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Abstract: Floods, earthquakes, storm surges and other natural disasters severely affect the 

communication infrastructure and thus compromise the effectiveness of communications dependent 

rescue and warning services. In this paper, a user centric approach is proposed to establish 

communications in disaster affected and communication outage areas. The proposed scheme forms ad-

hoc clusters to facilitate emergency communications and connect end-users/ User Equipment (UE) to the 

core network. A novel cluster formation with single and multi-hop communication framework is proposed. 

The overall throughput in the formed clusters is maximized using convex optimization. In addition, an 

intelligent system is designed to label different clusters and their localities into affected and non-affected 

areas. As a proof of concept, the labeling is achieved on flooding dataset where region specific social 

media information is used in proposed machine learning techniques to classify the disaster-prone areas as 

flooded or unflooded. The suitable results of the proposed machine learning schemes suggest its use along 

with proposed clustering techniques to revive communications in disaster affected areas and to classify 

the impact of disaster for different locations in disaster-prone areas. 

Keywords: Ad-hoc networks, heterogeneous networks (HetNets), social sensors, infrastructure less 

communications, machine learning. 5G, device to device (d2d), boosting classifiers 

1. Introduction 
Natural hazards and catastrophes can significantly interfere and effect people’s life, property and 

socioeconomic cycle. Natural hazards can be categorized into three main classes [1]: meteorological 

hazards, hydrological hazards and geological hazards. These hazards are depicted in Figure 1. 

Meteorological events are composed of tornados, hurricanes, thunderstorms, winter storms (ice storms) 

and summer storms (wildfire). Hydrological events consist of all flood types (fluvial, pluvial, and coastal), 

storms surges and tsunamis. Geological hazards comprise of earthquakes, volcanic eruptions and mass 

movements (land sliding, mudflows, avalanches etc.).  

In the event of such hazards, disaster management play a vital role. Disaster management requires 

preparedness and timely responses to mitigate and recover normal state of living along with increasing 

resilience of society. However, limited capacity of the governmental institutes, non-governmental 

organizations (NGOs), first responders and rescue workers to effectively execute help and rescue services 

for the affected regions in natural disasters pose several challenges. To effectively engage in the rescue 

services and better coordinate the activities, communication system plays an important role [2, 3]. 

However, in case of natural calamities, the communications infrastructure, whether it is wired or wireless, 

is severely incapacitated [4]. Communications failure not only makes the rescue activities harder but also 

makes the assets (social sensors, volunteers (recruited in pre-disaster phase)) useless. It also affects 

information authenticity and coordination activities harder with limited to no communication with the 



social sensors and volunteers in affected areas. The power failures in the affected regions result in inability 

of affected population to receive telecasts (one-way simplex communications for general instructions). 

The devastating impact of natural catastrophes on communication backbone  networks disturb both wired 

and wireless links (duplex communications) alike. Lack of effective communications between the 

inhabitants of affected areas and the rescue workers/first responders, among various rescue teams and 

with the rescue operation coordinating agencies result in poor management of rescue activities [5, 6]. The 

poor flow of information also results in inaccurate analysis of situation thus, resulting in inaccurate 

distribution of resources. 

 

Figure 1 Classification of natural hazards 

The importance of communications is evident in the event of a natural disasters [7, 8]. However, the low 

resilience of traditional cellular infrastructure and inability to operate in severe circumstances makes it 

more vulnerable and fault intolerant. Besides, natural disasters also cause failure in operations of Base 

Station System(s) (BSS) and affects the communications of all connected Mobile Stations (MS) in the 

region. For instance, the 2011 earthquake in Japan caused over 16 thousand deaths while thousands were 

injured and missing [9]. The communications infrastructure including major coastal transmission lines 

and utility poles were heavily damaged, causing a shutdown of approximately 29,000 base stations [10]. 

Consequently, 1.9 million subscribers were affected due to this major collapse in communication 

infrastructure. The catastrophic flash floods in India in 2013 significantly affected the northern regions 

and many areas of socioeconomic significance were isolated due to inefficient communication 

infrastructure [11]. The wired and wireless services including the cellular and internet were severely 

affected due to high congestion, which resulted in significant delays in rescue and evacuation activities. 

More recently in 2015, the earthquake of 7.8 magnitude hit all across Nepal causing thousands of deaths, 

injuries and major property damages [12]. Cellular stations, power stations and internet communications 

were also significantly disrupted.  This largescale communications failure stopped information exchange 

between the rescue authorities and the residents of thousands of rural villages, thus, depriving survivors 

to receive lifesaving information even after weeks of this catastrophic event [13]. These events highlight 

the importance of communication infrastructure which can potentially reduce collateral damage and loss 

of life. Moreover, the World Health Organization (WHO) for Europe [14] highlighted the essence of 

telecommunication in emergencies, and considered resilient telecommunication infrastructure as one of 

the essential attributes of emergency crisis management system. Davis et al. [15] conducted a study which 

gathered information from 26 WHO communication officers who had experiences in dealing with a total 

of 18 natural disasters (tsunamis, earthquakes, floods etc.) that unfortunately resulted into 29 outbreaks 

of 13 diseases. The report highlighted that communication infrastructure in the form of text messages and 

social media (through internet) can augment and disseminate the lifesaving information and health 

messages to prevent panic during and after disastrous events [15]. 

The centralized hierarchy supported by the legacy cellular systems is especially affected in the areas in 

need of rescue services. Therefore, decentralized emergency communication frameworks are required to 

offer necessary feedback communication within the affected areas [37]. Most of the existing efforts in 

restoring disaster affected communications require deployment of remote BSS which restricts the 

suitability of such communication networks. Furthermore, the robustness and scalability in such systems 

is usually unattainable. Localization of the MS for accurate region-wise threat analysis and statistical 

feedback of trapped survivors is also a challenge. The bulk information generated in communication 

functional areas (where communication networks are restored or survived the disaster) is also hard to 

analyze using conventional techniques. Machine intelligence can be used to better read the situation in 

different disaster affected areas and characterize level of emergency in different regions based on the 

communications originating from that region.  



