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Abstract—Software as a Service (SaaS) is a software delivery
and business model widely used by Cloud computing. Instead of
purchasing and maintaining a software suite permanently, cus-
tomers only need to lease the software on-demand. The domain of
high assurance distributed systems has focused greatly on the ar-
eas of fault tolerance and dependability. In a multi-tenant context,
it is particularly important to store, manage and provision data
services to customers in a highly efficient and dependable manner
due to a large number of file operations involved in running
such services. It is also desirable to allow a user group to share
and cooperate (e.g., co-edit) on some specific data. In this paper
we present a dependable data provisioning service in a multi-
tenant Cloud environment. We describe a metadata management
approach and leverage multiple replicated metadata caching to
shorten the file access time, with the improved efficiency of
data sharing. In order to reduce frequent data transmission and
data access latency, we introduce a distributed cooperative disk
cache mechanism that supports effective cache placement and
pull-push cache synchronization. In addition, we use efficient
component failover to enhance the service dependability whilst
avoiding negative impact from system failures. Our experimental
results show that our system can significantly reduce both unused
data transmission and response latency. Specifically, over 50%
network transmission and operational latency can be saved for
random reads while 28.24% network traffic and 25% response
latency can be reduced for random write operations. We believe
that these findings are demonstrating positive results along the
right direction of resolving storage-related challenges in a multi-
tenant Cloud environment.

Keywords-Multi-tenant Cloud; Cloud Storage; Metadata; Co-
operative Disk Cache

I. INTRODUCTION

The increasing maturity of Internet and virtualization tech-

niques is leading to a new delivery and business model –

Software as a Service (SaaS) in multi-tenant Cloud [10] [15].

Specifically, customers only need to lease the software or

service on-demand rather than purchasing and maintaining the

software suite, because all service deployments and manage-

ments are undertaken by software vendors. In recent years, it is

experiencing rapid growth of applications from both industry

and academia, such as Google Apps [6], Citrix XenApp

[2], CloudAP [28] etc. Following pay as you go philosophy,

users will be charged according to the accumulative time or

resource consumption. Apart from effective software execution

mechanism, how to efficiently store, manage and provision

dependable data and file access service is of significant im-

portance due to a large number of file operations during the

service runing.

Network file system (NFS) [20] is adopted by many systems

as their data storage. Despite the rapid and efficient file

operations provided by NFS, the upgrading cost and scalability

issues are still big concerns. In particular, the increasing

expense to purchase hardware servers will become a heavy

burden to service providers especially when current cluster

capacity cannot satisfy the bursting data storage requirements.

System scalability to handle concurrent requests and perfor-

mance issues [29] [26] is also a non-negligible factor to

be considered. Additionally, new personal storage model is

advocated, in which it jointly leverages different user devices

such as PC, laptop and smart phones etc. [12]. For instance,

Eyo [23] proposes a mechanism of such storage sharing

pattern and it could make the most use of user’s storage

capacity. However, unstable network condition in 3G and WiFi

often leads to degraded and unaccepted degree of depend-

ability. In fact, a reliable and effective service could reduce

the economic impact and service degradation for providers

and consumers respectively. Furthermore, Cloud storage has

obviously become a practical facility [22] [27] because it

elastically provisions a large number of storage capacities

through APIs or SDKs, making customers free from dealing

with scalability and failure issues by themselves. However,

data privacy becomes a big issue for Cloud Storage. Users

might be reluctant to put their private or confidential data into

public storage spaces. Moreover, it is also highly desirable

in multi-tenant environment to allow a user group to share

and cooperate (e.g., co-edit) on some specific files. However,

limitations of the approaches mentioned above would impede

the fully-utilized file sharing and collaborative operations.

To this end, combining Cloud storage with user individual

devices whilst providing effective data sharing mechanism

becomes an appropriate candidate solution. A user could de-

termine his own data distribution – private data stored on local

devices and the remaining data in the Cloud. In this context,

some challenges are still far from settled: Firstly, typical key-

value pair storage in Cloud storage or distributed file system

lacks of mutual relationship information among different pairs.

