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Abstract 

The fa miliar met hods for the num e ri­
cal calcul at i on of fields in elect ron op ­
t ic al devices are o utlin e d bri efly . for 
the s ol uti o n of self - a dj o int ellipt ic 
differential equations in orthogonal cur­
vilinear coordinate systems a favou rabl e 
ninepoint discr et iz at i o n is worked o u t 
which can be applied favourably e .g. to 
spherical mes h grids . The field cal cul a ­
ti o n in mag n et ic d eflect i on syste ms by 
mearis of an int egral eq uati on metho d i s 
also highly advantageous . The methods for 
the field calc ul ation can be still more 
improved by mea n s of s ui lable hybrid pr o ­
cedures . 

A second and shorter contribution is 
concerned with r a y tracing and aber r a ­
tions . Some favourable num erically stable 
new fo rm s of the ray eq u at i on are derived 
and thereafter a n ew simple method for 
the d eterminat i on of aber r ations is out ­
lin e d. 

Key wo rds: field calculati o n, ray 
tracing, aber ra t i ons , int egral equation, 
hybrid metho d, Poisson ' s eq u at i on ,d iscre ­
tizati on . 
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Intr od uction 

Due to the r apid advances in com ­
put er t ec hn o l ogy i t i s p oss ibl e to calcu­
lat e now with reasonable effort a nd s u f­
fici ent acc u racy the pr ope rtie s o f elec ­
tron opt ic a l systems , an d this i s done 
very frequent ly , since the a id of a com ­
put er facilitates essent i ally t h e d esign 
of new devices . Generally such a co mpu­
ter-aided design consists of fo u r subse­
qu e n t and partly in ter d e p e nd e nt ste p s . 
These are t he calculat i on of elect ri c and 
magnetic fie ld s from given source distri­
butions and boundary cond i tions , the 
tracing of electron trajectories through 
t hese fields , the determination of p ar­
axial p ropert i es and of aberrations from 
the obta in ed trajectories and finally the 
optimizat i on of the design in question. 
The latter involves a repetition of the 
preceding steps under suitable var i ations 
of system parameters , until a relat i ve 
minimum of the r esulting aberration is 
found. In al l of the above mentio ned 
fields some progress was made during t he 
last years, and it is the aim of this 
p aper to present a short r eview of this 
pr ogress an d to give some outlook on 
further developments . 

fi el d calculation 

Generally three diff ere nt met ho ds of 
f i eld calculation a re in wid espread us e , 
thes e are the fin it e - e lem e nt met hod 
(fEM) , t h e finit e -di fference me thod (fDM) 
an d the integral-equation met hod (IEM). 
Each of t h ese has s p ec ific advantages and 
also dis a d va ntag es , so that n one of them 
can b e ign o r ed compl ete ly o r de al t with 
exclusively . 
Th e finite - ele me n t met h od 

Th e fEM consists in the dissection 
of the d o ma in of so lution into su i tably 
ch osen volume e l e ments which must be ir­
regul a r in the general case in or d e r to 
fit to the bound ar i es . In the case o f 
tw o - dim e nsional pr o blems the mesh grid 
obtained in this way consists u s ually of 
irregular triangles with six ele ments 
joining together in eac h in te rn a l node. 
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It is familiar to derive the necessary 
equations for the values of the potential 
in the nodes from a variational princip­
le: in each of the finite elements the 
stored electr ic or magnetic field energy 
must be minimized. In order to evaluate 
this principle, some ass umptions about 
the required solution must be made. The 
simplest one is that the potential is a 
piecewise linear function. This version 
of the FEM has been introduced by Munro 
( 19 71, 19 73) who applied it successfully 
to a large variety of electron optical 
devices, most recently to magnetic and 
electric deflection systems (Munro and 
Chu, 1982 a,b). A review of applications 
of Munro's method to the design of un­
conventional magnetic lenses is given by 
Mulvey ( 19 82). 

While the version of the FEM, des­
cribed above is still frequently used, 
great improvements have been made in the 
past decade, mainly outside electron op ­
tics . Better approximations than piecewise 
linear functions for the potential are 
worked out (Silvester and Konrad, 1973), 
more generally curvilinear and even in­
finite elements are employed (Lencova 
and Lene, 1982) and other than varia­
tional formulations are proposed. A 
review of recent improvements of the FEM 
is given in a volume edited by Chari and 
Silvester ( 1980). Even with respect to 
the still most familiar case of planar 
triangular grids progress was made, as 
He rmelin e (1982) prop o sed a new and re­
liable me thod for the automatic genera ­
tion of such grids under given boundary 
c o nditions and other constraints. 

In spite of all these improvements 
the FEM has still severe disadvantages, 
the most serious one being the fact that 
the interpolation in irregular mesh grids 
is too complicated in order to ensure the 
continuity of the field strength and its 
derivatives along lines crossing orthogo­
nally the mesh lines of the grid. This 
imposes strong restrictions on the ray 
tracing,as will be outlined in the "Ray 
Tracing and Aberrations" section. 
The finite-difference method 

In the applications of this method, 
the domain of solution is covered by a 
regular, usually square-shaped mesh grid. 
Most frequently th i s grid does not fit to 
the boundaries, so that many irregular 
nod es are to be considered. Theoretically 
it is no problem to derive discretization 
formulae for arbitrary irregular configu­
rations, but in practice the considera­
tion of many different irregu lar situa­
tions makes the method inconvenient. Ne­
vertheless , the FDM has the advantage 
that - besides exceptional cases in elec­
tron guns - the grid is regular within the 
domain of the electron beam, so that the 
necessary calculation of the field­
strength can be performed with sufficient 
accuracy.A review of these standard tech­
niques has been given by Kasper (1982). 
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An interesting modificat i on of the 
FDM has been proposed by Kang et al. 
( 1981, 1983). In order to overcome the 
difficulties arising from the extre me 
differences of geometrical dimensions in 
e l ectron guns with field emission catho­
des, they proposed the use of an exponen­
tially increasing spherical mesh grid 
which they named SCWIM (spherical coor­
dinate with increasing mesh). Indeed, in 
this way a reasonable accuracy can be 
achieved. This method can be further ge­
neralized and improved, as will be out ­
lined now. 

