Embley &

Woodfield (1988), and Yourdon and Constantine (1979).

We can see, therefore, that the service based approach has been used as a means of

abstracting system detail into manageable components for the purpose of application

design and packaging. However, the focus here was on the packing of application

objects, and not on the provision of a service based architecture. It is in the context of

an architecture that the component and service based approach is now being applied.

2.3.6 The Development Process

Many approaches to object oriented systems development have emerged in recent

years, the most popular including those of:

 Shlaer and Mellor (1988)

 Wirfs-Brock, Wilkerson and Wiener (1990) – Responsibility Driven Design

 Coad and Yourdon (1991) - Object-Oriented Design

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 26 Date: 01/05/1999

 Jacobson, Christerson, Jonsson, and Overgaard (1992) - Object Oriented Software

Engineering (OOSE).

 Rumbaugh, Blaha, Premerlani and Eddy (1991) - Object Modelling Technique

(OMT)”

 Martin and Odell (1994)

 Booch (1994) – Rational

All assume objects to be stable over the lifetime of the system, but each differ in the

proportion of time, and the degree of importance of the activities of analysis, design

and implementation (Mowbray and Malveau, 1997), and in the notation of system

models (Fowler and Kendall, 1997).

The most recent developments have appeared since the three famous methodologists:

Grady Booch, Jim Rumbaugh and Ivar Jacobson, joined forces at Rational Software.

The initial most significant event from this merger was publication of their Unified

Modelling Language (UML). This has since been adopted as an industry standard and

Version 1.1 was released by the Object Management Group in November 1997. This

is discussed further in Section 2.3.7.

They are currently, however, working on a unified process which will be known as

the „Objectory Software Development Process‟, and undoubtedly builds on the work

of Jacobson (1992)‟s „Objectory‟ process. Like Fowler and Kendall (1997), I do not

believe that you can be prescriptive and standardise on one development process,

because the nature of information systems are inherently different e.g. real time,

management information, GUI, together with their scale e.g. single user or enterprise

wide. The benefit of the Objectory process is that it provides a framework for

development, yet allows developers to have the flexibility to use different techniques

appropriate to their particular project.

The process is iterative and incremental, and allows activities to span phases

recognising that problem solving is a non-linear activity (Cantor, 1998). The process

as described by Fowler and Kendall (1997), and Cantor (1998), begins with an

Inception phase where the business rationale and scope of the project is agreed, and

commitment is gained from the sponsor. This is followed by the Elaboration phase

where detailed requirements are obtained, high-level analysis and design is

undertaken, the baseline architecture established and the Construction plan developed.

Construction builds the system in a series of iterations, each consisting of the analysis,

design, coding, testing and integration of the increment. The final phase is Transition,

where beta testing, performance tuning, and user training is conducted prior to the

rollout of the system.

It is this framework that I will use when I define my methodology proposal in

Section-3.

2.3.7 Modelling Standards

Fowler and Kendall (1997) define a modelling language as: “…the (mainly graphical)

notation that methods use to express designs”, and each of the object oriented analysis

and design methods of the 1980s and 1990s prescribed their own.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 28 Date: 01/05/1999

The principle models and techniques covered by the UML (Fowler and Kendall,

1997) and Cantor (1998) include: use cases, class diagrams, interaction diagrams,

package diagrams, state diagrams, activity diagrams, and deployment diagrams. I will

later introduce those applicable to my work in this dissertation, (subject to the

constraints of my modelling tools), and indicate where and why I have deviated from

the standard. It is also worth highlighting the Allen and Frost (1998) guideline to keep

modelling simple: “A modelling notation must add value to the overall process”.

2.3.8 Conclusions on Methodology

In terms of development methodology it has been identified that object-oriented

approaches often fail to deliver the promises of application reuse. This is seen to be

the result of a lack of distinction between interface and implementation throughout the

process of object-oriented analysis and design. It is the component, or component sub-

assembly, that is seen as increasingly more useful, reusable, and marketable (Butler

Group, 1998a).

This higher level of abstraction is seen to be achieved by service definition, which is

clearly defined by Allen & Frost (1998) as: “…cohesive collections of related

functionality, accessed through a consistent interface that encapsulated the

implementation. Each service has a published specification of interface and

behaviour. Components provide the interfaces.” It is this „black-box‟ encapsulation of

services that will enable software to be defined as a component, for which the

internals and design approach could be object-oriented or conventional. This will

provide system architects and designers with a truly flexible approach to

development.

The available process and modelling approaches are developed from the disciplines of

object orientation. The majority of the required modelling constructs are, however,

provided by UML Version 1.1, and the „Rational Objectory Process‟ provides an

appropriate development lifecycle framework.

The architecture and design of component-based systems is an emerging discipline.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 29 Date: 01/05/1999

2.4 ARCHITECTURAL REQUIREMENTS

2.4.1 Introduction

Having now examined the technical architecture, the application of technology, and

methods used in application design, I want to examine the attributes required of

enterprise application architecture, following the approach shown in Figure 2-6

below.

Architectural Requirements

Purpose
Management of

Scale
Services Layering

Figure 2-8 : Architectural Requirements Survey

I will first review the basic purpose for architecture, before looking at the various

levels or scales of architecture that apply in order to construct an information system.

I will then look at system architecture from a service based perspective, before

examining how the system can be partitioned or layered for better understanding.

2.4.2 Purpose : Why do we need an architecture?

An architecture is needed to follow on from the object-oriented paradigm, and must

take account of the essential distinction between interfaces and implementation. It

must improve the management, development and deployment of application systems,

and define the boundaries within which complexity and change can be more

effectively managed.

This is crucial if IT Departments are to maximise the return on investment in

information systems, which the business expects. The architecture must therefore

allow for the integration of legacy systems (IBM, 1999). Likewise any enhancements

made should cause as little disruption to the business as possible. Indeed, while the

term legacy is normally associated with older systems with separation of data and

function, the term can equally be applied to current object oriented systems that may

need to be „wrapped up‟ for reuse.

As Morris & Ferguson (1993) suggest: “Architectures impose order on the system and

make the interconnections possible.” Architecture must protect the investment in

existing systems, and be both scalable and extensible in order take advantage of new

technologies and facilitate future development.

These principles equally apply to both systems and business organisations. A

company needs an environment and architecture within which it can customise its

own technology and systems in order to gain competitive advantage in the

marketplace (Perspectives, 1993). For the re-engineering of business processes, it

would appear that a less radical and more evolutionary approach is being taken.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 30 Date: 01/05/1999

Research by Currie & Willcocks (1995) showed empirically that the „all or nothing‟

approach to business re-engineering and organisational change as promoted by

Hammer (1990), often failed to achieve the claimed benefits. This was partly due to

the lack of a suitable multi-disciplinary methodology, and lack of management of the

political dimension (Willcocks & Smith, 1995). This has led to the conclusion that

like many other large scale change programmes, they rarely produced change (Beer,

Eisentat and Spector,1990). As a result, the outcome of a re-engineering project was

frequently difficult to predict.

What this identifies is that the architecture must provide a clear description of the

intent of its constituent parts in order to prevent the misinterpretation of a project‟s

objectives.

2.4.3 Management of Architectural Scale

Shaw & Garlan (1996) noted that as systems grow and become increasingly more

complex, the structure of the overall system becomes more significant than the

detailed definition of business algorithms and data structures. They suggest that the

system is a composition of components including: global control structures, protocols

for communication and data access, functional design elements, and their physical

distribution.

Mowbray & Malveau (1997) propose a solution and structure for such architecture

that can be defined according to its scale. They suggest that at every scale of a

software system there is implementation and architecture. For example, an application

needs an internal architecture to support its integration, reuse and evolution. Whereas

implementation is the realization of some finer grained component modules,

architecture is the abstraction defining the inter-module interfaces that help

developers understand how the modules are put together. They see this as a key

concept since few practitioners understand system level forces and how to resolve

them effectively. The scalability model proposed by Mowbray & Malveau (1997) is

shown in Figure 2-9, which also suggests the external „primal‟ forces, or issues,

dominant at each level.

Looking at implementation, this will be language dependent and reflected in the

collection of software modules that provide functionality and performance. This is

encapsulated by the interface, for which Mowbray & Malveau (1997) recommend the

open CORBA IDL standard at the system level. This concurs with Morris &

Ferguson‟s (1993) view that open-systems and a well-designed and open-ended

architecture permit evolution along with critical technologies. This serves to reduce

complexity, enables the management of unpredictability and change, and allows

individual technologies, components, or products to be changed or replaced with

minimal impact on the rest of the system.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 31 Date: 01/05/1999

Scales Description Primal forces

(issues)

7 Global Architecture Design and system coordination issues across all

organisations sharing communications and

information. This includes languages, standards

and policies across multiple enterprises e.g.

Internet, Corba etc

Leveraging existing

standards

6 Enterprise Architecture Coordination and communication across

multiple systems with multiple applications,

within a single organisation. This may cover

many locations with heterogeneous hardware

and software systems

This is where an organisation controls its

resources and policies e.g. network standards,

databases, common operating environment etc

Managing resources

5 System Architecture

(OO Architecture)

Communication and coordination across

applications, and the interoperation between

applications.

It is the enduring structure that survives the

modification and replacement of component

applications over the lifecycle of the system.

Includes the impact of communication

mechanisms and distributed processing.

Manages complexity by the right amount of

abstraction for a system architecture.

Manages change by the definition of common

interfaces i.e. services.

Implements the systems internal model.

Managing change

and complexity in

order to reduce

lifecycle costs.

4 Application

Architecture

(Subsystem)

Focuses on the organisation of application

development to meet a set of user requirements.

This involves numerous classes, multiple

microarchitectures, and one or more

frameworks. It satisfies end user requirements

including user interface and visible system

functionality.

Functionality and

performance

3 Macroarchitecture

(Frameworks)

The organisation and development of

application frameworks. This involves one or

more microarchitectures, and attempts to use

large portions of design and software in a

particular domain (e.g. IBM San Francisco)

Reuse of code and

design

2 Microarchitecture

(Design Patterns)

Development of software components to solve

software problems. This will involve the

combination of multiple objects, the design of

which is typified by the work of Gamma (19nn)

as recurring design patterns .

Object cooperation

1 Object Development of reusable objects and classes (at

the code, rather than design level). Defines the

object attributes and signature of operations.

This is very much language dependent.

Primitive

functionality and

reuse

Figure 2-9 : Architectural Scale - Source: Mowbray & Malveau (1997)

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 32 Date: 01/05/1999

2.4.4 Service Based Architecture

In a distributed system a service-based architecture is needed to provide the

independent reusable services necessitated by the lack of a single address space. By

this method distributed objects are accessed purely through their interface, without

any knowledge of the implementation details that support the interface (Mowbray &

Malveau, 1997).

The benefit of a service based architecture is that the services are completely de-

coupled from the clients that access them. This de-coupling allows services to be

shared by multiple clients, which allows a service to be used and reused within the

distributed environment. If the need arises, a service can be simply replaced by a new

one with no ill effect on the system, providing the same interface is maintained. This

is a significant step forward in enabling the migration to new products, applications

and technologies with minimal systems impact.

2.4.5 Layered Architecture

Architecture should be flexible enough to enable the distribution of system

functionality according to actual business requirements, rather than those of hardware

and software suppliers. Allen & Frost (1998) define an architecture that partitions

models into: user interface, business and data storage service layers. These are

stereotypes, and as services can be collected together into cohesive packages (Fowler

& Kendall, 1997) for which implementation object classes will later be designed. By

layering the interfaces, a clear separation of services can be provided.

The interface User Services layer performs the activities of the user interface,

including control and reporting functionality. User Services are implemented by User

Objects.

The Business Service layer provides services to meet the needs of specific business

processes or may be generic e.g. client services used by underwriters or claims

handlers. It encapsulates business policy, and applies business rules to transform data

into information. Business Services consists of Business Objects that can call User

Objects as well as Data Services, and may alert User Objects where necessary.

Business Services can also be used to wrap legacy assets and legacy transactions.

The Data Services via Data Objects provide data services across many Business

Services. They translate persistent Business Objects into appropriate storage,

including the wrapping of databases.

This architectural layering is used by Allen & Frost (1998) to partition application

services into component packages for a particular business domain e.g. Claims,

Accounts, Quotations, Underwriting. This is then subject to further object oriented

analysis in order to allocate responsibilities to user, business and data objects for

implementation as component packages, treated as black boxes, and accessed via

defined interfaces to service classes within them. These packages of objects are then

deployed onto the appropriate technology platform e.g. Client to an Enterprise Server,

Quotations to a Direct Sales departmental server, Accounts to the Accounts

Departmental Server etc.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 33 Date: 01/05/1999

This supports Mowbray & Malveau‟s (1997) view that if the architect partitions (i.e.

abstracts) the business domain into meaningful groups of related objects during

object-oriented analysis, this should ensure the reusability of the software component.

If specified correctly, this domain model grouping of components, their description

and interaction should result in an „evolvable‟ model.

2.4.6 Conclusions on Component Architecture

Mowbray & Malveau‟s (1997) classification of architecture by scale is a significant

contribution to the architectural debate. Likewise the layered service based approach

(Allen & Frost, 1998) where components are treated as black boxes, accessible only

by their interface.

Providing component interfaces are well defined within a suitable framework, it

should be possible to trace the design back to the originating business requirements –

a major key to reuse. If this can be achieved, system changes should be

accommodated more easily, and it should be much simpler to identify components for

reuse. Considerable savings can be made in this respect, and it has been estimated that

the cost of reusing a component is one-fifth that of building it from scratch (Mannion

& Keepence, 1998). The component-based approach can also be used irrespective of

the technology. Butler Group (1998b) observed that some of the most successful

implementations of componentisation that they had seen did not use any of the new

distributed technology, simply traditional environments. Nothing technically,

therefore, should inhibit progress towards a component-based design and

development environment.

However, while the body of knowledge on object orientation is large, little has

emerged to relate service-based components to application architecture, and the

management of the development process.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 34 Date: 01/05/1999

3. ORIGINAL MATERIAL

3.1 FRAMEWORK INTRODUCTION
The purpose of this Section is to introduce my approach to service based component

development, from the perspective of an overall architected design framework. In

scope it covers the whole of the systems development lifecycle, but my intention is to

focus on those elements specific to the approach (e.g. service definition), rather than

the more traditional elements that are commonly understood (e.g. system testing).

In order to position the approach and its techniques, I have adopted the methodology

of the Objectory Software Development Process, which defines the system

development phases of Inception, Elaboration, Construction and Transition. Each

phase will define a number of design and specification activities, which I will

introduce by means of a framework road map.

I propose to explain the merits of this methodology by means of a simple insurance-

based case study. The diagrams that I use will correspond to the Unified Modelling

Language (UML) standard, albeit within the constraints of my Visio diagramming

software. As the case study progresses, I will explain the meaning and purpose of the

models used, together with a description of the notation relevant to their

interpretation.

The overall methodology framework and roadmap structure is illustrated in

Figure 3-1 below.

Technology Oriented

Component Modeling

Construction

Business Requirements

U
s
e

C
a
s
e

Define Services

for the

Service Packages

Transition

Business Oriented

Component Modeling

Inception

Elaboration

Figure 3-1 : Methodology Framework

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 35 Date: 01/05/1999

The key features that need to be highlighted are as follows:

a) The Inception and Elaboration phases are business oriented, while

Construction is technology dependent.

b) The bridge between the business-oriented component modelling and the

technology-oriented component modelling, is the activity described as “Define

Services for Service Packages”. It is here that Service Specifications are

defined in business terms at the end of the Elaboration phase, and become the

main input to technical design in the Construction phase.

c) The use case is the repository for all business requirements documentation, and

its definition is fundamental to the approach. Initially, Business Requirements

are translated into Use Cases during the Inception phase. They then evolve

during the Elaboration phase where more detail is progressively added, until

they are fully defined. They then provide a central reference for the business

requirements throughout the final Construction and Transition phases of

development.

Jacobson, Ericcson and Jacobson (1994) describe the Use Case as “a

behaviourally related sequence of interactions performed by an actor in a

dialogue with the system to provide some measurable value to the actor”.

This is more simply stated by Fowler and Scott (1997) as: “ a typical

interaction between a user and a computer system”, and this is the essence of

the technique.

The collection of Use Cases represents the external view of the system, and

individually provide a useful means for the planning and control of iterative

development.

The following Section 3.2 describes the Inception phase, and introduces the case

study. This is then progressed through the Elaboration phase in Section 3.3. Only

those elements of the Construction phase relevant to my methodology will be

discussed in Section 3.4, and Transition, while essential to the development process,

is largely outside of my focus and is included only for completeness in Section 3.5.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 36 Date: 01/05/1999

3.2 INCEPTION

3.3.1 Introduction

The roadmap for the Inception phase (Figure 3-2) shows the Business Requirements

spanning all of the Inception activities (I have not drawn all the relationship lines in

order to avoid clutter).

Technology Oriented

Component Modeling

U
s
e

C
a
s
e

Construction

Business Requirements

Intent

Select System

Functions for Use

Case Definition

Model Business

Processes

Identify Domain

Service Package

Architecture

Description

Identify Non-

Functional

Requirements

Define Services

for the

Service Packages

Transition

Business Oriented

Component Modeling

Inception

Elaboration

User Role

Non-

Functional

Requirement

Figure 3-2 : Inception Phase Activities

The overall objectives of this phase are to:

 translate Business Requirements (functional and non-functional) into Use Cases

for development.

 identify the high-level Service Package Architecture for the domain

Use Cases can be identified either directly from the Business Requirements, or from a

Business Process model, if one has been prepared (See Section 3.3.3). However, I see

the modelling of the business processes and events as a key deliverable to aid the

understanding of the process, and this should be recommended.

3.3.2 Business Requirements for the Insurance Claims Case Study

The business requirements for the case study can be simply stated:

„A computerized system is required to enable the online data capture of insurance

claims. Checks should be undertaken to ensure that the claim is valid, and when

Authorized, made available for payment by the Accounts system.‟
(Requirements Reference : Claims01).

It should be noted that this is an oversimplified example for the purpose of the case

study. It requires no knowledge of insurance, and does not even consider the type of

insurance product e.g. motor, household, corporate etc

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 37 Date: 01/05/1999

3.3.3 Model Business Processes

I will begin with a model of the business processes (Figure 3-3). The model illustrates

the user roles of Claim Handler and Claim Supervisor, and the activities they each

carry out. These processes are illustrated in columns known as swimlanes, which help

to highlight workflow.

Check Paperwork

for Completeness

Pending Authorisation

Claim Closed

New Claim

Pay Claim

Authorise Claim

Post Cheque

Claim Handler Claim Supervisor

Claim Notified

Pending Payment

Time to Authorise

Time to Pay

Figure 3-3 : Claim Business Process Model

In terms of the notation:

Feature Meaning
rectangular box a business process e.g. Pay Claim

right-hand arrow an event initiating the process e.g. Claim Notified

left-hand arrow an outcome of value from a process e.g. Claim Closed

narrow rectangle a delay prior to another process e.g. Pending Authorization

vertical dotted lines separate the processes into „swimlanes‟, one for each user role

3.3.4 Select System Functions for Use Case Definition

Looking at the process model (Figure 3-3) it is clear that New Claim, Authorize Claim

and Pay Claim are the processes to be computerized and in need of use case

definition, while those of Checking Paperwork for Completion and Posting Cheque

are not.

3.3.5 Identify Non-Functional Requirements

Non-functional requirements may relate to the technical environment (e.g. hardware

platform, network constraints), or usability criteria such as response times, type of

user: novice or expert etc. For the purposes of the case study, I have limited my

description simply to a response time e.g. less than 10 seconds.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 38 Date: 01/05/1999

3.3.6 Use Case Definition

In general a use case is triggered by an external system event which assumes the

existence of a human computer boundary. It is supported by one or more business and

user services. The Use Case is defined in the Inception phase, and fully defined during

Elaboration. The completed Use Case will record the information shown in Figure 3-4

Use Case Name Use case name

User Role The name of the role that the user is playing in this use case.

Intent A sentence describing the overall intention of the use case.

Description A paragraph describing the use case in more detail.

Detailed Steps Detailed steps described in a structured English style.

Pre Conditions The state of the system before execution of the use case. This
corresponds to a process dependency where business process

modelling has been used.

Post Conditions The state of the system after execution of the use case. This

corresponds to a process dependency where business process

modelling has been used.

Non-functional

Requirements

Operational constraints and quality criteria e.g. response time of

less than 3 seconds is required

Business Rules Business conditions governing the behaviour of the use case e.g.

Claim is only valid during the period of Policy cover.

Alternative courses

Names of other related Use Cases

Sample screen layouts Demonstrate function and not the user interface. Include sample

user data

Requirements References Cross reference to original requirements to ensure traceability

Figure 3-4 : Use Case Template

During the Inception phase, basic information about the Use Case is defined. This is

what Jacobson, Ericcson, and Jacobson (1994) would describe as a requirements use

case. I would expect to define at least the Use Case Name, the User Role and Intent,

but would aim to have a Description of what it was meant to achieve and some idea of

the Non-Functional requirements. A reference back to the original Business

Requirement document is also made.

For the Inception phase of the case study, our use cases may appear as shown in

Figures 3-5, 3-6 and 3-7 below.

Use Case Name New Claim

User Role Claim Handler

Intent Register a new Claim against a Policy.

Description On notification of a Claim, the system will check that the
claimant is an insured Policyholder, and that Cover is

available for the type of Claim. For a valid Claim, a new

Claim will be registered on the system.

Non-functional

Requirements

 The system will confirm the creation of the new Claim

within 10 seconds.

Requirements References Claims01

Figure 3-5 : New Claim Use Case – Inception Phase

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 39 Date: 01/05/1999

Use Case Name Authorize Claim

Role Claims Supervisor

Intent Authorize the payment of a valid claim.

Description After checking that the Authorizer has the required level of

seniority to Authorize the Claim, the Claim will be

Authorized for Payment.

Non-functional

Requirements

 The system will confirm Authorization within 3 seconds.

Requirements References Claims01

Figure 3-6 : Authorize Claim Use Case – Inception Phase

Use Case Name Pay Claim

User Role Claim Handler

Intent The Claim will be paid within a period of time according to

company Best Practice (a non-computerized procedure).

Description The Claim is Authorized for Payment and sent to the

Accounts system for processing.

Non-functional

Requirements

 The system will confirm the payment request within 3

seconds.

Requirements References Claims01

Figure 3-7 : Pay Claim Use Case – Inception Phase

3.3.6 Use Case Diagram

We can now illustrate the Use Cases for purposes of communication as shown in

Figure 3-8. This diagram includes an additional use case called Update Claim, which

could be identified after a more detailed analysis of the Authorize and Pay Claim Use

Case. As each need to update the Claim and set a status, it makes sense to extract this

common processing into a separate Use Case to be used whenever the Update Claim

functionality is required. (Note: I have not further defined this Use Case for the case

study.)

