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SYNTHESIS OF ELECTRON LENSES 
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University of Arizona, Tucson, AZ 85721 

Phone:(602)621-6183 

Abstract 

This paper is a review of different approach
es to one of the most ambitious goals of Electron 
and Ion Optics: to produce elements and systems 
with prescribed first-order properties and minimal 
a berr a tions. Synthesis of such elements is usually 
don e in two st eps: the first is a search for a 
fi e ld distribution with the given properties and 
th e se cond is the reconstruction of e l ectrodes 
(pol e pi eces ) that would produc e this fi e ld di s 
tribution. The first problem can be solved by the 
us e of diff er ent techniques: Ca lculus of Varia
ti on s , Dynami c Programming or Function Minimiza
tion. The se cond one is more complicat ed and r e
quir es a lot of ingenuity. Our novel approach 
tak e s a diff er ent course of action. It combines 
th e two st eps into one . Low-aberration fi e ld dis
tributions ar e sou ght by dynamic programming or 
f unction minimization procedures in th e form of 
continuous curves constructed of cubic splines. A 
ver y simpl e al gorithm is used for the reconstruc
tion of the e lectrodes or pole pieces. This ap
pr oa ch combin e s the widely recognized advantages 
of our optimization techniques with a built-in 
ac curate and effective reconstruction procedure. 
The final d e si gn is simplified on the basis of the 
requirem ents of manufacturability. High-quality 
e l ectrostatic lenses have been design ed by the use 
of this t echn i que. Thus, el ectron and ion optical 
synth e sis ha s been transformed from a dream to 
reality. 

~ words: aberrations, chromatic aberration, 
electron lens, electrostatic lens, field distribu
tion, ion lens, optimization, potential distribu
tion, spherical aberration, synthesis. 
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Introduction 

Ther e has be en a stru gg l e to ove r come the 
aberrations of el ectron lenses since th e very 
beg innin gs of El e ctron and I on Optic s . The r educ
tion of ab errations is of sp ecific importanc e now 
because of the gr eat inter e st in particle bea m 
t echnolo g ies. El ectron and ion be am lithography 
and es pe cially focus ed ion bea ms off e r new possi
bilities for int egr a t ed cir cuit fabri cation as 
well a s new micr oan a l ytical ca pabiliti e s. 

Ion be ams must be focus ed by e l ectrostat i c 
l ens e s to ensure th e indep e ndenc e of the r efr ac
t ion of th e cha r ge -t o-mas s r a ti o of th e i ons . 
Howeve r, du e to th e f act th a t e l ectr os tatic fi e lds 
can not be concentrat ed to nar row r eg ions lik e 
magne tic fi e lds, th er e is a wid e spr ead be li ef th a t 
th e aberrations of e l ectrost a ti c l ens e s a r e intrin
si cally much hi gh er than tho se of magne tic l ens es. 

Sch erz er (19 36b) showed that it i s imp oss ible 
to correct all of th e aberrations of axially sym
met ric electron l en ses by another syst em of s imi
lar symme try but it was he aga in who pr opos ed 
several oth e r ways t o compe nsa t e th em by introdu
cin g additional f eatures: di s continuiti e s in th e 
fi e ld distributions, spac e char ge, high-fr eque ncy 
fi e lds or other typ e s of symmetry (S epti e r, 1966). 
In this pap er we shall not be conc e rn ed with 
compensation. Our topic is optimization i. e . 
search for such el e ctron and ion l ens e s that would 
provide th emselves (without additional compensa
ting elements) the r equired optical prop e rties 
with minimum aberrations. 

There are two totally different approaches 
to optimization: analysis and synthesis. 

If the method of analysis is used, the 
designer starts with a given simple set of elec
trodes or pole pieces. The design is gradually 
improved by analyzing the optical properties and 
changing the geometrical dimensions as well as the 
electric and magnetic parameters of th e system. 
This process is repeated until it converges to an 
acceptable solution. Due to the infinite number of 
possible configurations, the procedure is extreme
ly slow and tedious. It can yield the results 
quickly only if a reasonable guess of the answer 
is already available before the work starts or if 
the constraints are so severe that there is not 
very much choice left. The iteration procedure can 
be facilitated by automation (Chu and Munro, 
1981). 



M. Szilagyi 

Optimization by synthesis is based on the 
fact that the imaging field, its optical proper
ties and aberrations are totally determined by the 
axial distribution of the field. Only the axial 
distribution and its derivatives appear in th e 
paraxial ray equation and in the expressio ns of 
the aberration coefficients . Then, instead of 
analyzing a vast amount of different electrode and 
pole piece conf igur ations, we can start with the 
criteria defining an optimum system as initial 
conditions and try to find the imagin g field dis
tribution (and subsequently the electrodes or pole 
pieces) that would produce it. 

This is a complicated problem. Its solution 
has been keeping many researchers interested for 
an extended period of time. Before we start to 
review their work, l e t us first show the differ
ence be tween the analytic and synthetic approaches 
by using a simple example. 

