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RESEARCH ARTICLE Open Access

Wild primate microbiomes prevent weight
gain in germ-free mice
Dimitrios N. Sidiropoulos1,2, Gabriel A. Al-Ghalith1,3, Robin R. Shields-Cutler1,4, Tonya L. Ward1, Abigail J. Johnson1,
Pajau Vangay1,3, Dan Knights1,3,5,6, Purna C. Kashyap7, Yibo Xian8, Amanda E. Ramer-Tait8 and
Jonathan B. Clayton1,5,6,9*

Abstract

Background: The gut microbiome harbors trillions of bacteria that play a major role in dietary nutrient extraction
and host metabolism. Metabolic diseases such as obesity and diabetes are associated with shifts in microbiome
composition and have been on the rise in Westernized or highly industrialized countries. At the same time,
Westernized diets low in dietary fiber have been shown to cause loss of gut microbial diversity. However, the link
between microbiome composition, loss of dietary fiber, and obesity has not been well defined.

Results: To study the interactions between gut microbiota, dietary fiber, and weight gain, we transplanted captive
and wild douc gut microbiota into germ-free mice and then exposed them to either a high- or low-fiber diet. The
group receiving captive douc microbiota gained significantly more weight, regardless of diet, while mice receiving
a high-fiber diet and wild douc microbiota remained lean. In the presence of a low-fiber diet, the wild douc
microbiota partially prevented weight gain. Using 16S rRNA gene amplicon sequencing we identified key bacterial
taxa in each group, specifically a high relative abundance of Bacteroides and Akkermansia in captive douc FMT mice
and a higher relative abundance of Lactobacillus and Clostridium in the wild douc FMT mice.

Conclusions: In the context of our germ-free mouse experiment, wild douc microbiota could serve as a reservoir
for microbes for cross-species transplants. Our results suggest that wild douc microbiota are tailored to diverse fiber
diets and can prevent weight gain when exposed to a native diet.

Keywords: Microbiome, Nonhuman primate, Red-shanked douc, Dysbiosis, Westernization, Fecal microbiota
transplantation, Obesity, Germ-free mice

Background
The human gut microbiome has been linked to numer-
ous diseases, including obesity, diabetes, autoimmune
diseases, nonalcoholic fatty liver disease, and colorectal
cancer [1, 2]. Gut microbiomes that experience a loss of
overall bacterial diversity, increased relative abundance
of non-symbiotic bacteria, and loss of beneficial mi-
crobes are described as dysbiotic [3]. Due to the integral

role the gut microbiome has in the maintenance of
health, it is important to identify which bacterial taxa
are beneficial, which are contribute to the development
of disorders, and how the environment can either pro-
tect the microbiome from or drive the microbiome to a
dysbiotic state. The contributions of genetics and envir-
onmental factors, such as diet or antibiotics, have been
studied extensively in humans [4, 5]. The Western life-
style, for example, tends to include a low-fiber diet and
has been linked to obesity, loss of bacterial taxa, and in-
creased relative abundance of phylum Bacteroidetes, ver-
sus a high-fiber diet and increased relative abundance of
Firmicutes in non-Western parts of the world [6–8].

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: clayt092@umn.edu
1Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint
Paul, MN 55108, USA
5Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE
68588, USA
Full list of author information is available at the end of the article

Animal MicrobiomeSidiropoulos et al. Animal Microbiome            (2020) 2:16 
https://doi.org/10.1186/s42523-020-00033-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s42523-020-00033-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:clayt092@umn.edu


Wild and captive nonhuman primates (NHPs) provide
a unique model to study the relationship between fiber
intake and microbiota-associated disorders. Specifically,
the red-shanked douc (Pygathrix nemaeus; hereafter,
douc) are well suited to study these relationships due to
their unusually high-fiber diets [9]. Doucs are likely able
to metabolize less nutrient-dense diets, largely made up
of mature and immature plant parts, due to the cellulo-
lytic microorganisms that colonize the compartments of
their GI tract [9, 10]. The microbial populations that in-
habit the douc foregut perform digestive processes such
as the fermentation of polysaccharides and subsequent
production of short-chain fatty acids [9, 11–13]. Captive
doucs consume different diets than their wild counter-
parts [12, 14, 15]. Captive diets lack foods from native,
tropical habitats, and instead include nutritional supple-
ments, and commercial primate chow [16]. These
captive-primate diets are low-fiber diets, and therefore
are not nutritionally comparable to wild diets.
Our previous work showed that NHPs in captivity