This paper proposes a location-based ad-hoc network formation mechanism to restore necessary 

communications of UE/MS in case of failure in core communication infrastructure. The main 

contributions of the paper include  

1) Single-hop and Multi-hop communications link establishment to the core network in the event of 

communication infrastructure collapse 

2) Efficient cluster formation and optimized cluster-head (CH) selection 

3) Throughput optimization within the clusters 

4) Machine learning based data analysis for identification of disaster situation in different regions 

5) Accurate localization of the disaster affected areas with high performance 

The rest of the paper is organized as follows. Related work is presented in section 2. Section 3 describes 

the methodology of the proposed novel communication infrastructure to establish communications in 

disaster affected areas. Section 4 introduces the proposed AI-empowered disaster detection system which 

exploits social media platform for pre-disaster vulnerability prediction and localizing disastrous area until 

the communication infrastructure sustains. Results and discussion are presented in section 5, while section 

6 concludes the findings of the study, highlights its limitations and give future directions. 

2. Related work 
The centralized architecture in cellular network make it vulnerable to large scale communications outage 

in the disaster affected areas. Under such circumstances, the device to device (d2d) and localized 

communications can play a vital role in restoring the necessary communications. Over the years, several 

schemes were proposed to offer sustainable communications in pre-disaster as well as post-disaster phases.  

The inability of existing communication infrastructure to cope with extreme unprecedented events cause 

complete communication infrastructure breakdown. Gomes et al. [16] extensively reviewed the 

communication strategies in pre-disaster and post-disaster scenarios and highlighted the limitations of 

existing systems with possible improvement suggestions for robust communication infrastructure. It was 

suggested that the network solution requires added redundancy, content connectivity and traffic 

connection management to provide robust communication in pre-disaster scenarios. Added redundancy 

ensures accessibility of a UE to other UE within the network by introducing immunization strategies to 

provide extra protection to the network. Content connectivity allows content delivery to each node in 

disconnected network during a catastrophic event. Whereas, traffic congestion management distributes 

traffic to less congested UE or allocates extra capacity in disastrous situations [16]. The out of network 

robustness in pre-disaster situations can be achieved by ensuring the power supply to the network 

infrastructure through multiple power sources and by deploying the network software platform in a region 

less prone to natural disasters. The post disaster recommendations to ensure network recovery and 

robustness suggested prompt deployment of emergency networks based on transportable networks nodes 

(base stations and access points). Deployment of mesh and ad-hoc networks was also suggested for end 

user devices in addition to taking instantaneous measures to ensure the efficient and robust maintenance 

of the network [16]. A recent study [17] also highlighted several key aspects of communication 

infrastructure that are essential in providing efficient communications in natural catastrophes and 

emergency conditions. These include robustness, reliability, user and network mobility, interoperability 

of communication infrastructure, rapid deployment, scalability, quality of service, security, cost 

effectiveness, energy efficiency, localization, capacity and coverage [17, 18]. 

In [19], an approach to calculate the reliability index of user devices for peer selection in d2d networks 

using physical layer relation (such as mobility, spectrum, power, etc.) was introduced. A single cell 

scenario was considered in this study and therefore, raised the concern of scalability of the proposed 

approach. A time dependent local decision-making technique was introduced for service discovery. 

FINER, a multi-hop d2d communication with hybrid ant colony optimization-based routing algorithm to 

locate-and-reconnect the isolated mobile nodes in the disaster zone was presented in [21]. Social network 

information was used to improve the energy efficiency during data dissemination in d2d communication 

[22]. The study limited the d2d transmission to users with social ties and excluded user mobility. The 

authors in [40] investigated the convergence of social networks and d2d communication from resource 

allocation and optimization perspective. However, their study was generic and did not specifically 

consider disaster scenarios.  

Authors in [23] demonstrated the benefits of using multi-hop communications over single-hop d2d 

communications in a laboratory testbed. Energy consumption, network delay, coverage and link quality 

were the key performance parameters which showed improved performance in a laboratory setup. While 

the results were promising, yet, in real-life scenarios where there will be thousands of devices, 

effectiveness of system model to handle such complexity was questionable. To establish long-range links 



for multi hop d2d communication networks, the authors in [24] exploited social network features and 

communication domain constraints. A greedy algorithm based on critical edge and coalition graph game 

using social community information was proposed to model long-range links creation. Further, a weighted 

social relationships approach was explored in [25] to enable data dissemination over d2d networks using 

direct or indirect links between any two users in a connected community. The authors proposed monetary 

auction-based mechanism which claimed to obtain the global optimal solution and achieves truthfulness, 

and a moneyless matching-based mechanism claimed to guarantee two-sided stability with a lightweight 

implementation. 

A mechanism called 'survival on sharing' to prolong the battery life and device connectivity in disaster 

zones was proposed in [26]. The results from both experimental and simulation-based analysis showed 

significant performance gain when using d2d communications. An information diffusion-based approach, 

combining network metrics for different transmission modes (i.e., multicast, unicast, d2d) and social 

relationships was highlighted in [27] for data dissemination process. In addition, a metric called social 

network contact time was introduced to characterize the user behavior in identifying the frequency of 

interaction of an end-user with a social network platform.  