Highly required file attribute descriptions are not included ei-

ther. Secondly, reducing the resource consumption (especially

for network traffic) is a very critical goal. This is due to the fact

that network bandwidth is a scarce resource in multi-tenant

business model. The reduction of network traffic indicates the



cutting down of economic expense with improved QoS and

increased system capacity. Thirdly, operational latency has

become one of the principal aspects of dependable service

provisioning, especially for interactive applications. In general,

data transmission delay is currently the norm rather than the

exception because the communications among storage devices

are mainly domain-crossing. Furthermore, data synchroniza-

tion and data consistency are also extremely indispensable

during file co-operations in which multiple tenants or software

processes might simultaneously modify a specific data.

In order to deal with these problems, we design and im-

plement D2PS – a dependable data provisioning service. The

core philosophy is to provision an effective data access and

efficient data sharing mechanism among collaborative users or

softwares. The data provenance derives from a unified data

view based on both Cloud storage and individual devices.

Firstly, we adopt a novel metadata to combine both file

attributes and the tree-based hierarchy of all user directories

and files no matter which the original structure is (key-value

or tree). Additionally, metadata local caching and consistency

guarantee are advocated to facilitate the software process

initialization and rapid data access. Furthermore, we use

distributed cooperative disk cache to buffer the frequently-used

data. All above caching mechanisms follow a two-tier caching

architecture which consists of a centralized coordinator and

multiple proxy daemons on every execution nodes. The effec-

tive caching reduces the communication frequency and unused

data transmission. In particular, we leverage hybrid pull-push

approach to achieve bidirectional cache data synchronization,

and incremental transaction with queue-based flow control

to resolve conflicts incurred by simultaneous modification-

s. Specifically, light-weight checkpointing is also used for

rapid component failover, providing effective and dependable

execution environment. Our system is based on iVIC [25],

Alibaba ECS [3] and OSS [7], and the experimental results

show that our system significantly reduce both network traffic

and the response latency. Specifically, over 50% network data

transmission and operational latency can be diminished for the

random read while 28.24% network traffic and 25% response

latency can be reduced for random write operations. The major

contributions in this paper can be summarized as follows:

• An effective metadata management mechanism including

a coordinator-follower based data consistency approach,

and conflict resolving with incremental transaction and

queue-based flow control.

• A two-tier caching approach based on cooperative disk

cache with a pull/push synchronization mechanism.

• A dependable data provisioning service with transparent

component failover, providing a unified data view com-

bining both Cloud storage and individual devices.

The remaining sections are structured as follows: Section

II presents the problem and system overview; Section III

describes the metadata management approach and Section IV

depicts the detailed design of cooperative disk cache; The

evaluation is presented in Section V; Section VI shows related
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Fig. 1: System architecture overview

work and we finally conclude the paper with future work.

II. PROBLEM DEFINITION AND SYSTEM OVERVIEW

In multi-tenant SaaS execution environment, key objectives

in dependable data provisioning are: data sharing within a

group, data isolation among different groups, data or file

operation performance guarantees with low latency network

transmission amount, and reliable service running with mini-

mized impacts on customers SLA etc.

Firstly, in order to provision each SaaS tenant a dependable

and transparent data view of the global storage resources

whilst protecting the user privacy, we adopt the notion –

user group – a dependable and securable means of admission

control. Data inside a user group could be shared and co-

operated among different users, while users in other groups

are disallowed to get access to these files and data. All these

mentioned above are handled by the User Group Manager

shown in Figure 1. Requests are sent to the control node and

each request is marked with a group label. The centralized

controller will differentiate them and enable an isolation of

files for different groups. For convenience, we use user in the

remaining sections to comprehensively represent user group.

