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HYPERFINITE CONSTRUCTION OF G-EXPECTATION

TOLULOPE FADINA AND FREDERIK HERZBERG

ABSTRACT. The hyperfinite G-expectation is a nonstandard discrete analogue
of G-expectation (in the sense of Robinsonian nonstandard analysis). A lift-
ing of a continuous-time G-expectation operator is defined as a hyperfinite
G-expectation which is infinitely close, in the sense of nonstandard topology,
to the continuous-time G-expectation. We develop the basic theory for hyperfi-
nite G-expectations and prove an existence theorem for liftings of (continuous-
time) G-expectation. For the proof of the lifting theorem, we use a new dis-
cretization theorem for the G-expectation (also established in this paper, based
on the work of Dolinsky, Nutz and Soner [Stoch. Proc. Appl. 122, (2012),
664-675]).

Keywords: G-expectation; Volatility uncertainty; Weak limit theorem; Lift-
ing theorem; Nonstandard analysis; Hyperfinite discretization.

1. INTRODUCTION

Dolinsky et al. [8] showed a Donsker-type result for G-Brownian motion by in-
troducing a notion of volatility uncertainty in discrete time and defined a discrete
version of Peng’s G-expectation. In the continuous-time limit, the resulting sublin-
ear expectation converges weakly to G-expectation. In their discretization, Dolinsky
et al. [8] allow for martingale laws whose support is the whole set of reals in a d-
dimensional setting. In other words, they only discretize the time line, but not the
state space of the canonical process. Now for certain applications, for example, a
hyperfinite construction of G-expectation in the sense of Robinsonian nonstandard
analysis, a discretization of the state space would be necessary. Thus, we develop
a modification of the construction by Dolinsky et al. [8] which even ensures that
the sublinear expectation operator for the discrete-time canonical process corre-
sponding to this discretization of the state space (whence the martingale laws are
supported by a finite lattice only) converges to the G-expectation. Further, we
prove a lifting theorem, in the sense of Robinsonian nonstandard analysis, for the
G-expectation. Herein, we use the discretization result for the G-expectation.

Nonstandard analysis makes consistent use of infinitesimals in mathematical
analysis based on techniques from mathematical logic. This approach is very
promising because it also allows, for instance, to study continuous-time stochas-
tic processes as formally finite objects. Many authors have applied nonstandard
analysis to problems in measure theory, probability theory and mathematical eco-
nomics (see for example, Anderson and Raimondo [3] and the references therein
or the contribution in Berg [4]), especially after Loeb [20] converted nonstandard
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measures (i.e. the images of standard measures under the nonstandard embedding
*) into real-valued, countably additive measures, by means of the standard part op-
erator and Caratheodory’s extension theorem. One of the main ideas behind these
applications is the extension of the notion of a finite set known as hyperfinite set
or more causally, a formally finite set. Very roughly speaking, hyperfinite sets are
sets that can be formally enumerated with both standard and nonstandard natural
numbers up to a (standard or nonstandard, i.e. unlimited) natural number.

Anderson [2], Keisler [16], Lindstrgm [19], Hoover and Perkins [14], a few to men-
tion, used Loeb’s [20] approach to develop basic nonstandard stochastic analysis
and in particular, the nonstandard It6 calculus. Loeb [20] also presents the con-
struction of a Poisson processes using nonstandard analysis. Anderson [2] showed
that Brownian motion can be constructed from a hyperfinite number of coin tosses,
and provides a detailed proof using a special case of Donsker’s theorem. Anderson
[2] also gave a nonstandard construction of stochastic integration with respect to his
construction of Brownian motion. Keisler [16] uses Anderson’s [2] result to obtain
some results on stochastic differential equations. Lindstrgm [19] gave the hyperfi-
nite construction (lifting) of L? standard martingales. Using nonstandard stochastic
analysis, Perkins [24] proved a global characterization of (standard) Brownian local
time. In this paper, we do not work on the Loeb space because the G-expectation
and its corresponding G-Brownian motion are not based on a classical probability
measure, but on a set of martingale laws.

