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Abstract

The familiar methods for the numeri-
cal calculation of fields in electron op-
tical devices are outlined briefly. For
the solution of self-adjoint elliptic
differential equations in orthogonal cur-
vilinear coordinate systems a favourable
ninepoint discretization is worked out
which can be applied favourably e.g. to
spherical mesh grids. The field calcula-
tion in magnetic deflection systems by
means of an integral equation method is
also highly advantageous. The methods for
the field calculation can be still more
improved by means of suitable hybrid pro-
cedures.

A second and shorter contribution 1is
concerned with ray tracing and aberra-
tions. Some favourable numerically stable
new forms of the ray equation are derived
and thereafter a new simple method for
the determination of aberrations is out-
lined.

Key words: field calculation, ray
tracing, aberrations, integral equation,
hybrid method, Poisson's equation,discre-
tization.
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Introduction

Due to the rapid advances in com-
puter technology it is possible to calcu-
late now with reasonable effort and suf-
ficient accuracy the properties of elec-
tron optical systems, and this is done
very frequently, since the aid of a com-
puter facilitates essentially the design
of new devices. Generally such a compu-
ter-aided design consists of four subse-
quent and partly interdependent steps.
These are the calculation of electric and
magnetic fields from given source distri-
butions and boundary conditions, the
tracing of electron trajectories through
these fields, the determination of par-
axial properties and of aberrations from
the obtained trajectories and finally the
optimization of the design in guestion.
The latter involves a repetition of the
preceding steps under suitable variations
of system parameters, until a relative
minimum of the resulting aberration is
found. In all of the above mentioned
fields some progress was made during the
last years, and it is the aim of this
paper to present a short review of this
progress and to give some outlook on
further developments.

Field calculation

Generally three different methods of
field calculation are in widespread use,
these are the finite-element method
(FEM), the finite-difference method (FDM)
and the integral-equation method (IEM).
Each of these has specific advantages and
also disadvantages, so that none of them
can be ignored completely or dealt with
exclusively.

The finite-element method

The FEM consists in the dissection
of the domain of solution into suitably
chosen volume elements which must be ir-
regular in the general case in order to
fit to the boundaries. In the case of
two-dimensional problems the mesh grid
obtained in this way consists usually of
irregular triangles with six elements
joining together in each internal node.
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It 1is familiar to derive the necessary
equations for the values of the potential
in the nodes from a variational princip-
le: in each of the finite elements the
stored electric or magnetic field energy
must be minimized. In order to evaluate
this principle, some assumptions about
the required solution must be made. The
simplest one is that the potential is a
piecewise linear function. This version
of the FEM has been introduced by Munro
(1971, 1973) who applied it successfully
to a large variety of electron optical
devices, most recently to magnetic and
electric deflection systems (Munro and
Chu, 1982 a,b). A review of applications
of Munro's method to the design of un-
conventional magnetic lenses is given by
Mulvey (1982).

While the version of the FEM, des-
cribed above is still frequently used,
great improvements have been made in the
past decade, mainly outside electron op-
tics.Better approximations than piecewise
linear functions for the potential are
worked out (Silvester and Konrad, 1973),
more generally curvilinear and even in-
finite elements are employed (Lencova
and Lenc, 1982) and other than varia-
tional formulations are proposed. A
review of recent improvements of the FEM
is given in a volume edited by Chari and
Silvester (1980). Even with respect to
the still most familiar case of planar
triangular grids progress was made, as
Hermeline (1982) proposed a new and re-
liable method for the automatic genera-
tion of such grids under given boundary
conditions and other constraints.

In spite of all these improvements
the FEM has still severe disadvantages,
the most serious one being the fact that
the interpolation in irregular mesh grids
is too complicated in order to ensure the
continuity of the field strength and 1its
derivatives along lines crossing orthogo-
nally the mesh lines of the grid. This
imposes strong restrictions on the ray
tracing,as will be outlined in the "Ray
Tracing and Aberrations'" section.

The finite-difference method

In the applications of this method,
the domain of solution is covered by a
regular, usually square-shaped mesh grid.
Most frequently this grid does not fit to
the boundaries, so that many irregular
nodes are to be considered. Theoretically
it is no problem to derive discretization
formulae for arbitrary irregular configu-
rations, but in practice the considera-
tion of many different irregular situa-
tions makes the method inconvenient. Ne-

vertheless, the FDM has the advantage
that - besides exceptional cases in elec-
tron guns - the grid is regular within the

domain of the electron beam, so that the
necessary calculation of the field-
strength can be performed with sufficient
accuracy.A review of these standard tech-
nigues has been given by Kasper (1982).