have gut microbiomes more similar to Western humans
than their wild counterparts [17]. In this study, we col-
lected fecal samples from wild and captive doucs and
used Fecal Microbiota Transplantation (FMT) to transfer
douc gut microbiomes into germ-free mice. We refer to
the Wild and Captive douc donor pooled stools used for
FMT as Wild Donors (WD) and Captive Donors (CD),
respectively. Following transplantation, we exposed the
mice to either a high- or low-fiber diet. The study in-
cluded a total of four experimental groups based on the
FMT donor and diet: Captive High (CH), Captive Low
(CL), Wild High (WH), and Wild Low (WL). Based on
known information about wild and captive douc diet
composition, we exposed the microbiomes of WH and
CL groups to their native diets (high-fiber and low-fiber,
respectively), while challenging the microbiomes of WL
and CH groups through exposure to non-native diets
(low-fiber and high-fiber, respectively). We hypothesized
that the WH microbiome would interact favorably with
the high-fiber diet, allowing for the expansion of benefi-
cial microbes, while the CL microbiome would interact
unfavorably with the low-fiber diet, resulting in the ex-
pansion of microbes associated with a Westernized life-
style and possibly obesity.
To study the interaction of microbiota and diet, we

monitored the health-associated parameters of weight
gain and systemic inflammation. For microbial commu-
nity structure profiling, we performed 16S rRNA gene
amplicon sequencing on fecal samples from 32 germ-
free mice over a study period of 50 days. The study de-
sign allowed us to test for causal relationships between
wild or captive microbes and weight gain including pos-
sible interactions with diet. Our primary aim was to test
whether the gut microbiomes of four wild doucs and

two captive doucs shaped by long-term high- and low-
fiber diets respectively were either maintained or per-
turbed when transplanted into germ-free mice exposed
to either a high- or low-fiber diet. At the end of the
study, we identified key differentially relatively abundant
bacterial taxa and physiological responses in these mice
resulting from the bacterial colonization post-FMT and
diet exposure and observed a strong weight gain pheno-
type in the mice receiving transplants of captive douc
microbiomes.

Results
We were able to transplant a portion of gut microbiota
from frozen fecal samples collected from wild and captive
NHPs into germ-free mice via a single dosage oral gavage
(Fig. 1). We found that mice with wild microbiota exposed
to the high-fiber diet did not gain a significant amount of
weight by the end of the study compared to their weight
before FMT (Fig. 2). Mice with captive microbiota ex-
posed to the low-fiber diet gained the most weight
throughout the study. Two-way ANOVA of diets and
FMT sources indicated that FMT source is a more signifi-
cant factor for weight gain using weight change, absolute
weight at sacrifice and normalized weight difference as
metrics (FMT Source: p = 1.62e-05, p = 0.00962, p = 1.31e-
05 respectively; Diet: p = 0.0159, p = 0.16173, p = 0.00853
respectively). The Shannon index for alpha diversity
showed that evenness increased during the experiment in
each group except for Wild High, which maintained its
evenness throughout the experiment (Sup. Fig. 1).
We saw significantly higher alpha diversity with either

richness or evenness metrics (p = 2.48e-14, ANOVA,
FDR adjusted) as well as observed OTU counts (p =
2.69e-08, ANOVA, FDR adjusted) and total bacterial
species recovered in mice on a low-fiber diet, groups
WL and CL, than those on a high-fiber, groups CH and
CL (Sup. Figs. 3 & 4, Sup Table 2). Bray-Curtis non-
phylogenetic beta diversity per treatment showed that
samples from each treatment group clustered distinctly
(Adonis test R2 = 0.24673, p < 0.001) with the majority of
the difference explained by the microbial community ad-
ministered (R2 = 0.18365) rather than diet (R2 =
0.03597). Unweighted UniFrac beta diversity including
fecal samples from US individuals in the global gut study
by Yatsunenko et al. [8] showed that the captive FMT
mice had microbiomes significantly closer to US popula-
tions (Adonis test R2 = 0.15861, p < 0.001, Fig. 3). The
Captive Donors clustered with the Captive FMT, how-
ever the Wild Donors did not cluster with the Wild
FMT. Both FMTs were equally similar to their respective
treatment groups, although the treatment groups did not
cluster with neither the donors nor the FMTs.
16S rRNA gene amplicon sequencing revealed signifi-

