-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by DigitalCommons@USU

Environmental Research Communications

PAPER « OPEN ACCESS

: , : Recent citations
Pan-Arctic analysis of cultural ecosystem services ~—~  ~ "~ @ @ .

USing social media and automated content interactions of impacts from nature-based

recreation and climate chanage
analysis

Christopher A. Monz et al

To cite this article: Claire A Runge et al 2020 Environ. Res. Commun. 2 075001

View the article online for updates and enhancements.

This content was downloaded from IP address 129.123.126.6 on 02/11/2020 at 17:03


https://core.ac.uk/display/337894986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/2515-7620/ab9c33
http://dx.doi.org/10.1007/s13280-020-01403-y
http://dx.doi.org/10.1007/s13280-020-01403-y
http://dx.doi.org/10.1007/s13280-020-01403-y

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
25 February 2020

REVISED
18 May 2020

ACCEPTED FOR PUBLICATION
12 June 2020

PUBLISHED
2July 2020

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 4.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

Environ. Res. Commun. 2 (2020) 075001 https://doi.org/10.1088/2515-7620/ab9¢33

Environmental Research Communications

PAPER

Pan-Arctic analysis of cultural ecosystem services using social
media and automated content analysis

Claire A Runge' @, Vera H Hausner', Remi M Daigle” and Christopher A Monz’

! Arctic Sustainability Lab, Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromse, Norway
> Département de biologie, ‘Université Laval, Québec, Canada
*> Department of Environment and Society and the Ecology Center, Utah State University, Logan, UT, United States of America

E-mail: claire.runge@uqconnect.edu.au

Keywords: cultural ecosystem services, social media, Arctic, ecotourism, Flickr, passive crowdsourcing, artificial intelligence

Supplementary material for this article is available online

Abstract

In the Arctic, as in many parts of the world, interactions with the natural world are an important part of
people’s experience and are often recorded in photographs. Emerging methods for automated content
analysis of social media data offers opportunities to discover information on cultural ecosystem services
from photographs across large samples of people and countries. We analysed over 800 000 Flickr
photographs using Google’s Cloud Vision algorithm to identify the components of the natural
environment most photographed and to map how and where different people interact with nature across
eight Arctic countries. Almost all (91.1%) of users took one or more photographs of biotic nature, and such
photos account for over half (53.2%) of Arctic photos on Flickr. We find that although the vast majority of
Arctic human-nature interactions occur outside protected areas, people are slightly more likely to
photograph nature inside protected areas after accounting for the low accessibility of Arctic protected areas.
Wildlife photographers travel further from roads than people who take fewer photographs of wildlife, and
people venture much further from roads inside protected areas. A large diversity of nature was reflected in
the photographs, from mammals, birds, fish, fungi, plants and invertebrates, signalling an untapped
potential to connect and engage people in the appreciation and conservation of the natural world. Our
findings suggest that, despite limitations, automated content analysis can be a rapid and readily accessed
source of data on how and where people interact with nature, and a large-scale method for assessing
cultural ecosystem services across countries and cultures.

Introduction

Cultural ecosystem services, the non-material benefits that people derive from interacting with nature, are
recognised as important to people across a diversity of societies and cultures [1, 2]. Despite their value to a large
number of people, cultural ecosystem services remain challenging to quantify, differ among users, and can
change over time [3, 4]. As aresult, such benefits have often been neglected in assessments and decision-making
around management and use of natural areas [5].

Geotagged photographs are a useful source of information on the places visited by people and the relative
magnitude of visitation and, when combined with content analysis, can be a rapid and readily accessed source of
data on how people interact with nature (i.e., cultural ecosystem services, CES) across an otherwise unmapped
area [6, 7]. Social media has been used to examine human-nature interactions, but has mostly been done on a
small spatial scale, often limited to a single protected area. Recent developments in the use of automated image
recognition for content analysis of CES have opened the way for rapid assessment of large amounts of visual data
[7-10]. Known also as ‘automated content analysis’, this new technology combines advances in artificial
intelligence (i.e., ‘machine learning’) with visual data available from social media and opens up the possibility of
examining patterns of landscape use and nature-interactions across a diversity of people [11] and countries.

