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Abstract 

Ana lysis, simulation, and design of electron-beam
deflection systems are reviewed in light of the current state 
of theoretical understanding. A brief review of the physical 
principles is followed by a detailed discussion of elec
trostatic, magnetostatic, mixed-field, traveling-wave, and 
scan-expansion systems . Each methodology is examined 
from a trip le perspective: calculation of electromagnetic 
fields, calculation of electron trajectories, and calcu lation 
of the ensemble of trajectories forming the beam. Applica
tions discussed include deflectors for television displays, 
lithography, scanning microscopes, and CRT 
osci llography . Developments of the last ten years are 
stressed, thereby supplementing and updating the author's 
previous review on this subject. 

In field calculation, recent developments in the use of 
numerical methods on computers dominate. These methods 
include finite-difference , finite-element, and charge-d ensity 
or integral-equation techniques. In trajectory ca lcu lations, 
increasing use of numerical integration as well as improve
ments and extensions of the aberration theory are found . 
In treatment of the beam bundle, the growing sophistica
tion of numerical deflected-beam models has lead to 
increased use of aberration figures, current-density plots, 
and phase-space methods. 

Key Words: electron-beam deflection, electrostatic deflec
tion, magnetostatic deflection, mixed-field deflection , 
traveling-wave deflection, scan-expansion lenses, numerical 
field calc ulation, electron-trajec tor y calculation, descrip
tion of electron beams, aberration theory of deflection. 
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Introduction 

Scope and Organization 
In this review, we shall consider the present theoretical 

understanding of electron-beam deflection, concentrating 
on the work of the last ten years. Thus, the discussion 
over laps and updates the coverage of th is author's previous 
review (Ritz, I 979). Hutter (1974) also reviews progress in 
electron-beam deflection, covering about 20 years prior to 
1974. Both of these previous reviews have extensive lists 
of references and are recommended reading as an introduc
tion to the field. No textbook exists that adequately serves 
this purpose . 

In the theory of electron-beam deflection, we are faced 
with three fundamental problems. First, we must so lve the 
Maxwell equations for the electric and magnetic fields pro
duced by the deflection system . Second, we must solve the 
Lorentz equation of motion for the trajectories of the indi
vidual electrons in these fields. Third, we must use the solu
tions to the first and second problems to calculate the col
lective behavior of the ensemble of electrons forming the 
beam. In general, these problems cannot be solved 
analytica lly. Therefore, simplified analytical models, 
approximations such as perturbation analysis, or numerical 
simulation on a computer are used. The various subfields 
of our subject differ greatly in the degree of success 
obtained with each of these methods. 

We shall consider our subject under the headings of 
electrostatic, magnetostatic, mixed-field, traveling-wave, 
and scan-expansion systems. However, for future reference, 
we shall first briefly review the physical principles and basic 
viewpoints needed for a ll of these topics. 
Calc ulation of Electromagnetic Fields 

We now review the relevant portions of elec
tromagnetic theory, using MKSA formulas and units. Our 
problem is to so lve the Maxwell equatio ns 

v'x E = aB 
a, 

v x H = J + ao a, 
v'·D = Q 

v'·B = 0 

( l) 

(2) 

(3) 

(4) 
for electric intensity E, electric displacement D , magnetic 
induction B, and magnetic inte nsity H , given th e physical 
structure of the deflector and the electrical source s that give 
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rise to the electric current density J and the electric charge 
density Q- In addition, J and Q must satisfy the equation 
of continuity 

V·J + <!g = 0 at (5) 

Finally, we shall generally assume isotropic, homogeneous 
media with 

D = EE 

B = µH 

(6) 

(7) 

in which the permittivity E and the permeabilityµ are con
stant within a material (with vacuum values Eo and µ0 as 
usual). 

It is frequently convenient to employ the electric sca lar 
potential <I> and the magnetic vector potential A in place 
of the field vectors E, B to which they are related by 

E (8) 

B = V x A (9) 

In the general time-dependent case, the electromagnetic 
potentials satisfy the coupled wave equations 

v 2<1>-_!_ a2<1> = 
vJ at 2 

in which vP is the phase velocity 

I 
V = --

p ..r,;; 

and the Lorentz gauge condition 

__!_ a<I> + V·A = 0 
vJ at 

(10) 

(11) 

( 12) 

(13) 

applies. The so lution s of the wave equations represent 
waves of E and B propagating with phase velocity vP. 

In the stat ic-field case, eqs. (10) - (11) reduce to 

- µJ 

_ g 
E 

(14) 

( 15) 

If in addition we are in a source-free region, then J and 
Q vanish so that 

E = - V<l> 

H = -V'lt 

(16) 

(17) 

( 18) 

(I 9) 
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where 'Y is the magnetic scalar potential now permitted by 
the vanishing of V x H . This Laplace formulation of the 
problem is particularly useful when the potentials or cur
rents on conductors are given and can be used to obtain 
boundary conditions on <I> or '¥. 

In most problems of electron-beam deflection, we can 
neglect the wave aspects of the fields and solve the simpler 
static Laplace equations, (16) and (18), rather than the full 
wave equations. This static-fie ld approximation assumes, 
in effect, that the driving fields travel from the input ter
minals to all parts of the deflector in a time that is short 
compared with the time in which the input signal changes 
appreciably. That is, for a sinusoidal input of frequency 
f, we must have 

2nftw << (20) 

in which lw is the transil time required for the wave to 
reach the farthest part of the deflector . This condition is 
violated in traveling-wave deflectors for high-speed deflec
tion . Note that in vacuum, t w will be about 33 psec for 
every centimeter of travel. 

So far, we have formulated the field problem in terms 
of partial differential equations relating the fields and their 
sources. One can also express the field as an integral over 
the sources. In the static case of electric charges on the sur
faces of conductors with specified potentials, the integral 
in question is 

(21) 

in which a is the density of surface charge, S represents 
the surface (or surfaces) of the conductor(s), and 
R = lx2 - x11-When the point of observation x2 lies on one 
of the conductors, then <I> must be the constant potential 
of that conductor. Thus, (21) can be regarded as an integral 
equation for the unknown charge density a(x 1) on the con
ductors. Once this density is determined, the potential at 
any point can be calculated from (21 ). For the general static 
case, we must add to (21) integrals over the volume densi
ty Q and over the surface dipole layer s (e.g., Stratton, 1941). 

