

On-orbit validation of interoperability between Planet SuperDoves and Sentinel-2 + Arin Jumpasut, Alan Collison, Ignacio Zuleta

Kure Atoll, Hawaii, USA - May 12, 2016

Introduction

Singapore Strait, Singapore – July 29, 2016

p

Overview

- Introduction to Planet
- Methodology for SuperDove calibration
- Results of an on-orbit interoperability study for a single SuperDove
- Summary

• Planet has over 100 active calibrated satellites in SSO

p

• Keeping track of their radiometric calibration is an important task

Why **SuperDoves**?

SuperDove is a high resolution mapping mission with SPOT-5-class resolution with the spectral coverage of SENTINEL-²/₃ **plus**

- 2° max elevation orthophotos
- daily revisit today
- full effective FOV
- true 1-day revisit
- low stray light
- 2X NIR QE

SENTINEL-2 ~750km 10° incidence 12-60m GSD 9-bands 5-day revisit (15-day effective)

SuperDove -R ~500km ~500km 2° incidence 1.5° incidence 3-12m GSD 3m GSD 8-bands 4-bands 1-day revisit 1-day revisit

SuperDove sensor layout

1px=5.5um

Band	Name	Notes	Wavelength (fwhm)	spatial sampling	GSD (m)	L _{ref} (W sr- ¹ um ⁻¹ m ⁻²)	SNR @ L _{ref} (t=10ms)*
1	Coastal Blue	core visible bands	443 (20)	0.25x	12	130	193
2	Blue		490 (50)	1x	3	130	170
3	Green I		531 (36)	1x	3	130	150
4	Green II		565 (36)	1x	3	130	154
5	Red		665 (31)	1x	3	130	138
6	Yellow	sediments, PC	610 (20)	1x	6	70	63
10	Red edge I	important for data compatibility with Sentinel-2	705 (15)	0.5x	6	70	57
13	NIR	narrow NIR	865 (40)	0.5x	6	130	137

Planet payloads over the years

8880 pixels Region I: band 2

Region III: band 3 Region IV: band 4

Region V: band 6 (yellow) egion VI: band 10 (r-edge) Region VII: band 13

> Region VIII: band 1 1px=5.5um

5280

Dove (~150 satellites)

Dove Pilot (~50 satellites)

Dove-R (24 satellites)

Dove 2-stripe raw frame

SuperDove (~64 satellites)

Green I

Red

NIR

Blue

Dove Classic sensor layout

orthorectification

2-stripe half-frame composite

- This is the layout of the two-stripe Dove
 - The top stripe contains the red, blue and green bands in a Bayer pattern
 - The bottom stripe contains the NIR band
 - The orthorectification process allows a four band composite image to be produced

Typical Dove Classic RSR (measured at 10nm resolution)

Copyright © 2020 Planet Labs, Inc.

Dove-R sensor layout

Typical Dove-R RSR (from manufacturer data)

Copyright © 2020 Planet Labs, Inc.

RSR compared to Sentinel-2A

Copyright © 2020 Planet Labs, Inc.

SuperDove 8-band sensor layout

1px=5.5um

Band	Name	Notes	Wavelength (fwhm)	spatial sampling	GSD (m)	L _{ref} (W sr- ¹ um ⁻¹ m ⁻²)	SNR @ L _{ref} (t=10ms)*
1	Coastal Blue	core visible bands	443 (20)	0.25x	12	130	193
2	Blue		490 (50)	1x	3	130	170
3	Green I		531 (36)	1x	3	130	150
4	Green II		565 (36)	1x	3	130	154
5	Red		665 (31)	1x	3	130	138
6	Yellow	sediments, PC	610 (20)	1x	6	70	63
10	Red edge I	important for data compatibility with Sentinel-2	705 (15)	1x	6	70	57
13	NIR	narrow NIR	865 (40)	0.5x	6	130	137

Patent Pending (US20180098014A1)

Copyright © 2020 Planet Labs, Inc.