We start from a general self-adjoint 
partial differential equation (PDE) 

( 1) 

p(u,v), q(u,v) and s( u, v) being non-sin­
gular analytic funct ions of the variables 
u and v , f ur ther p > 0 , o( ~-1, v .2: 0. 
The exponent~ arises from a possible 
axial symmetry of the potential V(u,v) 
for instance o<- = 1 for rotationally 
symmetric fields and o<. = 2m + 1 for 
multipole fields of order m. The product­
relation 
V(u,v) U(u,v)/p(u,v) 

reduces ( 1 ) to 

,1 u 
c,L 

with 

and 

q(u,v) 

-g(u,v) = q(u,v) - U - p. s 

( 2) 

( 3) 

( 4) 

( 5) 

For the discretization of (3) very 
accurate nine-point-formulae have been 
derived (Kasper, 1976), but with respect 
to the transformation (2) a still more 
favourable form of the discretization can 
be found. If we introduce the coordinates 
u = ih, v = kh (i,k integers) of the 
nodes and use corresponding subscripts 
(U,:*: = U(ih, kh)) then we can introduce 
favourably a new field 

w,;k := l(,k + ;; Ji,k 

= ~/ {~l + J~l ( i.J V:;k + S:;r)) ( 6 l 

and have now for k 3! 1 : 

( 7) 
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with t h e coefficients 

3oc(oi.-2) 
fk ·= 10{2.'tk2-+o<.2 -2o<.-t) 

A± 1 l = ; ± 1 ~ k -+ dk ( 1 + 
2 7 / ") I 

A o,k. = /o {k I Bo,k = ; - rk I 

B+1k=-1 +~ -Y o/+1 
. - , 20 - '!-Ok -f-Ok ' 12k ( 8) 

On the axis of symmetry , that means for 
k = v = 0 , instead of (7) and of (8) the 
formula 

1 

W:;o =A1,o ½1 +;fa 8;:~0<-1,j+ ~+1d) 

+r/( A0101t,o ..,((}c,o-90,1))-+0'(h'J 
with the coefficients 

{ 1 + i ) ( t + ot.) 
? ( 3 + oi.) lo= 

1 

2(Z+oL-l3) 

( 9) 

A = 2 Y-0 (1 + oc -(] ) f ,0 (/ 1 I Jj 6,o "'OP 
Boo = lo ( 1- fJ) 
C' - o( ( f + o<.) 

- lo t{J-u.J 

/ 81,0 :::-Jo f I 

( 1 0) 

is to be employed . The derivation of 
this discretization cannot be presented 
here and will be published elsewhere . 

A good example for the practical 
application of these formulae is the 
SCWIM grid. This can be considered as a 
conformal mapping of an originally cylin ­
dric grid with square-shaped meshes in 
the axial section . Let ( z , r, ¢ ) denote 
cylindric coordinates and (R , 0, ¢,) co­
axial spherical coordinates with 
z R cos G, r = R sin 8, then we have 

z + ir = R ex p(iG) = R
0

exp( u + iv) (11) 

with R = R
0

exp(u) and v ~ e. Transform­
ing the rotationally symmetric Poisson 
equation vi V = - c;'(} (R, 0) into these 
coordinates, we find 

1- (e"(Iin 11 ?V)+] few.rin v ~} 
")I,( ou oV [C 'fV 

-11) 2 ]CA. . (/) II ) (12) = [ 0 /\ 0 C' s-, n V • f /\ iJ e , v . 

Th i s can be cast into the form (1) with 

2 "' Ji>t v " 
0(. 1 , p = e --- , q = 0 , ( V <71' ) 

V ' 
-1 0 2. lu { u. } 

S Ea 1\0 e '.f Roe I V 

1 = 4-
1 

{ s;,/2.v -)}= 11 {t+ ;J-fO'(v''J. (13) 

On the optica l axis the coefficients p 
and q remain p osit i ve . By virt u e of (11) 
the SCWIM-grid is transfo rm ed into an 
or din ary sq u are shaped grid in u and v . 
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The discretization erro r is now of s i xth 
order in the mes h width . Numerical tests 
h ave shown that in comparison wi t h a 
five-p o int-discretization with the same 
mesh width a d ecrease of the error by a 
factor 10-, can be achieved (Killes , to be 
published) . Bu t this is true only in the 
case of regular grids . Irregular meshes 
in the vicinity of boundaries will cause 
complications and a loss of acc u racy. 
Th i s can be circumvented by a combination 
of the FDM with the IEM, as will b e ob ­
vious further below . 
The integral - equation method 

In the case of pure surface charge 
distributions with density o(r) the 
electrostatic potential satisfies 

V(r) =1 
B 

( 14) 

where the integration is to be carried 
out over the boundary B. In the case of 
Dirichlet problems the boundary values of 
V(r) are prescribed and (14) is then an 
integral equation for the unknown source 
distribution 6' (r). After its solution, 
(1) can be used I n order to determine 
V(r) in an arbitrary point r . By means 
of -an analogy - transfer also-the magnetic 
field between unsaturated poles with very 
high permeability can be calculated. This 
version of the IEM, called the surface­
charge method (SCM), is quite familiar in 
electron opt ic s. 