The general time-dependent problem ca n be treated 
simi larly . If we assume a sin usoidal dependence exp(iwt) 
for the fields, currents, and charges, then 

A(x 2) 
= tn !ff J(x,)e - ikR 

dV 1 R 
(22) 

V 

<l>(x2) ff a(X1)e - ikR 
dS 1 

4TTE R 
(23) 

s 

in which V is the volume contammg the currents and 
k=w(µE) ½ =2 n/ >-., with}.. the wavelength. We shall not 
pursue this formulation here because it has yet to be applied 
in numerical field calculations for traveling-wave deflectors. 

We can give a third formulation of the field problem: 
the variational formulation. We define a functional F to 
describe the fields. For static electric or magnetic fields with 
scala r potentials <I> or '¥ , the functionals are 
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F = ff f ½ E (V<l>)
2
dV 

F = ff f ½ µ (Vv)
2
dv 

(24) 

Equations (24) are the energies stored in the fields, 
expressed as integrals over the volume V containing the 
fields . 

The potentials <I> and '¥ are determined by the condi
tion that the variation of F vanish with respect to varia
tions of the fields, thus minimizing the energy: 

oF = 0 (25) 

The resulting Euler-Lagrange equations reproduce (16) and 
(18). 

Each of the three formulations of the field problem 
is the basis of a corresponding technique for numerical solu
tion of that problem on a computer. The partial differen
tial equations (10) - (11) lead to the finite-difference method 
(FDM). The integral equations (21) - (23) lead to the 
integral-equation or boundary-element method (IEM). The 
variational equations (24) - (25) lead to the finite-element 
method (FEM). Rather than discuss these methods here, 
we shall introduce them as appropriate in later sections. 
For a general view of these methods, see Kasper (1982) on 
magnetic-field calculation. Much of his discussion also 
applies to electrostatic fields . Schaefer (1983) gives a helpful 
comparison of these numerical techniques as well as 
methods of combining numerical and analytica l so lution s. 
Calculation of Electron Tra · ectories 

Electron trajectories in an electromagnetic field are 
governed by the Lorentz equation of motion for the posi
tion vector r(1): 

! [ l _ (32 :; ] = - ry [ E + :; X B ] (26) 

in which (3= ldrldtllc, where c is the speed of light in 
vacuum and ry is the ratio of electronic charge e to rest mass 
m. In the literature , the nonrelativistic limit 

i-" = - ry[E+i-x BJ (27) 

is usually employed, and we shall also do so for simplici
ty. It is sometimes convenient to replace the independent 
variable t with arc lengths along the trajectory or with z, 
the coordinate in the direction of the beam. 

For numerical calculation, it is usually convenient to 
replace (27) with two equivalent first-order equations: 

V j- (28) 

(29) 

in which we have defined the second variable v . It is also 
useful to think of the electron as moving in the phase space 
defined by the six-vector (r,mv) or, less rigorously, (r,v). 

In principle, the fields E and B should include both 
the fields of the deflector as discussed in Calculation of 
Electromagnetic Fields and the fields due to the electrons 
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in the beam . However, the latter fields have not as yet been 
incorporated successfully into calculations of beam deflec
tion, although there has been much progress in the study 
of such effects in electron guns using the average-field or 
space-charge approximation (e.g., Hauke, 1977) . 
Therefore, we shall not discuss the self-fields of the beam. 

The trajectory equations (26) or (27) or (28) - (29) must 
be solved subject to initial conditions r(O) = r0 , i-(0) = i-0 on 
the starting position and velocity of the electron in ques
tion . Each electron in the beam has a different set of ini
tial parameters, although only slightly different. In what 
follows, we shall assume that the beam when undeflected 
is directed along the z axis of a rectangul ar coordinate 
system and travels in the positive-z direction . Thus, all elec
trons in the beam will have approximately the same value 
of z0. We take the term "beam" to mean that the 
transverse velocities io and Yo are small compared with z0 . 

In general, the trajectory equations cannot be solved 
analytically. To circumvent this difficulty, perturbation 
methods called aberration theory have been developed . In 
the classical formulation (e.g., Glaser, 1949, 1952; Haant
jes and Lubben, 1957, 1959; and Kaashoek, 1968), the 
Lagrangian function is expanded in a four-dimensional 
power series with dimensions x, y, x ', y '. The initial con
ditions are specified by giving the total energy (or beam 
potential), the position and slope x5 , y 5 , x5', x5' at the screen 
for the undeflected ray, and the position z = z0 of the start
ing plane. Here, primes indicate z derivatives. The deflect
ing fields and certain of their derivatives must be supplied 
along the z axis. 

The resulting equations of motion are so lved by suc
cessive approximations. The result is a power ser ies for the 
landing position of a ray at the screen or target plane . The 
first correction to the landing point of the undeflected ray 
is the Gaussian deflection, which is proportional to the 
deflection potential or deflection cu rrent. The next correc
tion consists of the so-called third-order aberrations , which 
fall into three classes. Terms that are cubic in the x and 
y Gaussian deflections but independent of x5 , y 5 , x;, y5' 

produce raster distortion. Terms that are quadratic in the 
Gaussian deflections but linear in the ray parameters pro
duce curvature of the field and astigmatism. Terms that 
are linear in the Gaussian deflection but quadratic in the 
ray parameters produce coma. Higher corrections are rarely 
used becau se of their number and comp lexity. In all cases, 
the coefficients of the power series are complicated integrals 
of Gaussian deflections and field functions on the z axis . 

The aberration theory has recently been improved 
(e.g., Chu and Munro, 1982a) in connection with deflec
tion systems for scanning microscopy and electron-beam 
lithography. We shall consider these improvements under 
Mixed-Field Deflection. 

It is important to note that the aberration theory of 
deflection is a narrow-angle theory . In the third-order 
approximation, the theory is limited to deflection angles 
of 20 ° or 25 °. The series expansions employed in the deriva
tion of the theory fail altogether to converge for angles of 
45 ° or greater. To avoid this limit, some authors have 
employed curved optical axes for their perturbation expan
sions. However, such theories are even more unwieldy than 
the narrow-angle versions . The paper of Hutter (1970) 
expounds this method and also has a good review of earlier 
work. In all cases, these perturbation approximations apply 
only to static fields. 
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The failure to obtain analytical solutions and the 
limitation s of aberration theories have led to the develop
ment of numerical methods for use on computers. The 
problem is the solution of the three coupled second-order 
equations (27) or the six first-order equations (28) - (29). 
These are linear ordinary differential equations for which 
several methods of solution exist. A recent review of this 
topic appears in Kasper (1982). 