Figure 1 depicts the system overall architecture and the

core design idea. The portal provides a web-based user inter-

face(UI) for administrating, files and data visualization, event

and status monitoring etc. The built-in scheduler in the portal

is actually the delegator, responsible for message forwarding,

routing and communications among SaaS execution nodes and

storage sources (Cloud and user’s personal device). The data

provisioning service APIs will be invoked by file operation

requests. In fact, two vital underlying processes – metadata

coordinator and data cache server could offer direct and com-

plete information to support file loading and operations. Data

operations mainly occur in two different ways: through user

direct access and by running software processes (step 1 and

2). On each execution node, two daemon processes – metadata

proxy and cooperative cache client are launched. Metadata

proxy will directly handle metadata-related requests based on

its locally-cached replica. In this manner, the load and pressure

of metadata request handling on the centralized controller node

will be dispersed onto each metadata proxy, resulting in the

mitigation of single point failure. The relevant techniques will



be discussed in Section III. After full data indexing from meta-

data has been constructed, cooperative cache client process

will deal with and forward the data operation requests to the

data cache server. The holistic resources among all execution

nodes will be utilized to constitute a distributed cache resource

pool and each cache client works cooperatively as dual roles

– both cache producer and customer. The specified system

design will be depicted in Section IV.

III. METADATA MANAGEMENT

The data-structure in Cloud is typically stored in the form

of key-value pairs, lacking of mutual structural relationship

among different pairs and highly-required file attributes de-

scriptions. These characters are quite different from tree-based

structure in Linux file system. To satisfy the requirements, we

propose a novel metadata to record the user directory tree and

file attributes. The metadata and the corresponding files are

stored separately in Cloud storage for dependability consid-

erations. Furthermore, metadata cache is conducted in each

node to accelerate the data loading and accessing. However,

inconsistency and conflict might appear when multiple replicas

are concurrently modified. Therefore, the metadata consensus

and conflict resolving are significantly important.

A. Metadata Structure

As mentioned in Section II, each user group will have an

exclusive metadata. The logical storage structure is a tree

with multiple branches and it is persistently stored as an

object in the Cloud while file data pertaining to the user

will stored separately for resiliency. In one specified tree,

each node represents a directory entry or a piece of file data.

The directory entry is a recursive notation which contains the

parents and all child directories. Basically, file attributes are

recorded including the last modification time, access time,

version, location and replica information etc. Table I depicts

the attribute list of a file entry in detail.

TABLE I: The structure of the pseudo metadata

attribute name attribute meanning

st mode file type and permissions

st inode inode number

st nlink number of links

st uid user ID of user

st gid group ID of user

st size size in bytes

st atime time of last access

st mtime time of last modification

st ctime time of file creation

B. Consistency Maintenance

We adopt a coordinator-follower architecture to guarantee

the metadata consistency among multiple nodes. Firstly, the

coordinator is a core component that is responsible for timely

fetching and synchronizing the metadata once the original data

is changed. It is fulfilled by periodically sending FullMeta-

dataInfoRequest or event-driven notification from the data

source. Accordingly, follower is a daemon process, located
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Fig. 2: The basic workflow of coordinator-follower architec-

ture: consistency maintenance and conflicts resolving.

in each execution node where the user software processes

run. The daemon firstly petitions the coordinator for full

metadata if it does not have a replica in its initialization

and then repeatedly retrieves the updated data segments. It

is noteworthy that only the coordinator itself is the mutator,

which can conduct changes to the metadata permanent store.

The coordinator also has to aggregate full information once

the source file updates and it will propagate these updates

to all replicas hold by followers. Meanwhile, some modi-

fications might happen during software running period and

they are mainly composed of new node adding, removing,

and properties changes of existing nodes. Because follower

operations are conducted based on its local cached metadata

replica, conflicts will be emerging consequently. Figure 2

illustrates the workflow of our proposed model. Once the

software starts running, the daemon at the software execution

node sends metadata request to the coordinator. On receiving

the demand, the coordinator records it within a request queue.