Recent works have also proposed drone/UAV based systems to recover wireless network services in a 

post-disaster situation. Clustered deployment of drone-based small cells in stochastic geometric 

framework was investigated in [28] to optimize the energy efficiency and coverage probability of the 

ground users. It was identified that the key parameters influencing optimal deployment were transmission 

power ratio between drone base stations and traditional base stations, drone altitudes and the number of 

drones in a cluster. Authors in [29] proposed learning-based clustering algorithm and relaxed optimization 

algorithm for user association where the UAVs and d2d connections were jointly leveraged to recover the 

wireless service. The work has highlighted the advantage of using artificial intelligence methods to 

achieve high performance with low complexity. A multi-hop d2d and UAV combined approach to perform 

downlink transmission was studied in [30] and has presented the outage probability and precoding 

performance of the downlink from UAV to devices. Even though the study used clusters to evaluate their 

model, they did not use a specific clustering technique. Considering high mobility, low cost, and flexible 

deployment features of UAV, the authors in [41] explored the possibilities of employing UAVs to cope 

with the challenges of existing network technologies such as limited coverage and scarce resources. To 

tackle the problem of limited energy power of IoT nodes, the authors in [42] employed UAV for data 

collection and power supply. An IoT node harvests energy from a UAV through directional wireless 

energy transfer and sends data packets back to it. Some recent studies suggested the idea of employing 

mobile crowd sensing [43] for situation awareness in disaster affected areas.   

Over the years, several ad-hoc schemes are proposed to facilitate communications in disaster affected and 

communication outage areas. While some of the schemes lack scalability, others require dedicated 

equipment and additional resources, not readily available in disaster affected areas. In addition, almost all 

of the techniques lack the ability to identify region-wise vulnerability of disaster affected area. In the 

proposed work, a machine learning based vulnerability analysis of disaster prone/affected areas is 

evaluated along with a suitable ad-hoc communication infrastructure to cope with the adverse effects of 

communication failure in such regions. The proposed communication infrastructure enables instantaneous 

clustered network establishment to facilitate the communications where the cellular and other means of 

communications have failed. In addition, as a proof of concept, a machine learning technique is proposed 

to evaluate social media to assess vulnerability of people in disaster areas with potential extension to 

region wise susceptibility. The details of the proposed communication infrastructure and machine learning 

technique are covered in the following sections. 

3. Proposed communication infrastructure in disastrous 
situations 

The communications are essential for both first responders and civilians trapped in the disaster-stricken 

areas. In critical circumstances, failure in communications can affect the rescue services and limit the 

effectiveness of first responders in the affected areas. The rescue activities of the first responders and 

rescue workers are very important in minimizing further loss of life and injuries and therefore, the 

necessity of resilient communication networks cannot be denied.  

In the event of a natural disaster, the electrical power and the communications infrastructure can be 

seriously affected. The inability to communicate affects coordination among the trapped survivors, rescue 

workers and outside world. In the event of a failure in cellular infrastructure, adaptive d2d and multi-hop 

communications can offer an alternate communications setup. To restore necessary communications 

within the vulnerable areas, suitable infrastructural changes need to be introduced. In this paper, a 



clustering and communications scheme is proposed to facilitate communications within the disaster 

affected and communications outage areas. The system parameters are presented in Table 1, whereas a 

detailed description of proposed scheme is as follows. 

Table 1 System Parameters 

Parameters  Variable(s) Value(s) 

Control channel Superframe duration 𝑇𝑠𝑓 4.83ms 

Transmission slots 𝑚 8 

Receiver sensitivity 𝛿𝑟 -95 dBm 

Desired SNR margin 𝑆𝑁𝑅𝑚 10 dB 

Received Power 𝑃𝑟  - 

Transmitted power 𝑃𝑡 - 

Transmitter gain 𝐺𝑇 3dB 

Receiver gain 𝐺𝑅 3dB 

Transmission power multiplying factor 𝑔 1-3 

Extended range of control channel 𝑑𝑒 - 

control channel band 𝑓 900/1800/2100 

MHz 

Path-loss exponent 𝑛 2-4 

Average Smart Phone (SP) penetration 𝜇1  

Expected deviation in average SP 𝜎1  

Transmitted power of the satellite  𝑃𝑠  

Noise Power 𝜎𝑛
2  

GPS coordinates: x-y plane mean location and expected deviation 𝜇𝑥, 𝜎𝑥 , 𝜇𝑦, 𝜎𝑦  

Bivariate gaussian distribution symmetry 𝜌 0 

Distance vector between 𝑗 and 𝑘 𝑑𝑗𝑘  

Hop-count to the core network at time 𝑡 𝐻𝑐𝑜𝑢𝑛𝑡(𝑡)  

3.1 Extended coverage establishment 
In the event of a failure in one or more cellular BSS, the active BSS, near the communications outage 

area will initiate a high-power clustering request using the prespecified control channel. The proposed 

scheme uses synchronized communications from active BSS situated next to the disaster affected areas, 

allowing to extend its coverage to the communications dead zone. The extended coverage area for the 

control channel is presented in Figure 2.  

 

Figure 2 High power control channel coverage and cluster-head (CH) selection 

The extended coverage range of the BSS is trigged in the event of a disaster. The extended coverage range 

is achieved by introducing two changes in control channel communications: 1) use of relatively low 

frequency and 2) high transmission power. The justification for the extended range can be validated from 

Friis’ Equation which suggests the received power can be expressed as [38, 39] 

Pr = (
𝑃𝑡𝐺𝑇𝐺𝑅𝜆2

(4𝜋𝑑𝑒)2
)       (1) 

 



here 𝑑𝑒 is extended coverage range, 𝑃𝑡 is original transmission power, 𝐺𝑡 and 𝐺𝑟  are the transmitter and 

receiver gain. 𝜆 is wavelength (where 𝜆 = 𝑐/𝑓), 

The extended coverage range is directly related to the pathloss. Since time and frequency division is used 

to eliminate the interference from neighboring BSS, therefore, with an increase in the transmission power 

by a factor 𝑔 will result in additional coverage area represented in Eq. 2. Based on this equation, since 

maximum range is considered, therefore received power can be replaced with receiver sensitivity, δr, 

which can give us maximum communication range of the base station. Note that relatively low frequency 

control channels are used to extend the coverage range and to convey the beacon signals farther.  