In the discussion above, we have tacitly assumed that 
we can neglect any changes in the deflection fields that 
occur during the passage of a particular electron through 
the deflector. For this assumption to be valid, a condition 
like (20) must apply. That is, for a sinusoidal input to the 
deflector, we must ha ve 

2rrfle < < I (30) 

in which f is the frequency and le is the transit time for 
a sing le deflector. If this is true, we can use the instan
taneous values of the fields at the time the electron enters 
to calculate the entire trajectory. Thus, two conditions, (20) 
and (30), must be satisfied for the static -defl ection approxi
mation to hold. 
Calculation of Beam Properties 

After we have calculated a single trajectory in the 
deflecting fields, we are far from knowing how the entire 
beam behaves. If we think of each electron as a point in 
the phase space (x, y, z, x, y, z), then the beam is 
represented at any instant by a cloud of points in the same 
six-dimensional space (we assume non-interacting elec
trons). It is clearly impossible to calculate the paths of all 
these electrons through phase space, hence the importance 
of the methods used to determine the properties of the beam 
and of the final spot by less drastic means. Since most of 
these methods involve sma ll subsets of the electrons form
ing the beam, it is essential to remember the full complexity 
of the distribution in phase space; otherwise, it is easy to 
draw unjustified conclusions. 

Under the conditions of static deflection, a cloud of 
points representing a group of electrons moves with time 
so that the volume of phase space occupied remains cons
tant (Liouville's theorem); however, the shape of that 
vo lume can alter significantly. Thus, if the spread in 
velocity increases, the spread in position must decrease and 
vice versa. Conseq uentl y, considerable knowledge of the 
beam can be obtained by following the evo lution of the 
boundary of the volume. To aid in visualization, the 
volume can be projected onto the three phase planes (x,x), 
(y,y), (z,z). Where one or more of these phase planes are 
uncoupled in the equations of motion, Liouville invariance 
can be applied to the projection of the total volume onto 
the uncoupled plane or planes and the remaining volume. 
See the reviews by Lejeune and Aubert (1980) and by 
Crawford and Brody (1966) for an introduction to these 
ideas. 

If the beam is approximately monoenergetic, a useful 
description of the beam is the amount of charge passing 
through the point (x,y) in the transverse plane z = constant 
per unit time and per unit volume dxdydx 'dy' in the 
transverse trace space (x,y,x ',y '). This quantity is variously 
named and symbolized. We shall call it brightness and 
denote it by R(x ,y,x',y',z ) after the original German term 
Richtstrahljunktion. Note that Liouville invariance does 
not generally apply in trace space. 
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The brightness function can be measured (e.g., 
Lejeune and Aubert, 1980; Lauer, 1982) or simulated on 
a computer (e.g., Hauke, 1977) for some electron guns. 
Then the brightness in the exit plane z = z0 of the gun can 
be transformed into the target or screen plane z=z 1 by 
using the transformation functions x 1 =x,(xo,Yo,Xo,Yo), 
etc. that connect the initial with the final ray parameters. 
These functions are obtained from trajectory calculations 
for the deflectors. The initial and final brightnesses are 
obtained from the relation 

in which J is the Jacobian determinant of the parameter 
transformations. 

The current density in any plane z = z I can now be 
found by integrating the left side of (31) over xi' and y( 
This ha s actually been done by Wang (1967a) for some 
special cases using the full Jacobian formalism. This was 
possible because Wang obtained ana lytical transformation 
functions using aberration theory from which the Jacobian 
was calculated analytically. 

However, for computer simulations thi s cannot be 
done directly. Consequently, it is more common to calculate 
a large number of trajectories by numerical integration and 
to plot their landing points to give an impression of the 
deflected spot. The initial parameters of these trajectories 
are chosen to represent the density distribution of electrons 
in phase space. Examples of this approach include Wang 
(1967b), Lucchesi and Carpenter (1979), Kanaya and Baba 
(1980), and Baba and Kana ya (1981 ). (Calculations of this 
kind require careful interpretation because the actual den
sity in phase space is frequently approximated using more 
or less drastic assumptions.) 

A simpler and much older method of characterizing 
the deflected spot uses aberration figures. In this method, 
the undeflected beam is represented by a hollow cone hav
ing base radius rand height L (in the z direction). This cone 
is traced out by a rotating ray starting at an azimuthal ang le 
,p in the base. The aberration figure is the closed curve 
described at the screen by the landing point of the deflected 
generating ray. The value s of r and L can be varied to 
explore the behavior of various parts of the brightness 
distribution. These aberration figures can be calculated 
(e.g., Wang, 1967b; Kasper and Scherle, 1982; Kanaya and 
Baba, 1980) and also measured using suitable apparatus 
(e.g., Friend, 1951). A disadvantage is the limitation to 
meridional rays (point-focused beam). 

Electrostatic Deflection 

Introduction 
Most of the published work on this topic after the 

review of Rit z (1979) appears to be confined to electrostatic 
multipole deflectors . This review, together with that of Hut
ter (1974), covers earlier work. Great improvements in the 
calculation of electrostatic fields in these systems have been 
made since I 979. The level of sophistication now 
approaches that already attained in the study of 
magneto static deflecting fields. The new work has been 
done in connection with narrow-angle deflectors for 
electron-beam lithography a nd scanning electron 
micros copy. 
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There is nothing new of interest in the calculation of 
trajectories by numerical integration; however, the aber
ration theory is bein g applied extensively, and several 
improvements have been made. As these improvements are 
general enough to apply to systems with mixed electric and 
magnetic fields for both focusing and deflecting the beam, 
they will be considered in the section on mixed-field 
deflection. 

In the study of deflection aberrations of the beam, 
accurate determination of the fields has permitted wider 
use of the coefficients from the aberration theory. These 
have been used to construct aberration figures and spot 
profiles generated from a multitude of individual landing 
points of deflected rays . Also, progress involving heavy use 
of the aberration theory has been reported in the dynamic 
correction of beam aberrations with stigmators. 
Calculation of the Electrostatic Field in Multipole 
Deflectors 

Multipole deflectors are of two types, which we shall 
call surface multi poles and rod multi poles. Both types con
sist of longitudinal electrodes arranged on a surface of 
revolution, usually a cylinder. However, surface electrodes 
are thin and conform to the surface of revolution, whi le 
rod electrodes are usually cylindrical in cross section with 
their axes lying on the surface of revolution . Appropriate 
deflection potentials are applied to each electrode through 
a resistor chain or by separate voltage supp lies. Such deflec
tors may provide one or two axes of deflection . If both 
x and y deflection are provided, the deflector is often 
referred to as an electrostatic yo ke. In the following account 
of field calculations for these deflectors, we follow the treat
ment of Munro and Chu (1982b). 

