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Abstract

We introduce a new type of card shuffle called a one-sided transposition shuffle. At each

step a card is chosen uniformly from the pack and then transposed with another card chosen

uniformly from below it. This defines a random walk on the symmetric group generated by

a distribution which is non-constant on the conjugacy class of transpositions. Nevertheless,

we provide an explicit formula for all eigenvalues of the shuffle by demonstrating a useful

correspondence between eigenvalues and standard Young tableaux. This allows us to prove

the existence of a total-variation cutoff for the one-sided transposition shuffle at time n logn.

We also study a weighted generalisation of the shuffle which, in particular, allows us to recover

the well known mixing time of the classical random transposition shuffle.
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1 Introduction

Consider a stacked deck of n distinct cards, whose positions are labelled by elements of the set[n] ∶= {1, . . . , n} from bottom to top. Any shuffle which involves choosing two positions and
switching the cards found there is called a transposition shuffle, and may be viewed as a random
walk on the symmetric group Sn. (If the two positions coincide then no cards are moved.) Diaconis
and Shahshahani [6] were the first to study transposition shuffles using the representation theory
of Sn; they famously showed that the random transposition shuffle, in which the two positions are
chosen independently and uniformly on [n], takes (n/2) logn steps to randomise the order of the
deck. (This is known as the mixing time of the shuffle.) The use of representation theory, both
in [6] and successive works (e.g. [1, 3]), relies heavily on the fact that the distribution generating
the shuffle is constant on conjugacy classes of Sn.

Since then a variety of algebraic and probabilistic techniques have been employed to study
different types of transposition shuffle. Notable examples include the “transpose top and random”
shuffle [16], the “adjacent transpositions” shuffle [9], and a generalisation of the latter in which
the two cards are constrained to lie within a certain (cyclical) distance of one another [2]. All
of these shuffles have the property that, at each step, the transposition to be applied is chosen
uniformly from within some set which generates the entire group Sn.

Semi-random transposition shuffles form an interesting class of Markov chains (see e.g. [12–14]).
In this class the right hand chooses a card uniformly at random, the left hand chooses a card via
some (possibly time-inhomogeneous) independent stochastic process, and then the two chosen
cards are transposed. A universal upper bound of O(n logn) on the mixing time of any semi-
random transposition shuffle was established by Mossel, Peres, and Sinclair [12].

∗PhD funded by the EPSRC grant: EP/N509802/1
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In the present work we introduce a new class of shuffles called one-sided transposition shuffles:
these have the defining property that at step i the right hand’s position (Ri) is chosen according
to some arbitrary distribution on [n], and given the value of Ri the distribution of the left hand’s
position (Li) is supported on the set {1, . . . ,Ri}. For the majority of this paper we shall focus
on the case when the right and left hands are both chosen uniformly from their possible ranges,
but in Section 4 we shall extend our main results to the case when Ri is chosen using a particular
type of weighted distribution.

Our setup differs significantly from the previously studied shuffles mentioned above. The
dependence between the left and right hands means that this does not fall into the class of semi-
random transpositions. Furthermore, although the generating set for our shuffle is the entire
conjugacy class of transpositions, the distribution that we impose upon this set is in general far
from uniform. (E.g. when right and left hands are both uniform on their permitted ranges, the
probabilities attached to different transpositions range from 1/n2 to 1/2n; see Definition 1 below.)
We note that there can clearly be no universal upper bound on the mixing time of these shuffles
without imposing further constraints on the distribution of the left hand, since the shuffle can be
slowed arbitrarily by increasing the probability that the two hands choose the same position.

In order to state our results we briefly introduce some notation and terminology.

Definition 1. The (unbiased) one-sided transposition shuffle Pn is the ergodic random walk on
Sn generated by the following distribution on the conjugacy class of transpositions:

Pn(τ) =
⎧⎪⎪⎨⎪⎪⎩

1
n
⋅ 1
j

if τ = (i j) for some 1 ≤ i ≤ j ≤ n

0 otherwise.

We use the convention that all ‘transpositions’ (i i) are equal to the identity element id, and
therefore Pn(id) = 1

n
(1 + 1

2
+ ⋅ ⋅ ⋅ + 1

n
) = Hn

n
, where Hk denotes the kth harmonic number. We write

P t
n for the t−fold convolution of Pn with itself.