This exa mple is th e ideal quadrupole lens. It 
consists of four id e ntical infinite hyperbolic 
surfaces held at alternate positive and negative 
potentials. Since infinite surfaces can not be 
r ea lized in practic e , different approaches have 
been used to approximate the ideal quadrupole 
field. The analytic approach is to compensate the 
missing parts of th e hyperbolic surfaces by chang
ing the shapes of the remaining electrodes . The 
synthetic approach (Szilagyi, 1978b) starts wit h 
the ideal field distribution and tries to repro
duce it by recognizin g th e fact that th e most 
important characteristic of a quadrupole lens is 
not the numbe r of its elec trod es but the presence 
of exac tly two mutually perpendicular symmetry 
planes. The solution th en follows quit e easily: a 
high number of s impl e e l ect r odes held at suitably 
chosen potentials produces a much better approxi
mation of th e id eal quadrupole lens than any sys
tem of four sophisticated electro des . 

Let us now see how th e problem of aberration 
reduction canoe attacked by the synthetic ap
proach . 

~ Aberrationless Electron Optics Possible? 

Contrary to a widespread beli ef , Scherz er's 
th eo rem does not excl ude the possibility of aber
rationl ess electron lenses. It only states that 
the spherical aberration coefficient can not 
change sign i. e. it can not be compensated by the 
spherical aberration of another axially symmetric 
e lectron lens. The situation is similar for the 
chromatic aberration. It is feasible, therefore, 
to search for a lens with zero aber r ations. 

Glaser (1940) calculated first the magnetic 
field distribution necessary to give zero spheri
cal aberration. Unfortunately, th e r esulti ng field 
is not strong enough to produc e a real image. It 
was established, however, that for the reduction 
of spherical abe rrati on th e second derivative of 
th e axial distribution of th e magnetic flux densi
ty must b e positive throughout the lens. This led 
to a substantial improvement of beta-spectrographs 
(Siegbahn, 1946). 

Although proofs of zero limit of the spheri
cal abe rr ation have been published (Kas'yankov, 
1955), all th e a tt empts to calculate a practically 
realizable fi e ld distribution with zero spherical 
aberration have failed (Crewe, 1977). Recknagel 
(1941) showed that elec tr os tatic l ens es free of 
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aberrations can not form a real image eit h er. 
Finally, Tretner (1959) calculated the lower li
mits of the spherical and chromatic aberration 
coefficients for both electrostatic and magnetic 
lenses. 

Since the practical realization of aberration
less electron lenses seems to be impossible, our 
effor ts must be concentrated on the reduction of 
aberrations. 

Early Attempts tl Synthesis 

Synthesis of electron lenses with minimum 
aberrations has been attempted since the first 
decade of Electron Optics. Scherzer (1936a) and 
Glaser (1938) calculated the axial electrostatic 
and magnetic weak lens distributions, respective
ly, with the least spherical aberration. 

The synthesis of real thick l ens es is much 
more complicated. Kas'yankov (1952) was the first 
to try his wits at this formidable problem. He 
derived a set of high-order nonlinear differential 
equations th e solution of which would minimize 
certain aberration integrals. Unfortunately, the 
initial conditions for these equations as well as 
practical methods of th ei r numerical solution 
remained unclear. 

Burfoot (1953) calculated a special s e t of 
quadrupole lenses of extremely complicated form to 
obtain a potential distribution for which the 
spherical aberration is corrected. 

Septier (1966) mentions two other early ap
proaches based on th e general trajectory equation 
(P. Lapostolle) and the approximation of th e ideal 
hyp erbolic l ens (R. Rude nber g and A. Septier), 
r espectively . They produced comparatively weak 
lenses with not very low aberrations. 

Calculus tl Variations 

Tr e tn e r (1954, 1959) r ea liz ed that the Calcu
lus of Variations is a natural approach to th e 
problem of synthesis since the aberration coeffi
cients can always be expressed as definite integ
r a ls of th e form 

C 

z 
i 

( F[r (z),r'(z),r (z),r'(z),V(z),V'(z),V"(z)]dz 
) 1 1 2 2 

z 
0 

z 
i 

IF(,) dz (1) 

z 
0 

whe re F(z) may represent the integrand of a combi 
nation of aberration coefficients or just one 
coefficient, z0 and z, are the object and image 
coordinates, respectively. The Calculus of Varia-
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tions is we ll suited to minimize int eg rals. The 
difficulty is that the integrand F(z) is a compli
cated function of not only the unknown e lectrosta
tic and magnetic field (or potential) distribu
tions [V(z)] and their de rivatives [V'(z) and 
V"(z)] but also of two linearly ind epend e nt solu
tions r (z) and r (z) of th e paraxial ray equation 

1 2 

f[r(z) ,r' (z) ,r"(z) ,V(z) ,V' (z) ,V"(z)] =f(z)=O (2) 

which is a second-order differential equa tion with 
coefficients depending on th e same unknown field 
distributions and their der ivatives. Though 
Tretner us ed the Calculus of Variations to find 
the limits of the chromatic and spherical aberra
tion coefficients of e l ec trostatic and magnetic 
l enses, he left th e question of how to achieve 
these limits open. For special cas es he managed to 
simplify th e mathematical problem by a series of 
variable transformations but in a ge nera l case 
these simplifica ti ons usually do not work. 