Meanwhile, it locally searches the relevant metadata and if

the metadata is not found, a synchronization is conducted

(by FullMetadataInfoRequest) to fetch the required data from

Cloud storage or personal terminals. The initiation phase

finishes after the latest metadata is re-synchronized in both

coordinator and related followers.

C. Conflict Resolving

Conflicts are resolved optimistically by the coordinator in

our system. In particular, the incremental transaction [21] is

used in which we accept all but the conflicting modifications

independently. The unaccepted changes parts will be returned

to the metadata follower and some measures should be taken

in the next operation round with modifications re-submitted.

Besides, metadata follower could also choose gang transaction

mode, for the purpose of completely atomic transaction in

order to accept all changes. However, it is very likely to

incur starvation and even deadlock if no more requests could

be satisfied. To prevent this but still keep parallelism, we

set a configurable concurrency threshold and use a waiting

queue inside the coordinator to enqueue the incoming requests
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when the request number surpasses the threshold. As shown

in Figure 2, concurrent modifications will be handled during

the decision arbitration through the proposed transaction with

queue-based flow-control. Eventually, the coordinator forward-

ly broadcasts the changed metadata to all relevant followers.

In this manner, those potential conflicts might be detected as

early as possible.

D. Dependability with Failover

Although the two-tier metadata coordinator and follower

architecture could naturally balance request loads into separate

proxies on different execution nodes, the frequency of metada-

ta requests will still grow dramatically with the soaring user

number. Therefore, the single metadata coordinator process

will become the potential single-point bottleneck and very

likely to be susceptible to failures. For this reason, we actually

replicate the single process three times. Specifically, one

replica is active and the others are warm-standby. The leader

election and the high available mechanism are implemented

by using Raft [18]. Furthermore, considering the acceptable

metadata size and restore costs, we merely conduct a light-

weighting checkpointing for each meatadata periodically when

repeatedly updating with the Cloud storage. Whenever the

active fails, a standby replica will take over and start to failover

according to the checkpoint.

IV. COOPERATIVE DISK CACHE

Apparently, nodes are directly connected within the same

rack or the same computing cluster. This leads to the fact

that data transmission rate among those servers is much faster

than that among Cloud storage or personal device storage

through WAN. This phenomenon inspires us to turn to cache

mechanism for much balanced file access. However, traditional

cooperative memory caching [11] [14] is too small to hold

the data. Hence, we advocate a distributed cooperative disk

caching approach to satisfy large-scale user data caching

demands for applications. Specifically, all nodes within the

cluster could be fully utilized as a whole caching pool.

A. Basic Idea

As shown in Figure 3, cooperative disk cache follows a

server/client architecture. The cache server daemon is located

Algorithm 1 Placement and Replacement Algorithm

Input:

Cachetotal ← the size of the disk cache

Cacheoccupied ← the available size of the disk cache

size ← the size of the data to be cached

CacheList ← a list of the cached data according to

cacheMap

1: if size+ Cacheoccupied <= Cachetotal then

2: find a diskCache in a candidate node by using a plugin

cache placement algorithm

3: diskCache ← file data

4: else

5: for each data in CacheList do

6: MetadataList ← look up the metadata of data in

MetadataProxy

7: end for

8: targetedCache ← find the datacached with the least

access times in MetadataList

9: targetedCache ← replacing with file data

10: end if

11: update cacheMap

in a particular node and acts as a dominant controller of all

distributed cache blocks. It handles cache requests, decides the

cache placement and indexing, and manages the whole cache

life-cycle. Specifically, Cache Manager handles all requests

from cache clients. CacheMap maintains the mapper relation-

ship containing cache partition, partition size, and the partition

position distributed among the cluster. we adopt a load balance

partition algorithm to instruct cache placement (Section IV-B),

and the results will be recorded in the mapper. On the other

hand, the cache client process resides on each node and

cooperates with peer clients. In fact, the client provides two-

folded proxy functionalities – receiver and sender. It not only

manages the specific caches stored on its pertaining node, but

communicates with other cooperated peer clients as well.

