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C O N D E N S E D  M A T T E R  P H Y S I C S

Experimental observation of dual magnetic states in 
topological insulators

Wenqing Liu1,2, Yongbing Xu1,3*, Liang He1,4*, Gerrit van der Laan5, Rong Zhang2, Kang Wang4*

The recently discovered topological phase offers new possibilities for spintronics and condensed matter. Even 
insulating material exhibits conductivity at the edges of certain systems, giving rise to an anomalous quantum 
Hall effect and other coherent spin transport phenomena, in which heat dissipation is minimized, with poten-
tial uses for next-generation energy-efficient electronics. While the metallic surface states of topological insula-
tors (TIs) have been extensively studied, direct comparison of the surface and bulk magnetic properties of TIs has 
been little explored. We report unambiguous evidence for distinctly enhanced surface magnetism in a proto-
type magnetic TI, Cr-doped Bi2Se3. Using synchrotron-based x-ray techniques, we demonstrate a “three-step 
transition” model, with a temperature window of ~15 K, where the TI surface is magnetically ordered while the 
bulk is not. Understanding the dual magnetization process has strong implications for defining a physical model 
of magnetic TIs and lays the foundation for applications to information technology.

INTRODUCTION

Three-dimensional (3D) topological insulators (TIs) feature novel 
phases of quantum matter with sharp transitions in the electronic 
structure near their surfaces. Unlike the divergent electronic prop-
erties of surface and bulk regions of all solids owing to the inev-
itable termination of the periodic lattice structure when approaching 
the boundaries, TIs present a new class of nontrivial surface states 
arising from intrinsic strong spin-orbit coupling and character-
ized by Rashba spin texture (1–5). These low- dimensional surface 
states are immune to localization caused by disorders as long as the 
disorder potential is time-reversal invariant and therefore have strong 
implications for emerging technologies such as dissipationless trans-
port and quantum computation (6, 7). Breaking the time- reversal 
invariance by introducing magnetic perturbation, on the other hand, 
reveals a complex phenomenology associated with a tunable exci-
tation bandgap of the surface spectrum (8, 9), as illustrated in Fig. 1A. 
Such a magnetic TI system resembles that of a massive Dirac fermion, 
which represents an ideal laboratory to study the interplay between 
magnetism and topology (10–15).

While the presence of the metallic surface state has been well 
studied (1–14), experimental evidence on the magnetic properties 
of the TI surface is far from conclusive. It has been proposed that, in 
magnetic TIs, ferromagnetism can be developed not only through 
the van Vleck mechanism (10, 16), by which magnetic ions are di-
rectly coupled through the local valance electrons, but also the carrier- 
mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction when 
Fermi energy (EF) is close to the Dirac point (17, 18). The surface 
versus bulk magnetization of a magnetic TI reflects a central ques-
tion of topology: the role of dimensionality. In general, ordered 
phenomena, e.g., magnetic, superconducting order, and lattice sta-

bility etc., show fragility when the dimension of the system decreases 
(Tc

3D > Tc
2D) (here, Tc refers to the critical temperature of ordered 

phenomena in general). However, in the case of 3D TIs, the oppo-
site can occur, such that Tc

surface > Tc
bulk, because of the unusual 

properties of the mediated helical electrons (19). Measurements 
show that the Dirac gap of a TI emerges independently of the bulk mag-
netic ordering (9). A number of recent reports on 3D magnetically- 
doped TIs including Mn-doped Bi2(TeSe)3 (20), Cr-doped (BiSb)2Te3 
(21), Cr-doped (BixSb1−x)2Te3 (16), and V-doped Sb2Te3 (22, 23) seem 
to be arriving at a consensus that surface magnetization is primarily 
predominated by the RKKY mechanism, while that of the bulk is 
steered by the van Vleck interaction. Nevertheless, the key issue of 
the dual magnetic states of 3D TIs, i.e., that the surface has a different 
magnetic moment and ordering temperature than that of the bulk, 
has yet to be established. Delicate techniques such as time- resolved 
angular-resolved photoemission spectroscopy, have been performed 
to distinguish bulk and surface electron-phonon coupling of the bare 
TI (24). With respect to magnetic TIs, b-nuclear magnetic resonance 
was used for depth profiling the electronic wave functions at topo-
logical surfaces (25).