© 2020 The Author(s). Published by IOP Publishing Ltd
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These new sources of data allow new questions to be asked about human interactions with nature, such as how
culture and socioeconomic status influence the types of nature that people interact with and the types of places
they are likely to visit to do so.

In remote parts of the world, such as the Arctic, there are few assessments of cultural ecosystem services and
hardly any that examine how nature attracts the increasing number of visitors to this vast region [12].
Automated content analysis of geotagged photographs can fill some of these gaps by providing data on the
species and ecosystems that people appreciate through photographs shared on social media. In the Arctic,
general tourism and nature-based tourism have been synonymous historically [13, 14]. Visitors are attracted to
the pristine scenery and symbolic qualities of the natural attractions in the Arctic [15]. Recent increases in
tourism have been attributed to various factors including global climate change, which impels tourists to
experience Arctic environments, wildlife, and indigenous cultures before they are gone [16, 17]. Like many other
remote areas, the reasons for people visiting the Arctic are poorly mapped, and it is unclear to what extent CES
plays arole in attracting a growing number of visitors in the Arctic [12].

In this paper we examined a comprehensive suite of Flickr photographs from across the Arctic to uncover
what types of nature experiences are important to people inside and outside protected areas in eight countries.
Flickr is especially popular among those sharing nature photos [10, 18], and is therefore appropriate for
identifying appreciation of the unique ecosystems, wildlife and the scenic qualities of Arctic landscapes. We
separate between biotic and abiotic cultural services similar to the Common International Classification of
Ecosystem Services [19], with a particular emphasis on what Richards and Friess [20] call nature appreciation,
i.e. ‘photographs that primarily depicted animals or plants’ and which are also of high relevance to protected
areas management. We use an automated content analysis tool, Google’s Cloud Vision, to identify the objects
and concepts within a set of over 800 000 photographs from the Arctic. We identify the types of nature most
photographed and map hotspots of different categories of human-nature interactions across the Arctic
including abiotic and biotic nature. Finally, we examine whether people with high nature orientation (i.e. those
who take many photos of wildlife) interact with nature in different places compared to other visitors.

Methods

We extracted photos taken in the Arctic between 2004 and 2017 that were posted to Flickr and ran the photos
through an automated algorithm, Google’s Cloud Vision, to identify the contents. We then manually
categorised the component of the natural environment (ecosystem or geosystem service [3]) associated with
each automatically selected label. We examined the proportions of photographs depicting nature, the number of
Flickr users photographing nature, and the prevalence of the different components of the natural environment
depicted inside and outside protected areas.

Unless otherwise stated, all analysis was conducted in R version 3.4.2 [21] using the ‘tidyverse’ [22], ‘sf’ [23],
‘mgcv’ [24], and ‘raster’ [25] packages. All spatial data was projected to EPSG 102017 (North Pole Azimuthal
Lambert equal area) for analysis. The R code associated with the project is available at doi:10.18710/DUANRP.

Extraction of data from Flickr

We first extracted geotagged and publicly shared photo metadata for over 2 million photos from Flickr (www.
flickr.com) for the region north of latitude 60°N. Photo metadata included location and date that each photo was
taken, user id (key coded by Flickr), image URL, Flickr- and user- generated image tags, and user-generated
image title. Data was extracted from the Flickr API (https://www.flickr.com /services/api/) on 4 December
2017. Due to an issue with the data download we re-extracted photos for Iceland (bounded by —27° to —12°
longitude and 62° to 68° latitude) on 11 January 2018. We used the R package ‘flickRgeo’ [26] which provides an
Rwrapper for the Flickr API.