Consider a software running in the SaaS system which

plans to modify a file data. It initially notifies the cache

client through an API and the client will then delegate the

caching request like a proxy. It firstly checks the local cache

and determines whether the cache is hit or not. If not, the

client will route the request to the cache server. Thereafter, the

cache server looks up to the map in order to find the target

cache position. However, if the required file cache is not in the

distributed cache pool at present, the server will mandatorily

ask for pulling the source data by invoking FullDataRequest

from Cloud storage or user devices immediately. Subsequently,

the cache placement will be conducted with cache mapper

information updated. After getting the response from cache

server, the cache client will communicate with the peer client

on the target node to obtain the required cache data.



B. Cache Placement and Replacement

As mentioned above, deciding which node the incoming

fetched data should be cached is essentially important. The

cache partition will be refreshed after each placement round

and recorded in the cache mapper. In general, the cache client

delegates and routes the request (that new data needs to be

cached) to the cache server, trying to get an available disk

space. The server will make assignment decisions based on

criteria such as data locality, load balance according to the

current caching information. Moreover, due to the limited

capacity of system disk, only a proportion of disk resource

can be leveraged as memory auxiliary cache according to a

pre-defined threshold. The value is set per node and will be

also considered in the cache placement. In order to maximize

the cache utilization, cache replacement is designed to evict

some stale data and make sufficient rooms for the new one.

As demonstrated in Algorithm 1, if the new data size is

within the available space, the data could be filled directly

into the global cache pool and is very preferable to local disk

cache for rapid access consideration (line 1-2). If there are

insufficient rooms to hold the incoming request, cache client

will traverse the metadata to find a cached data with the least

recent used (LRU) frequency. Eventually, the required data

will take it over (line 3-8).

C. Cache Synchronization

To ensure the system availability, we perform data consis-

tency and bidirectional synchronization between cooperative

disk cache and data source. The core idea of push-pull method

is illustrated in Algorithm 2. Firstly, the modifications will be

push back to its source once a file is changed. For example, if

a file data is edited, it subsequently results in some re-writes

to the cooperative disk cache. In some cases, the metadata

proxy will also submit a request, trying to update the data

attributes in metadata (as mentioned in Section III-B). Finally,

the changes will be written back to the data source. During

the whole process, the synchronization is conducted by passive

push to the source storage. Secondly, if files are updated from

personal devices or Cloud storage, the metadata coordinator

will fetch a complete information of metadata periodically

through FullMetadataInfoRequest or after being notified by

events from storage sources (as mentioned in Section III-B).

Afterwards, a comparison will be immediately conducted to

calculate the differences between the incoming metadata and

the previously cached one. If a difference exists, the cache

server will send DataRequest to the remote data source for

new data and use it to replace the stale caches.

D. Dependability with Component Failover

The cache server and cache clients play important roles in

the cooperative disk cache management architecture. Cache

server is particularly vital because it not only maintains the

global information about cache mapping but also undertakes

core functionalities such as cache placement and communi-

cation. Therefore, once failure happens, these daemon pro-

cesses must appear to rapidly recovery, without noticeable

changes to the provisioned service. To achieve this, we have

designed these daemons to be soft state, indicating that a failed

component could completely recover from information held

by other relevant components without heavy checkpointing

and rollback overheads. Specifically, the states for the cache

server mainly include full cache mapper information and active

clients list. These could be collected and finally refilled from

each connecting client after cache server process restarts.

Afterwards, the new cache server will send FullDataRequest

and new threads are launched in order to rapidly re-fetch the

corresponding source file data. Due to the stateless character,

the cache client process could directly reboot and complete

the failover after reconnecting to the cache server.

