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ABSTRACT INTRODUCTION

In the present paper, we have further studied an In electron optical systems involving cathode lenses
approach to the theoretical treatment of wide electron where the photoemitter is used as the object surface, the
beam focusing, based on the application ¢

f the theory cathode is situated in both magnetic and electrostatic
of focusing fields with arbitrary curved optical axis, fields and electrons leave the cathode with small velo-
considering the initial condition emitted from the city and large inclination, The theory of conventional
cathode surface It is assumed that the magnetic field narrow electron beam fo¢ using in a curvilinear coordi
vector B will be used instead of the magnetic scalar Nate system cannot be applied to deal with such cases
potential Q and the electrostatic potential and the involving wide electron beam focusing with large cathode
magnetic field vector B are known functions either by surface,

computation or v\ln-ximﬂ-mull\ in the laboratory system An approach to the theoretical treatment of wide elec
of coordinates, The new approach to the mathematical tron beam focusing ha been derived 9], based on the
treatment appears to be a useful method for solving pro application of the theory of focusing fields with arbi
blems of wide electron beam focusing with arbitrary trary curved optical axes, considering the initial condi
electrostatic and magnetic fields, tions emitted from the cathode surface  In that paper(9),
The theoretical treatment presented here can be ex equations of the principal trajectory and “paraxial”
tended to solve problems of deflection defocusing in trajectories are deduced, The orthogonal condition of a
cathode ray tubes at large deflection angles, curvilinear “paraxial” system and the electron optical

properties of an orthogonal system have been studied,

some practical examples of wide electron beam focusing

satisfying the orthogonal condition have been given The

results of computation showed that the theoretical treat

ment is efficient and suitable for the electrostatic catho-

de lenses, particularly for the determination of ficld
3 curvature and astigmatism
Key words: Electron optics, electron beams, electron E ‘
len athode lense imaging system It has been found that in the above mentioned article
enses, ca e lenses, aging sys 23y
. . the magnetic field i
deflection systems !

s expressed by magnetic scalar poten-
tial Q, but it is not suitable for the practical computa

tion In the present paper, the magnetic field vector B

and the electrostatic potential ¢ are known functions
either experimentally or by computation in the laboratory
system of coordinates, The generalized theory of wide
electron beam focusing is further studied, The new app
roach to the mathematical treatment appears to be a use

ful method for solving problems of wide electron beam

focusing with arbitrary electrostatic and magnetic fields,

The theoretical treatment presented here can be exten-
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LIST OF SYMBOLS p(s) = Vector of increment of electron trajectory

from point N to point N*

Al ¢t =Parameters in eqs_(16) ry = Vector of space curved axis at point N
’ . ’ ; — Paraimieters 1h s U7 . ) . . .
Ayy,81,,3,1,3;, =Parameters in eqs (72) fi =Vector of the mneighboring trajectory
B =Vector of magnetic induction at point N*
II'BV‘R: 7("]”[)””‘”‘ of the vector B in the Frenet t,n,b =Unit vectors in the tangent, Iumnl]):tl
g N HtE SvEteTAlRT (3 ;
local coordinate system(x1, %) normal and binormal directions respec
BV_B\_B’ =Components of the vector B in the la tively
boratory Cartesian coordinate system(x, u, v = Variables in a twisted coordinate system
Ys2) u =u4iv
8,,Bn,,Bu 3 ) u, § Vi Y =Two sets of special solutions of eqs, (74
By,By,,Bn s = Jarameters in eqs, (32) nd (35) ¢
By, By By 4 a,b)
B B 135,V =Parameters in eqs_(75)
X2y Ox 3y .
) — Pars S B Sas 5 . " ) .
ByayBy 3 =Parameters in eqs, ) v = Vector. of velocity of principal electron
B,,,B, )
! ) v =Module of vy
( —Constant in r<x|~_z§oj;|,lr)
_ ) ) v* ity of electron at the ncighboring
ds —FElement of arc length of the principal 4
ectory
trajectory
) N . b =Constant electrostatic potential
ds* —Element of arc length of the neighbo-
o rajector W Wi L0 = .
ring trajectory 3 2 l .= A sets of solutions jof eqs. (65)
2 < < w Wzt | »
E = Vector of eclectrie field intensity
e —Flectron charge YN s T Components of the space curve py in the
eeq =Iritial energy of clectrons emitted from laboratory coordinate system
the cathode surface (%% 5 Z) |‘1|>'»1',Hm_\ (Cartesian coordinate system
e Initial energy of principal electrons (x!,x%2,x3) ==Frenet local coordinate system,
emitted from the cathede surface (xt,x% %) =:08.,D 5, D5
€€, Initial eney oy of principal electron x ! Arc length aleng the curved axi from
which can be focused ideally at the image the initial point A, x!=s
for z — Axial coordinate
et ., — Axial initial energy of emission electrons W .
B¢ I Christoffel symbols of the second kind
emilted from the cathode surface ; - . x .
1/p Curvature of the principal trajectory
ec — Axial initial energy of emission electron . . i
1 2 i deg =Torsion of the principal trajectory
which can be focused ideally at the ge ) )
] I\ =Space electrostatic [)MYPI\II.J'
lane
ylane . .
I P. =Normalized electrostatic potential
g F,.G, =Parameters in eqs, (92) S ;
Fi,Ga,Fy, 15, (92 @i, Piii = Parameters in eqs_ (25)
Fyof 5 ;
1 5 ” d(s) =Flectrostatic potential along the curved
g, .g r =Parameters in eqs, (66)
h,;h, axis
o —Determinant of the components &;j by dy,d, =$,=0¢/0x,by=0¢/0y,d,=0¢/0z
& =Components of the covariant metric ternsor X = Angle of rotation of the twisted coor-
gt =Components of the contravariant meltric dinate system (u,v) with respect to the
tensor fixed coordinate system (p,,p,)
G(i,}) =Sub-determinant of the components gij Q =Scalar mxlgn:-tiv pulen[iul
i,i:k =Unit vectors of the laboratory Cartesian
coordinate
M —=Module of nl'xgniﬁv_ni'ul
M., My =Module of magnification in two directions
m, =FElectron mass
n,l\»,F,R_?\,Q =Parameters in eqs_ (47)
Ny, Ny,Ny
I)K,h‘ b, l =Parameters in eqs_ (10)
1,1 ty
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ded to solve problems of deflection defocusing in

cathode-ray tubes at large deflection angles,

ELECTRON MOTION EQUATION AND
ELECTRON TRAJECTORY EQUATION
IN CURVILINEAR COORDINATE SYSTEM

Let ry=ry(x1) be a natural representation of a spacz
curve, consisting of the curved axis of an electron
beam (principal trajectory), emitte d from a point A at the
object (cathod=) surface, w here x! is the arc length along

the curved axis from the initial point A The normal plane

the carved axis intersects

through an arbitrary point N on

trajectory

curvilinear t point N* It

the neighboring

follows that the determined by a

position of N* can b

from N to N*_ If the expressions of p=p(x?!) are

vector p

known,then the curvilinear neighboring irajectory will be

completely defined,

In‘roduce Fren=t local coordinate ~ystem (x!,x2,x3)

here used as superscripts, not ex

denote the unit veclors at the point N by

t. n, b for the tangent, principal normal and binormal

directions respectively  The curvature radius and torsion
radius of space curve principal trajectory) ry are
expressed by p=p(x!) and T t(x!') As mentioned above,
th veetor pois placed in the normal plane orthogonal to
ingent of the principal trajectory, therefore its
components at the principal normal and binormal direc
tions are x? and x3 respectively, as shown in Fig 1,

f'Z
0
Fig,1 The Frenet local curvilinear coordinate system,
principal trajectory and its neighboring tra
jectories
]——principal trajectory
2 —n"xghhurxng trajectory