The first mathematically justified approach 
to synthesis with practical results was that of 
Moses . He first us ed Calculus of Variations f or 
th e optimiza tion of qu adrupoles (1970, 1971a, 
197 1b) but later successfully applied it to th e 
design of axially symmetric magnetic lenses, too 
[(Mos es, 1973) and (Rose and Moses, 1973)]. 

In order to dete rmin e t he unkn own functions 
V(z) and r(z) so that they minimi ze severa l aber 
ration integra l s simultaneously and at the same 
time satisfy the differ ential equa t ion (2) to
ge ther with additional constraints we firs t define 
the Lagrang e multip li e r j!(z ) so that 

z 
i 

0 \ [F( ,l • /'(,) f(,)] d, 

z 
0 

0 (3) 

wher e b means the first variation of th e int e
gr al. Carrying ou t th e variations of the integrand 
and integrating by parts we obtain two hi gh-order 
nonlinear differential equa tions (the Euler
Lagrange-Poisson equations). Combinin g th em with 
the para x ial ray equation (2), one has a system of 
three coupled nonlinear differ ential equations. An 
additional eq uation appears when the residues 
obtained from the partial integration are equated 
to zero. The initial conditions ar e de termined by 
the constraints. As th ey may be given at different 
(even a priori unknown) points and the differen
tial equations a r e usually very complicated, spe
cial numerical procedures are nee ded for their 
solution. Fortunat e ly, for magnetic lenses the 
procedure yields a system of second-order diff e 
rential equatio ns and Mose s was able to solve it. 
He actually managed t o design a coma-free magnetic 
lens with low spherical abe rrati on (Moses, 1973). 

For electrostatic lenses the situation is 
much more complicated. The Euler-Lagrange-Poisson 
equations yield a system of fourth-order differen
tial equations with complicated initial conditions. 
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Fi g . 1. Axia l poten t ial dist ributi on for a hi gh
performance e l ectrostatic l ens. 

The so luti on of such a system is numerically in
tractable. Simpl er procedures are needed for pr ac 
ti cal design . 

A Simpl e Syst ematic Approach 

If a math emat i cally justified app r oach yields 
such a compli cated procedure, it i s natural to try 
something much easier . The easies t way to search 
for field distributions that pr ovide smal l aberra
tions is to inv es ti gate classes of parametrized 
analytical functions or simply tr y to produce 
cer t ai n distributions by the u se of diffe r ent 
cu rv e fitti ng t echniques (Szila gy i, 1983a). Using 
this s i mple app r oach in a systematic way we were 
ab l e to find many electrostatic axial potential 
distributions that satisfy practical r equir ement s 
for probe formin g lens es and have very low spheri
cal and chroma ti c aberra tions. One of these dis
tribut io n s is shown in Fig. 1. The potential dis
tributi on and th e axial dimensi ons are related to 
th e ob j ect-side potential V0 and th e effect i ve 
l eng th L of the lens, r espec tiv e l y. This di s tribu
tion corresponds to a four - e l ect rod e e l ectrostatic 
l ens th at has a spherical aberration coefficient 
Cso for infinite magn ifi catio n, refer r ed to th e 
object space and r e lat ed to th e objec t-sid e focal 
l ength f0 equal t o C>0 /f 0 = 0.82 and chromat i c 
aberration coefficient for th e same case equ a l t o 
Cc0 /f 0 = 0.46. For a s ix-electrode lens we could 
obtain eve n bett er r es ults: C50 /f,,= 0.63 and Ce,0 /f 0 

= 0.29, resp ec tively. 
If one compares th e se data with the aberra

tions of the best available electrostatic lens e s 
it is easy to see that a sys t ematic search for ' 
good axial potential distributions can provid e 
much bett er results th an any analytical des ign. 
Even if we include th e dif f iculti es of th e elec
trod e reconstruction (s ee later), we can safely 
declare that general statem ents about the intrin
sic inferiority of e lectrostatic l ens e s so common 
in th e literature ar e certainly not justified. 

This simple approach is very powerful because 
it produces good results without complex mathema
tical operations. One can find exc e llent imaging 
field distributions even with a personal comput er. 
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Fig. 2. Computational grid for the dynamic program
ming procedure. 

However, if one really wishes to explore the vast 
universe of all feasible field distributions, 
mathematically justified and practically realiza
ble optimization techniques are needed. Since the 
Calculus of Variations is too complicated for 
practical use, other approaches had to be consi
dered. 

Dynamic Programming 

Our problem is to find the distribution V(z) 
that minimizes the aberration integral (1) simul
taneously satisfying the differential equation (2) 
and the constraints imposed by practical require
ments. The possible distributions constitute an 
infinite set even if the length of the lens as 
well as the maximum allowable field strength are 
both limited. We can reduce this infinite set to a 
finite but extremely large one in many different 
ways. For example, one can seek V(z) in the form 
of an n-degree polynomial or another parametrized 
function. In this case we have to determine the 
coefficients of the polynomial or the parameters 
of the function. As it was shown in the prece
ding section, it is a feasible alternative but 
without any hope to explore even a reasonable 
fraction of the different possibilities. Indeed, 
even if each coefficient of the polynomial can 
take only m different values, the number of possi
ble variations ism~ which is an astronomical 
number for any pair of practical values of m and 
n. This brute force approach, therefore, does not 
satisfy our requirement of being mathematically 
justified. Is there any hope at all if e.g. n=IO 
and m=IOO? 