𝑑𝑒 = √(
𝑔𝑃𝑡𝐺𝑇𝐺𝑅𝜆2

(4𝜋)2δr
)

𝑛
      (2) 

here 𝑛 = 2, and 𝑔𝑃𝑡 is 𝑔 times original transmission power for extended coverage area.  

3.2 Control communications and scheduling 
Figure 2 highlights the cooperative coverage area (covered by more than one BSS). To avoid interference, 

time division multiple access (TDMA) is used to establish control channel communications, where the 

communications from different BSS are adaptively scheduled. An example scenario is presented in Figure 

3, where BS1, BS2 and BS3 are the active BSS in the neighboring region of communications outage area. 

The hexagonal cells in Figure 3 represent original coverage area where extended coverage area is 

represented with circular coverage areas. The control channel communications schedule of these BSS is 

also presented in Figure 3 where these base stations cover the areas CA1 (Coverage area of BS1), CA2 

(Coverage area of BS2), CA3 (Coverage area of BS3), CC12 (Cooperative coverage area of BS1 and BS2) 

and CC23 (Cooperative coverage area of BS2 and BS3). The slotted broadcast of the BSS uses a control 

channel frame of duration 𝑇𝑠𝑓 with 𝑚 transmission slots, which can cover all possible aspects of collision 

and failure scenarios in hexagonal cellular structure. 

 

Figure 3 Control channel communication synchronization 

3.3 Localization of MS in Disaster Areas 
MS/UE are assumed to have certain penetration of Smart Phone(s) (SPs) allowing global positioning 

system (GPS) based localization. The SP penetration of selected countries is listed in Table 2, whereas 

the extended list can be found in [31]. In a particular vicinity, the existence of SP is modelled as follows: 

𝑓(𝑥 | 𝜇1, 𝜎1) =

(
1

√2𝜋𝜎1
2
𝑒
−

(𝑥−𝜇1)2

2𝜎1
2

)

∫ (
1

√2𝜋𝜎1
2
𝑒

−
(𝑥−𝜇1)2

2𝜎1
2

)𝑑𝑥
1
0

             𝑥 ∈ ℝ({0,1})   (3) 

here 𝜇1 is the average SP percentage in the selected region, whereas 𝜎1 is the expected deviation from the 

average penetration of smart phones.  



Table 2 Smart Phone Penetration 2017 

Countries  Smart Phone Users  Smart phone penetration  

United Kingdom 44,953,000 68.6% 

United States 226,289,000 69.3% 

Indonesia 54,494,000 20.7% 

Turkey 40,010,000 49.8 

Vietnam 25,162,000 26.4% 

Sweden 7,167,000 72.2% 

Given the communications outage and BSS failure in the region under consideration, the accurate 

localization of other MS and SPs is achieved using Received Signal Strength (RSS) and GPS information 

from selected SPs with GPS access. The SPs are assumed to have GPS. The GPS is assumed to be 

evaluated using Fault Detection and Isolation (FDI) algorithm [32] where instantaneous pseudo range, 𝑅, 

of a receiver 𝑗 from satellite 𝑘 is expressed as  

𝑅𝑗𝑘(𝑡) = 𝜐𝑗𝑘(𝑡) + 𝛿𝑗𝑘(𝑡)      (4) 

here 𝜐𝑗𝑘(𝑡) represents geometric distance between the satellite 𝑘 and the receiver 𝑗 and 𝛿𝑗𝑘(𝑡) represents 

clock bias. The received SNR of the GPS receiver is given by  

𝑆𝑁𝑅𝑑𝐵 = 10 log10 (
𝑃𝑠

𝜎𝑛
2)      (5) 

where 𝑃𝑠 is the transmitted power of the satellite and 𝜎𝑛
2 is the noise power. The positioning accuracy is 

modelled with statistical attributes for realistic analysis. Whereas, the circular error probable (CEP) is 

defined to be 1m with 50% accuracy assigned and twice the Distance Root Mean Square (2DRMS) is 

considered to be 5m with 98% accuracy of GPS analysis within 2DRMS range [33]. 

The estimated location of GPS is modelled in 2-d space using bivariate gaussian distribution where the 

density function is expressed as follows 

𝑓(𝑥, 𝑦 | 𝜇𝑥, 𝜎𝑥, 𝜇𝑦 , 𝜎𝑦 , 𝜌) =  

𝑒𝑥𝑝

[
 
 
 

−
(
𝑥−𝜇𝑥

𝜎𝑥
)−

2𝜌(𝑥−𝜇𝑥)(𝑦−𝜇𝑦)

𝜎𝑥𝜎𝑦
+(

𝑦−𝜇𝑦
𝜎𝑦

)

2(1−𝜌2)

]
 
 
 

2𝜋𝜎𝑥𝜎𝑦√1−𝜌2
      (6) 

here 𝑥 and 𝑦 represent x and y position on the ground plane, 𝜇𝑥and 𝜇𝑦 represent the original position of 

the SP, 𝜎𝑥 and 𝜎𝑦 represent deviation from mean position in x and y direction on ground plane, evaluated 

using the CEP and 2DRMS ranges and 𝜌 defines the symmetry where −1 ≤ 𝜌 ≤ 1. Here 𝜌 = 0, as the 

deviation is expected to be symmetrical in both x, y direction of the original position of the SP. 