Kasper
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An interesting modification of the
FDM has been proposed by Kang et al.
(1981, 1983). In order to overcome the
difficulties arising from the extreme
differences of geometrical dimensions in
electron guns with field emission catho-
des, they proposed the use of an exponen-
tially increasing spherical mesh grid
which they named SCWIM (spherical coor-
dinate with increasing mesh). Indeed, in
this way a reasonable accuracy can be
achieved. This method can be further ge-
neralized and improved, as will be out-
lined now.

We start from a general self-adjoint
partial differential equation (PDE)
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p(u,v), g(u,v) and s(u,v) being non-sin-
gular analytic functions of the variables
u and v, further p >0 , & 2-7, v 2 0.
The exponent « arises from a possible
axial symmetry of the potential V(u,v),
for instance ot = 1 for rotationally
symmetric fields and o = 2m + 1 for
multipole fields of order m. The product-
relation

Vitu, @) = Ulwyv)/pla,; v) (2)
reduces (1) to
Q*U = -g(u,v): = g(u,v).U - p.s (3}
with
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For the discretization of (3) very
accurate nine-point-formulae have been
derived (Kasper, 1976), but with respect
to the transformation (2) a still more
favourable form of the discretization can
be found. If we introduce the coordinates
u = ih, v = kh (i,k integers) of the
nodes and use corresponding subscripts
(Ugg: = U(ih, kh)) then we can introduce
favourably a new field
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On the axis of symmetry, that means for
k = v = 0, instead of (7) and of (8) the
formula
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is to be employed. The derivation of
this discretization cannot be presented
here and will be published elsewhere.

A good example for the practical
application of these formulae is the
SCWIM grid. This can be considered as a
conformal mapping of an originally cylin-
dric grid with square-shaped meshes in
the axial section. Let (z,r, @ ) denote
cylindric coordinates and (R, & ,¢) co-
axial spherical coordinates with
z =Rcos(@, r =R sin®, then we have
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Z 4 Ar = R exp(i(j) = Roexp(u + iv)  (11)

with R = Ryexp(u) and v = 6. Transform-
ing the rotationally symmetric Poisson
equation P2V = - {"? R,© ) into these
coordinates, we find
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On the optical axis the coefficients p
and g remain positive. By virtue of (11)
the SCWIM-grid is transformed into an
ordinary square shaped grid in u and v.
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The discretization error is now of sixth
order in the mesh width. Numerical tests
have shown that in comparison with a
five-point-discretization with the same
mesh width a decrease of the error by a
factor 10-% can be achieved (Killes,to be
published). But this is true only in the
case of regular grids. Irregular meshes
in the vicinity of boundaries will cause
complications and a loss of accuracy.
This can be circumvented by a combination
of the FDM with the IEM, as will be ob-
vious further below.
The integral-equation method

In the case of pure surface charge
distributions with density & (r) the
electrostatic potential satisfies

/ dzf/
V(r) :/ gL (14)
B 4me lr-17l

—_ /

where the integration is to be carried
out over the boundary B. In the case of
Dirichlet problems the boundary values of
V(r) are prescribed and (14) is then an
integral equation for the unknown source
distribution & (r). After its solution,
(1) can be used in order to determine
V(r) in an arbitrary point r. By means

of an analogy-transfer also the magnetic
field between unsaturated poles with very
high permeability can be calculated. This
version of the IEM, called the surface-
charge method (SCM), is gquite familiar in
electron optics.

In order to perform the required in-
tegration,some simplifications are neces-
sary. It is customary to dissect the sur-
face into a large number of sufficiently
small area elements in which 6 (r) can be
considered as practically constant, then
the integration can be carried out analy-
tically and (14) is replaced by a linear
system of equations for the piecewise
constant, but unknown values of & . The
numerous publications concerning this
matter differ only in details of the ne-
cessary discretization. Instead of dis-
cussing these items, we consider some re-
cent developments.