47
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Suppose the principal trajectory (central trajectory)in
a laboratory Cartesian coordinate system can be expressed
as the following vector form:

(1)

Carte-

rn=r(xH=xy(x)i4yy(x)ji4zy(x1)k,

where j,j,k are the unit vectors in the laboratory

sian coordinate system

Curvature and torsion of the space curve of principal

trajectory (1) are given as:

1 | e Xorg” |
= | 5 ’ (2)
P ey | 3
L_ I r x| ory'”
Fog g ¥ 12 .
[ r r q
| e’ % | 3
It can be written in a scalar form:
1 _ ey Vo WN2 /e ro w2
(YN 2" —2z3/ yN") 24 (2 x" —x " 28")
9]
Fixy/yn"—yn'xy5")231072, 4)
1 f ’ S B 3 oy
=1 8" 2" =2 ya") % t (2 xy! —xgq" 25" )y
‘ )
((\\/\‘,/7)\1\\“/\”/: {(\ Py — 2y yN) 2
Vo w /o N2 ryon , /y2
@2y X —xg  2¢") 2+ (53 ya" =y x8") [ - (5)
here and below the prime indicates derivatives with
respect to arc length x1
From analytical geometry, il system of unit vectors
in the Frenet triad is defined by
t—"l’~.l. (tangent)
nE=pra? (normal) (6)
b=p(ry" xry,”), (binormal)
Frenet-Serret’s formulae are
dt 1
- n,
dx! p
dn 1 e 1
=— t4 =D, .
dx1 p T (7
db 1
= — n.
dx! T
The vector r* at point N* on the neighboring trajec-
tory can be expressed by
r'=ry+p=ry+xin4x3b, (8)

Now let us calculate the element of arc length ds* in

the selected curvilinear coordinate system, Differentiating

Frenet-Serret’s formulae (7), considering

eq,(8), using
that (ds*)?=(dr*)2 and expressing it in tensor form, we
have

9)

(ds” Yix=ig, ydx dxi
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where g,; are the components of the covariant metric
tensor, which can be written as follows:
1 1 1 1 1
/ L —yx2)2 RSN | r | c 3 — 2
(1——x2%)%4( X:=1) ( 397 — X X
| 1 o tr r + T T T
|
|
(B )= i 3 | 0
I 5
‘ 1
\ x:2 0 1
T
(10>
In the non-relativistic case, the contravariant com
ponents of Lorentz’s equation have the form (4):
m”(\l—rpl“/\x —e(Al_-C (1=1,2,3) 11)
where e is the magnitude of the electron charge, m,, the
electron mass_ I',;Z, the Christoffel symbols of the second
kind, can be written as
o )or Yo
T lk]nrl( (fl_g,‘,(’“‘ag 4"‘,‘ ) 12)
2 ox ox i oxk 5 “
where gii are the components of the contravariant metric
tensor, i e
(,(i_J)
g = o , (13)
el
In formula (13), g and G(i,j) denote the determinant
and sub-determinant of the components g, From(10), we
llil\('
g=det | g |7r|—lv\~;~, (11)
[l
l x3 *,I x 2
| T T
g g g
Y= 1
® —X’(i‘l—\lvzk(l\)z — (=) 2x2x3
T T T
g 8 g |
— 1k — (=) 2x2x3 (]_lxz,z+(!\z,z
T T T
g & g
(15)
Using formulae (10) (14) and (15), considering that

,;/=I,.¢ we can get each value of [ ¢, A[,(Il (=1,
2,3,) in (11)have the form:
A 0%
65, %
Cl= 1_(;2B.‘—;3B:),
V'8

Cs:__l_(x!B:—xh,B.),

’ \/E (16)

wei

where

¢ = i
X, =g.; x! ,

(6 ol
and ¢ is the potential of the electrostatic field, The mag
netic field B can be

B,, B,, B, at the Frenet local coordinate system

vector defined by three components

For convenience, we can use symbols (s,p,, ps) in-
stead of (x!, x?, x3), From (11), we have the electron
motion equations in curvilinear coordinate system (s,
P2sP3):

L 1 : 2
m, ( pT t + pl Pl .Z P ' 5 l
- .L\ Qi o sPy |
1 lﬁlp
li= o P2 pr?
_ 1 /‘fﬁ‘f\’ 5 1 . 0B 1 o )
1 L\ 08 T Jdp2 i ap )
”*p pP2)*
1 [ ° 1 . ¥ | . I 1
— (po— pss)B,—(ps+ !I“’{"J'
o -