Algorithm 2 Push-pull Bidirectional Consistency Algorithm

Definition:

MetadataListcached: currently cached metadata

Γ: a fixed time-interval

MetadataListnew(Γ): a full metadata at time interval Γ

D(Γ): requested file data from sources at time interval Γ

//push - modification happens

1: if diskCache.modified is True then

2: update MetadataListcached

3: write back to the source storage

4: end if

//pull - each time when fetching new metadata

1: for each Metadata in MetadataListnew(Γ) do

2: if Metadata not in MetadataListcached then

3: MetadataListcached ← Metadata

4: diskCache ← D(Γ)

5: update CacheMap

6: else if Metadata.modificationTime is newer then

7: update diskCache with D(Γ)

8: update MetadataListcached

9: end if

10: end for

V. EXPERIMENTS AND EVALUATION

A. Experimental Setup

The evaluation environment consists of three parts: appli-

cation platform(deployed in both private Cloud and public

Cloud), Cloud storage and users personal devices. Specifically,

the private cloud is constructed based on iVIC [25], consisting

of 32 physical servers connected within local area network.

Meanwhile, we deploy our system in another 32 virtual

machines using the Alibaba Cloud ECS [3] as the public Cloud

environment. Overall 200GB Cloud storage spaces of OSS

[7] are used, providing GET/PUT operations interfaces. The

specified configurations are listed in Table II where one server

is used as the control node and other servers act as execution

nodes. In our evaluation, we prepare 16 types of random

generated files with different sizes which range from 8KB to



TABLE II: Experimental Setup

Types Configurations OS version Bandwidth

Server

Intel Xen E5640 2.4GHz CPU

2.5GB DDR2 ECC memory,

250GB SCSI hard disk,

debian 6.0

kernel 2.6.31
1Gbps

ECS
2 cores, 4GB DDR2 memory,

40GB disk,
Ubuntu 14.04 1Gbps

User

Device

Intel Core(TM)-860 2.8GHz CPU

4.0GB DDR2 ECC memory

500GB SCSI hard disk
window 7 100Mbps
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Fig. 4: The system performance for request handling

5MB, following nth-power of two approximately. These files

are stored in OSS and user devices respectively.

In order to provision the data service APIs to running

softwares and users, we implement the system by extending

the userspace file system [4] basic APIs while combining the

two-tier caching mechanism of both metadata and cooperative

disk cache. We implement the following APIs including:

getattr, rename, mkdir, read and write, rm and rmdir etc.

The following metrics are considered: 1) request handling

rate and latency: the handling effect under a fix submission

rate; 2) cache hit ratio: the proportion of targeted cache trials;

3) network traffic: the total amount of data transmission

through network; 4) response latency: the time duration

from the time when requests are sent out through our data

provisioning APIs until the file operation finishes. In order

to manifest the caching effects, we mainly compare three

different deployment approaches: no cache, disk cache, and

proposed cooperative disk cache separately, while the simulat-

ed data API calls could be categorized into four types – 2,000

x random read or random write, 2000 x sequential read or

sequential write. To emulate the extreme user scenario, these

file operations are conducted concurrently by multiple threads

API calls. We set the concurrent number to be 50 and calculate

the average for the results.

B. Request Handling Effect

In this experiment, we measure the concurrent request

handling effect under different concurrent submission rates

(requests per second). It is observable from Figure 4 that

the handled number can grow with the increasing incoming

requests although not all requests could be handle at a time.

This is because our proxy-based mechanism could effectively

handle requests on each execution node in parallel and the

queue could mitigate the surging requests in a flow-control

way. The similar phenomenon of handling latency can be

TABLE III: The cache hit number of 2000x random read

local disk

cache hit

cooperative

disk cache hit

total

request number

no disk cache 0 0 2000

single disk cache 289 0 2000

cooperative disk cache 289 715 2000
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Fig. 5: The performance improvement with cooperative disk

cache under 2000x random read(RR), subsequential read(SR),

random write(RW) and subsequential write(SW) workload

found due to the same reason. The results illustrate that an

enhanced scalability of request handling could be achieved

based on our system architecture.