New Claim

Update

Claim

Authorise

Claim

Claim

Handler

Claims

Superv isor

Claim

Handler

Pay Claim

uses

uses

Figure 3-8 : Use Case Diagram

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 40 Date: 01/05/1999

The notation used is as follows:

Feature Meaning
ellipse use case

person graphic the role the user plays in relation to the use case e.g. a Claims

Supervisor can also act in the role of Claim Handler. Note: With this

technique the user is more formally referred to as an Actor, but this

term is often alien to the user community!

uses illustrates that Authorize Claim and Pay Claim both use the services of

Update Claim

3.3.7 Identify Domain Service Package Architecture

One further architectural step now needs to be considered: the relationship of the

Claim system with other information systems. The new Claims system is to be

developed as a Service Package, and it is necessary, therefore, to consider its

relationship with other Service Packages. This is illustrated in the form of a Domain

Service Package Architecture Diagram (Figure 3-9). This uses the Package Diagram

notation from the UML, which is a key tool for maintaining control over the structure

of a system (Fowler and Scott, 1997).

To prepare this diagram, the catalogue of available component packages is reviewed

and those likely to play a role in the Claims system are selected. In this case, the

Policy, Administration Services and Accounts packages are all seen to play a part.

Claim

 Policy
Administration

Services
Accounts

Component Package

Catalogue...

Accounts

Administration Services

Claim

Client

Policy

Quote

etc

Figure 3-9 : Domain Service Package Architecture – High Level

In terms of the notation:

Feature Meaning
rectangular box component package

arrowed line illustrates the relationship between the packages. The arrow on the target

package indicates the reliance on the services of that package. In our case

Claims is reliant on services from Policy, Administration Services and Accounts

packages. If a service in any of the target packages is changed, this may have an

impact on the Claims package, which will need to be checked.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 41 Date: 01/05/1999

3.3.8 Architectural components in place on completion of the Inception
Phase

At this point the Inception phase is largely complete. We have begun the translation of

Business Requirements into component terms, and from the project planning

perspective have also identified three separate „chunks‟ or sub-projects for

development i.e. New Claim, Authorize Claim and Pay Claim. We have also

established two modelling components within the development architecture: the Use

Case model to which detail will now be progressively added, and the Domain Service

Package Architecture that positions the Claims component in relation to others in the

enterprise.

While the Service Package is a simple diagram, it provides a useful means of

communication, being an abstraction of component details. The use case diagram also

provides a simple yet meaningful view of the services to be delivered.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 42 Date: 01/05/1999

3.4 ELABORATION

3.4.1 Introduction

The roadmap for the Elaboration phase (Figure 3-10) builds on the Use Cases and

Service Package architecture identified in the Inception phase, and defines the

activities leading to the definition of System Services and their allocation to Service

Packages.

Technology Oriented

Component Modeling

U
s
e

C
a
s
e

Construction

Business Requirements

U
s
e

C
a
s
e

Intent

Select System

Functions for Use

Case Definition

Model Business

Processes

Identify Domain

Service Package

Architecture

Description

Pre & Post

Conditions

Visualise

Define

Business

Rules

Identify Non-

Functional

Requirements

Prepare Use Case

Sequence Diagrams
Define Steps

Define Services

for the

Service Packages

Allocate

Business Services to

Service Packages

Transition

Business Oriented

Component Modeling

Inception

Elaboration

User Role

Non

Functional

Requirement

Allocate

 Data Services to

Service Packages

Allocate User

Services to

Service Packages

Layer Service

Packages

Figure 3-10 : Elaboration Phase Activities

The overall objectives of this phase are to:

 add detail to the Use Cases (including business rules) to achieve a series of

defined steps from which Services can be identified.

 define Business Services and supporting Data Services (see Section 3.4.6)

 define the User Services for the purpose of transaction control and invocation of

Business Services.

 allocate all Services to Service Packages in their respective layers.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 43 Date: 01/05/1999

3.4.2 Use Case : Pre & Post Conditions

The pre and post conditions can be determined by reference to the process model

(Figure 3-3), and should now be documented in the Use Case (Figures 3-11, 3-12 and

3.13). Also refer to the Use Case Template in Figure 3-4.

Use Case Name

New Claim

User Role Claim Handler

Intent Register a new Claim against a Policy.

Description On notification of a Claim, the system will check that the

claimant is an insured Policyholder, and that Cover is

available for the type of Claim. For a valid Claim, a new
Claim will be registered on the system.

Detailed Steps 1.

2.

3.

Enter key fields and retrieve Policy details

Check that the Policy is valid for the Claim Date, and that

the Policyholder is covered for this Type of Claim

Create a new Claim with details as supplied on the Claim

Form, and set the Status to Pending Authorization

Pre Conditions Policy Found

Post Conditions Status : New Claim Pending Authorization

Non-functional

Requirements

 The system will confirm the creation of the new Claim
within 10 seconds.

Business Rules 1.
2.

The Claim Loss Date must be within the period of Cover.
The Claim Loss Type must be covered by the Policy.

Alternative courses

 None

Sample screen layouts

 Prototype attached below.

(beyond scope of Dissertation)

Requirements References Claims01

Figure 3-11 : New Claim Use Case – Elaboration Phase

Use Case Name Authorize Claim

Role Claims Supervisor

Intent Authorize the payment of a valid claim.

Description After checking that the Authorizer has the required level of
seniority to Authorize the Claim, the Claim will be

Authorized for Payment.

Detailed Steps 1.

2.

3.
4.

5.

Check the user authorization limit

Open the Claim

Open the Policy
Check that Amount to be paid is within the limits of Cover

Authorize the Claim, and set the Status to Authorized.

Pre Conditions Status; : Claim is Pending Authorization

Post Conditions Status : Claim is Authorized

Non-functional

Requirements

 The system will confirm Authorization within 3 seconds.

Business Rules 1.

The value of the Claim must be equal or less than the

Authorization Limit for the User.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 44 Date: 01/05/1999

2. The value of the Claim must be equal or less than the Sum

Insured covered by the Policy.

Alternative courses

 Authorize Partial Payment

Sample screen layouts Prototype attached below.
(beyond scope of Dissertation)

Requirements References Claims01

Figure 3-12 : Authorize Use Case – Elaboration Phase

Use Case Name Pay Claim

User Role Claim Handler

Intent The Claim will be paid within a period of time according to

company Best Practice (a non-computerized procedure).

Description The Claim is Authorized for Payment and sent to the

Accounts system for processing.

Detailed Steps 1.

2.
3.

Open the Claim

Pay the Claim
Close the Claim, and set the Status to Closed.

Pre Conditions Status : Claim Authorized

Post Conditions Status : Claim Paid

Non-functional

Requirements

 The system will confirm the payment request within 3

seconds.

Business Rules None

Alternative courses

 None

Sample screen layouts Prototype attached below.
(beyond scope of Dissertation)

Requirements References Claims01

Figure 3-13 : Pay Claim Use Case – Elaboration Phase

3.4.3 Use Case : Define Business Rules

The business rules associated with the Use Case should now be determined and added

to the Use Case (Figures 3-11, 3-12 and 3-13).

Normally it is recommended that only those rules relevant to User Services are

defined e.g. a Claims Handler can view payments for which they are not eligible to

Authorize. The definition of other rules would be defined elsewhere (often

unspecified), and allocated to relevant object classes in a domain modelling exercise.

However, I consider that all rules should be specified in the first instance with the Use

Case. It is then possible to view all rules corresponding to the use case, and they can

still be effectively allocated to appropriate services later in the Allocate to Service

Package activities. Ideally, a repository of Business Rules should be built which

cross-references the Use Case, the Service Package that uses them, and the

Component Package that implements them.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 45 Date: 01/05/1999

3.4.4 Use Case: Requirements Visualization

A useful aid to the communication of business requirements is by means of visual

representation. A prototype is often used, and window layouts can easily be created

using modern GUI development tools like Delphi, PowerBuilder, Microsoft‟s

VisualStudio or IBM‟s VisualAge range of products. The key thing to remember,

however, is that while these layouts can be reused in the actual development, it is the

data that is being presented for agreement and not the visual behaviour at this stage.

It should be noted that this exercise could also be part of the Inception phase.

However, I have left it until early in the Elaboration phase to cater for the emergence

of more detailed requirements, which will provide a more meaningful insight into the

workings of the required system.

3.4.5 Use Case : Define Steps

Further analysis of the Use Case is now required in order to explicitly define the steps

that are being carried out. This should be described in the form of structured English

using the constructs of sequence (a,b,c…), choice (if/else, case of…) and iteration (for

each…). This is what Jacobson, Ericcson, and Jacobson (1994) would describe as a

system design use case, whereas Allen and Frost (1998) consider this the separate task

of object interaction modelling (with sequence diagrams).

I consider that the detailed steps belong with the use case and agree with Jacobson et

al (1994). It is also more natural to question the detailed steps at this point, rather than

when you come to allocate the steps to Services, which is the main purpose of the

sequence diagramming activity in this methodology, and indeed also that of Allen and

Frost (1998)! I would suggest that the structured English is reviewed during the

sequence diagramming, and would not be too critical of the construct syntax at this

stage in the elaboration of the Use Case.

However, the activities of use case definition and sequence diagramming are very

closely related, and it is recommended to iterate between the two. This is necessary if

we are to define layered system services in terms of Business Services, their

supporting Data Services and the controlling User Services that implement the Use

Case. If we build them in this order, it is easier to verify that the appropriate services

are in place by enacting a scenario of the use case.

3.4.6 Service Identification

The key to reuse is the definition of services to support the requirements of the Use

Cases. The starting point for this is an examination of the detailed Steps of the Use

Case from which the following type of service will be defined:

Business Services

“A business service normally only exists to support other services and is largely

„black box‟” (Allen and Frost, 1998). It does not usually have a purpose other than to

respond to a request from a User Service (or another Business Service) in support of a

Use Case. In addition to the application of business rules, the Business Service

communicates with the Data Service for the management of persistent objects.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 46 Date: 01/05/1999

Data Services

“Data Services are used for manipulation of data in a way that is independent of the

underlying physical storage implementation” (Allen and Frost, 1998). Data Services

are requested by Business Services. The only exception to this is for a housekeeping

task, when the User Service can directly address a Data Service.

User Services

“A user service normally implements a significant part of a use case if not the whole

use case, confers some kind of business capability, and involves significant user-

interface design.” (Allen and Frost, 1998). In addition to control of the visual interface

with the user, User Services may also be responsible for batch reporting, transaction

control and the provision of search facilities.

The proposed Services are described in Section 3.4.8, after discussing the nature of

the Service Package diagram in the next Section.

3.4.7 Service Packages

The UML (1999) defines a package as “A general purpose mechanism for organising

elements into groups”. This construct was first introduced in the Inception phase when

the high level architecture was designed. In this case it represented the abstraction of

lower level Service Packages.

We now need to introduce the concept of Service Packages in relation to the detailed

steps of the Use Case.

My view is that all identified services should be targeted at a Service Package,

implemented in object oriented design terms as a Service Class, sometimes known as

a Control Class. As a design pattern this is known as a „façade‟ which: “Provides a

unified interface to a set of interfaces in a subsystem. Façade defines a higher-level

interface that makes the subsystem easier to use.” (Gamma, Helm, Johnson, and

Vlissides, 1995).

I believe that interacting with the façade is more appropriate for business oriented

modelling than dwelling on the design of a business oriented object model, which is

the approach in most object oriented methods, and in the component based approach

of Allen and Frost (1998). I have seldom found this to bring much greater insight into

the working of the system than that brought from the techniques previously

introduced, for a number of reasons:

 it does not form a suitable vehicle for communication with the business user,

since an understanding of object oriented class design and modelling is required.

 it places an overhead on the analysis phase, and requires business analysts to have

a thorough understanding of object oriented class design and modelling.

 it is of little value during physical design, since platform specific considerations

will have to be made, and indeed off-the-shelf class libraries provided by the

vendor may satisfy a number of these requirements.

 the model is seldom maintained – the concentration is on the physical design once

the system has been built.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 47 Date: 01/05/1999

3.4.8 Service Allocation to Service Packages

This activity is modelled using a Sequence Diagram, which is a type of object

interaction diagram, and as such, a standard component of the UML. The layout is

shown in Figure 3-14.

Sub-steps

...

Business

Service

Package-1

Business

Service

Package-n

Business

Service

Request

Data

Service

Package-1

Data

Service

Package-n

User Service

Package

Use Case Step

User

Service

Request

Data

Service

Request

Sub-steps

...

Use Case Step

Use Case Request

Business

Service

Request
Data

Service

Request

System

Boundary

Package

Lifeline

Dividing

Layer

Dividing

Layer

Figure 3-14 : Sequence Diagram Template

Notation:
The Steps and sub-steps of the use case are detailed down the left hand side of the

diagram

The solid vertical line represents the System Boundary.

The square boxes are the Service Packages, below which a line is extended to the

end of the use case, it‟s Lifeline.

The dotted vertical lines represent the boundary of the system layers, which are

read left to right and reflect the User, Business and Data Layers of the system.

The arrows from the System Boundary or Service Packages represent the request

for a Service, or Service Operation, and display only the name of the Service. The

parameters supplied and returned are fully defined in the Service Definitions (see

Section 3.4.11).

A Sequence Diagram is created for each Use Case, to which is added the steps of the

Use Case in structured English. The related Service Packages required by the Use

Case are added along the top.

Unlike Allen and Frost (1998), who start this exercise with only Business Service

Packages on the diagram, my approach differs in two respects:

 add the Use Case as the initiating User Service – we know this anyway, and it

adds meaning to the diagram.

 add the Data Service Packages in support of the Business Services – we tend to

know what they are, and it is useful to indicate the type of package being used e.g.

a legacy system (under the guise of a wrapper). Again, it adds more value to the

diagram.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 48 Date: 01/05/1999

Now, the Services are defined and added to the diagram, linking each Step of the Use

Case with the Service Package deemed responsible for its execution. Figures 3-15, 3-

16 and 3-17 illustrate the allocation of Business Services and their supporting Data

Services to the Service Packages.

At this stage it is again possible to validate the allocation of Services by running a

scenario through the Use Case e.g. My Claim for £800 notified on 1
st
 March 1999.

Assuming the relevant Services are deemed to be in place, we can then focus on the

identification of User Services to control the display of windows and the flow of

control for the transaction. This is illustrated for the New Claim Use Case in Figure 3-

18.

Enter key fields and retrieve

Policy details

Chec k that the Poli cy is vali d

for the Claim Date, and that the

Poli cyholder is covered for this

Type of Claim

Create a new Claim with details

as supplied on the Claim Form,

and s et the Status to Pending

Authorisation

Policy

Business

Services

Claim

Business

Services

Find

Policy

Verify

Cover

Add

Claim

Policy

Data

Services

Claim

Data

Services

New Claim

User Service

Request New Claim New

Claim

Display Claim Window

Get

Policy

Add

Claim

Figure 3-15 New Claim : Business and Data Services

Open the Policy

Policy

Business

Services

Claim

Business

Services

Find

Policy

Update

Claim

Policy

Data

Services

Claim

Data

Services

Authorise

Claim

User Service

Open the Claim

Request Claim Authorisation
Authorise

Claim

Find

Claim
Get

Claim

Chec k that Amount to be paid is

within the limits of Cover

Authorise the Claim, and set the

Status to Authorised.

Check the user authorisation limit
Find User

Details

Administratio

n

Services

Administratio

n Data

Services

Get User

Details

Get

Policy

Validate

User Claim

Limit

Update

Claim

Figure 3-16 Authorize Claim : Business and Data Services

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 49 Date: 01/05/1999

Open the Claim

Pay the Claim

Find

Claim

Update

Claim

Set the Cl ai m Status to

Paid.

Pay the

Claim

Claim

Business

Services

Accounts

Business

Services

Claim

Data

Services

Accounts

Data

Services

PayClaim

User Service

Request Pay Claim Pay

Claim

Get

Claim

Pay the

Claim

Update

Claim

Figure 3-17 Pay Claim : Business and Data Services

Enter key fields and retrieve

Policy details

Chec k that the Poli cy is vali d

for the Claim Date, and that the

Poli cyholder is covered for this

Type of Claim

Create a new Claim with details

as supplied on the Claim Form,

and s et the Status to Pending

Authorisation

Policy

Business

Services

Claim

Business

Services

Find

Policy

Verify

Cover

Add

Claim

Policy

Data

Services

Claim

Data

Services

NewClaim

User Service

Display Policy Window

Request New Claim New

Claim

Display

Policy

Display

ClaimDisplay Claim Window

Get

Policy

Add

Claim

Display Claim Complete Window

Display

Claim

Complete

Figure 3-18 : New Claim : User, Business and Data Services

3.4.9 Service Package Layering

At this stage we can illustrate the layering of the proposed application by revisiting

the Domain Service Package Architecture (Figure 3-9), to which we can now add the

Services which have been identified for this application (Figure 3-19).

Again, this is a useful diagram for communication of the system architecture both to

the business user, technical architects, and system developers. It clearly identifies the

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 50 Date: 01/05/1999

Claims

Business Services

- Find Policy

- Find Claim

- Verify Cover

- Add Claim

 etc

Policy

Business Services

- Find Policy

- Verify Cover

Administration

Business Services

- Find User Details

Accounts

Business Services

- Pay Claim

Claims

-Data Services

-Update Claim

-Add Claim

Claims

User Services

- Add Claim

- Authorise Claim

- Pay Claim

Report

User Services

- Claim Reports

etc...

Core

User Services

- Form

-Window

-Tab etc

Claim Service Package

User

Serv ices

(Presentation)

Busines

Serv ices

Data

Serv ices

Related Service Packages

Figure 3-19 : Domain Service Package Architecture - Layered

User Services implementing the Use Case in the presentation layer, the Business

Service in the business object layer, and the supporting Data Services in the data

layer.

3.4.10 Define Service Package Deployment

Now that the Services have been identified, the location and implementation of the

Service Packages can be considered. The layers in Figure 3-19 would be referenced to

determine how this was to be achieved. The non-functional requirements must also be

considered at this stage, especially any physical constraints that may impact the

choice of nodes e.g volume of transactions, network response times, current

infrastructure (Windows NT, Unix etc).

For example, deployment in a thick-client architecture may involve deployment of

the:

 User Services for Claims (with core user, reporting and administration services),

and Business Services for Claims, Policy and Administration to an NT based

desktop PC.

 Data Services for Claims to a Claims departmental server using a SQL Server

database.

 Data Services for Policy and Administration to a central corporate server using an

Oracle database.

This is illustrated in Figure 3-20 where, again, the UML notation has been used.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 51 Date: 01/05/1999

NT Desktop PC

- Claim User Services

- Report User Services

- Core User Services

- Administration User Services

- Claims Business Services

- Administration Business Services

- Policy Business Services

Departmental Server

- Claims Data Services

Corporate Server

- Policy Data Services

- Administration Data Services

Figure 3-20 : Service Package Deployment - NT Desktop PC

Notation
Boxes Boxes repesent the nodes in a network. They are shown as 3-D boxes in

the UML, but as just plain boxes in this model The name of the node is

listed at the top, and the Component.Packages listed underneath.

Lines between boxes The lines represent the connection between nodes

Alternatively, with a thin client architecture (Figure 3-21) the same service packages

could be deployed as follows:

 User Services for Claims (with core user, reporting and administration services),

to a Browser (Netscape or Internet Explorer) on a thin client eg netPC

 Claims Business and Data Services to a Claims departmental server using a SQL

Server database.

 Policy and Administration Business and Data Services to a central corporate

server using an Oracle database.

Browser

- Claim User Services

- Report User Services

- Core User Services

- Administration User Services

Departmental Server

- Claims Business Services

- Claims Data Services

Corporate Services

- Administration Business Services

- Administration Data Services

- Policy Business Services

- Policy Data Services

Figure 3-21 : Service Package Deployment - Browser Environment

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 52 Date: 01/05/1999

3.4.11 Service Catalogue

At this stage we should also register the Services in the Service Catalogue. Figures

3-22, 3-23 and 3-24 illustrate a simple Catalogue, which lists the Services according

to the Package stereotypes of User, Business and Data Services. This type of

Catalogue would be referenced in the Inception phase to determine whether existing

Services could be reused, prior to defining a new one. The detailed description of the

Service is described in the next Section.

User Service Package Service

New Claim New Claim
 Display Policy

 Display Claim

 Display Claim Complete

Authorize Claim Authorize Claim

Pay Claim Pay Claim

Figure 3-22 : Service Catalogue – User Service Packages

Business Service Package Service

Policy Find Policy

 Verify Cover

Claim Add Claim

 Find Claim
 Update Claim

 Validate User Claim Limit

Accounts Pay the Claim

Administration Find User Details

Figure 3-23 : Service Catalogue – Business Service Packages

Data Service Package Service

Policy Find Policy
 Verify Cover

Claim Add Claim
 Get Claim

 Update Claim

Administration Get User Details

Accounts Pay the Claim

Figure 3-24 : Service Catalogue – Data Service Packages

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 53 Date: 01/05/1999

3.4.12 Service Definition

Having now identified and allocated the Services to Service Packages we now need to

define the service detail. This is done in the form of a Service Specification, the

template for which is illustrated in Figure 3-25. This defines the Service in technology

neutral terms. It allows the specification to be reused, and enables the Component

Package to be built for deployment on different platforms, or using different

languages.

Service Name Name of the operation in the form PackageName:ServiceName

eg Claim:FindClaim

Stereotype The type of service : User, Business or Data

Intent A short description of the operation.

Parameters The parameters consist of a list of those supplied to invoke the service, and the expected

result. The type of each field is specified in each case eg date, integer, character string

(char), boolean (true/false) etc. For example:

Supplied

(PolicyClass : Class

,PolicyNumber : Char
,ClaimValue : Integer)

Returned

(ClaimValid : Boolean)

(Note: In technical terms this could be described as the signature of the service consisting

of an input argument and a return type expression.)

Pre / Post Conditions A means of specifying assertions that describe software contracts (Meyer 1988, 1995)

Specification The specification of the operation

Called Operations Any operations required by this operation.

Attributes

List of attributes updated

Non-Functional

Requirements

List of any non-functional requirements eg response times.

Use Case Reference to Use Cases using this Service

Business Requirements Reference to originating Business Requirements

Figure 3-25 : Service Definition Template

My approach is to maintain the terminology of business oriented component

modelling, and continue to call this a Service for consistency, unlike Allen and Frost

(1998) who would now call this an Operation, which is a more object-oriented term.

The Service forms the contract between the business and technical boundary and is,

therefore, immutable.