cant differences in bacterial compositions between the

Sidiropoulos et al. Animal Microbiome            (2020) 2:16 Page 2 of 11



four groups (Fig. 4). Mice receiving the captive donor
pool had a higher relative abundance of phylum Bacter-
oidetes. Mice receiving the wild donor pool had a high
relative abundance of phylum Firmicutes yielding a sig-
nificantly higher Firmicutes:Bacteroidetes ratio than the
captive donor pool (p < 0.0001, Wilcox, Fig. 5). Analyses
of differentiated taxa using a Kruskal-Wallis permutation
test with False Discovery Rate (FDR) correction for mul-
tiple hypothesis testing revealed distinctly relatively
abundant bacterial genera in each group (Table 1). Wild
High group had significantly higher Coprococcus, Clos-
tridium, SMB53, Bacillus and Actinotalea (Table 2).
Wild Low group had significantly higher relative abun-
dance of Caloramator and Paenibacillus. Captive High
group had significantly higher Akkermansia and Turici-
bacter. Captive Low had higher Bacteroides, Desulfovi-
brio and Roseburia. Enterococcus and Lactococcus were
highest in high-fiber diet groups, in both Captive and
Wild FMTs (Table 1).

We compared the taxonomic profiles of fecal samples
from each treatment group between 1 week and 6 weeks
post-FMT to determine significant differences within
each treatment group over time using two-way ANOVA
and False Discovery Rate. The WH group had no genera
either increasing or decreasing between weeks 1 and 6
of the study post-FMT (summary Table 3). The WL
group had an increase of Coprococcus (p = 0.003) but a
decrease in Enterococcus (p = 0.004), Epulopiscium (p =
0.008), Lactococcus (p = 0.007), Clostridium (p = 0.001,
FDR adjusted) and Paenibacillus (p = 0.016). The CH
group had increased Turicibacter (p = 3.48e-07) but de-
creased Coprococcus (p = 0.004). Finally, the CL group
had increased Desulfovibrio (p = 0.002) and decreased
Pseudoramibacter Eubacterium (p = 0.0002). In addition
to microbiome analysis, we quantified concentrations of
an array of cytokines using blood serum collected at
time of sacrifice from all four treatment groups. In a
multiplexed quantitative ELISA assay, mice in the WH

Fig. 1 Overview of experimental design (a), experimental setup (b), and microbiota transfer efficacy (c). Germ-free mice were gavaged with either
a donor pool FMT from wild (indicated in blue) or captive (indicated in red) doucs and fed a high- or low-fiber diet. Each pair of square boxes
indicates a single isolator with four male and four female germ-free mice for a total of four isolators. Reported in (c) are total species and
overlapping species recovered from fecal samples collected on day 49 prior to sacrifice, as well as from the Wild and Captive FMT donor pools.
Abbreviations: Captive High (CH), Captive Low (CL), Wild High (WH), Wild Low (WL), Wild FMT Donor pool (WD), Captive FMT Donor pool (CD).
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treatment group had significantly higher levels of circu-
lating cytokines in blood serum compared to the CH
treatment group - specifically IL-9, IL-12(P40), IL-13,
MCP-1, MIP-1B, MKC and RANTES (Sup. Fig. 4). Mice
in CL had significantly higher IL1A levels than WL. Both
CH and CL had significantly lower IL-12(P40) levels
than WH and WL, respectively. TNF-α in WH was sig-
nificantly higher than WL and CH but not CL. The cyto-
kines higher in WH comprise a mixture of those
positively and negatively associated with inflammation,
suggesting that the causal link between captive douc
microbiomes and weight gain was not mediated primar-
ily by inflammation.