In order to perform the required in­
tegration,some simplifications are neces ­
sary. It is customary to dissect the sur ­
face into a l arge number of sufficiently 
small area elements in which o ( r) can be 
considered as practically constant, then 
the int egration can be carried out analy­
tically and (14) is r eplaced by a lin ear 
system of equations for the piecewise 
constant, but unkn own values of 6 . The 
numerous publications concerning this 
matter differ only in details of the ne­
cessary discretization. Instead of dis­
cussing these items, we consider some re­
cent developments . 

Scherle (1983a) has applied the IEM 
to the calculation of magnetic f i elds in 
shielded deflection systems with toroi ­
dal and saddle coils,respectively. He was 
able to take in to account the fin it e 
p ermeabil i t i es of core materials and to 
so l ve the corresponding interface-condi­
tion problems . Hence his version of the 
IEM is far more general th an the SCM 
outlined above . The starting point is the 
familiar separat i o n of the magnet i c field 
int o the pur e contribution H (r) from 
t he coils , satisfying - o -

( 15) 

and hence determined from the theorem of 
Bi ot and Savart, and a gradient field 
grad V( r) generated by the ferrite cores : 



E. K. Kasper 

a] 

b] 

Figures 1a,b: equipotentials of the sca­
lar magnetic ps e ud o -potential V(r) in an 
axial section through a system of saddle 
coils, a ferromagnetic core and a shield­
ing plate with a bore. For reasons of 
clearness the coils and their field ~ 0 (£) 
are omitted. 
(a) ferromagnetic shielding plate 
(b) superconducting shielding plate 
Courtesy of W. Scherle (1983b). 

H ( r) H (r) + grad V(r) 
-o- -

( 1 6) 

The latter contribution has its sources 
on the core surfaces and satisfies a 
Fredholm equation of second kind: 

27/A+:;_v) V(TJ+/2 Vr_c'J¾, 6{.!,r ') d2
t

1 

0 2 ( 1 7) 

= -/4 6{z,r_) t/•!Jo(r_'JJ r; 
n' being the local surface normal in the 
directon towards the vacuum and 
G = (4-rr/ E_-£'/)- 1 Green's function of free 
space. 

In th e case of rotationally symme ­
tric cores, even for unround current di­
stributions 1(£), eq .(17) can be reduc ed 
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to a sequence of uncoupled one-dimensio­
nal Fredh o lm equations of second kind, as 
each term in (17) is expanded into a Fou­
rier series with respect to the azimuth 
round the optic axis. After the decoup­
lings, obtained in this way and the ana­
lytic integration over the azimuth , the 
remaining integration runs over the 
l engths ' of arc in the meridional sec­
tion C through the boundaries. The re­
sulting equat i o ns to b e solved have the 
principal structure 

fc K ( s, s ' ) y ( s' ) ds' = U ( s) +) y ( s) , ( 1 8) 

U(s) being a given boundary va lue func­
tion, y(s) the r e quired function, .A a 
fixed constant and K(s,s') a complicated 
kernel function with logarithmic singula­
rity at s = s '. 

Scherle (1983a) has used a cubic 
spline function for y(s) and in this way 
he obtained a high accuracy for y(s). In 
his thesis (1983b) he has d eveloped a 
still more gen era l version of the IEM for 
two di fferent cores. The items cannot be 
described here, the plots of potentials, 
calculated in this way, are pr ese nted in 
fig . 1 a , b. 

In order to facilitate the integra­
tion over logarithmic singularities, Ka­
sper (1983) ha s derived a new integration 
formula for functions with logarithmic 
sing u larities . This can be further gene­
ralized. Let f.,:(x), i = 1,2,3 be arbi­
trary regular functions, then we have 

F(xf= (Jx) (n Ix/+ {z(x)/X +f1 (x}, 

~ 'f 

f f(x)dx == fz 'LG ( F(r:,J,h F{-t,J[))+(J{f/) ( 19 l 
-1.. 1-<-=r /A 

with the absc is sas and weight factors 
given by Basche (private communication, 
to be published) 

P1 0 . 0399 4596 2203 
p~ 0.2801 7249 6204 
P.3 0.6361 2394 4954 
plf 0.9223 6045 11 38 

G1 0. 12 70 76 79 2574 
G2 0.3267 411 7 6078 
G3 0.3523 491 2 8452 
G't 0.1938 3290 2896 

The function y(s) was originally r epre­
sented by a qu adrat ic spline, i.e. a 
piecewise quadratic function with a con­
tinuous first derivative, in order to 
make eq. ( 19) applicable to the integra­
tion in eq . ( 18). This gives already 
highly accu rat e r esults. Th e details 
shall n ot b e expla ined here . Instead of 
doing this, we present a still mo r e im­
proved met hod which can be found with 
very li ttle effort. 
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We dissect the integration contour C 
int o suitably chos e n inter val s, s 0 < s 1 < s 1 
·· · < stJ and choose an expansion in terms of 
Leg e ndre polynomials, 

5 . 
t ( 20) 

with 

h . : (s.- si_ 1 ) /2 D.: ( s, + s. ) / 2 
,t, t • -f,, l,- 1 

t : ( s - ~) / hi i 1 ... . N ( 21) 

Introducing the matr ix elements 

M (e) P f 1k P. ,,,,k -=11k -f (G,/i'1c +ih/c.) ((t}dt 

-) Pe{o) J. ( i k=,t--.N) 
"· k I I 

( 2 2 l 

and the source terms Ui: = U( oil we ob ­
tain t h e linear system of equat i ons 