It is possible to distinguish the surface moment of a magnetic TI 
from that of the bulk using the synchrotron-based x-ray absorption 
technique. This method is based on the modified surface band structure, 
i.e., surface-atom core-level shift (26–28), which is reflected in a differ-
ent surface valance state of metallic elements and can be experimen-
tally observed in their characteristic x-ray absorption spectroscopy 
(XAS) spectra. Tuning the absorption to the magnetic resonant edges, 
x-ray magnetic circular dichroism (XMCD) can be obtained for 
the surface and bulk dopants, respectively, revealing the magnetic 
ground state and temperature dependence in an unambiguous sur-
face bulk–resolved manner. Here, we present a study of a prototype 
magnetic TI, i.e., Cr-doped Bi2Se3 in its ultrathin limit that is ex-
pected to give rise to the quantum anomalous Hall effect (10). Three 
kinds of samples were measured as illustrated in Fig. 1B. In the 
global-doped Bi2Se3 thin films, the Cr dopants are uniformly dis-
tributed throughout the sample, whereas in the modulation-doped 
Bi2Se3 thin films, the dopants are only introduced either into the 
topmost (referred as surf-doped) or the middle (referred as mid-
doped) quintuple layer (QL), respectively. This was achieved by 
accurately controlling the dopant distribution profiles along the 
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A

B

Fig. 1. Experimental configuration. (A) Conceptual illustration of the Dirac fermion states of the Bi2Se3 topological insulator. In the magnetically doped Bi2Se3 (right), a 

bandgap is present between the upper and lower Dirac cones. (B) Sample configuration of the global-, surf-, and mid-doped Bi2Se3. Each cuboid represents one Bi2Se3 

quintuple layer (QL).

A

E F G H

B C D

Fig. 2. The global-doped Bi2Se3. (A to G) Typical total XAS and XMCD and their deconvoluted spectra of the global-doped Bi2Se3 at 2 to 80 K, respectively. The (percent-

age) XMCD intensity at the Cr L3 edge decreases with the increasing temperature within the measured range. The best fitting was obtained by a linear superposition of 

dsurf
3.70 and dbulk

2.79, with ~1:3 for the total XAS and ~1:2 for the XMCD. (H) Schematic diagram of the experimental set up and the measurement processes. Circularly 

polarized x-rays were used in normal incidence with respect to the sample plane and parallel to the applied magnetic field. Samples were cooled down to 2 K without 

magnetic field, and data were collected in the warm-up cycle.
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growth direction using the slow-deposition molecular beam epitaxy 
technique (see the Supplementary Materials).

RESULTS

We first address the dual magnetic states observed in the global- 
doped sample, i.e., 10-nm 3% Cr-doped Bi2Se3 epitaxial thin films. 
Figure 2 (A to G) present the measured total XAS and the XMCD 
spectra at the Cr L2,3 edge of the global-doped Bi2Se3 thin film ob-
tained in the total electron yield (TEY) mode (see the Supplementary 
Materials). The total XAS of Cr shows remarkable multiplet struc-
tures separated by 1.2 eV at both spin-orbit split core levels, sug-
gesting a mixture of divalent and trivalent Cr. Atomic multiplet 
calculations were performed to simulate the electric-dipole transi-
tions, i.e., 3dn → 2p53dn + 1, to deconvolute the hybridized spectra 
(see the Supplementary Materials) (29, 30). The best fit was ob-
tained by a linear superposition of covalent Cr d3.70 (divalent) and 
d2.79 (trivalent) with ~1:3 for the total XAS, while this ratio is ~1:3 at 
3 K and goes all the way up to ~1:1.5 at 80 K for the XMCD spectra. 
This suggests that, compared to the Cr d3.70, the Cr d2.79 loses mag-
netic ordering significantly faster with increasing temperature. The 
branching ratio (31), which quantifies the relative intensity of the L3 
edge in the total L2,3 XAS intensity of the hybrid Cr L2,3 XAS spectra, 

is 0.63, standing in between 0.61 for d2.79 and 0.68 for d3.70 for the 
octahedral crystal-field symmetry.