This shuffle is clearly both reversible and transitive, and has stationary distribution equal to
the uniform distribution on Sn, denoted πn; that is, P t

n(σ) → 1/n! as t → ∞ for all σ ∈ Sn. In
order to study the rate of this convergence, we begin by recalling that the total variation distance
between two probability distributions P and Q on Sn is defined by

∥P −Q∥TV = sup
A⊆Sn

∣P (A) −Q(A)∣ = 1

2
∑

σ∈Sn

∣P (σ) −Q(σ)∣.
Now consider a sequence of distributions {Qn}n∈N on state spaces {Sn}n∈N with corresponding
stationary distributions {πn}n∈N. We may define the total variation mixing time tmix

n (ε) for the
distribution Qn as follows:

tmix
n (ε) =min{t ∶ ∥Qt

n − πn∥TV < ε}.
It is well known that many natural sequences of this kind exhibit behaviour known as a cutoff
phenomenon, whereby the convergence to equilibrium occurs more and more sharply as n→∞.

Definition 2. A sequence of distributions {Qn} exhibits a (total variation) cutoff at time {tn}
with a window of size {wn} if wn = o(tn) and the following limits hold:

lim
c→∞

lim sup
n→∞

∥Qtn+cwn

n − πn∥TV = 0

lim
c→∞

lim inf
n→∞

∥Qtn−cwn

n − πn∥TV = 1 .

Existence of a cutoff implies that tmix
n (ε) ∼ tn for all ε ∈ (0,1). The main conclusion of this

work is that the one-sided transposition shuffle exhibits a cutoff at time tn = n logn.

Theorem 3. The one-sided transposition shuffle Pn exhibits a cutoff at time n logn. Specifically,
for any c1 > 0 and c2 > 2

lim sup
n→∞

∥Pn logn+c1n
n − πn∥TV ≤

√
2e−c1 , (1)

and lim inf
n→∞

∥Pn logn−n log logn−c2n
n − πn∥TV ≥ 1 − π2

6(c2 − 2)2 . (2)
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The lower bound on the mixing time in (2) will be obtained via a coupling argument which
allows us to compare the one-sided transposition shuffle to a variation of a coupon-collecting
problem. To establish the upper bound for the cutoff in Theorem 3 we shall make use of a
classical ℓ2 bound on total variation distance.

Lemma 4 (Lemma 12.16 [11]). Let Q be the transition matrix for a reversible, transitive, aperiodic
Markov chain on finite state space X , with stationary distribution π. Let the eigenvalues of Q be
denoted βi, with 1 = β1 > β2 ≥ ⋅ ⋅ ⋅ ≥ β∣X ∣ > −1. Then

4∥Qt − π∥2TV ≤∑
i≠1

β2t
i .

The spectrum of the one-sided transposition shuffle will be analysed using the representation
theory of the symmetric group, and our method exhibits some algebraic features which are of
independent interest. The key result is describing an explicit method for obtaining the eigenvectors
of Pn+1 from those of Pn; this is called lifting eigenvectors. It is interesting that the technique
of lifting eigenvectors allows the use of representation theory to analyse shuffles which are not
constant on conjugacy classes. In order to work, this technique requires a particularly close
relationship between the shuffle on n and n+ 1 cards – in our examples of one-sided transposition
shuffles on n + 1 cards, the (n + 1)-th card only moves when Ri

= n + 1, and for all other choices
of Ri the shuffle on n + 1 cards behaves like the shuffle on n cards (see equation (29) for more
details). An analysis involving the lifting of eigenvectors was first used in the recent work of Dieker
and Saliola [7] which studied the eigenspaces of the random-to-random shuffle; this analysis was
used by Bernstein and Nestoridi [4] to prove the existence of a cutoff for this shuffle at time
(3/4)n logn. Lafrenière [10] subsequently showed that similar lifting techniques could be applied
to more general “symmetrized shuffling operators”. In this paper we make several non-trivial
changes to the technique developed by Dieker and Saliola in order to employ it in the analysis of
the one-sided transposition shuffle: we believe that this is the first time such a technique has been
shown to be applicable to either a non-symmetrized shuffle or a transposition shuffle. We suspect
that with suitable modifications the technique of lifting eigenvectors may be used to analyse a
whole variety of shuffles for which the standard technique of discrete Fourier transforms fails.