The aim of this paper is to give two approximation results on G-expectation.
First, to refine the discretization of G-expectation by Dolinsky et al. [8], in order to
obtain a discretization of the sublinear expectation where the martingale laws are
defined on a finite lattice rather than the whole set of reals. Second, to give an al-
ternative, combinatorially inspired construction of the G-expectation based on the
discretization result. We hope that this result may eventually become useful for ap-
plications in financial economics (especially existence of equilibrium on continuous-
time financial markets with volatility uncertainty) and provides additional intuition
for Peng’s G-stochastic calculus. We begin the nonstandard treatment of the G-
expectation by defining a notion of S-continuity, a standard part operator, and
proving a corresponding lifting (and pushing down) theorem. Thereby, we show
that our hyperfinite construction is the appropriate nonstandard analogue of the
G-expectation.

The rest of this paper is divided into two parts: in the first part, Section 2,
we define Peng’s G-expectation and introduce a discrete-time analogue of a G-
expectation in the spirit of Dolinsky et al. [8]. Unlike in Dolinsky et al. [8], we
require the discretization of the martingale laws to be defined on a finite lattice
rather than the whole set of reals. In the continuous-time limit, the resulting sub-
linear expectation converges weakly to the continuous-time G-expectation. In the
second part, Section 3, we develop the basic theory for hyperfinite G-expectations
and prove an existence theorem for liftings of (continuous-time) G-expectation. We
extend the discrete time analogue of the G-expectation in Section 2 to a hyperfinite
time analogue. Then, we use the characterization of convergence in nonstandard
analysis to prove that the hyperfinite discrete-time analogue of the G-expectation
is infinitely close in the sense of nonstandard topology to the continuous-time G-
expectation.



HYPERFINITE CONSTRUCTION OF G-EXPECTATION 3

2. WEAK APPROXIMATION OF (G-EXPECTATION WITH DISCRETE STATE SPACE

Peng [23] introduced a sublinear expectation on a well-defined space Lb, the
completion of Lipy, ., (£2) (bounded and Lipschitz cylinder function) under the norm
[ lly,, under which the increments of the canonical process (B¢):>o are zero-mean,
independent and stationary and can be proved to be (G)-normally distributed.
This type of process is called G-Brownian motion and the corresponding sublinear
expectation is called G-expectation.

The G-expectation ¢ +— £Y(€) is a sublinear operator defined on a class of
random variables on 2. The symbol G refers to a given function

(1) G(vy) := }supC'y:R—HR

2 ceD
where D = [rp, Rp] is a nonempty, compact and convex set, and 0 < rp < Rp < 00
are fixed numbers. The construction of the G-expectation is as follows. Let £ =
f(Br), where Br is the G-Brownian motion and f a sufficiently regular function.
Then £F(¢) is defined to be the initial value u(0,0) of the solution of the nonlinear
backward heat equation,

—0yu — G(9%,u) =0,

with terminal condition u(-,T) = f, Pardoux and Peng [22]. The mapping £¢
can be extended to random variables of the form £ = f(By,, -+, By;,) by a step-
wise evaluation of the PDE and then to the completion L, of the space of all such
random variables (cf. Dolinsky et al. [8]). Denis et al. [7] showed that L}, is the
completion of C;(€2) and Lipy ., (€2) under the norm || - [| s, and that L is the
space of the so-called quasi-continuous function and contains all bounded continu-
ous functions on the canonical space €2, but not all bounded measurable functions
are included. Ruan [27] introduced the invariance principle of G-Brownian motion
using the theory of sublinear expectation. There also exists an equivalent alterna-
tive representation of the G-expectation known as the dual view on G-expectation
via volatility uncertainty, see Denis et al. [7]:

(2) £9(6) = sup EF[¢], &= f(Br),

PePC
where P is defined as the set of probability measures on € such that, for any
P € PY, B is a martingale with the volatility d (B), /dt € D P ® dt a.e.