Again, unlike Allen and Frost (1998), I would maintain cross-references to the

Business Requirements and Use Cases as can be seen in the Add Claim Service

example in Figure 3-26, and Verify Cover Service in Figure 3-27.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 54 Date: 01/05/1999

Service Name Claim : Add Claim

Stereotype Business Service

Intent Create a new Claim

Parameters Supplied

(PolicyNumber : Integer

,ClaimType : Char
,ClaimDate : Date

,ClaimValue : Integer)

Returned
(ClaimNumber : Integer)

Post Conditions New Claim added to the system

Policy Claim List updated to include this Claim

Specification

This service will :-

 add a new Claim to the system

 add the Claim to the list of Claims associated with the Policy

 increment the last Claim Number by one, and return the new Claim Number

Called Operations None

Transmitted events

None

Attributes Set

Policy: PolicyNumber

Claim: ClaimType
Claim: ClaimDate

Claim: ClaimValue

Claim: ClaimNumber

Non-Functional

Requirements

Response time < 3 seconds.

Use Case

New Claim

Business Requirements Claims01

Figure 3-26 : Add Claim Service Definition

Service Name Policy : Verify Cover

Stereotype Business Service

Intent Verify that the Policyholder is covered for the Claim notified.

Parameters Supplied
(PolicyNumber : Integer

,ClaimType : Char

,ClaimDate : Date)
Returned

 (isCovered : Boolean)

Pre Conditions:

Policy is found

Specification Check that :-

 the ClaimDate is within the Policy effective date range

 the ClaimType is covered by the Policy

If both conditions are true, return isCovered as True, otherwise False.

Called Operations None

Transmitted Events None

Attributes Set None

Non-Functional

Requirements

Response time < 3 seconds.

Use Case

New Claim

Business Requirements Claims01

Figure 3-27 : Verify Cover Service Definition

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 55 Date: 01/05/1999

3.4.13 Architectural Components in Place on Completion of
Elaboration

On completion of the Elaboration phase we have completed the translation of

Business Requirements into Service Definitions that will now be used for detailed

system design and build in the Construction phase. We have not thrown away any of

the previous development phase documentation, but reused and progressively added

detail and content to the Use Cases, and the Domain Service Package Architecture.

It is the Service Definition that provides the contract and interface between the

business oriented component modelling of the business domain, and the technically

oriented component-modelling domain. In order to achieve this bridge, we have

introduced Sequence Diagrams to verify the allocation of Services to Service

Packages, and only when considering how the system will be deployed do we move

into the physical architecture of the system.

Nowhere have we considered objects and object design. In my development approach,

it is the Service Definition that is the input to the Construction phase, which will now

be introduced.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 56 Date: 01/05/1999

3.5 CONSTRUCTION

3.5.1 Introduction

The roadmap for the Construction phase (Figure 3-28) builds on the Use Cases,

Service Package Definitions, and Deployment architecture defined in the Elaboration

phase, and leads to the construction of Component Packages for deployment.

Technology Oriented

Component Modeling

U
s
e

C
a
s
e

Construction

Business Requirements

U
s
e

C
a
s
e

Intent

Select System

Functions for Use

Case Definition

Model Business

Processes

Identify Domain

Service Package

Architecture

Description

Pre & Post

Conditions

Visualise

Define

Business

Rules

Identify Non-

Functional

Requirements

Prepare Use Case

Sequence Diagrams
Define Steps

Define Services

for the

Service Packages

Allocate

Business Services to

Service Packages

Define Service

Package

Deployment

Build & Test

Component

Packages

(Incremental)

Transition

Business Oriented

Component Modeling

Inception

Elaboration

User Role

Non

Functional

Requirement

Allocate

 Data Services to

Service Packages

Allocate User

Services to

Service Packages

Non

Functional

Requirement

Layer Service

Packages

Design Package

Class Structures

according to the

Deployment

Architecture

Figure 3-28 : Construction Phase Activities

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 57 Date: 01/05/1999

The overall objectives of this phase are to:

 Design the object model for the chosen development language for this component.

 Design the user interface with the appropriate GUI software.

 Design the data objects to interact with the chosen database.

 Build and test the software.

It is not my intention to expand on the process of object-oriented design in this

Section, but simply to illustrate how the Service Definitions for the Service Package

are translated, by the same techniques of Sequence Diagramming used in business

oriented modelling during the Elaboration phase.

3.5.2 Design Package Class Structures for the Deployment Architecture

Looking at the Service Package Catalogue (Figure 3-23) for the Policy Service

Package, we can see that two Services are involved: Find Policy and Verify Cover.

This is shown with a Sequence Diagram using the same Policy Use Case Steps, but

instead of the Services pointing to the Service Package, they are now allocated to the

controlling (or service) class façade for the Policy Component Package (Figure 3-29)

Enter key fields and retrieve

Policy details

Chec k that the Poli cy is vali d

for the Claim Date, and that the

Poli cyholder is covered for this

Type of Claim

Policy

Business Services

Control

Policy

Class

Find

Policy

Verify

Cover

Policy Rules

Class

findPolicy

isClaimValid

Figure 3-29 : Policy Component Package - Business Classes

It is the controlling class that is now responsible for delegating activity to other

business classes within the Policy Component Package. In this case two classes are

defined, the Policy Class where the Policy is managed and where the findPolicy

service will be implemented; and the Policy Rules Class where all Policy Rules are

defined and are checked, in this context with the isClaimValid service request.

Unlike Allen and Frost (1998) who introduce domain class modelling as part of the

analysis phase, I consider the class design to be the job of the package designer, who

in my view is best placed to carry out this task. This is beneficial for a number of

reasons:

 the designer is familiar with the intricacies of the technical environment for which

they are designing the component, including any frameworks available to simplify

the application build.

 the class design is governed by the Service based documentation, and does not

involve interpretation / misinterpretation of a business domain model.

 the designer has responsibility for the technical design and development of the

component.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 58 Date: 01/05/1999

 one designer or team can be made responsible for the design, development and

maintenance of the package.

 the Service Definition is the interface between the designer and the business

analyst.

An example of the class design for the New Claim service user interface is also

illustrated (Figure 3-30). This shows similar interaction between the New Claim User

Service Control Class, and to its left, the classes responsible for window control:

Policy Key Window and Claim Window. The requests from the control class for

business services are also shown for completeness.

- Check that the Policy is vali d

for the Claim Date, and that the

Poli cyholder is covered for this

Type of Claim

Create a new Claim

- Add a New Claim

- Set Status to Pending Authorisation

Claim

Window

Policy

Key

Window

New Claim

UserServices

Control Class

- Display Add Claim Window

- Display Policy Window

- Display Claim Complete

initialise

GetPolicyDetails

Verify Cover

Policy

Business

Services

Claim

Business

Services

Find

Policy

Verify

Cover

Add

Claim

Add

Claim

Request New Claim NewClaimTransaction

initialise

Enter Claim details from the

Claim Form

Enter Policy details

Verify Cover

- Find Policy

close
close

GetPolicyGetClaimDetails

AddClaim

GetPolicyDetails

GetClaimDetails

Figure 3-30 : New Claim Component Package - User Classes

3.5.3 Component Packages Build and Test - Incremental
While beyond the scope of this work, it should be noted that an incremental build and

test cycle would be adopted as recommended by the Objectory Process for the

Construction phase.

3.5.4 Architectural Components in Place on Completion of Construction

On completion of the Construction phase we will have completed the translation of

Business Requirements via Service Packages into deployable Component Packages,

accessible only as a black box via their service interface. The Service Definition

defines this interface, and contract, between the analyst‟s domain of business oriented

component modelling and designer‟s domain of technology oriented component

modelling. The Component Packages are now available for Transition into the

production environment as defined in the next Section.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 59 Date: 01/05/1999

3.6 TRANSITION

The Transition phase within the Objectory Process takes the tested Component

Packages in preparation for production rollout. Again, this phase is outside of my

remit and is referenced here for completion. The complete process, including the

Transitional activities of System Test, Performance Test, User Acceptance Test and

Deployment are illustrated in Figure 3-31 below.

Technology Oriented

Component Modeling

U
s
e

C
a
s
e

Construction

Business Requirements

U
s
e

C
a
s
e

Intent

Select System

Functions for Use

Case Definition

Model Business

Processes

Identify Domain

Service Package

Architecture

Description

Pre & Post

Conditions

Visualise

Define

Business

Rules

Identify Non-

Functional

Requirements

Prepare

Use Case

Sequence

Diagrams

Define Steps

Define Services

for the

Service Packages

Allocate

Business Services to

Service Packages

Define Service

Package

Deployment

Build & Test

Component

Packages

(Incremental)

System Test
Performance

Test

User Acceptance

Test

Transition

Business Oriented

Component Modeling

Inception

Elaboration

Deploy Live

System

User Role

Non

Functional

Requirement

Allocate

 Data Services to

Service Packages

Allocate User

Services to

Service Packages

Non

Functional

Requirement

Layer Service

Packages

Design Package

Class Structures

according to the

Deployment

Architecture

Figure 3-31 : Transition Phase Activities

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 60 Date: 01/05/1999

4. DISCUSSION and EVALUATION

4.0 Evaluation Methodology

In order to test the feasibility of the methodology proposed in the Original Material of

Section-3, I chose to present my arguments in the form of a number of claims, and

request feedback in the form of a questionnaire.

I opted to obtain quality feedback from a small peer group of six experienced and

senior IT professionals, representing a stratified sample from the insurance and

financial services sectors. I will hereafter refer to this group as the Panel, for whom

the member details and experience is summarized in Figure 4-1 below. It should be

noted that the comments are strictly those of the Panel members and not necessarily

those of the organisations to which they belong.

Name Job Title Organisation Years

 in IT

Years in IT Consultancy,

Project or Departmental

Management

Len Hall Senior

Systems Specialist

Royal & Sun Alliance :

Commercial IT – UK Regions

Division

21 12

Patricia Johnson IT Project Manager

(Strategy)

Royal & Sun Alliance :

Commercial IT –UK Regions

Division

10 4

Michael Lowcock Senior Consultant CAP Gemini

25 15

Martin Morris IT Manager Royal & Sun Alliance : UK

Commercial –London Market &

Multinational Division

20 15

Neil Peachey Systems Consultant Royal & Sun Alliance : Personal

Financial Services – Direct

Division

14 4

Steve Walley Project Teams

Manager

Royal & Sun Alliance : Personal

Financial Services – Direct

Division

20 8

Figure 4-1 : Questionnaire Recipients & Feedback Panel Members

As it can be seen, this represents 110 years experience in information technology, 58

years being at a senior level. The fact that 100% of the target sample returned their

feedback within the prescribed time limits, given their already busy schedules, is a

reflection on the caliber of the individuals involved, and their degree of interest in this

field of work. Five of the Panel members are senior IT personnel in three autonomous

divisions of Royal and SunAlliance
1
, and the sixth a member of the leading services

company CAP Gemini
2
. I consider that this blend of insurance and services sector

1
 Royal & SunAlliance is one of the world's top ten international general insurers by premium income and the UK's largest

general insurer. The Group is in the top 30 of the 'FT-SE 100' companies quoted on the London Stock Exchange. At the end of

1998, Royal & SunAlliance employed over 42,000 people in over 55 countries worldwide, and covered risks in more than 130
countries.

2
 The Cap Gemini Group is the leading European management consulting (Gemini Consulting) and IT services companies (Cap

Gemini). Its businesses are those of management consulting, IT consulting, systems integration, software development,
outsourcing and training. At the end of 1998 the Group employed over 38,000 people located in more than 20 countries.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 61 Date: 01/05/1999

experience will provide a good indication of how the methodology would be received

if it was to be tested in the wider marketplace.

Section-3 was issued to each member of the Panel together with the Questionnaire,

which included a note describing the background to the research, and instructions for

completion of the form. A copy of the Questionnaire and its covering note is included

in Appendix-4.

I designed the Questionnaire in four sections in order to:

a) test the understanding and reaction of the Panel to the design activities in the

proposed component process (leading to the definition of service packages, as a pre-

requisite for effective component design and build.)

b) test the understanding and reaction of the Panel to the potential for reuse of design

artifacts (as opposed to just code), and the provision of requirements traceability.

c) consider what is needed to make the approach work.

d) provide an opportunity to raise any questions or comments.

The Questionnaire consists of 45 structured statements, designed to test my claims

and form the basis of my argument (Booth, Colomb and Williams, 1995) in support of

the significance of the approach. Each statement included a rating for the Panel to

indicate the strength of their reaction to the claim, and increase the reliability and

consistency of response. To increase the validity of the response (Bright, 1991) I also

included space for comments where respondents could qualify their reaction. This

proved to be beneficial where in some cases, respondents preferred to comment on an

item rather than indicate the strength of an opinion at that point.

The consolidated responses are shown in Appendix-5. I have removed the identity of

the respondents in order to present and evaluate the feedback collectively, and not at a

personal level. All references will be to the Panel. It should also be noted that the

comments are sometimes brief, and in the form of short notes. I have maintained this

brevity when quoting the Panel, since it is the message that is important here and not

the grammar.

In the following sections I will re-state each claim, and evaluate the Panel‟s feedback,

reactions and perceptions. I will then qualify or endorse my argument according to the

evidence presented. It should be noted that the section numbers correspond with those

of the Questionnaire, in order to simplify cross-referencing and analysis.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 62 Date: 01/05/1999

4.1 Activities in the Component Process

4.1.1 Process Modelling

Q1. Business process modelling improves our understanding of the business processes, their

sequence and dependency, the events that initiate them, and the outcome on completion. They

provide an easily understood and visible means to communicate this understanding, and should be

adopted as a standard part of the development process.

Half the Panel agreed, and the other half strongly agreed with this claim.

It was noted that to build any system you have to understand it, and the use of process

modelling, even at a high level, is seen as a good basis for doing this. One respondent

noted that : “To build any system you have to understand it. This is the basis for

gaining that understanding even if at a high level. Common processes have to be

identified also, as they may point to common components.”

Another respondent highlighted that: “Modern commercial IT is all about gaining

competitive edge and business advantage from employing different and/or slicker

processes. Business Process Re-Engineering (BPR) has been tried and in many

examples has failed because it tends to be carried out in a vacuum. Integrating the IT

design activity with the business process modelling activity provides the right

environment for genuine BPR to happen and provides the opportunity for quantum

leaps rather than incremental improvement. The biggest failing with a lot of IT

projects is that the end result is simply an electronically improved version of old

business processes and there has been no significant change made to those processes.”

It should be noted that the proposed process modelling technique caters for „solution‟

projects (application specific), corporate projects (services to be reused in many

applications e.g. a client system), and BPR exercises. It includes the use of swimlanes

(as shown in Figure 3-3) which were seen by one respondent as beneficial in BPR

exercises.

However, the Panel raised the problem of how the business would react to this

approach, given that existing documentation may already be available, and questioned

why “existing papers need to be reworked just because they‟re not quite in the

required format”, and “what the business requires is immediate pay-back”. This is

indeed an issue, which I suspect can only be resolved by the education of business

users. When changing a system, the opportunity should always be taken to improve

things for „next time round‟, and process models can be prepared by the development

team with minimal effort. However, as I stated in Section 3.3.1, while process models

are recommended, they are optional, and much will depend on the nature and scale of

the development.

Q2. Process models provide an effective means to communicate business processes with the user.

The majority of the Panel agreed, one strongly, and another unsure, that process

models provide an effective means of communication with the user. As one

respondent suggested: “…What is required is single means of communication

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 63 Date: 01/05/1999

between business, IT managers and the various IT developers which explains not only

what is done but also why it is to be done”. The question of terminology was raised as

a disincentive to the adoption of such approaches by the business, a reaction prompted

I suspect, from experience of IT bombarding the business with numerous methods in

the past. Again, I would consider that education is key, since the techniques within my

proposal represent the maturing of various previous techniques and approaches, and

should not be too prone to change in the future.

Q3. Process models provide the means to enable computer and non-computer system processes to be

easily identified.

The Panel agreed that process models provide a means (not necessarily the means) for

computer and non-computer processes to be identified, but made the point that the

identification/assignment of computerized and non-computerized is not necessarily

easy. It was also stated that this distinction was not self-evident from my example in

Figure 3-3 referenced in Section 3.3.4, but it was meant to be a simple and

hypothetical example.

Q4. The processes to be computerised typically identify the Use Cases to be developed. Since the

development of each Use Case is an activity on the project plan, this approach more closely

integrates the requirements of development with those of project planning and control.

One half of the Panel agreed with this, one strongly, but another disagreed. The

question was designed to establish the link between the process model, the use case,

and the project plan, and was meant to emphasize the integrated nature of this

approach, and the degree of consistency throughout the development process. The

response from the Panel ranged from strong agreement, to more common uncertainty

of this claim.

Questions were raised about knowing when all use cases were defined. While this is a

valid question, at this stage the point is that the main use cases will be identified from

the process models (whether for a solution, corporate or BPR project), providing

process modelling has been performed. What is not known is how many use cases

might be required to „extend‟ the main use case to cater for exceptions and alternate

scenarios, and when common processes can be identified and converted to „use‟

relationships between use cases. This is the product of more detailed use case

modelling in the Elaboration activity.

Where process modelling has not been performed, then the use cases will not be

identified from this form of model. However, the technique can still be used, since by

nature and definition the use case represents an interaction between a user and a

computer system. As Fowler (1997) points out: “In its simplest usage, you capture a

use case by talking to your typical users and discussing the various things they might

want to do with the system. Take each discrete thing they want to do, give it a name,

and write up a short textual description (no more than a few paragraphs)”.

The approach can also apply to the maintenance of an existing system. The starting

point in this case is to establish a skeletal use case for the user/computer system

interaction, then document the change, and note the links to existing documentation.

Future maintenance then starts with the use case, which then becomes a „living‟

document.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 64 Date: 01/05/1999

4.1.2 Use Cases

Q5. Use Cases are the way forward to capture business requirements. They provide a simple yet

comprehensive framework to capture business requirements in user terms, and provide views of this

information at appropriate levels of detail as you progress from Inception to completion of the

Elaboration phase. They also provide a single source of reference to the Construction phase for

purposes of design, build and test, and provide the means to plan and initiate system testing.

The response from the Panel was divided between agreement, and uncertainty of this

claim. While it was agreed that the use case suited the documentation of functional

requirements, the suitability to document non-functional requirements (NFRs) was

questioned. It was felt that NFRs should be abstracted-out into a separated document,

since the audience for these could be specific architectural teams on large projects,

where a framework may have to be designed and built for use by developers.

Q6. The Use Case is an effective means of capturing business and system requirements from the

user’s perspective

All respondents from the Panel agreed or strongly agreed with this statement.

It would be more correct to say that use cases allow you to document rather than

„capture‟ requirements.

Q7. My interpretation of the contents of the use case is comprehensive?

The response from the Panel was divided between agreement, and uncertainty of this

claim. The main issues included the treatment of business rules, exceptions, and the

inclusion of screen layouts in the use case, which in themselves do not contradict my

claim.

Given that the use case represents the interaction between the user and the computer

system, I would restate my claim (supporting Allen and Frost (1998)) that some

representation of screen details should be included. The focus is on data, and not on

usability. Screen prototypes, whether on paper or produced using a GUI tool, could be

included to help visualise what the system is dealing with.

In consideration of exceptions, I would classify types as system (e.g. network error),

application (e.g. invalid claim notification date) or framework (e.g. no history found).

I would not expect to define system or framework errors in the application use case.

The main use case (derived from the process model) defines the principle processing

path, and lists the exceptions. The exceptions identify the need for separate use cases

to „extend‟ the main use case.

The treatment of business rules is a more contentious issue. Strictly speaking, the only

rules that should be documented in the use case should refer to the visual i.e. user

facing aspect of the system. Business rules governing the behaviour of the system will

ultimately be allocated to the business objects responsible for actioning them. The

approach I have adopted is to document the rules in the use case as you discover them,

but only on a temporary basis, moving them to the appropriate business service

definition at a later stage in the Elaboration process. This does involve more work, but

caters for the situation where a rules repository is not available. I would accept that,

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 65 Date: 01/05/1999

should a rules repository be available, then it would be more appropriate to populate it

and cross reference as appropriate.

Q8. Both visual and non-visual business rules should be captured in the Use Case during analysis in

the Inception and Elaboration phases

Most of the Panel agreed with this, and one member emphasized that “Gaining as

complete an understanding as possible of business rules as early as possible is always

key to avoiding problems later in the development cycle”.

However, another strongly disagreed, following up the issue of business rules (which

I accept - see final paragraph of Q7 above): “In our experience there are far too many

„business rules‟ (hundreds) and they are far too complicated to go into use cases

without overloading the use cases. A repository is the only way to ensure

completeness, consistency and traceability”.

Another interesting point was made here, in qualifying agreement with the claim:

“Except, that if purely technical and irrelevant to User, then don‟t confuse them!”.

This reinforces the view that technical NFRs should be defined in a separate

document. Given that I have not differentiated between business and technical NFRs,

this may be a good criterion to use.

Q9. On completion of Elaboration, all rules should be allocated to services in the Service Package.

The Use Case should then be updated, replacing the rule descriptions with cross-references to the

Services having responsibility for implementing them

Most of the Panel agreed with this, other than for the recurring issue over the

treatment of business rules (see final paragraph – Q7), and in this case the volume of

them in certain applications. Again, it is agreed that a separate rules repository should

be used.

One respondent suggested that you: “Could take the approach that each stage is a

progression and forget what has gone before”. However, I would disagree strongly

with this, given that the aim of my Proposal is to propagate „living‟ documentation,

and eradicate the waste from previous methodology where intermediate levels of

documentation is produced, only for it to be thrown away later.

Q10. Sequence Diagramming in the Elaboration phase restructures the general process description

into the detailed steps of sequence, choice and iteration.. This provides a clear and simple, yet more

formal and detailed means of describing the business requirements within the Use Case.

The response from the Panel was divided between agreement, and uncertainty of this

claim. Some concern was expressed over the visual representation and notation of the

steps, but unfortunately this is the UML presentation style for sequence diagramming.

In agreeing with the need for sequence diagrams, one respondent raised the question

of the relationship of requirements to the low-level behaviour of the use case:

“Requirements are „statements‟ which if not „met‟ by the completed systems will have

a detrimental effect on the CBA/Business Case. Low-level behaviour discovered

during sequence diagramming is not „requirements‟ and it is dangerous to let

„users/sponsors‟ believe it is. “ While this is a very valid statement on the verification

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 66 Date: 01/05/1999

of business requirements, it is not my intention to present detailed use case steps as

such. Rather, the use case documents business requirements at the „Intent‟ or

„Description‟ level early in the Elaboration phase. The steps of the use case are the

result of more detailed analysis and design later in the Elaboration phase. The more

detailed steps are indeed not part of overall business requirements, but the anticipated

implementation of them.

Q11. Have you / your team used Use Cases to capture business requirements? If Yes, what did you

like / dislike about them, if not already mentioned above?

All bar one respondent had had exposure to use case driven development. One

respondent summed their benefits with word like: “Crucial, Pivotal, Concise,

Understandable etc”.