We define our study region, ‘Arctic’, as the region within the Arctic Council boundaries [27] north of latitude
60°N. We excluded photos from the extracted dataset that were taken outside this study region. We also
excluded photos that were missing urls or geotag coordinates, had null coordinates (0,0) and photos taken prior
to January 1 2004, or after December 31 2017. We excluded photos by users who have uploaded only 1 or 2
photos within the study region as they are likely to represent people who are just trialling Flickr by uploading a
random photo rather than a photo representing a genuine ecosystem service. These ‘test users’ account for
approximately 36% of users in the Flickr dataset but just 0.95% of photos (appendix S2). We further excluded
geotagged points where the photo image was unavailable at the time the content analysis was performed (this can
occur when users take down photos or make them private), leaving a total of 805 684 geotagged photos with
metadata from 13 596 unique users. We then identified the country each photo was taken in and whether or not
the photo was taken within a protected area using the geotagged coordinates. Protected area borders were drawn
from CAFF [28] and supplemented with data from Protected Planet [29].
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Content analysis of photos

We performed content analysis on all 805 684 photos for the Arctic with the Google Cloud Vision API (V1;
https://cloud.google.com /vision/) during April and May 2018. Google Cloud Vision uses machine learning to
detect broad sets of categories within an image. Google documentation states the Cloud Vision API can ‘identify
objects, locations, activities, animal species, products, and more’ (https://cloud.google.com /vision/docs/
labels), though no further information on the algorithm is publicly available. We extracted the url from the
metadata for each Flickr photo then passed this url to the Cloud Vision API Label Detection function with the R
package ‘RoogleVision’ [30]. The API returns a list of labels for each photo and a score associated with each.

The Google Cloud Vision algorithm assigned 6660 unique labels to the photos in our dataset. These included
descriptors of physical objects (e.g. ‘snow’, ‘tree’), activities (e.g. ‘hiking’, ‘dog sledding’) and concepts (e.g.
‘wilderness’, ‘calm’). We limited our analysis to any labels with score of 0.6 or higher up to a maximum of 20
labels for each photo (median number of labels per photo = 17).

Ecosystem service mapping
We manually categorised any label associated with 4 or more photos (5056 labels) as one of 2 broad cultural
services as distinguished by CICES v5.1. [19] (abiotic nature, biotic nature) or non- service (pet, non-nature).
We further categorised biotic cultural services associated with nature appreciation into sub-categories ‘wildlife’,
‘bird” or ‘plant’. The category assigned to each label and the frequency of each label is listed in appendix S1 which
is available online at stacks.iop.org/ERC/2 /075001 /mmedia. A photograph can represent multiple categories.
For example, a photograph of grazing reindeer might be categorised as both ‘abiotic’ (label = snow) and ‘biotic’
(label = herd). Photographs may represent additional ecosystem services not discussed in this manuscript (e.g.
recreation).

We generated spatial maps for each ecosystem service at 10 km resolution by summing across time, for each
10 km cell 4, the number of photo-unit-days (equation (1)) i.e. the number of unique Flickr users # that took at
least one photo in a cell i in a given day t, summed across all (5114) days.

t max

pudeyi = Y n users (1)

t1

Comparing Cloud Vision to manual content analysis

We performed manual content analysis on a random sample of photos to evaluate how well Google Cloud
Vision performs at identifying ecosystem services from photos. We examined approximately 300 randomly
selected photos from each of ten regions: Alaska, Canada, Iceland, Greenland, Norway, Sweden, Finland,
Svalbard, Russia, and marine areas. Content analysis validation was performed by four independent people, and
10% of the sample (315 photos) was allocated to all four coders to test intercoder reliability. 182 photos were no
longer available on Flickr at the time of validation and content analysis was performed on a total of 2645 unique
photos. Excluding unavailable photos, Person A coded 876 photos, Person B 1341 photos, Person C 865 photos,
and Person D 862 photos. Coders were instructed to classify the components of the photo according to types of
CES (two general categories, abiotic nature, biotic nature, and more specific wildlife, bird, plant) and whether
components not related to cultural services were present using the classification scheme in appendix S1. Photos
could be assigned multiple words where multiple components are present in the photograph. For instance, a
person standing in front of a waterfall would be classified as ‘abiotic nature’ (the waterfall) and ‘non-nature’ (the
person). Coders were instructed to classify humans as ‘non-nature’, and domestic animals as ‘pets’ not ‘wildlife’.
We calculated the iota coefficient for the interrater agreement across all ecosystem service groups and the four
manual coders, and the percent agreement and Fleiss’s kappa across the four manual coders for each ecosystem
service group individually. We calculated the percent agreement and Cohen’s kappa between the manual coding
and Cloud Vision treating all four manual coders as a single coder and examining each ecosystem service group
individually. Intercoder reliability was calculated using R package ‘irr’ [31].