Yes, there is not only hope but there are 
also practical ways of solution [(Szilagyi, 
1977a), (Szilagyi, Yakowitz and Duff, 1984), 
(Szilagyi,1984b)). 

Let us first see the Dynamic Programming 
approach (Szilagyi, 1977a). We start with a rec
tangular computational grid (Fig. 2) that defines 
the domain of existence for the field distribu
tion. The field is limited by its maximum allowa-
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ble value. Its axial extension is defined by the 
given effective length L of the lens. The effec
tive length is divided into N equal regions. The 
unknown distribution V(z) or one of its deri
vatives is approximated by a straight line in each 
region. We shall denote this piecewise linear 
function by h(z). For a magnetic lens h(z) is the 
axial flux density distribution, for an electro
static lens it is the electric field distribution. 
If one wishes to drastically reduce the amount of 
calculations, even a step-function model can be 
used where the field is constant in each region 
and its derivatives are calculated as differences 
at neighbouring regions. As we shall see later, 
the most effective approach is to use the highest 
derivative appearing in the aberration integral 
for h(z). In any case h(z) can take only 2M+l 
different values at the boundaries of the regions 
(see Fig.2). Thus, our problem is reduced to that 
of finding N*(2M+l) intersection points of the 
computational grid that will provide the linear 
segments of the optimized field distribution. 

The paraxial ray equation can be solved in 
each interval analytically or numerically. The 
continuity of the solution requires that the ini
tial values of rand r' for each region be taken 
as equal to their terminal values in the preceding 
region. If N is a sufficiently large number, the 
aberration integral can be approximated by a fi 
nite sum and we can easily calculate the contribu
tion of each region to this sum. 

Let us now denote the initial and terminal 
values of h(z) in the kth interval by 

h (z) = j Ah 
k k 

and 

h (z i Ah 
k k+l 

( 4) 

( 5) 

respectively where .t,. h is the minimum amount of 
change in the value of the field distribution (see 
Fig. 2). Evidently, the solution of the paraxial 
ray equation as well as the contribution to the 
aberration sum will depend on the values of i, 
and k. 

Of course, we still have the astronomical 
number of (2M+l)N different possibilities. We 
must find a way to effectively search for the 
best possible solution. 

Our multidimensional problem can be reduced 
to a one-dimensional multistage decision problem 
which can be solved step by step. Let us suppose 
that we have been able to find a potential distri
bution for which the value of the aberration inte
gral between z 0 and zk is minimal. We shall 
denote this optimized intermediate value of the 
integral by G;Jc • How to proceed further? If F,jk. 
is the contribution of the kth region to the 
integral, then the minimized value Gi(k~0 of the 
aberration integral between z 0 and zk~I is given 
by the recursive relationship 

G 
i(k+l) 

min (G + F 
j jk ijk 

(6) 

where j is a variable and the optimization proce
dure is aimed at finding that particular optimal 
value of j for which the value of the sum in 
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parentheses is minimal. As we have already calcu
lated everything n ee ded to obtain F~ik.. for the 
given value of i the procedure yields both the 
optimized value of j and the new value of G,(k~I). 
Since we started with the assumption that the 
optimum distribution leading to the point (j,k) 
was known, now one further portion of the optimum 
distribution has been found. 

We start at k=l with Gj1 =O which expresses 
the fact that in the field-free region beyond the 
lens the contribution of the aberration integral 
is zero. Therefore, the search in the first region 
is reduced to the comparison of the different F,}k 
values. For each i we find the corresponding j 0 r* 
value that minimizes F,,i.. We proceed region by 
region recursively toward the object space using 
Eq. (6) for the determination of the optimum va
lues of j for each k and i until we r each the end 
of the computational grid (k=N+l). Note that at 
each region we only have to evaluate (2M+l)2- pos
sibilities. As a result of N*(2M+l) 2 evaluations 
we shall have 2M+l different optimized axial field 
distributions (with differ ent terminal values of 
i) together with the corresponding particle tra
jectori es . Each distribution can uniquely be 
traced back by following the optimum values of j 
for all the pairs of the i and k values. One 
chooses th e particular distribution that best 
satisfies th e practical requirements of the given 
design. For example, if the field must vanish at 
th e boundary of the lens and h(z) mea ns the field 
distribution, then naturally i=O must be chosen a t 
the t ermin a l point. When this is not r equ ired but 
we would lik e the image to be located inside the 
lens, we can make Na variable and stop the calcu
lations a t the pair of values i and N where r=O. 

The most important advantages of the dynamic 
programming procedur e a r e as follows: 

1. No initial guess of th e result is re
quired. The algorithm searches through the entire 
problem space in an effic ient way without the 
requirement of any initial assumptions . 

2. A g l oba l search is provid ed with only 
N*(2M+l)2. evaluations. 

3. In ge neral, rich patterns of optimized 
distributions are produced. They contain vast 
numbers of di stributions as sub-solutions of the 
original problem with different initial and termi
nal conditions. 