The potential <I> for surface multi poles can be written 
as a Fourier series 

<l>(r,cp,z) = I; [Um(r,z) cos mcp 
m = I 

+ Vm(r,z) sin mcp], m odd (32) 

in the azimuthal ang le cp (cylindrical coordinates r,cp,z). 
The terms in Um give the horizontal deflection and 
those in Vm give the vertical defle~tion . Whe~ . 
substituted into the Laplace equation (16) , this Fourier 
expansion gives the reduced Laplace equation 

a2U,,, I aum a2U,,, 
-- + --- + -- -

ar2 r ar az 2 (33) 

which is satisfied by both Um and Vm. 
On the surface r = Rd(z) of the deflector, Um and Vm 

take the values 

2n 

.!. { <l>(Rd, cp,z) cos mcpdcp 
TT Jo (34) 

(35) 

which give the required Dirichlet conditions for the solu
tion of (33) for Um and Vm. (This assumes that the varia
tion of potential in the gaps between electrodes can be 
neglected or approximated in some manner, e.g., linearly .) 
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The multipole potentials Um and Vm can be expanded 
about the z axis in power series 

U3(r,z) = - f 3(z)r 3 + /
6 

f;,'(z)r 5 - . . (37) 

and so on. Consequently, all of the Um and Vm vanish for 
r = O and vary as rm near the axis. That is, near the axis 
we can neglect the terms beyond some finite value of m 
as being small corrections and truncate the infinite series 
(32). At large distances from the deflector, the multi pole 
potentials must remain finite. Thus , the three-dimensional 
problem is reduced to a finite sum of two-dimensional 
problems. 

In general, the reduced Laplace equation must be 
solved by numerical computation. Use of the finite-element 
method has been reported by Munro and Chu (1982b). As 
in magnetic deflection, one could also use the finite
difference method. We shall later discuss such a solution 
for the full three-dimensional field. The functional to be 
minimized has the form 

+ (m~"')2

) rrrdrdz (38) 

for U111 with a similar expression for V111• The inte gra tion 
is over the part of the (r,z) plane with r ~ 0 and enclosed 
within an outer boundary (at a large distance from the 
deflector) on which U,,, = V,,, = 0. References describin g the 
details of the finite-element minimization procedure were 
given under Calculation of Electromagnetic Fields, above. 

The method just described is inappropriate for rod
multipole deflectors because the boundary potentials are 
not defined on a surface of revolution about the z axis. 
Consequently, the calculation remains a true three
dimensional problem. To solve it, Munro and Chu (1982b) 
introduce the "charge-density method," a special case of 
the integral-equation approach. 

Each electrode surface is subdivided into man y small 
patches or subelectrodes, the )-th one of which carries a 
uniform surface -cha rge density a1. The potential is then 
expressed as the integral (21) over the surfaces of the elec
trodes . This integral becomes a summation over the 
subelectrodes. The potential at the center of subelectrode 
i resulting from all the N a1 is 

N 

<I>;= E Pua) 
) = I 

in which the coefficients Pu are 

I (( dS1 
Pu = 4rrc0 JJ Ru 

SJ 

(39) 

(40) 

where R .. = lx--x•I and S- is the area of subelectrode j. 
I} I J J . . 

Equation (39) represents N equations m N unknown s for 
the charge densities a1. The <I>; are a ll known from the 
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given electrode potentials and the Pu are calculated from 
the integral (40). These equations are solved numerically 
by any suitable standard method. Once the a1 are known, 
the potential anywhere can be calculated by performing the 
integral (21) for each subelectrode and then summing over 
all the subelectrodes. 

Munro and Chu (1982b) also describe the calculation 
of an effective capacitance for these deflectors using both 
the finite-element and integral-equation results. The 
calculation rests on the relationship between stored energy 
and capacitance. 

Baba and Kana ya (1981) have calculated the field of 
a quadrupole deflector having noncylindrical rod electrodes 
of finite length. They use the finite-difference method with 
successive over-relaxation to calculate the full three
dimensional field. The computational mesh is defined by 
horizontal and vertical lines in the (r,z) planes and by circles 
and radial lines in the (r, ,p) planes. 

In comparing the finite-element, finite-difference, and 
integral-equation methods, it is well to note that, accord
ing to Kasper (1982), the finite-element method suffers 
from a loss of accuracy in rotationally symmetric systems 
near the axis. This is a result of the linear approximation 
to the potential that is ordinarily employed in each finite 
element. The problem can be corrected by using a higher
order approximation, but at the expense of increased com
plexity. Although a study of this problem for deflection 
fields has not been published, it appears that the finite
element method should be used cautiously. 
Calculation of Electron Tra · ectories and Beam Pro erties 

These calculations have been carried out in the 
framework of aberration theory in the papers seen. 
Numerical integration of trajectori es has not been used. 
No doubt this is because the applications for these deflec
tors are in narrow-angle systems, for which the third-order 
theory is generally adequate. Aberration theory also has 
the advantage of giving the landing positions as power series 
in the initial ray parameters, which permits economical 
calculation of numerous landing points to simulate th e 
de fleeted spot. 

Chu and Munro (I 982a) formulate extensive improve
ments of third-order theory to permit calculations for any 
combination of electric or magnetic, focusing or deflec
tion fields . Kanaya and Baba (1980) and Baba and Kanaya 
(I 981) display numerous examples of both aberration 
figures and spot profiles constructed from many individual 
landing points . (The first of these two papers deals with 
a sequential system of parallel-plate deflectors .) Kanaya 
and Baba also describe the use of dynamic focusing and 
an octupole stigmator to correct for deflection aberrations. 

In closing, note that the multi pole potentials in m = I 
and m = 3 completely characterize the fields for purposes 
of third-order aberration theory. These first two harmonics 
contain all terms depending on r or r 3. These are precisely 
the terms needed to specify the field profiles on axis that 
appear in the integrals for the aberration coefficients. 

Magnetostatic Deflection 

Introduction 
As was the case in the earlier review (Ritz, 1979), the 

bulk of the work in the theory of deflection continues to 
be done in magnetostatic deflection, and the largest por
tion of that effort relates to color television. However, the 
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work in magnetostatic deflection for electron-beam 
lithography is increasing . 

In field calculation, the finite-difference methods that 
were previously the standard have been supplemented with 
finite-element and integral-equation calculations. In the lat
ter method, the requirement of infinite permeability for 
the core has been relaxed, permitting investigation of the 
effects of finite permeability on the deflecting fields. Also, 
the field calculations have been used to calculate the stored 
energy and inductance for magnetic yokes. 