p 2

SR S S
(] P p*° T
1 5 1 5
pr? Ps™ T2, P P2P ) T P - ,'
} : Ii_[_‘
l—p p: o I
e 1 (1 )
_2i5 0 (1,90
T J 1 |1 1 as
o .32
(1 o Pz)
1 ’ , ] 9% 4, ) 09
+1((1¥7 Pe) =T abs” ]ur{rj_r E > dp
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the standpoint of energy, we have
]z Ps l ( I)Zf’/l‘,zz - e
T | 1 If ds* /dt=,/(2¢e/my)ep, (19>
SRR
o P2
where @, =@4¢,, ec, is the initial energy of electrons
emitted from the cathode surface, ¢, is called the nor-
° malized potential The element of arc length ds of the
{ 25 P2 ] : » I . 8
® 95 - | £ ety 2 ias 3 . 3 i o T S .
+tfp P2Ps) |82+ — ——gIL: l {—?1"?? principal trajectory-and ds* of its neighboring trajectory
1——7p: (1——p2)? are so related such that:
2 P
kd“ 2= (1— v>z+1()~ 41 —25pup,
Rl p P2 <2 (P2 +P3s®) —2"PsPs
1 Jap 1 . 1 o
= g2 PePagy {,[(]_ Pe) M —7 P2 * p } 1 v ;
; : +2= paPy’ +p2" PPy 2, 20
Transforming each of the parameters s | .11;_ p.., we
have
1 ) 1 o o - 1 g
= (1—=—P2) "+ 3P+ 5 Ps?|s e
1 \ o T T4 . ds ds* 2e ds
li;x P T odst de T\ n{: e B L
R 25 21
Pr= 4 -, ) P 2
\ m, ds
e I = o 2 L ¢ \
- ) 4Ps P B, —( ) — s B, »°* = 3 )
[I‘} r| ["J 2 P2 . Ps)by r c ¢ J‘)“ ( ds Jip 0 |,,’j i («1\7)2 |
: P2= m, L“" ds* P2 P2 ds ¥ ds* J
(18a,b,c) Similar expressions can be obtained for p, and p,,
(Note that, here the upper indices denote exponents ) Substituting these into eqs_ (18b,c), we can derive the
To transform the general equations (182, b, ¢) ‘of trajectory equations in curvilinear coordinate system,
electron motion trajecltory equations, let v®=ds*/dt, the convenient for the study of wide electron beam focusing
velocity of electrons at the neighboring trajectory . From and its aberrations
2L P
TN S NERIPS SRR S IR IES SENPIITE RN SRL R s
ol ok G t Pis) PsP2’ +27 PPy’ + I 1
o d (V28 i
+p2 ,—[ ’ |
ds
, 2 i 7 2 1 1 o ; 5
(1= 5 Pad *+ 1 PRI Pe) 5=20 0 Pa Py o0 2 5Py LR “w s
2@ 1
+ (
1 , 1 I o . , 2
(1= 5p2) P4 (P2) 2 (S P) P =25 PaPa’ 25 P2Ps/ +P2/ 14D
I Ps® + —3-— P P2P3—2 PP’
1 ; 1 4 Pt Y ptw P P2Ps™e o 2 5 /)
= T H —
piPr— Pt aPst | 2Py
l-b P2
1 1 1 ap 1 B 1 ,] 0% 1 9P
| 1 mp B i (P +(1—p p2) U[l,rﬁr‘p"p"dpz)
(l——= pyi?
p

49




(1——p2) (]—'7p>)1+(Tp_;21( p
[, 1 1
X{(ps'"+—p:)B;— (1——p2)24 (
\ P T
29,
z]—]>)34»(f]~) 24 ( 2 'I
,,)L r O P2) P3)"—277PsP
,d «
+P =
d I T .
p— * (—Ds) ( )
p} i o]  (Ps)
( l‘ - 1) ' 1 _—y
—_— * (— 2 ( ) 2— )
01_; ' r[’) f < g el
e g0 O )
L TPt 2
TZ
]———]y ] —
P[
_ 1 [ 0% & Lo . CF
1 lirp aJds 71'!y| p
l|*[7—|)/'
1 "n
- va; ‘\m,( I 1
o <I~p P2)*+ (P:
T

If the magnetic field is defined by scalar magnetic
4 o0 5
potential Q, then— ~(x3=s,x*=p;, x3=p,) can be used
ax’
instead of B,(i=1,2,3) in the above equations, we may

obtain those equations derived in ref

JEqs, (22a,b) are

convenient for studying wide electron beam focusing and

narrow electron beam focusinz and their aberrations in

the curvilinear coordinate system,

ELECTROSTATIC AND MAGNETIC FIELD
EXPANSIONS ALONG THE CURVED
OPTICAL AXIS

Zhou Li

-wei

1
2_o i g 78 I g
) Z_PsP2" 42 - BaP +p +p
5 1 1 /
)* 1+ (—P3)” —T'l» p L;P Pa }B},
)
1
W=7 Dep Pz S Py
T
—J—pP Jﬁ’il) p +p2'24+ps’ l
T . : A
{=qr
"2 1 pupy +pa 2D ‘
ik -
P2’ ’
)
‘ln
P
) 1 | ; 0P
l ]ﬁulr : ¢ P2l apy )
o ) !
) I (2pyi—21p.p ‘425 pupy’ +p Ippy?
T a1 ‘ S iy
_ pPsp2’ + ! P2Ps’ ]R (py/ — ! ps)B ‘>
T T : T ! (22a,b)
In what follows mathematical expressions are going

50

to be derived in terms of the electrostatic potential and

magnetic induction along curved optical axis

As is known, the electrostatic potential must satisfy
Laplace equation:

Vip=0, (23)

we assume that there is no singular point near to the

optical axis, the elecirostatic potential @(s,p,,p,) is am

analytical function,

Expanding electrostatic potential ¢ in a power series

of p, and p, along the curved optical axis with coeffi
cients that are functions of s, we have
5 S 1 2 :
P(S,P2,Pa) =P (s)+pPP2(5) + 21’1"?:;(‘)’i'
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+p2psP2 (~)+.,I Po2 g (5) feeeees (24)
9
where the symbols introduced are:
o | =9 (s,0,0)=b(s),
P |p, =0 =P:0.0=%
]) =)
2 |
aoq a“qQ
- = ‘ =93 (25)
Jdp . lp.=0 ap . dp, 'p.=0
P:=0 p =)
h('rl'
dd
Y *W\P.V)+R”‘NUNJM:$HHZONHZ—(3
ds

The quantities of ¢,, ¢, , in (24) can be expressed
by the known partial derivatives in the laboratory Carte
sian coordinate system:

am ap el
[\ n Ty n
. Y oox ' dy dJd
L X=Xys Y=Vns Z=Zgx
a9 Jdo ag
q b } ——+b
ax v Az
‘ X Ky Y=Yn; Z=%Z
SRV RoRX 0% Ay
q S +n, ¢——+4n,* -2n.n
oy? Jdy? Jdz? AXAy
A Vel
+-2n +2n.n b
oxJz Avoz
Xyy Y=V, Z=2
02q d2q J2q
q n ( , b b — )
ox? oxo Jdxdz
A% a%q A
+n ( Blgeod- ==k )
\ l’\("\ oy dydz
o2 o Jy d%p ;
i n ( b by 4 , b o =T N
dxdz dydz dz “

d2p ‘1»‘(p [ R\
) ..=|b,? =4 b 2~ 19b.1
q ] X ox2 "X oz *xy axdy
A% )2
+2b,b, — i 2b.b 54
)xdz ! Jdydz
! XE= Ky Y= Y s =2y,
(26)
Substituting (24) into (23) yields the relations

between some of the coefficients

1 dzp
= ‘V.::+W3;]+*‘TJ:T}. G27)
p R
Because the direction of curved optical axis at point
N coincides with unit vector t, we have

ELECTRON

BEAM FOCUSING

ds

1q
(pl:d)’:(t P_> =gradp.t,

Differentiating it,

d2¢ d d
= —(grady)«.t4gradp. To»
k: as

ds? ds
and using Frenet-Serret’s formulae (7), we obtain
d 2{ 1 ries
Wer =Pt P, (28)
From(27) and (28), we have
P+ +®533:=0. (29)

For the magnetic field, similar to the treatment in

ref (3], we assume that the components of vector B are

known in the laboratory Cartesian coordinate system:

B(x,v,z) =B (x,y,2)i4+B,(x,y,2)i+B,(x,y,2)k. (30)

