

Radiometric Calibration Performance of GOES-16/17 Advanced Baseline Imager (ABI)

Fangfang Yu¹, Xiangqian Wu^{*}, Hyelim Yoo¹, Haifeng Qian¹, Zhipeng Wang¹, and Xi Shao¹

> 1: University of Maryland, College Park *: NOAA/NESDIS/STAR

GOES-16/17

- NOAA's new generation operational weather satellites at the geostationary orbit
 - Advanced Baseline Imager (ABI) is the primary payload
- GOES-16: GOES-East at 75.2°W
 - Launched on 19 November 2016, became operational as GOES-East on 18 December 2017, operated as designed
- GOES-17: GOES-West at 137.2°W
 - Launched on 1 March 2018, became operational as GOES-West on 12 Feb 2019, operated at elevated/floating ICT/FPM temperature

ABI Instrument

- ABI Bands: 16 bands
 - 6 visible and near-infrared (VNIR) bands
 - 10 infrared (IR) bands
- Two independent scan mirrors
 - North-South (NS)
 - East-West (EW)
- On-orbit calibration for all the bands
 - On-orbit solar diffuser (SD) for VNIR bands
 - Blackbody for IR bands

Detector Focal Plane Modules and BDS

Each band has hundreds to thousands of detector rows. Each row has 3 or 6 detector columns.

G Street

- Loop Heat Pipe (LHP) anomaly causes the malfunction of the cooling system
 - Detected in late April 2018
 - Degraded data quality at all IR channels
- Activities implemented to recover and optimize the ABI performance
 - Yaw-flip semi-annually
 - Changes of the focal plane module (FPM) operation temperature
 - Visible and Near-Infrared (VNIR) FPM: floating
 - Infrared (IR) FPMs: controlled at an elevated temperature (~81K) + floating when not controlled
 - Calibration gain-set switch for some IR bands
 - Adjustments of operational procedures
 - Timeline adjustment
 - More frequency of blackbody calibration
 - Cooling timeline implementation at the "hot" nights around the eclipse seasons

Algorithm changes

- Predictive calibration algorithm (pCal) to improve the cal. accuracy during the unstable FPM period
- Update RadCal LUTs to reduce striping

100.00

^{80.00}

09/20/2018

12/11/2018

03/03/2019

05/24/2019

08/14/2019

G17 ABI IR Performance

GOES-17 ABI Actual IR Performance

n, Logan, UT, 2020

- G16/G17 VNIR bands are generally within 5% difference to SNPP/VIIRS
- The updated solar diffuser BRDF look-up table, derived based on the prelaunch measurements, was implemented for G16 on 04/23/2019 and G17 on 04/27/2019 to mitigate the large bias for these two bands.
 - The new difference to VIIRS are greatly reduced

Monitoring for all the VNIR bands are available at:

https://www.star.nesdis.noaa.gov/GOESCal/G16 ABI VNIR InterCal static.php https://www.star.nesdis.noaa.gov/GOESCal/G17 ABI VNIR InterCal static.php

G16/17 IR Calibration Accuracy

- G17 data is assessed at the gainset I period
- The mean Tb difference to CrIS/IASI is less than 0.2K for all IR bands, except for B16 (~0.4K)
- G17 B16 IR radiometric calibration accuracy will be further improved once the new G17 IR SRF is implemented
 - ✓ New G17 IR SRF is derived at the 81K temperature, the controlled operational temperature.
 - ✓ New SRF available at: https://ncc.nesdis.noaa.gov/GOESR/ABI.php

G16 IR Rad. Cal. Monitoring

- 1: Metop-B update of non-linear responsivity in August 2017
- 2. G16 ABI update of the scan-mirror emissivity LUT in October 2017
- 3. G16 ABI update of ICT PRT LUT in June 2018

More detailed daily and long-term monitoring available at: <u>https://www.star.nesdis.noaa.gov/GOESCal/G16_ABI_IR_InterCal_static.php</u>

Tb Diff(K) (ABI-LEO)

0.0

-0.2

0.2 0.0

-0.2

-0.4

2019

Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul

2020

0.0 -0.2

0.0

-0.2

G17 IR Rad. Cal. Monitoring: Gainset I

G17 ABI update of the scan-mirror emissivity LUT in early August 2019

0.0F

-0.5

More detailed daily and long-term monitoring available at: https://www.star.nesdis.noaa.gov/GOESCal/G17 ABI IR InterCal static.php

2019

Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul

2020

pCal Performance Validation

Predictive Calibration (pCal) algorithm was operationally implemented on 07/25/2019 to improve the radiometric calibration accuracy for B08-B16 when the IR FPM temperature is unstable

GEO-GEO Inter-comparison for pCal performance validation

OE: without pCal algorithm ITE: with pCal algorithm turnon FPM temperature

similar viewing geometry

Cooling Timeline to Recover Images

- Cooling timeline consists of cooling scenes and less earth scenes
- Implemented at 06:00-12:00z at "hot" nights in the eclipse seasons
- Recover 1-5 more FDs, 2-8 more CONUS, 30-100 more MESO images for most channels on most days

BDS update for Striping Reduction

Before BDS update

G17 B09 MESO1 2020/05/21T15:23:25UTC

After BDS update

G17 B09 MESO1 2020/05/21T15:24:25UTC

https://www.star.nesdis.noaa.gov/GOESCal/

Summary

- Calibration accuracy for the G16/17 VNIR bands is in general within 5%, after the calibration LUT updates in April 2019.
 - Using SNPP/VIIRS as the reference
- G16/17 ABI IR bands are well calibrated and stable
 - Bias to CrIS/IASI is less than 0.2K, except for G17 B16 at ~0.4-0.5K
 - New G17 IR SRFs will further improve the calibration accuracy, especially for B16
- Despite the LHP anomaly, G17 joins G16 to provide the high quality imagery for the weather and environmental studies
 - Detector noise meets the requirement at most IR channels at most time
 - G17 IR radiance is stable and well calibrated when the FPM temperature is controlled
 - The pCal algorithm greatly improves the radiometric calibration accuracy at the unstable FPM temperature time in a day
 - The cooling time helps to gain more valid earth images
- Efforts are still ongoing to further improve the ABI radiance quality

We would like to thank the ABI instrument engineers and calibration scientists from the Vendor, NASA Flight, MIT/LL and contractor companies for all the efforts to improve the ABI radiometric calibration performance, data users for the feedback, and the GOES-R Program Office for the coordination.