2.1. Continuous-time construction of sublinear expectation. Let Q = {w €
C([0,T;R) : wy = 0} be the canonical space endowed with the uniform norm
lw]loo = SUpg<i<t |wt|, where | - | denotes the absolute value on R. Let B be the
canonical process By(w) = wy, and F; = 0(B,,0 < s < t) the filtration generated by
B. A probability measure P on 2 is a martingale law provided B is a P-martingale
and By = 0 P a.s. Then, Pp is the set of martingale laws on 2 and the volatility
takes values in D, P ® dt a.e;

Pp = {P martingale law on Q: d(B), /dt € D, P ® dt a.e.}.

2.2. Discrete-time construction of sublinear expectation. We denote

En{n\]/ﬁ, 7n2\/RD§an2\/RDa fOI'jGZ},
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and Lt = L, x --- X Ly(n + 1 times), for n € N. Let X" = (X}");_, be the
canonical process X'(z) = xy, defined on £ and (FJ),_, = o(X],1 =0,...,k)
be the filtration generated by X™. We note that Rp = sup,cp |¢/.

, 1\
D/, =Dn(-N
n

is a nonempty bounded set of volatilities. A probability measure P on £ is a
martingale law provided X" is a P-martingale and X§ = 0 P a.s. The increment
AXP =X — X' ,. Let P3 be the set of martingale laws of X" on R"™, i.e.,

Pp, = {P martingale law on R"™': rp < |AX}|” < Rp, P as.},

such that for all n, L7+ C R

. In order to establish a relation between the continuous-time and discrete-time
settings, we obtained a continuous-time process T; € ) from any discrete path
x € L7 by linear interpolation. i.e.,

Ty =(Int/T]+1- nt/T)a:Lnt/TJ + (nt/T — Lnt/TJ):ant/TJ_,_l
where™: L1 — Q is the linear interpolation operator, * = (zg,...,%,) — T =
{(Z)o<t<T}, and |y] denotes the greatest integer less than or equal to y. If X" is

the canonical process on £7*! and ¢ is a random variable on Q, then & ()? ™) defines
a random variable on L7+,

2.3. Strong formulation of volatility uncertainty. We consider martingale
laws generated by stochastic integrals with respect to a fixed Brownian motion as
in Dolinsky et al. [8], Nutz [21] and a fixed random walk as in Dolinsky et al. [8].
Continuous-time construction; let Qp be the set of martingale laws:

Op = {PO o(M)™Y, M = /f(t,B)dBt, and f € C([0,T] x Q; VD) is adapted}.

B is the canonical process under the Wiener measure Fp.

Discrete-time construction; we fixn € N, Q,, = {w = (w1,...,wp) 1 w; € {£1}, i=
1,...,n} equipped with the power set and let

o_1+9 o_1+9

% ®R® %

n times

P, =

be the product probability associated with the uniform distribution where d,(A)
is a Dirac measure for any A C R and a given z € A. Let &;,...,&, be an ii.d
sequence of {£1}-valued random variables. The components of & are orthonormal
in L?(P,) and the associated scaled random walk is

k
1
X=— &
We denote by Qf), the set of martingale laws of the form:
(3) Qp = { Pyo (M¥)=1 f:{0,...,n} x £ — /DI is f"—adapted.}

va = k - ’
where M (21:1 fa 1’X)Axl)k:0
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2.4. Results and proofs. Theorem 1 states that a sublinear expectation with
discrete-time volatility uncertainty on our finite lattice converges to the G-expectation.

Lemma 2.1. Qf = {Pn o (Mf’X)fl; f:{0,...,n} x R**! = /D is adapted}.
Then Qf C PB.

Proposition 2.2. Let £ : @ — R be a continuous function satisfying |{(w)] <
a(1+ || w ||oo)? for some constants a,b > 0. Then,

(4)

(4) lim  sup EC(X")] = sup EF[g].
neoQeey, ., PeQp
(i4)
(5) sup EQE(X™)] = max E2[(X")).
QEQB%/H QEQDZ,/"

To prove (4), we prove two separate inequalities together with a density argu-
ment. The left-hand side of (5) can be written as

sup - EGE(X™)] = sup BT (X))
Qegg,n/n feA
where A = {f :{0,...,n} x L0 — /D!, /n is f”-adapted.}. We prove that A is

a compact subset of a finite-dimensional vector space, and that f ~— EPno(M7)™" (€ ()A( ™)
is continuous. Before then, we introduce a smaller space L. that is defined as the
completion of Cp(€2; R) under the norm (cf. Dolinsky et al. [8])

€ |ls:= Cs;el%ﬂz@m Q:=PpU{Po(X") 1yPePp,, neN}.