Another respondent summarised use cases as: “Formal and standard approach readily

understood by all parties. Uses terminology the User understands rather than IT

gobbledegook - once that is, they understand the term „Use-case‟. Breaks an overall

process into smaller more manageable chunks. Users are becoming more and more

computer literate - however a little knowledge can be a dangerous thing sometimes

and care is required to get the right level of detail”

While previously mentioned in Q4, it was reiterated that some guidance was needed

on the number of use cases that need to be defined. However, there is no easy answer

to this question. Fowler and Scott (1997) quoted Ivar Jacobson saying that he would

expect 20 use cases for a 10 man-year project, while they themselves defined over 100

for the same size of project. They concluded: “I don‟t think there is one right answer

at the moment, so be flexible and work with whatever seems comfortable.”

4.1.3 Domain Service Packages

Q12. The identification of the main component packages during the Inception phase is a useful

means of abstracting system detail from the architectural perspective, and illustrating the

dependency between components. The intended use of legacy systems can also be identified and

tabled at this stage of architectural design.

All members of the Panel agreed with this, with one respondent commenting that: “At

a high level can simplify a complex system and give a good overview and clarify

understanding and basic assumptions”, and another that: “We define both logical and

physical sub-systems early on”.

One point raised concerned the naming and description of the service packages.

Indeed, the name and purpose of the domain service package needs to be clearly

defined in the component catalogue. It should also be noted that service packages can,

and do, include the services for „wrapped‟ legacy systems.

Q13. Reusing this diagram in the Elaboration phase for the allocation of services to Service

Packages is a good way to ensure that the architectural scope has not been exceeded.

This point raised a mixed response. One third agreed, half were unsure, and one

disagreed. The main issue concerned the definition of scope.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 67 Date: 01/05/1999

The point here is that the architectural scope is defined in terms of high-level service

packages in the Inception phase – see Section 3.3.7 and Figure 3-9. This diagram is

then referenced throughout the Elaboration phase as more is learnt about the required

system. Ultimately, all required services will be added to the service packages

previously defined, resulting in the layered architecture shown in Section 3.4.9 and

Figure 3-19. If not, then the original scope has been exceeded. As one respondent

indicated: “It ensures that all scope, not just architectural scope, has not been

exceeded”.

4.1.4 Allocation of Services (User, Business and Data) to Packages

Q14. Concentrating on Service provision (via Service/Control class) by the Service Package

simplifies the structural definition of the system without sacrificing meaning.

This received a mixed agreed and unsure reaction from the Panel. The point here is

that it is the service that defines the functionality of the system, the contract to be

supported and the focus for design. The service package itself is treated as a black

box.

It was questioned whether in a large system this would be meaningful, but I believe

the claim holds true. In a larger system you would partition the service packages into

a more manageable size based on system sub-functions rather than larger functional

areas. This is something that would be considered during the architectural design

discussed in Q13 above.

Q15. This is a more effective use of development resource than spending time developing domain

class models that require specialised skill to design and understand, which are generally not

maintained, and ultimately fall into disuse.

The majority of the Panel were unsure of this claim, with several respondents not

understanding the meaning of domain class model, one preferring the definition of

such a model, and another on how the maintenance of this type of documentation

would be different to any other.

I use the term domain class model to mean the definition of an object oriented class

diagram, which represents the objects of the business domain, their behaviour, and the

methods or operations that implement this behaviour on the class or its attributes. It is

usually produced as part of an analysis exercise to verify understanding. It is then

used for input to the design activity, whereupon it is made redundant, since designers

may meta-model the requirements, use design patterns or whatever, to produce a

physical design. Apart from the need for domain class modelling skills (which are not

in plentiful supply), you are producing redundant documentation, which is something

my approach avoids.

In terms of the maintenance of this documentation, the use case and service

definitions are designed to be „living‟ documentation, and therefore, the first port of

call when a system change is required. In the case of the Year2000 scenario as raised

by one respondent, it is unlikely that any documentation would be changed at this

level, since this is a change to the definition of the date data type domain definition,

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 68 Date: 01/05/1999

and is largely an issue of testing. I am unsure of the situation on the Euro, but I would

suspect that some functional, and therefore, documentation changes would be required

in this case.

Q16. The Service defines the interface to the component ‘black box’. There is no loss of specification

detail using the Service Package approach, compared to other approaches which would require the

preparation of a domain class model.

The Panel were generally unsure of this claim (possibly because of the lack of domain

class modelling knowledge as discussed in Q15 above), apart from one who strongly

disagreed on the basis of its complication. If this meant that my approach was

complex, this is not the case, since by definition, you define the service contract

without worrying about how the internals of the „black box‟ are to be designed. As

one respondent noted: “ I would agree that interfaces need to tightly defined and

openly published”, and another that: “This has to be detailed, signed off, publicized

interface to enable components to be independent and reusable”.

4.1.5 Service Definition for Service Packages

Q17. The Service Definition contains the interface specification for the Service Package, and

therefore, the Component. It is defined from the detail held in one or more Use Cases. This

definition provides an effective framework for the reuse of system services.

The majority of the Panel agreed with this, other than one whom disagreed on the

basis that the parameters needed to be more fully defined. I would agree with this,

since data definitions should be part of a data dictionary, which is a requirement, but

outside of my scope.

Another respondent was keen to see how this scaled to a larger system, but I will

conclude with another observation: “ It is the best chance we have for reuse.”

Q18. The proposed structure for the definition of services is comprehensive

This met with a mixed agreed, unsure and one disagreement based on the parameter

definition issue raised in Q17.

4.1.6 Layering of Service Packages

Q19 The Domain Service Package high-level diagram is reused with layering detail added. The

layering of Services is a simple way to illustrate the architectural structure of the systems in terms of

User, Business and Data requirements.

The Panel agreed and strongly agreed with this. While the question of how it would

scale to larger systems was again raised (answered in Q14), it was noted to be a:

“Useful architectural communicator”. Another respondent suggested that the diagram

should be produced automatically with provision for explanatory text tailorable to the

target audience, which would be ideal if there was a case tool to support it.

Q20. For technical design and development, teams can be assigned specific areas for development.

For example, teams could be created as centres of expertise for Policy, Claims etc. The Service

Package view clearly illustrates the services provided by the various packages, and is a useful means

of communication.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 69 Date: 01/05/1999

The Panel generally agreed with this. Teams can indeed be allocated specific areas to

support using traditional techniques, but using this approach, responsibility is clearly

assigned to the defined architecture (see Section 3.4.9 Figure 3-19).

Two other interesting alternatives were also suggested: “Alternatively team expertise

may be developed across type of package, for example, Data Services across Policy,

Claims and Administration”, and “Useful means of allocating Business User effort

and Business Analysis expertise also”.

4.1.7 Service Package Deployment

Q21. The deployment diagram is a useful means to illustrate the allocation of Services to nodes on a

network, and highlight the impact of deployment choices involved in the chosen architecture.

The majority of the Panel agreed with this, other than one whom disagreed,

questioning the level of detail and audience (intended to be mainly technical) for the

diagram. Again, the diagram was noted as a : “Useful architectural communicator”,

but its significance was identified by another respondent: “However, a simple diagram

but some big decisions in here. Maybe a lot of work to get this agreed / defined.” This

is the main purpose for the diagram: a proposal for discussion and agreement.

The diagram capitalizes on the layered service definitions, which can be allocated to

the various client-server architectures without having to be reworked or redefined.

The choice and options for technical architecture would not impact this methodology.

4.1.8 Package Class Structure and Component Design

Q22. The Service Definitions are the specifications for the detailed class design and code

development. While reference is made to the Use Case for non-functional information, and to the

Use Case and Layered Service Package Diagram for contextual information, no other

documentation is required.

Comments from the Panel ranged from not sure to strong disagreement with this

claim. The main objections concerned the completeness of specification for

developers to do their work, and related to this, how errors are handled.

The claim focuses on the functionality of the application, and the definition of the

business and data services it is to provide. I consider that the service definition is a

complete specification of this functionality, in the same way that a traditional module

specification furnishes the developer with a description of what is to be coded and

unit tested. In each case, the designer / developer would work within the constraints of

the relevant technical architecture, be that at the framework or system architecture

level, and capitalize on whatever common components are available to handle any

errors appropriate to these levels.

It should be noted that the GUI design and development will be driven from the use

case and its visual rules. It is the services questioned above that will be invoked by the

screen / window based dialogue that results from the visual design.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 70 Date: 01/05/1999

In terms of contextual information, it was queried whether the original business

requirement is needed at this stage. It may not be, but since it is captured as part of the

use case, it is available for reference.

Q23. It is at this stage that the detailed class models are designed to support the functionality of the

Service / Control Classes (Façade). The allocation of class design to technical rather than business

specialists is a more effective use of resources.

This resulted in a mixed response from unsure to strong disagreement, but with little

qualification by the Panel. I would question the respondent whom: “Would prefer to

see this as a co-operative joint effort”, since the point of my claim is that you do not

need to mix the skill sets involved. I am suggesting that those who have good business

and application knowledge concentrate on the application in terms of the services the

black-box provides, leaving the content of the black-box to the technical designers

and developers who are expert in the potentially diverse and highly specialized

technologies involved.

4.1.9 Others Techniques

Q24. Are there any other techniques that you would like to have questioned or seen used?

In terms of the techniques already discussed, apart from the use of a Data Dictionary,

it was questioned whether the process model was comprehensive enough. In the

absence of evidence of what is missing, and given that it is based on the UML with

the addition of elements from the Select Perspective (Allen & Frost, 1998), then I

would suggest that it is.

The only technique that was questioned was the use of Task Hierarchy Diagrams,

which I suspect is an element of the KPMG Structured User Interface Design

(STUDIO) methodology. This is a valid technique for the purpose of task analysis at

the detailed level, but I chose to concentrate on process for consistency, rather than

engage in the semantic debate over whether a task is a low level process, a process

another word for an activity, and a function a high-level process etc.

4.2 Use, Reuse and Traceability

4.2.1 Use Cases

Q25. To gain the maximum advantage from Use Case documentation, it should be considered in the

same way as a relational table with a number of available views. For example, a business facing

view containing user role and intent at the Inception level, plus Description in the early stages of

Elaboration etc. Each view would be tailored for communication with a specific audience.

Most members of the Panel agreed with this although two were unsure. One

respondent highlighted the importance of interpretation as follows: “Use cases need to

be tailored to the person using them e.g. technical designer. Important that although a

different view the interpretation / understanding is exactly the same”. As another

respondent commented, however, the full view should be available to everyone if

required.

Another respondent questioned: “Can you have general „use case‟ templates e.g Add

Claim etc which can then be modified?”. However, while this might be possible, my

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 71 Date: 01/05/1999

approach would be to consider why the two are different, and re-factor the existing

one into a corporate „Add Claim‟ use case which could then be reused / generate

reusable components if possible.

Q26. The ability to use one form of documentation i.e. the Use Case for complete and shareable

requirements definition is a significant step forward in terms of reusable documentation.

The majority agreed or strongly agreed with this, apart from one unsure response

which was not further qualified.

Q27 Continual reference to, and development of, the Use Case throughout the development lifecycle

will ensure that the business requirements are always considered and correctly addressed.

The majority agreed, with some unsure of the claim. In one case it was held true: “But

only in respect of what is documented within the use case itself”. Another suggested

that: “Other business focussed documents may be required”, but did not suggest

examples. Concern was also expressed that it: “May become unwieldy the deeper you

go into the development lifecycle”, but given that I accept that non-functional

requirements will be abstracted into a separate document, this may satisfy the author

of this comment.

The question of consistent terminology was again raised in relation to the impact on

the business user: “Terminology is often the barrier rather than the actual content.

Some business users object automatically to new terms introduced by IT. If the

business are happy with the term „use case‟ then OK. If not then discuss alternatives,

decide and use it throughout.” I suspect that again, this is down to the culture of the

business and the education of those users involved. Use cases are widely used in the

commercial environment, but if the terminology does not fit, then an alternative

should be used, and „consistently‟.

4.2.2 Services

Q28. The Service Package provides the interface definition to the Component Package. This is an

appropriate deliverable from business oriented component modelling, and complete specification for

the designers and developers of the appropriate middle ground, and enabling unit of reuse?

One third of the Panel agreed, another third were unsure, one disagreed. Only one

comment was made, and this quite rightly suggested: “However, there will be other,

more granular, levels of reuse”. My claim is that there is greater business benefit to be

gained from the reuse of business services, rather than the more design and build

oriented components of the development process, essential though that is.

Q29. The implementation independent Service Package is a more effective and enabling unit of

reuse than other forms of module or functional specification.

Only one Panel member agreed with this, with the majority unsure. One respondent

strongly disagreed, but in doing so stated that this was a: ”Useful starting point and

useful architecturally”. I would suggest that this overall feedback is due to lack of

exposure to this approach as summed up by another comment: “Haven‟t really seen

any others aimed at component based development / reuse”.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 72 Date: 01/05/1999

Q30.The Service concept provides the means to define appropriate services to enable the reuse of a

legacy system. While a suitable transaction interface will need to be written inside the Component,

the Component is the wrapper for the legacy system. (Note: I would include traditional Cobol and

object oriented systems as examples of legacy systems.)

Half the Panel agreed with this claim, with one disagreeing, and one uncertain. In

qualifying the non-agreement, it was suggested that: “Can‟t necessarily reuse a legacy

system as usually not object oriented but rather they are convoluted spaghetti?” I will

agree that such a system over time may have become spaghetti-like, but not that

object oriented systems are a prerequisite for packaging as a component. The point is

that irrespective of how the legacy (or heritage) system has been developed, it delivers

a set of services. Butler Group (1998b) observed that some of the most successful

implementations of componentisation that they had seen did not use any of the new

distributed technology, simply traditional environments.

Providing we know what the interface is, then we can develop a wrapper for it, and

package the application according to the services it provides. Another advantage is

that it is possible to re-use elements of the legacy application that would otherwise be

too expensive to redevelop. For example, you may no longer be interested in its data

capture and reporting transactions, but very keen to reuse a complex set of algorithms

e.g. those of a rating engine, which would be of significant benefit. This could be

packaged as a service(s).

4.2.3 Specification and Model Reuse

Q31. The Use Case and related Sequence and Service Package Diagrams, plus the Service

Definitions for the Service Packages, are designed to be highly reusable and implementation

independent. They achieve the objective of design reuse.

As for Q30, half the Panel agreed with this claim, with one disagreeing, and one

uncertain. A comment was made that this might be true in theory, not having seen

how this might work in practice. Another, suggested that: “They enable achievement

of design reuse”. I would not argue with this, since this is agreeing that the objective

will be met.

Q32. Design and model reuse is key to successful and economic system development. The layered

approach to service definition provides a sound architectural context, and greatly facilitates redesign

for deployment in multi-tier environments, for example when implementing a thick-client PC system

for central offices and a Browser enabled version for remote use.

The majority of the Panel agreed with this, with two uncertain. One respondent felt

that because my question embedded a number of statements, that it was difficult to

answer, questioning the layering and architectural element. In response, I would say

that what I am suggesting is no different to current practices in multi-tier client-server

design. What I am doing, is suggesting that the service framework is the optimal

means of defining the services that have to be provided in the client-server

environment, and that this approach is implementation independent, and therefore,

reusable. As another respondent noted: “Design and model reuse is certainly a key to

future economic development”.

Q33. The relationship from Business Requirements to Use Case, Use Case to Service Definition,

and Service Definition to Component provides for full requirements traceability.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 73 Date: 01/05/1999

The majority agreed with this claim. One respondent strongly disagreed on the

grounds of complication, which based on previous comments, reflects concerns over

the issues of non-functional requirements, dictionary, and the provision of technical

and software frameworks, which I have already commented on, and agreed need to be

in place.

Another respondent agreed that traceability would be achieved, “But only if

maintained”, and indeed this is a key issue. I will answer this together with another

point raised: “Change control procedures? What is effort per „change‟ if

documentation updated compared to traditional techniques?” One of the benefits of

this approach is that the use case should always be the focus for development. If there

is a change in business requirements, the use case is updated, and the required system

changes radiate from it. It is the focal point for all business oriented system activity.

Traditionally, a variety of documents may be involved: functional specifications,

requirements documents, outline designs, change specifications etc, most of which are

only a transitory document to the next stage of development, and are never updated.

The use case and service based approach, provided it is controlled and is always the

first port of call for a system change, will provide the reusable design documentation

that is lacking in previous techniques. The required changes will be made to new

versions of these documents. There will still need to be a design document that

presents the use cases and system components impacted by the change, but this will

mainly involve the assembly of documentation for the purposes of planning and

control.

4.3 What is needed to make this work?

Q34. Organisation and culture are often more critical than component technology in making reuse,

or new process adoption work.

All of the Panel agreed with this statement, all bar one in strong agreement. As one

respondent commented: “Strong management backing is required to make any such

change work which is why some prototype projects fail. Lip service is paid rather

than whole-scale support”

On the subject of project organization, another commented: “To organise teams

around components would be the hardest thing. Projects are usually based around

business functions and costed that way. Would need a cultural shift to fully embrace

this approach”. However, service packages are usually designed to support business

functionality, and there is no reason why this should be a problem.

Q35. A good opportunity is to pilot the component development process together with a new

technology project in order to stimulate interest in what some developers might see only as a

‘documentation’ exercise. The process will then achieve a similar profile as the success of the

technology project (unless it fails of course!).

This resulted in a mixed response from the Panel, with one third disagreeing, the

others unsure, agreeing or strongly agreeing.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 74 Date: 01/05/1999

One respondent queried whether it had to be a new technology project, and in essence

it doesn‟t. It was then suggested that: “You would have to compare two similar

developments one using traditional methodology one using new in order to achieve

accurate results.” Ideally this is true, but only if you are starting with the same degree

of knowledge in both approaches, which is unlikely given that the component

approach is new, and as another respondent pointed out: “The benefits would only

really come from the next project unless large level of reuse of legacy systems in this

pilot project”.

While willing to try the approach another respondent suggested: “Should definitely be

tried out, but I don‟t think it will scale”. Again, consideration of the non-functional

requirements, data dictionary and rule repository should help solve the possible

scalability problem.

Another respondent in disagreeing with the pilot approach, suggested another very

interesting alternative: “Don‟t agree - Need to explain Benefits of this approach to

those who need to be motivated to use it, rather than using it passively”. This raises

the cultural issue, and how you motivate people towards documentation rather than

technology. However, this was the aim of my claim. If the method is sold as an

essential part of the utilization of the technology, then it is more likely to be adopted,

and a deliverable from the pilot exercise would be new sample documentation that

would be viewed on its merits. The technology and the corresponding methodology

would go hand in hand.

Q36. Assuming the pilot is a success, a policy statement is required to institute the process, and the

objective of reuse, as a departmental objective. Reuse is not free use, and management commitment

and the right cultural conditions are a precondition for its success.

Apart from one unsure comment, the rest of the Panel agreed. The question of cost

justification and the need for motivation to use the techniques was again raised as a

concern (covered in Q35 above). Another respondent also cited this: “Definitely

difficult to quantify and cost. Would need high-level management backing”. Such

backing is essential, but I believe the merits of any technique have to be demonstrated

by example, which is why I suggest the pilot project approach.

Q37. As a minimum, a Service / Service Component / Component asset catalogue is required with

search facilities in order to maximise reuse opportunity

One third were unsure, the majority agreed or strongly agreed with the need for an

assets catalogue. The question of granularity of component was also raised: “Depends

on the level of granularity. Would you expect the catalogue to contain high-level

business objects and also detailed VisualAge objects (for example) of which there are

thousands”. My intention would be to document the service definition and component

package, with links to the physical component package. GUI development tools,

including VisualAge, usually have highly efficient class browsers for the purpose of

managing design objects in their native environment. In this case there is little point in

documenting them, and doing so would add little value.

Two respondents questioned the use of the word minimum. By this I meant the

availability of some form of repository, but not a full-blown case tool. An integrated

case tool would be ideal, providing that all component documentation and

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 75 Date: 01/05/1999

relationship requirements are met (while I have seen several, none appear to be

designed to do this, rather „adapted‟ from previous versions). It was also questioned

whether a graph of stages and benefits could be plotted. This is a good point, which I

have not included in any of my documentation.

Q38. While a case tool is desirable for modelling purposes, and provides the corresponding rigour, it

is feasible to achieve a workable and economic framework using basic tools. For example, a word

processor (e.g. Word 6.0), or better (e.g. a Notes Client linked to a standard Notes Library

Management Database) can be used for the definition of Business Requirements, Use Cases, and

Service Definitions; with a diagramming tool (e.g. Visio) for the models.

This achieved the widest distribution of answers from the Panel, with one in every

box from strong disagreement to strong agreement. All the comments were very valid,

and ranged from: “Just not possible without a CASE tool”, to: “Don‟t get hung up on

fancy Case tools, these are a means to an end only. Attitude is key”. Much will

depend on the size of the project, and I think it is accepted that while minimal tools

can be used, for a larger scale project they are essential. This is effectively

summarized by another respondent as follows: “Whereas basic tools could prove

adequate for a pilot they could very quickly become laborious without some level of

dynamic linking and automatic cross referencing were not available, especially if the

documents and diagrams were subject to iterative cycles, being used as working tools

for the design process. A custom built Notes based system could prove adequate as a

working proof of concept”.

Q39. Appropriate training in the approach and techniques is required. Following an introduction,

this is best achieved by just-in-time training, and regular consultancy support throughout the

project.

All bar one member of the Panel agreed with the concept of just-in-time training and

regular consultancy. The objection was that an: “Experienced person is integral part of

project team plus need to sell benefits”. My suggestion was the minimum, and the

ability to be an integral part of the team is more preferable.

The question of communication with the team and “level-setting” was also raised, and

indeed, this is an important part of project work. Planning the frequency and level of

the training must relate to both the project schedule, and the available skills within the

team.

There was also a question about whether the trainer should be a practitioner or trainer.

My own preference would be for a practitioner to give the course, providing they had

the presentation skills and personality to do this. If not, then they should at least be

familiar with the course content in order to relate the demands of the job to the topics

covered by the course. If there is a gap, then the course is likely to have been

ineffective. If the consultant gave the course, they at least have noone else to blame!

I will conclude this claim, with a quote from one Panel member that who effectively

described the critical nature of training: “Education and Training requirements should

be no different to any other area. People learn more by „doing‟. According to the

ancient saying „I hear - I forget. I see - I remember. I do - I understand‟. Training is

all-important as is the cost of making mistakes i.e. the savings of fewer formal courses

will be met by the increased cost of re-working when mistakes occur”.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 76 Date: 01/05/1999

4.4 General Feedback

Q40. Do you think that there is merit in the methodology and approach described?

The majority of the Panel agreed that the approach had merit with one unsure

response.

One respondent indicated that : “I think it represents a logical view of an approach”,

and another observed that:“There is very little available which specifically focuses on

the component delivery angle although componentisation receives a lot of column

inches at present.”, and this is certainly true and the inspiration for this research and

proposal.