In trajectory calculation, both numerical integration 
and aberration theory continue to supply useful results. 
Substantial advances in the theory of self-converging inline 
color TV have been reported using both techniques, includ
ing a new method for reducing the residual misconvergence 
in these systems. The improvements in aberration theory 
alluded to above apply also to magnetostatic deflection, 
although we again defer discussion to Mixed-Field 
Deflection. 

In the calculation of beam and spot properties, detailed 
simulations have been carried out for examples of self
converging inline systems using fields calculated by finite 
differences and trajectory end points determined by a com
bination of numerical integration and interpolation. The 
results agree very well with experiment. Several studies have 
produced aberration figures for deflection in magnetic 
yokes. A method for combining a minimum number of 
directly integrated trajectories with interpolating functions 
of a theoretically desirable form has been described . This 
technique permits large numbers of landing points to be 
calculated from a small number of suitably chosen sample 
trajectories. 

Finally, some progress has been report ed on the prob
lem of synthesis in the design of magnetostatic deflector s. 
As opposed to the problem of analysis of given structure s 
to determine their behavior, the problem of synt hesis 
requires the determination of structures that will produce 
a desired behavior. In general, such a structure may not 
exist. The problem of synthesis is then one of optimiza
tion. The reported work addresses both the existence and 
the optimization problems. 
Calculation of Fields 

In the work reviewed by Rit z (1979), the technique of 
finite differences dominated the numerical calculation of 
fields in magnetostatic deflectors when permeable cores 
were present. The finite-element method was just being 
introduced. In recent years, the fashion has shifted 
somewhat in the direction of integral-equation methods, 
beginning with Fye (1979) and Tugulea et al. (1979). These 
two papers illustrate divergent 'approaches, however. Fye 
reduces the dimension of the problem from three to two 
by Fourier analysis in the azimuthal angle ,p as above, 
expressing the density of surface current in a Fourier series. 
Tugulea and his co-workers solve the full three-dimensional 
problem, as do Munro and Chu (1982b) in the analogous 
electrostatic case. Kasper and Scher le (1982) follow Fye in 
this respect, but employ a variant procedure in which rings 
of magnetic charge replace the permeable surfaces and cur
rents. In Scherle (1983a,b), the permeability of the core 
need not be infinite. He provides numerous field profiles 
for saddle and toroidal yokes having values of µ/ µ0 rang
ing from I 05 to I. Above I 03 , he finds the effects of fur
ther increases hardly noticeable . 

The finite-difference method continues to be used . 
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Yokota et al. (1979) apply the FDM to a yoke for I 10°, 
18-inch diagonal deflection for a color-TV application. This 
yoke has toroidal vertical and saddle horizontal windings. 
The toroid is wound on the surface of the core while the 
sadd le is detached. They employ the method of Nomura 
(1971) in dealing with this detached winding. Equipoten
tial plots, field profiles, and computer-program organiza
tion are given. However, they encounter unexplained dif
ficulties with some of their trajectory calculations. Ximen 
and Chen (1980) also employ the FDM in the simulation 
of a toroidal yoke on a cylinder. In all cases, these authors 
first decompose the sca lar potential '¥ and the current 
distribution into Fourier series in azimuth <pas described, 
for examp le, in the review by Ritz (I 979) and then solve 
the resulting two-dimensional problems. Thus, nothing fun
damentally new is being reported here. 

Munro and Chu (1982a) describe the application of 
the finite-element method to the fields of saddle yokes with 
or without the presence of permeable elements. As with 
the FDM, two-dimensional multipole potentials are 
calculated. The FEM permits the use of finite permeability 
for the core. A va luable feature of this paper is a com
parison of the finite-element solution for a particular yoke 
with the analytic solution as calculated by the Biot-Savart 
law from the currents (no core present). An accuracy of 
I% to 2% is reported. 

An interesting analytic method is described by Das
gupta ( 1983b). He assumes that in each cross section 
z = constant, the fields behave as do those of an infinite 
cylindrical yoke of the same cross section. The effect of 
the end turns in saddle and toroidal yokes is more difficult 
to calculate. Dasgupta ignores the effect of the core on the 
end turns in saddle windings and neglects toroidal end turns 
altogether. The resulting fields are checked against fields 
calculated by the method of Fye ( 1979). There is a good 
resemblance between the two but errors are substantial, on 
the order of 20% in field strength . This accuracy is proba
bly inadequate for most purposes. Also, the basic calcula
tion uses the Biot-Savart law and is quite involved, requir
ing the use of hypergeometric and beta functions. 

In another paper, Dasgupta (1983a) analyzes the effect 
of finite winding thickness on the field. This is an impor
tant question, because ordinarily it is assumed that the 
windings can be represented by sheet currents. He uses 
analytical calculations for infinite-cylinder yokes to show 
that for thick windings the higher harmonics of the field 
have smaller amplitudes than in the thin-winding case. 
Also, since the size of the error depends on m, there is no 
"average" position at which the approximate sheet cur
rent can be placed. The effect is more severe for detached 
than for surface windings. 
Calculation of Energy Storage and Inductance 

Ritz (I 980) describes the calcu lation of energy storage 
and inductance for magnetic yokes, using fields calculated 
by the FDM for the angular harmonics. He shows that each 
harmonic of the field contributes independently to the 
stored energy and inductance. The calculation rests on the 
relation 

w = lu 2 

2 
(41) 

amongst inductan ce L, current/, and energy W stored in 
the field of the yoke. The stored energy is calcu lat ed by 
integrating the energy density ½µIHl 2 over the entire 
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volume containing the field. This leads to two methods: 
a surface integra l in the (r,z) plane and a contour integral 
in that plane. The second follows by use of Green's first 
identity of potential theory . The theory is used to compare 
energy storage in sadd le and toroidal yokes. [Note that the 
sign of his Eq. (7) is reversed.] 

Dasgupta (1982) calcu late s the inductance directly by 
means of flux linkages for saddle yokes only. His result 
is a special case of Ritz's second (contour integral) method. 
The fields used are calcu lat ed by the FDM. 

Scher le (I 983b) a lso calculates the stored energy but 
uses fields calculated by the IEM. His method permits the 
core permeability to be finite, and he gives a very instruc
tive graph showing the effect of permeability on the total 
stored energy for saddle and toroidal yokes. The energy 
increases until µIlk)"" 500, after which little change occurs. 
Calculation of Trajectories 

Both numerical-integration and aberration-theory 
calcu lations of trajectories are well established in 
magnetostatic deflection. Consequently, app lications rather 
than newly introduced methods are currently interesting. 
The important areas of study are misconvergence in self
converging color inline CRTs and deflection aberrations 
in systems for electron-beam lithography. As noted 
previously, the latter topic is considered under Mixed-Field 
Deflection. Good accounts of the misconvergence prob
lem, based on third-order aberration theory, are given by 
Heijnemans et al. (1980) and by Hutter (1979) . We sum
marize them here . 