Using this method we prove that each eigenvalue of Pn corresponds to a standard Young tableau,
and may be computed explicitly from the entries in the tableau. That we are able to find such
explicit results is remarkable given that the distribution generating the shuffle is not constant on
conjugacy classes. Definitions, notation and proofs will be carefully laid out below, but for ease
of reference we state here the main two results which will underpin our analysis, proofs of which
can be found in the Appendix:

Theorem 5. The eigenvalues of Pn are labelled by standard Young tableaux of size n, and the
eigenvalue represented by a tableau of shape λ appears dλ times, where dλ is the dimension of λ.

Lemma 6. For a tableau T of shape λ the eigenvalue corresponding to T is given by

eig(T ) = 1

n
∑

boxes
(i,j)

j − i + 1
T (i, j) , (3)

where the sum is performed over all boxes (i, j) in T .

The organisation of the remainder of the paper is as follows. In Section 2 we first explore some
important properties of the eigenvalues for Pn, and then use these to prove the upper bound on
the mixing time given by Theorem 3. The corresponding lower bound will be proved in Section 3,
using entirely probabilistic arguments. Finally, in Section 4 we will consider a generalisation of
the one-sided transposition shuffle, in which Ri is chosen according to a non-uniform distribution:
we show that the algebraic technique developed for Pn holds in this more general setting, and that
the well-known mixing time for the (standard) random transposition shuffle may be recovered in
this way.
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2 Upper Bound

2.1 Eigenvalue Analysis

Before we establish relations of the eigenvalues for Pn we first will recall some standard definitions
about partitions, Young diagrams and Young tableaux [8]. A partition of n is a tuple of positive
integers λ = (λ1, . . . , λr) such that, ∑λi = n, and λ1 ≥ ⋅ ⋅ ⋅ ≥ λr. We write λ ⊢ n. We call r the
length of λ and denote it l(λ). We denote the partition (1, . . . ,1) ⊢ n as (1n).

Every partition λ has an associated Young diagram, made by forming a left adjusted stack of
boxes with rows labelled downwards and row i having λi boxes. We often blur the distinction
between a partition and its Young diagram, e.g. (4,2) = . We may refer to the boxes of a

diagram λ by using coordinates (i, j) to mean the box in the ith row and jth column. Given a
partition λ ⊢ n, we may form the transpose of λ, denoted λ′, by turning rows into columns in the
Young diagram. We have λ ⊢ n if and only if λ′ ⊢ n.

We have a partial order on partitions of n called the dominance order : in terms of Young
diagrams, for two partitions µ,λ ⊢ n, we write λ ⊵ µ if we can form µ by moving boxes of λ down
and to the left. We have λ ⊵ µ if and only if µ′ ⊵ λ′ [8, Lemma 1.4.11].

Given two partitions µ,λ of different sizes, we say µ ⊂ λ if µ is fully contained in λ when we align
the Young diagrams of µ and λ at the top left corners; equivalently, if we write λ = (λ1, . . . , λr)
and µ = (µ1, . . . , µs), this means that s ≤ r and µi ≤ λi for each 1 ≤ i ≤ s.

Given a partition λ ⊢ n, we may form a Young tableau T by putting numbers into the boxes
of (the Young diagram of) λ. A standard Young tableau T is one in which the numbers 1, . . . , n
occur once each and such that the values are increasing across rows and down columns. The set of
standard Young tableaux of shape λ is denoted by SYT(λ). The size of the set SYT(λ) is called
the dimension of λ, denoted dλ. For a tableau T , form the transpose of T denoted T ′ by turning
rows into columns and preserving the value in each box. If T ∈ SYT(λ), then T ′ ∈ SYT(λ′). Given
a tableau T , let T (i, j) be the value of box (i, j) in T if it exists and undefined otherwise.