The respondent who was unsure commented: “However, I would like to see it tried,

but I don‟t think it will scale, so may be difficult to prove”. Again, hopefully, I have

earlier addressed these concerns in answer to Q35. The same respondent suggested

that my approach was “waterfall” which it is not. To clarify this, as I said in Section

3.1, my aims were to focus only on those elements of the lifecycle specific to this

approach. I adopted the Objectory Software Development Process as a framework

within which to do this, and demonstrate the component-based design activities. The

whole process is iterative with detail being progressively added as more knowledge is

gained, hence „Elaboration‟. The incremental nature of the approach is also referenced

in relation to „Construction‟ in Section 3.5.3.

Another respondent, who had previously chosen the „comment‟ route to feedback,

provided an effective summary of concerns about the approach and its merits. I have

included the complete text here since it represents a good summary view:

“Before this gets anywhere near the Business Community then IT management need to be certain that it

will the bring the company additional benefits above and beyond what is currently in place. Primarily

this will mean benefit to IT with secondary benefit to the User community. Both User and IT

management are, and indeed must be, sceptical. Too often have there been claims for improved service,

improved future benefits, jam tomorrow etc. Fourth Generation Languages were once the panacea

together with RAD, prototyping, relational databases, object orientation, BPR…… Having said that,

we cannot remain stationary and we need to progress through evolutionary means. Revolution is

difficult because of areas mentioned elsewhere e.g. existing systems, existing documentation and all the

complexities and inconsistencies which have grown over the years. Whereas it‟s nice to start from

scratch on a green-field site, most large organisations do not have this luxury. It‟s certainly possible in

these new sites though as TIS [The Insurance Service - a telephone based insurance service, and

Division of Royal & SunAlliance] and others bear witness.

It‟s very difficult to prove additional benefit over and above the „current‟ approach especially since no-

one actually knows categorically what the current cost is,/ was / or would be in future. Each step

through the process may be entirely logical and may get agreement but that doesn‟t imply that the end-

result will get acceptance.

A couple of further points:

As mentioned the document is the contract between the various involved parties. This is a good formal

way of describing it and describes the process better than „specification‟. If the use-case were to go out

to a 3
rd

 party to code then it‟s a contract - or at least part of a contract - so this word should be used

internally as well.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 77 Date: 01/05/1999

It will be interesting to see how this develops and how it copes when confronted with the normal nitty-

gritty, error processing and added complexity of a real-life medium scale development rather than a

simplified case study. The right tool will be a key factor.”

Several of the above points have already been addressed, including cost and benefit,

technical and software frameworks, and tools. I will however, address the question of

bringing benefit over “…what is currently in place”.

I would say that the documentation in place today is the product of any number of

piecemeal design and development approaches from the past. My proposals are

forward looking, and will maximise design reuse, eliminate the need to produce

intermediate „throw-away‟ design documentation, and provides the means to integrate

old with new. My approach applies to legacy as well as new systems design and

development, and offers an evolutionary path, mostly using techniques of the UML,

but applied to the service / component environment.

Q41. Are there any other areas that you would like to have seen covered / included?

The Panel suggested the following, which could form the basis for future research –

See Q44 also.

 More detail or potential benefits of using methodology e.g. degree of reuse,

potential decrease in documentation. Needs to be brought out.

 Approach across legacy applications – we now very rarely get the opportunity to

go for “green field” development and hence you need to look at any potential for

mapping or translation of what is there already.

 Measurements – How big could it get – how feasible to share amongst teams of

developers e.g. for large system like UKRIS how long would it take?

 How would this methodology apply to the more popular development software?

 What is relative saving by using this method?

 Is there a difference between maintenance and development?

 Can user resources be used more than IT with the method?

 Platform independent business process modelling using reusable library?

Q42. Are there any other areas that you felt were unclear, and would have liked me to expand on, or

explain better?

One respondent suggested that I went: “…into the methodology quite cold”, and

another that: “Section 3 needs structuring to make it clearer”. I‟m not quite sure what

I could have done to make it clearer, since I followed a phase and activity approach

using the case study for my examples. This may partly be related to the “quite cold”

comment, however, since the Panel did not have the benefit of my Section-2

Literature Survey. This is where: Technical Architectures, Technology Application,

Methodology and Architectural Requirements were reviewed and discussed.

Business rules was the only other area of interest, but following previous discussion, I

agree that they can be more effectively stored in their own repository.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 78 Date: 01/05/1999

Q43. From what you have read, would you consider a pilot to use this approach?

Only four respondents answered this question of which only one agreed: “Yes, if the

opportunity arose and it was accepted as worthwhile by others involved.” This may

reflect the caution of the people involved, the issue being the need for demonstrable

benefit e.g. “No. You need to present more on the potential savings / benefits from

this”, and “No. Would be interested in evaluating from other‟s experience, but not as

“First penguin in the water”.

Q44. Are there other areas of research related to this topic that you would like to see undertaken?

The Panel suggested the following:

 The follow through into delivery, and methods for identifying and managing the

next, more granular, level of reuse, those components which would be reusable

across service packs, for example code subroutines.

 What level of detail can be „got away with‟?

 See Q41 for related topics of interest.

Q45 Any other comments?

The following are direct quotes from the Panel:-

 “I thought your methodology was reasonable, logical and analytical in approach.

I‟m sure it would represent a sound way of representing developments in terms of

a “component approach” – but for me a proposal needs more about how it would

work and be managed in practice and the potential benefits.”

 “Interesting. These views need airing and exploring - things are not all rosy at the

moment. However I think that most systems are too complicated to be „pulled-off‟

by this method.”

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 79 Date: 01/05/1999

5. CONCLUSIONS

5.1 Areas covered in the Conclusion
I will first endeavour to summarise how the methodology satisfies the architectural

requirements discussed in the Literature Survey of Section-2. I will then briefly

comment on the lifecycle used as the phased framework within which the techniques

of my approach are defined, before then summarising the key findings from each

phase of the methodology, and further consider the feedback from the Panel. I will

then summarise what has been achieved and present the revised methodology model

(Figure 5-1), before concluding with an indication of future areas for research.

5.2 Meeting the Requirements of the Literature Survey.
The concept of service definition is totally independent to the technology of the

deployment environment. The benefit of this approach is that whichever technical

architecture, middleware (Section 2.1) and standard (e.g. CORBA, DCOM) is used,

the services are only defined once. How they are implemented depends on the specific

technology of the environment in which the component is to be deployed. Alan

Cameron Wills
3
 described components as being “…assembled from kits of parts”. For

example, internet Web based applications may consist of components built from kits

of Java or ActiveX parts which are then plugged into the environment in which they

are to be deployed. However, regardless of how many environments the components

are deployed into, they are each built from the same service definition. This

demonstrates the reusable nature of the service definition, and how the diverse nature

and application of technology (Section 2.2) can be more effectively managed.

As a concept of methodology (Section 2.3), the service provides a higher level of

abstraction than the object in the object-oriented paradigm, and promises to deliver a

more valuable level of reuse (2.3.2 and 2.3.3). It takes account of the essential

distinction between interface and implementation, and is considered a better means to

achieve an optimal return on investment (2.4.2). My proposal allocates services to the

appropriate service package, which treated as a black box, effectively encapsulates the

services. In terms of technique, the concept of packaging is grounded in tried and

trusted methods (2.3.5), processes (2.3.6) and standards (2.3.7),

In terms of the management of architectural scale (2.4.3), the proposed methodology

satisfies the requirements of application architecture at Level-4, and the system

architecture at Level-5 as defined by Mowbray & Malveau (1997). The abstraction of

requirements also satisfies the need for independent reusable services, which in a

distributed system is necessitated by the lack of a single address space (2.4.4). It also

caters for the layering of services into user, business and data layers (2.4.5).

It has been noted that while the body of knowledge on object-orientation is large, little

has emerged to relate service-based components to application architecture, and the

management of the development process (2.4.6). I consider that the proposed

approach is a workable option and means of satisfying this requirement. The

methodology also satisfies the criteria for “Essential and Desirable Characteristics of

Components” as identified by Butler Group (1998a) and specified in Figure 2-6.

3 Alan Cameron Wills was the speaker at a British Computer Society Methods and Tools Specialist Group meeting in
Manchester on the 18th January 1999, on the subject of “Managing a CBD Project”. He is also co-author of the D‟Souza and

Wills (1999) book referenced in the Bibliography.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 80 Date: 01/05/1999

5.3 Suitability of the Development Lifecycle

The phased approach of the Objectory methodology which I used as my system

development framework proved sufficiently flexible to meet my needs, and the phases

of Inception, Elaboration, Construction and Transition worked well. Given a lack of

feedback to the contrary (subject to it not being a waterfall approach as confirmed in

my response to Q40), it can be recommended as a suitable project lifecycle for the

service based approach to system design.

5.4 Suitability of the Proposed Methodology Activities

5.4.1 Inception Phase Activities

Process Modelling (Q1-4) was introduced as a method to assist in the identification of

use cases, and effectively relate them to business processes. It is not meant to be the

only means, and it is perfectly acceptable to define use cases from business

requirements documented in a traditional word-processed form. The feedback from

the Panel suggested that the business would need evidence of benefits in order to buy-

into the technique, but it was agreed that process models provided a single means of

communication and understanding, which is essential, between IT and the business.

The Use Case (Q5-11) approach provides a workable means to document

requirements throughout the development process, subject to a number of provisions

including the treatment of non-functional requirements (e.g. Q5, Q8), data (Q17), and

business rules (e.g. Q7, Q9). While the proposed use case template provided a

framework to record each of these, it was felt that due to the complexity and number

of requirements in each of these areas that a separate repository(s) would provide a

more effective solution. Under these circumstances, the use case will remain the key

functional document and „point‟ to the relevant areas in the repository.

The concept of Domain Service Packages (Q12-13) was seen to be a useful

architectural abstraction, and a useful means of documenting the scope of a project

early in the development process and to verify it later in the Elaboration phase.

5.4.2 Elaboration Phase Activities

The Allocation of Services to Packages (Q14-16) in the Use Case Sequence Diagram

met with a mixed response from the Panel, and based on the feedback alone would

seem inconclusive. However, the feedback on the related Service Definition for

Service Packages (Q17-18) activity contradicted these reservations. The Panel agreed

that service definition does effectively define the interface specification (subject to the

availability of the data repository), and in the words of one Panel member is the:

"…best chance we have for reuse".

I would anticipate that the initial reservations were largely due to the Panel‟s lack of

understanding of domain class models, and therefore, the point of my claim that this

approach should make them redundant. I had anticipated at least an awareness of this

activity, but I respect the fact that the individuals who were unaware of the technique

were honest enough to say so. If doing this research again, then obviously I would

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 81 Date: 01/05/1999

have to stipulate that knowledge of this technique would be required in order to obtain

a more informed answer.

The need to tightly defined and openly published interface definitions to maximise

reuse was agreed. While it was also questioned whether there was sufficient

information for a designer/developer to begin the component design at this point, I

would consider that this question has been resolved subject to the availability of the

information repository discussed in Section 5-4-1 above.

The Layering of Service Packages
4
 (Q19-20) was seen as a useful architectural

communicator, providing a simple illustration of the distribution of User, Business

and Data services within the Service Packages. It also enables the project team to

verify that project scope has not been exceeded by reference to the Service Package

Architecture diagram prepared in the Inception phase, and also provides an effective

means of allocating work packages to teams.

5.4.3 Construction Phase Activities

The Service Package Deployment (Q21) diagram capitalises on the layered service

definitions, which can be allocated to the various client-server architectures without

having to be reworked or redefined. The choice and options for technical architecture

would not impact this methodology.

The Panel did not agree with my claim that the Use Case and Service Definition

documentation was sufficiently complete in order to commence Package Class

Structure and Component Design (Q22-23). Concern was also expressed about the

treatment of error handling. However, I will restate my claim (from Q22) that this:

“… focuses on the functionality of the application, and the definition of the business

and data services it is to provide. I consider that the service definition is a complete

specification of this functionality, in the same way that a traditional module

specification furnishes the developer with a description of what is to be coded and

unit tested. In each case, the designer / developer would work within the constraints of

the relevant technical architecture, be that at the framework or system architecture

level, and capitalize on whatever common components are available to handle any

errors appropriate to these levels.” I would hope that with this clarification, and the

availability of the above repository (see Section 5.4.1 above) that the Panel would

reflect differently on their response given the opportunity to do so again.

My claim that it was preferable to allocate the task of class design to technical rather

than more business oriented specialists (Q23) also met with an uncertain response, but

again I would reiterate that: “…you do not need to mix the skill sets involved. I am

suggesting that those who have good business and application knowledge concentrate

on the application in terms of the services the black-box provides, leaving the content

of the black-box to the technical designers and developers who are expert in the

potentially diverse and highly specialized technologies involved.”

4 Note: In Section-3 Figures 3-10, 3-28, 3-31 the “Layer Service Packages” activity is shown solely in the Elaboration phase,
whereas it should form part of the bridge into Construction in the same way as „Define Services for Service Packages.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 82 Date: 01/05/1999

5.4.4 Use, Reuse and Traceability

The Use Case (Q25-27) is the accepted focal point for design and development

activity throughout the systems lifecycle, and provides the link back to business

requirements. This is subject to the recommendation that a separate dictionary and

rules repository is used (Section 5-4-1). In addition, it was also agreed that separate

non-functional requirements documentation will cater for more technical and cross-

Use Case requirements, and will run in parallel with the Use Case.

Provided that team best practice disciplines are in place to ensure that this

documentation is maintained (Q33) and is the source for requirements change control,

then this will deliver the consistency of definition, terminology and understanding that

is essential for IT to effectively support the business.

The ability to reuse Services (Q28-30) met with a mixed response, but I suspect this is

more to do with lack of exposure to, and the newness of this approach. It was also

unfortunate that the Panel was not generally aware of the object design activity, and

may, therefore, not have fully appreciated the advantages of service abstraction and

definition at the package level (to a service class), rather than at the object level

(many objects in the package, each possibly with private and public methods).

Contrary to reservations over the reuse of Services above, the Panel generally agreed

that the activities of Specification and Model Reuse (Q31-33) delivered the benefits

claimed for an implementation independent design, and that the achievement of

design and model reuse was key to future economic development.

5.4.5 What is needed to make this work?

The Panel strongly supported the view that organisation and culture were more

important than component technology in making reuse, or new process adoption work

(Q34).

In agreeing that the approach should definitely be tried out (Q35), the Panel flagged

the need to identify costs and benefits, and motivate people to use it. This is why I

suggested that it be piloted together with a new technology project in order to

generate interest in the accompanying design techniques. While another suggestion

was to parallel the approach with an existing method to fully determine the cost and

benefit of the approach, I would consider this not to be effective due to the number of

variables involved e.g. knowledge and familiarity with the techniques, technology,

business domain etc. The benefit of the approach is that it is forward looking, and any

component, including a legacy system or function, can be defined as a black-box that

provides services. It is perhaps in the integration of old with new that the advantages

of the approach can best be demonstrated.

While a case tool was seen to be desirable (Q38), the Panel supported the view that

an appropriate tool should be provided, which need not be overly complex. However,

for the techniques to scale, then some tools are seen to be essential, especially the

provision of a suitable repository for business rules, and data definitions. Basic

workable solutions could be simply developed using database tools such as Microsoft

Access, or Lotus Notes.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 83 Date: 01/05/1999

The need for training was also seen to be key (Q39) to the successful adoption of the

approach. While just in time training and consultancy would contribute to this goal, it

was also suggested that an experienced person should be part of the team in order to

sell the benefits more effectively.

5.4.6 General Feedback

The majority of the Panel agreed that the approach had merit (Q40), and should be

tried out. It was evident from the responses of the Panel that they were generally

unaware, as is most of the industry, of techniques to focus on component delivery as

opposed to those of component build. This has been the inspiration for this research

and proposal.

Before being willing to pilot the approach (Q43), the need for demonstrable benefit

was again the main issue. However, this view originated from those members of the

Panel with least knowledge of domain modelling, and I suspect that if they had, then

the benefits of service level design and reuse would have been more evident.

However, the points are valid, and the opportunity should be sought to introduce new

processes and techniques as new business opportunities arise. As Butler Group (1999)

recently observed: “…we are somewhat concerned that the demand for component-

based applications will result in a replay of the client/server and early object-oriented

eras, where technologists convinced business people that the application of new

technology is synonymous with business benefit. One of the important lessons, that

we have heard from Forum members, is that solving component technology issues is

relatively easy - the key issue is, as always, ensuring alignment with business needs”

I would say that today, e-commerce will drive the business requirements and the

opportunity to introduce and demonstrate the benefits of this approach. Current

systems documentation tends to be the product of any number of piecemeal design

and development approaches from the past. My proposals are forward looking, and

will maximise design reuse, eliminate the need to produce intermediate „throw-away‟

design documentation, and provides the means to integrate old with new. My

approach applies to legacy as well as new systems design and development, and offers

an evolutionary path, mostly using techniques of the UML, but applied to the service /

component environment.

5.5 Summary
In terms of architecture it has been noted that the design of component-based systems

is an emerging discipline (2.3.8). I have set out to define a pragmatic service based

architecture for application development that delivers business benefit without the

need for significant investment in tools and training, that minimises risk, and

maximises the return on investment by providing the ability to package and extend the

life of legacy systems. It also satisfies the need to relate each phase of the

development process to the business requirements as interpreted through the Use

Case.

I consider that I have established through feedback from the Panel that there is merit

in the approach, and that subject to the inclusion of a rules and data repository, and

the provision for a separate non-functional requirements document, that the approach

would be considered for adoption on a pilot basis.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 84 Date: 01/05/1999

I have updated the diagram showing the activities for the complete service definition

methodology in Figure 5-1. This includes those recommendations from the Panel with

which I agreed during the Evaluation in Section-4.

Construction

Technology Oriented

Component Modeling

D
e
fi
n
e
 U

s
e
 C

a
s
e
s

Business Requirements (Beyond Scope)

Intent

Select System

Functions for Use

Case Definition

Model Business

Processes

Identify Domain

Service Package

Architecture

Description

Pre & Post

Conditions

Visualise

Define

Business

Rules

Identify Non-

Functional

Requirements

Prepare Use

Case

Sequence

Diagrams

Define Steps

Define Services for the

Service Packages

Allocate

Business Services to

Service Packages

Define Service

Package

Deployment

Build & Test

Component

Packages

(Incremental)

System Test
Performance

Test

User Acceptance

Test

Transition (Beyond Scope)

Business Oriented

Component Modeling

Inception

Elaboration

Deploy Live

System

User Role

Non

Functional

Requirement

Allocate

 Data Services to

Service Packages

Allocate User

Services to

Service Packages

Layer Service

Packages

Design Package

Class Structures

according to the

Deployment

Architecture

Data

&

Business

Rules

Elaborate

Non-Functional

Requirements

Diagram Key Process Flow

Information Fl;ow

Lifecycle Phase

Activities

Co-Ordination
Activity

Technical

Architecture

(Beyond Scope)

Information

(or Repository of

Information)

 Figure 5-1 Revised Component Delivery Activities – Post Feedback

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 85 Date: 01/05/1999

5.6 Direction of Future Work

5.6.1 The Panel

The Panel identified a number of areas which they would have liked me to have

covered in more depth (Q41). I have listed them here since they are also potential

areas for further research. They include:

a) More detail on the potential benefits of using the methodology e.g. degree of

reuse, potential decrease in documentation

b) Approach across legacy applications

c) Measurements – How big could it get? How feasible to share amongst teams of

developers? How long would it take?

d) How would this methodology apply to the more popular development

software?

e) What is relative saving by using this method?

f) Is there a difference between maintenance and development?

g) Can user resources be used more than IT with the method?

h) Platform independent business process modelling using reusable library?

In terms of other specific area of future research (Q44), the Panel identified:

i) The follow through into delivery, and methods for identifying and managing

the next, more granular, level of reuse, those components which would be

reusable across service packs, for example code subroutines.

j) What level of detail can be „got away with‟?

5.6.2 My own interests

The following list identifies the areas that I will focus on in future research:-

a) Integration with existing systems:

 Adoption of the use case approach as a pre-requisite to service definition

and packaging.

 Introduction of dictionary and rules repository

 Non-functional requirements template design

 Legacy wrapping rework and reuse.

b) Organisational Impacts :

 What is the effect of component and object technology adoption on an

organisation?

 Do you need a reuse architect to channel reuse development/adoption?

c) Reuse:

 What reuse metrics can be used?

 How is reuse of a business component measured?

 Is business reuse a better measure?

d) Business Process Definition:

 People define business processes in different ways. What can be done to

minimise the impact of this, and ensure the reusability of the component?

e) Tools:

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 86 Date: 01/05/1999

Development options for a team based repository and browser to cater for:-

 Use Cases, and allow views to be printed at levels of detail suitable to all

parties.

 Domain Packages for identification at the architectural level for reuse.

 Service definitions to facilitate ease of identification and reuse.

 Data / attribute definitions for interpretation and consistency of use.

 Rules, their definition, and classification.

<<<<<<<<<< End of Dissertation – Thank You for Your Interest >>>>>>>>>>

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 87 Date: 01/05/1999

APPENDIX 1 - Technology and Application Notes

A1.1 Java and ActiveX

Both Java and ActiveX promise to integrate Web browsers and servers with legacy

applications. They are both examples of component technology, but reflect very

different approaches to distributed computing. Java uses machine independent byte-

code, whereas ActiveX uses machine dependent binary.

The Java camp is led by Sun, Netscape and Oracle, and is supported by others who

wish to see Microsoft‟s domination of the desktop reduced (Pal, Ring, & Downes,

1996). They support a more open and network centric view where most of the

processing is done on servers, and users interact with thin clients: low specification

PCs or NCs running a Java enabled browser, intelligence on the client being provided

by downloaded Java applets.

A1.1.1 Java

Sun Microsystems Java enables programs to be deployed as Applets which use the

Browser as a container (and are therefore limited by Browser capabilities), or as Java

Applications which have their own interface and application processing (Pal, Ring, &

Downes, 1996). Java combines a set of technologies into a three layered architecture

as defined by Pal, Ring, & Downes (1996) comprising:

 an interpreted, object oriented language, translated into Java byte code.

 a virtual machine/runtime interpreter that interprets Java byte code using built in

functions. This is done „on the fly‟, or can be executed directly on a

microprocessor after compilation by a just in time compiler, or on a chip that can

directly execute the byte code.

 APIs and class libraries that enable developers to interface the virtual machine

with third party systems. This includes Java Beans which are components written

in Java that communicate with each other, plus other types of components like

ActiveX controls and OpenDoc parts.

Moving forward, development will focus on Java Beans, as componentware typically

for use on Internet applications (Pal, Ring, & Downes, 1996). From this perspective

Java connections between clients and servers will be handled by:

 Java Remote Method Invocation (RMI) - for Java only environments with no

database access.

 Java Interface Definition Language (IDL) - enables Java components to talk to

Corba compliant components.

 Java Database Connectivity (JDBC) – a Java API to SQL relational databases

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 88 Date: 01/05/1999

A1.1.2 ActiveX

ActiveX is Microsoft‟s OLE API based distributed computing and component

strategy for the Web (Pal, Ring, & Downes, 1996). While largely confined to the

client desktop, it is part of the Microsoft‟s middleware architecture and interfaces with

DCOM. The main components of ActiveX are the Desktop and Server.