4. The procedure is simplified by any addi
tional constraint that reduces the number of pos
sible choices at a particular stage. 

5. The procedure can be directly applied to 
any symmetry. 

This method has been successfully used for 
electron lens design. Numerous interesting confi
gurations have been found both for magnetic 
(Szilagyi, 1977b) and electrostatic (Szilagyi, 
1978a, 1978 c and 1983b) lenses. A typical case is 
shown in Fig. 3. This is a 50*60 computational 
grid for th e design of accelerating electrostatic 
immersion lenses (Szilagyi, 1978a). Here h(z) is 
proportional to the axial e lectrostatic field 
distribution. All th e acceptable solutions start 
and end with approximately zero fields and repre
sent tw o-cylinder immersio n lenses with the second 
cylinder having a smaller diameter and a higher 
potent ia 1. 

As usual, th ere are also some limitations: 
1. The procedure is aimed at subsequent nodes 
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Fig. 3. Optimized e l ectrosta tic field distribu
tions obtained by dynamic programming. 

of the computational grid and not at the a priori 
unknown terminal node. As a consequence, it may 
happ en that a "non-optim al" distribution provides 
a solution soo ner than the "optimal" one. 

2. Due to the discrete natur e of th e proce
dure, storage and manipulation of large arrays of 
data are r equired. 

The procedure can be improved by any of the 
following suggestions: 

1 . Aim the optimization proc edur e at the 
g iven terminal condition. Then for an arbitrary 
node of the computation a l grid th e predecessor 
nod e is chosen to minimize the valu e of the aber
ration integral not a t th e g iv e n nod e but at an 
a priori chosen termin a tin g point. 

2. Maintain th e original algorithm but make 
the value of ~z a variable to ensure a smoo th 
distribution even for small grids. 

3. Rep lac e th e computational grid in the h-z 
plane by a gr id in th e phase plan e r-r' of th e 
paraxial ray. 

4. Avoid the difficulties connected with the 
discr e te character of the method by th e utiliza
tion of differential dynamic programming. 

5. Try something totally diff ere nt. This will 
be discuss ed in the nex t section. 

Fun ction Minimization 

A v ery effective optimization procedure was 
r ece ntly proposed by Szilagyi, Yakowitz and Duff 
(1984). We again divide the axial length of the 
lens into N regions and in each region represent 
the unknown axial distribution V(z) by a simple 
polynomial expression. The simpler this exp r ession 
is, the faster and easier the procedure becomes. 
We require the continuity of V(z) and its lower 
derivatives. This requirement imposes some rela
tionships between the coefficients of the pol yno 
mials at neighbouring regions. We always defin e 
the requirements of continuity in such a way that 
the set of coefficients at the highest-degree 
terms remain free. Then our problem is reduced to 
that of finding N coefficients satisfying the 
paraxial ray equation (2) and the constraints of 
the problem and minimizing the aberration integral 
(1). 

Let us start with an arbitrary set of the 
free coefficients. The paraxial equa tion is solved 
with these coefficients for each int erva l and the 
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corresponding aberration coefficients are eva
luated numerically. Naturally, th e aberration 
coefficients will be too high and the constraints 
will not be met. Now we add a penalty reflecting 
the violation of the constraints to the value of 
the objective function constructed from th e aber
ration coefficients. This sum is the new objective 
function we are trying to minimize. 

The minimization can be done simply by ap
plyin g some nonlinear programming technique ( e . g . 
a quasi-N ewton algorithm) to the new objective 
function of the N coeffici ents (function minimiza
tion). The result is a set of coefficients that 
minimize the aberrations with th e simultaneous 
satisfaction of th e constraints. 

Though this proc edur e requires an initial set 
of coefficients to be chosen by th e us er, it is 
extremely fast and effective. Almost any combina
tion of th e initial data converges t o a good 
solution in seconds of CPU tim e . We were able t o 
design some very goo d electrostatic lens es by th e 
us e of this techniqu e. 

Reco nstruction Qf the Electrod es (Pol e Pieces) 

When the optimized axial e l ec trostati c or 
magnetic sca lar potential distribution has been 
found, our next task i s to find the e l ectrod e 
(pole pi ece) configuration that will produce t he 
optimized distribution. Since th e potential pro
duced by an axially symmetric system a t an arbit
rary point in space is uniquely de t ermi ned by its 
axial distribution, from theoretical point of v i ew 
the e l ec tr ode r eco nstructi on does no t constitute a 
problem. 

The power se r ies ex pansion of th e potential, 
however, requires th e ax i al distribution to be a 
2(n-l) tim es diff ere nt ia bl e function of th e axia l 
coo rdinat e z where n is th e number of terms used 
in th e power series. Unfortunately, for a goo d 
convergence a large value of n is needed. If th e 
axial distribution is g iv e n as a numerical dat a 
set, or even if it i s gi ve n in th e fo rm of a 
complicated analytical function, th e higher de riv a 
tives must be produced by numer ical t ec hniques 
which are ex tr emely inaccurate. This difficulty 
can be avo ided by using the charge density method 
(Hawkes, 1981) but it requires excessive computer 
time for the reconstructi on of the potential dis
tribution at a considerable distance from the 
ax is. 