For any λ ⊢ n, define the tableau T→λ by inserting the numbers 1, . . . , n from left to right. Define

the tableau T ↓λ by inserting the numbers 1, . . . , n from top to bottom. From the introduction we
know the eigenvalues for Pn are labelled by Young tableaux of size n, and Lemma 6 gives an
explicit formula for the eigenvalue associated to a given tableau. Before applying the bound in
Lemma 4, we first investigate relationships between the eigenvalues. We show that the eigenvalue
corresponding to T ∈ SYT(λ) is bounded by the eigenvalues for T→λ and T ↓λ. To simplify our upper
bound calculation, we prove that we only need to consider the partitions for which T→λ gives a

positive eigenvalue. Lastly, we prove that the eigenvalues corresponding to T→λ , T ↓λ decrease as one
moves down the dominance order of partitions. We first illustrate some of the preceding definitions
and discussion with an example.

Example 7. Let λ = (3,2) ⊢ 5. Then SYT(λ) has five elements, so dλ = 5. These 5 tableaux,
together with the associated eigenvalues calculated using Lemma 6, are given in Table 1 below. In
this table, T→λ is the first tableau listed and T ↓λ is the last one; we can see that the corresponding
eigenvalues bound all the others.

T ∈ SYT((3,2))
1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

eig(T ) 0.64 0.59 0.57 0.523 0.503

Table 1: Eigenvalues corresponding to T ∈ SYT((3,2)).
We can now begin our analysis of the eigenvalues by showing how swapping numbers in a

tableau affects the corresponding eigenvalue.

Lemma 8. Let T be a general Young tableau. Suppose we form a new tableau S by swapping
two values in T which have coordinates (i1, j1), (i2, j2) in T . WLOG assume T (i1, j1) < T (i2, j2).
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Then the change in corresponding eigenvalues satisfies the following inequality:

eig(S) − eig(T )⎧⎪⎪⎨⎪⎪⎩
≥ 0 if (i1 − i2) + (j2 − j1) ≥ 0
< 0 if (i1 − i2) + (j2 − j1) < 0 .

Importantly, if we move the larger entry down and to the left the change in eigenvalue is non-
negative; if it moves up and to the right then the change is negative.

Proof. Since S and T agree in all but two entries, Lemma 6 tells us that the difference in eigenvalues
is given by

eig(S) − eig(T ) = 1

n
(j1 − i1 + 1
T (i2, j2) +

j2 − i2 + 1
T (i1, j1) ) −

1

n
(j1 − i1 + 1
T (i1, j1) +

j2 − i2 + 1
T (i2, j2) )

= (i1 − i2) + (j2 − j1)
n

( 1

T (i1, j1) −
1

T (i2, j2)) .
This result allows us to prove that the eigenvalues for T ↓λ and T→λ bound all others for SYT(λ).

Lemma 9. Let λ ⊢ n. For any T ∈ SYT(λ) we have the following inequality:

eig(T ↓λ) ≤ eig(T ) ≤ eig(T→λ ). (4)

Proof. Reading across the rows of T , beginning with the first row, identify the first box in which T

and T→λ have different entries; write (i, j) for the coordinates of this box. Due to the way in which
T→λ is constructed, T (i, j) > T→λ (i, j). Furthermore, the number T (i, j) − 1 must occur strictly
below and to the left of T (i, j), since T is a standard Young tableau. Swapping entries T (i, j) − 1
and T (i, j) produces a new element of SYT(λ) whose corresponding eigenvalue is no smaller than
eig(T ), thanks to Lemma 8.

We can therefore iterate this procedure, swapping T (i, j)−1 with T (i, j)−2 etc, until T (i, j) =
T→λ (i, j). Note that at this point the entries in the first T (i, j) boxes of T and T→λ must agree,
moreover these entries are now fixed in place. We now proceed to the next box in which T and
T→λ differ, and repeat: this results in a sequence of swaps which make the entries of T agree with
those in T→λ , and which can only ever cause the corresponding eigenvalue to increase. This proves
the second inequality in Lemma 9, and the first one follows via an analogous argument on the
columns of T .

The next result and its corollary establish that when bounding eigenvalues, we only need to
consider those given by T→λ .

Lemma 10. Let λ ⊢ n. For any T ∈ SYT(λ) we have

eig(T ) + eig(T ′) = 2Hn

n
.

