
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

The Nebraska Educator: A Student-Led Journal Department of Teaching, Learning and Teacher 
Education 

Spring 10-17-2020 

Interval Estimation of Proportion of Second-level Variance in Interval Estimation of Proportion of Second-level Variance in 

Multi-level Modeling Multi-level Modeling 

Steven Svoboda 
University of Nebraska-Lincoln, ssvoboda@huskers.unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/nebeducator 

 Part of the Applied Statistics Commons, Statistical Models Commons, and the Teacher Education and 

Professional Development Commons 

Svoboda, Steven, "Interval Estimation of Proportion of Second-level Variance in Multi-level Modeling" 
(2020). The Nebraska Educator: A Student-Led Journal. 52. 
https://digitalcommons.unl.edu/nebeducator/52 

This Article is brought to you for free and open access by the Department of Teaching, Learning and Teacher 
Education at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in The 
Nebraska Educator: A Student-Led Journal by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/337892179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/nebeducator
https://digitalcommons.unl.edu/teaching_learning
https://digitalcommons.unl.edu/teaching_learning
https://digitalcommons.unl.edu/nebeducator?utm_source=digitalcommons.unl.edu%2Fnebeducator%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.unl.edu%2Fnebeducator%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=digitalcommons.unl.edu%2Fnebeducator%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/803?utm_source=digitalcommons.unl.edu%2Fnebeducator%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/803?utm_source=digitalcommons.unl.edu%2Fnebeducator%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/nebeducator/52?utm_source=digitalcommons.unl.edu%2Fnebeducator%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages


THE NEBRASKA EDUCATOR, VOLUME 5 

October 2020   |  92 

Interval Estimation of Proportion of Second-level Variance 

in Multi-level Modeling 
 

   

 

Steven Svoboda 

 
Department of Education Psychology 

University of Nebraska-Lincoln 

 

 

Abstract 

 

Physical, behavioral and psychological research questions often relate to hierarchical data 

systems.  Examples of hierarchical data systems include repeated measures of students nested 

within classrooms, nested within schools and employees nested within supervisors, nested within 

organizations.  Applied researchers studying hierarchical data structures should have an estimate 

of the intraclass correlation coefficient (ICC) for every nested level in their analyses because 

ignoring even relatively small amounts of interdependence is known to inflate Type I error rate 

in single-level models.  Traditionally, researchers rely upon the ICC as a point estimate of the 

amount of interdependency in their data.  Recent methods utilizing an interval estimation of the 

amount of interdependency based the proportion of second-level variance between groups have 

been developed that avoid relying solely upon point estimates.  The likelihood of committing a 

Type I error when using the interval estimation of the proportion of second-level variance 

remains unknown.  The current project addressed this deficiency in knowledge utilizing 

simulated data to assess the accuracy of a 95% confidence interval estimation of the proportion 

of second-level variance (CI-PSLV).  Standard errors tended to decrease as sample size 

increased, and the CI-PSLV captured the second level ICC in 95% of replications. 
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The recognition of hierarchical data structures that account for the dependence of 

observations and corresponding methods to analyze them have received considerable amounts of 

attention in the past few decades (Raykov, 2010).  Traditionally, the intraclass correlation 

coefficient (ICC), or the proportion of variance in an outcome variable that is between groups or 

contained at the higher levels of the nested data structure, is used to determine whether or not 

accounting for the hierarchical nesting of participants is necessary (Raudenbush & Bryk, 2002). 

Unfortunately, widely agreed upon guidelines for interpreting the magnitude of the ICC do not 

exist (Raykov, 2010).  Recent methods have been developed to interpret the proportion of 

variance at higher levels between groups using a confidence interval estimation procedure rather 

than relying solely upon point estimates such as the ICC because the magnitude of the ICC is 

difficult to interpret (Raykov et al., 2016).  However, there remains a critical need to investigate 

the accuracy of these methods and to develop guidelines that may be followed when evaluating 

sample size requirements for the underlying asymptotic maximum likelihood estimation theory 

to obtain practical relevance when using an interval estimation procedure (Raykov et al., 2016).  

The purpose of the current study was to establish a 95% confidence interval estimation procedure 

for the proportion of second-level variance (CI-PSLV) as a valuable tool for applied researchers 

to consider when deciding whether or not to account for hierarchical data structures in their 

samples.  Specifically, the current study provided a demonstration of the CI-PSLV and explored 

its accuracy in various sample sizes under various degrees of second level dependence.  