An inline color CRT contains three electron guns: red, 
blue, and green. The green gun is aimed along the z axis 
while the other two lie at equal distances either side of green 
in the horizontal (x,z) plane. The two outer beams are 
aimed so that all three undeflected beams land at the center 
of the screen . The common landing point must also be 
maintained as the beams are deflected . Departures from 
this condition are termed misconvergence. In self
convergent inline CRTs, convergence is achieved by proper 
design of the yoke, gun, and sometimes magnetic pole 
pieces rather than with auxiliary convergence coils driven 
by dynamic currents that depend on the deflection currents, 
as in delta-gun CRTs. 

Self-convergence is quite difficult to achieve. Ordinary 
deflection yokes with so-called homogeneous fields cause 
the three beams to cross and diverge before reaching the 
screen. This defect is partially corrected by giving the 
horizontal deflecting field a pin-cushion shape and the ver
tical field a barrel shape . This is done by introducing a large 
third-harmonic component into the angular distribution of 
winding current for each axis of deflection. The strengths 
are adjusted to remove horizantal red-blue misconvergence 
at the ends of the x and y axes on the screen. 

In the third-order aberration theory, this also removes 
horizontal red-blue misconvergence in the corners but 
leaves a vertical red-blue misconvergence due to 
astigmatism error. There is also coma error, which causes 
the green beam to land inward from the average position 
of the red and blue spots. 

Astigmatism is affected most strongly by the amount 
of third harmonic at the yoke exit while coma is affected 
most strongly at the entrance and with the opposite sign. 
Consequently, by having the amount of third harmonic in 
the windings change sign from front to rear, both astigmatic 
and comatic misconvergence can be removed at the ends 
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of the x and y axes, although the vertical astigmatic 
misconvergence between red and blue remains in the cor
ners. The desired winding distribution is achieved with 
nonradial (nonmeridional) turns. All of these conclusions 
follow from use of the third-order aberration theory. 

There is another widely used method of correcting for 
the coma error. Permeable pole pieces called shunts are 
placed at the exits of the two outer guns (red and blue) to 
reduce their deflection slightly, and another pole piece 
called an enhancer is placed at the exit of the center (green) 
gun to increase its deflection slightly. Because the effect 
depends linearly on the strength of the yoke field, it exactly 
corrects everywhere for coma error, which depends linearl y 
on the yoke currents. Formerly, the pole pieces were 
designed empirically, but recently Fye and Grinberg (1980) 
have calculated the effects of these field controllers using 
the integral-equation method. 

Ando et al. (1977) and Nakamura et al. (1982) have 
asserted and demonstrated, respectively, that the residual 
vertical red-blue misconvergence in the corners can be 
reduced or even eliminated by displacing the horizontal 
winding toward the gun with respect to the vertical wind
ing. The demonstration is accomplished with the third
order aberration theory as formulated by Kaashoek (1968). 
Calculation of Beam Properties 

Severe aberration of the deflected spot is an unwanted 
consequence of self-convergent deflection fields. The yoke 
produces a vertical line focus everywhere on the screen for 
a cone of rays focused at the center of the screen. The 
diameter of the base of the cone is the distance between 
the two outer beams at the exit of the gun. The deflected 
image of the smaller cone approximat ing the green (center) 
beam should also be a (shorter) vertical line. However, 
because practical beams have spherical aberration and 
hence are focused (undeflected) for the circle of least con
fusion, the resultant spot is actually quite different. There 
is a bright horizontal line or cigar with triangular regions 
of flare above and below and with a large elliptical halo 
surrounding the core region . (See Yoshida et al., 1974 and 
Hutter, 1979 for qualitative explanations of these 
phenomena .) 

Lucchesi and Carpenter (1979) have simu lated both 
the undeflected and deflected spots by computer for a self
converging inline yoke. This is the most elaborate and com
plete spot simu lation in electron optics that is known to 
this reviewer. They begin with a computer program that 
computes positions and slope s for 123 trajectories at the 
exit of the electron gun, including the effects of space 
charge and thermal velocities. These trajectories, calculated 
originally in the (r,z) plane, are repeated at 100 equally 
spaced angles in the (r, ,p) transverse plane . The resulting 
12,300 rays are projected through the yoke fields with the 
aid of numerical integration . 

However, Lucchesi and Carpenter do not integrate all 
these rays, which would be impossibly expensive and time 
consuming. Instead , they calculate a much sma ller number, 
taking twelve different azimuths, four different radii, and 
six different slopes, plus the central ray, for a total of 289 
trajectories. The landing points for all of the other rays 
are found by linear interpolation between the directly 
calculated rays. 

The result is a picture of the deflected spot that agrees 
remarkably well with photographs of actual spots. The 
main discrepancy is a reduction of size, which the authors 
ascribe to the neglect of space charge in the deflecting fields. 
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This reviewer suggests that their apparent neglect of skew 
rays may also co ntribut e to the discrepancy. 

The principal defect of their method is the sti ll large 
number of trajectories to be calculated. This number can 
be reduced by an order of magnitude using a technique 
described by Ritz (1981). The x and y positions at the screen 
are expressed as Fourier series in the azimuthal angle ,p for 
a ray lying on the surface of a cone havin g base radius r 
and length L (undeflected). The ordinary aberrations of 
astigmatism and coma require only the terms in ,p and 2,p 
for their representation. Ritz shows that only 16 trajectories 
with various values of r, ,p, and L need be calculated to 
determine all the necessary Fourier coefficients. The 
angular dependence is fitted using the fast Four ier 
transform. The dependences on rand L are fitted by least 
squares. 

Once the coefficients are known, any landing point 
can be interpolated between the sample values. In this way, 
landing points become easy, fast, and inexpensive to 
calcu late in great numbers . Thus, aberration figures and 
the current distribution in the spot become much more 
accessible . 

This method is actually a special case derived from 
a six-dimensiona l power series expansion in a phase-space 
perturbation theory of wide-angle deflection. Typically, 
powers of order 2 or 3 (Fourier components through 2,p 
or 3,p) suffice for excellent accuracy of fitting. If the power 
series formulation were used, least-squares fitting to the 
samples in rand L would be unnecessary and the number 
of samples required would be reduced further for a given 
accuracy. 
The Problem of S nthesis 

Suppose that we ask what winding density is requir ed 
to produce a desired set of harmonics of the winding, deter
mined for example by the procedure described above for 
achieving a self-convergent inline yoke. At first glance, this 
question appears to be a trivial matter of adding up the 
individual harmonics of the winding according to their 
required amplitudes. 