The desktop consists of ActiveX Controls, Scripting and COM:

 ActiveX controls are tuned to the requirements of Web applications. Controls can

function as clients and servers, and interact with each other via DCOM. They run

in ActiveX documents generated by ActiveX enabled applications.

 ActiveX Scripting languages (eg VB Script) can control ActiveX Controls via

OLE events. This enables an HTML link (from the Internet Explorer Browser) to

open a Word document, and superimpose its icons and menu onto those of the

Browser.

 COM (also referred to as ActiveX) The underlying set of services that enables

ActiveX controls to interact with each other, and with other components eg Java

applets.

The ActiveX Server is a framework of APIs working with its own family of servers to

provide a suite of services eg security, transactions etc.

A1.2 Java’s Growth

Java has become tremendously popular as a development language based on its „write

once, run anywhere‟ philosophy. Recent research of 9 companies by International

Data Corporation revealed an average payback for Java developments of 14.6 months

(Kelly, 1998a). Savings averaging 25% were claimed over comparable C++

developments for multiple platform deployment with coding phase savings averaging

nearly 40%. Such savings were also endorsed by services company ObjectShare

(which has built systems in C++, Java and Smalltalk) who claimed that it was two to

four times cheaper to build a system in Java than C++.

Manufacturers are also adopting the Java standard. Hewlett Packard has changed its

strategy and will use Sun‟s Java Virtual Machine (JVM) for its desktop and server

products, as opposed to its own software. They will incorporate Sun‟s Hot Spot into

HP-UX, their version of Unix, and have agreed to support the next release of the Java

Development Kit, JDK 1.2 (McGinn,1998).

A1.3 Java and Smartcard Developments

Where Java has been notably successful is in the development of smartcards.

International Data Corporation identified smart card technology as one of the fastest

growing and dynamic branches of the IT industry in Western Europe today

(Tober,1998). The main vendors were expected to increase their revenues by more

than 56% in 1998, with 308 million microprocessor based cards expected to be sold in

1998. Mark Stevenson, independent consultant and coauthor of an Ovum report on

smart cards, predicted that: “By 2003 there will be around five billion smart cards in

use – as many cards as there are people on earth” (Tober,1998).

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 89 Date: 01/05/1999

The two factors most likely to accelerate smartcard usage in the near future are a

reduction in costs, and the arrival of Microsoft with an extension to their Visual

Studio development environment.

At around £1.50 some consider the current cost too expensive compared to magnetic

strip swipe cards of around 50p (Clarke, 1998a). However, as costs reduce, potential

applications likely to emerge include: the replacement of paper based security systems

(eg fingerprint biometrics), usernames and pass phrases, passports, health care

records, and other personal information (Tober, 1998).

Microsoft in 1999 will release SmartCard for Windows, as the programming

extension to their Visual Studio development environment. As their rival to Java, this

will enable developers to build smartcard applications within the familiar Microsoft

development environment (Saran,1998).

A1.4 Examples of Smartcard Applications

Visa Cash - This has been running for12 months in Leeds with 60,000 cards in

circulation. It has replaced cash by up to 10% in car parks, and has proved popular in

fast food restaurants, sandwich shops, and newsagents (Tober,1998).

London Transport - Awarded the Transys consortium a £1bn 17 year contact to

develop an integrated revenue collection service to integrate smart cards for ticketing

(Tober, 1998). Six million contactless smart cards will be in circulation once

implemented (Clarke, 1998a).

Co-operative Bank - Developing an Independent Savings Account (ISA) scheme

(Tober, 1998).

Aberdeen Council - Signed a £500,000 joint venture with smartcard consultancy

Smartex to roll out 50 readers and 40,000 cards by April,1999. The council plans to

roll out „Citizen Cards‟ to all 225,000 residents by March 2001. This will cover a

wide range of council services including: leisure and library, school meals, theatre and

concessionery bus ticketing, health services, council staff services and retail

purchasing by 2004. Digital cryptography will be used to guarantee the integrity of

data transmitted from card readers to council servers, and biotechnology like

fingerprint recognition is planned within 4 years for added security (Phillips,1998).

A1.5 Examples of Internet Developments

Equitable Life
Equitable Life have implemented a service to allow 500,000 clients to track

investments on the Internet (McLeod, 1998). This is believed to be a first in the

insurance industry. Facilitieis include the valuation of pension, savings or other life

plans; monitoring contributions over any period; the ability to increase monthly

payments; change bank details or personal data eg address, or payment date.

The technology includes HTML transactions linking to a Lotus Domino server, with

IBM‟s MQ Series for connection to back office client and administration services.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 90 Date: 01/05/1999

Lloyds TSB Internet Banking

Lloyds TSB Internet Banking have launched an online service to allow Lloyds

customers to pay bills, transfer money between accounts, view statements and adjust

standing orders over the Net (Poston, 1998).

Again, the technology uses HTML transactions, and very little will be duplicated (a

good example of reuse) when the TSB service is launched in May or June 1999. The

same Internet server will be used, with a further proxy server routing transactions to

the relevant back office systems. Lloyds initially worked with ICL on a Java solution,

but this was dropped due to a slow Java download time, and HTML better suited the

banks Microsoft strategy.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 91 Date: 01/05/1999

APPENDIX 2 - Client-Server Notes

A2.1 Server Options

Whilst the retail, distribution and finance sectors depend heavily on large databases on

Unix or IBM mainframes, there appears to be no industry consensus on which

platform to standardise. To illustrate this, Lloyds TSB is scrapping OS/2 from 2,700

branches and moving to Windows NT4.0; Royal & Sun Alliance is moving one and a

half million life insurance policies off Unisys mainframes onto high-end Sequent

Unix servers (rather than NT for enterprise servers); Oddbins and Castrol are moving

away from NT based decision support systems to AS/400 systems (Computing,

1998a).

A2.2 Operating Systems

It is generally regarded that Unix will prosper until post Year 2000 before NT5.0

becomes available, with NT posing the biggest threat to Unix in the small to medium

sized business sector in the long term (Wallen, 1998). In terms of penetration,

Xephon‟s annual survey of mid-range mainframe sites suggests approximations that

Sun Unix has about 27% of the market, against 23% for HP, while IBM‟s AIX has

over 53% (Computing, 1998c).

With the growth in diversity of hardware solutions, even Microsoft has recognised

that NT and Unix will coexist, and has developed its own interoperability software

called Unix Services (Hunter,1998). Stephen Uden, Microsoft‟s channel manager was

reported to have stated : “…firms are saying it‟s not a matter of either NT or Unix, but

getting them to work better together.” Indeed this is the key point.

Standards and protocols are always a problem for users wanting to run legacy Unix

based applications from Windows desktops, and security is the biggest issue eg dual

userids and passwords may be required. Otherwise, database connectivity (ODBC)

and Communications (TCP/IP) standards common to both environments are well

established to provide for integration.

A2.3 Client Server Costs

Gartner (1997) estimate that it costs about $10,000 to provide a PC (Windows 95 on a

LAN) for a business user. These costs are associated with the planning, acquisition,

deployment, operation and replacement of these components. They further define

costs as direct and indirect as follows:

Direct (Budgeted) Costs Indirect (Unbudgeted) Costs

 Hardware & Software

 Management (network, system and

storage)

 Support (help desk)

 Development

 Communication Fees

 End User IS (cost of users educating

& supporting themselves)

 Downtime (planned and non-planned)

For a company of 2,500 users this represents an annual cost of $25 million. If only 10

percent of users really need all the PCs flexibility ($2.5 million), then providing a

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 92 Date: 01/05/1999

device with simpler but more appropriate functionality would considerably reduce the

other $22.5 million. This is has led to the adoption of other devices like the suspect

NetPC.

A2.4 Thin Client

Ovum suggests that network computers are supported by those gambling on the

supremecy of Java and believe they need a new type of device to support it (Griffiths,

1998). While they predict that sales of the 4 new devices will grow to be 22% of all

end-user hardware sales in the next 5 years, it was felt that most organisations were

not looking for a replacement for the PC, but to protect their current investments in

infrastructure.

The emergence of these devices has resulted from businesses questioning the cost of a

PC when used solely to access for business applications and intranets. For this type of

usage the PC is an over specified and expensive replacement for a terminal. Ovum

(Griffiths,1998) suggests that it is the need to be able to more easily access the

company intranet and some Windows applications that will shape the development of

the market for end-user devices, this being more significant than consideration of

either Java or Web technologies

The Ovum classifications of thin client are described from Griffiths, (1998) below:-

Intranet Terminal

 provides access to a range of applications from a Web browser, but cannot support

local processing of Java applications.

 IBM describe it as a replacement for terminals or PCs that are used primarily for

accessing applications on various servers, as well as casual browser use.

 only the browser and local operating system are on the hardware

 Wyse, Tektronix, Neoware and IBM are in this market

 8-64Mb of memory

 8bit audio

 support for Windows via NT and X-Windows

 IBM 3270 and 5250 terminal emulation (via the browser)

Network Computer

 supports local processing of Java applications loaded from a server

 runs a Web browser, supports Java, and Microsoft Windows applications via NT

and X-Windows.

 8Mb memory and 1Mb video memory

 16bit audio through a built in speaker

 no disc drive

 suppliers include Sun Microsystems and IBM

 IBM 3270 and 5250 terminal emulation.

General Accident have ordered 4,000 to replace dumb terminals to an IBM

mainframe. Most of its key applications being redeveloped in Java by IBM under a

Facilities Management contract. Benefits cited include significant hardware cost

savings through initial purchase and maintenance, easier installation, faster software

updates, improved security support and back up. Overall – lower cost of ownership.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 93 Date: 01/05/1999

NetPC

Based on a PC but smaller:-

 works across a network with central administration

 floppy disc drive or CD-Rom as options

 promoted by Compaq, Intel and Microsoft.

 Examples include Compaq‟s Deskpro 4000N NetPC has 166MHz or 233MHz

Pentium processor, 16-32Mb of memory and 1.6Gb hard disc

Windows Terminal

Operates using Citrix Winframe, based on its Independent Computing Architecture

(Microsoft‟s own Hydra product will soon be available).

 displays Windows applications held and managed on Microsoft Windows NT

computers.

 No local storage or processing

Microsoft‟s Windows Terminal Server (WTS) is multi-user thin client software

running applications centrally on the server, which avoids an expensive fat client

architecture. Lloyd‟s of London are rolling out a back-office application to 20,000

users, and claim significant savings over the cost of a traditional PC, due to the

savings that central administration affords (Clarke, 1998c).

A2.5 Technology Adoption

In a recent Compaq UK survey of 384 IT directors (Griffiths, 1998):

87% felt they could save more time and money through better management of their

existing PCs than by introducing network computers,

55% did not think network computers would cut their overall IT costs (despite

research by Meta Group and Bloor Research which put total cost of ownership

savings at between 23% and 30%, and Gartner (Kavanagh, 1998) whose survey of 27

companies proved likewise);

60% of respondents found that the main disadvantage of network computers was the

increased dependence on the network and central computers (which had a greater

impact on end-users when they went down) than traditional networked PCs with their

own processors and storage;

72% did not plan on buying a network computer within the next 2 years (implying

28% might).

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 94 Date: 01/05/1999

APPENDIX 3 - Industry Experience with Distributed Objects

A3.1 Microsoft and DCOM Difficulties

Microsoft themselves have concluded that development using DCOM was currently

difficult to use and that most of their customers were currently using XML and the

Internet instead (Butler 1998). While the simpler architecture facilitates the

requirements for data access using Internet interoperability, DCOM and MTS is still

required to manage the integrity of transactions. Apparently COM+ will solve these

problems, but this solution will only be available in the millenium.

Numerous deployment issues were identified by IBM including: performance,

availability, scalability and security (Butler 1998). These were especially encountered

when trying to bring disparate distributed objects together to form an application.

Systems management issues are simply compounded by the increased granularity of

distributed objects.

A3.2 Distributed Objects : Example Applications

Granville research observed that: “The world is going the way of objects, and

financial institutions are leading the way because of their need for globalisation”

(Farrell, 1998b).

Example: Dresdner Kleinwort Benson (Investment Bank) adopted the Tibco

Enterprise Transaction Express (ETX) CORBA based messaging system for use

across 5 world-wide hubs, to provide risk managers real-time financial information

across a global network. This has placed the bank at the forefront of object and push

technology, and follows the model set by Japanese Investment Bank Nomura

International

ETX was adopted for world-wide messaging rather than CORBA, since there were

problems running CORBA beyond the LAN. Butler (1998) concluded that this was

not to suggest the wrong approach, just that the technology (XML, CORBA and

DCOM being simply the transports to make the connections) has yet to mature.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 96 Date: 01/05/1999

Feedback Contents

Methodology Proposal – Feedback Error! Bookmark not defined.

Guidelines for Feedback Error! Bookmark not defined.

Activities in the Component Process Error! Bookmark not defined.

Process Modelling Error! Bookmark not defined.

Use Cases Error! Bookmark not defined.

Domain Service Packages Error! Bookmark not defined.

Allocation of Services (User, Business and Data) to Packages Error! Bookmark not defined.

Service Definition for Service Packages Error! Bookmark not defined.

Layering of Service Packages Error! Bookmark not defined.

Service Package Deployment Error! Bookmark not defined.

Package Class Structure and Component Design Error! Bookmark not defined.

Others Techniques Error! Bookmark not defined.

Use, Reuse and Traceability Error! Bookmark not defined.

Use Cases Error! Bookmark not defined.

Services Error! Bookmark not defined.

Specification and Model Reuse Error! Bookmark not defined.

What is needed to make this work? Error! Bookmark not defined.

General Feedback Error! Bookmark not defined.

Reviewer Details Error! Bookmark not defined.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 97 Date: 01/05/1999

Research Background

With each advance in technology there is a corresponding increase in complexity of design,

development, and the management of information systems. We have recently been faced with various

client server architectures, beginning with the 2-tier client and server environment. This led to the 3-tier

architecture with layers for presentation, business, and data logic, and the thick or thin client choices

that have to be made depending on how you want to distribute the system processes.

Developments in networks and middleware (the software layer between the application and the

underlying complexities of the network) have made this possible, and opened up opportunities for

electronic commerce including the Internet. This has led to the growth in the development of

components that can be deployed world-wide onto people‟s desktops. There is no longer a single

address space.

Current considerations include how these components should be developed. Do you adopt Microsoft‟s

proprietary DCOM, or the OMG‟s (open) CORBA standard for component distribution, and what

component language do you use, ActiveX or JavaBeans? While I do not intend to address these

choices, this serves to illustrate that the technology is now available to deploy objects where they are

needed, and not where traditional host-based solutions would otherwise have dictated. While this is a

much more complex development environment, the deployment of components on a distributed and

world-wide scale can bring significant advantages to the business.

Changes in technology have been mirrored, albeit neither on the same scale nor with the same degree

of success, with changes in methodology. The object-oriented design paradigm has been a great success

with its ability to provide controlled public interfaces to private methods for access to an object‟s

functionality. However, the degree of reuse that this provides is now in question, since such interfaces

are constrained by the language of the implementation. While reuse can be achieved at the detailed

level of the implementing language e.g. a GUI window or button, business objects cannot be reused

outside of their environment. Similarly, object oriented modelling and design tends to target the

characteristics of the implementation, and not those of the service or interface.

However, the component has emerged as the most reusable development „artefact‟. It is at a higher

level of abstraction than the object and provides a service according to a defined interface. As such, it is

treated as a black box, and is a unit of executable code. It may contain one or more objects, or provide

access to a package or legacy system, and even be written in non object-oriented fashion. While the

physical implementation of the component may change, the service being provided may not. This

separation of component interface from implementation provides the necessary isolation from change.

The question is, what sort of methodology do you adopt to take advantage of this approach, and how

can IT departments better position themselves for technology change, while maximising their return on

investment in existing systems? While there is no common agreement on such an approach, I consider

that a pragmatic method is needed, building on established and proven techniques, but geared towards

service based component delivery. My proposal is for such a methodology. It is designed to facilitate

the definition, design and reuse of business oriented services for deployment into technology dependant

environments. The resulting service-based architecture is designed to be both scalable and extensible

to exploit new technologies, and facilitate future development.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 98 Date: 01/05/1999

Guidelines for Feedback

The statements in the next Section are intended to guide your thoughts in consideration of my proposal.

They focus on aspects of the key techniques applicable to the activities of this component based

approach.

I have enclosed a printed copy of the Feedback Form for ease of reference, and also a copy on diskette

(Word 6.0 format), if you would prefer to return your comments this way.

In completing your feedback, please indicate your strength of reaction to each statement by either

ticking or circling your chosen answer, or by ticking or entering (Y)es or (N)o when responding by

diskette. There is space below each point for you to qualify your comments where appropriate. If you

can afford the time to do this, it will help me to more fully interpret your thoughts.

It is your valued opinion as experienced IT professionals that I need to verify this proposal. Please feel

free to be as critical as possible. I do not expect you to agree with everything I suggest!

If you are completing the feedback on paper, you can add separate sheets if there is insufficient room

for your comments on the form.

I will consolidate your comments and views and evaluate them in the next stage of the research

process. You will be an anonymous contributor from this point of view, but I am sure that you will find

the consolidated feedback from your peers to be of interest. My intention is to provide you with a copy

of my evaluation of the collated feedback before the end of April.

Thanking you in anticipation of your time and interest.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 99 Date: 01/05/1999

Activities in the Component Process

Process Modelling

Q1. Business process modelling improves our understanding of the business processes, their sequence

and dependency, the events that initiate them, and the outcome on completion. They provide an easily

understood and visible means to communicate this understanding, and should be adopted as a standard

part of the development process.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q2. Process models provide an effective means to communicate business processes with the user.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q3. Process models provide the means to enable computer and non-computer system processes to be

easily identified.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q4. The processes to be computerised typically identify the Use Cases to be developed. Since the

development of each Use Case is an activity on the project plan, this approach more closely integrates

the requirements of development with those of project planning and control.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Use Cases

Q5. Use Cases are the way forward to capture business requirements. They provide a simple yet

comprehensive framework to capture business requirements in user terms, and provide views of this

information at appropriate levels of detail as you progress from Inception to completion of the

Elaboration phase. They also provide a single source of reference to the Construction phase for

purposes of design, build and test, and provide the means to plan and initiate system testing.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 100 Date: 01/05/1999

Q6. The Use Case is an effective means of capturing business and system requirements from the user‟s

perspective.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q7. My interpretation of the contents of the use case is comprehensive?

User
Role

Intent Description Detailed
Steps

Pre / Post
Conditions

Non
Functional

Reqts

Business
Rules

Altern
ative

Course

Sample
Screen

Layouts

Reqts
Refs

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q8. Both visual and non-visual business rules should be captured in the Use Case during analysis in the

Inception and Elaboration phases.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q9. On completion of Elaboration, all rules should be allocated to services in the Service Package. The

Use Case should then be updated, replacing the rule descriptions with cross-references to the Services

having responsibility for implementing them.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q10. Sequence Diagramming in the Elaboration phase restructures the general process description into

the detailed steps of sequence, choice and iteration.. This provides a clear and simple, yet more formal

and detailed means of describing the business requirements within the Use Case.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q11. Have you / your team used Use Cases to capture business requirements? Yes

No

 If Yes, what did you like / dislike about them, if not already mentioned above :-

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 101 Date: 01/05/1999

Domain Service Packages

Q12. The identification of the main component packages during the Inception phase is a useful means

of abstracting system detail from the architectural perspective, and illustrating the dependency between

components. The intended use of legacy systems can also be identified and tabled at this stage of

architectural design.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q13. Reusing this diagram in the Elaboration phase for the allocation of services to Service Packages is

a good way to ensure that the architectural scope has not been exceeded.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Allocation of Services (User, Business and Data) to Packages

Q14. Concentrating on Service provision (via Service/Control class) by the Service Package simplifies

the structural definition of the system without sacrificing meaning.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q15. This is a more effective use of development resource than spending time developing domain class

models that require specialised skill to design and understand, which are generally not maintained, and

ultimately fall into disuse.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q16. The Service defines the interface to the component „black box‟. There is no loss of specification

detail using the Service Package approach, compared to other approaches which would require the

preparation of a domain class model.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 102 Date: 01/05/1999

Service Definition for Service Packages

Q17. The Service Definition contains the interface specification for the Service Package, and therefore,

the Component. It is defined from the detail held in one or more Use Cases. This definition provides

an effective framework for the reuse of system services.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q18. The proposed structure for the definition of services is comprehensive

Stereo
type

Intent Params Pre / Post
Conditions

Specification Called
Operations

Attributes Non
Functional

Reqts

Use
Case

Refs

Reqts
Refs

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Layering of Service Packages

Q19 The Domain Service Package high-level diagram is reused with layering detail added. The

layering of Services is a simple way to illustrate the architectural structure of the systems in terms of

User, Business and Data requirements.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q20. For technical design and development, teams can be assigned specific areas for development. For

example, teams could be created as centres of expertise for Policy, Claims etc. The Service Package

view clearly illustrates the services provided by the various packages, and is a useful means of

communication.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Service Package Deployment

Q21. The deployment diagram is a useful means to illustrate the allocation of Services to nodes on a

network, and highlight the impact of deployment choices involved in the chosen architecture.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 103 Date: 01/05/1999

Package Class Structure and Component Design

Q22. The Service Definitions are the specifications for the detailed class design and code development.

While reference is made to the Use Case for non-functional information, and to the Use Case and

Layered Service Package Diagram for contextual information, no other documentation is required.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q23. It is at this stage that the detailed class models are designed to support the functionality of the

Service / Control Classes (Façade). The allocation of class design to technical rather than business

specialists is a more effective use of resources.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Others Techniques

Q24. Are there any other techniques that you would like to have questioned or seen used?

Use, Reuse and Traceability

Use Cases

Q25. To gain the maximum advantage from Use Case documentation, it should be considered in the

same way as a relational table with a number of available views. For example, a business facing view

containing user role and intent at the Inception level, plus Description in the early stages of Elaboration

etc. Each view would be tailored for communication with a specific audience.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q26. The ability to use one form of documentation i.e. the Use Case for complete and shareable

requirements definition is a significant step forward in terms of reusable documentation.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 104 Date: 01/05/1999

Q27 Continual reference to, and development of, the Use Case throughout the development lifecycle

will ensure that the business requirements are always considered and correctly addressed.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Services

Q28. The Service Package provides the interface definition to the Component Package. This is an

appropriate deliverable from business oriented component modelling, and complete specification for

the designers and developers of the appropriate middle ground, and enabling unit of reuse?

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q29. The implementation independent Service Package is a more effective and enabling unit of reuse

than other forms of module or functional specification.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q30.The Service concept provides the means to define appropriate services to enable the reuse of a

legacy system. While a suitable transaction interface will need to be written inside the Component, the

Component is the wrapper for the legacy system. (Note: I would include traditional Cobol and object

oriented systems as examples of legacy systems.)

