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Abstract

This paper is a review of different approach-
es to one of the most ambitious goals of Electron
and Ion Optics: to produce elements and systems
with prescribed first-order properties and minimal
aberrations. Synthesis of such elements is usually
done in two steps: the first is a search for a
field distribution with the given properties and
the second is the reconstruction of electrodes
(pole pieces) that would produce this field dis-
tribution. The first problem can be solved by the
use of different techniques: Calculus of Varia-
tions, Dynamic Programming or Function Minimiza-
tion. The second one is more complicated and re-
quires a lot of ingenuity. Our novel approach
takes a different course of action. It combines
the two steps into one. Low—aberration field dis-
tributions are sought by dynamic programming or
function minimization procedures in the form of
continuous curves constructed of cubic splines. A
very simple algorithm is used for the reconstruc-
tion of the electrodes or pole pieces. This ap-—
proach combines the widely recognized advantages
of our optimization techniques with a built-in
accurate and effective reconstruction procedure.
The final design is simplified on the basis of the
requirements of manufacturability. High-quality
electrostatic lenses have been designed by the use
of this technique. Thus, electron and ion optical
synthesis has been transformed from a dream to
reality.

Key words: aberrations, chromatic aberration,
electron lens, electrostatic lens, field distribu-
tion, ion lens, optimization, potential distribu-
tion, spherical aberration, synthesis.

Introduction

There has been a struggle to overcome the
aberrations of electron lenses since the very
beginnings of Electron and Ion Optics. The reduc-
tion of aberrations is of specific importance now
because of the great interest in particle beam
technologies. Electron and ion beam lithography
and especially focused ion beams offer new possi-—
bilities for integrated circuit fabrication as
well as new microanalytical capabilities.

Ion beams must be focused by electrostatic
lenses to ensure the independence of the refrac-
tion of the charge-to-mass ratio of the ions.
However, due to the fact that electrostatic fields
can not be concentrated to narrow regions like
magnetic fields, there is a widespread belief that
the aberrations of electrostatic lenses are intrin-
sically much higher than those of magnetic lenses.

Scherzer (1936b) showed that it is impossible
to correct all of the aberrations of axially sym-
metric electron lenses by another system of simi-
lar symmetry but it was he again who proposed
several other ways to compensate them by introdu-
cing additional features: discontinuities in the
field distributions, space charge, high-frequency
fields or other types of symmetry (Septier, 1966).
In this paper we shall not be concerned with
compensation. Our topic is optimization i. e.
search for such electron and ion lenses that would
provide themselves (without additional compensa-—
ting elements) the required optical properties
with minimum aberrations.

There are two totally different approaches
to optimization: analysis and synthesis.

If the method of analysis is used, the
designer starts with a given simple set of elec-
trodes or pole pieces. The design is gradually
improved by analyzing the optical properties and
changing the geometrical dimensions as well as the
electric and magnetic parameters of the system.
This process is repeated until it converges to an
acceptable solution. Due to the infinite number of
possible configurations, the procedure is extreme-—
ly slow and tedious. It can yield the results
quickly only if a reasonable guess of the answer
is already available before the work starts or if
the constraints are so severe that there is not
very much choice left. The iteration procedure can
be facilitated by automation (Chu and Munro,
1981).
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Optimization by synthesis 1is based on the
fact that the imaging field, its optical proper-
ties and aberrations are totally determined by the
axial distribution of the field. Only the axial
distribution and its derivatives appear in the
paraxial ray equation and in the expressions of
the aberration coefficients. Then, instead of
analyzing a vast amount of different electrode and
pole piece configurations, we can start with the
criteria defining an optimum system as initial
conditions and try to find the imaging field dis-
tribution (and subsequently the electrodes or pole
pieces) that would produce it.

This is a complicated problem. Its solution
has been keeping many researchers interested for
an extended period of time. Before we start to
review their work, let us first show the differ-
ence between the analytic and synthetic approaches
by using a simple example.

This example is the ideal quadrupole lens. It
consists of four identical infinite hyperbolic
surfaces held at alternate positive and negative
potentials. Since infinite surfaces can not be
realized in practice, different approaches have
been used to approximate the ideal quadrupole
field. The analytic approach is to compensate the
missing parts of the hyperbolic surfaces by chang-
ing the shapes of the remaining electrodes. The
synthetic approach (Szilagyi, 1978b) starts with
the ideal field distribution and tries to repro-
duce it by recognizing the fact that the most
important characteristic of a quadrupole lens is
not the number of its electrodes but the presence
of exactly two mutually perpendicular symmetry
planes. The solution then follows quite easily: a
high number of simple electrodes held at suitably
chosen potentials produces a much better approxi-
mation of the ideal quadrupole lens than any sys-
tem of four sophisticated electrodes.