Scherle (1983a) has applied the IEM
to the calculation of magnetic fields in
shielded deflection systems with toroi-
dal and saddle coils,respectively. He was
able to take into account the finite
permeabilities of core materials and to
solve the corresponding interface-condi-
tion problems. Hence his version of the
IEM is far more general than the SCM
outlined above. The starting point is the
familiar separation of the magnetic field
into the pure contribution H ( ) from
the coils, satisfying =2

div EO(E) = 0, curl ED(E) = j(r) (15)
and hence determined from the theorem of
Biot and Savart, and a gradient field
grad V(r) generated by the ferrite cores:
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Figures 1la,b: equipotentials of the sca-
lar magnetic pseudo-potential V(r) in an
axial section through a system of saddle
coils, a ferromagnetic core and a shield-
ing plate with a bore. For reasons of
clearness the coils and their field H,(r)
are omitted.

(a) ferromagnetic shielding plate

(b) superconducting shielding plate
Courtesy of W. Scherle (1983b).

H(r) = H (r) + grad v(r) (16)

The latter contribution has its sources
on the core surfaces and satisfies a
Fredholm equation of second kind:

27/:::” T)/Wr)an G(rr)dr

=—f5 Glr,r) n'-Ho(x))d*r]

n' being the local surface normal in the
directon towards the vacuum and

G = (4ﬂ'l£-£f])‘4 Green's function of free
space.

In the case of rotationally symme-
tric cores, even for unround current di-
stributions j(r), eq.(17) can be reduced
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to a sequence of uncoupled one-dimensio-
nal Fredholm equations of second kind, as
each term in (17) is expanded into a Fou-
rier series with respect to the azimuth
round the optic axis. After the decoup-
lings, obtained in this way and the ana-
lytic integration over the azimuth, the
remaining integration runs over the
length s' of arc in the meridional sec-
tion C through the boundaries. The re-
sulting equations to be solved have the
principal structure

J; K(s,s")

U(s) being a given boundary value func-
tion, y(s) the required function, A a

gls')as* = Uls) + Ay(s), (18)

fixed constant and K(s,s') a complicated
kernel function with logarithmic singula-
Flty at 8§ = 8.

Scherle (1983a) has used a cubic
spline function for y(s) and in this way
he obtained a high accuracy for y(s). In
his thesis (1983b) he has developed a
still more general version of the IEM for
two different cores. The items cannot be
described here, the plots of potentials,
calculated in this way, are presented in
fig, 1a,b.

In order to facilitate the integra-
tion over logarithmic singularities, Ka-
sper (1983) has derived a new integration
formula for functions with logarithmic
singularities. This can be further gene-
ralized. Let fg(x), i =1,2,3 be arbi-
trary regular functions, then we have

FO):= fx) En Ixl+ o) /x +F, (x),

g 4
] Fldi=f Eéﬂ//:(/;é)v* Flph))solk) o)

with the abscissas and weight factors
given by Basche (private communication,
to be published)

0.0399 4596 2203
= 0.2801 7249 6204
Py = 0.6361 2394 4954
= 0.9223 6045 1138

I

Py

. =
G, = 0.1270 7679 2574
G, = 0.3267 4117 6078
Gy = 0.3523 4912 8452
G, = 0.1938 3290 2896

The function y(s) was originally repre-
sented by a gquadratic spline, i.e. a
piecewise gquadratic function with a con-
tinuous first derivative, in order to
make eq. (19) applicable to the integra-
tion in eg. (18). This gives already
highly accurate results. The details
shall not be explained here. Instead of
doing this, we present a still more im-
proved method which can be found with
very little effort.
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We dissect the integration contour C
into suitably chosen intervals,
*=-<s,, and choose an expansion in terms of
Legendre polynomials,

M ()
y(f)=z C. /L;(f) 5, 58245,
t=0 * /

with

he: = 8.~ 8
1 i

e Y2 ; =
t = (s - G;)/h{ " = 1..ewal

Introducing the matrix elements

MY, / Kls. 5, +1h) P(2)dt
—APe(o)JM (iket-N)

and the source terms U;: = U(6;)

tain the linear system of equations

M N (r/ (e) U

(22))

we ob-

> M

( 0 ket ‘,

[:7~>'N.