The axial potential distribution given as a 
discrete data set can be replaced by a continuous, 
n times differentiabl e function with minimum inter
polation noise (Szilagyi, 1980). The computational 
f ea sibility of this approach, however, is also 
questionable. 

The difficulti e s of electrode (pole piece) 
reconstruction, therefore, constituted a common 
weakness for all methods of electron and ion opti
cal synthesis. Some researchers have even expres
sed scepticism about the very possibility that the 
problem of electron optical synthesis can ever be 
solved (Kasper, 1981). 

We were able to achieve quite acceptable 
accuracy of reconstruction by fitting the numeri
cal data sets with smooth cubic spline curves 
(Szilagyi, 1983a). Of course, inside the regions 
th e cubic spli nes do not have any deriva ti ves 
higher than the third. However, th e difficulty is 
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Fi g . 4. Electrostatic lens designed on the basis 
of the potential distribution shown i n 
Fig. 1. 

that the higher derivatives are undefined at the 
bound ari e s of th e regions. Never th e l ess , with some 
insight and exper i enc e one ca n a lway s reconstruct 
th e electrodes. Fortun a t e ly, in most cases th e 
complicat ed curved equipotential s urf aces can be 
replaced by simpler ones with straight boundaries. 
As a result we were ab l e to design lenses wi th 
e l ec tron optical properties very c lo se to those of 
the optimized axial po t entia l distribu ti ons . A 
four-e l ec trode e l ect ro static lens based on the 
ax ial potential distribution g i ven in Fig.I i s 
shown in Fi g . 4. This l ens has very good op ti ca l 
properties in a wide range of the paramet ers. Its 
a berratio n s a r e quite low eve n at l arge working 
dis t ances. If the e l ec trodes a r e held at the rela
tive potentials shown in th e figure, th e spherical 
abe rr ation coefficient is equa l t o Cs0 /f 0 =0.92 and 
the chromatic aberration coefficie nt has a va lu e 
of C.,0 /f 0 =0. 55. 

The success of utilization of th e cubic 
spline cu rv e fitting t echnique has l ed u s to the 
solution of th e syn th esis problem. 

So lution Qf the Problem Qf Elect ron Lens Synth esis 

The difficulties of elec tr ode (pole piece) 
reconstruction were co nn ec t ed with th e fac t th at 
the r econstruction pr oce dur e was totally separated 
from th e optimization algorithm. When we sea r ch 
for an optimum axial field distribution we do not 
ca r e about the pr obl em of off -axi s expan sio n . This 
is wrong: the r eco nstruction proc ess must be an 
integral part Qf the optimization procedur e . In
stead of replacing the discrete axial distribution 
data sequence by a continuous curv e in a compli
cated way or trying to accomplish th e off-axis 
expansion by some other sophisticated techniques, 
we must seek the solution directly in the form Qf 
~ continuous piecewise cubic spline function. The 
simple expression 

2 
r 

v(r,z) V(z) - V"(z) (7) 
4 

will then be used for the potential distribution 
in the entire space. The reconstruction of the 
electrodes or pole pieces thus becom e s an almost 
trivial task (Szilagyi, 1984a). 
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This approach allows us to combine the evi
dent advantages of both the dynamic programming 
and the function minimization procedu r es with an 
easy, fast and accurate reconstruction technique. 

In the following we shall briefly outline our 
method of electron optical synthes is (Szilagyi, 
1984b). 

The axial electrostatic or magnetic sca lar 
potential distribution will be represented by a 
pi ece wise cubic function. As usual, th e axial 
length of th e lens is divided into N equal re
gions. The unknown distribution V(z) is so ught in 
the form of 

V ( z) 
k 

A + B (z 
k k 

2 
z ) + C (z - z) 

k k k 

3 
+D(z-z) 

k k 

(8) 

for each re gion (k;l,2, .•• ,N) where zk is the 
axial coordinate of th e starting point of the kth 
region. The coefficients Ak, Bk, Ck and Dk are 
different for each region, therefore V(z), V'(z) 
and V"(z) have different expressions for each 
region. It is very easy, however, to ensure the 
continuity of these functions by requiring the 
satisfaction of the fol lowin g relationships be
tween the coefficients: 

2 3 
A A + B 6z + C (Az) + D (Az) ( 9) 

k+l k k k k 

2 
B B + 2 C Az + 3 D (Az) (IO) 

k+l k k k 
and 

C C + 3 D /H (11) 
k+l k k 

where 

f, z L/N ; z - z 
k.1 k. 

(12) 

Let us formulate the constraints now. Natural 
ly, the fields must be practically realizable. 
Therefore, th e magnitudes of the potential and its 
derivatives must be limited: 

V ~ V(z) ~ V (13) 
I II 

lv• (z) J~ V' (14) 
I 

and 

lv"(z)I ~ V" 
I 

(15) 

where v1 , Vn, V1' and VJ° are a priori given 
numbers. It is usually required that the fields 
vanish at both th e ob ject and the image: 

VI ( z ) 
0 

V'(z); 0 
i 

(16) 
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The particle trajectories must be focused toward 
the opt i cal axis but should not cross it inside 
the op tic al element . In addition, we must provide 
some working distance beyond the l ens. Ther efo re, 
we must require 

and 

r(z))'O 

r'(z)>O 
0 

Depending on the particular problem, the con
straints may be different from these. 