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Specification and Model Reuse

Q31. The Use Case and related Sequence and Service Package Diagrams, plus the Service Definitions

for the Service Packages, are designed to be highly reusable and implementation independent. They

achieve the objective of design reuse.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 105 Date: 01/05/1999

Q32. Design and model reuse is key to successful and economic system development. The layered

approach to service definition provides a sound architectural context, and greatly facilitates redesign for

deployment in multi-tier environments, for example when implementing a thick-client PC system for

central offices and a Browser enabled version for remote use.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q33. The relationship from Business Requirements to Use Case, Use Case to Service Definition, and

Service Definition to Component provides for full requirements traceability.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

What is needed to make this work?

Q34. Organisation and cultural are often more critical than component technology in making reuse, or

new process adoption work.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q35. A good opportunity is to pilot the component development process together with a new

technology project in order to stimulate interest in what some developers might see only as a

„documentation‟ exercise. The process will then achieve a similar profile as the success of the

technology project (unless it fails of course!).

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q36. Assuming the pilot is a success, a policy statement is required to institute the process, and the

objective of reuse, as a departmental objective. Reuse is not free use, and management commitment

and the right cultural conditions are a precondition for its success.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q37. As a minimum, a Service / Service Component / Component asset catalogue is required with

search facilities in order to maximise reuse opportunity.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 106 Date: 01/05/1999

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q38. While a case tool is desirable for modelling purposes, and provides the corresponding rigour, it is

feasible to achieve a workable and economic framework using basic tools. For example, a word

processor (e.g. Word 6.0), or better (e.g. a Notes Client linked to a standard Notes Library Management

Database) can be used for the definition of Business Requirements, Use Cases, and Service Definitions;

with a diagramming tool (e.g. Visio) for the models.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q39. Appropriate training in the approach and techniques is required. Following an introduction, this is

best achieved by just-in-time training, and regular consultancy support throughout the project.

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

General Feedback

Q40. Do you think that there is merit in the methodology and approach described?

Strongly Disagree

Disagree

Not Sure

Agree

Strongly Agree

Comments/Observations/Means of Improvement:-

Q41. Are there any other areas that you would like to have seen covered / included?

Q42. Are there any other areas that you felt were unclear, and would have liked me to expand on, or

explain better?

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 107 Date: 01/05/1999

Q43 From what you have read, would you consider a pilot to use this approach?

Q44 Are there other areas of research related to this topic that you would like to see undertaken?

Q45 Any other comments?

-- End of Feedback --

Reviewer Details

Please complete the following details by means of identification and information:

*Reviewed By (Signature)

*Name (Please Print)

Job Title

Company

Division

Number of Years in IT

Number of Years in IT

Consultancy, Project, or

DepartmentalManagement

Date Feedback Completed

* If submitting feedback on diskette, just print your name

------------------------------------ End of Report : Thank You --------------------------------

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 108 Date: 01/05/1999

APPENDIX 5 – Consolidated Questionnaire Feedback

A5-4. Evaluation

A5-4.1 Activities in the Component Process

A5-4.1.1 Process Modelling

Q1. Business process modelling improves our understanding of the business processes, their

sequence and dependency, the events that initiate them, and the outcome on completion. They

provide an easily understood and visible means to communicate this understanding, and should be

adopted as a standard part of the development process.

Strongly Disagree Disagree Not Sure Agree

3
Strongly Agree

3
Comments

Agree

 True but we should not re-invent the wheel. The business tend not to be interested in what they

call „IT documentation‟. If documentation already exists because IT is to automate an existing

clerical process then why should the business pay to re-work existing papers just because it‟s not

quite in the required format. It may give dividends later down the line but what is required is

immediate pay-back.

 Business audience often „turned off‟ by complex methods - is there a better way?

Strongly Agree

 Modern commercial IT is all about gaining competitive edge and business advantage from

employing different and/or slicker processes. BPR has been tried and in many examples has failed

because it tends to be carried out in a vacuum. Integrating the IT design activity with the business

process modelling activity provides the right environment for genuine BPR to happen and provides

the opportunity for quantum leaps rather than incremental improvement. The biggest failing with a

lot of IT projects is that the end result is simply an electronically improved version of old business

processes and there has been no significant change made to those processes.

 To build any system you have to understand it. This is the basis for gaining that understanding

even if at a high level. Common processes have to be identified also, as they may point to common

components.

 The term „development process‟ is usually used to mean the systems development process,

whereas BPM is most definitely part of the wider process of business improvement – of which

there is usually a systems element.

 There is very much a chicken-and-egg issue with BPM/BPR and (OO) development, which has not

yet been fully resolved.

 We believe that the swim-lane notation is an effective means to BPR. If, however, there were to be

no BPR-ing done, we would probably just opt for activity diagrams

Q2. Process models provide an effective means to communicate business processes with the user.

Strongly Disagree Disagree Not Sure

1
Agree

4
Strongly Agree

1
Comments

Not Sure

 Agree – But need to be free of terminology (which makes translation to methodology difficult).

Take care of GUI presentation – as you point out, user gets misguided into viewing a system. Also

beware of presentation of new / any terminology.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 109 Date: 01/05/1999

Agree

 This process is allocated different names in a variety of different books. The name is irrelevant.

What is required is a single means of communication between business, IT managers and the

various IT developers which explains not only what is done but also why it is to be done. It has

been said that “A picture is worth 1000 words”. True - but not if it takes 2000 words to explain it.

 If done properly. They can be built with or by the user. The actual format these days is irrelevant

as long as people understand them.

 Users should be part of developing business process models, not just recipients of documentation

 The phrase „the user‟ can be viewed as a) emotive b) condescending c)misleading

 Business audience often „turned off‟ by complex methods - is there a better way?

Q3. Process models provide the means to enable computer and non-computer system processes to be

easily identified.

Strongly Disagree Disagree Not Sure Agree

5
Strongly Agree Comments

1

Agree
 This is overstating the case, process models provide the means for candidate computer/non-

computer systems procesess to be identified.

 It is not necessarily easy !

 The supporting example does not „support‟. It is not obvious which should be not computerised.

From a BPR point of view, authorising and dispatching a cheque would both be very valid

candidates for computerisation.

 MM - But, this is a circular statement? i.e if used in that way then they will, easily compared to

what alternative?

Comments

 Being picky here. They provide „a means‟ not „the means‟

Q4. The processes to be computerised typically identify the Use Cases to be developed. Since the

development of each Use Case is an activity on the project plan, this approach more closely

integrates the requirements of development with those of project planning and control.

Strongly Disagree Disagree

1
Not Sure

3
Agree

Strongly Agree

1
Comments

1

Disagree
 Again, this is only because you have predetermined that „Processes‟ (Use Cases) will drive the

perfect plan, it also assumes that requirements are „process oriented‟, which is not the case for a lot

of development (e.g. maintenance work, specific small scale enhancements etc – most work in the

industry is of this nature). I am however, in favour of process driven development for New

Systems along the lines of your proposal.

Not Sure

 Have all use cases been defined? How do you know when they have? When do you stop defining

them? Scoping is a problem. Also, can find use-cases are driven by current processes and not re-

engineered processes which may be the aim of the project.

Strongly Agree

 Only issue – „more closely‟ than what ?

Comments

 Theoretically true. However, the premise may not be true for all sizes of project

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 110 Date: 01/05/1999

A5-4.1.2 Use Cases

Q5. Use Cases are the way forward to capture business requirements. They provide a simple yet

comprehensive framework to capture business requirements in user terms, and provide views of this

information at appropriate levels of detail as you progress from Inception to completion of the

Elaboration phase. They also provide a single source of reference to the Construction phase for

purposes of design, build and test, and provide the means to plan and initiate system testing.

Strongly Disagree Disagree Not Sure

3
Agree

2
Strongly Agree Comments

1

Not Sure

 They don‟t do all of the above by definition – the above seems to be a big claim.

 Not sure they cover all types of business requirement. Very good for functional / process

requirements but more strategic / abstract ones may be not relevant e.g. product cross-selling from

call centres.

 Agree can be used in this way. Approach seems logical and practical. What other methods are

there?

Agree

 In the main, use cases capture functional business requirements

 NFRs can/should normally be abstracted-out into a separate document (this also helps since

functional reqs go to analysis/design, NFR reqs normally go to architects etc,

Q6. The Use Case is an effective means of capturing business and system requirements from the

user’s perspective.

Strongly Disagree Disagree Not Sure

Agree

5
Strongly Agree Comments

1

Agree

 Easily understood. Simple.
 I would say that use cases document rather than capture

 Again, in the main they capture functional requirements

 But should be in context of overall high level process?

Q7. My interpretation of the contents of the use case is comprehensive?

Strongly Disagree Disagree Not Sure

2
Agree

3
Strongly Agree Comments

1

Not Sure

 We find intent is better expressed as goal

 NFRs are initially captured here but do not end up here

 Screen Layouts should not be part of a use case

 What other requirements are to be referred to ? Use Cases plus NFRs should be it

 Error messages / what system does if processing is unsuccessful?

Agree
 I had initially thought that more needed to be recorded about the User, for example the profile of

the User (skills, authority etc.), but this could just as easily form part of the User Role or even lead

to a Business Rule.

 How detailed do you go with business rules? Does this form the basis of a module / program spec?

If so could be very large in a complex process. What about exceptions? These can hide lots of

work.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 111 Date: 01/05/1999

Q8. Both visual and non-visual business rules should be captured in the Use Case during analysis in

the Inception and Elaboration phases.

Strongly Disagree

1
Disagree Not Sure

1
Agree

3
Strongly Agree Comments

1

Strongly Disagree

 In our experience there are far too many „business rules‟ (hundreds) and they are far too

complicated to go into use cases without overloading the use cases

 A repository is the only way to ensure completeness, consistency and traceability.

Agree

 Gaining as complete an understanding as possible of business rules as early as possible is always

key to avoiding problems later in the development cycle.

 Agree - Except, that if purely technical and irrelevant to User, then don‟t confuse them!

Q9. On completion of Elaboration, all rules should be allocated to services in the Service Package.

The Use Case should then be updated, replacing the rule descriptions with cross-references to the

Services having responsibility for implementing them

Strongly Disagree Disagree

1
Not Sure

1
Agree

3
Strongly Agree Comments

1

Disagree

 There are just far too many of them and they are far too important

Not Sure

 Could end up continually updating documentation. Could take the approach that each stage is a

progression and forget what has gone before.

Agree

 Could you have a „dictionary of rules‟ i.e. reuse the rules / define once only.

Q10. Sequence Diagramming in the Elaboration phase restructures the general process description

into the detailed steps of sequence, choice and iteration.. This provides a clear and simple, yet more

formal and detailed means of describing the business requirements within the Use Case.

Strongly Disagree Disagree Not Sure

2
Agree

3
Strongly Agree Comments

1

Not Sure

 Need a fuller example than Fig 3-14 to see this.
 Requirements are „statements‟ which if not „met‟ by the completed systems will have a detrimental

effect on the CBA/Business Case. Low-level behaviour discovered during sequence diagramming

is not „requirements‟ and it is dangerous to let „users/sponsors‟ believe it is.

 That said, I agree with the need for Sds

Agree

 Although agreeing with the need, I'm less sure about the notation and visual side of the diagrams

as presented.

Q11. Have you / your team used Use Cases to capture business requirements? If Yes, what did you

like / dislike about them, if not already mentioned above?

Yes No Don‟t Know

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 112 Date: 01/05/1999

4 1 1

Yes

 Formal and standard approach readily understood by all parties. Uses terminology the User

understands rather than IT gobbledegook - once that is, they understand the term „Use-case‟.

Breaks an overall process into smaller more manageable chunks.

 Users are becoming more and more computer literate - however a little knowledge can be a

dangerous thing sometimes and care is required to get the right level of detail
 Needed more direction on how many to do and what should be in them. Also, how best to apply

the contents of them to the next stage.

 Crucial, Pivotal, Concise, Understandable etc

Don‟t Know

 Ask the team! I‟ve used something similar myself, but not as detailed.

A5-4.1.3 Domain Service Packages

Q12. The identification of the main component packages during the Inception phase is a useful

means of abstracting system detail from the architectural perspective, and illustrating the

dependency between components. The intended use of legacy systems can also be identified and

tabled at this stage of architectural design.

Strongly Disagree Disagree Not Sure

Agree

6
Strongly Agree Comments

Agree

 Care however needs to be taken or precise rules need to be in place. Taking a trivial example

„verify cover‟ is a Claim process but probably (?) resides in the Policy DSP.

 Secondly, „Administration Services‟ doesn‟t mean a lot really whereas Policy, Account Claim are

readily understood. Thirdly, how is this step to be achieved. Fourthly, what controls are in place

initially e.g. cover can mean different things to different people - is it household cover, building

cover, building cover for £100K. Areas like this are always good for discussion with Business

Colleagues in order to achieve a common understanding amongst the business community before

trying to involve IT personnel

 Need to define here legacy systems. I would hope that the use of this methodology across all

systems (legacy and green field) is viable.

 At a high level can simplify a complex system and give a good overview and clarify understanding

and basic assumptions.

 We define both logical and physical sub-systems early on

Q13. Reusing this diagram in the Elaboration phase for the allocation of services to Service

Packages is a good way to ensure that the architectural scope has not been exceeded.

Strongly Disagree Disagree

1
Not Sure

3
Agree

2
Strongly Agree Comments

Disagree
 how does it achieve this ? (ii) see above

Not Sure

 Define architectural scope

 Where has architectural scope been constrained / defined?

 It ensures that all scope, not just architectural scope, has not been exceeded

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 113 Date: 01/05/1999

A5-4.1.4 Allocation of Services (User, Business and Data) to Packages

Q14. Concentrating on Service provision (via Service/Control class) by the Service Package

simplifies the structural definition of the system without sacrificing meaning.

Strongly Disagree Disagree Not Sure

3
Agree

2
Strongly Agree Comments

1

Not Sure

 Looks simple in the basic examples you have given, but in a complex / large system would this be

workable / meaningful.

Comments

 Simplifies ? the structural definition. How ? If this is saying that you can group chunks together

and show interactions between chunks rather than each sub-chunk thereby simplifying the diagram

- then OK.

Q15. This is a more effective use of development resource than spending time developing domain

class models that require specialised skill to design and understand, which are generally not

maintained, and ultimately fall into disuse.

Strongly Disagree Disagree

1
Not Sure

4
Agree

Strongly Agree Comments

1

Disagree

 This work still has to be done. Being work-product oriented rather than phase-based helps.

 It is easier to get a half-decent traditional analyst to think OO and deliver a sufficiently good

Analysis Object Model (it doesn‟t have to be perfect – it wil be changed in design), than it is to get

a „highly-skilled‟ OO designer to understand and analyse all the problem-domain

Not Sure

 Isn‟t the same true in this approach albeit possibly in different areas. “Maintenance of the whole”

is certainly a key area i.e. all documentation and use-cases and code and….. Consider an issue

akin to the Y2K scenario where all code is being updated by a 3
rd

 party package. Existing

documentation would be left as is. (This may be OK since there is no change of functionality but

how can you be sure ? What about the Euro where external subroutines with their own style of

documentation may be brought to bear ?)

 Not familiar with domain class models.

 I haven‟t had much experience of domain class models

 Sorry, don‟t really understand “domain class model”

Q16. The Service defines the interface to the component ‘black box’. There is no loss of specification

detail using the Service Package approach, compared to other approaches which would require the

preparation of a domain class model.

Strongly Disagree

1
Disagree Not Sure

5
Agree

Strongly Agree Comments

Strongly Disagree

 It is just too complicated

Not Sure

 I would agree that interfaces need to tightly defined and openly published.

 Again, no experience here. You could do with some feedback from people using other

methodologies.

 This has to be detailed, signed off, publicised interface to enable components to be independent

and reusable.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 114 Date: 01/05/1999

A5-4.1.5 Service Definition for Service Packages

Q17. The Service Definition contains the interface specification for the Service Package, and

therefore, the Component. It is defined from the detail held in one or more Use Cases. This

definition provides an effective framework for the reuse of system services.

Strongly Disagree Disagree

1
Not Sure

Agree

4
Strongly Agree Comments

1

Disagree

 From experience, needs lot more detail in the parameter section. Data definitions alone do not

provide enough information to avoid misunderstanding. The data contents have to be explained.

Agree

 I would be concerned that they may end up containing a lot of detail - I would like to see how it

looks in a fuller example.

 It is the best chance we have for reuse.

Q18. The proposed structure for the definition of services is comprehensive

Strongly Disagree Disagree

1
Not Sure

2
Agree

2
Strongly Agree Comments

1

Disagree

 Parameter definition is the concern. See Q17

A5-4.1.6 Layering of Service Packages

Q19 The Domain Service Package high-level diagram is reused with layering detail added. The

layering of Services is a simple way to illustrate the architectural structure of the systems in terms of

User, Business and Data requirements.

Strongly Disagree Disagree Not Sure

Agree

6
Strongly

Comments

Agree

 A general comment: depending upon who the two or more parties are in a conversation then

different levels of detail (or views) will be required. The diagrams and words need therefore to be

automatically produced.

 Again, some reservations about how this would scale up in a large systems development.

 Useful architectural communicator

Q20. For technical design and development, teams can be assigned specific areas for development.

For example, teams could be created as centres of expertise for Policy, Claims etc. The Service

Package view clearly illustrates the services provided by the various packages, and is a useful means

of communication.

Strongly Disagree Disagree Not Sure

Agree

4
Strongly Comments

2

Agree

 It may be that due to the size and number of services it may be that teams become more focused,

for example be centres of expertise for the Policy Data Services. Alternatively team expertise may

be developed across type of package, for example, Data Services across Policy, Claims and

Administration.

 Useful means of allocating Business User effort and Business Analysis expertise also.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 115 Date: 01/05/1999

Comments

 Yes - but so what. That can and does happen in more traditional approaches. Are you creating

expertise in functions involving policy even though they are claim related ?

 Agree for development, not necessarily for high-level design

A5-4.1.7 Service Package Deployment

Q21. The deployment diagram is a useful means to illustrate the allocation of Services to nodes on a

network, and highlight the impact of deployment choices involved in the chosen architecture.

Strongly Disagree Disagree

1
Not Sure

Agree

5
Strongly Comments

Disagree

 I‟m not really sure what level of detail you need here, but it seems a little high level. What is the

audience for your diagram? (IT / Technical / Business)

Agree

 However, a simple diagram but some big decisions in here. Maybe a lot of work to get this agreed /

defined.

 Useful architectural communicator.

 What about guidelines for deployment e.g. Tier1,2,3 in what circumstances, which characteristics

at each layer / level?

A5-4.1.8 Package Class Structure and Component Design

Q22. The Service Definitions are the specifications for the detailed class design and code

development. While reference is made to the Use Case for non-functional information, and to the

Use Case and Layered Service Package Diagram for contextual information, no other

documentation is required.

Strongly Disagree

2
Disagree

1
Not Sure

1
Agree

Strongly Comments

2

Strongly Disagree

 Big claim.

 Everything is too complicated – unless you intend for the designers to then do massive amounts of

analysis

Disagree

 What about exceptions, error handling, and all the other „nitty gritty‟ bits of detail to complete a

program?

Not Sure

 Would Business requirements documents still be required at this stage for reference?

Comments

 Speak to developers!

Q23. It is at this stage that the detailed class models are designed to support the functionality of the

Service / Control Classes (Façade). The allocation of class design to technical rather than business

specialists is a more effective use of resources.

Strongly Disagree

1
Disagree

1
Not Sure

2
Agree

Strongly Comments

2

Strongly Disagree

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 116 Date: 01/05/1999

 There is generally a problem that business specialists are not IT-cognisent and do not question or

analyse – it is not that that are trad IT-ers who are OO-luddites

Not Sure

 Would prefer to see this as a co-operative joint effort.

A5-4.1.9 Others Techniques

Q24. Are there any other techniques that you would like to have questioned or seen used?

 Not sure that the level of process modelling example is sophisticated enough for serious use.

 Only a mention of process modelling techniques e.g. THD‟s

 Concept of „Data Dictionary‟ applied to Business Processes and System Component Design.

A5-4.2 Use, Reuse and Traceability

A5-4.2.1 Use Cases

Q25. To gain the maximum advantage from Use Case documentation, it should be considered in the

same way as a relational table with a number of available views. For example, a business facing

view containing user role and intent at the Inception level, plus Description in the early stages of

Elaboration etc. Each view would be tailored for communication with a specific audience.

Strongly Disagree Disagree Not Sure

2
Agree

3
Strongly Comments

Agree
 see earlier answer. All need to be aware however that their „view‟ is but a subset of the whole and

that further information is available if required. Problems and misunderstandings will arise if this

is not the case e.g. IT will refer to „use case‟ and mean the full set whereas an end-user will refer to

use-case and mean only their view. Furthermore, just as there is more than one type of IT person

e.g. designer, developer, DBA etc so there are different levels/roles of User personnel e.g. Head

Office, customer facing ……

 Use cases need to be tailored to the person using them e.g. technical designer. Important that

although a different view the interpretation / understanding is exactly the same.

 Can you have general „use case‟ templates e.g Add Claim etc which can then be modified?

Q26. The ability to use one form of documentation i.e. the Use Case for complete and shareable

requirements definition is a significant step forward in terms of reusable documentation.

Strongly Disagree Disagree Not Sure

1
Agree

4
Strongly Agree

1
Comments

Strongly Agree

 Strongly Agree

Q27 Continual reference to, and development of, the Use Case throughout the development lifecycle

will ensure that the business requirements are always considered and correctly addressed.

Strongly Disagree Disagree Not Sure

2
Agree

3
Strongly Agree Comments

1

Not Sure

 Other business focussed documents may be required.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 117 Date: 01/05/1999

 May become unwieldy the deeper you go into the development lifecycle.

Agree

 Agree (In theory)

 To a certain extent, but it won‟t happen on its own

 But only in respect of what is documented within the use case itself

Comments
 Terminology is often the barrier rather than the actual content. Some business users object

automatically to new terms introduced by IT. If the business are happy with the term „use case‟

then OK. If not then discuss alternatives, decide and use it throughout

A5-4.2.2 Services

Q28. The Service Package provides the interface definition to the Component Package. This is an

appropriate deliverable from business oriented component modelling, and complete specification for

the designers and developers of the appropriate middle ground, and enabling unit of reuse?

Strongly Disagree Disagree

1
Not Sure

2
Agree

2
Strongly Agree Comments

1

Agree

 However, there will be other, more granular, levels of reuse.

Q29. The implementation independent Service Package is a more effective and enabling unit of

reuse than other forms of module or functional specification.

Strongly Disagree

1
Disagree Not Sure

2
Agree

1
Strongly Agree Comments

1

Strongly Disagree

 Useful starting point and useful architecturally

Not Sure
 Haven‟t really seen any others aimed at component based development / reuse.