(23)

Provided that the coefficients qu for
1 +#0 ?re known, we can solve this for

C?ﬁ. By theSL coefficients the inte-
gral over the solution yl(s)

With the definition

Y(s)z: = Y. = Yis.) (24)
Sy 1 2

we have Y_ =0 and

Y. =Y +2h.c?, i=1...N. (25)

1 -1 T ¢

Now we can determine vy, ...y, and Y, Yy

by means of numeric dlffcrentlatlon With

these we obtalqullnear equations for the

coefficients ¢/ with i =1....N and
14£ 1 =M=4_:
c(”- (6(y. = yv. ) + h-(y! + vy )/10
v 2 1= L 4 -1
Bhe (_w. - h ' 1
c, ( (yl %_1) 1) (yi + %' /10
(2) . ; :
€ (10 (y. + -2c.) - h.( - 14
Gty ; by Y. ;1
fﬁz (=3(y. + y. _zéﬂ) + h.(y' - y! /14
2 i 1-1 1 1 1 -1 (26)
These are again substituted into (23).
Starting with Cg =0 for 1 #£ 0 in the

first loop, the whole system of relations
can be solved iteratively and converges
rapidly. The accuracy is high if the
function U(s) varies slowly. A modifica-
tion for more rapidly varying functions
U(s) is being investigated. Details will
follow in a separate publication. In
summary this method can be made highly
accurate and efficient.

8o S .8,

is determined:

67

For truly three-dimensional problems
the general situation is less favourable.
It is not only the enlarged number of
dimensions which causes problems, but -
more than this - the fact that it is
often impossible to map the given sur-
faces in a regular mesh grid in a two-
dimensional parametric space. Concern-
ing the surfaces there may arise similar
difficulties like those in the FEM. A
practicable approximation for the solu-
tion of Dirichlet problems in three di-
mensions has been published by Eupper
(1982) who replaced the surface charge
distribution by a set of suitably
charged bars located behind the electrode
surfaces. The charge distribution on
these bars is determined in such a way
that the potential assumes its prescribed
boundary values at a sequence of control
points on the electrode surfaces. The
results for a field emission cathode with
the shape of a hipped roof are presented
in £figs 2a;b.

Combinations of methods

In many practical cases a suiltable
combination of different field calcula-
tion methods can be more advantageous
than the use of only one pure method.
With respect to Dirichlet problems this
question has been investigated in details

by Schaefer (1982, 1983). His theory
shall not be outlined here, since it is
described in a separate paper at this

conference (see Schaefer,

In this paper we shall consider
first a combination between the IEM and
the FDM, which is shown in fig. 3. We
want to solve a Dirichlet problem for a
domain G with boundary 7 G:

this volume) .

vivir) = e(r)/g, , r eG, (27)

vir) = V(r) , (28)

|

r eo6

The IEM is very favourable for the solu-
tion of Laplace's equation, even in the
case of complicated boundaries, but is
unsuitable for Poisson's eguation, since
the numerical evaluation of Coulomb inte-
grals is a very time-consuming procedure.
On the other hand the FDM is a very fast
method for the solution of Poisson's
equation, but useful only in the case of
simple boundaries.

In this situation we propose to ex-
tend the regular mesh grid beyond the
boundary 9 G and to extrapolate the space
charge distribution contlnuously up to
the new boundary 9G. On ?C now simple
guessed boundary values for a potentlal W
are assumed and the PDE v?W = iEs is
solved using the FDM. On 3G we find then,
of course, wrong boundary values W(r),
but this is no misfortune. The true so-
lution V can differ from the particular
one (W) only by an appropriate solution U
of Laplace's equation v2U = 0 Hence we
have to solve now
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Figures 2a,b: equipotentials in different
sections through a field electron emis-
sion source consisting of a cathode with
a hipped roof and an anode with a rectan-
gular bore.

Courtesy of M. Eupper (1982)
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viu(r) =0 , r €6 (29)

U(r) = V(r) - W(r) ,

r e 96 (30)

by means of the IEM in order to find

V =U + W as the correct total solution.
In this way we have combined the advan-
tages of both methods and circumvented
their disadvantages.

This hybrid method shall be applied
to the field calculation in electron
guns with space charges, where it seems
to be most useful; a corresponding pub-
lication is in preparation. In this con-
text it is to be mentioned that the me-
thod outlined above is only one of the

Kasper
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many possibilities to combine different
procedures. For instance, in the vicinity
of a spherical cathode, both the space
charge distribution (r) and the parti-
cular potential W(r) can be expanded in
series expansions containing Legendre
polynomials, e.g.