Let us now see how the problem of aberration
reduction can pe attacked by the synthetic ap-
proach.

Is Aberrationless Electron Optics Possible?

Contrary to a widespread belief, Scherzer's
theorem does not exclude the possibility of aber-
rationless electron lenses. It only states that
the spherical aberration coefficient can not
change sign i. e. it can not be compensated by the
spherical aberration of another axially symmetric
electron lens. The situation is similar for the
chromatic aberration. It is feasible, therefore,
to search for a lens with zero aberrations.

Glaser (1940) calculated first the magnetic
field distribution necessary to give zero spheri-
cal aberration. Unfortunately, the resulting field
is not strong enough to produce a real image. It
was established, however, that for the reduction
of spherical aberration the second derivative of
the axial distribution of the magnetic flux densi-
ty must be positive throughout the lens. This led
to a substantial improvement of beta-spectrographs
(Siegbahn, 1946).

Although proofs of zero limit of the spheri-
cal aberration have been published (Kas'yankov,
1955), all the attempts to calculate a practically
realizable field distribution with zero spherical
aberration have failed (Crewe, 1977). Recknagel
(1941) showed that electrostatic lenses free of
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aberrations can not form a real image either.
Finally, Tretner (1959) calculated the lower 1i-
mits of the spherical and chromatic aberration
coefficients for both electrostatic and magnetic
lenses.

Since the practical realization of aberration-
less electron lenses seems to be impossible, our
efforts must be concentrated on the reduction of
aberrations.

Early Attempts of Synthesis

Synthesis of electron lenses with minimum
aberrations has been attempted since the first
decade of Electron Optics. Scherzer (1936a) and
Glaser (1938) calculated the axial electrostatic
and magnetic weak lens distributions, respective-
ly, with the least spherical aberration.

The synthesis of real thick lenses is much
more complicated. Kas'yankov (1952) was the first
to try his wits at this formidable problem. He
derived a set of high-order nonlinear differential
equations the solution of which would minimize
certain aberration integrals. Unfortunately, the
initial conditions for these equations as well as
practical methods of their numerical solution
remained unclear.

Burfoot (1953) calculated a special set of
quadrupole lenses of extremely complicated form to
obtain a potential distribution for which the
spherical aberration is corrected.

Septier (1966) mentions two other early ap-
proaches based on the general trajectory equation
(P. Lapostolle) and the approximation of the ideal
hyperbolic lens (R. Rudenberg and A. Septier),
respectively. They produced comparatively weak
lenses with not very low aberrations.

Calculus of Variations

Tretner (1954, 1959) realized that the Calcu-
lus of Variations is a natural approach to the
problem of synthesis since the aberration coeffi-
cients can always be expressed as definite integ-
rals of the form

i
C=| Flr (2),r'(2),r (2),r'(z),v(z),V'(2),Vv"(z)]dz
1 1 2 2
z
o
z
1
=| F(z) dz 1)
z
o

where F(z) may represent the integrand of a combi-
nation of aberration coefficients or just one
coefficient, z, and z; are the object and image
coordinates, respectively. The Calculus of Varia-
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tions is well suited to minimize integrals. The
difficulty is that the integrand F(z) is a compli-
cated function of not only the unknown electrosta-
tic and magnetic field (or potential) distribu-
tions [V(z)] and their derivatives [V'(z) and
V'"(z)] but also of two linearly independent solu-
tions r (z) and r (z) of the paraxial ray equation
1 2

flr(z),r'(2),x"(2),V(2),V'(2),V"(2)] =£(z)=0 (2)

which is a second-order differential equation with
coefficients depending on the same unknown field
distributions and their derivatives. Though
Tretner used the Calculus of Variations to find
the limits of the chromatic and spherical aberra-
tion coefficients of electrostatic and magnetic
lenses, he left the question of how to achieve
these limits open. For special cases he managed to
simplify the mathematical problem by a series of
variable transformations but in a general case
these simplifications usually do not work.