Discussion
Our experiment revealed that it is possible to partially
transfer microbiota from doucs into germ-free mice
using a single dosage of a fecal donor pool derived from
frozen fecal samples, and that wild douc microbes par-
tially prevent germ-free mice from gaining weight. In
contrast, the captive douc microbiome, which more
commonly contains microbes associated with modern
humans, caused notable weight gain increase. The gut
microbiome of humans living a Westernized lifestyle has
been linked to metabolic disorders, including diabetes
and obesity. A previous study by Clayton et al. [17]
showed that NHPs in captivity have humanized gut

microbiomes. Captive doucs lose native microbiota and
are colonized by non-native, Western microbiota. Wild
doucs are exposed to a diet that contains a diverse fiber
content and thus we hypothesized that their microbiota
would be challenged by a low-fiber diet. Indeed, the wild
microbiota seem to have interacted with the high-fiber
diet which resulted in a lean phenotype, whereas an
intermediate phenotype resulted when the wild micro-
biota were exposed to a low-fiber diet. Captive NHPs, as
was the case with one of our donors, also tend to be
overweight [18, 19]. Our results showed that the weight
gain phenotype transferred from captive doucs to mice
via the colonization of certain key bacterial taxa in the
gut. It is not clear whether the administration of wild
microbiota in combination with a high-fiber diet might
have also prevented normal weight gain since we were
not able to measure weights of mice of identical age ex-
posed to the same diets but not to the FMT. Regardless
of exposure to a high or low- fiber diet, mice that re-
ceived the Captive FMT gained weight, indicating that
when weight-influencing bacteria were present in the
gut, a high-fiber diet did not have an apparent effect on
the phenotype.
A portion of the microbiota in the pooled donor FMTs

did not engraft in the treatment groups (Supp. Table 1).
This happened possibly because donor samples were fro-
zen, and some bacteria could not survive passage

Fig. 2 Weight gain in mice from the beginning of the study to sacrifice. Captive donor mice on either diet showed significantly greater weight gain than mice
receiving the wild donor microbiota (t-test for group comparisons, two-way ANOVA for diets vs. FMT sources, * p < 0.05; ** p < 0.01; *** p< 0.001).
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through the gastrointestinal tract, or they were not able
to colonize due to key wild host and environmental fac-
tors that were absent in this study. It is interesting to
note that fewer bacterial species were engrafted from the
Wild FMT (WD), than the Captive FMT (CD) (see
microbiota transfer efficacy in Supp. Table 2). In
addition, when looking at the beta-diversity clustering of
donors with FMTs, it is apparent that the Wild Donors
did not cluster with the Wild FMT, instead the Wild
FMT lies in between the Wild Donors and Wild treat-
ment groups. Captive Donors, on the other hand did
cluster with the Captive FMT (Fig. 5). It is likely that
some of the microbiota in the Wild Donors are more
sensitive and less robust for transplantation or were
weakened after the process of freeze-thawing and FMT
gavage preparation.
A number of studies have shown a link between in-

creased alpha diversity when consuming a high-fiber diet
[20]. In this study, we found that alpha diversity, total
bacterial species discovered and observed OTUs were
higher in mice exposed to the low-fiber diet, and it was
equivalent between FMT groups, which does not corres-
pond to previous findings with human microbiota [21].
This might be partly because the low-fiber diet has a

simpler formula composed mostly of sucrose, corn-
starch, cellulose, casein and corn-oil. It is possible that
this formula of more universal nutritional sources in the
context of our experiment and tested microbiota could
sustain a greater spectrum of douc microbiota. We also
acknowledge the limitations of de novo and open refer-
ence methods for picking OTUs. While our goal was to
capture the full diversity of the native communities, it is
possible that despite filtering for spurious hits these
methods may result in inflated observed OTU counts.
An increasing Shannon index for alpha diversity over

time indicates that evenness increased during the study
for the non-lean groups WL, CH, and CL. It was also
found that in these groups there were key bacterial gen-
era that either significantly increased or decreased dur-
ing the course of the study. The WH group, however,
had a steady evenness throughout the experiment, as
well as no significant changes in key bacterial genera,
suggesting that a more stable microbiome, in addition to
presence of key diverse fiber-interacting microbes, con-
tributed to a lean phenotype. Particularly interesting was
the decrease of Clostridium in WL, which was signifi-
cantly higher in WH than any other group (p = 1.06E-
05), indicating there may be some unknown beneficial