This is because Proposition 2.2 will not hold if ¢ just belong to L, which is the
completion of Cy(2;R) under the norm

(6) 1€ = sup ET[E]).
PcPp
Proof of Proposition 2.2. First inequality (for < in (4)):
(7) limsup sup EQ¢(X™)] < sup EP[].
n—oo QeQp, . PeOp

For all n, \/Dj,/n € \/D/n and Qp, C Qp. It is shown in Dolinsky et al. [8] that

limsup sup EQ[f()?n)] < sup EP[¢].

n— 00 QEPB/n PcPp

Since Op C Pp (see Dolinsky et al. [8, Remark 3.6]) and OQF C Pp (see Lemma
2.1), (7) follows.
Second inequality (for > in (4)): It remains to show that

liminf sup ]EQ[f()?”)] > sup EP[¢].

n— oo
QEQ%%/" PeQp

For arbitrary P € Qp, we construct a sequence (P"), such that for all n,

(8) P € Qpy s
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and
9) EP[¢] < liminf EP" [¢(X™)].

n—oo
For fixed n, we want to construct martingales M"™ whose laws are in QD, and

the laws of their interpolations tend to P. Thus, we introduce a scaled random walk
with the piecewise constant cadlag property,

Lnt/T] 1
(10) W= \F Z & = b, 0<t<T,

and we denote the continuous version of (10) obtained by linear interpolation by

(11) W = 0<t<T.

I =,
ﬁ [nt/T]>
By the central limit theorem; (W™, W") = (W, W) as n — oo on D([0,T]; R?)
(= implies convergence in distribution). i.e., the law (P,) converges to the law
Py on the Skorohod space D([0,T];R?) Billingsley [5, Theorem 27.1]. Let g €
C([0,T] x Q,vD) such that

-1

P = P() o /g(t, W)th

| ——
M

Since g is continuous and /Wt" is the interpolated version of (10),

<W", (g (Lnt/T)7 /0. W) )

We introduce martingales with discrete-time integrals,

o) = (00T om) a1 o0 on DO THR).

k
(12) M= g (= 0T/ W) Wit = Wiy
=1

In order to construct M™ which is “close” to M and also is such that P, o (M™)™" € b /n-
We choose hy, : {0, -+ ,n} x © — /D! /n such that

dj, <(En(Lnt/TJT/n7th)) ’ (Q(L”t/TJ T/n’/th>)te[0 T])

te[0,T]

is minimal (this is possible because there are only finitely many choices for ( a(nt/T)T/n, W )) : T])
telo,
and dj, is the Kolmogorov metric for the Skorohod J; topology. From Billingsley

[6, Theorem 4.3 and Definition 4.1], it follows that
n (7 n .2
<W ,(hn (Lnt/TJT/n, Wi ))tG[O,T]> = (W, g(t, Wi)iep,r) on D([0,T};R?).

We then define g, : {0,...,n} x £+ — /D! /n by gn : (0,X) — hy (¢, X). Let
M™ be defined by

k
1 1

Mp =3 gn(l—l,Z”)AZ", Vk e {0,--- ,n).

¥ = Vn N { )
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By stability of stochastic integral (see Duffie and Protter [9, Theorem 4.3 and
Definition 4.1]),

(MLnt/TJ)tE[QT] = M asn — ooon D([0,T];R)

because
[nt/T]

M) = ; B ((l—l)T/n, (/WkT/n):zo) NG

In addition, as n goes to co, the increments of M™ uniformly tend to 0. Thus,
M"™ = M on 2. Since £ is bounded and continuous,

(13) lim EPoM 7 [g(X)] = B [g].

n—oo

Therefore, (8) is satisfied for P" = P, o (M™)™" € Qb /- Taking the liminf as n
tends to co and the supremum over P € Qp, (13) becomes

(14) sup EP[¢] < liminf sup EQ[¢(X™)].
PEQp " QeQy, ),

Combining (7) and (14),

sup EC[¢] > limsup sup EP[¢(X")] >liminf sup EP[¢(X")] > sup EL[¢].

