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Abstract
Ɛĺ StatisticaѴ modeѴѴing of animaѴ movement data is a rapidѴy growing area of  

researchĺ TypicaѴѴy thoughķ these modeѴs have been deveѴoped for anaѴysing the 
tracks of individuaѴ animaѴs and we Ѵose sight of the impact animaѴs have on each 
other with regards to their movement behavioursĺ We aim to deveѴop a modeѴ 
with a fѴexibѴe sociaѴ framework that aѴѴows us to capture that informationĺ

Ƒĺ Our approach is based on the concept of sociaѴ hierarchiesķ and this is embedded 
in a muѴtivariate diffusion process which modeѴs the movement of a group of ani-
maѴsĺ The possibiѴity of switching between behaviouraѴ states faciѴitates dynamic 
sociaѴ behaviours and we augment the observed data with sampѴed state switch-

ing times in order to model the animals' behaviour naturally in continuous time. 

In additionķ this enabѴes us to carry out exact inference in a Bayesian setting with 
the benefits of being abѴe to handѴe reguѴarķ irreguѴar and missing dataĺ AѴѴ move-

ment and behaviour parameters are estimated with Markov chain Monte CarѴo 
methods.

ƒĺ We examine the capabiѴity of our modeѴ with simuѴated data before fitting it 
to GPS Ѵocations of five wiѴd oѴive baboons Papio anubis. The results enable us 

to identify which animaѴs are infѴuencing the movement of others and whenķ 
which provides both a dynamic and ѴongŊterm static insight into the groupŝs so-

cial behaviours.

Ɠĺ Our modeѴ offers a fѴexibѴe method in continuous time with which to modeѴ the 
network of sociaѴ interactions within animaѴ movementĺ Doing so avoids the Ѵimita-

tions caused by a discreteŊtime approach and it aѴѴows us to capture rich informa-

tion with regards to a groupŝs sociaѴ structureķ Ѵeading to constructive appѴications 
in conservation and management decisionsĺ Howeverķ currentѴy it is a computa-

tionaѴѴy expensive task to fit the modeѴ to dataķ which in turns Ѵimits extending 
the modeѴ to more fruitfuѴ but compѴex cases such as heterogeneity in space or 
individuaѴ characteristicsĺ Furthermoreķ our sociaѴ hierarchy approach assumes aѴѴ 
reѴevant animaѴs are tracked and that any interactions have some orderingķ both 
of which narrow the scope within which this approach is appropriateĺ
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ƐՊ |ՊINTRODUC TION

The research area of statisticaѴѴy modeѴѴing animaѴ movement has 
rapidѴy expanded in recent yearsĺ This has in part been driven by 
the increase in avaiѴabiѴity of movement data Őeĺgĺ from GPS tagső 
coupѴed with the potentiaѴ insightķ from habitat preference to mon-

itoring the impacts of a changing environmentķ that can be gained 
from anaѴysing it ŐKaysķ Crofootķ Jetzķ ş WikeѴskiķ ƑƏƐƔőĺ

This has Ѵed to a broad range of methods to be deveѴopedĺ For 
instanceķ the hidden Markov modeѴ approach utiѴises the computa-

tionaѴ efficiency of discrete time ŐLangrock et aѴĺķ ƑƏƐƑő whiѴst the 
continuousŊtime correѴated random waѴk formuѴation by Johnsonķ 
Londonķ Leaķ and Durban ŐƑƏƏѶő offers more fѴexibiѴity with regards 
to irreguѴar data intervaѴsĺ Dunn and Gipson ŐƐƖƕƕő introduced mod-

eѴѴing animaѴ movement as a diffusion processķ a concept that has 
been buiѴt up on by BѴackweѴѴ ŐƐƖƖƕķ ƑƏƏƒőķ Harris and BѴackweѴѴ 
ŐƑƏƐƒő and BѴackweѴѴķ Niuķ Lambertķ and LaPoint ŐƑƏƐѵő to account 
for muѴtipѴe movement behavioursĺ

TypicaѴѴyķ these methods have been deveѴoped for anaѴysis 
of individuaѴ animaѴs and so they faiѴ to account for the impacts 
that social animals have on each other's movement behaviours. 

With increasing abiѴity to obtain simuѴtaneous tracking data from 
muѴtipѴe animaѴs within a group ŐWestѴeyķ BerdahѴķ Torneyķ ş 
Biroķ ƑƏƐѶőķ we now have the opportunity to buiѴd these sociaѴ 
interactions into our modeѴsĺ Indeedķ recent work has begun to 
expѴore that possibiѴity ŐLangrock et aѴĺķ ƑƏƐƓĸ Niuķ BѴackweѴѴķ ş 
Skarinķ ƑƏƐѵő through treating the group as a coѴѴective during the 
movement.

Howeverķ being abѴe to driѴѴ further into the sociaѴ behaviour of a 
groupķ such as identifying animaѴs with high ѴeveѴs of infѴuenceķ wiѴѴ 
provide us with richer information on their sociaѴ structuresķ with 
usefuѴ appѴications in conservation efforts ŐKingķ FehѴmannķ Biroķ 
Wardķ ş Fুrtbauerķ ƑƏƐѶĸ WestѴey et aѴĺķ ƑƏƐѶőĺ Outside of statisticaѴ 
modeѴѴingķ approaches have been taken to extract this desired in-

formation from within the dataķ such as StrandburgŊPeshkinķ Farineķ 
Couzinķ and Crofoot ŐƑƏƐƔő Ѵooking for moments where coѴѴective 
movement decisions have occurred and how the scenario deveѴopedĺ

In this paperķ we deveѴop a sociaѴ framework in our movement 
modeѴ to capture those intraŊgroup interactionsĺ This is inspired by 
orderѴy sociaѴ hierarchiesķ which are shown to be prevaѴent across a 
broad array of taxa ŐMcDonaѴd ş Shizukaķ ƑƏƐƒőĺ The need to keep 
these hierarchies dynamic ŐChase ş Lindquistķ ƑƏƐѵő aѴso works in 
conjunction with more fѴuid arrangements such as fissionŊfusion 
dynamics ŐRamosŊFern࢙ndez ş MoraѴesķ ƑƏƐƓő meaning we can ac-

count for an extensive range of sociaѴ constructsĺ
Furthermoreķ we formuѴate this in continuous timeĺ In doing soķ 

the interactive behaviours we define are not married to the temporaѴ 
scaѴe of the observationsķ we avoid the approximations caused from 

anaѴysing discrete data and irreguѴar or missing data are not prob-

Ѵematic ŐBѴackweѴѴ et aѴĺķ ƑƏƐѵĸ Harris ş BѴackweѴѴķ ƑƏƐƒőĺ
During this paperķ we first introduce the components of our 

movement modeѴĹ the sociaѴ framework which is embedded within 
a muѴtivariate OrnsteinŊUhѴenbeck process and continuousŊtime 
behaviouraѴ state switchingĺ We then outѴine the aѴgorithm de-

veѴoped to fit the modeѴ to data using Markov chain Monte CarѴo 
ŐMCMCő methods before showcasing key features of the resuѴts 
we can obtain using simuѴated data and baboon GPS Ѵocationsĺ 
FinaѴѴyķ we discuss the wider appѴications of this work and future 
directions.

ƑՊ |ՊMODELLING SOCIAL ANIMAL 
MOVEMENT

ƑĺƐՊ|ՊInfѴuence hierarchies

To capture the sociaѴ behaviour of a groupŝs movementķ our as-

sumption isĹ a period of direct interaction between two animaѴs 
can be characterised by the movement of one of those animaѴs 
being attracted to the otherĺ This is an assumption shared with 
other areas of animaѴ movement Ѵiterature ŐLongķ NeѴsonķ Webbķ 
ş Geeķ ƑƏƐƓőĺ

For ease of referenceķ we wiѴѴ refer to the roѴes in this dyadic re-

Ѵationship as ļdominantĽ and ļsubordinateĽ Ősee SociaѴ definitionső butķ 
as with aѴѴ behaviour modeѴѴingķ we need to be carefuѴ not to overŊ 
interpret the behaviour ѴabeѴѴingĺ That isķ ļsubordinateĽ or ļattracted 
toĽ have certain connotations but the movement behaviour just 
broadѴy transѴates to the movement of an animaѴ being infѴuenced by 
the other in some senseĺ SimiѴar considerations aѴso need to be made 
for our subgroupŊѴeveѴ ѴabeѴs of ļѴeaderĽ and ļfoѴѴowerĽĺ