(17) 

(18) 

If we relate the potential distribution to 
V

0 
then 

A 1 (19) 
1 

Conditions (16) yield 

B 0 ( 20) 
1 

and 
2 

B + 2 C Az + 3 D (Az) 0 ( 21) 
N N N 

The above cons traints l eave only the coefficients 
C1 and Dk (k;l,2, •.• ,N-1) free. For a given set 
of coefficients the paraxial ray equation can 
eas ily be solved and the a ber ration integrals 
evaluated numerically. Therefore, th e problem of 
searching for a function in the infinite set of 
different possibilities is r educed t o that of 
fi nding these N coefficie nts so that they satisfy 
the paraxial equation and our constraints and a t 
the same time minimize the aberration integrals. 

This is an N-dimensional constrained optimi
zation problem. We can solve it either by the 
dynamic pro grammin g or the function minimization 
approach with th e fundamental advantage over the 
original versions of these methods that the opti
mized potential distribution will now be available 
in the form of a continuous curve with only thr ee 
derivativ es instead of a digital dat a set. 

If th e dynamic programming procedure is used, 
we shall utilize th e fact that for the piecewise 
cubic lens model the second derivative of the 
axial potential distribution is a linear function 
of the axial coordinate within each region: 

V" ( z) ; 2 C + 6 D (z - z ) (22) 
k k k k 

The distribution of the second derivative V"(z) is 
then given by a series of con tinuous linear seg
ments. We simplify the search by restricting these 
linear segments to those connecting the nodes of 
the discrete computationa l grid i.e. we only 
allow 2M+l different discrete values of th e second 
derivative a t th e boundaries of the regions. We 
have to substitute V" for h in equations (4) and 
(5).Then the coefficients are expressed thr ough i 
and j by 
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C t,.V" / 2 ( 23) 
k 

and 
i-j 

D /lV" (24) 
k 6/iz 

with 

l::,V" V"/M (25) 

I 

The rest of the procedure is identical to that 
outlined above in the description of the dynamic 
programming method. 

We have modified our function minimization 
procedure, too, to provide a continuous, piecewise 
cubic function for the optimized axial potential 
distribution in the form of Eq. (8), the coeffi
cients of which are determined by the procedure. 

Dynamic programming and function minimization 
very well complement each other: while the first 
provides a global search in a discrete domain the 
second is very fast and accurate. Both give quite 
satisfactory results but in extraordinarily diffi
cult cases the synthesis procedure may combine 
them by starting with dynamic programming and 
refining the optimized axial potential distribu
tions by the function minimization procedure. 

The reconstruction of the electrodes (pole 
pieces) is extremely simple now because we already 
know not only the axial distribution of the poten
tial but also its continuous second derivative. 
The third derivative is not con tinuou s but it does 
not appear anywhere so it cannot cause any prob
lem. The fourth and higher derivatives are zero 
everywhere except the boundaries of the regions 
where they are still undefined. However, we are 
not using the spline function for curve fitting 
now. Therefore, it is justified to assume that 
these higher derivatives not appearing anywhere in 
the expressions of the focusing properties and 
aberrations will not affect the potential distri
bution either. This is why the simple expression 
(7) can be used for the potential distribution in 
the entire space. By th e use of this formula we 
are able to reproduce the equipotential surfaces 
that will provide the same functions V(z), V'(z) 
and V"(z) and thus the same focusing properties 
and aberrations as the original theoretical dis
tribution obtained from the optimization proce
dur e. 

First we examine the potential distribution 
and determine its inflection points. The number of 
electrodes (pole pieces) is always one more than 
the number of inflection points that separate the 
neighbouring electrodes. Then we substitute the 
suitably chosen values of the electrostatic or 
magnetic scalar equipotentials into Eq. (7) for 
each electrode and obtain simple relationships 
r=r(z) for the shapes of the electrodes or pole 
pieces. If the value of V" is negative between two 
inflection points, the electrode (pole piece) 
potential is chosen slightly higher than the maxi
mum value of V(z) in the given region. If V" is 
positive, the electrode (pole piece) potential is 
lower than the minimum value of V(z) in the re
gion. 
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Fig. 5. Four-electrode optimized electrostatic 
lens designed by the author's new method 
of synthesis. The electrode shapes are 
gradually simplified to plane surfaces. 

The maximum value of r must be limited to a 
realistic size, usually to half of the length of 
the system. Since the value of r rapidly approach
es infinity at the inflection points, parts of the 
electrodes (pole pieces) must be omitted. This 
automatically ensures a certain minimum distance 
between them which is necessary to avoid electric 
breakdown in case of electrostatic lenses. 

A very important remark is due here. When the 
final electrode shapes are chosen, we actually 
depart from the optimized potential distribution 
by omitting parts of the electrodes. During this 
process we can also simplify the electrode shapes 
and replace the complicated curved boundaries by 
easily manufacturable simple straight surfaces. 
The accuracy of the reconstruction will only 
slightly be affected by these actions but on the 
other hand the practical value of the method is 
tremendously increased by them. 