The first mathematically justified approach
to synthesis with practical results was that of
Moses. He first used Calculus of Variations for
the optimization of quadrupoles (1970, 1971la,
1971b) but later successfully applied it to the
design of axially symmetric magnetic lenses, too
[(Moses, 1973) and (Rose and Moses, 1973)].

In order to determine the unknown functions
V(z) and r(z) so that they minimize several aber-
ration integrals simultaneously and at the same
time satisfy the differential equation (2) to-
gether with additional constraints we first define
the Lagrange multiplier‘#(z) so that

z
i

&

[F(z) + fL(z) f(z)] dz = 0 (3)

where S/Vmeans the first variation of the inte-
gral. Carrying out the variations of the integrand
and integrating by parts we obtain two high-order
nonlinear differential equations (the Euler-
Lagrange-Poisson equations). Combining them with
the paraxial ray equation (2), one has a system of
three coupled nonlinear differential equations. An
additional equation appears when the residues
obtained from the partial integration are equated
to zero. The initial conditions are determined by
the constraints. As they may be given at different
(even a priori unknown) points and the differen-
tial equations are usually very complicated, spe-
cial numerical procedures are needed for their
solution. Fortunately, for magnetic lenses the
procedure yields a system of second-order diffe-
rential equations and Moses was able to solve it.
He actually managed to design a coma-free magnetic
lens with low spherical aberration (Moses, 1973).
For electrostatic lenses the situation is
much more complicated. The Euler-Lagrange-Poisson
equations yield a system of fourth-order differen-
tial equations with complicated initial conditions.
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Fig. 1. Axial potential distribution for a high-
performance electrostatic lens.

The solution of such a system is numerically in-
tractable. Simpler procedures are needed for prac-
tical design.

A Simple Systematic Approach

If a mathematically justified approach yields
such a complicated procedure, it is natural to try
something much easier. The easiest way to search
for field distributions that provide small aberra-
tions is to investigate classes of parametrized
analytical functions or simply try to produce
certain distributions by the use of different
curve fitting techniques (Szilagyi, 1983a). Using
this simple approach in a systematic way we were
able to find many electrostatic axial potential
distributions that satisfy practical requirements
for probe forming lenses and have very low spheri-
cal and chromatic aberrations. One of these dis-
tributions is shown in Fig. 1. The potential dis-
tribution and the axial dimensions are related to
the object-side potential V, and the effective
length L of the lens, respectively. This distribu-
tion corresponds to a four—electrode electrostatic
lens that has a spherical aberration coefficient
Cgo for infinite magnification, referred to the
object space and related to the object-side focal
length f,equal to Cgo/fo= 0.82 and chromatic
aberration coefficient for the same case equal to
Ceo/fo= 0.46. For a six-electrode lens we could
obtain even better results: Cgo/fo= 0.63 and C.q/f,
= 0.29, respectively.

If one compares these data with the aberra-
tions of the best available electrostatic lenses,
it is easy to see that a systematic search for
good axial potential distributions can provide
much better results than any analytical design.
Even if we include the difficulties of the elec-
trode reconstruction (see later), we can safely
declare that general statements about the intrin-
sic inferiority of electrostatic lenses so common
in the literature are certainly not justified.

This simple approach is very powerful because
it produces good results without complex mathema-
tical operations. One can find excellent imaging
field distributions even with a personal computer.
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Fig. 2. Computational grid for the dynamic program-

ming procedure.

However, if one really wishes to explore the vast
universe of all feasible field distributions,
mathematically justified and practically realiza-
ble optimization techniques are needed. Since the
Calculus of Variations is too complicated for
practical use, other approaches had to be consi-
dered.

Dynamic Programming

Our problem is to find the distribution V(z)
that minimizes the aberration integral (1) simul-
taneously satisfying the differential equation (2)
and the constraints imposed by practical require-
ments. The possible distributions constitute an
infinite set even if the length of the lens as
well as the maximum allowable field strength are
both limited. We can reduce this infinite set to a
finite but extremely large one in many different
ways. For example, one can seek V(z) in the form
of an n-degree polynomial or another parametrized
function. In this case we have to determine the
coefficients of the polynomial or the parameters
of the function. As it was shown in the prece-
ding section, it is a feasible alternative but
without any hope to explore even a reasonable
fraction of the different possibilities. Indeed,
even if each coefficient of the polynomial can
take only m different values, the number of possi-
ble variations is m"™ which is an astronomical
number for any pair of practical values of m and
n. This brute force approach, therefore, does not
satisfy our requirement of being mathematically
justified. Is there any hope at all if e. g. n=10
and m=1007?