This dyadic concept can be naturaѴѴy extended for Ѵarger sociaѴ 
groups to give rise to sociaѴ hierarchies Ősee Figure Ɛaőĺ In order to 
keep this framework tractabѴe and easy to interpretķ we are restrict-
ing these hierarchies to essentiaѴѴy a thinned network that contain 
the edges representing the most causaѴ interactionĺ That isķ an animaѴ 
can have at most one dominant but it can have muѴtipѴe subordinatesĺ 
This is as opposed to a tournamentŊstyѴe network where there is a 
some degree of reѴationship between every pair of nodesķ which is 
a rare occurrence in nature ŐMcDonaѴd ş Shizukaķ ƑƏƐƒőĺ Thusķ our 
resuѴting sociaѴ structure wiѴѴ represent the most causaѴ infѴuence 
to expѴain a groupŝs movementŌhence ļinfѴuence hierarchiesĽ Ősee 
Figure Ɛbőĺ We restrict the possibѴe hierarchies to avoid any cycѴesķ 
to ensure that the pattern of reѴationships is meaningfuѴ and that the 
movement modeѴs wiѴѴ be weѴѴŊdefinedĺ The hierarchicaѴ structure is 
therefore what is often known in statisticaѴ contexts as a Directed 
AcycѴic Graphĺ

K E Y W O R D S

Bayesian statisticsķ behaviour state switchingķ coѴѴective movement modeѴѴingķ continuous 
timeķ diffusion processķ MCMCķ sociaѴ animaѴsķ wiѴd baboons
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ƑĺƑՊ|ՊMuѴtivariate OrnsteinŊUhѴenbeck process

To modeѴ the movement of the animaѴsķ we use a diffusion process 
incѴuding a Ѵinear attraction term to represent the attractionŊbased 
interaction we have assumedĺ Then the movement of an individuaѴ 
animal i  that is attracted to animal j can be described by the foѴѴow-

ing stochastic differentiaѴ equation ŐSDEőĹ

where A
y

it
 is the Ѵocation of animaѴ i  at time t in the y coordinate; � 

is the rate of attraction towards Ay

jt
 where i≠ j; � is the coefficient of 

ļnoiseĽķ the component of movement modeѴѴed not in terms of sociaѴ 

interaction but as Brownian motion Wy

it
ĺ Thereforeķ Equation Ɛ has two 

componentsĹ the noise termķ which is a continuousŊtime anaѴogue of a 
random waѴkķ and the attraction termķ which captures any persistence 
in the movement towards another animaѴĺ For Ѵeading and independent 
Őiĺeĺ nonŊsubordinateő animaѴsķ this reduces to Brownian motion ŐBMő as 
they have no attraction term:

where � is a distinct noise parameterĺ The x and y coordinates are 

treated as independent Œsee BѴackweѴѴ ŐƐƖƖƕő for justificationœ and 
there are corresponding equations for the x axisĺ

Because of their Ѵinearityķ these univariate SDEs can be com-

bined into a muѴtivariate OrnsteinŊUhѴenbeck ŐOUő process to modeѴ 
the groupŝs movement jointѴy as detaiѴed by Niu et aѴĺ ŐƑƏƐѵőĺ For n 

animaѴsķ sayķ in the y axisĹ

where

and L
y

it
 is the Ѵocation of animaѴ i 's leader at time t. Ft and Σ are  

(n × n)�matrices where

and

Gt is a vector of Ѵocations for aѴѴ animaѴs at time t and matrix Ft is the 

attraction matrix for the group which indicates the interactions within 
the hierarchy at time tķ iĺeĺ who is subordinate to whomĺ Θt is a vector 

which contains the Ѵocation of each animaѴŝs Ѵeader at time t and matrix 
Σ contains the coefficient of noise for each animaѴĺ

The soѴution to the muѴtivariate SDE has a cѴosed formŌa muѴti-
variate normaѴ distribution ŐNiu et aѴĺķ ƑƏƐѵőĹ

where G0ķ F0 and Θ0 correspond to the animaѴsŝ Ѵocationsķ the attrac-

tion matrix and the Ѵeadersŝ Ѵocations at time 0 respectiveѴyĺ The OU 

ŐƐődA
y

it
= −�

(

A
y

it
− A

y

jt

)

dt + �dW
y

it
,

ŐƑődA
y
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= �dW

y

jt
,

ŐƒődGt = Ft

(

Gt − Θt

)

dt + ΣdBt,
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⎟
⎟
⎟
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,

Fti,j
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−�, i = j and i is a subordinate

�, i ≠ j and i is subordinate to j

0, otherwise,

Σi,j=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

�, i = j and i is a subordinate

�, i = j and i is a leader or independent

0, otherwise.

ŐƓőGt|G0 ∼ MVN
(
�
(
G0, F0, t

)
,Ξ

(
F0, t

))
,

SociaѴ definitions

DominantĹ with respect to an edge in the hierarchy be-

tween animals i  and j where j is attracted to i ķ i  is domi-

nant towards j.

FoѴѴowerĹ an animaѴ in a subgroup that is not the Ѵeaderĺ
Group: all animals in the data set.

IndependentĹ an animaѴ is independent if it is neither a 
dominant or a subordinate.

LeaderĹ the focaѴ point of a subgroupĺ That isķ this animaѴ 
is a dominant to at Ѵeast one animaѴķ but a subordinate to 
none. Animal i ŝs Ѵeader is the Ѵeading animaѴ of the sub-

group i  is in.

SubgroupĹ aѴѴ animaѴs in a singѴe hierarchy structureķ iĺeĺ a 
component of the graph formed as in Figure Ɛĺ Independent 
animaѴs are their own subgroupĺ
SubordinateĹ with respect to an edge in the hierarchy be-

tween animals i  and j where j is attracted to i ķ j is subor-

dinate to i .

F I G U R E  Ɛ Պ In Őaőķ whiѴst C is subordinate to Bķ we see B is in 
turn subordinate to A which enabѴes us to Ѵearn how the infѴuence 
in movement is cascaded through the groupĺ In Őbőķ we have 
a transitive triad where A dominates Bķ B dominates C and A 
dominates Cĺ We onѴy capture the infѴuence that best describes Cŝs 
movement and consequentѴy the structure we estimate wiѴѴ either 
be A dominates Bķ B dominates C or A dominates Bķ A dominates 
Cĺ In aѴѴ of the above hierarchiesķ A is the Ѵeader whiѴst B and C are 
foѴѴowers

A

B

C

(a)

A

B C

=

A

B C

or

A

B C

(b)
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process is Markovian with the animaѴsŝ Ѵocations at time t conditional 

on their previous Ѵocations at time 0.

The expected vaѴue of this distribution is given byĹ

and VarŒGt|G0œ is given by Ξ
(

F0, t
)

 which consists of the foѴѴowing five 
expressions Őto ease notationķ we simpѴify Ξ

(

F0, t
)

 to Ξ and F0 to FőĹ

where dom(i) is the dominant of animaѴ i ; l  is the Ѵeader of the subgroup 
both i  and j are in; −l indicates aѴѴ animaѴs except l ĺ The scenarios of Őaő 
to Őeő are as foѴѴowsĹ

a. i = j and i  is a Ѵeading or independent animaѴĺ
b. i ≠ j and j is the Ѵeader of i ŝs subgroupĺ
c. i ≠ jķ i  and j are in the same subgroup but neither are the Ѵeaderĺ
d. i = j and i  is a subordinate.

e. i ≠ j and i  and j are in different subgroupsĺ

In practiceķ the order of the computation of Ξ
(

F0, t
)

 is import-
ant as some expressions reѴy on other vaѴues within Ξ

(

F0, t
)

ĺ See 
Appendix A for the aѴgorithm ŐaѴѴ appendices are provided in the on-

Ѵine supporting informationőĺ

ƑĺƒՊ|ՊBehaviour states

The movement modeѴ we have described so far reѴies on some 
knowѴedge of which animaѴ is subordinate to which and whenĺ 
Howeverķ we are unѴikeѴy to know either of those pieces of informa-

tion and so we treat them as unknownĺ To estimate themķ we in-

corporate behaviouraѴ state switching where the states correspond 
to the animaѴŝs sociaѴ behaviourĺ As we are operating in continuous 
timeķ we do so with a continuousŊtime Markov chain with a discrete 
state spaceĺ

The state space we want to expѴore is the space of aѴѴ possibѴe 
hierarchies as defined in Section ƑĺƐ and we are restricting each 
switching time to contain at most one behaviour changeĺ That isķ at 
most one animaѴ can change behaviour at a given timeĺ IdeaѴѴyķ the 
transition rates of our Markov chain wouѴd correspond to switching 
between hierarchiesĺ Howeverķ even for a group as smaѴѴ as four an-

imaѴs there are in excess of ƐƏƏ of these structuresķ meaning that 
approach is not practicaѴĺ WhiѴst we wouѴd set the majority of the 

transition rates to be Ə due to the above restrictionķ the transition 
matrix wouѴd be unwieѴdy and difficuѴt to define and interpretĺ

We canķ howeverķ expѴore the same state space by defining our 
behaviour states to represent each individuaѴ animaѴŝs stateķ as op-

posed to the groupŝsĺ That isķ an individuaѴ can switch which animaѴ 
they are attracted to Őiĺeĺ subordinate toő or switch to Brownian mo-

tion Őiĺeĺ Ѵeading or independentőĺ The foѴѴowing generator matrix is 
then used for each animaѴĹ

where n is the number of animaѴs in the data and state SAi rep-

resents being subordinate to animal i ĺ Here we use the parameter-
isation of a continuousŊtime Markov chain in which an animaѴ stays 
in state u for a hoѴding timeķ which is exponentiaѴѴy distributed with 
rate �u where �u is the rate of Ѵeaving state u

(

�u =
∑

u≠v
�
��

�
ĺ After this 

hoѴding timeķ the animaѴ switches to state v with probabiѴity �
��
∕�u. 