Comparing nature photos inside and outside protected areas

Many protected areas in the Arctic are situated in remote or inaccessible areas. In order to determine whether
photographs of nature are more likely to be taken inside protected areas while accounting for this bias in
accessibility, we first divided the landscape into 10 km diameter hexagonal grid cells. We then calculated the
footprint in each cell in each year for a given season by allocating a cell a value of 1 if a photograph of biotic
nature had been taken within that season in that cell in a given year, and 0 if not. We excluded cells that fell within
the Russian Federation and marine areas due to sparse coverage of these regions by Flickr data. We modelled the
footprint inside and outside protected areas, controlling for accessibility. The models took the form of binomial
generalized additive models with logit link of footprint as a response variable. Model covariates included the
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country the photograph was taken in, whether any part of the cell overlapped a protected area, and five
accessibility metrics modelled as linear responses (log of distance to airports, log distance to ports, log distance to
populated areas, log distance to road, the square root of the length of road within a grid cell). In order to account
for spatial autocorrelation we included a fitted thin-plate spline on the variables latitude and longitude of the cell
centroid. Intercept, slope and confidence intervals were estimated by a restricted maximum likelihood (REML)
estimator and methods for large datasets (‘bam’ function in R’s mgcv package). We chose these accessibility
variables after examining candidate variables for correlation. The location of airports, ports and populated areas,
and country boundaries were extracted from Natural Earth (www.naturalearthdata.com) using the R package
‘rnaturalearth’ [32]. Roads were extracted from Global Roads Inventory Project [33]. As the presence of snow
and ice limits access to outdoor areas in winter, we ran one model for summer and one for winter. We defined
the months of May to October as ‘summer’ and November through April (of the following year) as ‘winter’ (e.g.
‘winter 2016’ includes the months November and December in 2016 and January through April in 2017). The
summer model had 91 482 cells with no photos, and 5822 with photos. The winter model had 94 560 cells with
no photos, and 2744 with photos.

Landscape use by wildlife photographers

We performed alinear mixed effects analysis of the relationship between landscape use and a user’s propensity to
take photos of wildlife. We included the importance of wildlife to each user (the square root of the proportion of
each user’s photos that were of wildlife, defined as non-domestic animal or bird) whether the photo represents
wildlife or not, and whether the photo was taken in or near (within 1km) a protected area or not as fixed effects.
We included user ID as a random intercept. The response variable was log of the distance from a road (in m) that
each photo was taken. We included in the model all the photos taken in the Arctic in summer (432 105 photos;
9545 users). P-values were obtained by likelihood ratio tests of the full model with the effect in question against
the model without the effect in question. Visual inspection of residual plots showed residuals were strongly
clustered at zero but evenly distributed either side of zero, with fat-tailed distribution on the Q—Q plot and some
heteroscedasticity was present (appendix S6), suggesting that a Gaussian log distribution may not be the best fit
to the data. However, given the large sample size and acceptable confidence intervals we find this model to be
appropriate for our purposes [34].

Results

Diversity of nature depicted

Almostall (91.1%) of users took one or more photograph of biotic nature (table 1). Over half of Arctic photos
(53.2%, 428 286 photos) depicted some form of biotic nature. Flickr may disproportionally attract people
interested in nature photography and it is likely that data from the platform is not representative of the full range
of photographs that might be taken by people [35, 36]. That bias is useful here as we are particularly interested in
examining human-nature interactions. Though vertebrates were present in only a small proportion of photos
(7.4% and 3.2% respectively), interactions with vertebrates show a disproportionate importance to Arctic users,
with 41.0% of people photographing wildlife and 23.1% photographing birds (table 1). Pets are also
photographed by many people. 13.5% of people took a photo of a domestic animal, predominantly dogs, though
these account for just 1.5% of the photos in the dataset (table 1). Photographs depict a wide variety of taxa,
ecosystem types, and abiotic features (figure 1, appendix S1).