Proof. Let T ∈ SY T (λ). Then
eig(T ) + eig(T ′) = 1

n
∑

boxes
(i,j)∈T

j − i + 1
T (i, j) +

1

n
∑

boxes
(j,i)∈T ′

i − j + 1
T ′(j, i)

= 1

n
∑

boxes
(i,j)∈T

j − i + 1
T (i, j) +

1

n
∑

boxes
(i,j)∈T

−(j − i) + 1
T (i, j) = 2Hn

n
.

Corollary 11. Let λ = (λ1, . . . , λr) ⊢ n, and suppose we have eig(T ↓λ) ≤ 0, then we have

eig(T→λ′ ) ≥ ∣eig(T ↓λ)∣ ≥ 0. (5)
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Proof. It follows from Lemma 10 that eig(T→λ′ ) + eig(T ↓λ) = 2Hn/n. Thus if eig(T ↓λ) ≤ 0 then

eig(T→λ′ ) = 2Hn

n
− eig(T ↓λ) ≥ −eig(T ↓λ) = ∣eig(T ↓λ)∣ ≥ 0 .

We end this section by establishing a relationship between eigenvalues and the dominance
ordering on partitions.

Lemma 12. Let λ,µ ⊢ n. If λ ⊵ µ then

eig(T→λ ) ≥ eig(T→µ ) (6)

and eig(T ↓λ) ≥ eig(T ↓µ). (7)

Proof. If we can show the statements hold for any partition µ which is formed from λ by moving
only one box then inductively it will hold for all λ ⊵ µ. Suppose µ is formed from λ by moving a
box from row a to row b, with a < b ≤ l(λ) + 1 (if b = l(λ) + 1 then a new row is created by placing
the removed box on the very bottom of the diagram). The box we move goes from coordinates(a, λa) of λ to (b, λb + 1) in µ.

We shall prove first that eig(T→λ ) ≥ eig(T→µ ). Since T→λ and T→µ are both numbered from left
to right, the effect of moving a box from row a to row b is that T→µ (i, j) = T→λ (i, j) − 1 for any
box (i, j) with a < i ≤ b; boxes in all other rows contain the same values in both tableaux. Using
equation (3), and remembering to include a term to account for the box being moved, we find
that:

n(eig(T→λ ) − eig(T→µ )) = ( λa − a + 1
T→λ (a, λa) −

(λb + 1) − b + 1
T→µ (b, λb + 1) ) + ∑

(i,j)∈Tλ∩Tµ

with a<i≤b

[ 1

T→λ (i, j) −
1

T→µ (i, j)] (j − i + 1)

≥ ( λa − a + 1
T→λ (a, λa) −

(λb + 1) − b + 1
T→µ (b, λb + 1) ) + (λa − a + 1)( 1

T→µ (b, λb + 1) −
1

T→λ (a, λa))
= (λa − λb) + (b − a) − 1

T→µ (b, λb + 1) ≥ 0.
The first inequality holds because all the square-bracketed terms in the sum are negative; we upper
bound j − i + 1 ≤ λa − a + 1, and the resulting sum telescopes. The final inequality holds because(λa − λb) ≥ 1 and (b − a) ≥ 1.

For the second inequality, recall that λ ⊵ µ if and only if µ′ ⊵ λ′. Therefore, using the first
established inequality we find that eig(T→µ′ ) ≥ eig(T→λ′ ). Now Lemma 10 gives −eig(T ↓µ) ≥ −eig(T ↓λ)
and thus we recover the desired inequality.

2.2 Upper Bound Analysis

In this section we complete the proof of the upper bound of Theorem 3, making use of the results
of Section 2.1. The analysis splits into two parts, dealing separately with those partitions λ having
either “large” or “small” first row.

Lemma 4 allows us to upper bound the total variation distance in terms of the non-trivial
eigenvalues of the transition matrix. Using Lemma 6 we see that the trivial eigenvalue corresponds
to the one-dimensional partition λ = (n), and so Theorem 5 implies that

4∥P t
n − πn∥2TV ≤ ∑

λ⊢n
λ≠(n)

dλ ∑
T ∈SY T (λ)

eig(T )2t .