The initial transmission from the BSS, as represented in superframe in Figure 3, will initiate a chain of 

beacon signal transmissions from the selected SPs in extended coverage area. The beacons transmitted 

from the BSS and SPs allow other MS and indoor SPs (deprived from positioning information) to evaluate 

their position using RSS. Based on the beacon information emitted from BSS and SPs, the remaining 

phones will localize themselves.  

The distance vector between 𝑗 and 𝑘 (BSS and MS pair or SP and non-SP MS pair) is evaluated as follows 

𝑑𝑗𝑘 =  {(∑ (𝑎𝑗𝑖 − 𝑎𝑘𝑖)
𝑏 𝐼

𝑖=1 )
1/𝑏

 | {

𝐼 = 2,                     2 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑝𝑙𝑎𝑛𝑒
𝐼 = 3,                     3 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑝𝑙𝑎𝑛𝑒

𝑏 = 2, 𝑑𝑖𝑗 →  𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
               }    

    (7) 

The positioning information of MS is evaluated at relevant MS and transmitted to the core network via 

suitable transmission link to BSS. The MS connected to the BSS will pass their location and other relevant 

information to BSS directly, or via the most suited SP to the relevant BSS. At BSS, Eq. 8. is used to 

evaluate the extended distance matrix of the MS and SPs in the network. The BSS forms a centralized 

location-based map of each active MS/SP/BSS in the area. Location information of all active MS, SP and 

BSS in communications outage and neighboring areas is represented as 𝑛 × 𝑛 matrix, 𝑈. Where 𝑈 can be 

expressed as 

𝑈 = [

𝑢11 … 𝑢𝑛1

⋮ ⋱ ⋮
𝑢1𝑛 … 𝑢𝑛𝑛

]        (8) 



here 𝑢𝑗𝑘 is the distance between the two devices 𝑗 and 𝑘, where (𝑗, 𝑘)  ∈ {𝐵𝑆𝑆,𝑀𝑆, 𝑆𝑃}. In 𝑈, diagonal is 

all zeros.  

In initial communications, apart from the location information, the MS/SPs also send the energy 

information, beacon sources used for position estimation and other relevant details to the BSS. It allows 

the BSS to decide which MS/SPs are more suitable to serve as temporary BSS in communications outage 

area. It is worth noticing that the smart phones share two location values: one from GPS and other from 

RSS. Furthermore, the position estimation is improved by using the GPS based localization of SP in 

comparison to RSS to introduce the correction factor. Given the accuracy of GPS, adaptive weighted 

correction is assumed to improve the localization accuracy of MS. The location information of each 

MS/UE is used in the machine learning phase which proposes region wise disaster criticality level 

evaluation based on originated communications from MS/UE, thus also giving an accurate disaster 

emergency level of different regions in disaster affected area. 

Note that at least three beacons are required for position estimation of a MS in normal circumstances. In 

case the BSS failure is not random, rather uniformly distributed as represented in Figure 3, where a certain 

boundary can be established between functional and non-functional BSS, then only two beacons are 

required.  

3.4 Cluster-Head Selection and MS distribution 
The overall disaster area can be presented as shown in Figure 4. As represented in the figure, only the 

smart phones can serve as a CH for obvious reasons of having extended features. Note that the initial 

criteria for being a local cluster-head (LCH) is to be in the extended transmission range of an active BSS 

in first instance. The potential CHs in suitable extended coverage location are then evaluated based on 

four parameters: 1) Hop count, 2) delay, 3) remaining battery and 4) received signal strength. A weighted 

voting of all these components is used to decide which CH is more suitable. In this study, equal voting is 

used to evaluate smart phone’s suitability to become CH. Finally, the potential CHs are compared and 

most suitable of all is selected as LCH. 

In the extended coverage areas (CA1, CC12, CA2, CC23, CA3) and communications outage area, the BSS 

will designate suitable LCHs. Any LCHs unable to connect with any BSS directly will relay information 

to the BS using relay MS in communication functional area. BSS will evaluate link quality, battery level, 

hop-count to core network, communication delay and location to identify and nominate suitable CHs. 

Note that the geographical location is used to create clusters, therefore, CHs are selected within each 

cluster space. The mathematical notation for selection of CHs is listed as follows: 

𝐶ℎ𝑒𝑎𝑑(𝑗) = (𝛼 × 𝐻𝑐𝑜𝑢𝑛𝑡(𝑡) + 𝛽 × 𝑑𝑚ℎ(𝑡) + 𝛾 × Ɛ𝑛𝑗(𝑡) + 𝜔 × 𝐿𝑄(𝑡))     (9) 

i. 𝐶ℎ𝑒𝑎𝑑(𝑗) is the suitability of MS 𝑗 to become a CH. 𝐶ℎ𝑒𝑎𝑑(𝑗) is compared to 𝜓(𝑖) where 𝜓(𝑖) is 

the threshold for deciding if a MS is suitable to work as a CH. 

ii. 𝐻𝑐𝑜𝑢𝑛𝑡(𝑡) is the number of hops to the core network/BSS from the CH 𝑗. 
iii. 𝑑𝑚ℎ(𝑡) is the delay from CH 𝑗 to the core network and can be modelled as a recursive function. 

iv. Ɛ𝑛(𝑡) is the depleted battery level of CH 𝑗 at time 𝑡. 

v. 𝐿𝑄(𝑡) is the Radio Signal Strength (RSS) based link quality between MS 𝑗 and the core network. 