The diagonaѴ eѴements of λ are therefore determined by the offŊdiag-

onal ones: �uu = −�u.

In the case of n=4 as in the above exampѴeķ the number of tran-

sition parameters is a manageabѴe ƑƏ as weѴѴ as being more intui-
tiveĺ The penaѴty of using this individuaѴistic approach as a proxy for 
switching hierarchies is akin to treating each animaѴ homogeneousѴyĺ 
That isķ the transition rate �uv is the rate of switching from state u to 

v averaged over aѴѴ animaѴs in the groupĺ

ƑĺƒĺƐՊ|ՊLeadingņindependent extensions

The modeѴ described so far assumes Ѵeading or independent animaѴs 
to be restricted to a singѴe BM state and movement parameter ρ. To 

capture richer movement for these animaѴsķ various extensions to 
the model can be made.

FirstѴyķ additionaѴ BM states with distinct noise parameters can 
be incѴuded to represent different ļspeedsĽ of movementĺ In the re-

suѴts to be discussedķ we use two BM states to ѴooseѴy embody sѴow 
and fast movementĺ SecondѴyķ we might assume that Ѵeading or in-

dependent animaѴs are themseѴves attracted to some Ѵocationķ a re-

source or nesting site for exampѴeĺ It wouѴd then be naturaѴ to think 
of these animaѴs as aѴso moving under an OU processĺ

Both methods add movement parameterŐső and may add further 
rowŐső and coѴumnŐső to the transition matrixķ meaning some consid-

eration is needed as to the costs and benefits of these extensionsĺ

ƒՊ |ՊINFERENCE

Markov chain Monte CarѴo methods are used to infer both the be-

haviour and movement parametersĺ Each iteration of the MCMC 

ŐƔőE[Gt|G0] = �
(
G0, F0, t

)
= e

F0t
(
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)
+ Θ0,
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aѴgorithm consists of two partsĺ FirstѴyķ we sampѴe the behaviour 
states of the animaѴs in continuous timeĺ This is done through sim-

uѴating the state switches between the observed data points and 
the acceptance of these behaviour trajectories is evaѴuated by a 
MetropoѴisŊHastings ratioĺ The exact aѴgorithm for this step is detaiѴed 
in Section ƒĺƐĺ SecondѴyķ the parameters of the OrnsteinŊUhѴenbeck 
and Brownian motion processes are sampѴed in accordance with the 
Ѵatest behaviour sampѴe by means of a MetropoѴisŊHastings random 
waѴkĺ Further detaiѴs of thisķ incѴuding restrictions we pѴace on the 
parametersķ are in Section ƒĺƑĺ

ƒĺƐՊ|ՊBehaviour parameters

To estimate the behaviour parameters Őboth the states and Λő we 
sampѴe the animaѴsŝ behaviour trajectories between the observed 
data pointsĺ Through thisķ we treat the behaviour switching in con-

tinuous time and account for our uncertainty in what the animaѴ is 
doing at unobserved timesķ which enabѴes us to undertake exact in-

ference in a Bayesian settingĺ Our method to simuѴate these trajec-

tories is a muѴtiŊanimaѴ variation of the ļkappaĽ method introduced by 
BѴackweѴѴ et aѴĺ ŐƑƏƐѵő where the observed data is augmented with 
sampѴed state switching timesĺ The current paper onѴy discusses 
the spatiaѴѴy homogeneous case and we restrict onѴy one animaѴ to 
switch state at any given switching timeĺ Furthermoreķ we onѴy up-

date the trajectory for one animaѴ at a time to increase the accept-
ance rates of our proposaѴsĺ

Let �o represent the observed data times for the intervaѴ 
[

ta, tb
]

; �si 

represent the sampѴed switching times in the same intervaѴ for animaѴ 
i ; � = �o ∪ �s so that � = {�1 < ⋯ < �p} where p is the size of � and 

�s = ∪i�si
 for aѴѴ animaѴs i ĺ FinaѴѴyķ Ѵet β represent the behaviour states 

of aѴѴ animaѴs at times τ where β
j
 corresponds to the states at time � j 

for j = 1, . . . , p.

To reŊsampѴe a trajectory estimate for a given animaѴķ say i ķ in 
the interval 

[

ta, tb
]

ķ we discard the current sampѴed switching times 
for i ķ �siķ and sampѴe new onesķ �

⋀

si
ĺ The new potentiaѴ switching times 

are produced from a homogeneous Poisson process over the intervaѴ 
(

ta, tb
)

 with rate λmaxķ where λmax ƾ maxŐλ
u
ő for aѴѴ states u. �

⋀

si
 is com-

bined with �s
−i
ķ the remainder of �sķ to produce a new set of switching 

timesķ �
⋀

sķ and augmented timesķ �
⋀

= �o∪�

⋀

s.

We then simuѴate the behaviour states forward through 
�

⋀

=

�

�

⋀

1 < ⋯ < �

⋀

p
⋀

�

ķ where p
⋀

 is the size of �
⋀

ķ to obtain our new be-

haviour trajectory �
⋀

ĺ We initiaѴise �
⋀

1 = �1ķ after which there are 
three scenarios to account forĹ

Ŏ If �
⋀

j ∈ �o for j=2, . . . , p
⋀

ķ the behaviour states of aѴѴ animaѴs at �
⋀

j are 

carried forward from �
⋀

j−1.

Ŏ If �
⋀

j ∈ �s
−i
 for j = 2, . . . , p

⋀

−1ķ we use our previousѴy sampѴed states 
for aѴѴ animaѴs except i  at these times whilst the behaviour state 

of i  is carried forward from �
⋀

j−1.

Ŏ If �
⋀

j ∈ �

⋀

si
 for j=2, . . . , p

⋀

−1ķ the behaviour states of aѴѴ animaѴs 
except i  at �

⋀

j are carried forward from �
⋀

j−1ĺ The probabiѴity of �
⋀

j 

being a switch for i  is λ
u
/λmax when i  is in state uĺ If soķ the new 

state is v with probabiѴity �
��
∕�uķ otherwiseķ the state of i  at �

⋀

j is 

aѴso carried forward from �
⋀

j−1.

We initiaѴise �
⋀

1 = �1 as we typicaѴѴy simuѴate a trajectory esti-
mate over a short intervaѴ of the data and therefore our simuѴations 
must be consistent with the trajectories outside of that intervaѴĺ 
For that reasonķ we aѴso require �

⋀

p
⋀

= �pĺ Within the trajectoryķ 
there is an additionaѴ condition that sampѴed states must not cre-

ate a cycѴic hierarchyķ which incѴudes an animaѴ not being abѴe to 
be subordinate to itseѴfĺ If these conditions arenŝt metķ we reject 
the trajectory and return to our previousѴy sampѴed switches for i .

If these conditions are metķ we accept or reject the new trajec-

tory with a MetropoѴisŊHastings ŐMHő stepĺ Our simuѴations are pro-

posed from the current estimate of Λ and so the MH ratio simpѴifies 
to a ratio of ѴikeѴihoods of the observed movement through the new 
proposed state switches against our previous estimateĹ 

where g
�ok

 are the Ѵocations of the animaѴs in a particuѴar axis at time 
�ok

; �
⋀

[�ok−1
,�ok

] are the newѴy sampѴed states throughout the intervaѴ 
[

�ok−1
, �ok

]

 at times �
⋀

[�ok−1
,�ok

]; � [�ok−1 ,�ok ]
 are the previous state estima-

tions in the same interval at times � [�ok−1 ,�ok ]
ĺ BѴackweѴѴ ŐƑƏƏƒő detaiѴs 

how the movement ѴikeѴihood terms are caѴcuѴated through be-

haviour switches between two observations and more detail can be 

found in Appendix Bĺ
We use the conjugate DirichѴet prior for the muѴtinomiaѴ ѴikeѴi-

hood of the transition rates to obtain their fuѴѴ conditionaѴ distribu-

tions and resampѴe them using Gibbs sampѴing at each iteration of 
the MCMC aѴgorithmĺ