( 2 3 l 

. d d h h ff . . (ti f Provi e t at t e coe i cients c.., .o r 
l t Op.re known, we can solve t hi s for 
C~ ... c:. By these coefficients the in te­
gral over the solutio n y(s) is deter min ed : 
With t h e definition 

Y(s): = f y(s ')d s' Y. Y( s. ) ( 24) 
I, .. 

we have yo = 0 and 

Y. = Y. + 2h c(P) . i = 1. .. N ( 25 I ,,, 1,-1 f t, 

Now we c an determine y1 ••• Y,.; and Y/ ••• y;, 
by means of numeric diff eren tiation. Wi t h 
these we obtain li n ear eq u at i ons for the 
coefficients Jf with i = 1 .... N and 
1~l~M=4: 

C (1) = ( 6 (y , - y ) + h . (y '. + Y. ) ) / 10 
~ l, •-1 t t i - 1 

C·(3}= ( - ( y i - Y- ) + hi ( y i + y ) l / 1 0 
t ~-1 ... 1 

c.12->: ( 10 ( y. + 
(P) 

( y;_ ) ) / 1 4 y - 2c. I - h- - Y/_, • I ... , 1 ~ 

c_l'f)= (-3(y + y - 2cC•J) + h . (y_' - Y-' ) ) / 1 4 
i t t- 1 1, • • ~-1 ( 26) 

The se are again substituted int o (23). 
St a rting with cf= 0 f o r l i 0 in th e 
first lo o p, the whole system of relations 
can be solv ed iteratively and converges 
rapidly. Th e accuracy is high if the 
function U(s) varies slowly. A mo difica­
ti o n for more rapidly varying functi o ns 
U(s) is b e ing inv estigated. Details will 
foll ow in a separate publication. In 
summa ry this meth od can b e made highly 
accurate and efficient. 
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For truly t hr ee -dim e n s i onal pr ob l e ms 
t he gen e r al si tuat i on is less fa vo urab le . 
It is not o nly the enlarged numb er o f 
dim ens i ons which causes probl e ms, but -
more th a n this - the fact th a t it is 
often imp oss ibl e to ma p the gi ven sur­
faces in a r eg ul ar mes h grid in a tw o ­
dim ens ion al par a met ric space . Concern­
ing th e s urf a c es t here may arise similar 
difficulti es lik e those in th e FEM. A 
practicabl e approximation for the solu ­
tion of Dirichlet pr o bl e ms in three di­
mensions has been publish e d by Eupp e r 
(1982) who replaced th e s urf ace charge 
distributi on b y a set of suitably 
charged bars located b ehin d the electrode 
s urfac es. Th e charge distribution on 
these bars is determined in suc h a way 
that the potenti a l assumes i ts prescribed 
boundary values at a sequence of control 
points on the electrode surfaces . The 
results for a field emiss ion cathode with 
the shape of a hipped roof are presented 
in figs 2a,b . 
Combi nations of met hods 

In many practical cases a suitable 
combination of differ ent field calcula­
tion meth ods can be more advantageous 
than the u se of only one pure met hod. 
With respect to Dirichl et pr oblems this 
qu est ion has been investigated in details 
by Schaefer ( 1982 , 198 3) . His theory 
sha ll not be outlined here , since it is 
described in a separate paper at this 
conference (see Schaefer , this vo lum e) . 

In this p aper we shall consider 
first a combination between the IEM and 
the FDM, which is shown in fig . 3 . We 
want to solve a Dirichl et problem for a 
domain G with boundary d G: 

( 2 7) 

( 28) 

The IEM is very favo u rable for the solu ­
t i on of Laplace ' s equation , even in the 
case of complicated boundaries, but is 
unsuitabl e for Poisson ' s equation , since 
the numerical evaluation of Coulomb i nte ­
grals i s a ve r y time - consuming procedure. 
On the ot h e r h a nd the FDM is a ve ry fast 
method for the sol uti on of Poisson's 
equat i on , but useful only in the case of 
simple boundaries. 

In this situation we pr opose to ex ­
tend th e regular mes h grid b eyond the 
bo und a ry~ G and to extrapolate the space 
charge di st ributi on continuously up to 
the new boundary 'iY G. On ?G now simple 
gu e ss ed boundary val u es fo r a potential W 
are assumed and t h e PDE v-2w = - f / £0 i s 
s o l ve d using th e FDM. On dG we rind then, 
of cour se , wr o ng boundary val u es W(r), 
but this is no misfor t un e . Th e true - so­
lution V can differ from the p art icul ar 
one (W) on l y by an ap pr opr iat e solution U 
of Laplace's equation v2 u = 0 . He nc e we 
have t o solve n ow 
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~ 
N+-~~-~~---1::,, 
' .00 .80 1.60 

z-Axis (µm) 

z-Axis(µm) 

y-Axis( µm) 
i2.00 -1.60 -1.20 -.80 -.40 .00 .40 .80 1.20 1.60 2.00 

8 

Figures 2a,b: equipotentials in different 
sections through a field electron emis ­
sion source consisting of a cathode with 
a h ipp e d roof and an anode with a rectan­
gular b ore . 
Courtesy of M. Eupper (1982) 

= 0 r E G 

U(rl = V(rl - W(rl 

by means of the IEM in order to find 

( 2 9 l 

( 30 l 

V = U + W as the correct total solution. 
In this way we have combined the advan ­
tages of both methods and circumvented 
their disadvantages. 