Superdove RSR (from manufacturer data)

RSR comparison with Sentinel-2

Methodology

Overview

- The current calibration methodology is based on gathering a dataset of near simultaneous crossovers with a reference satellite
 - We use Sentinel-2A and Sentinel-2B as the reference satellites
 - Previously for Dove Classics and Dove-Rs, we used the RapidEye satellites but we are currently changing the reference for those satellites to the Sentinel-2 satellites as well for consistency
- The assumption was made that for the **six shared bands between Sentinel-2 and SuperDoves**, an SBAF was **unnecessary** since their RSRs were so similar
- This allows us to move away from well-characterised calibration sites and do a global search for near simultaneous crossovers
 - A global search means that a **wider range of terrain types** are captured in the calibration dataset, from **dark sites, vegetation sites to the cryosphere**
- It also means that the calibration dataset for each satellite is **much larger** and a valid calibration dataset can be generated **rapidly** after launch

Differences in RSRs

• The assumption was made that the RSRs of the Sentinel-2 satellites are so similar to the SuperDove satellites that well-characterised calibration sites and SBAFs are unnecessary

Effects of Differing Responses: Dove Classic

A lawn grass spectrum from a spectral library

Calculating the spectral band adjustment factors between Sentinel-2 and Dove Classic

Copyright © 2020 Planet Labs, Inc.

Effects of Differing Responses: SuperDove

A lawn grass spectrum from a spectral library

Calculating the spectral band adjustment factors between Sentinel-2 and SuperDove

Copyright © 2020 Planet Labs, Inc.

Differences in RSRs

 To validate this assumption, the USGS Spectral Library v7 [1] was used to perform a study on the SBAFs to between SuperDove and Sentinel-2 for the six common bands

[1] Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K.E., Hoefen, T.M., Pearson, N.C., Wise, R.A., Benzel, W.M., Lowers, H.A., Driscoll, R.L., and Klein, A.J., 2017, USGS Spectral Library Version 7: U.S. Geological Survey Data Series 1035, 61 p., https://doi.org/10.3133/ds1035.

ISSN: 2327-638X (online)

Chapter A - Artificial Materials (275 spectra)

Chapter C - Coatings (12 spectra)

Chapter L - Liquids (23 spectra)

Chapter M - Minerals (855 spectra)

Chapter O - Organic Compounds (113 spectra)

Chapter S - Soils and Mixtures (167 spectra)

Chapter V - Vegetation (238 spectra)

Average SBAFs divided up by chapter

An example of the results of a global search

- This is a single SuperDove (222c) 's near simultaneous crossovers with Sentinel-2A and Sentinel-2B for the first week of September 2020
 - There was less than two hours difference between a Sentinel-2 image and a Superdove
 - Just that one week produced 1969 crossover orthotiles

Examples of crossovers

- The crossovers are processed to Top of Atmosphere Reflectance at 30m per pixel
- **Orthotiles** are used (based on 25km square tiles within the UTM coordinate system) to divide up the crossover dataset
 - Only the orthotiles with joint crossover pixels that cover more than 25% of the orthotile area are used to exclude tiny slithers
- Below are some **examples** of the crossovers

China - 2020-01-15

2259 Top of Atmosphere Reflectance

Sentinel-2B

Mexico - 2020-05-05

2257 Top of Atmosphere Reflectance

Sentinel-2A

Chad - 2020-05-13

2271

Sentinel-2A

Collecting statistics

- From each orthotile crossover, **statistics** are gathered:
 - The **joint mode of the candidate and reference pixels** of the orthotile
 - The **RANSAC linear fit** of the candidate and reference pixels and the **R^2 score of the fit**
 - The min, median, mean, max and standard deviation of the candidate pixel distribution and the reference pixel distribution
- These are then **collated** for all the orthotile crossovers