Yes, there is not only hope but there are
also practical ways of solution [(Szilagyi,
1977a), (Szilagyi, Yakowitz and Duff, 1984),
(Szilagyi,1984b)].

Let us first see the Dynamic Programming
approach (Szilagyi, 1977a). We start with a rec-
tangular computational grid (Fig. 2) that defines
the domain of existence for the field distribu-
tion. The field is limited by its maximum al lowa-
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ble value. Its axial extension is defined by the
given effective length L of the lens. The effec-
tive length is divided into N equal regions. The
unknown distribution V(z) or one of its deri-
vatives is approximated by a straight line in each
region. We shall denote this piecewise linear
function by h(z). For a magnetic lens h(z) is the
axial flux density distribution, for an electro-
static lens it is the electric field distribution.
If one wishes to drastically reduce the amount of
calculations, even a step—function model can be
used where the field is constant in each region
and its derivatives are calculated as differences
at neighbouring regions. As we shall see later,
the most effective approach is to use the highest
derivative appearing in the aberration integral
for h(z). In any case h(z) can take only 2M+1
different values at the boundaries of the regions
(see Fig.2). Thus, our problem is reduced to that
of finding N*(2M+1) intersection points of the
computational grid that will provide the linear
segments of the optimized field distribution.

The paraxial ray equation can be solved in
each interval analytically or numerically. The
continuity of the solution requires that the ini-
tial values of r and r' for each region be taken
as equal to their terminal values in the preceding
region. If N is a sufficiently large number, the
aberration integral can be approximated by a fi-
nite sum and we can easily calculate the contribu-
tion of each region to this sum.

Let us now denote the initial and terminal
values of h(z) in the kth interval by

h (z ) = jAh (4)
k k
and

h (z
k k+l

) = iAh (5)

respectively where Ah is the minimum amount of
change in the value of the field distribution (see
Fig. 2). Evidently, the solution of the paraxial
ray equation as well as the contribution to the
aberration sum will depend on the values of i, j
and k.

Of course, we still have the astronomical
number of (2M+1)Y different possibilities. We
must find a way to effectively search for the
best possible solution.

Our multidimensional problem can be reduced
to a one-dimensional multistage decision problem
which can be solved step by step. Let us suppose
that we have been able to find a potential distri-
bution for which the value of the aberration inte-
gral between z, and zy 1is minimal. We shall
denote this optimized intermediate value of the
integral by Gk . How to proceed further? If Fqk
is the contribution of the kth region to the

integral, then the minimized value Gij(ksi) of the
aberration integral between z, and Zlal is given
by the recursive relationship
G = min (G +F ) (6)
i(k+1) j jk ijk

where j is a variable and the optimization proce-
dure is aimed at finding that particular optimal
value of j for which the value of the sum in




Synthesis of

parentheses is minimal. As we have already calcu-
lated everything needed to obtain Fijk for the
given value of i the procedure yields both the
optimized value of j and the new value of Gj(k41),
Since we started with the assumption that the
optimum distribution leading to the point (j,k)
was known, now one further portion of the optimum
distribution has been found.

We start at k=1 with Gj|=0 which expresses
the fact that in the field-free region beyond the
lens the contribution of the aberration integral
is zero. Therefore, the search in the first region
is reduced to the comparison of the different Fi;k
values. For each i we find the corresponding jopt
value that minimizes F4i . We proceed region by
region recursively toward the object space using
Eq. (6) for the determination of the optimum va-
lues of j for each k and i until we reach the end
of the computational grid (k=N+1). Note that at
each region we only have to evaluate (2M+1)2 pos—
sibilities. As a result of N¥(2M+1)®> evaluations
we shall have 2M+1 different optimized axial field
distributions (with different terminal values of
i) together with the corresponding particle tra-
jectories. Each distribution can uniquely be
traced back by following the optimum values of j
for all the pairs of the i and k values. One
chooses the particular distribution that best
satisfies the practical requirements of the given
design. For example, if the field must vanish at
the boundary of the lens and h(z) means the field
distribution, then naturally i=0 must be chosen at
the terminal point. When this is not required but
we would like the image to be located inside the
lens, we can make N a variable and stop the calcu-
lations at the pair of values i and N where r=0.

The most important advantages of the dynamic
programming procedure are as follows:

1. No initial guess of the result is re-
quired. The algorithm searches through the entire
problem space in an efficient way without the
requirement of any initial assumptions.