Recall from Lemma 9 that for any T ∈ SYT(λ) the eigenvalue corresponding to T may be bounded
by those corresponding to T ↓λ and T→λ . With this in mind, we let Λ→n = {λ ⊢ n ∶ ∣eig(T ↓λ)∣ ≤
eig(T→λ )} and Λ↓n = {λ ⊢ n ∶ ∣eig(T ↓λ)∣ > ∣eig(T→λ )∣}; note that these are disjoint sets, with
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Λ→n ⊆ {λ ⊢ n ∶ eig(T→λ ) ≥ 0} and Λ↓n ⊆ {λ ⊢ n ∶ eig(T ↓λ) < 0}. Using Lemma 9 and then
Corollary 11 we relax the upper bound as follows:

4∥P t
n − πn∥2TV ≤ eig(T(1n))2t + ∑

λ∈Λ→n
λ≠(n)

dλ ∑
T ∈SY T (λ)

eig(T )2t + ∑
λ∈Λ↓n
λ≠(1n)

dλ ∑
T ∈SY T (λ)

eig(T )2t

≤ eig(T(1n))2t + ∑
λ∈Λ→n
λ≠(n)

d2λ eig(T→λ )2t + ∑
λ∈Λ↓n
λ≠(1n)

d2λ eig(T ↓λ)2t

≤ eig(T(1n))2t + ∑
λ ∶ eig(T→λ )≥0

λ≠(n)

d2λ eig(T→λ )2t + ∑
λ ∶ eig(T ↓

λ
)<0

λ≠(1n)

d2λ eig(T ↓λ)2t

≤ eig(T(1n))2t + ∑
λ ∶ eig(T→λ )≥0

λ≠(n)

d2λ eig(T→λ )2t + ∑
λ ∶ eig(T ↓

λ
)<0

λ′≠(n)

d2λ′ eig(T→λ′ )2t

≤ eig(T(1n))2t + 2 ∑
λ ∶ eig(T→λ )≥0

λ≠(n)

d2λ eig(T→λ )2t . (8)

(In the penultimate line we have used Corollary 11 and the fact that dλ′ = dλ. The final inequality
follows by a second application of Corollary 11: if λ satisfies eig(T ↓λ) < 0 then eig(T→λ′ ) must be
non-negative.)

The first term in (8) is simple to deal with at time t = n log(n)+ cn. We have already observed
that eig (T(n)) = 1, and so Lemma 10 implies that eig (T(1n)) = 2Hn/n − 1. This means that

eig (T(1n))2t = (1 − 2Hn

n
)2(n logn+cn)

(9)

and, using the bound 1 − x ≤ e−x, we see that this tends to zero for any fixed c as n→∞.
It therefore remains to bound the sum in (8). The partitions with the biggest eigenvalues will

be those with large first rows λ1, and so we split the analysis into two parts according to this
value; by large partitions we mean those with λ1 ≥ 3n/4, and small partitions are those with
λ1 < 3n/4. Large partitions give the biggest eigenvalues for Pn and must be dealt with carefully; it
is these which will determine the mixing time of the shuffle. Small partitions have correspondingly
large dimensions, but eigenvalues which are small enough to give control around any time of order
n log(n). We begin by identifying the partition at the top of the dominance ordering for any fixed
value of λ1, which allows us to employ Lemma 12. If λ ⊢ n has first row equal to λ1 = n − k, then
by moving boxes up and to the right it follows trivially that

λ ⊴ ⎧⎪⎪⎨⎪⎪⎩
(n − k, k) if k ≤ n

2(n − k,n − k, . . . ) = (n − k,⋆) if n
2
< k ≤ n − 1 ,

where we write (n−k,⋆) for the partition which has as many rows of n−k boxes as possible, with
the last row being formed from whatever is left over; it will transpire that in this case only the
size of the first two rows will be important for our bounds.

For each k we also need a bound on sum of the squared dimensions of all partitions with
λ1 = n − k, and for this we use:

Lemma 13 (Corollary 2 of [6]).

∑
λ⊢n

λ1=n−k

d2λ ≤ (n
k
)2k! ≤ n2k

k!
.