Motivating Context 

Physical, behavioral and psychological research questions often relate to hierarchical data 

systems (Mass & Hox, 2004).  Examples of hierarchical data systems include repeated measures 

of students nested within classrooms, nested within schools and employees nested within 



THE NEBRASKA EDUCATOR, VOLUME 5 

October 2020   |  94 

supervisors, nested within organizations.  Hierarchical data structures exist in nature whether 

psychologists and behavioral scientists recognize their existence and account for the nesting of 

their subjects within higher order units in applied research.  Obviously, observations may not be 

independent in these data structures.  Failure to account for hierarchical data structures likely 

violates the assumption that errors are independent of each other and identically distributed.  

This violation would result in biased standard errors associated with the regression coefficients, 

which in turn, leads to an increased Type I error rate and erroneous interpretations of statistical 

tests (Mass & Hox, 2004; Raudenbush & Bryk, 2002). Standard (single-level) models are not 

appropriate in these hierarchical data systems because individual observations at the lowest level 

are not independent (Mass & Hox, 2004).  Multi-level modeling (MLM), also known as 

hierarchical linear modeling, techniques avoid having to meet the independence of observations 

assumption of single-level regression models by accounting for the interdependence of level one 

observations due to hierarchical nesting structures (Raykov, 2010). However, researchers must 

adhere to financial budgets and time limits that may render multi-level models infeasible due to 

the costs associated with collecting additional data from higher nested levels.  Because of these 

limitations, it is imperative that applied researchers consider the proportion of variance in an 

outcome associated with a given level when deciding how to analyze their hierarchical data.   

Intraclass Correlation Coefficient   

The intraclass correlation coefficient (ICC) is commonly used to provide researchers with 

an estimate of the amount of interdependence due to hierarchical nesting structures.  The ICC 

informs researchers’ decisions when choosing between MLM techniques and single-level 

modeling (Mass & Hox, 2005; Raudenbush & Bryk, 2002).  For two-level models the ICC is 

calculated by: 
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𝐼𝐶𝐶 =
𝜏00 

𝜎2+𝜏00
 , 

 

where 𝜎2 is the level one variance and 𝜏00 is the level two variance.   

Applied researchers should have an estimate of the ICC for every nested level in their 

analyses because ignoring even relatively small amounts of interdependence (ICC values as 

small as .005) is known to inflate Type I error rate in single-level models (Mass & Hox, 2005; 

Raudenbush & Bryk, 2002).  However, ICCs greater than .005 are commonly observed in 

hierarchical data structures.  For example, the ICCs in a recent study of school climate on 

students’ academic achievement range from .04 to .08 (Maxwell et al., 2017).  ICCs as great as 

.522 have been observed in a study of players from track and field clubs (Swierzy et al., 2018).  

These examples of hierarchical data structures contained 2 levels of nesting.  The formula for 

calculating the ICC is easily adapted for additional levels (more than two) by adding a term for 

the variance associated with each higher level to the denominator and inserting variance of the 

level of interest into the numerator and provides a point estimate of the proportion of variance in 

an outcome variable associated with a given level. 

The Problem with Point Estimates   

Point estimates, such as the ICC, have been criticized for being too dependent on the 

characteristics of a single, usually small, sample (Schmidt, 1996).  This is especially problematic 

for multi-level modeling techniques that require relatively large sample sizes.  As a result, the 

ICC may be significantly different from zero simply because of the large sample sizes commonly 

collected from hierarchical data structures.  Furthermore, no informative guidelines exist for 

interpreting the magnitude of the ICC and the definition of a “meaningful” ICC depends on the 
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context of the research (Raykov et al., 2016).  Some nationally recognized scientific 

organizations, such as the American Psychological Association, encourage researchers to report 

confidence intervals for each statistic because of these known problems with point estimates and 

null hypothesis significance tests in general.  

Interval Estimation of the Proportion of Second-level Variance   

Recent methods have been developed utilizing an interval estimation procedure to 

estimate the proportion of variance in an outcome variable attributed to higher levels of nesting 

that avoid the problem of relying on a null hypothesis significance test for the ICC.  One such 

method is the CI-PSLV (Raykov et al., 2016).   To determine the CI-PSLV, first an 

unconditional model is fit to the data to furnish an estimate of the standard error associated with 

the PSLV using the delta method (Raykov & Marcoulides, 2004).  Second, the PSLV is 

calculated using the following formula: 

𝑃𝑆𝐿𝑉 =
𝜏𝜋 

𝜎2+𝜏𝜋+ 𝜏𝛽 
 , 

 

where 𝜎2  is the level one variance,𝜏𝜋 is the level two variance, and 𝜏𝛽   is the level three 

variance.  Finally, a 95% confidence interval is obtained based on the estimate of the PSLV and 

its standard error (Raykov et al., 2016).  Please refer to Appendix A for an R-function that 

computes the endpoints of the CI-PSLV.   