L

1
W(R, &) = — (R)P, (cos B) (31)
Rz%jo ¢‘ ¢

For the coefficient functions ¢C(R) a se-
quence of simple decoupled ordinary dif-
ferential equations can be derived which
are easily solved numerically. This pro-
cedure has been worked out by Weysser
(1983a,b), who treated in this way an
electron gun with a hemispherical tip
cathode (fig. 4).

Finally we consider a simple combi-
nation between the FEM and the IEM, suit-
able for the field calculation in round
magnetic lenses with saturation, as is
shown in fig. 5. The FEM is advantageous
for the field computation in nonlinear
media, hence we discretize the axial sec-
tion through the pole by a suitable tri-
angular grid. Then using the FEM, we can
calculate the values of the azimuthal
vector potential A(z,r) at the internal
nodes, provided that the boundary values
at the pole surfaces are known. Usually
the latter are determined by the FEM in
a grid extended to the practically field
free space. This is, however, unfavourab-
le: instead of this we better apply the
IEM to the vacuum part of the field; then
we have to solve the integral equation

Az = & [ Alzr) 36,/37
= 64(2/ r/.z:r’) (5/4(2,/r///anljvjr/6/5/
f/”f’/f@/z,?‘,-z,/fyjfz,/?")7”/0/7‘/012/ (32)

for the potential distribution on the
pole surface. Here ds' denotes the length
element of arc, j(z,r) the azimuthal
current density in the coils and o/on’
the normal derivative in the direction
towards the vacuum and on the vacuum side
of the surface. The corresponding Green
function is given by:

G1(z,r;z',r') =
Cos £ duo

(33)

1 27
47 // 7 2 !

T (z-2 )%+ r*+ 1'% 71V cos «
This is an elliptic integral which can be
calculated by well-known procedures. It
has a logarithmic singularity, hence even
the integration over the normal deriva-
tive by means of (19) is straightforward.

The solution of (32) requires the

knowledge of ( @2A/7@n)y on the vacuum
side of the boundary. This derivative can
be obtained in the following way. The FEM
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Figure 3: extension of a regular mesh

grid beyond the curved boundary G of a
given domain G.
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Figure 5: half axial section through an
open round magnetic lens with a ferro-
magnetic core and a rectangular distri-
bution of windings. Only the interior of
the core is discretized by a triangular
mesh grid.

can be formulated in such a manner that
in each element the field strength B is
calculated by means of numerical diffe-
rentiation. Hence we know then (’BA/fDn)i
on the inner side of the boundary. More-
over we can determine the reciprocal per-
meability by differentiation of the func-
tional for the stored magnetic energy
with respect to B = |B|. But then
("A/®n), is determined by the continui-
ty of the tangential H-component:

w ['b(rA)/Bn]a. = uo.1[’D(rA)/ Dn]v .

The whole system of equations has to be
solved iteratively. This is no disadvan-
tage,since for solving nonlinear problems
iterative techniques are unavoidable in
any case. Eventually the evaluation of
(?A/?9n), requires an under-relaxation
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Figure 4: equipotentials in the vicinity
of a hemispherical cathode. Due to the
influence of space charge the potential
is negative in front of the cathode. The
cathode shank following to the left hand
side, is not shown in this figure.

Courtesy of R. Weysser (1983b)

for reasons of stability; but this
vides no principal problem. The comput-
ing time can be kept reasonably short,
since the time-consuming calculation of
the matrix elements for the solution of
the integral equations needs to be
carried out only once in the first loop.
The practical investigations concerning
this method are still going on and will
be published later.

This technigue removes the main dis-
advantage of the FEM, i.e. the inaccu-
rate interpolations and differentiations
in the vacuum part of the field. The
essential gain is that now the field
strength is truly a smooth analytic solu-
tion of the field equations with a rela-
tive error of about 1073 or less. Then
the ray tracing, especially for suffi-
ciently large distances from the pole
surfaces, provides no longer any prob-
lem.

pro-

Ray tracing and aberrations

The possibility and the guality of
ray tracings depend strongly on the ac-
curacy of the field calculation. If only
the axial electrostatic potential ¢(z),
the axial flux density B(z) or other
axial functions are computed by use of
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the FEM, then only the paraxial ray equa-
tions can be solved and this imposes the
strong restriction to deal exclusively
with the standard perturbation theory of
aberrations. Probably this is the reason
why the latter theory has been worked out
in many details.