2. A global search is provided with only
N*(2M+1)® evaluations.

3. In general, rich patterns of optimized
distributions are produced. They contain vast
numbers of distributions as sub-solutions of the
original problem with different initial and termi-
nal conditions.

4. The procedure is simplified by any addi-
tional constraint that reduces the number of pos-
sible choices at a particular stage.

5. The procedure can be directly applied to
any symmetry.

This method has been successfully used for
electron lens design. Numerous interesting confi-
gurations have been found both for magnetic
(Szilagyi, 1977b) and electrostatic (Szilagyi,
1978a, 1978c and 1983b) lenses. A typical case is
shown in Fig. 3. This is a 50%60 computational
grid for the design of accelerating electrostatic
immersion lenses (Szilagyi, 1978a). Here h(z) is
proportional to the axial electrostatic field
distribution. All the acceptable solutions start
and end with approximately zero fields and repre-
sent two-cylinder immersion lenses with the second
cylinder having a smaller diameter and a higher
potential.

As usual, there are also some limitations:

1. The procedure is aimed at subsequent nodes

Electron Lenses
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Fig. 3. Optimized electrostatic field distribu-
tions obtained by dynamic programming.

of the computational grid and not at the a priori
unknown terminal node. As a consequence, it may
happen that a "non-optimal'" distribution provides
a solution sooner than the "optimal" one.

2. Due to the discrete nature of the proce-
dure, storage and manipulation of large arrays of
data are required.

The procedure can be improved by any of the
following suggestions:

1. Aim the optimization procedure at the
given terminal condition. Then for an arbitrary
node of the computational grid the predecessor
node is chosen to minimize the value of the aber-
ration integral not at the given node but at an
a priori chosen terminating point.

2. Maintain the original algorithm but make
the value of Az a variable to ensure a smooth
distribution even for small grids.

3. Replace the computational grid in the h-z
plane by a grid in the phase plane r-r' of the
paraxial ray.

4, Avoid the difficulties connected with the
discrete character of the method by the utiliza-
tion of differential dynamic programming.

5. Try something totally different. This will
be discussed in the next section.

Function Minimization

A very effective optimization procedure was
recently proposed by Szilagyi, Yakowitz and Duff
(1984). We again divide the axial length of the
lens into N regions and in each region represent
the unknown axial distribution V(z) by a simple
polynomial expression. The simpler this expression
is, the faster and easier the procedure becomes.
We require the continuity of V(z) and its lower
derivatives. This requirement imposes some rela-
tionships between the coefficients of the polyno-
mials at neighbouring regions. We always define
the requirements of continuity in such a way that
the set of coefficients at the highest-degree
terms remain free. Then our problem is reduced to
that of finding N coefficients satisfying the
paraxial ray equation (2) and the constraints of
the problem and minimizing the aberration integral
(1) .

Let us start with an arbitrary set of the
free coefficients. The paraxial equation is solved
with these coefficients for each interval and the
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corresponding aberration coefficients are eva-
luated numerically. Naturally, the aberration
coefficients will be too high and the constraints
will not be met. Now we add a penalty reflecting
the violation of the constraints to the value of
the objective function constructed from the aber-
ration coefficients. This sum is the new objective
function we are trying to minimize.

The minimization can be done simply by ap-
plying some nonlinear programming technique (e.g.
a quasi-Newton algorithm) to the new objective
function of the N coefficients (function minimiza-
tion). The result is a set of coefficients that
minimize the aberrations with the simultaneous
satisfaction of the constraints.

Though this procedure requires an initial set
of coefficients to be chosen by the user, it is
extremely fast and effective. Almost any combina-
tion of the initial data converges to a good
solution in seconds of CPU time. We were able to
design some very good electrostatic lenses by the
use of this technique.

Reconstruction of the Electrodes (Pole Pieces)

When the optimized axial electrostatic or
magnetic scalar potential distribution has been
found, our next task is to find the electrode
(pole piece) configuration that will produce the
optimized distribution. Since the potential pro-
duced by an axially symmetric system at an arbit-
rary point in space is uniquely determined by its
axial distribution, from theoretical point of view
the electrode reconstruction does not constitute a
problem.