ƒĺƐĺƐՊ|ՊPartiaѴ observations

PartiaѴ observationsķ where we onѴy have data on some of the ani-
maѴs we are trackingķ are a potentiaѴ obstacѴe when anaѴysing data 
from muѴtipѴe animaѴsĹ tracking equipment may not be fuѴѴy synchro-

nised or a GPS tag may not have been abѴe to transmit some data for 
exampѴeĺ Howeverķ the above method is naturaѴѴy adaptabѴe to take 
into account the uncertainty of any missing or unsynchronised data 
using standard resuѴts for conditionaѴ muѴtivariate normaѴ distribu-

tionsĺ See Appendix C for more informationĺ

ƒĺƑՊ|ՊMovement parameters

Treating the current vaѴues of the behaviours as fixedķ we update the 
parameters of aѴѴ OrnsteinŊUhѴenbeck and Brownian motion processes 
simuѴtaneousѴy through a MetropoѴisŊHastings random waѴkĺ We 
use independentķ normaѴѴyŊdistributed proposaѴs for each parameter 
meaning the MetropoѴisŊHastings ratio is again reduced to Equation Ѷĺ

ŐѶő
| �o |�

k=2

f
�
g
�ok

�g
�ok−1

, �
⋀

[�ok−1
,�ok

], �
⋀

[�ok−1
,�ok

]

�

f
�
g�ok

�g�ok−1 , � [�ok−1 ,�ok ], � [�ok−1 ,�ok ]
� ,
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We pѴace certain bounds on the parametersĺ In generaѴķ aѴѴ pa-

rameters must be >0 and we have added the restriction that � ≤ �ķ  
the justification being that an animaѴ infѴuenced by another shouѴd 
have Ѵess variabiѴity in their movement than an animaѴ foѴѴowing a 
BM processĺ In the case of extending the modeѴ to aѴѴow for muѴtipѴe 
BM states Ősee Section Ƒĺƒőķ the above restriction is Ѵoosened to � ≤ 

ρmax where ρmax ƾ �, ∀�ĺ This case aѴso brings potentiaѴ compѴications 
to the state ѴabeѴѴing and soķ in order to keep consistencyķ we define 
�1 < . . . < �m for m BM statesĺ

ƒĺƒՊ|ՊImpѴementation

Both the simuѴation and inference methods were fuѴѴy impѴemented 
in R ŐR Core Teamķ ƑƏƐƕőĺ Aside from the MCMCPACK package 
ŐMartinķ Quinnķ ş Parkķ ƑƏƐƐőķ which is used for the DirichѴet dis-

tributionķ the code to perform the inference is originaѴĺ WhiѴst the 
inference code is not yet formaѴѴy wrapped up as an R packageķ it is 
avaiѴabѴe on GitHub Ősee Data AvaiѴabiѴity Statementő aѴong with a 
brief readme fiѴe that instructs on how to use the code in Rĺ This in-

cѴudes guidance on what format the data is required to be inķ what 
tuning parameters need consideration and aѴtering the number of 
states which modeѴ Ѵeading and independent movementĺ There is 
aѴso information for reproducing the anaѴysis in this paperĺ

ƓՊ |ՊRESULTS

ƓĺƐՊ|ՊSimuѴated data

We anaѴysed simuѴated data to show the theoreticaѴ capabiѴities of 
both our modeѴ and inference approachĺ Hereķ we anaѴyse a singѴe 
data set to examine the outputs of the modeѴ in detaiѴķ whiѴst in 
Section Ɣķ we anaѴyse ƓƏƏ different simuѴations to provide insight 
into the robustness of the modeѴ in different scenariosĺ

The simuѴation consists of five dynamicaѴѴy interacting ani-
maѴs for ƐƏƏ discreteŊtime movement stepsķ with each step two 
units of timeĺ We randomѴy deѴeted ƐƏѷ of the data ŐuniformѴy 
across aѴѴ dataő to provide us with the setting of having incompѴete 

dataĺ The ļobservedĽ times were augmented with switching times 
through a Poisson process as detaiѴed in Section ƒĺƐĸ the move-

ment of the group was simuѴated forwards through the augmented 
data set using a muѴtivariate OU process as in Section ƑĺƑĸ state 
switches were sampѴed using a continuousŊtime Markov chain as 
in Section Ƒĺƒĺ

We incorporated two BM states for Ѵeadingņindependent ani-
maѴs to aѴѴow for different speeds of movementķ meaning we have 
seven behaviour states in totaѴĺ WhiѴst we simuѴated the movement 
and behaviours of the animaѴs in continuous timeķ the modeѴ is onѴy 
fitted to the discreteŊtime ļobservedĽ data to mirror typicaѴ reaѴ dataĺ 
AѴѴ inference runs Őin this and subsequent sectionső were performed 
on the University of SheffieѴdŝs HPC ļShARCĽ where each core runs at 
ƑĺƓ GHz with ƓĺƏ GB of RAM Őa singѴe core being used for each runőĺ

To initiaѴise the MCMC aѴgorithm we randomised the behaviour 
parameters and started with overŊdispersed movement parame-

ter vaѴuesĺ We set λmax as ƏĺƑ as that was sufficientѴy high for the 
transition rates used for the simuѴation and we updated sections of 
an animaѴŝs trajectory ranging from ƒ to ƐƑ observations Ѵongĺ We 
sampѴed a new trajectory ƕƏ times per iteration of the MCMC in 
order for the behaviour state at each observation to be reŊsampѴed 
on averageĺ We ran the MCMC aѴgorithm for ƐĺƓ miѴѴion iterationsķ 
of which ƔƏķƏƏƏ was burnŊinķ and we recorded every second itera-

tion for the movement parameters and every ƑƏth iteration for the 
behaviour parametersĺ We used an uninformative DirichѴet prior for 
the transition rates.

Figure Ƒ shows the movement parameter posteriors against 
the true values used. All are consistent with the true value and to 

check convergence the GeѴmanŊRubin diagnostic is used to assess 
the potentiaѴ improvement from running more or Ѵonger chainsĺ 
The muѴtivariate potentiaѴ scaѴe reduction factor ŐPSFRő is Ɛķ caѴ-
cuѴated from two separate MCMC runs using coda ŐPѴummerķ Bestķ 
CowѴesķ ş Vinesķ ƑƏƏѵőĸ this indicates that each chain is expѴoring 
the same posterior distributionķ after burnŊinĺ DetaiѴs of the con-

fidence Ѵimits of the PSFRs Őfor these and subsequent resuѴtső are 
in Appendix Dĺ Figure ƒ shows our behaviour state posteriors for 
animaѴ ƒķ aѴong with the true states from the simuѴationĺ The pos-

terior estimates are broadѴy correct and confidentķ though quickķ 
nuanced switches as in observations ѵƕ and ѵѶ can be smoothed 

F I G U R E  Ƒ Պ TopĹ posterior distributions 
for the four movement parameters for 
our simulated data. The blue vertical line 

indicates the true vaѴue usedĺ BottomĹ 
a summary of the movement parameter 
resuѴtsĺ Point estimates and standard 
deviations are given to ƒ sĺfĺĸ effective 
sampѴe size is rounded down after being 
calculated using using coda ŐPѴummer 
et aѴĺķ ƑƏƏѵő
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overĺ Note that since this output refers to animaѴ ƒķ the probabiѴ-
ity of it being in state SA3 Őwhich wouѴd represent subordinate to 
itseѴfő is necessariѴy zeroĺ

Thusķ our modeѴ and inference approach can provide insights 
into the dynamics of the sociaѴ interactions within a groupŝs move-

ment when our sociaѴ behaviour assumptions ŐSection ƑĺƐő are fairĺ

ƓĺƑՊ|ՊBaboon data

To test our approach ļin the fieѴdĽķ we have taken a subset of wiѴd 
oѴive baboon data that was originaѴѴy anaѴysed by StrandburgŊ
Peshkin et aѴĺ ŐƑƏƐƔőķ which is avaiѴabѴe on Movebank ŐCrofootķ Kaysķ 
ş WikeѴskiķ ƑƏƐƔőĺ The GPS data was coѴѴected at the MpaѴa Research 
Centre in Kenya for Ƒѵ baboons in a singѴe troopĺ The data was re-

corded at a frequency of Ɛ Hzķ for ƐƑ hr a day ŐƏѵĹƏƏŋƐѶĹƏƏő over 
ƒƏ daysĺ We took a subset of this data for five baboons ŐIDŝs ƒķ Ɠķ Ɣķ 
ƐƐķ Ɩő for ƐƔ min ŐѶƖƖ observationső to act as a test for the modeѴĺ 
We chose this time period to contain some directionaѴ confѴict as 
in Movie SƑ in the suppѴementary materiaѴs of StrandburgŊPeshkin 
et aѴĺ ŐƑƏƐƔőĺ We converted the GPS coordinates to UTM zone ƒƕN 
easting-northing using sp ŐBivandķ Pebesmaķ ş GomezŊRubioķ ƑƏƐƒĸ 
Pebesma ş Bivandķ ƑƏƏƔőĺ

Againķ we incѴuded two BM states for Ѵeading or independent 
animaѴsĺ In attempting to fit the modeѴ with onѴy a singѴe BM state 
in another anaѴysisķ the subordinate behaviour states transѴated 
to a pseudoŊBM state Őthat isķ an OU process with an extremeѴy 
weak attraction parameterő to force capture of a different speed 
of movement to that of our actuaѴ BM stateĺ It therefore became 
necessary to incѴude an additionaѴ BM state to better modeѴ that 
diversity of movement and aѴѴow the subordinate states to repre-

sent the sociaѴ behavioursĺ This baboon anaѴysis presented a simiѴar 
scenario.