Qualitatively, the contribution of the surface can be identified by 
comparing the spectra obtained in the bulk-sensitive total fluores-
cence yield (TFY) detection with that in the surface-sensitive TEY 
detection. While TEY at normal incidence probes only the top 
~5 nm near the surface, TFY has a penetration depth of more than 
100 nm (31, 32). In the global-doped Bi2Se3 thin film, the low-energy 
peak (d 3.70) is notably absent in the TFY spectrum, indicating that 
this peak originates from the top few atomic layers of the sample. 
First-principles density functional theory simulations confirm that 
this d3.70 state is unlikely coming from any form of defects within 
Cr-doped Bi2Se3 (33). Note that the TEY intensity is attenuated by 
an exponentially decaying electron-escape probability. Therefore, in 
the total TEY-XAS spectra, the ratio of the Cr d3.70 to Cr d2.79 shows 
~1:3 other than an unweighted sum of ~1:9 that one may tentatively 
assume.

We now have a picture that the two deconvoluted Cr d3.70 and 
Cr d2.79 spectra uniquely represent the surface and the bulk properties 
of the Bi2−xCrxSe3 and denote them as dsurf

3.70 and dbulk
2.79, respec-

tively, hereafter. Figure 3 (A and B, respectively) presents the total 
XAS and XMCD spectra of the modulation-doped Bi2Se3 thin films 
with an effective doping of 1.2% from 3 to 80 K. The deconvolution 

A B

Fig. 3. The modulation-doped Bi2Se3. Typical total XAS and XMCD and their deconvoluted spectra of the (A) surf-doped and (B) mid-doped Bi2Se3 at 3 to 80 K, respec-

tively. For the surf-doped Bi2Se3, the best fitting was obtained by a linear superposition of dsurf
3.70 and dbulk

2.79, with ~4:5 for the total XAS and ~2:1 for the XMCD. No ap-

preciable Cr dsurf
3.70 but only Cr dbulk

2.79 was obtained from the mid-doped Bi2Se3.
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of the total XAS gives the ratio of ~4:5 for the contribution of the 
Cr dsurf

3.70 and the Cr dbulk
2.79 for the surf-doped sample, whereas no 

appreciable Cr dsurf
3.70 but only Cr dbulk

2.79 was observed from the 
mid-doped sample. Note that even the surf-doped Bi2Se3 contains 
both Cr dsurf

3.70 and Cr dbulk
2.79 with the later arising from the lower 

atomic sublayers of the first QL (see Fig. 1B). This is consistent with 
that observed for the global-doped sample.

Figure 4 presents the XMCD-derived spin (mspin) and orbital (morb) 
magnetic moments versus temperature of the global- and the modulation- 
doped Bi2Se3, respectively, by applying sum rules to the separate XAS 
and XMCD spectra (see the Supplementary Materials). The XMCD- 
derived mspin and morb of both the Cr dsurf

3.70 and Cr dbulk
2.79 have 

opposite signs, corresponding to antiparallel alignment of the spin and 
orbital magnetization. This agrees with the Hund’s rule for Cr, whose 
3d shell is less than half full. For the global-doped Bi2Se3, we obtained 
a remarkable mspin = (3.44 ± 0.30) mB/atom and a small negative 
morb = (−0.06 ± 0.03) mB/atom for the Cr dsurf

3.70, while those for the 
Cr dbulk

2.79 are mspin = (1.65 ± 0.30) mB/atom and morb = (−0.09 ± 0.03) mB/Cr 
at 3 K. For the modulation-doped Bi2Se3, the magnetization is slightly 
suppressed because of the reduced thickness of the doped region. We 
obtained mspin = (2.49 ± 0.25) mB/atom and morb = (−0.04 ± 0.02) mB/atom 
for the Cr dsurf