Pe9p n—oo QEQR, . "o QeQp, P€EQD
Therefore,
(15) sup EP[¢] = lim  sup EQ¢(X™)].

PeQp N QeQn

’
D/, /n

Density argument: (4) is established for all £ € Cp(Q2,R). Since Op C Pp (see
Dolinsky et al. [8, Remark 3.6]) and Qp € Pp (see Lemma 2.1), Op, € Q and
Op C Q. Thus, (4) holds for all £ € L!, and hence, holds for all ¢ that satisfy
condition of Proposition 2.2.

First part of 5: A is closed and obviously bounded with respect to the norm
Il - lloc as D’ is bounded. By Heine-Borel theorem, A is a compact subset of a
N(n,n)-dimensional vector space' equipped with the norm || - ||so.

Second part of 5. Here, we show that F : f EP"O(Mf’X)fl[f()?")] is continu-
ous. From Proposition 2.2 we know that £ is continuous, X" is the interpolated
canonical process, i.e., X : Lt — Q, thus X" is continuous and P, takes it
values from the set of real numbers. For F' : f — IEP"O(Mf'X)_l[f()/(\'”)] to be con-
tinuous, v : f — M7* has to be continuous. Since A is a compact subset of a
N (n,n)-dimensional vector space for fixed n € N and M/*: Q, — £n*! for all
f9 €A,

M5 = MOF| = [ floe = lglloc] < 11 = glloc-

Thus, 1 is continuous with respect to the norm || - ||oo. Hence F' is continuous with

respect to any norm on RN(n)
([l

IThe cardinality of L, #Ln = 2n+ 1, #0711 = (2n + 1)1, and #({0,...,n} x £2H1) =
(n+1)(2n+ 1)t = N(n,n).
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Theorem 1. Let £ : @ — R be a continuous function satisfying [£(w)] < a(l +
lw||oo)? for some constants a,b > 0. Then,

16 sup EP[¢] = lim max E© X™)].
(16) g B = Jim s B9
Proof. The proof follows directly from Proposition 2.2. O

3. NONSTANDARD CONSTRUCTION OF (G-EXPECTATION

3.1. Hyperfinite-time setting. Here we present the nonstandard version of the
discrete-time setting of the sublinear expectation and the strong formulation of
volatility uncertainty on the hyperfinite timeline.

Definition 3.1. *Q is the *-image of 2 endowed with the *-extension of the max-
imum norm *|| - ||cc-

*D = *[rp, Rp] is the *-image of D, and as such it is internal.
It is important to note that st : *Q — Q is the standard part map, and st(w) will
be referred to as the standard part of w, for every w € *Q). °z denotes the standard
part of a hyperreal z.

Definition 3.2. For every w € €, if there exists @ € *{2 such that ||& — *wl/c =~ 0,
then @ is a nearstandard point in *§). This will be denoted as ns(@) € *€.

For all hypernatural N, let

(17)

K

Ly={——, -N>/Rpb <K <N’/Rp, Ke¢ *2}7

N { NN D < I8 < D
and the hyperfinite timelime

T T

18 T=¢0,—,--,——+T,T,.
(18) fog ~Frrr)
We consider £% as the canonical space of paths on the hyperfinite timeline, and
XN = (X,JCV),IC\[:0 as the canonical process denoted by X} (@) = @y, for w € £}, FN
is the internal filtration generated by X . The linear interpolation operator can
be written as

T T ot s, for L], €O,
where

W(t) == (INt/T| + 1= Nt/T)wniyr) + (Nt/T — [Nt/T|)w | nejT) 415

for w € LN and for all t € *[0,T]. |y| denotes the greatest integer less than or
equal toy and ¢ : T — {0,--- ,N} for ¢ : t = Nt/T.
For the hyperfinite strong formulation of the volatility uncertainty, fix N €
T
*N\ N. Consider {iﬁ} , and let Py be the uniform counting measure on