The MCMC aѴgorithm was initiaѴised as in Section ƓĺƐĺ λmax was 

again set as ƏĺƑķ which seems sufficient given the resuѴting transi-
tion ratesĺ Updates of the animaѴŝs trajectory are performed over 
Ѵengths of ƒŋƓƏ observations and we sampѴed ƑƐƏ trajectories in 
each iterationĺ The MCMC ran for ƔƏƏķƏƏƏ iterationsķ of which 
ƐƏƏķƏƏƏ was burnŊinķ and we recorded every second iteration for 
the movement parameters and every ƑƏth iteration for the be-

haviour parametersĺ An uninformative DirichѴet prior was used for 
the transition rates.

Figure Ɠ shows the posterior distributions for the movement pa-

rametersĺ The posterior for α shows strong evidence that there is in-

deed interaction between the five baboons in the data anaѴysedĺ The 
GeѴmanŊRubin diagnostic is again used to check convergence over two 
MCMC runs Őusing codaķ PѴummer et aѴĺķ ƑƏƏѵő and the muѴtivariate 
potentiaѴ scaѴe reduction factor of the movement parameters is ƐĺƏƑĺ

The state posteriors of baboon Ɣ are shown in Figure Ɣķ through 
which we can observe the dynamics of this baboonŝs sociaѴ behaviour 
in a subordinate senseĺ That isķ it mostѴy aѴternates being attracted 
to baboons ƒ and Ɠķ though there is some uncertainty as to which 
baboon it is subordinate to in the last 200 observations.

Figure ƕa shows a simiѴar graph but with the state posteriors re-

configured to indicate the roѴe of this particuѴar baboon Őbaboon Ɩőĺ 
An animaѴ in a BM state is leading if they have a subordinate or inde-

pendent if notĺ AѴѴ animaѴs in a subordinate state are following. This al-

Ѵows us to see in what capacity an animaѴ interacts with its peersĺ For 
instanceķ we estimate baboon Ɩ ѴargeѴy interacts as a subordinate 
untiѴ around observation ƕƏƏ when it takes on a consistent Ѵeader-
ship roѴeĺ Looking at the dataķ this time corresponds to a change in 
the direction that the baboons are moving in.

This formuѴation aѴso aѴѴows us to see the ѴongŊterm manner in 
which the animaѴs interactķ both in the sense of their roѴe ŐTabѴe Ɛő and 
with each other ŐTabѴe Ƒőĺ Though both of these tabѴes onѴy show us a 
static overview of the sociaѴ interactionķ they highѴight which animaѴs 

F I G U R E  ƒ Պ The state posterior 
distribution for animaѴ ƒ in the simuѴation 
data. There are seven states: the two 

Brownian motion speeds and five 
subordinate behaviours where state S

Ai
 

indicates attraction to animal i. The area 

of each box represents the posterior 
probabiѴity of being in that state at that 
observationķ from Ə to Ɛĺ The bѴack Ѵine is 
true state in the simulated data
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seem to have persistentѴy high ѴeveѴs of infѴuence in the group Őbaboons 
ƒ and Ɣő and potentiaѴѴy strong bonds within it Őeĺgĺ baboons ƒķ Ɣ and ƐƐőĺ

Exact inference by means of simuѴating when behaviour switches 
occur is a computationaѴѴy costѴy taskĺ IdeaѴѴyķ we wouѴd have run a 
greater number of iterations as indicated by the modest effective 
sampѴe size of the movement parameters ŐFigure Ɠő and the GeѴmanŊ
Rubin diagnostic for the transition ratesĺ WhiѴst the potentiaѴ scaѴe 
reduction factor for the vast majority of rates was <ƐĺƏƓķ the high-

est was ƐĺƒѶĺ AdditionaѴѴyķ the Ѵarger the subset of data we can fit 

F I G U R E  Ɠ Պ TopĹ posteriors distributions 
for the four movement parameters for the 
baboon data anaѴysisĺ Note the different 
scaѴes of the Density axesĺ BottomĹ a 
summary of the movement parameter 
inferenceĺ Point estimates and standard 
deviations are given to ƒ sĺfĺĸ effective 
sampѴe size is rounded down after being 
calculated using using coda ŐPѴummer 
et aѴĺķ ƑƏƏѵő

F I G U R E  Ɣ Պ The state posterior 
distribution for baboon Ɣĺ There are seven 
statesĹ the two Brownian motion speeds 
and five subordinate behaviours where 
state S

Bi
 indicates attraction to baboon 

iĺ The area of each box represents the 
posterior probabiѴity of being in that state 
at that observationķ from Ə to Ɛ
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TA B L E  Ɛ Պ The percentage ŐƐ dĺpĺő of observations each baboon 
spent in each roѴe based on the modaѴ state

Independent Őѷő Leading Őѷő FoѴѴowing Őѷő

Baboon ƒ ƓƕĺƑ ƒƕĺƑ ƐƔĺƕ

Baboon Ɠ ƔƓĺƐ 10.0 ƒƔĺƖ

Baboon Ɣ 20.4 38.0 41.6

Baboon ƐƐ ƑѶĺƕ 4.0 ѵƕĺƒ

Baboon Ɩ Ɠƕĺƕ 21.4 30.9
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the modeѴ to Őboth in terms of the number of animaѴs and the time 
periodőķ the more ѴongŊterm and bioѴogicaѴ questions can be inves-

tigatedĺ Howeverķ the resuѴts described above were obtained over 
approximateѴy ƑĺѶ days and so we have not yet overcome the com-

putationaѴ hurdѴe that can come with continuousŊtime modeѴsķ par-
ticuѴar ones with a compѴex state spaceĺ

This data has previousѴy been anaѴysed by StrandburgŊPeshkin 
et aѴĺ ŐƑƏƐƔő to investigate how a troop of baboons coѴѴectiveѴy make 
their movement decisionsĺ ļMovement initiationsĽ were extracted 
from the data of ƑƔ baboons through a method based on minima and 
maxima distances between a pair of animaѴsĺ Through this approachķ 
StrandburgŊPeshkin et aѴĺ quantified the probabiѴity of a baboon foѴ-
Ѵowing a movement initiation in the context of the number of ini-
tiators and their consensus in directionŌsituationŊbased covariates 
that wouѴd not be triviaѴ to impѴement in our modeѴĺ

Thoughķ whiѴst their interaction assumption of a foѴѴowing an-

imaѴ moving towards the initiator is conceptuaѴѴy simiѴar to oursķ it 
is perhaps more restrictiveĺ Our OU approach modeѴs the subor-
dinateŝs movement as being distributed around the Ѵocation of its 
dominantĺ As a resuѴtķ we do not have to constrain our definition 
of infѴuence to being the ļinitiatorĽ or the animaѴ at the front of the 
group ŐStrandburgŊPeshkin et aѴĺķ ƑƏƐƔő for exampѴeĺ AѴong with the 
state switching we have definedķ this wiѴѴ aѴso heѴp to smooth out 
erroneous interactions in the data.

ƔՊ |ՊRELIABILIT Y

WhiѴst the above resuѴts are encouragingķ there is scope for the 
modeѴ to infer faѴse positives Őinteraction where there is noneő and 
faѴse negatives Őno interaction where there is someőĺ To investigate 
thisķ we have anaѴysed ƓƏƏ different simuѴations derived from four 
different sets of parametersŌƐƏƏ from each setĺ

The parameters of set Ɛ are identicaѴ to those used to create 
the simuѴated data in Section ƓĺƐĸ set Ƒ has been derived to simu-

Ѵate simiѴar movement behaviours as inferred from the baboon dataĸ 
set ƒŝs parameters were chosen to represent different behaviours 
from those of sets Ɛ and Ƒĺ For instanceķ the three noise parameters 
are Ѵess distinct than in the other sets to provide a tougher infer-
ence scenario Ősee TabѴe ƒőĺ Set Ɠ consists of animaѴs soѴeѴy moving 
in Brownian motion in order to anaѴyse the rate at which the modeѴ 

introduces faѴse positivesĺ WhiѴst the movement parameters and Λ 

were kept constant across aѴѴ simuѴations for that parameter setķ the 
initiaѴ behaviour states at time Ə were sampѴed from the stationary 
distribution of Λ in order for each data set to contain different be-

havioursĺ AѴѴ simuѴations aѴѴow for two BM states and consist of ƐƏƏ 
movement stepsĺ

GeneraѴѴyķ each run was initiaѴised much Ѵike those in Section ƓĺƐĺ 
Howeverķ each set was treated to its own movement parameter 
proposaѴ distributions in order to encourage good mixingķ with the 
same configuration being used for aѴѴ runs corresponding to that setĺ 
AdditionaѴѴyķ to encourage faѴse positives in set Ɠķ we initiaѴised α 

to be Ѵow on the assumption that any faѴse positives inferred wouѴd 
point to weak attractionĺ Each run was carried out for Ɛ miѴѴion iter-
ations with a burnŊin of ƔƏƏķƏƏƏĺ

In order to evaѴuate the rate of faѴse positives and faѴse negatives 
in interactionķ we use our state estimations of the whoѴe group to 
caѴcuѴate the probabiѴity of two animaѴs interacting at a given timeķ 
whether directѴy or indirectѴy and regardѴess of dominance and sub-

ordination orderingĺ This probabiѴity is an interaction posterior. At 

times of true interaction in the simuѴationsķ we wouѴd expect the 
interaction posterior to be cѴose to Ɛĸ at times of true nonŊinteractionķ 
we wouѴd expect the compѴimentary non-interaction posterior to be 

cѴose to Ɛĺ The CDFs of these posteriors for each run are pѴotted in 
Figure 6.