It means that at the principal

l;Jj--rM-v‘j\, B(s)=B(0,0,s)

B(xy,¥ns2%Zx) 1s known,

For the study of the motion of electrons near the

curved optical mus! field vector

Bp

coefficients

axis, we expand the

sPss5) in a power series of p, and p, with

that are functions of s, Since we investigate

the focusing properties of a system with wide electron
beam focusing, so we limit our analysis to first order
terms, then we have
B(p,yps,s)=B(s)4+po(neV)B4+p,(be V)B4 -eeeee (31)
0. 0. 0
where \ i =i k,
Jx Jdy az

and all the derivatives are calculated at the point (x

Vo2 of the principal trajectory
From (3]1) we can get the component of the field
vector B in the direction of unit vector p:
B,=B(s)n+py:n(n+V)B+p,n(b:\V)B
=B, (s)+B, p:+ By Pas (32)
where
B,(s)=n,B,4+n,B,4n,B,,
By,=n,By,4nyB,s+4n,B,,,
By;=n,B,;4+n,B,,4n,B, .; (33)
and

I;V:B.‘((xv)vlz) l

X=Xy, Y=Yy, Z2=1Z,,
oB oB B
By,=|n, <> +tn, =" 4n,—~
x2 X 3% oy =7

JB,

ox

B, ‘:[b\

dB, dB,
by S5+ b5 |
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Similarly, the other coefficients B

, - Byw § Bz cent to the principal trajectory, satisfy the following
B,, , B,, will b2 obtained if in (31 B, is replaced by “curved paraxial conditions” everywhere:
BV! B/-

P2(s)==0 , p(s)<Kp(s) , p(s)<Tt(s);
Similar to (32), we can get the components of the

field vector B in the direction of unit vectors t and b, PRl 1
By=Bu(5) +Busps£Brsps, and @(0)=0, It is not necessary to assume that the con-
dition p’ 2(s)<<] is satisfied everywhere
B,=Bp(s)4By,p, + Bt Pa; (35) We introduce the “curved paraxial conditions” (41)
where By (s), Bi,, By, and By (s), By,, By, can be ob for wide electron heam focusing into (22a,b), regarding
tained if we use t ., t. t, or b., by, b, instead of n,, .

P2y Ps and p,,p, as first order terms and using the me-
ny, n, 1n (33),

thod given in refs (8,10), investicate each of the coeffi
Since the magnetic field vector B must satisfy the

cients in (22a,b), we can thus arrive at equations for
relations: T . ’ ¢ 5 o e
,sr:nr:p:xl trajectory end its neighboring paraxial
VeB=g, (36) Imjwluri.u.
Now study the common coefficient of first terms on
VxB=0; (37)
the right hand of equations (22a,b), which is related to
substituting (31) into (33%) and (37) vields the relations .
. R, the tangent velocity s It may be seen that this coeffi-
between some of the coefficients: :

cient at the initial point can b= written as
3 (38)

Bi/ (s)+B,,+By .,_’n,‘,\ =0
‘)

B 5~ By,=0

Bi,— By’ (s) =9,

+ 25y 40 Tp ]}
& “ig=0y pas=0l, Pa=i0
Bi, =B,/ (s)=0, (39)
In the above mentioned expressions n,, n,, n,, b, , B ( €0 > Lty
by. b, and t., t., t, can be obtained hy the Followhig 14p2/ 24 py/ 2
S aela Therefore, the 041 order approximation can be expressed by
te=x,7, t.=y . b st e
1 . 1 5 1 3 ! ,
Ng=pKy" s He=pyi", Ba=0Z,", [r(p‘//(w;“ ;l\»}rrp w‘,"T[x ) 2 V‘Tlx 7
be=p(yn'z"—zy yy"),
1 , 2 ]1
L 92— Do Yol 2 B! & \
b =il 2y ! Xl T 7Y = “rP" P P J0-1
== o, T el R "y . ,
b, =0 (x"y ¥wl X" 5 40) —e b PrPrdpP,t (e Zp,. 43)
' P
where the prime denotes derivatives with respect to the

arc length s,
From the (04142 order approximation of this co=fficient,

we mavy ohtain the condition, by which the formula was

EQUATIONS OF PRINCIPAL TRAJECTORY
AND ITS NEIGHBORING “PARAXIAL” gy %,
—L (p2—p,?

TRAJECTORIES plaz; 2('4%}_\ < 1 (41)

set up,

n an electr Iptica syste Wi wide electr é m 1 “« 5 » 1iti T

I C ptic vstem ith id 1 t n heam T : o el tt xial condition Larelfoie when
tocus 7, W& cons 2r the ca de w ctrostatic 3 ¥
OSUlIET, £ 1 h k 1 ith: ‘ny 1 ; Lk investigating tl system with wide electron beam focu

potential to be where the electron has small initial velo

city, as mentioned above,

Similar tc

3 m ' g
sing, we regard p zxn(l\’ el N p/\’ b+t as first order
: : g h 2e
the cathode lenses with axial symmetry(g -

10), we assume that in the system with wide electron terms and the products as second order terms, which can

beam focusing, the curvilinear trajectories, being adja- be neglected

52
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Similar to those discassed above and for other coeffi-

cients in (22a,b), after a series of rather complicated
manipulations, we have the trajectory equation of zero
"l'(i"l' lll!lrr’l\l”ki!'i“ﬂ:

2.

2 2e .

—(b4e,) =@, + | 2 So+e, Buis),

3] \ m

(45a,b)

he trajectory equations of first-order approximation:

and t

d dp _dp
(n——)=Fp,+Np,+2K ——
ds ds . ds ?
(16a,b)
d dp - o K dp
= ) n — ), — 2 .
ds'" ds 3l ds §

where n, K, F, R, N and Q express the following func
tions at the cu-ve of principal trajectory:
n / & h= \"!i} s ’-T‘ By (s)
v ! T ‘\‘/,m” ’
y : 11 ) 4 T ) fl
. i) Ty o/ bt es
[T% i : @, By ()
\"’m': B, ) —Bphy— 2(htes) )
1 P | 1
R —J & - ey — —— (—By (s)
T s TE G4 \Nzm, t
. @ .Bn (s
+ By, + T =0
-\ (1’ 1 ) . ,\/ (i)477 s (1 T . (r 3
."Y\/"A‘:;A;r:“ T ds f’\/(!)+:’\
I e p By (s)
| o 4Bt
e | .— (B4 —— -
12\/ b+ ¢ \* \Zm[, 8 20h+¢5) ’
o P JFTeodr ©2 4
R T ds 2/ b+
| @B, (s) ~
il (Byo+ 2(d4e,) ) o 47)
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It must be pointed out that the following relationship

among coefficients N, Q and K .in (47) holds(7):

N+Q dK
2 = q (48)

(45a,b) are called equations for the principal trajec-

tory, The coordinate curve s derived from

eqs, (45a,b)

when p,=p,=0 thus of the electron

represents one

axis

trajectories——principal trajectory (it might be the

of the system)