Spatial distribution of nature photographs

The vast majority of nature photographs were taken on land, and in Iceland (figure 2). Norway and Alaska also
have large numbers of nature photographs. Most photographs of Arctic nature were taken outside protected
areas (figure 3). Across the Arctic, 21.9% of photos taken on land depicting biotic nature were taken inside
terrestrial protected areas and 20.9% taken on water were taken inside marine protected areas (figure 3(a)).
These proportions are higher than expected given the area held in protected areas (15.5% of Arctic land and
3.4% of marine areas).

Flickr users were more likely to photograph nature inside than outside protected areas areas in summer, but no
more or less likely to photograph nature inside than outside protected areas in winter after accounting for the
difference in accessibility of protected and unprotected areas. The protected area term of the summer model was
significant (coef 0.822, std error 0.045, z-value = 18.237,p < 2 x 10~ '°). The summer model explained 49.9% of
the deviance (R* 0.465, AIC 22134). Removing the protected area term increased the AIC and significantly reduced
the deviance explained (AAIC = 329, Adf = —0.957 68, Adeviance —329.41, Pr(>Chi) < 2 x 10 '°). The
winter model explained 54.9% of the deviance (adjusted R* = 0.451, AIC 11337). The protected area term of the
winter model was significant (p = 0.012 40) in the full model, but removing the protected area term did not
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Table 1. Summary of Arctic photographs. A photograph can represent multiple categories of ecosystem services. For example, a photograph of grazing reindeer might be categorised as both ‘abiotic’ (label = snow) and ‘biotic’
(label = herd). Number of users = 13 596; number of photos = 805 684, number oflabels = 12 061 189. Photographs may represent additional ecosystem services not presented here (e.g. recreation).

Ecosystem/service Number of Percent of Number of users Percent of users

represented photos depicting photos depicting photo-graphing photo-graphing Highest scoring labels (percent of all photos)” Most frequently used labels (percent of all photos)”

Non-nature 750 501 93.1 13538 99.6 sky (29.74), winter (12.77), vehicle (4.02), sunset (1.96), sky (55.76), cloud (24.93), winter (14.15), horizon (12.21),
wind wave (1.81), vacation (1.68), window (1.64), freezing (10.12), atmosphere (9.44), reflection (8.97),
sunlight (1.58), water transportation (1.45), urban phenomenon (7.54), morning (7.48), arctic (7.31).
area (1.07).

Abiotic nature 506 875 62.9 12512 92.0 water (18.29), snow (7.94), terrain (4.89), wave (3.68), water (31.31), mountain (27.87), highland (21.35), sea
water resources (3.53), waterfall (3.31), waterway (17.28), fell (15.63), hill (15.48), snow (14.05), loch
(2.74), rock (2.29), valley (1.63), soil (1.53). (12.99), rock (11.81), mountain range (11.57).

Biotic nature 428 286 53.2 12 384 91.1 tree (11.52), wilderness (11.15), wildlife (3.29), tundra tree (20.65), landscape (16.57), wilderness (12.27), grass
(3.22), wood (3.07), nature (2.89), landscape (2.35), (12.11), nature (8.89), tundra (8.26), plant (7.63), ecor-
woody plant (1.57), rural area (1.34), vegetation (1.2). egion (6.59), rural area (6.51), grassland (6.14).

Wildlife 59 285 7.36 5577 41.0 wildlife (3.77), organism (0.78), snout (0.76), fauna fauna (4.27), wildlife (3.81), organism (1.57), snout (1.37),
(0.69), vertebrate (0.56), mammal (0.19), herd (0.14), mammal (1.23), vertebrate (0.58), terrestrial animal
whales dolphins and porpoises (0.1), terrestrial animal (0.53), marine mammal (0.47), deer (0.36), herd (0.32).
(0.07), marine mammal (0.06).