However, in practical yokes the mechanical constraints 
on the placement of the wires may make it impossible to 
produce the harmonics required, and only those harmonics. 
We must therefore synthesize a winding that comes as close 
as possible to the desired one. This inverse problem is 
exceedingly difficult and has not been addressed previously 
in any effective way. 

The three papers of Vassell (198la,b ,c) address the 
question of windability for winding densities with a finite 
number of adjustable parameters, discrete densities, and 
densities with an infinite number of parameters. These 
papers are difficult though elegant. In essence, Vassell 
transforms the winding variab le from azimuthal angle ,p 
to t = cos 2,p and then applies some results of the branch 
of mathematics concerned with the theory of power 
moments of distribution s. 

Each winding density is characterized by its normalized 
harmonic ratios 

h - A2p + I 
2p+I - ~ (42) 

in which A 2P + 1, p = l, 2, 3, ... is the amplitude of the 
2p + 1 harmonic of the winding. For a given set of con
straints on the winding, the set of feasible windings is 
represented by a subreg ion of the space with coordinates 
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(h3,h5,h7, ..• ). These regions of feasibility are determined 
using the moment theory. Since in practice, one specifies 
a sma ll finite number of harmonic amplitudes, the space 
in question is usually of low dimensionality. In any case, 
these papers deserve wider notice than they have received 
so far. 

Dasgupta (1983c) addresses the same problem as 
Vassell, but limits his study to toroidal yokes having radial 
(meridional) windings. Like Vassell, Dasgupta derives con
ditions on the values of the harmonics permitted by the 
winding constraints, but his approach and results are far 
less general. He also proposes to circumvent these restric
tions by adding turns at properly chosen angles. 

Another approach to determining a structure that will 
have the desired electron-optical behavior is taken by Chu 
and Munro (1982b). They consider a set of m functions 
f; depending on a set of n parameters. Each function is the 
product of a weight and an individual aberration. A defect 
function or merit function equal to the sum of the squares 
of the m functions f; is to be minimized by varying the n 
parameters. 

This is done using the damped least squares method, 
according to which the partial derivatives of the f? with 
respect to the parameters are used to obtain an improved 
value of the defect function. A damping factor is used at 
each step to stabilize the process and to speed convergence. 
The calculations are done by computer. As an example, 
they optimize a pure magnetic focusing and deflection 
system suitable for electron-beam lithography, although 
a pure deflection system could presumably be treated in 
the same manner. 

Mixed-Field Deflection 

Introduction 
Under this topic, we shall consider deflecting systems 

composed of electric or magnetic fields for focusing or 
deflection in any number or combination. Historically, 
mixed-field devices have been used typically in imaging 
tube s such as vidicons and in such devices as scan con
verters. However, the current field of greatest activity is 
in electron-beam lithography and scanning microscopy. 

This section is organized somewhat differently from 
the previous sections. Because we have already discussed 
the ca lculation of electrostatic and magnetostatic deflect
ing fields individually, we need not do so again here. 
Likewise, as the calcu lation of fields for focusing lenses 
is widely discussed in the literature of electron optics, there 
is no point in repeating that discussion here. Consequently, 
we shall proceed under the combined topic of trajectory 
and beam calcu lation . 
Calculation of Trajectories and Beam Properties 

Because the typical electron-beam lithography or 
scanning-microscope deflecting system is a narrow-angle 
system, the aberration theory of defl ection is appropriate 
and is heavily used. However, the previous formulations 
of aberration theory are intended for single- or double-axis 
deflectors and not for multiple sequential deflectors or for 
deflectors with overlapping focusing fields. 

This circumstance has prompted many recent improve
ments of the third-order aberration theory. The most com
prehensive and accessible treatment is that of Chu and 
Munro (1982a). We sum mari ze here the principal features 
of their formulation and co mpare it with the traditional 
formulation. 
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C hu and Munro permit any combination of focusing 
and deflecting fields; these may overlap. The electron 
source may have a finite size. Both electric and magnetic 
fields can be used. 

The deflection currents are expressed in complex form 
I= Ix+ ily and the deflectism potentials as V = Vx + i Vy, 
with complex conjugates / and V. The same currents 
and potentials are applied to all deflectors in a multiple 
deflector. The complex current and complex potential 
appear explicitly in the ultimate aberration expansions. In 
the conventional theory, they are concealed in the Gaus
sian deflections. 

The theory uses the complex position w = x + iy and 
complex slope w' =x' + iy' as well as their complex con
jugates w and w '. The ray parameters are expressed as 
w = Wo, w' = s0 , / ,V in some initial plane z = z0 . Contrast 
this with the conventional method of specifying position 
and slope of the undeflected ray at the screen. 

The fields and trajectories are expanded in powers of 
w, w, w', w', /, 7, V, and 17 as appropriate. However , 
instead of using these expansions to construct the 
Lagrangian and Euler-Lagrange equations, Chu and Munro 
use the Lorentz equation (27) directly (after changing 
variables from t to z). The resulting equations of motion 
are solved by successive approximations. In first order, the 
two Gaussian deflections in x and y are replaced by four 
principal rays. Each principal ray is specified by w0, s0, 

/, and V, of which one parameter is unity and the rest zero 
for a given ray. These principal rays are then used to obtain 
third-order corrections. 

The final aberrations are expressed in terms of the 
following complex quantities at the image plane: aperture 
angles;, Gaussian spot size w;g, magnetic deflection vec
tor w;11,, and electrostatic deflection vector W;e• These are 
simply related to w0 , s0, /, and V by the four principal 
rays . In general, there are 59 complex coefficients. When 
the Gaussian spot size W;g can be neglected, there are only 
27. 

The 27 aberration coefficients for the latter case are 
given in terms of two general integration functions 
F(w 1,w2,w3) and G(w1,w2,w3) in which w1, w2, and w3 are 
dummy arguments. These functions are complicated inte
grals that require computer evaluation. 

The effect of these improvements is to increase 
generality, simplify the use of symmetry arguments in 
eliminating terms, and simplify algebraic bookkeeping and 
computer programing . 

Many other authors have applied similar ideas to 
various systems too numerous to mention here individually. 
These include Goto and Soma (1977); Ohiwa (I 978, 1979); 
Kuroda (1980); Lencova (1981); Hosokawa et al. (1981); 
Ximen and Li (1982); Li and Ximen (1982); and Chen et 
al. (1983) . The paper of Chu and Munro (1982b) on opti
mization was reviewed above under Magnetostatic 
Deflection . 