3.70 of the surf-doped Bi2Se3. For the Cr dbulk
2.79, the 

magnetic moments extracted from the surf- and the mid-doped 
Bi2Se3 are identical within the experimental accuracy, namely, 
mspin = (1.30 ± 0.10) mB/atom and morb = (−0.14 ± 0.02) mB/atom for the 
former and mspin = (1.34 ± 0.10) mB/atom and morb = (−0.15 ± 0.02) mB/atom 
for the latter, respectively. While morb of the Cr dbulk

2.79 for all the 
three samples is notably large, that of the Cr dsurf

3.70 is nearly quenched, 
which may be attributed to a slight distortion of the lattice sym-
metry of the surface.

DISCUSSION

In line with the electrical magnetotransport measurements (33), the 
XMCD-derived mspin exhibits a Curie-like behavior, pointing to a 
ferromagnetic phase of the Bi2−xCrxSe3 thin film at low temperatures. 
The fact that the mspin of the Cr dsurf

3.70 and the Cr dbulk
2.79 of the 

global-doped Bi2Se3 show distinct temperature dependences points 
to the presence of dual magnetic states processing within one sample. 
As shown in Fig. 4, the Cr dsurf

3.70 exhibits more robust magnetiza-
tion in both the magnitude of moment and the ordering temperature 
in comparison to that of the Cr dbulk

2.79. Fitting the temperature- 
dependent magnetization within the mean-field approximation, 
i.e., M(T) ∝ (1 − T/Tc)

g, where g represents the critical exponent, we 
obtained Tc = (31.0 ± 3.2) K and (31.3 ± 2.9) K for the Cr dbulk

2.79 in 
the surf- and the mid-doped Bi2−xCrxSe3, respectively, and Tc′ = 
(46.4 ± 2.5) K for the Cr dsurf

3.70 in the surf-doped Bi2−xCrxSe3. 
Table 1 summarizes the XMCD-derived ms, Tc, and g of the 
modulation- doped Bi2Se3 thin films.

Keeping in mind that the Cr dbulk
2.79 and Cr dsurf

3.70 correspond to 
the two respective magnetization modes of the bulk and the surface, 
we conclude a “three-step-transition” model for the magnetic TIs 
against temperature. As illustrated in the upper row of Fig. 4: During 
phase I, both the surface and bulk are magnetically ordered below 
Tc; between Tc and Tc′ (phase II), the surface retains magnetization 
while the bulk does not any longer; eventually, above Tc′ (phase III), 
both the surface and the bulk lose their magnetic ordering. Note that, 
because electrical measurements are sensitive to the bulk, the transport- 
derived magnetically ordered temperatures (33) have a different phys-
ical meaning as those obtained using dichroic spectra and are rather 
close to the Tc of the Cr dbulk

2.79. It is known that, in diluted magnetic 
semiconductors, ferromagnetic ordering is set via carrier- mediated 
exchange, which depends on the carrier concentration and, in turn, on 
the magnetic dopant concentration (34). The high density of free 
carriers required in these systems, however, is unsuitable for TIs (33). 
Theoretical predictions (17) indicate that the surface state–mediated 
spin-spin interaction is naturally ferromagnetic and even the bulk TI 
remains paramagnetic; experiments confirm that, in the magnetically 
doped Bi2Se3 systems, the Dirac gap in the surface spectrum can be 
present without bulk magnetic ordering (8, 9). A sharp transition of 
the magnetic susceptibility at the surface of TIs has been predicted 

Fig. 4. M-T relationships. (Top)The XAS/XMCD-derived mspin and morb of the 

dsurf
3.70 and dbulk

2.79 versus temperature (T) at 3 to 80 K of the modulation-doped 

Bi2Se3 thin films. The dashed lines are the best fit within the mean-field approxima-

tion. (Bottom) Schematic illustration of the three-step transition: Both the surface 

and bulk are magnetically ordered below Tc (phase I); between Tc and Tc′, the sur-

face retains magnetization while the bulk does not anymore (phase II); eventually, 

beyond Tc′, both the surface and bulk lose their magnetic orders (phase III).