The power series expansion of the potential,
however, requires the axial distribution to be a
2(n-1) times differentiable function of the axial
coordinate z where n is the number of terms used
in the power series. Unfortunately, for a good
convergence a large value of n is needed. If the
axial distribution is given as a numerical data
set, or even if it is given in the form of a
complicated analytical function, the higher deriva-
tives must be produced by numerical techniques
which are extremely inaccurate. This difficulty
can be avoided by using the charge density method
(Hawkes, 1981) but it requires excessive computer
time for the reconstruction of the potential dis-
tribution at a considerable distance from the
axis.

The axial potential distribution given as a
discrete data set can be replaced by a continuous,
n times differentiable function with minimum inter-
polation noise (Szilagyi, 1980). The computational
feasibility of this approach, however, is also
questionable.

The difficulties of electrode (pole piece)
reconstruction, therefore, constituted a common
weakness for all methods of electron and ion opti-
cal synthesis. Some researchers have even expres-
sed scepticism about the very possibility that the
problem of electron optical synthesis can ever be
solved (Kasper, 1981).

We were able to achieve quite acceptable
accuracy of reconstruction by fitting the numeri-
cal data sets with smooth cubic spline curves
(Szilagyi, 1983a). Of course, inside the regions
the cubic splines do not have any derivatives
higher than the third. However, the difficulty is
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Fig. 4. Electrostatic lens designed on the basis
of the potential distribution shown in
Fige 1.

that the higher derivatives are undefined at the
boundaries of the regions. Nevertheless, with some
insight and experience one can always reconstruct
the electrodes. Fortunately, in most cases the
complicated curved equipotential surfaces can be
replaced by simpler ones with straight boundaries.
As a result we were able to design lenses with
electron optical properties very close to those of
the optimized axial potential distributions. A
four-electrode electrostatic lens based on the
axial potential distribution given in Fig.l is
shown in Fig. 4. This lens has very good optical
properties in a wide range of the parameters. Its
aberrations are quite low even at large working
distances. If the electrodes are held at the rela-
tive potentials shown in the figure, the spherical
aberration coefficient is equal to Cg/fe=0.92 and
the chromatic aberration coefficient has a value
of Ceo/fe=0.55.

The success of utilization of the cubic
spline curve fitting technique has led us to the
solution of the synthesis problem.

Solution of the Problem of Electron Lens Synthesis

The difficulties of electrode (pole piece)
reconstruction were connected with the fact that
the reconstruction procedure was totally separated
from the optimization algorithm. When we search
for an optimum axial field distribution we do not
care about the problem of off-axis expansion. This
is wrong: the reconstruction process must be an
integral part of the optimization procedure. In-
stead of replacing the discrete axial distribution
data sequence by a continuous curve in a compli-
cated way or trying to accomplish the off-axis
expansion by some other sophisticated techniques,
we must seek the solution directly in the form of
a continuous piecewise cubic spline function. The
simple expression

2
r

=V(z) - — V'"(2) (7)
7

v(r,z)

will then be used for the potential distribution
in the entire space. The reconstruction of the
electrodes or pole pieces thus becomes an almost
trivial task (Szilagyi, 1984a).
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This approach allows us to combine the evi-
dent advantages of both the dynamic programming
and the function minimization procedures with an
easy, fast and accurate reconstruction technique.

In the following we shall briefly outline our
method of electron optical synthesis (Szilagyi,
1984b).

The axial electrostatic or magnetic scalar
potential distribution will be represented by a
piecewise cubic function. As usual, the axial
length of the lens is divided into N equal re-
gions. The unknown distribution V(z) is sought in
the form of

g 3
V(z) =A +B(z-2)+C(z-2) +D(z-2)
k k k k k k k k

(8)

for each region (k=1,2,...,N) where zy 1is the
axial coordinate of the starting point of the kth
region. The coefficients Aps By, Cy and Dy are
different for each region, therefore V(z), V'(z)
and V'"(z) have different expressions for each
region. It is very easy, however, to ensure the
continuity of these functions by requiring the
satisfaction of the following relationships be-
tween the coefficients:

2 3
A =A + BAz+ C (Az) + D (&z) (9)
k+1 k k k k
2
B =B +2CAaz + 3D (4z) (10)
k+1 k k k
and
¢ =C +3Daz (11)
k+1 k k
where
- [ = = 12
Az L/N Zk#l Z 4 (12)
Let us formulate the constraints now. Natural

ly, the fields must be practically realizable.
Therefore, the magnitudes of the potential and its
derivatives must be limited:

V £ V(z) £V (13)
T II

|v'<z)lé V' (14)
and

v"(z)|é v (15)

i
where Vg, an vy and V' are a priori giver}
numbers. It 1s usually required that the fields
vanish at both the object and the image:

Vi(z ) =V'(z ) =0
0 X

(16)
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The particle trajectories must be focused toward
the optical axis but should not cross it inside
the optical element. In addition, we must provide
some working distance beyond the lens. Therefore,
we must require

r(z)>0 (17)

and

0z )> 0
o

(18)

Depending on the particular problem, the con-
straints may be different from these.
If we relate the potential distribution to

Vo then
A =1 (19)
1
Conditions (16) yield
B =0 (20)
B
and
2
B +2CAz +3D (Az) =0 (21)
N N N

The above constraints leave only the coefficients
C, and D (k=1,2,...,N-1) free. For a given set
of coefficients the paraxial ray equation can
easily be solved and the aberration integrals
evaluated numerically. Therefore, the problem of
searching for a function in the infinite set of
different possibilities is reduced to that of
finding these N coefficients so that they satisfy
the paraxial equation and our constraints and at
the same time minimize the aberration integrals.

This is an N-dimensional constrained optimi-
zation problem. We can solve it either by the
dynamic programming or the function minimization
approach with the fundamental advantage over the
original versions of these methods that the opti-
mized potential distribution will now be available
in the form of a continuous curve with only three
derivatives instead of a digital data set.

If the dynamic programming procedure is used,
we shall utilize the fact that for the piecewise
cubic lens model the second derivative of the
axial potential distribution is a linear function
of the axial coordinate within each region:

V'(z) =2C +6D (z-2)
k k k k

(22)

The distribution of the second derivative V"(z) is
then given by a series of continuous linear seg-
ments. We simplify the search by restricting these
linear segments to those connecting the nodes of
the discrete computational grid i. e. we only
allow 2M+1 different discrete values of the second
derivative at the boundaries of the regions. We
have to substitute V" for h in equations (4) and
(5).Then the coefficients are expressed through i
and j by




C = jav/2 (23)
k
and
i
D = — AV" (24)
k 6Az
with
AV" = V'/M (25)
I

The rest of the procedure is identical to that
outlined above in the description of the dynamic
programming method.

We have modified our function minimization
procedure, too, to provide a continuous, piecewise
cubic function for the optimized axial potential
distribution in the form of Eq. (8), the coeffi-
cients of which are determined by the procedure.

Dynamic programming and function minimization
very well complement each other: while the first
provides a global search in a discrete domain the
second is very fast and accurate. Both give quite
satisfactory results but in extraordinarily diffi-
cult cases the synthesis procedure may combine
them by starting with dynamic programming and
refining the optimized axial potential distribu-
tions by the function minimization procedure.

The reconstruction of the electrodes (pole
pieces) is extremely simple now because we already
know not only the axial distribution of the poten-—
tial but also its continuous second derivative.
The third derivative is not continuous but it does
not appear anywhere so it cannot cause any prob-
lem. The fourth and higher derivatives are zero
everywhere except the boundaries of the regions
where they are still undefined. However, we are
not using the spline function for curve fitting
now. Therefore, it is justified to assume that
these higher derivatives not appearing anywhere in
the expressions of the focusing properties and
aberrations will not affect the potential distri-
bution either. This is why the simple expression
(7) can be used for the potential distribution in
the entire space. By the use of this formula we
are able to reproduce the equipotential surfaces
that will provide the same functions V(z), V'(z)
and V"(z) and thus the same focusing properties
and aberrations as the original theoretical dis-
tribution obtained from the optimization proce-
dure.

First we examine the potential distribution
and determine its inflection points. The number of
electrodes (pole pieces) is always one more than
the number of inflection points that separate the
neighbouring electrodes. Then we substitute the
suitably chosen values of the electrostatic or
magnetic scalar equipotentials into Eq. (7) for
each electrode and obtain simple relationships
r=r(z) for the shapes of the electrodes or pole
pieces. If the value of V" is negative between two
inflection points, the electrode (pole piece)
potential is chosen slightly higher than the maxi-
mum value of V(z) in the given region. If V" is
positive, the electrode (pole piece) potential is
lower than the minimum value of V(z) in the re-
gion.
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Fig. 5. Four—electrode optimized electrostatic
lens designed by the author's new method
of synthesis. The electrode shapes are
gradually simplified to plane surfaces.