More examples of crossovers

- Since we take all the crossovers blindly, there could be **changes in cloud cover** or atmospheric conditions in some of the crossovers
 - The **R^2 score of the fit** between the reference pixels and the candidate pixels could be used to filter them out
 - But instead, the **joint mode of the candidate and reference pixel distribution for each orthotile** is used. This will be explained in more detail later
- Below are some examples of the crossovers have a **poor R^2 score**

Kazakhstan - 2020-02-25

2257

Sentinel-2B

Germany - 2020-05-17

2275

2275 Top of Atmosphere Reflectance

Sentinel-2A

Turkey - 2020-05-19

Sentinel-2A

Calibration

- The **joint mode** of each of the orthotiles is used to create the final calibration fit
 - The joint mode of an orthotile is **not as affected by changes in cloud cover** and other changes as long as the changes do not make up the majority of a scene
 - In the event that cloud cover makes up the majority of the orthotiles and the joint mode is just random noise, with a large enough data set, these noisy data points should make up the minority of the data set and be rejected in the RANSAC fit
- These are all collected together and a **RANSAC linear fit** is used to create the calibration model

Calibration

Copyright © 2020 Planet Labs, Inc.

Results

Valle de la Luna, Argentina – July 19, 2016

Results

- A single SuperDove's crossovers will be examined in detail
 - **2257** was chosen from Flock 4p
 - This was launched on a PSLV on the 26th of November 2019
 - It was calibrated using crossovers in January 2020 and has not had an updated calibration yet
- All crossovers from the 1st of January 2020 to 1st of September 2020 were
 polled and processed

 These are all the crossover orthortiles for a single Superdove (2257)

Copyright © 2020 Planet Labs, Inc.

Copyright © 2020 Planet Labs, Inc.

All 114,888 orthotile events between a Superdove and Sentinel-2 for 2020. Each data point in the density plot represents the joint mode of an orthotile

A timeline of the crossovers

The number of crossover orthotiles for each day. The orthotiles were filtered so that only crossover events that overlapped over 25% of the orthotile.

The average time difference

Most of the crossover events had just over an hour time difference between the candidate and the reference scene.

The fit of all the crossovers over time

Showing the range of fits over time. The fit between the reference and candidate measurements for each orthotile crossover event is shown to investigate if there is any seasonal variation.

Greenland - 2020-04-17

2257

2257 Top of Atmosphere Reflectance

Sentinel-2B

United States - 2020-06-14

Sentinel-2B

Canada - 2020-07-28

2257

Sentinel-2A

Brazil - 2020-08-24

2257 Top of Atmosphere Reflectance

Sentinel-2B

Australia - 2020-08-25

Sentinel-2A

United Arab Emirates - 2020-05-11

Sentinel-2A

United Arab Emirates - 2020-08-04

Sentinel-2B

Canada - 2020-08-26

2257 Top of Atmosphere Reflectance

Sentinel-2A

Canada - 2020-08-26

2257 Top of Atmosphere Reflectance

Sentinel-2B

Summary

- This talk presented the **methodology** developed to calibrate the new SuperDove
- A study was performed using a **spectral library** to find the **variation of SBAFs** between the SuperDove and Sentinel-2
- Moving **away** from well characterised calibration sites has meant that a much more **varied** calibration data set is used to create the calibration model
 - There are scenes at multiple points along the **dynamic range**
 - Especially important are point on the darker end of the dynamic range and over vegetation
- The talk has concentrated on the **six bands** that are shared with the Sentinel-2 satellites
 - The green_i and yellow calibration will depend on a well characterised calibration sites and lunar calibration
 - The different spectral responses will need to be taken into account
- The lack of SBAF correction assumption depends on the quality of the filters and per satellite quality check
 - Accurate green_i and yellow calibration especially will depend on accurate RSR measurements, which is the subject of the next talk

SuperDove data is interoperable with Sentinel-2 data

Copyright © 2020 Planet Labs, Inc.

Questions?

Arin Jumpasut arin.jumpasut@planet.com