The physics of round magnetic lenses
is developed in very many details and
presented comprehensively in a volume
edited by Hawkes (1982). Another compre-
hensive presentation of the aberration
theory, also given by Hawkes (1980),
deals with more general systems. Many
items can also be found in the conference
proceedings edited by Wollnik (1981).
Here the quite numerous citations, to be
found in these publications, shall not be
repeated again. Some recent papers, not
yet cited in the references given above,
concern the aberration theory for micro-
wave cavity lenses (Hawkes 1982/83 and
1983), for general systems with parasitic
errors (Plies 1982a,b) and for planar
cathode lenses (Ximen Ji-ye et al.,
1983) «

A quite general feature of the per-
turbation theory is its enormous complex-
ity which forces many authors to use the
aid of computer algebra languages:; for
instance, Hawkes applied the language
CAMAL and Soma (1977) the language REDUCE.
Usually the aberration coefficients are
represented as integral expressions which
assume such a length, that an outsider
may have difficulties with them. More-
over, there are systems for which an ab-
erration theory of third order is insuf-
ficient; examples are electrostatic fil-
ter lenses (Niemitz, 1980), deflection
units at large deflection angles and
annular systems like beta spectrometers
of Siegbahn's type. Hence new concepts
seem to be necessary.

Some ray equations

The accurate calculation of electron
trajectories does not make any problem,
provided that the electromagnetic fields
can be computed accurately at arbitrary
points of reference. Hence the effort is
to be concentrated on the improvement of
the field calculation programs. When this
has been achieved, practically every kind
of ray equation can be solved numerical-
ly. In Tuebingen we have good experience
with a parametrization of the Lorentz
equation in terms of a variable & propor-
tional to the relativistic proper time:

T(6) = Vp(r) + b(r) xr(6) (34)

Here dots denote differentiations with
respect to 6 , further

Y(E) =

is a normalized relativistic acceleration
potential and

*—
¢ (x)/ (20%) (35)
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(4
bir) = —_— B(r) (36)
- = L 2m, U™ ~ ~

a normalized magnetic field strength. The
choice of the normalization constant U¥*
is free; very suitable is often the
asymptotic acceleration potential

¥ = *
u* = ¢ (oo).

The solution of (34) must satisfy the
conservation law

2

T = 2@(r) + const , (37)

the constant being determined uniquely

by the bias of the electric potential and
by the kinetic starting energy. The ray
equation (34) is suitable for all systems
with time-independent fields. Besides
this applicability in numerical procedu-
res, the particular choice of the para-
meter @ has the advantage that (34) is
the simplest possible form of the gene-
ral relativistic ray equation. This is
the basis of the subsequent considera-
tions.

Sometimes it is favourable to solve
the ray equation not in the given form
but in an incremental form yielding di-
rectly the shift s(6) relative to another
trajectory r(6). The latter may be, for
instance, the optical axis in a magnetic
deflection prism. Small differences be-
tween neighbouring values of an arbitrary
smooth function f(r) can be avoided by
numerical integration over its gradient:

f(r): = f£(r s) = f£ix)

+
1
s-f vEflr + ts) dt. (38)
=% = =

This integration can be performed e.g. by
means of Gauss quadrature formulae and
gives always a reliable result, regard-
less how small |s| may be. In this sense
we obtain from (34) quite correctly

|ne

5(6) = A (Vp(r)) + b(r) x
+ Ablr) x (r + 5) . (39)

This is valid for electrons having the
same total energy. This ray equation can
be generalized easily in order to include
chromatic aberrations. The experiences
made with (39) are still in the beginn-
ing; they will be published in a later
paper.
Evaluation of aberration discs

By a solution of (34) and of (39) it
is possible to determine accurately the
endpoints of electron trajectories in a
given recording plane, the initial condi-
tions being still quite general. If we
compute trajectories starting in one com-
mon object point with directions located
on an aperture cone, the line connecting
the obtained endpoints forms the contour
of the corresponding aberration disc.This
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can be aperture
angles.
6a and 6b, which have been determined by
Killes (1983, unpublished). These figures
are the aberration discs for an axial ob-
ject point in a double focusing magnetic
sector field spectrometer. The effect of
a small defocus is quite obvious. These
contours have been obtained by a numeri-
cal solution of (34), numerical instabi-
lities are not to be noticed.