Eqs,(46a,b) can be used to describe the nvigh}mring

trajectories with rather large initial slope, emitting from
the cathode surface with potential $(0)=0, we will call

them curvilinear “paraxial” trajectory equations,

Jt is to be noted that the value of coefficients n F,
N, R, Q and K must be taken from the principal trajec-
tory when solving eqs_(46a,b), Thus, we usually solve
eqs,(45a,b) and (46a,b) simultaneously 6 Besides, either
in the princ ipu! ll'dj«':'lnx) equations (45a,b) or in the

trajectory (46a,b), the

taken

curvilinear “paraxial” cquations

same value for must be

In what follows we will further discuss the physical

meaning of the |)7‘1nrip:|1 trajectory equations ¢ \[\I't‘\\n"xl in

the form of (45a.b), From the fundamental equation of

electron motion

d
= B), (49)
dt

,m)v,j,,-E, e(vX

we investigate the projection of motion equation of prin-

cipal trajectory on the Frenet local coordinate system,

For the motion of principal electron, y=vt,

we have

d dv dt

= (MGV)=MyV(s35 V)
de 0 0" d st Tds’ e

(50)

Using Frenet-Serret’s formulae (7), equation (49) can be

tran-formed to

dv

m gV l]r:,\‘» ”"ob’ﬂ*",‘l!i“]‘;‘*"r\t?%B\,

Multiply eq,(51) by t, n, b as scalar multiplication, we

obhtain

dv deop 5
MoV =€ (AR
|I!”\ i i (C
3 =c(gradgen) +ev(Beb), (53)
gradgpeb=v(B-n), (54)




Zhou Li

Irntegrate (52) and consider initia]l energy egg of

principal electron emitted from the cathede surface and

velocity of

(s) b(s=0)=0, we Lave the

®(0,0,5)=¢

pl’il]('l]lii] electron

o
v ,\ o (p+ _ (29)
LY
Differentiate eqs, and (Z4) with respect to s,
we have
1 mg,v? d 1 1
‘ . e gradqen— —eradpet + —gradp.b
ds I} lds p e it
]J (56)

l]
—oradpeb—

dsP
e do
= . Ben. (
m, v ds
Using (55), eqs,(53) (51) (56) (57) can be written as

P 2 \ m“' i

P ;\m’v":' a(s)

= (60)
| | 2e 1
DY o sl =40 e < / & B 15 ——Bi (8
¢, = ¥ \ i A/ }- ( t A 3 )
,.’—n“\)x = 1 @ Ba(s) (61)

[t will be seen that the four equations (58)~(61)
are derived from the motion equation, and equations (58)

and (59) are just the same equations ({5a,b) derived

above

Problems of wide electron bean can be put

forward in two ways, Usually, given the electrostatic and
calcula-

magnetic fields, the electron trajecteries can be

ted through their differential equations, thus determiring

the focusing properties At that time, eq_(45a) or (58)

indicates the equation of principal trajectory, and the

other three equations (39)(60)(61) will be automatically

satisfied, But, on the contrary, the Id distributions

wel
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may also he defired from the given beams or trajecd

teries, At this moment, (58) (59) (60) (51) will b the

four 1'4)111|;lvmv|1l;ll equations to b> satisfied, which show

the reiations between the coefficients of electrostatic and

magnetic fields, that are not in ir"llll".ll of each oiher

In principal trajectory equation ([|ja),
that functions of arc length s, is not convenient to
scive here, we transform it into a form using th abo
ratory Cartesian coordinate system  Because of

Po=n,p+n,by+0,6¢,,
By(s)=b B, 4+b.B,4.bh,;B
s
ao dd ; od
where do=— -, & b= LR
ox ov Jz
let b, n, be expressed by (10), p by (1) and transforr

each derivative with respect to s into the derivative with

respect to z using

then the principal trajectory equation ({5a) can be

wrillen as

d ( b+ . ) VA ERY i
dz /14x" 24y ) 2.7 bt X
T B 2
} - 3. —v/B.)
\‘,’m‘A
'l( v b+ \,>7V/ fide 5 Lot ab
dz \,/|+\’ Loyl 2 /(L)"l« oY

e ,

+4l L (xB,—B
Nom,

where the prime indicates derivatives with respect tv z

If eqs, (63a,b) are set up, suppose

®s=b. by +b,dy+b,d,,

B,(s)=nyB,4n,B,4n,B,,

substitute them into (45b), and through a series of trans
formaticns, we can prove that the equation ({5b) is auto
matically satisfied,
For equations ({6a,b) of neighboring “paraxial”™ tra
jectories it is convenient to transform them into equations
1

that are functions of z_ By using (6§2), 16a,b) wi'l have

the fo
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« :
L dp . - >
dz(V/d+es T—)=+x"*4y *)(Fp,4Npy)
g5 X/ % oyl y dp
19K/ ey i , : bl
2R/ 1+ t dz + v+ [ofse? Bty dz *
d dp
(Voe+es 5=+ 4y )(Rp.,—Qp.)
K. /1 - dp ’ X' x4y’ y dp .,
— 9 /14x"*4v == + /¢ = o7
~14 ‘ i, TVt x4y 2 dg 2
(61a,b)

[t is to be roted that the value of coefficients n, Ko
F, R, N and Q and x’, y’, x”, v” must be taken from
the principal trajectory when solving eqs (64a,b)

Eqs, (64a,b) are two coupled, linear, second-order
differential equations which may be transformed to a
system of four first erder equations_ Let

W, =Dp2, Wy=py', Wu=pg, w,=p,;
then eqs_ (64a,b) become
Wl =w,,
W =g W g W ,}I[\\_;t\s‘,
w Wi
W.; wo+how, 4 f w,—f,w,, (65)
where
1+ x 4
g I
( v b+ )
v ¥=iX o ¥ Yy Z=0%
| 4 x 4y
g [ L1 v )
~ b+ S
\ . z Zy
] g™t oy
h ( - (0]
oL 2 )
X i Y=¥§: =2,
14-x 4y
} T o
h,= R
v rors )
Xye Y=V, Z=1Z
X7 %l e |
f 7( ' ] - )
I 4+x"24y 2(dh+ ) dz
X=X, y= n
z2=12,
fom g IR 2gTt o
2 5 ) (66)
< l‘+'
+ X=Xyy Y=Vy, Z=12,

By numerical r hod, o©n may determine a se of
solutions of (§5):

Wy N oWt o W ! s Wt (1=1,2,.3,4)
which satisfy the foilowing initial conditions:

ELECTRON BEAM FOCUSING

(67)

as

(68a,b)

1 1 2 3 1
w, (i)=p,0 1 0 0 0 |
w, (i :(pi o 1 fatee (
Wttl=p,tt? 0 0 1 0
Wiy 0 di= (p 5 €O 1/ 0 0 0 1/ ¢
The solutions of (4a,b) may then be written
P2(2)=P2oW D Vegpo’ W, '+ PsoW,
+\/Y\f' n’“,‘l‘.
Palz)=Pao WiV +E5poo’ W "+ Py W
+ V&, Pan” Wy (10
and these satisfy the initial conditions:
P2(29)=P2q, P2’ (20)=Pso 3
Nia (20 V=D 455 Py’ (Zpd=Pys’ o