Traveling-Wave Deflection 

Assessment 
There are no recent publications reporting anything 

new of particular note on the theory of traveling-wave 
deflector s since the review by Ritz (1979) . This writer still 
retains his opinion that further progress requires use of 
computer simulations of the full wave fields as described 
in the Introduction of the present paper. Such simulations 
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have been done for other high-frequency structures but not 
yet for traveling-wave deflectors. 

Scan Expansion 

Introduction 
Only a few papers have appeared on the theory of scan 

expansion si_nce the previous review by Ritz (1979). These 
papers fall mto three categories: mesh scan expansion
meshless expansion with rotationally symmetrical lenses'. 
and meshless expansion with quadrupole lenses. The tech: 
niques ~f an_alysis used include geometrical optics, field 
calculations m two and three dimensions using numerical 
methods, and third-order aberration theory. 
Calculation of Fields 

The FDM is now being used in the calculation of fields 
for scan-expansio? systems. Hawes and Nelson (1978) 
employ this techmque to calculate the field for a rota
tionally symmetric mesh post-deflection lens . This is a two
dime?sional calculation in the (r,z) plane. Franzen (1983) 
descnbes a program that combines three-dimensional FDM 
(Liebman) calculations with Fourier expansion methods to 
calculate the fields in a complex, nonrotationally symmetric 
meshless lens of quadrupole type. The Fourier-Bessel 
expansion is used to provide boundary values for the FDM 
relaxation calculation. Further details are given in J anko 
et al. (1983) and in Hawken et al. (1983). 

Haley et al. (I 979) describe the calculation of fields 
for a rotationally symmetric expansion lens using the 
11:ethod of_ moments, which is an integral-equation tech
mque . Their w~r~ appears to be ~wo-dimensional, although 
this 1s not exphc1~ly stated. Their lens is used as a projec
tion lens to magmfy a storage mesh illuminated by a flood
beam of electrons, and hence is not a true scan-expansion 
lens operating on the deflected rays. 
Calculation of Trajectories and Beam Properties 

Hawes and Nelson (1978) have calculated rays for their 
mesh lens using both a thin-lens geometrical-optics method 
and numerical ray-tracing in a field determined by the 
FDM. The calculated magnifications agreed within 2%. 

Franzen (1983) calculates trajectories in his meshless 
quadrupole lens numerically and uses the results to study 
and characterize the distortions of the raster. His program 
uses gradients of potentials calculated both numerically and 
fro~ t~e Fourier series he uses near the outer boundary 
of his fields . Franzen also mentions simulations of beam 
defocusing, although no details are given. 
. _Lenz (1_979) presents a third-order theory of distor-

t1_on m rotationally symmetric mesh post-deflection expan
sion lenses. The potential near the axis is obtained 
analytically . Then the equations of motion are solved suc
cessively in first- and third-order approximations to find 
the landing points at the viewing screen. No account is 
taken of the effects of individual mesh ho les. 

Conclusion 

In his review of I 979, the present author predicted suc
cessfully that application of the numerical methods then 
being used in magnetostatic deflection to problems in elec
trostatic deflection and scan expansion would produce 
useful advances in those areas. 

However, having perhaps exaggerated the relative 
merits of numerical simulations over aberration theory, he 
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failed to perceive the renascence of aberration theory that 
was even th_en occurring in electron-beam lithography and 
scanning microscopy . Ironically, this new interest is partly 
due to_ the accurate field calculations made possible by 
numencal methods and computers. Adding embarrass
ment, the classical aberration theory again displayed its 
power ?f explanation in the theory of self-convergent inline 
deflection, even though exact calculations eluded its grasp. 

When his previous review went to press, the author 
was unsure whether numerical simulations were sufficiently 
accurate to calculate beam properties. That question has 
now been answered resoundingly in the affirmative, and 
we can expect wider use of such calculations. 

Regrettably, he was all too correct when asserting that 
further progress in traveling-wave deflection must await 
the application of numerical methods. Those methods have 
not been applied, and we are still waiting. 

In the study of scan expansion, conventional methods 
continue in use for computer simulation of rotationally 
symmetrical expansion systems. For complicated systems 
of the quadrupole type, angular Fourier expansions have 
been combined with three-dimensional finite-difference 
methods to deal with an intrinsically three-dimensional 
problem. This parallels the earlier developments in 
magnetic-yoke theory discussed in the author's last review . 

An aberration theory has been developed for scan 
expans_ion, but has not yet been applied. As many scan
expansion systems have small angles of deflection the com
bination of aberration theory with numerically ~alculated 
fields might prove fruitful. 

With the exception of traveling-wave deflection, the 
work_ d~scribed in thi s review generally shows increasingly 
soph1st1cated computer-aided simulation of increasingly 
complex deflection systems. Aberration theory and 
?umencal calculation of fields and trajectories have been 
improved . Full three-dimensional field calculations are 
becoming feasible . The output of space-charge models of 
electron guns has been combined with deflector models to 
produce excellent depictions of deflected spots, although 
space-charge effects in the deflectors themselves have yet 
to be tr~ated successfully. Thus, many of the long-standing 
theoretical problems of electron-beam deflection have either 
been solved or have solutions in view. 

With this increasing power of analytical techniques and 
understanding (including numerical analysis), attention is 
beginning to shift to the synthetic or design problem in 
electron-beam deflection. This reviewer believes that several 
influences tend in this direction. 

First, the power and accuracy of numerical simula
tions are usually gained at the expense of analytical and 
intuitive understanding. Each simulation is a special case 
much like a single experiment, and inference of generai 
behavior requires many special cases to be studied in a man
ner almost empirical. 

Second, although in some cases the use of aberration 
theory provides analytical insight, this theory is very com
~licated even for simple deflection systems. This complica
t10n greatly reduces its usefulness in aiding understanding. 

Third, the complicated mixed focus and deflection 
systems now used in lithography and scanning microscopy 
have so many parameters that it is difficult to comprehend 
the design possibilities and limitations of a given system. 

There are thus two challenges for future work in this 
field. First, momentum must be maintained in attacking 
the remaining analytical prob lems. Second, means must 



Progress in the Theory of Electron-Beam Deflection 

be found to assimilate and use effectively the mass of results 
being obtained as a result of successes in analytical theory 
and computer simulation. 

Several of the papers reviewed show some progress in 
meeting the second challenge, but much remains to be done 
to prevent our current successes from burying us. 
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