Large Partitions

Let λ be a partition satisfying eig(T→λ ) ≥ 0, and for which λ1 = n − k for some k ≤ n/4. We have
observed above that λ ⊴ (n − k, k), and so Lemma 12 suggests that we look at the eigenvalue
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of T→(n−k,k). Using our eigenvalue formula from Lemma 6 we calculate this as follows, with the

first/second sum corresponding to the first/second row of T→(n−k,k):

eig(T→(n−k,k)) = 1

n

n−k∑
j=1

j

T→(n−k,k)(1, j) +
1

n

k∑
j=1

j − 1
T→(n−k,k)(2, j) =

n − k
n
+ 1

n

k∑
j=1

j − 1
n − k + j (10)

= 1 − (n − k + 1)
n

(Hn −Hn−k+1) − 1

n
.

We now use this, along with the inequality 1−x ≤ e−x, to bound the contribution of large partitions
to the sum in (8):

n/4∑
k=1

∑
λ ∶ eig(T→λ )≥0

λ1=n−k

d2λeig(T→λ )2t ≤
n/4∑
k=1

n2k

k!
eig (T→(n−k,k))2t (by Lemma 13)

≤ n/4∑
k=1

n2k

k!
(1 − (n − k + 1)

n
(Hn −Hn−k+1) − 1

n
)
2t

≤ n/4∑
k=1

n2k

k!
e
−2t( (n−k+1)

n
(Hn−Hn−k+1)+ 1

n
)

≤ e−2c
n/4∑
k=1

n2k−2(n−k+1)(Hn−Hn−k+1)−2

k!
, (11)

where in the last step we have substituted t = n logn + cn. The ratio of (k + 1)th to kth terms in
this sum is given by

n2(Hn−Hn−k)

k + 1 . (12)

For large n this ratio is less than one for all k = 1, . . . , n/4. Indeed, a little analysis shows that for
large n the largest value of the ratio over this range of k is achieved when k = 1, at which point it
equals n2/n/2. For sufficiently large n this ratio is thus bounded above by 3/4, say, which permits
us to bound the sum in (11) by a geometric series with initial term 1:

e−2c
n/4∑
k=1

n2k−2(n−k+1)(Hn−Hn−k+1)−2

k!
≤ e−2c

n/4∑
k=1

(3/4)k−1 ≤ 4e−2c . (13)

Small partitions

Now consider a partition λ satisfying eig(T→λ ) ≥ 0 and for which λ1 = n − k with n/4 < k ≤ n − 2.
Suppose first of all that n/4 < k ≤ n/2; as in the large partition case, any such partition is
dominated by (n − k, k), and the same calculation as in equation (10) shows that

eig (T→(n−k,k)) = n − k
n
+ 1

n

k∑
j=1

j − 1
n − k + j . (14)

Now consider the case when k > n/2. Here we have already identified that λ ⊴ (n−k,⋆), and so
we proceed by calculating the eigenvalue of T→(n−k,⋆). Note first that for any box (i, j) with i ≥ 3,

j − i + 1
T→(n−k,⋆)(i, j) =

j − i + 1
(i − 1)(n − k) + j ≤

(n − k)
(i − 1)(n − k) + (n − k) ≤

1

3
.

Using this inequality in conjunction with Lemma 6 we bound eig(T→(n−k,⋆)) as follows:
eig(T→(n−k,⋆)) = 1

n

n−k∑
j=1

j

T→(n−k,⋆)(1, j) +
1

n

n−k∑
j=1

j − 1
T→(n−k,⋆)(2, j) +

1

n
∑
(i,j)
i≥3

j − i + 1
T→(n−k,⋆)(i, j)

≤ n − k
n
+ 1

n

n−k∑
j=1

j − 1
n − k + j +

n − 2(n − k)
3n

. (15)
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We now observe that (15) provides an upper bound for the expression in (14). Indeed, for n/4 <
k ≤ n/2 we may write

n − k
n
+ 1

n

n−k∑
j=1

j − 1
n − k + j +

n − 2(n − k)
3n

− eig(T→(n−k,k)) = 1

n

n−k∑
j=k+1

( j − 1
n − k + j −

1

3
)

= 2(n − 2k)
3n

− (n − k + 1)
n

(H2(n−k) −Hn) .
Substituting k = γn, this final expression is bounded below for any n ≥ 15 by the function f(γ),

where f ∶ [1/4,1/2]→ R is defined by

f(γ) = 2(1 − 2γ)
3

− (1 − γ + 1

15
) log(2(1 − γ)) .