This hybrid method shall be applied 
to the fi e ld calculation in elect r on 
guns with space charges , where it seems 
to be most useful; a corresponding pub­
licat i on is in preparation. In this c on ­
text it is to b e mention ed that the me ­
thod outlined above is only one of the 
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many p oss ibilities to combine different 
pr oce dures. For instance, in the vicinity 
of a spherical cathode, both the space 
charge distribution f (£) and the parti­
cular potential W(rl can be expanded in 
series ex pansi o ns containing Legendre 
polynomi als , e .g. 

L 

W(R,0) =-R1 L ~ (R)P (cos Bl (31) 
L:o l l 

For the coefficient functions ¢t(R) a se­
quence of simple decoupled ordinary dif­
ferential equations can be d erived which 
are easily solved num e rically. This pro ­
cedure h as been worked out by Weysser 
( 1983a, bl, who treated in this way an 
electron gun with a hemispherical tip 
cathode (fig. 4 l. 

Fin a lly we consider a simple combi­
nation between the FEM and the IEM, suit ­
able for the field calculation in round 
magnetic lenses with saturation , as is 
shown in fig. 5. Th e FEM is advantageous 
for th e field computati on in n on linear 
media, h ence we discr et ize the axial sec­
tion through the pole by a suitable tri­
angular grid . Then u sing the FEM, we can 
calculate the va lues of the azimuthal 
vector potential A(z,r) at the internal 
nodes, provided that the boundary values 
at the pole surfaces are known. Usually 
the latt e r are determin e d by the FEM in 
a grid exte nd e d to the practically field 
free space_ This is, h oweve r, unfav o urab­
le; inst ea d of this we better apply the 
IEM to the vacuum part of the f ield; then 
we hav e to solve the int e gral eq uation 

-iA(z,r-) == f [ A(z'.r) J6 1 /c1 yz' 

- 6
1 
(z, r

1 
Z: r') {dA (z ;r ') /;J n')v] r 'd / 

f u 0 jj6 (z r.z' t) 1· (z' r-') ..,--' dr ' dz' ( 32 l r· 1 1 / f (1 I 

for the potential distribution on the 
pole surface . Here ds' d e notes the length 
ele ment of arc, j(z,rl the azimuthal 
current density in the coils and o / c>n 1 

the normal derivative in the direction 
towards the vacuum and on the vacuum side 
of the surface . The corresponding Green 
function is given by: 

G
1 

( z, r; z' , r' l = 
1 llii (OS<><. dol 

4-TT o V(z- z') 1 -+ r2.t , 1'--2 n' w1o1.. 

( 3 3 l 

This is an elliptic integral which can be 
calculated by well-known procedures. It 
has a logarithmic singularity, hence even 
the integration over the n ormal deriva­
tive by means of (19) is straightforward. 

The solut ion of (32) requires the 
knowledge of ( cl A/ 'd n lv on the vacuum 
side of the boundary. This derivative can 
be obtained in the following way. The FEM 
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Figure 3: extension of a regular mesh 
grid beyond the curved boundary O G of a 
given domain G. 
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Figure 5: half axial section through an 
open round magnetic lens with a ferro­
magnetic core and a rectangular distri­
bution of windings. Only the interior of 
the c o r e is discretized by a triangular 
mesh grid. 

can be formulated in such a manner that 
in each ele ment the field strength Bis 
calculated by means of numerical diffe­
rentiati on . Hence we know then ('clA/'dn),: 
on the inner side of the boundary. More­
over we can determine the reciprocal per­
meability by differentiation of the func­
tional for the stored magnetic energy 
with respect to B = i B I . But then 
( 'o A/'o n)" is determined by the continui­
ty of the tangential H-component : 

1-/1 [c!(rA)/dnJ. = µ-
1 [ d(rA}/ ?in] . 

-1, 0 v 

The whole system of equations h as to be 
solved iteratively. This is no disadvan ­
tage , since for solving nonlinear problems 
iterative techniques are unavoidable in 
any case. Eventually the evaluation of 
( a A/'?/ n)" requires an under-relaxation 
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Figure 4: equipotentials in the vicinity 
of a hemispherical cathode . Due to the 
influence of space charge the potential 
is negative in front of the cathode. The 
cathode shank following to the left hand 
side, is not shown in this figure . 
Courtesy of R. Weysser (1983b) 

for reasons of stability; but this pro­
vides no principal problem. The comput ­
ing time can be kept reasonably short, 
since the time-consuming calculation of 
the matrix elements for the solution of 
the in tegral equations needs to be 
carried out only once in the first loop. 
The practical investigations concerning 
this method are still going on and will 
be published later. 

This technique removes the main dis­
advantage of the FEM, i.e. the inaccu­
rate interpolations and differentiations 
in the vac uum part of the field. The 
essential gain is that now the field 
strength is truly a smooth analytic solu­
tion of the field equations with a rela­
tive error of about 1 o-3 or less. Then 
t h e ray tracing , especially for suffi­
ciently large distances from the pole 
surfaces, provid es no longer any prob ­
lem. 

Ray tracing and aberrations 

The poss i bility and the quality of 
ray tracings depend strongly on the ac ­
curacy of the field calculation. If only 
the axial electrostatic potential ¢(z), 
the axial flux density B(z) or other 
axial functions are computed by use of 



E. K. Kasper 

the FEM, then only the paraxial ray equa ­
ti o ns can b e solved and this imp o ses th e 
strong r est riction to d eal exclusively 
with th e standard per t urb ation th eo ry of 
aberrations. Pr oba bly this is the r eason 
why the latter theory h as be e n worked out 
in ma ny d eta ils. 