Bird 26010 3.23 3143 23.1 wing (0.59), waterfowl (0.51), water bird (0.51), seabird bird (2.8), beak (2.29), seabird (1.18), water bird (1.1),
(0.5), bird (0.31), shorebird (0.19), eagle (0.07), spar- charadriiformes (0.68), ducks geese and swans (0.64),
row (0.06), perching bird (0.05), wren (0.04). wing (0.6), duck (0.6), shorebird (0.54), water-

fowl (0.53).
Domestic animal 11736 1.46 1829 13.5 doglike mammal (0.57), Siberian husky (0.17), small to dog like mammal (1.18), dog (1.04), dog breed group

medium sized cats (0.15), wolfdog (0.08), street dog
(0.06), puppy (0.06), retriever (0.04), tabby cat (0.03),
Greenland dog (0.02), dog breed group (0.02).

(0.64), dog breed (0.63), Siberian husky (0.25), cat like
mammal (0.19), Greenland dog (0.19), small to med-

ium sized cats (0.19), cat (0.19), seppala Siberian sled-
dog (0.13).

* For each photo, we first selected the label that was assigned the highest score by Cloud Vision of the labels associated with that ecosystem service (if any). We then summed the frequency of those labels across all photos. Only the 10 most

frequent of those labels are presented here. A full list can be found in appendix S1.

° The number of times each label occurs, across all photos, counting any instance a label is associated with a photograph. Only the 10 most frequent labels are presented here. A full list can be found in appendix S1.
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Figure 1. Labels that were assigned to Flickr photographs in the Arctic by Google’s Cloud Vision algorithm and found to represent
(a) biotic ecosystem services, (b) abiotic ecosystem services. The number of photos that were labelled with each word is indicated by its
relative size. A wide variety of taxa, ecosystems, and abiotic land formations have been photographed.

change the deviance explained (AAIC5, Adf = —0.994 56, Adeviance = —10.706, Pr(>Chi) = 0.019 93). Visual
examination of model residuals did not reveal any residual spatial autocorrelation in any of the models. Model
coefficients, plots of model residuals and partial plots of variables are included in appendix S3.

Validation of content analysis
Intercoder reliability between manual coders was acceptable (appendix S4; photos = 315, coders = 4,
variables = 7,iota = 0.612). Percentage agreement was high for most ecosystem service categories, though
coders differed widely in their classification of photos as containing plants (ranging from 2%—51% of photos in
the validation dataset). Person A reported they classified a photo as containing plant only where the plant was the
focus of the photo. At the other extreme, Person D reported they classified a photo as containing a plant anytime
avegetation component was visible, including bare winter branches or snow-covered trees, distant forests and
vegetation traces on mountains. This highlights the difficulties of validating a ‘black box’ machine learning
algorithm. When the plant category was removed, intercoder reliability increased (variables = 6,iota = 0.709).
Intercoder reliability between manual coding and the Cloud Vision coding of ecosystem services was good,
with percent agreement ranging from 69.9% to 98.7% (appendix S4; iota = 0.511, subjects = 3944,
coders = 2, variables = 6, excluding non-nature). Manual coders reported substantially lower proportions of
non-nature components than the Cloud Vision algorithm. The reason for this is unclear, but may be an artefact
of the wide variety of labels assigned to photos by the Cloud Vision algorithm. For instance, a photo of a seabird
with an ocean background (appendix S5) was labelled by Cloud Vision with words that we classified as non-
ecosystem service related—(black and white, monochrome photography, monochrome) in addition to the
words indicating ecosystem services (bird, seabird, fauna, wave, water). Cloud Vision coded a lower proportion
of photos as containing biotic nature components than did the manual coders, which may reflect the difficulty of
the algorithm in detecting distant biota or biotic traces (see appendix S5). Cloud Vision also reported higher
proportions of plants in photos than the manual coders (36.0% versus 22.5%) though this difference is likely in
part areflection of the wide variability in the ways plants were coded.

Landscape use by wildlife photographers

Users took photographs further from roads inside protected areas (figure 4), and users who took a higher
proportion of wildlife photographs travelled further from roads. Photographs representing wildlife were taken
slightly further from roads than those that didn’t depict wildlife.