It is evaluated in reference to the receiver sensitivity ( 𝛿𝑟 ). It is also assumed that the 

communication channel is symmetric.  The evaluated RSSI in normalized between 0 to 1, where 

𝐿𝑄(𝑡) = 1 − 𝑅𝑆𝑆𝐼(𝑡). 

vi. Furthermore, the cost coefficients defined as 𝛼 , 𝛽 , 𝛾  and 𝜔  can be customized to specify 

contribution from each performance metric to tailor the suitability of various performance 

metrics in accordance with the requirements at hand.  

Note that the potential CH with lowest 𝐶ℎ𝑒𝑎𝑑(𝑗) value is nominated as LCH. It is worth noticing that the 

threshold, 𝜓(𝑖), of 𝑖th iteration of setup mode is given by 

𝜓(𝑖) =
∑ 𝐶ℎ𝑒𝑎𝑑(𝑗)

𝑐𝑖
𝑗=1

𝑐𝑖
⁄       (10) 

here 𝑖 is the number of times the setup mode is re-run. 𝑐𝑖 is the total number of MS in the network. Each 

MS designated as LCH serves as a BSS to penetrate further in the communications outage area and 

broadcast clustering beacon using designated control channel to allow further clustering as represented in 

Figure 5. 



 

Figure 4 Field view of smart phones vs traditional phones distribution 

The BSS is directly connected to the backhaul network. It distributes the assigned bandwidth among the 

LCHs it is serving. The proposed scenario assumes that the disaster management system (DMS) holds an 

approximate risk map of the region. Thus, based on this information the bandwidth allocation is tailored. 

An example scenario is presented in Figure 5. In this figure, based on failure statistics in the core network, 

the communication outage area is highlighted (see Figure 5 green region). In this region, MS, unable to 

connect with the BSS will tune to the control frequency for further instructions. Once the clustering 

instructions are received the MS in this area will either use GPS or triangulation to identify its location 

and submits its other attributes (battery level, range, hop-count) to BSS. MS, depending on its attributes 

will be elected as LCH. Once the LCH broadcasts clustering message, the MS in the vicinity will join the 

LCH and become cluster-member (CM). Each elected LCH will be responsible for three tasks: 1) 

periodically broadcasting clustering message on control channel, 2) downloading emergency content from 

the BSS to disseminate up to date disaster related information to the CM, 3) It will coordinate 

communications from CM to backhaul. 

 

 

Figure 5 Network Diagram 

Each LCH will behave as a BSS for next-hop LCH and will provide basic services. In addition, a log will 

be maintained to designate each MS either into Cat-1 or Cat-2 devices. In Cat-1, high end capability MS 



with potential to become LCH will be included, which can take over some of the radio access network 

(RAN) functionalities when one or more BSS/LCH becomes dysfunctional. Such functionalities may 

include providing synchronization signals, directing d2d links and managing the resource usage among a 

group of d2d devices (UEs) associated with it. In Cat-2, MS which can only act as CM are considered, 

where these MS are controlled by appropriate Cat-1 LCH. The Flowchart for LCH-identification and Cat-

1/Cat-2 distribution of MS is presented in Figure 6.  

 

 

Figure 6 Mobile station labeling and local cluster-head (LCH) selection 

The allocated bandwidth for each nominated LCH is distributed in frequency division multiple access 

(FDMA) and TDMA where multiple communication streams can be established from affiliated CMs. The 

communications from CMs to LCH is established in star topology. Whereas the communications between 

the LCH and BSS is established in single-hop (| 𝐻𝑐𝑜𝑢𝑛𝑡 = 1), or multi-hop (|𝐻𝑐𝑜𝑢𝑛𝑡 > 1) communications.  

To manage the proposed scenario more effectively, a coalition formation algorithm is proposed to form 

the clusters in the most energy-efficient way. The proposed algorithm forms clusters among all LCHs in 

a way to reduce the average energy consumption. As soon as a MS decides to enter/form a cluster, it 

enters a binding agreement with the other UE within the coalition, and then considers the benefit of the 

coalition above its individual benefit.  



In addition, the proposed approach is considered to maximize the overall throughput for the public safety 

network (PSN). To maximize the throughput of all MS/UE, optimization problem is formulated which is 

presented as follows: 

max(𝑅𝑡𝑜𝑡𝑎𝑙)      (11) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:           

𝑟𝑘𝑛 ≤ 𝐶𝑜, ∀ 𝑐ℎ ∈ 𝐶𝐻      (12) 

∑ 𝜂𝑘𝑐ℎ ≤ 1 , ∀ 𝑘 ∈ 𝐾𝑛∈𝑁       (13) 

∑ 𝜂𝑘𝑐ℎ ≤ 𝑞𝑛 , ∀ 𝑐ℎ ∈ 𝐶𝐻𝑘∈𝐾      (14) 

𝜂𝑘𝑐ℎ ∈ {0, 1}, ∀ 𝑘 ∈ 𝐾 & ∀ 𝑐ℎ ∈ 𝐶𝐻    (15) 

 

 

Here, the objective function in Eq. 11 represents the overall throughput of all present MS/UE in the 

disaster area.  

• The constraint in Eq. 12 implies that the rate for each user should not exceed the Shannon capacity 

limit, 𝐶𝑜, of the channel.  

• The constraint in Eq. 13 implies that each 𝑀𝑆𝑘  may be allocated to maximum one LCH or not 

allocated to any LCH at all.  

• The constraint in Eq. 14 suggests that the maximum number of allocated CM to LCH cannot exceed 

its capacity (i.e. the maximum number of servable CMs). 

• The constraint in Eq. 15 defines the binary nature of 𝜂𝑘𝑐ℎ variable. 