Th e physics of round magnetic l enses 
i s dev e l o p ed in ve ry many details and 
pr esented comprehensively in a vol ume 
ed i ted by Hawkes (1982) . Another compre ­
hens i ve pr ese n tat i o n of t he aberration 
theory, also giv e n by Haw kes (1980) 
deals with more general syste ms. Ma~y 
i te ms can also be fo und in the conference 
pr oceedings edited by Wollnik (1981). 
Here the quite numerous citations to b e 
found in these public at i ons , shall n ot b e 
r epeated aga i n. Some recent papers, not 
yet cited in the r eferences given a b ove , 
concern t h e aberration theory for micr o ­
wave cavity l e n ses (Hawk es 19 82/83 and 
1983) , for general systems with par asitic 
errors (Plies 198 2a ,b ) and for planar 
cat h o d e lenses (Xim en Ji - ye et al. 
1983 ) . , 

A quite general feature of t h e p er ­
turbation t h eory i s i ts enor mous complex­
ity wh i ch forces many a u thors to use the 
a id of co mput er algebra languages; for 
instance , Hawkes applied the language 
CAMAL and Soma (1977) the language REDUCE. 
Us u ally the aberration coefficients are 
represented as integral exp r ess i o ns which 
ass ume such a length, that an outsider 
may have difficulties wi th them. More­
over , there are systems for which an ab ­
erration theory of third or d er is insuf­
ficient; examples are electrostat ic fil­
ter lenses (Niemitz, 19 80), deflection 
units at large deflection a ng les a nd 
ann ul ar systems like beta spectrometers 
of Siegbahn"s type. Hence n ew concepts 
seem to be n ecessary . 
Some ray equations 

The acc ur ate calculat i on of e l ectro n 
trajectories d oes not make any pr ob lem 
pr ov id ed that the electro magn et ic fi el d s 
can be computed accurately at arbit rary 
po in ts of reference . Hence the effo rt is 
to be concentrated on the impr ovement of 
the field ca lcul at i on programs . Whe n this 
has b een achieved , pr act ic a lly eve ry kind 
of ray equation can be solved numerical ­
ly. In Tuebingen we h ave good ex p e rience 
with a parametrization of the Lorentz 
e qu at i o n in term s of a variable 6 prop or ­
tional to the r elat i v istic pr o p e r t im e : 

Here d ots d enote dif fere ntiati o ns wi t h 
resp ect to ~, further 

'f(E_) ¢~E_ )/(2u *) (3 5) 

is a normalized r elativ i s tic accele r ation 
p otential an d 
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b( r) B( r) ( 36) 

a normalized magnetic fie ld strength . The 
cho i ce of the n or malization c onsta nt u * 
i s free; ve ry suitable is often th e 
asympt ot ic acceleration potential 
U>¥-= Cf./;( °"'). 

The solution of (34) must satisfy the 
conser vat ion law 

• 2 
r 2 :f(E_) + const ( 3 7) 

t h e constant being determined uniquely 
by the bias of the electric p ote n tial and 
by th e kinetic starting e nergy. Th e ray 
eq ua t i o n (34) is suitable f or a ll systems 
wi th t im e -ind e p en d ent f i e lds. Besides 
this applicability in numerical proc e du­
res, the particular choice of the para­
mete r 6' h as the a dvant age that (34) is 
the simplest p oss ible f o rm of the g ene ­
ral relativistic ray e quation. This is 
the ba s is of the s u bsequent considera­
tions. 

Sometimes it is favourable to solve 
the ray equat i on n ot in the given f or m 
but in an in cre me ntal form yielding di­
rectly the shi ft s( 6) r e lativ e to another 
tra j ectory E._(6). Th e l atte r may be, fo r 
instance , the opt ic a l axis in a magnet i c 
deflection prism. Small differences b e ­
tween n eig hb o uring values of a n arbitrary 
smooth function f( r) can be avoided by 
numerical in tegrat Ton over its gradient : 

f ( r): f(r + s) f ( r) 

s -J\7 f(r + ts) dt. 
- 0 -

( 38) 

This integration can b e performed e .g. by 
means of Gauss quadr at ur e f or mul ae and 
gives always a reliable r es ul t , reg ard ­
less how s mall J~I may b e . In this sense 
we obtain from (34) quite correctly 

,1 ( t7_y?(E_)) + b( r) x s 
+ 4 ~(!._) X (~ + S) ( 39) 

This i s val id for el ect rons h av ing the 
same total en e rgy. This ray equat i on can 
be gen e ralized eas il y in order to include 
chromatic aberrations . The experiences 
made with (39) are still in th e beginn­
ing; they will be publi s hed in a later 
paper. 
Evaluati o n of aberration disc s 

By a solution of (34) and of (3 9 ) it 
is p oss ible to determine accurately the 
e ndp o int s of elec tron t raject ories in a 
given r eco rding plane, t he initial condi­
tions b e ing still quite general. If we 
compute trajectories starting in o n e com­
mon object point with dir ect i o n s located 
on an apert ur e cone, the line c o nnecting 
the obtained endpo in ts forms th e contour 
of the corresp o nding aberrat i o n disc.This 
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can be repeated for ditfcrent apert ur e 
angles. A typical example is given in figs. 
6a and 6b, which have been determined by 
Killes (1983, unpubli shed) . These figures 
are t h e aberration discs for an axial ob­
ject point in a double focusing magnetic 
sector field spectrometer. The effect of 
a small defocus is quite obvious. These 
contours have been obtained by a numeri­
cal solution of (34), numerical instabi­
lities are n ot to be noticed. 