T T
{:I:ﬁ} . Py can also be seen as a measure on L}, concentrated on {iﬁ} .
Let Qn = {w = (wy, + ,wy)iw; = {£1},i=1,--- N}, andlet Z1,--- ,Ey be a *-
independent sequence of {£1}-valued random variables on 2y and the components
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of Zj are orthonormal in L?(Py). We denote the hyperfinite random walk by
L NuT

X, = —— ZEI for all t € T.
VN =

The hyperfinite-time stochastic integral of some F : T x £ — *R with respect to

the hyperfinite random walk is given by

t t
> F(s,X)AX,: Qy = "R, we Qy = Y F(s,X(w))AX, (w).
s=0 s=0

Thus, the hyperfinite set of martingale laws can be defined by

On, ={ Pvo(MF¥)™L F:Tx L — /Dy }

where

D\ =*Dn 1*N i
N N

t
MPX = (ZF(S,X)AXS> .
teT

and

s=0
Remark 3.1. Up to scaling, Qg/N = Qb .
3.2. Results and proofs.
Definition 3.3 ((Uniform lifting of £)). Let = : £X, — *R be an internal function,

and let £ :  — R be a continuous function. = is said to be a uniform lifting of £ if
and only if

Vo e L5 (5 € ns(*Q) = °2(@) = g(st(a))),
where st(w) is defined with respect to the topology of uniform convergence on Q.

In order to construct the hyperfinite version of the G-expectation, we need to
show that the *-image of &, *¢, with respect to @ € ns(*Q), is the canonical lifting
of ¢ with respect to st(w) € Q. i.e., for every & € ns(*Q), ° (*((@)) = &(st(@)). To
do this, we need to show that *¢ is S-continuous in every nearstandard point @.

It is easy to prove that there are two equivalent characteristics of S-continuity
on *€).

Remark 3.2. The following are equivalent for an internal function ® : *Q — *R;
(1) Yo' €*Q <*||w — W oo 2 0= *|B(w) — B(w)| ~ 0) .
(2) Ve 0,36 > 0: Y € *Q <*||w — W loo < 0 = *B(w) — (W) < E) .
(The case of Remark 3.2 where 2 = R is well known and proved in Stroyan and
Luxemburg [28, Theorem 5.1.1])

Definition 3.4. Let @ : *2 — *R be an internal function. We say ® is S-continuous
in w € *Q, if and only if it satisfies one of the two equivalent conditions of Remark
3.2.

Proposition 3.3. If £ : Q — R is a continuous function satisfying |¢(w)| < a(1 +
lwlleo)b, for a,b >0, then, E = *¢ o~ is a uniform lifting of &.
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Proof. Fix w € Q. By definition, £ is continuous on 2. i.e., for all w € 2, and for
every € > 0, there is a § > 0, such that for every w € Q, if

(19) lw—w [Jeo <9, then |£(w) — &(w )] < e.

By the Transfer Principle: For all w € €, and for every € > 0, there is a d > 0,
such that for every = *Q, (19) becomes,

(20) **w — w'[|ee < 6, and *[*E(*w) — *E(W )| < e.

So, *£ is S-continuous in *w for all w € Q. Applying the equivalent characterization
of S-continuity, Remark 3.2, (20) can be written as

"w — w'lloo 2 0, and *|*¢(*w) — "&(w)] = 0.
We assume @ to be a nearstandard point. By Definition 3.2, this simply implies,
(21) Vo € ns(*Q), Jw € Q: *||0 — *wl|oo ~ 0.
Thus, by S-continuity of *£ in *w,