The CDFs reѴating to sets Ɛ and ƒ form the desired curveķ 
though those of set ƒ dispѴay more uncertaintyĺ This is intuitive 
as α is smaѴѴer in set ƒ compared to set Ɛ Őthat isķ the attraction is 
weakerő and the noise parameters were set to provide more of a 
challenge. The anomalous result in the non-interaction posteriors 

for set ƒ comes from a data set where there is very ѴittѴe nonŊinter-
actionŌeach pair of animaѴs donŝt interact for onѴy approximateѴy 
Ѷĺƕѷ of the data on averageĺ Uncertain state estimations during 
some of those segments of nonŊinteraction are a bѴot on otherwise 
reasonabѴe resuѴts for that data setĺ With regards to set Ɠķ there 
are no pѴots concerning true interaction as there isnŝt any in those 
simuѴationsŌa feature confidentѴy estimated in the non-interaction 

posteriorsĺ Howeverķ there are cѴearѴy two erroneous resuѴtsĺ The 
most spurious of those is the consequence of not tuning each sim-

uѴation separateѴy and the resuѴting acceptance rate of the move-

ment parameters was extremeѴy Ѵow ŐapproximateѴy Ɛѷőĺ WhiѴst 
this is cѴearѴy not a desirabѴe outcomeķ ordinariѴy we wouѴd be abѴe 
to tune the MCMC differentѴy to navigate this issueĸ as it isķ the 
probѴem is evident from the most cursory diagnosticsķ so wouѴd 

TA B L E  Ƒ Պ The percentage ŐƐ dĺpĺő of observations each baboon is 
subordinate to another based on the modaѴ stateĺ CeѴѴ ij in the table 

corresponds to baboon i being subordinate baboon j

Baboon 
ƒ Őѷő

Baboon 
Ɠ Őѷő

Baboon 
Ɣ Őѷő

Baboon 
ƐƐ Őѷő

Baboon 
Ɩ Őѷő

Baboon ƒ Ō 0.2 ƕĺѶ 0.1 ƕĺƑ

Baboon Ɠ ƕĺѶ Ō 18.4 ѵĺƔ 3.0

Baboon Ɣ ƑѶĺƔ 10.0 Ō 1.3 1.9

Baboon ƐƐ 16.1 0.0 34.6 Ō ƐƔĺƖ

Baboon Ɩ 13.9 0.0 9.8 ƕĺƑ Ō

TA B L E  ƒ Պ The four sets of movement parameter vaѴues used to 
simulate data

Parameter  
set α σ ρsѴow ρfast

1 ƏĺƔ Əĺƕ 0.4 1.8

2 0.0266 ƏĺƑƖƕ ƏĺƏƕƔƐ ƏĺѶƔƔ

3 0.2 Əĺƕ ƏĺƔ 1.4

4 0.4 1.8
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F I G U R E  ѵ Պ The pѴots in the Ѵeft coѴumn 
contain the CDFs of the interaction 

posteriors at times of true interactionĺ The 
pѴots in the right coѴumn contain the CDFs 
of the non-interaction posteriors at times 

of true nonŊinteractionĺ Each row of pѴots 
corresponds to a parameter set and each 
CDF is derived from the posteriors for aѴѴ 
pair combinations during a singѴe run
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not mislead in an actual analysis. The second erroneous result sim-

pѴy inferred some interactionĺ A smaѴѴ number of segments of the 
data are estimatedķ with a Ѵarge degree of uncertaintyķ to contain 
weak interactionĺ

Figure ѵ indicates a greater degree of uncertainty in the interac-

tion posteriors of set Ƒ compared to those of sets Ɛ and ƒĺ In partķ this 
effect wiѴѴ be due to set Ƒŝs simuѴations containing comparativeѴy Ѵit-
tѴe interaction and so faѴse negatives are more pronounced in their 
interaction posterior CDFs than those of sets Ɛ and ƒĺ More impor-
tantѴy thoughķ this uncertainty highѴights a Ѵimitation of modeѴѴing 
the movement of Ѵeadingņindependent animaѴs onѴy as Brownian 
motionĺ The difference in certainty of the state posteriors in 
Section ƓĺƑ and those of the simuѴations derived from Section ƓĺƑŝs 
resuѴts wiѴѴ in part be due to there being some feature of the reaѴ 
movement that is not captured by BMķ such as persistenceĺ Without 
that featureķ independent animaѴs and subgroups in the simuѴations 
wouѴd frequentѴy overѴap movement pathsĺ It therefore becomes a 
chaѴѴenge to identify the exact interactions taking pѴaceĺ This pro-

duces scenarios in the simuѴations that are perhaps not bioѴogicaѴѴy 
reѴevant and another processķ such as OrnsteinŊUhѴenbeckķ may be 
better suited to modeѴ the movement of the Ѵeading and indepen-

dent animals.

GeneraѴѴy thoughķ these simuѴation resuѴts dispѴay a good ѴeveѴ of 
robustnessĺ Where there is uncertaintyķ the CDFs in Figure ѵ indicate 
it is most ѴikeѴy regarding interactionŌpotentiaѴѴy resuѴting in a faѴse 
negativeĺ Using set Ƒ as an exampѴeķ we can examine this uncertainty 
further with Figures EĺƐ and EĺƑ in Appendix Eĺ The role posteriors com-

pared against the true roѴe show that we are fairѴy certain whether an 
animal is a subordinate or not at any given time. The consistent move-

ment parameter posteriors are further evidence of thisĺ The uncer-
tainty reѴates to exactѴy which animaѴ they are subordinate toĺ

ѵՊ |ՊDATA THINNING

AѴongside our modeѴ being sѴow to fit to dataķ a recurring question 
in animaѴ tracking studies isĹ at what frequency shouѴd data be coѴ-
Ѵected at for the anaѴysis at hand ŐHugheyķ Heinķ StrandburgŊPeshkinķ 
ş Jensenķ ƑƏƐѶőĵ We have therefore experimented with thinning the 
same baboon data anaѴysed above Őhenceforth referenced as the ļfuѴѴ 
anaѴysisĽő to investigate how the inference speed can be improved by 
fitting the modeѴ to a thinned data setķ and how the resuѴts compare 
to the fuѴѴ anaѴysisĺ We experimented by thinning the data by a factor 
of five and of ƑƏĺ

We wiѴѴ aѴso discuss our choices of λmax for these experimentsĺ 
λmaxδt is the mean number of potentiaѴ switching points sampѴed 
from the Poisson process between sequentiaѴ observations over a 
time span of δtĺ WhiѴst we state in Section ƒĺƐ that λmax ƾ maxŐλ

u
ő 

to ensure aѴѴ state switches can be sampѴed appropriateѴyķ if λmaxδt 

is highķ say fiveķ there is ѴittѴe information to be gained from sam-

pѴing that many state switches between sequentiaѴ observationsĺ 
Reducing λmax wiѴѴ reduce the size of the augmented data set and the 
number of computations neededĺ

ѵĺƐՊ|ՊThinning by a factor of five

We took every fifth observation of the baboon data detaiѴed aboveķ 
Ѵeaving us with ƐѶƏ observations Őat ƏĺƑ Hző instead of ѶƖƖ Őat Ɛ Hzőĺ 
We ran the inference again for ƔƏƏ K iterations to provide a compa-

rable analysis. λmax was kept at ƏĺƑ and so λmaxδt = Ɛ for sequentiaѴ 
observations.