Q30.The Service concept provides the means to define appropriate services to enable the reuse of a

legacy system. While a suitable transaction interface will need to be written inside the Component,

the Component is the wrapper for the legacy system. (Note: I would include traditional Cobol and

object oriented systems as examples of legacy systems.)

Strongly Disagree Disagree

1
Not Sure

1
Agree

3
Strongly Agree Comments

1

Disagree

 Can‟t necessarily reuse a legacy system as usually not objects oriented but rather they are

convoluted spaghetti?

A5-4.2.3 Specification and Model Reuse

Q31. The Use Case and related Sequence and Service Package Diagrams, plus the Service

Definitions for the Service Packages, are designed to be highly reusable and implementation

independent. They achieve the objective of design reuse.

Strongly Disagree Disagree

1
Not Sure

1
Agree

2
Strongly Agree Comments

1

Disagree

 They enable achievement of design reuse

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 118 Date: 01/05/1999

Agree

 In theory.

Q32. Design and model reuse is key to successful and economic system development. The layered

approach to service definition provides a sound architectural context, and greatly facilitates redesign

for deployment in multi-tier environments, for example when implementing a thick-client PC system

for central offices and a Browser enabled version for remote use.

Strongly Disagree Disagree Not Sure

2
Agree

3
Strongly Agree Comments

1

Not Sure

 Paul your questions are quite detailed and embed a number of statements and difficult therefore to

answer: “Design and model reuse is key to successful and economic system development.” – Yes

partly. “The layered approach to service definition provides a sound architectural context” – Yes in

theory. “…for deployment in multi-tier environments” – Not sure. “…for example when

implementing a thick-client PC system for central offices and a Browser enabled version for

remote use.” – Potentially.

Agree

 Superficially yes.

Comments
 design and model reuse is certainly a key to future economic development

Q33. The relationship from Business Requirements to Use Case, Use Case to Service Definition,

and Service Definition to Component provides for full requirements traceability.

Strongly Disagree

1
Disagree Not Sure

Agree

4
Strongly Agree Comments

1

Agree

 But only if maintained.

 Change control procedures? What is effort per „change‟ if documentation updated compared to

traditional techniques?

Strongly Disagree

 Too complicated

A5-4.3 What is needed to make this work?

Q34. Organisation and culture are often more critical than component technology in making reuse,

or new process adoption work.

Strongly Disagree Disagree Not Sure

Agree

1
Strongly Agree

4
Comments

1

Strongly Agree

 To organise teams around components would be the hardest thing. Projects are usually based

around business functions and costed that way. Would need a cultural shift to fully embrace this

approach.

Comments

 Strong management backing is required to make any such change work which is why some

prototype projects fail. Lip service is paid rather than whole-scale support

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 119 Date: 01/05/1999

Q35. A good opportunity is to pilot the component development process together with a new

technology project in order to stimulate interest in what some developers might see only as a

‘documentation’ exercise. The process will then achieve a similar profile as the success of the

technology project (unless it fails of course!).

Strongly Disagree Disagree

3
Not Sure

1
Agree

1
Strongly

1
Comments

1

Disagree

 You would have to compare two similar developments one using traditional methodology one

using new in order to achieve accurate results.

 “…a new technology” Does it have to be new?

 The benefits would only really come from the next project unless large level of reuse of legacy

systems in this pilot project.

 Don‟t agree - Need to explain Benefits of this approach to those who need to be motivated to use

it, rather than using it passively

Agree

 Should definitely be tried out, but I don‟t think it will scale.

Q36. Assuming the pilot is a success, a policy statement is required to institute the process, and the

objective of reuse, as a departmental objective. Reuse is not free use, and management commitment

and the right cultural conditions are a precondition for its success.

Strongly Disagree Disagree Not Sure

1
Agree

4
Strongly Agree Comments

1

Agree
 Agree. Reuse

 Definitely difficult to quantify and cost. Would need high-level management backing.

Comments

 Need to cost justify the approach so that Developers will Want to use the technique.

Q37. As a minimum, a Service / Service Component / Component asset catalogue is required with

search facilities in order to maximise reuse opportunity.

Strongly Disagree Disagree Not Sure

2
Agree

2
Strongly Agree

1
Comments

1

Not Sure

 Is there a min / max ? Graph of stage / benefit ?

 Depends on the level of granularity. Would you expect the catalogue to contain high-level business

objects and also detailed VisualAge objects (for example) of which there are thousands.

Comments

 As a MINIMUM ?

Q38. While a case tool is desirable for modelling purposes, and provides the corresponding rigour, it

is feasible to achieve a workable and economic framework using basic tools. For example, a word

processor (e.g. Word 6.0), or better (e.g. a Notes Client linked to a standard Notes Library

Management Database) can be used for the definition of Business Requirements, Use Cases, and

Service Definitions; with a diagramming tool (e.g. Visio) for the models.

Strongly Disagree

1
Disagree

1
Not Sure

1
Agree

1
Strongly Agree

1
Comments

1

Strongly Disagree

 Just not possible without a CASE tool.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 120 Date: 01/05/1999

 Too complicated.

Disagree

 Whereas basic tools could prove adequate for a pilot they could very quickly become laborious

without some level of dynamic linking and automatic cross referencing were not available,

especially if the documents and diagrams were subject to iterative cycles, being used as working

tools for the design process. A custom built Notes based system could prove adequate as a working

proof of concept

Not Sure

 Provided all have access and can share and you rigorously impose use.

Strongly Agree

 Don‟t get hung up on fancy Case tools, these are a means to an end only. Attitude is key.

Comments

 The key words here are appropriate and standard. The alternatives may be feasible for small

projects but are unlikely to be so for large scale developments.

Q39. Appropriate training in the approach and techniques is required. Following an introduction,

this is best achieved by just-in-time training, and regular consultancy support throughout the

project.

Strongly Disagree Disagree

1
Not Sure

Agree

4
Strongly Agree Comments

Disagree

 Experienced person is integral part of project team plus need to sell benefits.

Agree

 Education and Training requirements should be no different to any other area. People learn more

by “doing”. According to the ancient saying “I hear - I forget. I see - I remember. I do - I

understand”. Training is all-important as is the cost of making mistakes. I.e. the savings of fewer

formal courses will be met by the increased cost of re-working when mistakes occur.

 Should the people giving the training be qualified trainers or qualified practitioners

 “consultancy support” very important. Not many people have experience of doing this.

 On-going communication and level-setting of the „great unwashed‟ is also required

A5-4.4 General Feedback

Q40. Do you think that there is merit in the methodology and approach described?

Strongly Disagree Disagree Not Sure

1
Agree

4
Strongly Agree Comments

1

Not Sure

 Generally this approach assumes „waterfall‟ How would it cope with iteration, and with changes

 However, I would like to see it tried, but I don‟t think it will scale, so may be difficult to prove

Agree

 I think it represents a logical view of an approach.

 There is very little available which specifically focuses on the component delivery angle although

componentisation receives a lot of column inches at present.

Comments

 Before this gets anywhere near the Business Community then IT management need to be certain

that it will the bring the company additional benefits above and beyond what is currently in place.

Primarily this will mean benefit to IT with secondary benefit to the User community. Both User

and IT management are, and indeed must be, sceptical. Too often have there been claims for

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 121 Date: 01/05/1999

improved service, improved future benefits, jam tomorrow etc. Fourth Generation Languages were

once the panacea together with RAD, prototyping, relational databases, object orientation,

BPR…… Having said that, we cannot remain stationary and we need to progress through

evolutionary means. Revolution is difficult because of areas mentioned elsewhere e.g. existing

systems, existing documentation and all the complexities and inconsistencies which have grown

over the years. Whereas it‟s nice to start from scratch on a green-field site, most large organisations

do not have this luxury. It‟s certainly possible in these new sites though as TIS and others bear

witness.

 It‟s very difficult to prove additional benefit over and above the „current‟ approach especially since

no-one actually knows categorically what the current cost is,/ was / or would be in future. Each

step through the process may be entirely logical and may get agreement but that doesn‟t imply that

the end-result will get acceptance.
 A couple of further points:

As mentioned the document is the contract between the various involved parties. This is a good

formal way of describing it and describes the process better than „specification‟. If the use-case

were to go out to a 3
rd

 party to code then it‟s a contract - or at least part of a contract - so this word

should be used internally as well.

It will be interesting to see how this develops and how it copes when confronted with the normal

nitty-gritty, error processing and added complexity of a real-life medium scale development rather

than a simplified case study. The right tool will be a key factor

Q41. Are there any other areas that you would like to have seen covered / included?

 More detail or potential benefits of using methodology e.g. degree of reuse, potential decrease in

documentation. Needs to be brought out.

 Approach across legacy applications – we now very rarely get the opportunity to go for “green

field” development and hence you need to look at any potential for mapping or translation of what

is there already.

 Measurements – How big could it get – how feasible to share amongst teams of developers e.g. for

large system like UKRIS how long would it take?

 How would this methodology apply to the more popular development software?

 What is relative saving by using this method?

 Is there a difference between maintenance and development?

 Can user resources be used more than IT with the method?

 Platform independent business process modelling using reusable library?

Q42. Are there any other areas that you felt were unclear, and would have liked me to expand on, or

explain better?

 See points above (Q41). You seem to go into the methodology quite cold.

 Section 3 needs structuring to make it clearer.

 Business Rules

 Bit too techy for the likes of me!

Q43 From what you have read, would you consider a pilot to use this approach?

YES

 Yes, if the opportunity arose and it was accepted as worthwhile by others involved.

NO

 No. You need to present more on the potential savings / benefits from this.

 No

 No. Would be interested in evaluating from other‟s experience, but not as “First penguin in the

water”.

Q44 Are there other areas of research related to this topic that you would like to see undertaken?

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 122 Date: 01/05/1999

 The follow through into delivery, and methods for identifying and managing the next, more

granular, level of reuse, those components which would be reusable across service packs, for

example code subroutines.

 What level of detail can be „got away with‟

 Comments previous page.

Q45 Any other comments?

 I thought your methodology was reasonable, logical and analytical in approach. I‟m sure it would

represent a sound way of representing developments in terms of a “component approach” – but for

me a proposal needs more about how it would work and be managed in practice and the potential

benefits.

 Interesting. These views need airing and exploring - things are not all rosy at the moment. However

I think that most systems are too complicated to be „pulled-off‟ by this method

-- End of Feedback --

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 123 Date: 01/05/1999

GLOSSARY

This section explains some of the terms or abbreviations used in the text.

ActiveX Microsoft‟s OLE API based distributed computing and component strategy to

the Web. It features ActiveX Desktop and Server components using the Microsoft

DCOM middleware architecture. See Appendix 4 for further details.

API Application Programming Interface

C++ Invented by Bjarne Stroustrup in 1980, it contains the entire C language, but with

additions to support object-oriented programming.

COM Microsoft's component object model.

COM+ Microsoft's improved component object model with a simpler programming

environment that automatically generates IDL, but not available until the millennium

given its dependency on Win2000.

CORBA Common Object Request Broker Architecture. “CORBA is a commercial

standard from OMG, whose mission is to define interfaces for interoperable software.

Their specification, CORBA, is an industry consensus standard that defines a higher-

level infrastructure for distributed computing . In general object orientation enables the

development of reusable, modular software, and is moving technology towards plug-

and-play software components. OMGs efforts are extending these benefits across

multiple heterogeneous systems” (Mowbray & Malveau,1997).

DCOM Microsoft's distributed COM. This provides advanced services that allow you to

manage the interaction between Windows environments (Linthicum,1997).

Domain Class Model In object-oriented analysis, a domain class model is prepared

by the development team in order to more fully understand the main objects and their

inter-relationships in the business area i.e. domain. The model is developed using terms

familiar to the business experts e.g. Claim, Insured. However, a knowledge of object

modelling is required in order to interpret the true meaning of the diagram.

GUI Graphical User Interface – The user interaction / presentation component in a client

server system.

HTML Hypertext Markup Language

IDL Java Interface Definition Language (IDL) - enables Java components to talk to Corba

compliant components.

Intranet “A private network of trusted Web servers used by a single organisation for

intra-organisational applications. Intranets are essentially private infrastructure and are

frequently „firewalled‟ (shielded using security software or hardware) from, or run

totally independently of, the Internet. The internet runs on public networks, across both

private and public organisations”. (Pal, Ring & Downes, 1996).

IIOP Corba‟s Internet Inter-Orb Protocol

Intranet Terminal Provides access to a range of applications from a Web browser, but

cannot support local processing of Java applications See Appendix 2 for further details.

Java Sun Microsystems combined set of technologies for an interpreted, object oriented

language. See Appendix 1 for further details.

Java Applets A “…component sized application that servers can ship to clients via ordinary

HTML pages” (Orfali & Harkey, 1998). See Appendix 1 for further details.

Java Beans Components written in Java that communicate with each other, plus other

types of components like ActiveX controls and OpenDoc parts. See Appendix 1 for

further details.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 124 Date: 01/05/1999

JDBC Java Database Connectivity – a Java API to SQL relational databases.

JDK Java Development Kit

JVM Sun‟s Java Virtual Machine

MTS Microsoft Transaction Server - manages multiple users and load balancing across

several computers. This will become part of Windows NT. (Anderson, 1998).

NC Network Computer. Runs a Web browser, supports Java, and Microsoft Windows

applications via NT and X-Windows See Appendix 2 for more details

NetPC Based on a PC but smaller, and works across a network with central

administration See Appendix 2 for more details

ODBC The Open Database Connectivity Standard

OLE Microsoft‟s standard for Object Linking and Embedding.

OMG Object Management Group – the standards committee controlling the development of

CORBA

PC End User Job Function Classification (Gartner,1997)

 High Performance – performing high value, mission critical tasks with a high

dependency on technology and a high cost of downtime eg stock traders, engineers,

direct customer services

 Mobile – workers on the road and in the field. Often high performance workers with

fragile mobile technology. Again, high dependency on technology and a high cost of

downtime.

 Knowledge – the most poorly defined yet most publicised class. Definition: A

worker who gathers, adds value to and communicates information in a decision

support process. Cost of downtime is variable but highly visible.

 Structured Task – workers who perform the same task repetitively, typically as a

link in a workflow or process. Cost of downtime varies, most workers are only

partially dependent on computer availability.

 Data Entry – workers who input data into computer systems.

RMI Remote Method Invocation - for Java only environments with no database access.

Smartcard Invented in 1974 by Roland Moreno who devised a payment system based on

an electronic stored value application mounted on a ring. There are currently two

operating systems: Sun Microsystems (partnered with Visa and others) with the Java

Virtual Machine on a card; and Maosco (Multi Application Operating System

Consortium), an industry wide consortium which includes Mondex, Mastercard,

Fujitsu, AmEx and others.

TCP/IP Transmission Control Protocol/Internet Protocol allow communication

among a variety of independent, multivendor systems. In 1983 it became the official

transport mechanism for the internet. (Sheldon, 1994).

Virtual Organization “A virtual organization is a globally distributed, loosely confederated

collection of trading partners and subcontractors working with the enterprise and

collaborating and communicating primarily via electronic means.” (Gartner,1998)

Windows Terminal Displays Windows applications held and managed on Microsoft

Windows NT servers. Workstation has no local storage or processing capability. See

Appendix-2 for more details.

XML Extensible Markup Language - A universal standard for describing and exchanging

data between environments that are based on different technologies and

implementations.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 125 Date: 01/05/1999

BIBLIOGRAPHY

Allen, P. and Frost, S. (1998) Component Based Development for Enterprise Systems,

Cambridge University Press.

Anderson, T. (1998) Putting the Pieces Together. Computing. 3
rd

 September. p.42

Booch, G. (1994) Object-Oriented Analysis and Design with Applications. Second

Edition. Benjamin Cummings.

Booth, W.C. Colomb, G.C and Williams, J.M. (1995). The Craft of Research. The

University of Chicago.

Bright, P. (1991) Introduction to Research Methods in Postgraduate Theses and

Dissertations. Newland Papers Number 18. The University of Hull.

Butler Group. (1998a) “Component-Based Development: Application Delivery and

Integration Using Componentised Software”. September.

http://www.butlergroup.com [22/11/98].

Butler Group. (1998b) Component-Based Development (CBD) Forum Newsletter.

December Issue.

Butler Group. (1999). Component-Based Development and Integration (CBDi) Forum

Newsletter, April Issue.

Cantor, M.P. (1998) Object-Oriented Project Management with UML. John Wiley &

Sons.

Clarke, G. (1998a) “Price is wrong for Java-Based cards.” Computing. 3
rd

 September.

p2.

Clarke, G. (1998b), “PC‟s under £300 a threat to NCs” Computing. 1
st
 October. p3.

Clarke, G. (1998c) “Lloyd‟s adopts WTS”. Computing. 8th October. p14

Coad, P. and Yourdon, E. (1991) Object-Oriented Design. Prentice-Hall

Computing. (1998a) “Horses for courses‟ as industry divided over NT.” Computing.

3
rd

 September. p15.

Computing. (1998b) “Gartner hits out at ERP” Computing. 24
th

 September. p4.

Computing. (1998c) “Home on the mid-range: Sun has overtaken HP Unix stakes.”

Computing. 1
st
 October. p36

Currie, W.L. and Willcocks, L. (1995) Reengineering and I.T. in Financial Services.

RDP95/8, Oxford Institute of Information Management, Templeton College Oxford.

p12.

D‟Souza, D.F. and Wills, A.C. (1998) Objects, Components, and Frameworks with

UML: The Catalysis Approach. Addison-Wesley.

Farrell, N. (1998a) “Internet to become „dominant medium‟”. Computing. 1
st
 October.

p32.

Farrell, N. (1998b) “Dresdner pushes its objects”. Computing. 22
nd

 October. p2.

Fowler, M. and Kendall, S. (1997) UML Distilled : Applying the Standard Object

Modelling Language. Addison Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides,J. (1995). Design Patterns:

Elements of ReUsable Object-Oriented Software. Reading, MA: Addison-Wesley.

Gane, C. and Sarson, T. (1979). Structured Systems Analysis Tools and Techniques.

Prentice Hall.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 126 Date: 01/05/1999

Gartner. (1997) “TCO Analyst : A White Paper on GartnerGroup‟s Next Generation

Total Cost of Ownership Methodology”. Gartner Consulting. 1997

Gartner. (1998) “The Future of the Virtual Organisation.” Gartner Group Research

Note: Strategic Planning. 11th September.

Goodwin, C. (1998) “A Place in OO Heaven”. Computing 24
th

 September. p56-58.

Griffiths, J. (1998) “PC or netPC?”. The Computer Bulletin. British Computer

Society. March. p26-28.

Hambling, B. (1996) Managing Software Quality. McGraw-Hill.

Hunter, P. (1998) “Living with the enemy”. Computer Weekly. 15
th

 October. p46.

IBM (1998). “From e-Technology to e-Commerce”

http://www.software.ibm.com/ad/cb/harkey-jul98.html. July. [02/02/1999].

IBM (1999). “IBM Component Broker : Building Business Value.”

http://www.software.ibm.com/ad/cb/bbvalue.html. [31/01/1999].

Jackson, M.A. (1983). Systems Development. Prentice Hall.

Jacobson, I., Christerson, M., Jonsson, P.M. and Overgaard, G (1992). Object

oriented software engineering: A use case driven approach. Addison-Wesley.

Jacobson, I., Ericcson, M., and Jacobson, A. (1994) The Object Advantage – Business

Process Engineering with Object Technology. Addison-Wesley.

Jayaratna, N. (1994). Understanding and Evaluating Methodologies. McGraw Hill.

Kavanagh, J. (1998) “A Question of Foresight.” The Computer Bulletin. British

Computer Society. September. p22-23.

Kelly, L. (1998a) “Payback time benefits Java”. Computing. 3
rd

 September. p12.

Kelly, L. (1998b) “ A slip-up for Java at oil exchange.” Computing. 1
st
 October. p21.

Kelly, L. (1998c) “Platform independence is the key, says analyst.” Computing. 1
st

October. p21.

Kelly, L. (1998d) “Corba supporters defy DCOM death threat.” Computing. 15
th

October. p18.

Linthicum, D. (1997) “Mutating Middleware”. DBMS : Database and Client/Server

Solutions. Volume 3 Issue 8. October. p24-33.

Martin, J. and Finkelstein, C. (1981). Information Engineering. Volumes 1 and 2.

Prentice Hall.

Martin, J and Odell, J,J. (1994). Object-Oriented Methods: A Foundation. Prentice

Hall.

McGinn, J.(1998) “HP backs down over Java plan.” Computing. 15
th

 October. p18.

McLeod, M. (1998) “Life firm puts Web monitoring on trial.” Computer Weekly. 29
th

October. p3.

Mannion, M. and Keepence, B (1998) “Software Jigsaws”. The Computer Bulletin.

British Computer Society. September. p24-27.

Morris, C.R. and Ferguson H. (1993) “How Architecture Wins Technology Wars”.

Harvard Business Review. March-April. p86-96.

Mowbray, T.J. and Malveau, R.C. (1997) CORBA Design Patterns. John Wiley &

Sons.

CBD Methodology Proposal Student No. 096811245 MSc Dissertation

Author: Paul Botel Page 127 Date: 01/05/1999

Object Management Group. (1997) Unified Modelling Language (UML) - Version

1.1. November.

Orfali, R and Harkey, D. (1998) Client/Server Programming with Java and Corba.

Second Edition. John Wiley & Sons.

Pal, A., Ring, K. and Downes,V. (1996). Intranets for Business Applications: User

and Supplier Opportunities. Ovum Reports, Ovum Ltd.

Perspectives. (1993) “Will Architecture Win the Technology Wars”. Harvard

Business Review. May-June. p162-170.

Phillips, S. (1998) “Aberdeen Council launches largest smartcard project.” Computer

Weekly. 5
th

 November. p12

Poston, T. (1998) “Lloyds TSB unveils first part of Internet banking systems.”

Computer Weekly. 5
th

 November. p6.

Pressman, R.S. (1997). Software Engineering: A Practioners Approach. Fourth

Edition. McGraw Hill.

Rock-Evans, R. (1992). Data Modelling & Process Modelling. Reed International

Books.

Rumbaugh, J., Blaha, M., Premerlani, W., and Eddy, F. (1991) Object-Oriented

Modeling and Design. Prentice Hall.

Saran, C. (1998) “Microsoft plans system to rival Java smartcard.” Computer Weekly.

29
th

 October. p2.

Shaw, M. and Garlan, D. (1996) Software Architecture : Perspectives on an Emerging

Discipline. Prentice Hall.

Sheldon, T. (1994) LAN Times Encyclopedia of Networking. McGraw-Hill.

Shlaer,S and Mellor, S.J. (1988) Object Oriented Systems Analysis. Prentice Hall.

Tober, B. (1998) “Smart card pack holds the ecommerce aces.” Computing. 29
th

October. p26-27.

Wallen, J. (1998) “The calm before the Unix storm”. Computing. 3
rd

 September. p14.

Wirfs-Brock, R., Wilkerson, B. & Wiener, L. (1990) Designing Object-Oriented

Software. Prentice Hall.