7E@) —"E(Fw)] = 0.
Using the triangle inequality, if w" € *Q with *|l@ — w loo = 0,
rw=wlloo < I = &lloc + |0 — w [loc =0
and therefore again by the S-continuity of *¢ in *w,
TE(w) = "E(w )] = 0.
And so,
RE@) = € (w)] < TFED) = ECw) |+ [TE(Tw) — "E(w )] = 0.
Thus, for all & € ns(*Q) and w’ € *Q, if *||& — w'[|so 2 0, then,
7E@) = "E(w )| = 0.
Hence, *¢ is S-continuous in w. Equation (21) also implies

w € m(w) (m(w) = ﬂ{*(’); O is an open neighbourhood of w})

such that w is unique, and in this case st(w) = w.
Therefore,

O

Definition 3.5. Let & : *REN — *R. We say that & lifts £ if and only if for every
¢ : Q — R that satisfies |£(w)| < a(1 + ||w||s0)? for some a,b > 0,

E(*E07) = EY(9).
Theorem 2.

22 EQ[] lifts £ (¢).
(22) @?Sg,]v [] lifts £7(€)
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Proof. From Theorem 1,

(23) S ECg(X™)] = £9(¢), asn — oc.

For all N € *N\ N, we know that (23) holds if and only if

(24) max  EYE(XM)] = £9(9),
QE*QgQ\,

(see Albeverio et al. [1], Proposition 1.3.1). Now, we want to express (24) in term
of Qg, . i.e., to show that
N

_max EQ[*¢ 07 = £9(¢).
QeQDw

To do this, use
EQ[*¢ 0] =EQ[*¢ 0017 o]
and
IEQ[*f 0tor o ] = ]EQ[*f 0o
= / *€0%01dQ, (transforming measure)
*RN+1
B / "€ 0d(Q o),
*RT
= E%["¢ o]

for j : *RT — *RNHTL (2t)e7 — (Z¥)
Thus,

tERN+1 *

op, ={Qeoj:Qe"0p }.
This implies,

max E9[¢o7]= max E®[¢o7.
omgs EOC¢o= may E°[tod
N N
O
APPENDIX

Proof of Lemma 2.1. From the above equation, we can say that AM,ﬁc = f(k,X)&.
And by the orthonormality property of &, we have

E[f(k, X)?€R|F1] = B [f (5, X)*|F] <E™[(V/Rp)?|Fi] = Rp P as.,
as |&| =1, f(--+)? € D implies

(AM])?| = |f(k,X)? € [rp, Rp] Py as.
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Density argument verification. Let

f:&— sup EP[¢
PeOp

and

g: &0 lim sup  EQE(X™)].

Qeey, .,

From (15), we know that for all £ € Cy(Q,R), f(&) = g(£). Since L! is the com-
pletion of Cy(2, R) under the norm || - ||, Cy(Q2, R) is dense in L}; and we want to
prove for all £ € L, f(&) = g(&). To prove this, it is sufficient to show that f and
g are continuous with respect to the norm || - ||..

For continuity of f: For all P € Op and &, ¢ € LL,

sup EP[¢] — sup EF[€] < sup EP[l¢ — ).
PeQp PeQp PeQp

Since, Op C Q,

(25) sup ET[e] — sup EP[] < [[€ — €.
PeQOp PeQOp

Interchanging ¢ and ¢,
(26) sup EF[¢] - sup EP[g] < [|€ —¢]..
PeQp PcOp

Adding (25) and (26), we have | f(€) — f(€)] < [|€ — €[]

For continuity of g: We follow the same argument as above.

Proof of Remark 3.2. Let ® be an internal function such that condition (1) holds.
To show that (1) = (2), fix £ > 0. We shall show there exists a ¢ for this ¢ as in
condition (2). Since ® is internal, the set

I= {5 € Rop: Y €0 (Fflw —w [ < 0 = *|B(w) — D) < z—:)},

is internal by the Internal Definition Principle and also contains every positive
infinitesimal. By Overspill (cf. Albeverio et al. [1, Proposition 1.27]) I must then
contain some positive § € R.

Conversely, suppose condition (1) does not hold, that is, there exists some w €*Q
such that

*llw — w [loe ~ 0 and *|®(w) — ®(w)| is not infinitesimal.

If &€ = min(1, *|®(w) — ®(w')|/2), we know that for each standard § > 0, there is a
point w’ within ¢ of w at which ®(w") is farther than e from ®(w). This shows that
condition (2) cannot hold either. O
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