A quite simple and practicable me ­
thod for the quantitative evaluation of 
aberration discs has been developed by 
Scherle (1983). Let (xl<,Yk) denote the 
coordinates of individual trajectories 
in a given recording plane z = canst , 
(xk,yk) the corresponding slopes and 91< 
suitable positive weight factors normal­
ized to unit sum. Then 

( 40) 

are the coordinates of the center of the 
aberration disc; their deviations from 
the Gaussian image coordinates can be 
interpreted as weighted distortions. Fur­
thermore, the second moments of the aber­
ration disc are defined by 

SXX" [ gk (\. 
-)2. 
X I 

s I 9 k ( xk xl (y - y) ' ( 41 ) xr k 

s L gk (yk y)l • 
Yr 

By these a variance ellipse is defined 
which approximates the cross section of 
the beam. A good approximation is ob ­
tained in many practical cases if the 
semiaxes of the ellipse are enlarged by a 
factor 2 . Since the slopes of the trajec­
tories are known, the local tangents are 
given. Hence, as far as i t is sufficient 
to approximate the true trajectories by 
their tangents , for instance in a field 
free image space, the determination of 
the ellipse can be repeated for any plane 
z = canst. In this way a defocus can be 
studied quite easily and rapidly. Fig. 7 
demonstrates the approximation found for 
the spherical aberration of a round lens. 
The approximate circle of minimum radius 
is located near t he familiar circle of 
least confusion. 

Though this procedure is clearly an 
approximate one , i t is certainly more 
convincing than the familiar practice to 
calculate a root-mean-square radius from 
roughly guessed radii for different aber­
ration terms . If ever necess ary , Scherle's 
theory can be further improved by taking 
into account the mome nts of third or 
higher order . It h as one advantage which 
may be useful in the future: obvious ly 
the aberrations are minimized if after 

71 

Zi.R/ µm 

25.0 

20.0 

15.0 

10.0 

5.0 

0.0 

-5.0 

- 10.0 

- 15.0 

-20.0 
-8.0 0.0 

(a) 

zi.R/µm 

30.0 

25.0 

20.0 

15.0 

10.0 

5.0 

. 5 mrad 0.0 

-5.0 

-10.0 

-15.0 

- 20.0 

8 .o Yi•R/µm 
-25.0 

.O mrad 

0. 5 mrad 

-30. 0 +---,.--...--..---
-0. 8 -0.4 o.o o.4 y i. R/µm 

(b) 

Figures 6a ,b: examples for contour lines 
of aberration discs in a double focusing 
magnetic sector field with 90 degrees­
deflection perpendicular to the z -di rec­
tion. The rays start in an axial object 
point, the initial slopes form cones with 
the given semiaperture angles. 
(a) configuration close to the best ob­

tained focus 
(b) defocus of 3 mm for a deflection 

radius 25 cm 
Courtesy of P. Killes (unpublished work) 

R 

z 

Figure 7: Scherle ' s approximation of the 
spherical aberration in a conventional 
round lens (the slopes are enlarged for 
reasons of distinctness). The hyp e rbola 
marked by y represents the approximation. 
Courtesy of W. Scherle (1983b) 
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all allowed variations of system parame ­
ters the maximum diameter of all aberra­
tion discs has its smallest possible 
value. This gives a clear concept for 
optimizat i on procedures. The practical 
application of this id ea is still in the 
beginning, but seems to be straightfor­
ward. 

In the case that not only the infor­
mation about entire aberration discs is 
needed but also the kn owledge of aberra ­
tion coefficients, the latter are to be 
determined by suitable least - squares-fits 
with the endpoints (xk ,Yk), (k = 1 ... N) 
of numerically calculated trajectories. 
Since this requires a very high accuracy, 
some care must be taken in the set -up of 
the corresponding routine. Such calcula­
tions were, for instance, performed by 
Niemitz (1980), who determined in this 
way the aberration co eff icients for elec ­
trostatic filter lenses, even in fifth 
and higher orders . The research concern ­
ing the improvement of least-squares-fit 
techniques is going on . In summary there 
are already now some alternatives to the 
standard perturbation theory of aberra­
tions. 

References 

Chari TVL , Silvester P . (1980). Finite 
El e ments in Electrical and Magnetical 
Field Problems. Wiley, Chichester, New 
York. 

Eupper M. (1982). Eine Methode zur Lo­
sung des Dirichlet-Problems in drei Di­
mensionen und seine Anwendung auf einen 
neuartigen Elektronenstrahlerzeuger. 
Optik .§.2, 299-307. 

Hawkes P.W . (1980). Methods of Computing 
Optical Properties and Combating Aberra­
tions for Low-Intensity Beams, in Adv. 
Electr. Electron Phys.~ . 45-157. 

Hawkes P.W. (ed). (1982) . Magnetic Elec­
tron Lenses, in: Topics in Current Phy ­
sics 18. Springer; Berlin, Heidelberg, 
New York, ch. 1 , 3, 4 and 5 . 

Hawkes P.W. (1982/83). Computer-aided 
calculation of the aberration coeffi ­
cients of micr owave cavity lenses. 
Part 1: Primary (second-order) abe rr a­
t i ons. Optik ~. 129 -1 56. 

Hawkes P.W . ( 1983). Computer - aided calcu­
lation of the aberrat i on coefficients of 
microwave cav it y lenses. Part 2: Second ­
ary (t hi rd - order) aberrations. Optik 65 , 
227-25 1. -

Her meline F. (1982). Triangulation auto ­
matiq u e d'un polyedre en dimension N.R. 
A.I.R.O. Analyse n umerique/Nume ri cal Ana ­
lysis 2...§_, 211-242. 