Fig. 3 Unweighted UNIFRAC beta diversity per treatment group, individual NHP donors, NHP donor pool used for the FMT, and USA humans.
FMT here indicates the pooled fecal samples used to make the single-dose FMT gavage, whereas donors indicate the individual fecal samples
used to create the pooled dose. Fecal pellet samples cluster by treatment group. Adonis permutation test showed statistically significant
clustering by treatment group (R2 = 0.24673, p < 0.001) with the majority of the difference explained by the FMT administered (R2 = 0.18365) rather
than diet (R2 = 0.03597). USA human indicates unweighted UNIFRAC beta diversity of fecal samples from USA individuals from the Global Gut
study and fecal samples from this study. The captive groups cluster closer with USA individuals than wild groups (Adonis test R2 = 0.15861, p <
0.001). A straight line was added to highlight the difference in clustering between wild and captive samples.
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Clostridium strains that colonize and interact favorably
with a high-fiber diet but decrease over time when ex-
posed to a low-fiber diet.
Beta diversity analysis showed that samples from each

group clustered together indicating that there are

bacterial taxa that drive distinctions between treatment
groups. Kruskal-Wallis permutation test revealed certain
genera that were higher in each group (Table 1). Specif-
ically, we found a higher relative abundance of Bacter-
oides in Captive FMT, which is one of the most

Fig. 4 Relative abundance of the top 15 genera in fecal samples immediately before sacrifice. CD and WD bars represent the donor FMTs. All
other bars represent 8 mice per group: Captive High (CH), Captive Low (CL), Wild High (WH) and Wild Low (WL). Each color represents a genus in
proportion to its relative abundance in each group. We did not find differences between earlier timepoints and the final timepoint with regards
to the genera presented here, thus we are showing genera in samples immediately before sacrifice to avoid redundancy.

Fig. 5 Firmicutes:Bacteroidetes ratio in fecal samples upon sacrifice (left). Wild High and Wild Low groups have a high relative abundance of
Firmicutes and no Bacteroidetes. WH and WL thus had a significantly higher F:B ratio than CH and CL (p < 0.0001, Wilcox). Akkermansia:Clostridium
ratio (right). Captive High and Captive Low groups have a high relative abundance of Akkermansia and little Clostridium. CH and CL groups thus had a
significantly higher A:C ratio than WH and WL (p < 0.0001, Wilcox).
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common genera in the Western microbiome, and no
traces of Bacteroides in Wild FMT. The Wild FMT
groups primarily carried Firmicutes, suggesting that in-
creased relative abundance of Firmicutes genera with the
absence of Bacteroides might have contributed to a
healthier state. Captive FMT also had a high relative

abundance of Akkermansia muciniphila (~ 20%), a
mucin-degrading bacterium capable of subsisting on the
intestinal mucus layer. A previous study used Akkerman-
sia muciniphila as treatment to reverse high-fat diet-
induced weight gain and metabolic disorders [22]. In
their study, a high relative abundance of Akkermansia
muciniphila inversely correlated with body weight in
humans and mice, which does not correspond with our
findings, suggesting that the effects of this strain might
be more nuanced when combined with NHP microbiota.
In our study, weight gain was primarily influenced by

the FMT and not the diet as indicated by both Bray-
Curtis non-phylogenetic beta diversity and two-way
ANOVA on weight data. Interestingly, both wild and
captive FMT donor pools had a similar relative abun-
dance of Akkermansia muciniphila. However, it only
colonized in Captive FMT mice and became extinct in
the Wild FMT mice. Previous work has shown that
Akkermansia muciniphila relative abundance is inversely
correlated with Clostridium difficile relative abundance
[23]. Interestingly, the Akkermansia:Clostridium ratio
was significantly higher in Captive FMT treatment
groups, and low in Wild FMT treatment groups (p <
0.001 Wilcox, Fig. 5). However, an equal intermediate
ratio was observed in both Donor FMTs. This might
suggest the reason why Akkermansia did not colonize in
Wild FMT mice is partly due to the presence of Clos-
tridium, which was in significantly lower abundance in
the Captive FMT groups (Kruskal Wallis p = 1.05E-25
FDR adjusted). Further exploration is required to thor-
oughly understand this relationship and the extent of its
impact on host health.

Conclusions
Our study demonstrates that captive douc microbiomes
cause weight gain under high-fiber and low-fiber diets in
germ-free mice. Wild douc microbiomes moderated this
weight gain phenotype on a low-fiber diet and caused no
weight gain when combined with a high-fiber diet. This
suggests that bacteria such as Coprococcus, SMB53 and
Bacillus, Actinotalea, and Clostridium that were signifi-
cantly more relatively abundant in the Wild-High group
might have an effect in preventing weight gain in com-
bination with a high-fiber diet. These results also show
that the captive douc microbiome, a more similar micro-
biome to the modern human gut microbiome, can cause
weight gain regardless of dietary fiber content, while the
wild douc microbiome can partially prevent mice from
gaining weight when exposed to a low-fiber diet. These
findings confirm that microbiome transplant alone is
sufficient to prevent or cause weight gain, and further
that there is a microbiome-dependent effect on the
weight fluctuating nature of certain diets, supporting a
clinical role for manipulation of the microbiota.