Table 1. Summary of the XMCD-derived ms, Tc, and g of the 

modulation-doped Bi2Se3 thin films.  

Sample Cr dopants ms (mB/atom) Tc (K) g

Surf-doped
dsurf

3.70 2.49 ± 0.25 46. 4 ± 2.5 0.40 ± 0.14

dbulk
2.79 1.30 ± 0.10 31.0 ± 3.2 0.29 ± 0.17

Mid-doped dbulk
2.79 1.34 ± 0.10 31.3 ± 2.9 0.58 ± 0.10
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(35) and demonstrated in experiment (25). Calculation (19) of the 
surface magnetic ordering of TIs has estimated values of 17.5 and 
29 K, depending on the lattice model selected, for this temperature 
“window.” This estimate compares well with our observation.

To conclude, we have defined and validated an experiential 
approach to determine the magnetic ground state in a “surface- 
specific” manner using synchrotron-based x-ray techniques. We 
have unambiguously observed an enhanced surface magnetic or-
dering of the Bi2−xCrxSe3 systems with a significantly large sur-
face magnetic moment and high ordering temperature. We have 
demonstrated a three-step-transition model, in which a tempera-
ture window of ~15 K exists where the surface of the TI is mag-
netically ordered but the bulk is not. Future work to explore the 
tuning of this window and understand the dual magnetization 
process will have strong relevance to refining the physical model of 
magnetic TIs and lays the foundation for applications to emerg-
ing spintronic technologies.

MATERIALS AND METHODS

XAS and XMCD measurements at the Cr L2,3 absorption edges of 
the Bi2−xCrxSe3/Si(111) thin film were performed on beamline I10 
at Diamond Light Source, UK. Circularly polarized x-rays with 
~100% polarization were used in normal incidence with respect to 
the sample plane and parallel to the applied magnetic field, as illus-
trated in Fig. 2H. The XMCD was obtained by taking the difference 
of the XAS spectra, i.e., s+ − s−, by flipping the x-ray helicity at a 
fixed magnetic field of 30 kOe. The total XAS, on the other hand, 
was obtained by averaging over the two polarizations, i.e., (s+ + s−)/2. 
The intensity and the detailed line shape of the total XAS spectra 
reveal information of the Cr impurities in different valance states, 
while those of the XMCD spectra indicate the corresponding mag-
netic ground states. Atomic multiplet theory was used to calculate 
the electric-dipole transitions 3dn → 2p53dn + 1, where the spin-orbit 
and electrostatic interactions were treated on an equal footing (36). 
The wave functions of the initial- and final-state configurations were 
calculated in intermediate coupling using the Cowan’s atomic Hartree- 
Fock (HF) code with relativistic corrections. The atomic electrostatic 
interactions include the 2p-3d and 3d-3d Coulomb and exchange 
interactions, which are reduced to 70% of their atomic HF value to 
account for the intra-atomic screening (36). Hybridization effects were 
included by mixing 3dn with 3dn + 1L configurations, where L rep-
resents a hole on the neighboring atoms in states of appropriate 
symmetry. The Cr L3 (L2) line spectra were broadened by a Lorentzian 
with a half width at half maximum of G = 0.3 eV (0.4 eV) for intrinsic 
lifetime broadening and a Gaussian with an SD of s = 0.15 eV for 
instrumental broadening.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/5/2/eaav2088/DC1

Section S1. Sample preparation

Section S2. XAS/XMCD measurement

Section S3. Multiplet calculations

Section S4. Sum-rules analysis

Fig. S1. Schematic diagram of the experimental setup for XAS and XMCD measurement.

Fig. S2. Deconvolution of the mixed Cr valences.

Fig. S3. The sum-rules analysis.

Table S1. Summary of the XMCD-derived mspin for the global-, surf-, and mid-doped Cr-doped 

Bi2Se3, respectively, at 3 K.
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