Whereas, 𝐾 is the set of MS, 𝐶 is the set of clusters, 𝑅𝑡𝑜𝑡𝑎𝑙 is accumulative throughput of all MS/UE,  

𝜂𝑘𝑐ℎ is a binary variable with value 1 if 𝑀𝑆𝑘 is allocated to 𝐶𝐻, and 0 otherwise.  

The total number of available resource allocations to the MS/UE by LCH is given by  

𝑞𝑛  = 𝐶𝑛/𝑅𝐵         (16) 

where 𝐶𝑛 is the Shannon capacity of LCH and 𝑅𝐵 is the allocated capacity of individual UE.  

It is worth mentioning that the analyses depict throughput gains obtained by appropriate cluster selection. 

Each LCH is considered to have several MS connected to it as shown in Figure 5. The expected MS/UE 

affiliation with a suitable LCH is usually governed by distance-based schemes. However, in the proposed 

work, the affiliation is achieved using the above throughput optimization function. It enhances the 

throughput and allows the affiliation of MS to suitable LCH which results in enhanced throughput. Thus, 

in this work, the proposed optimization technique provides better throughput in contrast to distance based 

affiliation of CMs. The work showed that the throughput of the network can be improved significantly by 

optimally affiliating the CMs to appropriate LCHs. The affiliation of MS/UE with LCHs is presented in 

Figure 7. 



 

Figure 7 Optimal affiliation of cluster-members (CMs) with local cluster-heads (LCHs) in disaster area 

In Figure 7, the affiliated UE is represented by a star of the same color of the diamond, which is 

representing an LCH. The black plus signs signify the UE that are not affiliated with any LCH. Further 

details on the performance of proposed scheme is presented in Section 5. 

4. Machine learning based region wise disaster severity detection 
using social media platform 

A machine learning based disaster severity evaluation in different regions using social media platform is 

proposed along with the communication model for disaster affected areas. The fundamental objective of 

analyzing social media based platform in this study is to perform pre-disaster vulnerability prediction and 

localize disastrous areas until the communication infrastructure sustains. The role of proposed AI-

empowered disaster detection system using social media is to assist government officials and emergency 

services to identify threats and overall vulnerability.  The proposed machine learning scheme evaluates 

impact in different disaster affected areas where severity of underlying conditions is analyzed based on 

messages/pics/sentiments from the social media users within a certain geographical boundary. It is 

assumed that users’ approximate location is known. Further details of the proposed machine learning 

technique and implemented system are presented in following subsections. 

4.1 Dataset 

The dataset used in this study in obtained from CrisisLex [34]. It is a data repository that uses social media 

platform (i.e. twitter) to understand the presence of disaster within a geographical boundary. CrisisLex 

contains the dataset of natural disasters (floods, hurricanes, tornados) as well as manmade disasters 

(explosions, bombings). This study utilizes only dataset of natural disasters and flooding in particular. 

The flooding dataset refers to 2013 flooding occurred in Alberta, Canada. The dataset was labeled using 

the crowd flower data annotation platform where each data sample (tweet) was labelled to either non-

flood (irrelevant to Alberta flooding) or flood (relevant to Alberta flooding). 

4.2 Pre-processing and feature-extraction of the dataset 
The flood related social media messages obtained through twitter require extensive pre-processing before 

any feature extraction. It is essential in most of the natural language processing tasks to omit the unrelated 

information and to reduce the redundant information. For this purpose, regular expression (RE) operations 

and natural language toolkit (NLTK) [35] libraries have been used in python to remove the special 

characters, hashtags, URLs, punctuations, stop words. The resulted dataset is processed further through 

stemming and lemmatization operations, which helps to derive the root or basic form of words that can 

eventually ease the feature-extraction and further processing. Stemming is followed by feature extraction 

which is obtained through bag of words.  This is a process to compute features from the text in such a 

way that the machine learning algorithm can be implemented to extract the meaningful patterns from the 

dataset. Bag on words consist of two steps: 1) build a vocabulary of the words within the dataset at hand, 

2) compute the occurrences of each word in each data instance or data sample (a single tweet in our 



scenario). After building the vocabulary, vectorization was used as a measure of the occurrences of each 

word within a tweet or data sample. Vectorization converts the text into sparse matrix and each entry of 

this sparse matrix corresponds to the occurrences of a certain word within a tweet. The overall data 

processing pipeline of the proposed system in presented in Figure 8. 

 

Figure 8 Data processing pipeline of disaster related information detection through machine learning 

4.3 Classification and cross-validation 
The proposed machine learning based disaster prediction model uses Multinomial Naïve base (MNB) 

classifier and XGB [36] implementation of gradient boosting classifier. The performance of the proposed 

classification models is evaluated on social media platform (Twitter) for detecting the flooding within a 

geographical boundary. The simulation parameters of XGB classifier are as follows: number of 

estimators=10, minimum child weight=7, learning rate=0.01, gamma=0.5, maximum depth=9. The pre-

processing and feature extraction state resulted into 9865 data samples. The processed dataset is divided 

into 70/30 cross validation strategy in which 70% of the dataset is used to train the classifier and 30% is 

used for performance validation of the trained model. In this way, training and validation dataset 

comprised of 6905 and 2960 data samples respectively. Accuracy is used as evaluation metric to compute 

the performance of the proposed method and to compare the performance of the classifiers.  

5. Results and Discussion  
5.1 Performance evaluation of proposed communication infrastructure 
The performance of the proposed clustering scheme is evaluated based on number of MS/UEs affiliated 

with the LCH, system throughput and energy efficiency. In the proposed scheme, the affiliation of UE is 

conditional to the throughput optimization, where if two UE can be affiliated to two LCHs, the selection 

will be made based on which UE’s affiliation to which cluster maximizes the throughput. The results of 

the proposed throughput optimization scheme are also compared with the state-of-the-art distance-based 

affiliation scheme (D-Allocation) where affiliation to a cluster is dependent on the Euclidean distance. 