As a resuѴt of thinning of the dataķ the uncertainty of move-

ment parameter posteriors increased as can be seen in Figure FĺƐ in 
Appendix Fĺ The sѴight differences in the estimations wiѴѴ most ѴikeѴy 
be for two reasonsĺ FirstѴyķ any discrepancies in state estimations 
between the two anaѴyses and secondѴyķ the modeѴ we have cho-

sen to fit may not be sufficient to represent some of the movement 
behavioursĺ That isķ we chose to modeѴ the movement of Ѵeadingņ
independent animaѴs as Brownian motionĺ Howeverķ if there is some 
persistence in their movement in reaѴityķ the noise coefficient of BM 
wiѴѴ not scaѴe appropriateѴy as the data is thinnedĺ Section Ƒĺƒ de-

taiѴed how this modeѴ may be extended to capture that persistenceĺ
When comparing the roѴe posteriors of baboon Ɩķ the thinned 

anaѴysis ŐFigure ƕbő smooths over the state estimations from the fuѴѴ 
anaѴysis ŐFigure ƕaőĺ To investigate this smoothingķ we Ѵooked at the 
modaѴ state estimations at the Ɛ Hz observation times in both anaѴy-

ses and quantified the periods of behaviour that were present in the 
fuѴѴ but absent from the thinned anaѴysisĺ To cѴassify a period of be-

haviour as being smoothed overķ we require that at Ѵeast ѶƏѷ of that 
period to have a different modaѴ state estimated in the thinned anaѴ-
ysisĺ The ѶƏѷ threshoѴd is arbitraryķ but it prevents a period from 
being accounted for in the thinned anaѴysis by a reѴativeѴy short visit 
to that state whiѴst stiѴѴ capturing significant smoothingĺ Figure Ѷ 
shows that the smoothedŊover periods are predominateѴy smaѴѴ in 
ѴengthŌmostѴy under five seconds which is our new temporaѴ scaѴeĺ

This smoothing is ѴikeѴy to be a resuѴt of our assumption that 
the animaѴŝs behaviour is Markovianĺ If the fuѴѴ data suggests the 
short state transitions as seen in Figures Ɣ and ƕaķ the Markovian 
behaviour process wiѴѴ readiѴy accommodate themĺ The constant 
transition rates incorporate no presumption against very short 
visitsķ as refѴected in the exponentiaѴѴy distributed hoѴding timesĺ 
Through thinning the dataķ the ļevidenceĽ of these transitions 
is no Ѵonger presentķ though they may remain with much Ѵower 
probabiѴityĺ

ѵĺƑՊ|ՊThinning by a factor of ƑƏ

We took every ƑƏth observation of the data set used for the fuѴѴ 
anaѴysisķ Ѵeaving us with ƓƔ observations Őat ƏĺƏƔ Hzőĺ We ran the 
inference again for ƔƏƏ K iterations but for this anaѴysis we reduced 
λmax to ƏĺƏƔĺ As discussed aboveķ the motivation for this was to keep 
λmaxδt small.

WhiѴst this amount of thinning can be thought of as extreme 
smoothingķ where weŝd expect to get resuѴts ѴargeѴy in agreement 
to those of the fuѴѴ anaѴysisķ Figure ƕc shows the stateņroѴe pos-

teriors can be drasticaѴѴy differentĺ For exampѴeķ the thinned data 
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no Ѵonger supports the two periods of subordination that baboon 
Ɩ undertakes between observations ѵƏƏŋƕƏƏ in Figure ƕaĺ Thusķ 
the resuѴting sociaѴ structure has a different pictureĺ These differ-
ent behaviour estimations then have further impacts on the move-

ment parameter posterior distributions ŐFigure FĺƐķ Appendix Főĺ
In the fuѴѴ anaѴysisķ maxŐλ

u
ő = ƏĺƐƔƒ Őƒ dĺpő and so we wouѴdnŝt 

expect an animaѴ to switch state much more frequentѴy than 
every ƕ sĺ We therefore suspect thinning the data to ƏĺƑ Hz 
keeps enough information in order to estimate simiѴar behavioursĺ 

Thinning the data furtherķ and reducing λmaxķ reduces the scope of 
sociaѴ behaviours that can be capturedĺ That isķ shortŊterm inter-
actions canŝt be seen and are unѴikeѴy to be sampѴedĺ WhiѴst the 
thinningŊbyŊƑƏ resuѴts arenŝt wrong per seķ they offer a different 
temporaѴ perspective of the sociaѴ behaviours of the baboonsĺ 
These thinning experiments indicate the resuѴts of an anaѴysis wiѴѴ 
be most informative and efficient if the temporaѴ resoѴution of the 
data coѴѴected is informed by the nature of the behaviours that are 
to be investigated.

F I G U R E  ƕ Պ The roѴe posterior distribution for baboon Ɩ for the fuѴѴ anaѴysis Őaőķ thinned by a factor of five Őbő and thinned by a factor of ƑƏ 
Őcőĺ The area of each box represents the posterior probabiѴity of being in that roѴe at that observationķ from Ə to Ɛ
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With regards to the speed of the inferenceķ the thinnedŊbyŊfive 
anaѴysis was compѴeted in approximateѴy ƑƓ hrķ as opposed to ap-

proximateѴy ѵƕ hr for the fuѴѴ anaѴysisĺ WhiѴst the number of obser-
vations was reduced to a fifthķ the number of simuѴated data was 
equivaѴent as we kept the same λmaxĺ Thoughķ there is scope to use 
a smaller λmax during the thinnedŊbyŊfive anaѴysis as the resuѴting  
maxŐλ

u
ő was ƏĺƐƐƐ Őƒ sĺfĺőĺ The thinnedŊbyŊƑƏ anaѴysis was compѴeted 

in approximateѴy ƕ hrĺ

ƕՊ |ՊCOMPARISON OF METHODS

To compare our approach with other methodsķ we have exam-

ined our resuѴts from both the simuѴation and fuѴѴ baboon anaѴy-

ses aѴongside those obtained when appѴying dyadic metrics ŐJooķ 
Etienneķ Bezķ ş Mah࣐vasķ ƑƏƐѶĸ Long et aѴĺķ ƑƏƐƓő to the same dataĺ 
Much Ѵike our approachķ dyadic metrics utiѴise movement data 
from muѴtipѴe animaѴs to investigate any interdependence and in 
turn better understand their collective behaviours. As their name 

suggestsķ the dyadic metrics are buiѴt to anaѴyse the interdepend-

ence of two animaѴsĺ
The metrics we have chosen to impѴement are proximity and 

dynamic interaction using the wildlifeDI R package from Long 
et aѴĺ ŐƑƏƐƓőĺ Joo et aѴĺ ŐƑƏƐѶő indicate each metric offers an informa-

tive view into a specific eѴement of interactionĺ Proximity evaluates 

whether two animaѴs are within a distance threshoѴd defined by the 
user; dynamic interactionķ when spѴit into its displacement and direc-

tion componentsķ offers insight into whether two animaѴs are moving 
at a simiѴar speed or in a simiѴar orientation respectiveѴyĺ In order to 
compare resuѴtsķ we use the same interaction posterior approach that 
we used in Section Ɣ as that is comparabѴe to the interpretation of 
the dyadic metricsĺ This is done for every data point in which both 
animals are simultaneously observed as this is a necessary criterion 

for the metricsĺ
Figure Ɩa pѴots our interaction posterior against each of the 

three metrics for animaѴs Ɛ and ƒĺ These animaѴs were chosen as 
ideaѴ candidates to compare methods as they undertook periods 

of both direct and indirect interactionĺ WhiѴst the interaction pos-

terior is ѴargeѴy Őand correctѴyő concentrated at Ə and Ɛķ the dis-

placement and direction metrics are uniform across their ranges 
regardѴess of whether there was true interaction or notĺ Proximity 

fares better as most simuѴtaneous data <Ƒ m apart correspond to 
true interaction and most simultaneous data >Ɠ m apart corre-

spond to true nonŊinteractionĺ Howeverķ the distances in between 
highѴight the difficuѴty in determining interaction from proximity 

alone.

Figure Ɩb dispѴays the same comparison for baboons Ɠ and Ɩĺ 
WhiѴst the interaction posterior is again largely concentrated towards 

Ə and Ɛķ the proximity metric does not offer a discernibѴe patternĺ 
It is uninformative when the interaction posterior is close to 0 and 

interaction appears to be grouped at distinct ranges of proximityŌat 
approximateѴy ѵƏ m and <20 m. For both displacement and directionķ 
there is moderate concentration at ŐƐķƐő Ōindicating a consensus be-

tween our modeѴ and these metrics on some moments of interac-

tionĺ Howeverķ both metrics are quite uniform when the interaction 

posterior is certain there is no interactionĺ In particuѴarķ direction is 

just as ѴikeѴy to suggest interaction as it is nonŊinteractionĺ
OveraѴѴķ there is some consistency of the metrics with our modeѴ 

in estimating when two animaѴs interactĺ Howeverķ when the ani-
maѴs are not interacting Őeither known from the simuѴated data or 
estimated from our modeѴőķ the dyadic metrics are generaѴѴy not in 
agreement and are fairѴy uniform across their rangesĺ We suspect 
this is because the metrics can have quite reѴaxed definitions of in-

teractionĺ For instanceķ dynamic interaction can hint at interaction 

without any concern as to whether the animaѴs are reasonabѴy prox-

imate to one anotherĺ That is in contrast to our perhaps more de-

fined notion of interaction where we are not ѴikeѴy to introduce faѴse 
positives Ősee Section Ɣőĺ Thoughķ that definition comes with its own 
Ѵimitations such as not being abѴe to capture coŊmovementĺ