A guite simple and practicable me-
thod for the gquantitative evaluation of
aberration discs has been developed by
Scherle (1983). Let (x4 ,yx) denote the
coordinates of individual trajectories
in a given recording plane z = const,
(x},yi) the corresponding slopes and gy
sultable positive weight factors normal-
ized to unit sum. Then

repeated for different

(40)

P2 G Tl my,

are the coordinates of the center of the
aberration disc; their deviations from
the Gaussian image coordinates can be

interpreted as weighted distortions. Fur-
thermore, the second moments of the aber-
ration disc are defined by
-2
Syp = zj 9, (Xk )7,
S = (x, - X))y, -79), (41)
Xy Z Ik Yk y
S = ( - y)?
% Z 9y, - v,
By these a variance ellipse is defined

which approximates the cross section of
the beam. A good approximation is ob-
tained in many practical cases if the
semiaxes of the ellipse are enlarged by a
factor 2. Since the slopes of the trajec-
tories are known, the local tangents are
given. Hence, as far as it is sufficient
to approximate the true trajectories by
their tangents, for instance in a field
free image space, the determination of
the ellipse can be repeated for any plane
z = const. In this way a defocus can be
studied quite easily and rapidly. Fig. 7
demonstrates the approximation found for
the spherical aberration of a round lens.
The approximate circle of minimum radius
is located near the familiar circle of
least confusion.

Though this procedure is clearly an
approximate one, it is certainly more
convincing than the familiar practice to
calculate a root-mean-square radius from
roughly guessed radii for different aber-
ration terms. If ever necessary,Scherle's
theory can be further improved by taking
into account the moments of third or
higher order. It has one advantage which
may be useful in the future: obviously
the aberrations are minimized if after

A typical example is given in figs.

z..R/um
;-R/H
zi .R/um
XB/1 30.0
25.0 1 25.01
20.0 20.0 4 2.0 mrad
.0 15.0 4
13:0 == 2:0 mrad
10.0 1.5 mrad 10.0 7
5.0 4 1.0 mrad 5.0
0.0 4 ‘ .5 mrad 0.0 1
|
-5.0 4 | | -5.0 1
-10.0 A / -10.0 4
-15.0 A -15.0 1
-20.0 +—T——= -20.0 4
-8.0 0.0 8.0 Yj-R/um
-25.0 4
(a)

-0 T v T~
-0.8 -0.40.00.4 y; . R/um

(b)

Figures 6a,b: examples for contour lines

of aberration discs in a double focusing

magnetic sector field with 90 degrees-
deflection perpendicular to the z-direc-
tion. The rays start in an axial object
point, the initial slopes form cones with
the given semiaperture angles.

(a) configuration close to the best ob-
tained focus
(b) defocus of 3 mm for a deflection

radius 25 cm
Killes

Courtesy of P. (unpublished work)

3 zGauB

Figure 7: Scherle's approximation of the
spherical aberration in a conventional
round lens (the slopes are enlarged for
reasons of distinctness). The hyperbola
marked by ¢ represents the approximation.
Courtesy of W. Scherle (1983b)
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all allowed variations of system parame-
ters the maximum diameter of all aberra-
tion discs has its smallest possible
value. This gives a clear concept for
optimization procedures. The practical
application of this idea is still in the
beginning, but seems to be straightfor-
ward.

In the case that not only the infor-
mation about entire aberration discs is
needed but also the knowledge of aberra-
tion coefficients, the latter are to be
determined by suitable least-squares-fits
with the endpoints (x,,yx), (k = 1...N)
of numerically calculated trajectories.
Since this requires a very high accuracy,
some care must be taken in the set-up of
the corresponding routine. Such calcula-
tions were, for instance, performed by
Niemitz (1980), who determined in this
way the aberration coefficients for elec-
trostatic filter lenses, even in fifth
and higher orders. The research concern-
ing the improvement of least-squares-fit
techniques is going on. In summary there
are already now some alternatives to the
standard perturbation theory of aberra-
tions.
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