Rather than relying solely upon a point estimate, the CI-PSLV provides a range of 

plausible values for the PSLV in a population under consideration and is an informative 

supplement to the ICC (Raykov et al., 2016).  The current study seeks to establish the accuracy 

of a 95% confidence interval of the PSLV in various sample sizes and under various degrees of 

second level dependence. 
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Method 

The current study examines the accuracy of the CI-PSLV using simulated data.  Data 

were generated in R 3.4.3 (R Core Team, 2017) using the following three-level model:  

Level 1: 𝑌𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝑒𝑖𝑗𝑘  

Level 2: 𝛽0𝑗𝑘 = 𝛾00𝑘 + 𝑟0𝑗𝑘 

Level 3: 𝛾00𝑘 = 𝛿000 + 𝑢00𝑘 

Composite: 𝑌𝑖𝑗𝑘 = 𝛿000 + 𝑢00𝑘 +  𝑟0𝑗𝑘 +  𝑒𝑖𝑗𝑘 , 

 

where 𝑌𝑖𝑗𝑘 is the score of an individual i in second level j within the third level k on the 

dependent variable in the simulated data.  𝛿000 is the fixed effect and the remaining terms 

represent random effects at levels three, two and one respectively in the composite model.  The 

variance of 𝑌𝑖𝑗𝑘 is normally distributed.      

Simulation Conditions 

   The following three conditions, as specified in Mass and Hox (2005), varied in the 

simulation:  level two ICC (ICC = .1, .2 & .3), number of clusters in level two (L2NC = 30, 50 & 

100), and number of clusters in level three (L3NC = 30, 50 & 100).  The variance of 𝑌𝑖𝑗𝑘 was 

fixed to one in level one and .1 in level three across conditions, whereas the variance of 𝑌𝑖𝑗𝑘 at 

level two differed between conditions to vary the level two ICC.  Sample size varied between 

conditions based on the total number of clusters in levels two (L2NC) and three (L3NC).  Level 

one group size was fixed at 30 across conditions because thirty level-one units is a reasonable 

number to expect in educational settings (Mass & Hox, 2005).  Level two ICC, L2NC and L3NC 

varied across 27 conditions (3 x 3 x 3).   
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Procedure 

One thousand datasets were generated for each combination of conditions.  An 

unconditional, three-level model was fit to each simulated dataset to demonstrate the accuracy of 

the CI-PSLV associated with a predicted outcome variable 𝑌𝑖𝑗𝑘 using Mplus.  A model constraint 

was used to estimate the PSLV its standard error in all datasets.  Please refer to Appendix B for 

Mplus source code for the estimation of PSLV and its standard error from the data generated 

with R.  Estimates of the PSLV and their associated standard errors were saved for each dataset 

within each condition and were imported into R to calculate their 95% confidence intervals.   

The accuracy of the CI-PSLV was assessed by comparing average standard errors of 

estimated PSLV, the proportion of CI-PSLV that include the actual ICC, and average width of 

CI-PSLV between simulated conditions.   Accuracy of the CI-PSLV was assessed by the 

proportion of confidence intervals that included the population’s level two ICC within a given 

simulation condition.     

Results 

Results from the simulation provide evidence in favor of the utility of the CI-PSLV under 

the conditions studied and are provided in Table 1.  As can be seen from Table 1, the population 

level two ICC fell within the CI-PSLV in about 95% of repeated samples.  Standard errors 

associated with the estimate of PSLV and the average width of confidence intervals tended to 

decrease as sample size (L2NC & L3NC) increased and were slightly larger in conditions with 

larger ICC conditions.  The CI-PSLV seemed to capture the actual second level ICC and none of 

the confidence intervals included zero.  Lower standard errors of the estimate of PSLV were 

associated with a greater number of level three clusters relative to level two clusters in conditions 

with equal, overall sample size (L3NC=100 & L2NC = 50 compared to L3NC=50 & L2NC=100; 
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L3NC=100 & L2NC = 30 compared to L3NC=30 & L2NC=100; and L3NC=50 & L2NC = 30 

compared to L3NC=30 & L2NC=100).    