The maximum value of r must be limited to a
realistic size, usually to half of the length of
the system. Since the value of r rapidly approach-
es infinity at the inflection points, parts of the
electrodes (pole pieces) must be omitted. This
automatically ensures a certain minimum distance
between them which is necessary to avoid electric
breakdown in case of electrostatic lenses.

A very important remark is due here. When the
final electrode shapes are chosen, we actually
depart from the optimized potential distribution
by omitting parts of the electrodes. During this
process we can also simplify the electrode shapes
and replace the complicated curved boundaries by
easily manufacturable simple straight surfaces.
The accuracy of the reconstruction will only
slightly be affected by these actions but on the
other hand the practical value of the method is
tremendously increased by them.

As an example, the schematics of a four-
electrode electrostatic lens designed by the func-—
tion minimization method of synthesis is shown in
Fig. 5. The dimensions of the lens are given in
units of the effective length L (the distance
between the axial points beyond which the poten-—
tials are practically constant at both sides of
the lens). The electrode potentials are related to
the potential of the first electrode at the object
side. The optimization procedure first yields (1)
the infinitely long electrodes, parts of which are
shown as thin lines in the figure. As the next
step (2), the electrodes are cut to reasonable
sizes and parts of them are totally omitted in
order to avoid breakdown (broken lines). The final
simple electrode shapes (3) are shown in thick
continuous lines.

The axial potential distributions of the
reconstructed lenses were re-calculated by the
charge density method and the optical properties
(locations of the cardinal elements and values of
the aberration coefficients) were determined by
ray tracing and numerical integration. The results
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for the three systems are compared in the follow-
ing table:

System Focal Principal Focal Spherical Chromatic

plane plane length aberr. aberr.

# z [L P /L £ /L c /L c /L
o o o so co

1 -0.029 0.182 0.212 0.190 0.169

2 -0.025 0.187 0.212 0.224 0.175

3 -0.018 0.194 0.212 0.235 0.177

As we can see, even the optical properties
of the simplest lens are excellent and not very
much different from those of the optimized theore-
tical potential distribution. At a very low maxi-
mum-to-minimum electrode potential ratio
(Upmax/Umin=5.54) we have Cgo/fo= 1.11 and C.o/fo
= 0.83. The negative value of the location of the
focal plane provides comfortable working distances
when the lens is used in the probe forming mode
(the zero point coincides with the center of the
entrance aperture).

We were also able to design a three-electrode
electrostatic lens with Umgx/Umin= 8.86, Cgo/fo
= 0.95 and C¢o/fo = 0.72 (Szilagyi, 1984a) as well
as a five-electrode einzel-lens with
Umax/Umin=6.75, Cgo/fo= 1.03 and C.o/fo= 0.76
(Szilagyi, 1984b).

Conclusion

Electron and ion optical synthesis is a very
real problem of Particle Beam Optics. The final
goal is to be able to design an entire optical
column automatically on the basis of given proper-
ties. Many years of work by a number of different
researchers has eventually culminated in our solu-
tion outlined above. It provides a powerful prac-
tical tool for the synthesis of electron and ion
lenses. The reconstruction of electrodes (pole
pieces) is built in the optimization procedure and
does not require any extra effort. Our design
examples not only prove the effectiveness of this
approach but also give encouragement to the possi-
bility of building very high performance electro-
static lenses so much needed for ion beam lithog-
raphy.
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Discussion at the Conference

This work has generated an unusually great in-
terest at the Conference. Very active and lengthy
discussions took place both during its presenta-
tion and at the special workshop on electron lens
design. Although it is not possible to describe
the entire debate, a summary of the most important
items is presented in the following:

1. Synthesis is necessary because different
applications require different designs. Therefore,
it is not sufficient to catalogue some simple
cases but a general design method is needed.

2. The author's method must be used with
additional simplification of the electrodes (pole
pieces). The strength of the method is that it is
able to find the locations and potentials of the
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electrodes. Their shapes do not influence the
optical properties very much.

3. The simplification of the electrode shapes
naturally introduces higher derivatives into the
axial potential distribution. However, this does
not constitute any real problem since our aim is
not an exercise in pure mathematics but practical
design.

4. To obtain more general designs it is con-
venient to define the electrode shapes and poten-
tials in dimensionless units. The unit of poten-—
tial is determined by the given energy of the
particles either in the object or the image space.
Then the minimum value of the effective length is
chosen from the requirement that in order to avoid
breakdown the electric field must not exceed a
certain maximum value.
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