The full model (log likelihood —905 032) was significantly more likely than those without terms for
importance of wildlife to each user (loglikelihood —905 045, Chi-sq 27.443, df = 1, Pr(>Chisq) = 1.618 x 1077)
and whether photo was taken inside a protected area (log likelihood —913 847, Chi-sq 17 630, df = 1,

Pr(>Chisq) < 2.2 x 10'®). The full model was also significantly more likely than an intercept-only model (log
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Figure 2. Spatial locations where people photograph biotic nature across the Arctic. In Alaska and Yukon (a) interactions with nature
are strongly mediated by road access as they are in (b) Iceland, where most photos are taken a day’s drive from the international airport
and along scenic coastal routes (c). In Northern Scandinavia, the popular tourist destinations of Lofoten Islands, Tromsg, and North
Cape (the most northerly point in mainland Europe) hold highly photographed components of nature.

likelihood —913 871, Chi-sq 17 679, df = 3, Pr(>Chisq) < 2.2 x 10'®). The full model was marginally
significantly more likely than the model without the term whether a photo represented wildlife (log likelihood
—905 035, Chi-sq 6.0485, df = 1, Pr(>Chisq) = 0.013 92). Figure 4 shows the marginal effects of the full model.
Model diagnostics are included in appendix S6.

Discussion

The attraction of Arctic nature as an untamed and wild frontier region has a long history, but the high
appreciation of nature and the unique wildlife of these cold climates are increasingly actualised by last chance
tourism to experience the rapidly disappearing species and ecosystems before they are gone [16, 37]. The
opportunity to view and interact with wildlife is a primary motivation for Arctic tourists with 53% of tourists
saying it was the main reason for visiting Svalbard [38]. We found over 40% of people took a photo of wildlife,
although such photos make up only 7% of all photos (table 1). Many Arctic visitors have expressed
disappointment that they did not see more wildlife [39]. This disparity between the desire to interact with
wildlife and the opportunity to do so suggests an untapped market for ecotourism. Nature documentaries may
contribute to unrealistic expectations that Arctic wildlife is plentiful and easy to see [40]. In many parts of the
Arctic wildlife are now elusive and rare. Though this is in part an inherent quality of Arctic ecosystems, wildlife
rarity has been exacerbated by historical over-exploitation and the rapidly emerging impacts of climate change
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areas are important sites for nature interactions in Iceland and Svalbard. (c) Proportion (%) of photographs representing each ES that
were taken within a protected area. Grey horizontal lines indicate the proportion of each region that is protected. In most of the Arctic,
protected areas are less photographed than would be expected given the proportion of land they cover. In all three plots bars for each
country represent terrestrial areas only. Marine areas and marine protected areas are represented by the bar labelled ‘Arctic Marine’.
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Figure 4. Marginal effects of user characteristics and protected areas on distance from a road at which a photograph is taken.
Importance of wildlife to user is measured as the proportion of each user’s photos that are of non-domestic wildlife or birds.

[41]. Theloss of Arctic biodiversity, both common and iconic, is thus of concern not just to conservationists and
Arctic people that rely on the ecosystem services they provide [42], but to people across the world.

Almost all users took one or more photographs of biotic nature and that over half of Arctic photos depicted
some form of biotic nature, confirming the importance of cultural ecosystem services to Arctic people and
visitors. Rates of nature photography vary around the world, with typically 50%—60% of users photographing
nature, and 10%—20% of photographs represent an animal or plant. Case studies in the Pyrenees in Spain found
62% of tourists took a nature photo [43], and a study in Singapore found 20% of photos were of nature (animal
or plant) [9] whereas 50.3% of visitors to Mulde Basin in Germany took pictures of nature [8]. Our results are
similar to Retka et al [44] which found 47.4% appreciating landscapes in a marine protected area in Brazil, while
11.9% took pictures of plants and animals.