C. Operational Performance Comparison

1) Cache Hit Ratio: In random read experiment, we con-

duct 2,000 times read operations. It is observable from Table

III that the cache hit ratio is only 14.45% when adopting disk

cache. Another 715 more cache hit events could be achieved by

leveraging cooperative disk cache. As a result, roughly 50%

cache hit will no doubt promote the data loading rate, with

user experience greatly improved.

2) Read Performance: Figure 5(a) depicts the network traf-

fic during file operations. For random read, the total network

traffic is 3095MB due to 2000 times file fetch at each time with

1.54MB median file data size. In comparison, disk cache saves

approximately 300MB when reading the same amount of files.

Additionally, the traffic reduction of network could even reach

more than 50% with cooperative disk cache compared with

disk cache mechanism. Similarly, the average random data

read latency is shown in Figure 5(b). It takes 0.51s without any

data cache mechanism and the latency decreases to 0.37s and

0.24s respectively with disk cache and cooperative disk cache

deployed. The reason for this is that some data could be pre-

fetched and cached in the local disk and we do not have to load

those data from remote storage every time. Moreover, because

the cooperative disk cache leverages servers in the cluster as a

whole distributed disk cache pool, abundant disk resources

could be definitely extended to support more loaded data,

thereby significantly increasing the cache hit whilst reducing

the operational latency.

In terms of the sequential file read of the same size file,

the network transmission amount is 3019MB, with a slight

decrease compared to the random read experiment. In fact,

random read will consume a little bit more resources when
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Fig. 6: The performance impact of 1MB, 2MB and 4MB source file data under 1000x random read

fetching the original data. We could also observe from Figure

5(a) that the network traffic is reduced to only 1.5MB by

leveraging disk cache or cooperative cache and the latency

also decreases from 0.49s to 0.12s and 0.11s respectively (see

Figure 5(b)). The significant improvement is due to the fact

that the file data only needs to be cached at first and the

subsequent operations could directly get access to the data

from the local cache.

3) Write Performance: As for the random write perfor-

mance, 6190MB network flows are consumed without any

cache. The amount is reduced by 4.77% using disk cache and

28.24% network traffic could be saved with the cooperative

disk cache. Correspondingly, the response latency drops from

1.12s with no cache to 0.97s (13.4% reduction) and to 0.84s

(25% reduction) respectively under the other two conditions.

Meanwhile, the same phenomenon could also be observed for

subsequential write. The absolute decreases under these two

random write scenarios are approximately same as the reduc-

tion when randomly reading. This reduced gap is attributed

to the read effect among different approaches. In fact, each

write operation round is comprised of three different phases:

file open and read, write and save operation, and write-back.

No matter which type of cache is adopted, there is little

difference in the second phase because all operations are based

on one local specific file. In the third phase, for the sake of

consistency, each file has to be written back to the source

leading to the similarity among different approaches.

D. Impact on Cooperative Cache Performance

To comprehensively explain the cooperative cache mech-

anism, another three experiments are further conducted. We

prepare files on OSS and user local storage with 1MB, 2MB

and 4MB size in different groups. In addition, the upper

threshold of disk cache in each server is configured by 4MB

and 1,000 times random read operations are carried out.

Figure 6(a) demonstrates the cache hit number. The number

will decrease according to the increased file size because the

smaller the file size is, the more probability of loading files into

the cache will be achieved. For example, the hit number will

be doubled if the file size shrinks half from 4MB. Furthermore,

the cache hit ratio will stay 99.2% if the file is less than 2MB,

indicating that the distributed cooperative disk cache pool

will facilitate the cache effect. Even the file size approaches

the cache upper bound, the hit ratio (50.7%) is still much

larger than the ratio in original disk cache cases. Moreover,

the cache hit effect will have a direct impact on the file

operational performance. Obviously, the proposed mechanism

outperforms the others as shown in Figure 6(b) and Figure

6(c). The reduction of the network traffic could reach 50%

at most by using distributed cache mechanism. Meanwhile,

the corresponding response latency also significantly decreases

by 76.4%, 71.6% and 36.7% respectively under different

experimental configurations.