Table 1 Differentially relatively abundant genera discovered
using Kruskal-Wallis test and False Discovery Rate correction.

Covariate Genus Distinctly Abundant p-value

DIET Enterococcus High-fiber 2.57E-13

Lactococcus High-fiber 3.17E-19

FMT Lactobacillus Wild FMT 3.03E-25

Epulopiscium Wild FMT 1.13E-25

Clostridium Wild FMT 1.05E-25

SMB53 Wild FMT 3.32E-13

Paenibacillus Wild FMT 2.59E-16

Coprococcus Wild FMT 5.32E-17

Lysinibacillus Wild FMT 1.70E-24

Bacillus Wild FMT 1.92E-07

Akkermansia Captive FMT 1.05E-25

Bacteroides Captive FMT 1.05E-25

Parabacteroides Captive FMT 1.05E-25

Christensenella Captive FMT 5.98E-27

Roseburia Captive FMT 4.20E-16

Butyricimonas Captive FMT 1.05E-25

Oscillospira Captive FMT 1.36E-25

TREATMENT Caloramator Wild Low 2.19E-07

Paenibacillus Wild Low 1.50E-21

Coprococcus Wild High 8.57E-20

Clostridium Wild High 4.24E-25

SMB53 Wild High 3.55E-21

Bacillus Wild High 5.24E-18

Bacteroides Captive Low 1.51E-24

Desulfovibrio Captive Low 1.49E-20

Roseburia Captive Low 2.68E-20

Akkermansia Captive High 1.24E-24

Turicibacter Captive High 2.03E-18

Table 2 Genera distinctly high in the Wild High (lean) group,
discovered using two-way ANOVA and False Discovery Rate
correction.

Genus p value

SMB53 2.70E-25

Bacillus 2.11E-21

Coprococcus 3.60E-08

Clostridium 1.06E-05

Actinotalea 2.57E-03
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Methods
Study subjects and sample material
Fecal samples from wild NHPs (doucs) inhabiting Son
Tra Nature Reserve, Da Nang, Vietnam and captive
NHPs (doucs) housed at the Philadelphia Zoo were used
as the starting material for FMT. The fecal samples of
these donors were frozen upon collection, and ultimately
sequenced and characterized [17]. We thus had a micro-
biome profile of the donors prior to initiating the study.
The study was conducted at the germ-free mouse facility
of the Mayo Clinic in Rochester, MN. Thirty-two germ-
free 6-weeks old Swiss Webster mice were exposed to ei-
ther a high-fiber or low-fiber diet (Fig. 1). Feed was pro-
vided ad libitum; mice were checked daily and feed
added to feeders as needed. A total of 4 isolators were
used, each isolator had 2 cages of mice divided by gen-
der, one with 4 females and the other with 4 males. The
study was conducted in two separate experiments with
16 mice in each one. The first experiment used 2 isola-
tors with 4 male and 4 female mice in each isolator all
gavaged with the wild douc stool samples. Similarly, the
second experiment also used 2 isolators with 4 male, 4
female mice in each isolator all gavaged with the captive
douc stool samples. In each experiment, one isolator was
fed the high fiber diet and the other one was fed the low
fiber diet. Mice were weighed at the start of the study
and immediately preceding sacrifice with CO2 asphyxi-
ation. After a week of acclimation, mice received the
donor microbiota via gavage of fecal slurry. Fecal sam-
ples were collected weekly after FMT. At day 50 on the
experimental diets, mice were sacrificed. Blood, and
stool samples were collected. All samples were placed in
RNAlater solution and frozen immediately at − 80 °C.
Blood samples were immediately centrifuged to separate
serum at 15000 rpm for 10min, and then frozen at −
80 °C. Frozen serum samples were analyzed for cytokines
and chemokines using the Milliplex Mouse Cytokine/
Chemokine Magnetic Bead Premixed 25 Plex Kit (Milli-
pore Sigma Catalog # MCYTOMAG-70 K-PMX).