THE ORTHOGONAL CONDITION OF SYSTEMS
WITH WIDE ELECTRON BEAM FOCUSING

The orthogonal condition of systems with narrow
electron beam focusing was first given bw Srurrock (673,
We will try here to derive the orthogonal condition of
system with wide electron beam focusing, It is necessary
first of all to simplify eqs, ({6a,b),in order that the term
p,/ does not appear in eq, ({6a) and p,” in eq, (46b)

Introducing coordinate transformation

. o
p -1pg=(u—1V)¢ (bH)
to eqs, (16a,b), and supposing that
, dy K
X = == , 70
- ds n
we can get the curvilinear “paraxial” traj cquation
in a rotating coordinate system (v, v
d du
(n )=a, ;u- v,
ds ds =
d dv _ i
(n— =8, ,U-ta,,V; (71a,n)
ds ds
\\]l"l'!‘
5 ” 5 : K?
a,, =Fcos2y 4+ Rsin2y 4 (N—Q)sinycosy — "
1 ¢ ¢ X =
a,,=Ncos2y4Qsin?y —(F—R)sinycosy —K’
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—Nsin2xy —Qcos?

2

,*‘lv —R )ysinycosy + K
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K2

a“:P\inZ/\;-f H,.(,\zx_(;\'_())\iny_rnsx s X
n

It may be seen from (71a,b) that the wvariables of

these two equations are still not separated But it can be
proved from (72) and (48) that a,,=a,,, It means that
(71a,b) are self conjugate equations,

Apparently  in case the variables are completely
separated, eqs,(7la,b) have to satisfy the following
condition: a,,=a,, =0, If so, it can be written as a, ,+

a,, =0, Then we have

Transforming the expressions of a,, and a,, in (72)

by using (73), and let U=a V=a,, the we get

d du
= YRl o
ds ! ds ‘ S
(74a,b)
1
J-rn d\):\\:
ds ds
where
U= L (F4R) 4+ L/ (F—R)24 (N=Q)? L )
2 2 n
Vo 4 (F4R) 7_»]7\/ (FZ_R)2 F(N=Q)? ;7}\;.
2 n
(75)
From (70) and (73), we can derive the conditional

relationship, which the coefficients n K

R, N and

Q must satisfy, when the variables are separated:
n((N—Q)(F'—R’)— (F—R) (N’ —Q’))
=2K((F—R)24 (N—Q) 2, (76)

This is the orthogonal condition for systems with
wide electron beam focusing, Systems, which satisfy the
orthogonal condition (76), will be  named orthogonal
curvilinear «paraxial”? systems

For curvilinear electron optical systems satisfying the
orthogonal condition, the image with point focusing or
line focusing can be formed, as it has been pointed out
bv Sturrock 6].

(74a,b) are second order homogeneous linear differen
tial equations of u and v respectively  Although in

these equations a singular point exists at the cathode

surface when €s=0, There are no essential difficulties in
solving eqs,(74a,b), compared with the cathode lenses
with axial symmetry  Thus, the general solutions u and v
of eqs, (74a,b) can be expressed by two linear indepen -
dent special ~Ululinn\_ Let u | upg and v vy be the
two sets of special solutions of eqs, (74a, b), which

satisfy the following conditions:

u,(0)=v,(0)=0, JeEsu (0)= Jegv, (0)=1

ug(0)=vy(0)=1, Jesug' (0)= ./ ;",‘/(0)3‘).

(7T

In order to obtain an image of point focusing (stig-
matic imaging), it is obviously necessary to make U and
V in eqs, (74a,b) equal to each other_ In that case, it

becomes possible only when

F-_R=N—Q=o,

(78)
Then at the image plane s=sj, which corresponds to =
€s,, we have
u ( y51 )=V, (€548 )=0,
u,’ (g, Vo' (Egpssi), (79)
The modulus of its magnification can be written as
| 1
My=My=M= |
t vy (B asi) a7/ d(si . le
(80)
It can be seen from (74a,b) and (76) that systems satis

fying condition (78) will certainiy satisfy the orthogonal
condition given above_  Condition (78) corresponds to the

two relationships that follow

v b teg p Poa— o, P2 /Zt ( B
2 I ns
P 2/ b+es p/bte, V™Mo

B (s)p,—B,(s)p, )

=0, (81)
'+ ¢

Condition (78) or (8]) shows that the electron heam
emitted from the cathode surface with ¢ —¢. will have

§T54

an ideal point focusing (stigmatic imaging), therefore
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the system will have properties similar to  those of the Then
electron optical system with axial symmetry, Ly B2
) J ) 1 $ e %i(z)
If the system with wide electron beam focusing only U= 'i7.7|‘ T gm ° Cadr
L v d(z)+e, b blz)y+¢&,

satisfies the orthogonal condition (76), but does not sa-

tisfy condition (78), thus UV  and the special solutions It is obvious that the system of wide electron beam

Uy 5 B yand v, vy are different, This means anisotropy in focusing with a linear axis of symmeltry not only satisfies
magnification, and its moduli in two directions 1in case condition (76), but also satisfies condition (78), ]h\h"

this system has the properties of ideal focusing (point

of g¢= will be
focusing)
Let
Mu= I : l (82a) :
Mu= }2a — i
, X -
; — y-liv=Dne ¢ (85
u,' (Egis 511708, )F¢es; W= Ul pe ’ )
where
1 | | e B(z)
My = (82b) 7 :\ .
. 2 T
, ] 8in ATy e
V. (es1552:) ~/$(52.)+esg, 0./ ¢(z)+¢E,
eqs, (74a,b) will then have the following form:
The positions s ; and s,; of focusing image for the elec- 1 - ; 1
. ) (h(z) e, u"+ G’ (z) u' 4 (o7 (2z)
tron beam do not coincide with each other even when the ! 2 !
initial energy ecg=eeg, is the same It means that 1two
g) 5 1 . e X e
. . . — B2(z))u=0. (86)
ideal focusing images rurr<'~[1n||<|1n; to eg=¢eg, will be 2m,
possible in a given orthogonal curvilinear system, A focu . o
s p It is just the linear differential equation f a system
sing segment in the binormal direction b at the location .
: with wide electron beam focusing (8], where the principal
s=s,; is formed, and another focusing segment in the ’
trajectory is a ~lrui;_'ht axis having axial symmetry Using
normal direction n at the location s=s,; at the same :

(86), we have solved a concentric spherical system of

eq.

time, Thus, the difference between the two locations can
combined electrostatic and

maenetic fields with wide elec

be defined as the astigmatism of the system with wide
_ tron beam focusing (1],
electron beam focusing,