72 

Kang NK, Orloff J , Swanson LW, Tuggle D. 
(1981). An impr oved metho d for numerical 
analysis of p o int electron and ion source 
optics. J. Vac. Sci . Technol. 19, 1077-
1081. -

Kang NK, Tuggle D, Swanson LW. (1983). 
A numerical analysis of the electric 
field and trajectories with and without 
the effect of space charge for a field 
electron source . Optik ~. 313-331. 

Kasper E. ( 1976) . On the num erica l cal­
c u lation of static multipole fields . 
Optik .!§_, 271-286. 

Kasper E. ( 1982). Magnetic Field Calcu­
lation and the Determination of Electron 
Trajectories, in: Topics in current Phy­
s ics 18, Magnetic Electron Lenses . P .W. 
Hawkes(ed), Springer; Berlin , Heidel­
berg, New York, 57 -11 8 . 

Kasper E. ( 1983). On the solution of in­
tegral eq u at i ons arising in electron op­
tical field computations. Optik 64, 1 57 -
169. -

Lencova B, Lene M. ( 1982). Infinite ele ­
ments for the computation of open lens 
structures. El ect ron Microscopy I (Phy­
sics) , Hamburg, Proc . 10th Intl . Conf . on 
EM, Deutsche Gesse lsch af t fur Elektronen ­
mikroskopie , Frankfurt, W. Germany, 317-318. 

Mulvey T. (1982). Unconvention a l Lens 
Design, in Topics in Current Physics 18, 
Magnetic Electron Lenses. P . W. Hawkes­
(ed) , Springer; Berlin, Heide l berg, New 
York, 359-412. 

Munro E. (1971). Computer-aid ed design 
methods in electro n optics .Di ssertation, 
Cambridge . 

Munro E. ( 1973). Computer -aid ed Design of 
Electron Lenses by the Finite Element 
Method, in Image Processing and Computer­
aided Design in Electron Optics. P . W. 
Hawkes (ed) , Academic Press, London, New 
York, 284 - 323. 

Munro E, Chu HC. (1982 a) . Numerical ana­
lysis of electron beam lith ography 
systems. Part I: Computation of fields 
in magne t ic deflectors. Optik 60, 371-
390 . -

Munro E, Chu HC. ( 1982b). Numerical ana­
lysis of electron beam lithography 
systems. Part II: Computati on of fields 
in electrostatic deflectors. Opt ik 6 1, 
1-16. -

Niemitz P . (1980). Theoretische Untersu ­
chung von elektrostatischen Drei-Elektro­
d en -Fil ter lins en. Diss e rtation, Tuebingen 
( W-G ermany) . 

Plies E. ( 1982a) . Berechnung zusammenge ­
setzter elektroneno p t i scher Fokussier­
und Ablenksysteme mi t ub erlagerten Fe l­
dern. Teil I: Feldentwicklung und Bahn­
gleichung. Siemens Forsch.- u. Entwickl.­
Ber . 2.2_, 83 -9 0 . 



Recent Developments in Numerical Electron Optics 

Plies E . ( 1982b). Berechnung zusammenge -
setzter ele ktron eno pti scher Fo kussier-
und Ablenksysteme mit ub erla gerten Fel-
dern. Teil II: Fundamentalbahnen und 
Bildfehler . Siemens Forsch .- u. Ent -
wickl.-Ber. _lJ_, 83-90 . 

Scha efer C . (1982). Methoden zur numeri­
schen Losung der Laplace-Gleichung bei 
komplizierten Randw erta ufgaben in drei 
Dimensionen und ihre Anwendung auf Pro­
bleme der Elektronenoptik . Dissertation, 
Tuebingen (W.Germany). 

Schaefer C. (1983). The application of 
the Alternating Procedure by H.A. Schwarz 
for computing three-dimensional electro ­
static fields in electron-optical devic es 
with complicated boundaries. Optik 65, 
34 7-359. -

Scher le W. ( 1983 a) . Eine In tegralgle i­
chungsmet hode zur Berechnung magntischer 
Felder von Anordnungen mit Medien unter­
schiedlicher Permeabilitat. Optik 63, 
217-226 . -

Scherle W. (1983b) . Berechnung von magn e ­
tischen Ablenksystemen. Dissertation, 
Tuebingen (W. Germany). 

Silvester P, Konrad A. ( 19 73). Axisymme-
tric Triangular Finite Elements for the 
Scalar Helmholtz Equation. Int. J . Num. 
Meth. Eng .~. 481-497. 

Soma T. (1977). Relativistic aberration 
formulas for combined electric -m agnetic 
focusing-deflecting systems. Optik 49, 
255-262. -

Weysser R. (1983a). Feldberechnung in ro­
tationssymmetr i schen Elektronenstrahler­
zeugern mit Spitzenkathode und Raumladun­
gen. Optik _§i, 143-156. 

Weysser R. (1983b). Feldberechnung in ro­
tationssymmetrischen Elektronenstrahler­
zeugern mit Spitzenkathode un ter Beruck­
sichtigung von Raumladungen. Disserta­
tion, Tuebingen (W.Germany). 

Wollnik H. (ed), (1981). Charged Particle 
Optics. Proc. 1st Conf. Charged Particle 
Optics , Giessen (W. Germany) 1980. North 
Holland, Amsterdam; also Nucl.Inst.Meth. 
187, parts IV and V. 

Ximen Ji-ye , Zhou Li-wei , Ai Ke-cong 
( 1983). Variational theory of aberrations 
in cathode lenses. Optik ~. 19-34. 

7.3 


	Recent Developments in Numerical Electron Optics
	Recommended Citation

	tmp.1602000893.pdf._cFab