From a practicaѴ point of viewķ the dyadic metrics are much 
faster to run than our approach and they wiѴѴ require Ѵess tun-

ingĺ Howeverķ our modeѴ can more naturaѴѴy handѴe incompѴete 
or unsynchronised dataĺ The metrics require essentiaѴѴy simuѴta-

neous data to evaѴuate the cohesion of two animaѴs at a given 

F I G U R E  Ѷ Պ A histogram of the number 
of observations in a state before switching 
in the fuѴѴ anaѴysis ŐbѴackő and which of 
these periods were smoothed over in the 
thinned anaѴysis Őgreyő
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time whereas our modeѴ is abѴe provide an estimate of interac-

tion in continuous time across the temporaѴ range of the dataĺ 
Furthermoreķ our modeѴ has the capabiѴity to jointѴy anaѴyse the 
data of Ѵarger sociaѴ groupsĺ

ѶՊ |ՊDISCUSSION

Our modeѴ offers a robust yet fѴexibѴe method in continuous time 
in which to capture the sociaѴ interactions in animaѴ movementĺ 
ModeѴѴing the state switches in continuous time means we avoid 
approximation from using discrete data and our sociaѴ behaviour 
anaѴysis is not bound to the temporaѴ scaѴe of the dataĺ Through 
the ļinfѴuence hierarchiesĽ frameworkķ a wide range of sociaѴ con-

structs can be capturedĹ from despotic Ѵeadership to fissionŊfusion 
dynamicsĺ Furthermoreķ sociaѴ hierarchies are a simpѴe and common 
concept meaning a certain amount of the abstraction of statisticaѴ 
modeѴs is stripped awayĺ

Our formuѴation of the behaviouraѴ states aѴѴows us to capture 
rich information with regards to the sociaѴ behaviours in a groupŝs 
movementĺ AnimaѴs consistentѴy infѴuencing the movement of other 

animaѴs may be considered ļkeystoneĽ animaѴs and identifying such 
animaѴs can have productive appѴications in conservation and man-

agement decisions ŐKing et aѴĺķ ƑƏƐѶĸ WestѴey et aѴĺķ ƑƏƐѶőĺ Obtaining 
a picture of a groupŝs sociaѴ structure may aѴso heѴp us understand 
how resiѴient or adaptive they are to change ŐKing et aѴĺķ ƑƏƐѶő and 
we can monitor how anthropogenic activity might be impacting 
them ŐWestѴey et aѴĺķ ƑƏƐѶőĺ

We restrict the sociaѴ structure to the hierarchies defined in 
Section ƑĺƐ in order to keep the modeѴ tractabѴeĺ Howeverķ this 
does mean we omit certain interactive behavioursĺ For instanceķ 
the ļdoubѴeŊsubordinateĽ as in McDonaѴd and Shizuka ŐƑƏƐƒő and 
discussed in StrandburgŊPeshkinķ Papageorgiouķ Crofootķ and 
Farine ŐƑƏƐѶőķ where an animaѴ is equaѴѴy infѴuenced by two Őor 
moreő othersĺ CycѴic structures are aѴso not accounted for in our 
modeѴķ but anaѴysis from McDonaѴd and Shizuka ŐƑƏƐƒő suggests 
social structures tend to be highly orderly and so this may not be 

probѴematicĺ
Our sociaѴ interaction assumption is one based on orderŌthat isķ 

there is a dominant and subordinateĺ Howeverķ that wiѴѴ not aѴways 
be a fair assumption such as the case where two or more animaѴs 
are mutuaѴѴy infѴuenced by each otherĺ Current work is ongoing to 

F I G U R E  Ɩ Պ The interaction posteriors Őthe posterior probabiѴity of two animaѴs being in the same subgroupő from the simuѴation anaѴysis 
ŐSection ƓĺƐő are pѴotted against the proximityķ dynamic interaction in displacement ŐDI

d
ő and dynamic interaction in direction ŐDI

θ
ő dyadic metrics 

for the same data set Őaőĺ The resuѴts used are for animaѴs Ɛ and ƒ and each point corresponds to a simuѴtaneous observationĺ SimiѴarѴyķ the 
same approach has been taken for baboons Ɠ and Ɩ from Section ƓĺƑ Őbőĺ Both axes have been jittered in order to heѴp dispѴay the density of 
the points
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modeѴ that behaviour in a simiѴar framework to the one detaiѴed in 
this paperĺ Furthermoreķ our assumption the behaviour process  
in generaѴ is Markovian may not be bioѴogicaѴѴy sound as discussed in 
Section ѵĺƐĺ An aѴternative approach may be to modeѴ the behaviour 
process as semiŊMarkovian in order for the times spent in a state to 
be more realistically distributed.

WhiѴst the opportunity to obtain simuѴtaneous tracking data 
from muѴtipѴe animaѴs within a group is increasingķ it stiѴѴ may not be 
possibѴe or practicaѴ to track an entire groupĺ IncompѴete data on a 
groupķ aѴong with our definitions of the behaviour statesķ can Ѵead 
to faѴseѴy estimating direct infѴuence and reѴationships between 
the animaѴs we have data on as our modeѴ does not account for the 
animaѴs we donŝt have data forĺ For exampѴeķ we have character-
ised baboon Ɩ as Ѵeading others through a movement decisionķ but 
as we have onѴy anaѴysed five of the Ƒѵ baboons in the group there 
is a possibiѴity baboon Ɩ was in fact infѴuenced by an animaѴ we 
donŝt have tracking data forĺ Therefore we have to be conscious 
not to overŊinterpret our resuѴts as the deŊfacto sociaѴ behaviourĺ 
Niu et aѴĺ ŐƑƏƐѵő used a moving abstract centraѴ point that acts as 
the focus of a groupŝs movement which can navigate the possibiѴ-
ity that we donŝt have compѴete data about a groupķ but it doesnŝt 
aѴѴow finer detaiѴs of the sociaѴ behaviour to be examinedĺ

WhiѴst probing further into the sociaѴ interactions can offer 
richer information as discussedķ the sheer size of the state space can 
be inhibitingŌa considerabѴe amount of time is needed to fuѴѴy ex-

pѴore itĺ Work needs to be done to optimise the current inference 
aѴgorithmķ particuѴarѴy with regards to the method in which we sam-

pѴe new trajectoriesĺ The current method is naive as we simuѴate for-
wards through the data whilst ignoring the end state the trajectory 

must be inķ which can Ѵead to Ѵow acceptance ratesĺ One potentiaѴ 
route to remedy this is to expѴore techniques based on the Forward 
AѴgorithm ŐwideѴy used for efficient impѴementation of Hidden 
Markov modeѴső as proposed by BѴackweѴѴ ŐƑƏƐѶőĺ

Various eѴements of the modeѴ can be treated as either het-
erogeneous or homogeneous in space and time or across individ-

uaѴsķ depending on the anaѴysis in questionĺ In both anaѴyses in 
this paperķ we used a Λ that is heterogeneous across individuals. 

An aѴternative approach wouѴd be treat it as homogeneousķ re-

suѴting in just four transition rate parameters reѴating to being in 
an OU Ősubordinate stateő or a BM ŐѴeadingņindependentő stateĺ 
This shouѴd improve the mixing of the inference but it wiѴѴ pro-

vide coarser resuѴtsĺ The modeѴ and inference we have detaiѴed is 
spatiaѴѴy homogeneousĺ Howeverķ more rich and beneficiaѴ infor-
mation couѴd be obtained through adding spatiaѴ covariates such 
as environmentaѴ data or the positions of the animaѴs reѴative to 
each otherĺ These may affect the sociaѴ behaviourķ or indepen-

dent andņor Ѵeading animaѴs may be affected by a static ŐBѴackweѴѴ 
et aѴĺķ ƑƏƐѵő or dynamic ŐWangķ BѴackweѴѴķ MerkѴeķ ş Pottsķ ƑƏƐƖő 
environment rather than foѴѴowing Brownian motionĺ The aѴgo-

rithm in Section Ƒĺƒ to sampѴe new trajectories is easiѴy extended 
to a spatiaѴѴy heterogeneous caseķ though it sѴows it down con-

siderabѴyĺ Againķ work is ongoing to deveѴop and improve thisĺ 
Furthermoreķ we couѴd add some heterogeneity into the animaѴs 

themseѴvesĺ For exampѴeķ we couѴd use characteristic information 
such as the animaѴŝs age or sex to ascertain how they interpѴay 
with sociaѴ dominanceĺ Or independent transition rates couѴd 
be estimated for each animaѴ in a modeѴ that is hierarchicaѴ in 
the statisticaѴ senseķ but some consideration wiѴѴ be needed to 
weigh up the benefits of substantiaѴѴy increasing the number of 
parametersĺ
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