Colonization of germ-free mice with NHP microbiota
Fecal samples from wild and captive doucs were used to
create 2 master donor pools for the transplantation ex-
periments. We decided to pool donor samples in order
to capture and test in vivo the maximum number of
microbiota possible against the two diets. For the captive
donor pool, 4 samples from 2 captive doucs, 1 male and
1 female, from 2 different timepoints were used for a
total of 4 donor stool samples. The female donor was
23.3% more overweight than an average female douc
[24, 25]. The male donor had a normal average weight at
the time of collection. For the wild donor pool, samples
from 4 wild doucs, 2 males and 2 females, were used for
a total of 4 donor stool samples. For each donor pool,
2.5 mL aliquots from each stool sample were homoge-
nized in a sterile 10 mL pre-reduced 1x PBS solution in
the anaerobic chamber. Germ free Swiss Webster mice
maintained in flexible film gnotobiotic isolators in the
Mayo Clinic Germ Free Mouse facility were used in the
study. All mouse experiments were approved by Mayo
Clinic IACUC. Each mouse received a one-time 200 μl
of FMT gavage that is 50% PBS and 50% stool sample.
This yielded an effective dose of 100 μl of douc stool per
mouse. A 500 μl aliquot of each donor pool was saved
for 16S rRNA gene amplicon sequencing to get a bacter-
ial profile of the combined donors.

Diets
We based our diet selection on a previous microbiota-
accessible carbohydrate diet study by Sonnenburg et al.
[26]. We used Pico-Vac 5061 (LabDiet, St. Louis, MO)
for our high-fiber diet due to lower carbohydrate levels
and more diverse fiber content. We used Teklad Diet
TD.86489 (Envigo, Somerset, NJ) as our low-fiber diet
(see Supp. Figs. 5 & 6 for diet composition details of
low-fiber and high-fiber diets, respectively). Both diets
were ordered in irradiated isolator compatible vacuum
sealed packaging to eliminate the introduction of bacter-
ial contaminants in the gnotobiotic isolators. The 5061
diet is considered a “high-fiber” diet because it has a

Table 3 Genera that significantly (p < 0.05, ANOVA, FDR adjusted) increased (green) or decreased (red) within each treatment group
between week 1 and week 6 post FMT. Wild High had no change in bacterial genera.
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diverse fiber content of 4.7% crude fiber (up to 6%)
which includes 16.4% neutral detergent fiber (cellulose,
hemi-cellulose and lignin) and 6% acid detergent fiber
(cellulose and lignin). The TD.86489 diet is considered a
“low-fiber” diet because its single source of fiber is cellu-
lose (5%) and its main source of carbohydrates (61.7%) is
sucrose (53%) and cornstarch (47%). Percentages indi-
cate ratios by weight of feed. The low-fiber diet’s energy
value is 3.7 kcal/g, whereas for the high-fiber diet it is
4.07 kcal/g.

Bacterial 16S rRNA gene PCR amplification and next-
generation sequencing
Samples were lysed using the PowerMag Microbiome
Lysis Solution and DNA was extracted using a PowerMag
Microbiome RNA/DNA Isolation Kit (QIAGEN Catalog
#27500–4-EP) from fecal, cecum, and jejunum samples.
The bacterial 16S rRNA gene was amplified using Dual-
Index Microbiome Amplification at the University of Min-
nesota Genomics Center (UMGC) [27]. The protocol uses
515F and 806R primers, which flank the V4 hypervariable
region of the 16S rRNA gene (515F: TCGTCGGCAG
CGTCAGATGTGTATAAGAGACAGGTGCCAGCMG
CCGCGGTAA; 806R: GTCTCGTGGGCTCGGAGA
TGTGTATAAGAGACAGGGACTACHVGGGTWTCT
AAT). First reaction involved 25 cycles using the Meta_
V4_515F/Meta_V4_806R primer pair. After the first
round of amplification, PCR 1 products are diluted 1:100
and 5 ul of 1:100 PCR 1 is used in the second PCR reac-
tion which uses different combinations of forward and re-
verse indexing primers for a total of 10 cycles. Amplicons
were sequenced using Illumina MiSeq paired end sequen-
cing at UMGC. Pooled size-selected sample was dena-
tured with NaOH, diluted to 8 pM in Illumina’s HT1
buffer, spiked with 20% PhiX, and heat denatured at 96C
for 2min immediately prior to loading. A MiSeq 600 cycle
v3 kit was used to sequence the sample. Nextera adapter
sequences were used for post-run trimming (Read 1:
CTGTCTCTTATACACATCTCCGAGCCCACGA GAC
NNNNNNNNATCTCGTATGCCGTCTTCTGCTTG,
Read 2: CTGTCTCTTATACACATCTGA CGCTGC
CGACGANNNNNNNNGTGTAGATCTCGGTGGTC
GCCGTATCAT). Sequences were cleaned and con-
verted from FASTQ to FASTA format using SHI7
v0.92 with parameters --allow_outies F - t 8 -s T -fil-
ter_q 34 -trim_q 32 [28].