In Figure 9, the results for both, distance-based scheme and the proposed scheme are presented. In the 

figure, the number of requesting MS/UEs are presented on x-axis, whereas the number of affiliated 

MS/UE are presented on y-axis. Although the performances are relatively similar, yet the proposed 

approach still offers slight improvements out of the two by examining it more closely. In case of 

increasing bandwidth from 10 MHz to 15 MHz and 20 MHz, a linear increase in allocations of UE is 

observed. In case of higher bandwidths (20MHz), the proposed scheme allows up to 8 additional MS/UE 

to be serviced by LCH.  
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Figure 9 Allocation requests and allocated UE 

In Figure 10, the system throughput for both D-Allocation and proposed scheme is presented. It can be 

observed that the system throughput increases as the number of MS/UEs increases where saturation is 

reached sooner for lower bandwidths and later for higher bandwidth systems. This is due to the resource 

limitations dictated by the system bandwidth. In the presented results in Figure 10, the proposed scheme 

performs much better than D-Allocation, where notable improvement in throughput can be observed.   

 

Figure 10 System throughput 

The limited access to electricity in disaster affected area makes energy efficiency an important attribute 

of any ad-hoc clustering and communication scheme. In Figure 11,  the energy efficiency of the proposed 

scheme is presented as a function of average distance between the affiliated UE and LCH. With the 

increase in distance, the energy efficiency of the system suffers. Increase in distance also leads to lower 

SNR and thus leading to poor throughput at the expense of same energy consumption. In Figure 11, steady 

curves can be seen, where energy efficiency decreases with the increase in average distance. Overall, the 



proposed work offers improved throughput and increased number of UEs which can be serviced by a 

cluster, however, it consumes relatively high energy. Nonetheless, scheme offers a suitable mechanism 

to restore communications in disaster affected and communications outage area.  

 

 

Figure 11 Energy Efficiency as a function of average distance of CMs 

In addition to the ad-hoc communications framework, this work also extends its contribution with 

effective evaluation of the localized disaster situation in relatively larger disaster affected area. Machine 

learning based intelligent systems are proposed where accurate analysis of communications 

(messages/pics/videos/sentiments) originating from specific region is performed to identify disaster 

situation in the area. As a proof of concept an existing database is used to evaluate the accuracy of 

proposed machine learning scheme. Further details are as follows. 

 

5.2 Performance evaluation of machine learning based disaster detection 
system 
The performance of proposed MNB and XGB is evaluated to check suitability of proposed methods in 

classifying flood relevant and flood irrelevant tweets. Both classifiers i.e. MNB and XGB performed well 

in classifying the non-flood and flood related messages with an accuracy of above 90%. The achieved 

accuracy to differentiate flooding vs non-flooding events shows the strength of proposed system in 

localizing the flood within a geographical boundary. The XGB classifier performed better than MNB 

classifier with performance of 95.80%, while the MNB classifier achieved an accuracy of 91.22%. The 

confusion matrices obtained for MNB and XGB classifiers are presented in Table 3 and Table 4 

respectively. 

 

Table 3. Confusion matrix of MNB classifier 

 Accuracy 
91.22% 

Predicted class 

  A
ct

u
al

 c
la

ss
 Classified as → non-flood flood 

non-flood 1224 205 

flood 55 1476 

 

Table 4. Confusion matrix of XGB classifier 

 Accuracy Predicted class 



95.80% 

  A
ct

u
al

 c
la

ss
 Classified as → non-flood flood 

non-flood 
1365 64 

flood 
60 1471 

 

These findings show the strength of machine learning algorithm in detecting regional floods through 

social media platform. Although, this work only uses the twitter platform as a data source due to the 

unavailability of other means of data gathering mediums such as short messaging services (SMS), audio 

and video messages, yet the proposed method can easily be extended to mobile platforms using cellular 

networks, where flood affected inhabitants can inform the regional authorities and rescue services through 

SMS and other means.  

The SMS data source is much more realistic and effective than twitter in instances where communication 

infrastructure is already collapsed. In such conditions, proposed machine intelligence based data 

processing pipeline can also help in localizing the emergency cases in severely affected area. Nevertheless, 

twitter-based pre-disaster vulnerability detection and finding the epicenter of the disaster for emergency 

aid are key contributions of such systems, Moreover, the proposed data processing paradigm can easily 

be translated to other natural disasters such as earthquake, hurricanes, tornados, wildfire etc. 

6. Conclusion 
Natural disasters significantly impact natural habitat and socioeconomic system. The significance of 

communications in effective post-disaster support and rescue, is undeniable, therefore, in this work, an 

ad-hoc cluster formation framework was proposed to establish communications in disaster affected and 

communications outage areas. The work also incorporated convex optimization for throughput 

enhancement and localization of UE for novel machine learning based identification of disaster struck 

areas. The proposed work effectively establishes communication infrastructure to facilitate 

communications in the affected areas. In addition, the proposed machine learning scheme assists in 

identifying critical regions in the affected areas by analyzing bulk information through social messaging 

platform. The results have been very favorable and offered improvement in throughput and serviceable 

users in newly formed clusters in comparison to state-of-the-art. A relatively high accuracy of above 95% 

was also achieved on CrisisLex flooding dataset while using the proposed machine learning based 

approach. However, there are certain limitations of the work. The proposed cluster formation scheme 

suffers from low energy efficiency and in future can be further improved with the help of suitable 

transmission power control and energy optimization scheme. In addition, analysis of the anonymized 

disaster region data can be used to generate risk maps and vulnerable regions in post-disaster phases.  
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