As an example, the schematics of a four
electrode e l ectrostatic lens designed by the func
tion minimization method of synthesis is shown in 
Fig. 5. The dimensions of the lens are given in 
units of th e effective length L (the distance 
between the axial points beyond which the poten
tials are practically constant at both sides of 
the lens). The electrode potentials are related to 
the potential of the first electrode at the object 
side. The optimization procedure first yields (1) 
the infinitely l ong electrodes, parts of which are 
shown as thin lines in the figure. As the next 
step (2), the electrodes are cut to reasonable 
sizes and parts of them are totally omitted in 
order to avoid breakdown (broken lines). The final 
simple electrode shapes (3) are shown in thick 
continuous lines. 

The axial potential distributions of th e 
reconstructed lenses were re-calculated by the 
charge density method and the optical properties 
(locations of the cardinal elements and values of 
the aberration coefficients) were determined by 
ray tracing and numerical integration. The r esults 
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for the three systems are compared in the follow
ing table: 

System Focal Principal Focal Spherical Chromatic 
plane plane length aberr. aberr. 

if 

1. 

2. 

3. 

z /L 
0 

-0.029 

-0.025 

-0.018 

p /L 
0 

0 .182 

0.187 

0.194 

f /L 
0 

0.212 

0.212 

0.212 

C /L 

so 

0 .190 

0.224 

0. 23 5 

C /L 

co 

0.169 

0 .17 5 

0 .177 
--------------------------------------------------

As we can se e, even th e optical prop erti e s 
of th e simpl es t lens ar e excell e nt and not very 
much differ ent from thos e of th e optimiz ed th eore
ti cal potential di s tribution. At a very low maxi
mum-t o-minimu m e l ec tr ode pot enti a l rati o 
(u,.,.../u..,i,._=5. 54 ) we have C50 / f0 = 1.11 and Ccoffo 
= 0. 83 . The neg ati ve va lu e of th e location of th e 
focal plan e pro v id e s comfortabl e workin g distan ce s 
when th e lens i s us ed in th e pr obe formin g mode 
(th e z er o point co in c id e s with th e cent er of th e 
entr ance ap e rt ur e ). 

We wer e a lso abl e t o de si gn a thr ee-e l ectr ode 
e l ec tr os tati c l ens wi th u..,.,./U,..,,.= 8.86, Cso /fo 
= 0 .9 5 and c, 0 / f 0 = 0. 72 (Szil agy i, 1984 a) as we ll 
as a f iv e- e l ec trode e in ze l-l en s with 
u,,,,.../u,..,,.= 6 .7 5 , c, 0 /f 0 = 1.03 and Cc.,,/f 0 = 0.76 
(Sz i l ag yi, 1984b). 

Conc lusi on 

El ectr on and i on optical s ynthesis is a very 
r ea l pr obl em of Pa rti c l e Beam Optics. The final 
goa l is t o be abl e t o de si gn an entir e optical 
co l umn aut oma tic a lly on the bas i s of g iv en prop e r
ti es . Many yea rs of work by a numbe r of differ ent 
r esea r chers ha s ev entu a lly culminat ed in our solu
ti on outlin ed a bov e . It provid e s a powerful pr ac
tical t ool f or the sy nth e sis of e lectr on and ion 
l ens e s. The r eco nstru ction of e l ectrod e s (pole 
pi eces ) is built in th e optimization procedure and 
does not requir e any ex tr a ef fo rt. Our design 
exampl e s not onl y pr ov e th e ef fe ctiven e ss of this 
a pproac h but a ls o g iv e encour age ment to th e possi
bility of building v ery high pe rformanc e electro
static lens e s so much nee ded for ion beam lithog
raphy. 
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Discussion.§.!_ th e Conference 

This work has generated an unusually great in
ter es t at th e Conference. Very active and lengthy 
discussions took place both during its presenta
tion and at the special workshop on electron lens 
design. Although it is not possible to describe 
the entire debate, a summary of the most impor ta nt 
it ems is presented in th e following : 

1 . Synthesis is nec essa ry because different 
applications require different designs. Therefore, 
it is not sufficient to catalogue some simple 
cases but a ge neral design method is nee ded. 

2. The author's method must be used with 
additional simplification of the electrodes (pole 
pieces). The strength of the method is that it is 
able to find the locations and potentials of the 
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e l ec trodes. Their shapes do not influence the 
optical properties very much . 

3. The simplification of the elec trod e shapes 
naturally introduces high er derivatives into the 
axial pot en tial distribution. However, this does 
not constitute any r eal problem since our aim is 
not an exercise in pur e mathematics but practical 
design. 

4. To obtain mor e ge nera l designs it is con
venient to define the e l ec trode shapes and poten
tials in dimensionless units. The unit of poten
tial is determined by the given ener gy of the 
particles either in th e objec t or t he image space. 
Then the minimum value of the effective length is 
chosen from th e r equi r ement that in order to avoid 
breakdown the elec tric fiel d must not ex ceed a 
ce rtain maximum value. 
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