E. Failure Recovery Effect

The recovery from master failures is evaluated by fault

injections. We re-conduct the experiment mentioned in Section

V-C2 and randomly kill the active meta coordinator and cache

server process every 30 seconds with the mean time to recov-

ery (MTTR) measured. The service could be recovered within

5 seconds on average with a standard deviation of 0.4 second.

Additionally, the average response latency of random write

increase from 0.84s to 1.02s while the average latency increase

from 0.59s to 0.76s under subsequential write. The slight

delays are mainly due to the caching service unavailability

during the frequent failovers. Nevertheless, these catastrophes

are very atypical as the adopted fault injection scenario is so

harsh that few probabilities exist in real-life systems.

VI. RELATED WORK

DepSky [9] and BlueSky [24] are network file system

which store their data persistently in a Cloud storage vendors

(Amazon S3 [1], Windows Azure [8] etc.) and allow users to

take the advantage of the reliability and large storage capacity

from Cloud providers. However, both DepSky and BlueSky

mainly focus on invariants like availability. How to share

storages among personal devices is actually not mentioned.

In multi-tenant SaaS Cloud, invariants such as reduction of

network traffic and response latency are significantly important

to user experiences, and thus have to be considered. In terms

of multiple device storage sharing, AFS [13] pioneers the use

of a single namespace to manage a set of servers. It requires

that client to be connected with AFS servers and clients cache

files that have been hoarded. BlueFS [17] and Ensem-Blue

[19] handle a variety of modern devices and use a peer-to-

peer update dissemination to improve the performance. ZZFS



[16] focuses mainly on the low-power connection with an add-

on hardware. However, they only handle the storage sharing

issues in LAN while ZZFS relies on extra hardware.

Furthermore, Google Docs [6] is a distinguished web-based

SaaS product which can provide users with not only editing

service but document sharing service among multiple users as

well. All documents are stored in Google Drive [5]. However,

it is an internal data storage service and can not be used

to build experimental SaaS storage. Saga [22] is a userspace

file system based on Amazon S3 [1] and it adopts fixed size

block as storage unit to reduce the storage occupation. DO-

LRU cache replacement strategy is implemented in order to

improve the request performance whilst reducing the costs of

using Cloud storage. Despite this, Saga only considers single

client design, ignoring the common scenarios of multiple

personal device management. Besides, cooperative cache is

more effective than the ordinary cache mechanism, and it can

be derived from [11] and [14]. They put part of the memories

of each workstation in the cluster together to form a larger

global collaboration cache. In this way, the cache system could

increase the cache hit ratio while reducing the number of disk

access. However, the cooperative cache is mainly established

based on memory. In SaaS platform, due to the large number of

users, memory cache replacement will be extremely frequent,

resulting in reduced benefits from previous approaches.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a dependable data provisioning service

in the multi-tenant Cloud environment. It is highly desirable

to allow a user group to share and cooperate (e.g., co-edit)

on some specific data or files. Therefore, we describe an

effective metadata management approach in which we take

both data relational structure and data attributes into account,

and leverage multiple replicated metadata caching to improve

the efficiency of data sharing and data access. Furthermore,

we advocate a distributed cooperative disk cache mechanism

to decrease the data transmission and the file access latency

among different storage provenances. The scalability and

parallelism issues such as effective concurrency handling, data

consistency, conflict resolving, efficient component failover are

also addressed in this paper. The experimental results show

that our system can significantly reduce both the network

traffic and the response latency. Specifically, over 50% network

traffic and operational latency are reduced in the random read

experiment while 28.24% network traffic and 25% response

latency are reduced for random write operations. In the future,

we will further improve the current cache mechanism consider-

ing pre-fetching file blocks based on user behavior predictions.

The historical information will increase the cache hit ratio and

reduce the response latency. We will also evaluate the failover

effects under more sophisticated scenarios in which multiple

component failure combinations might occur simultaneously.
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