Discussion 

The current study provides evidence of the applied utility of the CI-PSLV.  The CI-PSLV 

appears to capture the actual second level ICC as long as sample size requirements for multi-

level modeling are met to begin with as described in Mass and Hox (2005).  None of the 

confidence intervals in the current study included zero.  Future work needs to be conducted to 

determine the usefulness of the CI-PSLV for detecting a second level ICC close to zero (smaller 

than .1 which is the lower bound of the current study). Similarly, research needs to be conducted 

to address the robustness of the CI-PSLV to violations of the assumption that outcome measures 

(𝑌𝑖𝑗𝑘) are normally distributed.   

Multi-level modeling is appropriate in a variety of fields given the inherent, hierarchical 

nature of data they utilize.  Similarly, the application of an interval estimate of the PSLV is 

appropriate anytime three-level data structures are encountered, regardless of the specific 

research area.  The results of the current study provide evidence of the accuracy of the CI-PSLV, 

which avoids many of the known problems associated with relying solely on point estimates for 

null hypothesis significance tests of the traditional ICC.  This does not suggest the CI-PSLV 

should replace the traditional ICC, but rather, it should be reported as another piece of evidence 

in conjunction with the ICC (Raykov et al., 2016).  Once its efficiency is established, the CI-

PSLV procedure will provide a range of plausible estimates for the amount of interdependency 

of scores due to hierarchical data structures and that should be reported in addition to the 

traditional ICC.       
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Table 1. 

 

Average Standard Errors of the PSLV Estimate, Number of Intervals Capturing ICC & CI 

Width Across Simulation Conditions for Data Generated Using R 

  Level 2 ICC 

Number of Clusters .3 .2 .1 

L3NC L2NC S.E. #CI Widt

h 

S.E #CI Widt

h 

S.E #CI Widt

h 

100 100 .0043 954 .0169 .0033 957 .0131 .0020 942 .0080 

 50 .0055 957 .0216 .0043 952 .0168 .0026 954 .0104 

 30 .0068 950 .0268 .0053 954 .0209 .0034 952 .0129 

50 100 .0061 951 .0239 .0047 951 .0186 .0029 956 .0113 

 50 .0078 951 .0305 .0061 951 .0238 .0037 949 .0146 

 30 .0097 957 .0379 .0075 954 .0295 .0047 951 .0183 

30 100 .0079 956 .0309 .0061 960 .0240 .0037 962 .0146 

 50 .0101 959 .0394 .0078 955 .0307 .0048 956 .0189 

 30 .0125 940 .0489 .0097 940 .0381 .0060 940 .0237 
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Appendix A 

 

R-Function for Interval Estimation of Proportion of Second-Level Variance from Raykov et al. 

(2016) 

ci.pslv = function(pslv, se){ 

  l = log(pslv /(1 - pslv)) 

  sel = se/(pslv*(1 - pslv)) 

  ci_l_lo = l-1.96*sel 

  ci_l_up = l+1.96*sel 

  ci_pslv_lo = 1/(1+exp(-ci_l_lo)) 

  ci_pslv_up = 1/(1+exp(-ci_l_up)) 

  ci = c(ci_pslv_lo, ci_pslv_up) 

  ci 

} 
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Appendix B 

Mplus Source Code for Estimation of the Proportion of Second-Level Variance adapted from 

Raykov et al. (2016) 

TITLE: Interval Estimation of PSLV from Simulated Data 

 

DATA: 

FILE IS Mpluslist.txt; 

TYPE=MONTECARLO; 

 

VARIABLE: 

NAMES ARE L1ID L2ID L3ID repID u00k r0jk eijk y; 

USEVARIABLE ARE y; 

CLUSTER ARE L3ID L2ID; 

 

ANALYSIS: 

TYPE = THREELEVEL; 

ESTIMATOR IS ML; 

 

MODEL: 

%WITHIN% 

 

y* (P1); 

%BETWEEN L2ID% 

 

y* (P2); 

%BETWEEN L3ID% 

 

y* (P3); 

 

MODEL CONSTRAINT: 

NEW(PSLV); 

PSLV=P2/(P1+P2+P3); 

 

OUTPUT: 

 

STDYX; 

 

SAVEDATA: RESULTS = results.dat; 
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