Our results indicate that areas outside protected areas are important sites for contact with nature, with
almost 80% of nature photographs taken outside Arctic protected areas. These places provide opportunities for
nature connection, cultural ecosystem service provision [6] and ecotourism [45], both organised and
opportunistic [46—48]. Places outside protected areas tend to be closer to where people live, and provide more
regular and more equitable opportunities for people to interact with and experience nature [49]. Accessibility,
whether by road, sea or air, is an important determinant of where people, including tourists, go, and of protected
area use [50]. Many Arctic protected areas are sited in locations that are difficult to get to, particularly in winter.
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For instance, Greenland is home to the world’s largest terrestrial protected area, Kalaallit Nunaanni nuna
eqqissisimatitaq (Northeast Greenland National Park; [TUCN Cat IT) which covers over a quarter of the landmass
of Greenland. Sea ice and lack of roads or nearby airports severely restricts access to this region, and it is rarely
visited by tourists. After controlling for the inaccessibility of protected areas, we find that Flickr users are slightly
more likely to photograph nature inside than outside protected areas. Moreover, our models show that CES
drive patterns of land use, as wildlife photographers are slightly more likely to travel further into wilderness
areas, especially in protected areas (figure 4).

Social media data can provide both broad scale (regional, global) and local scale (park and protected area)
patterns of cultural ecosystem services and can therefore be an important tool for managing the increasing
number of visitors to the Arctic. Our results also allow for more fine-scale identification of areas where the
footprint on Arctic ecosystems and biodiversity are greatest, what types of nature different people are interacting
with, and indicate target groups and sites where management might be needed. To aid decision-making we have
made the datasets freely available for download at doi:10.18710/DUANRP. Additional CES such as recreation,
hunting, gathering and social were able to be identified from the photographs by the method we used, and are
included in the datasets we have made available. The maps we have made available allow hotspots of different
types of CES activity to be identified.

Limitations of social media data and automated content analysis for cultural ecosystem service mapping
Flickr data is limited in arctic areas of the Russian Federation and it is likely that our dataset substantially
underestimates cultural ecosystem services in this region. Large numbers of tourists, mostly domestic, visit the
Russian Arctic and nature is as an important a part of tourism in Russia as elsewhere [51].

Our qualitative tests of Cloud Vision in early 2018 indicated that while the algorithm can accurately detect
many images of human activities, ecosystems, species and taxa, it often fails to detect or misidentifies wildlife
that s distant, against a complex background, and wildlife traces such as animal tracks or breaching or breathing
whales (appendix S5). Where identification of wildlife to the species level using passively sourced photographs is
the goal, it may be more may be more appropriate to develop and train bespoke image classification algorithms
using machine learning [52, 53].

Public research access to large datasets of photographs is currently in a state of flux. Following the
consolidation of the main social media platforms for geotagged photographs, Flickr is now one of the few
sources of free and publicly available geotagged visual data [10]. Flickr changed ownership in 2018 but as of early
2019 data was still accessible through the APIs. However, users are now limited to uploads of 1000 photos on a
free account (previously unlimited), which may change the types of photos that users upload and frequency at
which they refresh images. In the year between content analysis and manual validation 6.4% of photos in our
dataset became unavailable for public viewing. It is unclear whether this is due to users leaving the service,
replacing photos on their account with newer photos, or removing public access to their photographs. These
dynamics present challenges for the ethical use, analysis, bias correction, interpretation (particularly of trends
across time), and archiving of social media data [10, 54].

Conclusion

The recent development of readily accessible and cost-effective Al, combined with the availability of social
media data sets, opens exciting opportunities for the analysis and quantification of cultural ecosystems services
across large areas and large number of people [8, 9]. Despite the limitations challenging the use of social media
data in remote areas, our approach and similar methodologies can undoubtedly support the ongoing efforts to
understand cultural ecosystem services and to integrate this knowledge into governance decision-making and
environmental accounting [55]. Our analyses do not represent a full assessment of cultural ecosystem services in
the Arctic, as we chose to focus more specifically on nature appreciation, but they do emphasize the importance
of nature experiences to many. Flickr is popular among those sharing nature photographs, and is perhaps less
relevant for what Richards and Tunger [9] refer to as social recreation, and for identifying activities such as
trekking, fishing and hunting. Further research should combine different social media to assess a broader set of
cultural services relating to both biotic and abiotic nature.
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