Data analysis
We used QIIME Open Reference Operational Taxo-
nomic Unit (OTU) Picking to pick OTUs and calculate
alpha and beta diversity metrics using the SHI7 quality-
controlled sequence reads [28]. Singleton OTUs were
excluded during open reference picking in QIIME using
pick_open_reference_otus.py and default parameter

--min_otu_size 2 which drops OTUs with less than 2
counts. QIIME version 1.9.1 was used, all samples were
rarefied at 14,000 sequences, and Pynast alignment fail-
ures were omitted from all subsequent analyses [29].
NINJA-OPS 1.5.1 [30] closed reference OTU picking
with Greengenes 97% identity was used for comparison
of this study’s taxonomic profiles to the global gut study
[8]. Observed OTUs refer to the OTU counts calculated
using tables that were not collapsed by taxonomy. For
all taxonomic and differential analyses, taxa tables were
collapsed to genus or species levels and rare taxa with
less than 20 counts were dropped except for when
reporting total recovered species.

Statistics
Kruskal-Wallis permutation and two-way ANOVA tests
with False Discovery Rate p-value correction revealed
genera that were higher in each FMT, diet, and treat-
ment group. Two-way ANOVA was used for weight data
differences by FMT and diet, and t-test for pair-wise
group weight comparisons. Adonis permutation test was
used to determine significant clustering of samples using
beta diversity. Linear regression and a groupwise average
of the test statistic of the spearman correlation were
used to determine shifts in Shannon Index alpha diver-
sity in each treatment group over time. All statistics,
meta-analyses and plotting were conducted using R stat-
istical package (version 3.4.0).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s42523-020-00033-9.

Additional file 1: Figure S1. Shannon index for alpha diversity
(evenness) 1 week, 3 weeks and 6 weeks after FMT. Shannon index
significantly increased in the captive high, captive low, and wild low
groups but remained stable in wild high, the leanest group. Linear
regression and a groupwise average of the test statistic of the Spearman
correlation were used to determine shifts within treatment groups.

Additional file 2: Figure S2. Shannon index for alpha diversity
(evenness) in each treatment group. High-fiber groups had significantly
lower Shannon index than low-fiber groups (p = 2.48e-14, ANOVA, FDR
adjusted), but differences between wild and captive FMTs were not statis-
tically significant.

Additional file 3: Figure S3. Observed OTUs in each treatment group.
High-fiber groups had significantly lower observed OTUs than low-fiber
groups (p = 2.69e-08, ANOVA, FDR adjusted), but differences between wild
and captive FMTs were not statistically significant.

Additional file 4: Figure S4. Detectable circulating blood cytokine and
chemokine levels after sacrifice, from top left to bottom right: G-CSF, IL-
1A, IL12(P40), IL-12(P70), IL-1B, IL-9, IL-10, IL-13, IL-15, RANTES, MCP-1, IP-
10, MKC, MIP-2, TNF-A, MIP-1A, MIP-1B. All concentrations calculated in
pg/mL Bars in green are showing WH, in light green WL, in blue CH and
in purple CL. Concentrations of GM-CSF, IFN-G, IL-2, IL-4, IL-5, IL-6, IL-7
and IL-17 in most samples were lower than detectable level. Two-tailed t-
test used (ns: no significant; * p < 0.05; ** p < 0.01; *** p < 0.001).

Additional file 5: Figure S5. Low-fiber diet composition by
manufacturer.
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Additional file 6: Figure S6. High-fiber diet composition by
manufacturer.

Additional file 7: Table S1. Bacterial taxa in donor FMTs that are
missing in their respective treatment groups.

Additional file 8: Table S2. Microbiota transfer efficacy as indicated by
the total bacterial species & mean observed OTUs identified in fecal
samples collected on day 49 and compared to donor FMT.
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