2. Electrostatic Cathode Lenses with Wide Electron

SOME PRACTICAL EXAMPLES FOR SYSTEMS Beam Focusing
W'TH WIDE ELECTRON BEAM FOCUSING For electrostatic cathode lenses with axial

Sy mmeltry,

the off-axis principal trajectory emitted from the cathode

surface will be a plane curve which is normal to the ca-

1. System with Wide Electron Beam Focusing, in .
thode surface, Thus,

which the Principal Trajectory is a Linear Axis

of Symmetry B—o, =0, ©25:=0,
T
When the principal trajectory is a linear axis of
then from (47) we have
symmetry, I—t ¥] =0, In consideration of axially
p T i ‘ -
n= ./ ¢(s)+es , K=o,
symmetric fields, their potential on the axis takes the
extreme value, and there is no difference between the 3 (VP
] : F=——7F4 o()+es + o
normal and binormal directions, P 2 b(s)+es
Let p=p.+ip,;, s=z, €;=¢,, b(s)y=¢d(z), Bi(s)=
B(z), we obtain @
. R — 2 ) N=Q=0, (87)
24/ b(s) e
n=.,/ &(z)+¢e, , K:r—\’,' B(z), N—Q=0,
gm, . ~ wad >
The coefficients in expressions (87) also satisfy the
] Vi orlhn;_vnndl condition (76), It is obvious that the variables
W)

- ¥ (83) u and v are also separated,

/ & 7\ J
~ ¢(z)+e,
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Because ‘/_:(], suppose that u=py,, V=D,; then the

principal trajectory equation can be written as

20 (s)+¢e]

Qo= o (88)
P
The curvilinear “paraxial” trajectory equations would
be
d dp 3 b(s) ¢
RETTE I - 3/ ¢ ] tes
d Sods p
P,
~F 3
2./ (s)+eg
d dp . (o)
(v e(8)+e, }1 ) = ; Ps.
- - 2/ $(s) +
(89a,b)
The arc length s, which defines a coordinate curve of the
principal trajectory, can be transformed into a form with
cylindrical coordinates (r,z), From (88) and(89), we have
the principal trajectory equalion:
1 i & 6P , 00
- ] ( L T RO ) (90)
20p(z,r)4+es] \ ot G2z
and the curvilinear neighboring trajectory equaltion:

(91a,b)

where

—(1+1'%) 1 09
G, = X _
h 2000 (z,r)+¢€g] I\ ot

S5
( ~ or?

2Cp(z,t) +E5)

o M("(P)
2r’ Py (92)
t+2 Jardz az ®
[t is necessary to remind that the terms in the coeffi

cients ¥, G, F, G, should be taken to be the values on

1

the principal trajectory, and that the prime notations 1in

the eqs,(90), (91a,b) and (92) denote derivatives with
respect to the axial coordinate z,
For the electron beam emitted from the axial point of

cathode surface, because the principal trajectory is actually
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wet

S . il
the rotating symmetrical axis, we will have r=r'=r"=0,

and

Let p=p,+ip,, eg=¢e,, then eqs (91a,b) take the follow-

ing form:

i J ¢’ 1 (})"

2 $(z)+Fe, Pt 1 <br/)+r‘ , p=0

(94)

It is just the well-known “paraxial” equation in the case

of electrostatic cathode lenses

3. Two Dimensional Field of Plane Symmetry with Wide
Electron Beam Foecusing

Let the principal trajectory be an axis of symmetry
for a two dimensional field with plane symmetry then
the orthogonal coordinate system (P2,Ps,8) can be repla

ced by the Cartesian coordinate system (x,y,z), and the

coordinate z, the axis of symmetry for the systém. coin
) ) 5

cides with the principal trajectory, Therefore
1 1
= =0,
P T
For the two dimensional field ~which is independent
of the coordinate x, let By(z)=B | the

“paraxial”

trajectory equations (46a,b) can be written as

b

2!’(1)-‘{4 ) +2m“\x?x Fe,) )'\

3 (95a,b)

where

VExy 4+ \{2”]“ Boyo.

C=

It will be seen from (95a,b) that this system does

not satisfy the orthogonal condition,
For the case of the electrostatic field of plane symme

try with wide electron beam focusing, we obtain

;- xu/\/*ﬁ_
\/‘1’{‘)%""/

(96a,b)
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It is obvious that the variables x y are also sepa
rated, It is enough to prove that this kind of focusing
system, which is actually a so-called cylindrical cathode
lens, will focus only the plane electron beam located in

the plane (y, z), In the direction perpendicular  to the

plane (y, z), there is no appiied force of electric Field

Thus, the solid electron beam emitted from the axial

affected only in the

yoint of cathode surface will be
I ,

direction perpendicular to the piane of symmetry It will

not have a point focusing as in the field with axial

symmelry, but will have a line focusing in the direction

pt 1‘|n~m||(u[;n to the plane (y,z)

AN APPROACH TO THE TREATMENT OF
DEFLECTION DEFOCUSING EFFECTS IN
CATHODE-RAY TUBES USING THEORY
OF WIDE ELECTRON BEAM FOCUSING

To describe the ynvergence defects of deflection
fields at angles larger than 45 Hutter (3] put forward
a method to the theoretical treatment, based on the appli
cation of the theory of «focusing fields with arbitrary

curved optical axes” | In his paper, a rotating system of

ordinates u, v, w has been introduced, which rotates

with respect to the Frenet local coordinate system_  the

potential @ and field vector B are expanded in a power

<eries of u and v with coefficients that are functions of are

the zero-order path conditions and the paraxial

cquations of pure electrostatic and pure magnetic deflec

tion systems have been derived, and the aberrations of

svstem have also been discussed, Hutter’s paper presented

o solve the theory of the deflection sys

d new .ll)jﬁl’l;l( )l
tem at large deflection angles,

It must be pointed out that from the beginning of

Hutter’s paper the introduction of a rotating coordinate
system with respect to Frenet local coordinate system seems
to complicate the problem —and there is no clear rela
ion in his paper between the zero-order path equation
derived from the rotating coordinate system (see eq, (57)
in ref,(3),) and the equation of central trajectory deri
ved from the laboratory Cartesian coordinate system (see

«-.|_(,") 1n

extend the

In fact, one may principal trajectory
equations (45a,b) and the “paraxial” trajectory equa-
tions (46a,b) derived above to solve the problem of large
angle deflection, if we assume @(s=0)#0, es=¢,, b(s)

>e Therefore, problem with focusing of deflection sys-

- 0e
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BEAM FOCUSING
treatzd as

47

regarded as a

tem at large deflecting nn;:!u (in #I'Ill'b'dl. itois

focusing (2,

a problem with narrow electron beam

in a curvilinear coordinate system can be

\]w('iul case thereof

Now we illustrate with example for a pure magnetic

deflection system with large angle deflection given by

Hutter, In that b=V, ,=const, From (15a,b) (46a,b),

case,

we have the principal trajectory equations:

| >
0 s B, (s)

o) N\ 2m,V, g

B,(s)=0; (97a,b)

and the “paraxial” trajectory equations:

€ ' 1
Be(s ($)i— <
gm;V, t85) )I)‘ [ T2

prr—2(4-

Bos )p_(‘y'*i). (98a,b)

Transforming eq, (97a) into a form expressed by labo

obtain

ratory coordinate system, we

(By—y’Bz),

x* i e
2 /2 > \ 2m, V,

(x’B,—B,)

d / y/ B e
dz ( 3 /2 ) V \’ 2|||”\ 0
(99a,b)

It is enough to prove that eq, (97b) is automatically

satisfied if eqs,(99a,b) is set up,
Similarly, for a pure electrostatic deflection system
Y,

with large angle deflection we have the principal trajec-

tory equations:

(100a,b)

P43=0;

and the paraxial trajectory equations:
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L8 g g Ly F[( : SER hy, ={ / L_ 4z
2 < 3 e = J=% 4 ==
2 ¢ pt £iE pd I { Ao ty )( 1 ds
fm~] ( | ¢’ ©, ) L2
= P2t : - Ps=0, ‘ B )1
2¢ T 2td 2¢ . n
§ ¢ b \ 2m\ J N —
" 1 ¢, 1 : 1 P
P+ Ps’ +2-—-p —( 7 ) hy= [ 1 g I [ ( (s
2 & T T 2¢ l‘1+\ ¥ =) = \ 2m,V, Bi(s)
VR O TP \
= — = = 3 =0, (101a,b 1
( T° 2T ¢ ‘_f(t) E ¢ 57 ’*‘Bun) ] [
X=X Y=Yy, %=1
Under the circumstances of the laboratory Cartesian
. o . . ) x! x" Lyl g
coordinate .\)‘\14-11\’ the ])rlnt'l[).ll Irulm'l(l]"\ l‘tlll«lllull (I[J(!.l) 11"; ( 7 73 )
. ) : 14+ x" 24y X= X y=1yx, Z=2Zy
corresponds to the following equations: e
, 7 2 /o f — I / 29 ’ Z
d ( Vo \'):\/ 14-x" 24y f’fll 2 | W 5t s =
dz W ET e 27/ Jx
| !
Hl‘;,>
. J
q ( Jb - ) o L4x/ 24y dd \ 2m,V, X=Xy, Y=Yn, ZT=2%
dz s 7 )y °
NARE St o 2/ = (101)
(102a,h) Similarly, for eqs,(101a,b), we have
We can also prove that u].(l(mh) is :\ulum-l“l’.lu)
salisfied 1 (S 2ai. L are se , , | | w»
salisfied if eqs, (102a,b) are L oup, ‘r"l"ll (14 Ly ‘l: . +
. R 3 s . P T PP
For computaticn il is cenvenient to transform (98a, b3
or (10la,b) into equations that are functions of z by using
P |
—a 1}
dp i dp 1 L3 X=x y=1y loes
ds dz 5 ’
~ 14X ty
go= I - (14 x + )] ( J :
. L T 27
d p_u] p | - dp %t by ly -
ds?  dz? 14-x/ %4y dz  (14x"2fy/2)2 "
. _G ) |
(103) )b |
& X=Xy, Y=VYn, 2=12
For example, transforming (98a,b) by (103) into a
: h =—¢g
system of four first order equations, similar to eq, (65), ’
where coefficients g,, g,, h,, h,, f, f, can be written ’
8 1 f= [ (14x Ly )( 7] +ﬂ.7 ) }
as T 2¢ X=X
V=Y 5
z‘lx*{‘lw"\"‘*.‘/ [ L= L=t
72 P
F_ { \'\',{ \'\:‘
LA -y
— €& ( L T Ty o )]} + 1
\ 2m,Vy \ 1 X=Xyy Y=Vx, 1 & \
= 14x"24y"* {
a=ky 2 ¢ X== X,
Y= Yib
1
(,:f4(1+\' 4y’ ( ]”,‘T z2=17,
L T2 ds
f».:{'_l\/]-y\’ by ]
| e l 3 X=X Y=¥n, =2ZN
e Bi, >] Ny )
N 2m,V, R Sy (1055
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By numerical method, one may determine a set of solutions

of (65):

which satisfies the following conditions:

i 112 ;3|4
W ) | 1 19 00

W = (pytidy’ 0 1 0 0
Wy tl=p, 10 0 0 1 0
W, =T ) 0 0 0 1 (106)
The solutions of p,,p, may be expressed by
Pe(2)=paoW, 14y’ Wy B fpygw, (P
+Pag W, Y’
p.(z PagW Vgp,,/w +PagW 32
pay W d (107a,b)
where the prime denotes the derivatives to z, and
P:(Zg)=P2gs Pz’ (Zg)=p2y’,
P «(Z5 Diags  Dia’ (Zg)=Pan” «

It will be seen from (67) and (106) that a great
difference exists in the assumption of the initial condi
tions for solving the two kinds of curvilinear paraxial
trajectory equations

I, In the presznt paper, the author tries to develop

his previous work,  Based on the that the elec

vector B are

Cartesian

assumption

trostatic }mh-nliﬂ ¢ and magnetic field

known functions in the laboratory coordinate

system, we have deduced the principal trajectory equation

and the “paraxial” trajectory equations of systems with

wide electron beam focusing by given mathematical expre

ssions of fields along curved optical axis, we have also
derived the orthogonal condition of a curvilinear “para
xial” system with wide electron beam focusing, Some
practical examples of systems with wide' electron beam

focusing satisfying the orthogonal condition are also given

2, It has been found in the present paper that the

zero order equations of trajectory derived above are just

the same equations of principal trajectory deduced from

the fundamental equation of electron motion It seems

FOCUSING

diffe

that the principal trajectory is determined by two

rential equations, But in fact if we

S investigate the

focusing of wide electron beam from a given electrostatic

potential and magnetic field, only one of these two equa
tions is required for determining the principal trajec
tory, the other equation is automatically satisfied
3 For problems concerned with wide electron beam
Dl I
focusing, no matter whether it is a system with axial

symmelry or a curvilinear “paraxial” system satisfving

orthoconal condition, the |\rinvi[|.1J trajectory as well as

the curvilinear “I)Jlil\i‘l\" neighboring trajectories musl

take the same value for ez, which is the initial energy

of pllnu[ml trajectory along the tangential direction

Only under such a condition will the system have pro

yerties of point focusing or line focusing
I I g

{. This paper has given as a set of equations for sol

ving the principal trajectory and “paraxial” trajectories

with derivatives that are functions of laboratory Cartesian

coordinate z, so that the convenient

given equations are

for computation,

5. The result of this paper can be extended to solve

deflection systems with deflection angles larger than 45
and the equations obtained for solving the principal tra
jectory trajectories in the d¢

equation and paraxial

flection systems appear to be simpler and mere convenient

than l»xwdn cessors’ work
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