This function is non-negative for all γ ∈ [1/4,1/2], thus completing our claim.
We have just shown that for any λ ⊢ n satisfying eig(T→λ ) ≥ 0 and for which λ1 = n − k with

n/4 < k ≤ n − 2,
eig (T→λ ) ≤ n − k

n
+ 1

n

n−k∑
j=1

j − 1
n − k + j +

n − 2(n − k)
3n

= n − k
n
+ n − k − 1 − (n − k + 1)(H2(n−k) −Hn−k+1)

n
+ 2k − n

3n

= 1 − (4k − 2n + 3)
3n

− (n − k + 1)
n

(H2(n−k) −Hn−k+1) .
Using the inequalities 1 − x ≤ e−x for all x, and (x + 1) (H2x −Hx+1) > (x − 1) log 2 for all integers
x ≥ 2, we are able to bound the contribution from small partitions to the sum in (8) at time
t = n logn + cn as follows:

n−2∑
k=n/4

∑
λ ∶ eig(T→λ )≥0

λ1=n−k

d2λeig (T→λ )2t ≤
n−2∑

k=n/4

n2k

k!
e−

2t
n
( 4k−2n+3

3
+(n−k+1)(H2(n−k)−Hn−k+1))

≤ e−2c n−2∑
k=n/4

n
4n−2k−6

3
−2(n−k−1) log 2

k!
. (16)

Once again writing k = γn, now for γ ∈ [1/4,1], a straightforward application of Stirling’s formula
shows that for large n the dominant term in the summand of (16) takes the form ng(γ)n/3, where
g(γ) = 4− 5γ − 6(1− γ) log 2 < 0 for all γ ∈ [1/4,1]. It follows that, for any fixed c, the sum in (16)
tends to zero as n→∞. Combining this result with the bounds in (8), (9) and (13) completes the
proof of the upper bound on the mixing time in Theorem 3.

3 Lower Bound

To complete Theorem 3 we need to prove the lower bound on the mixing time. To do this we
employ the usual trick of finding a set of permutations Bn ⊂ Sn which has significantly different
probability under the equilibrium distribution πn and the one-sided transposition measure P t

n.
The definition of total variation distance then immediately yields a simple lower bound:

∥P t
n − πn∥TV ≥ P t

n(Bn) − πn(Bn) .
In particular, we follow in the steps of [6] and find a suitable set Bn by considering the number
of fixed points within (a certain part of) the deck. Estimation of P t

n(Bn) then reduces to a novel
variant of the classical coupon collector’s problem.

Recall that the deck of n cards are labelled {1, . . . , n} from bottom to top. One step of
the one-sided transposition shuffle on n cards may be modelled by firstly choosing a position

9



Ri ∼ U{1, . . . n} with our right hand, and then choosing a position (below our right hand) Li ∼
U{1, . . . ,Ri} with our left hand and transposing the cards in the chosen positions.

Since the left hand always chooses a position below that of the right hand, it is intuitively
clear that our shuffle is relatively unlikely to transpose two cards near to the top of the deck. This
leads us to focus attention on a set of positions at the top of the deck: write Vn for the top part
of the deck, where

Vn = {n − n/m + 1, . . . , n − 1, n} ,
and where m = m(n) is to be chosen later. We shall be keeping track of fixed points within this
part of the deck. Let

Bn = {ρ ∈ Sn ∣ρ has at least 1 fixed point in Vn} .
Note that Vn contains n/m positions, and so we may upper bound the size of Bn by choosing one
position in Vn to fix and considering all permutations of the other n−1 positions. This shows that∣Bn∣ ≤ (n/m)(n − 1)!, and hence πn(Bn) ≤ 1/m.

To bound the value of P t
n(Bn) we reduce the problem to studying a simpler Markov chain linked

to coupon collecting. When either of our hands (Ri, Li) picks a new (previously untouched) card
we shall say that this card gets collected. The uncollected cards in Vn at time t are those which
have not yet been picked by either hand, and thus the size of this set gives us a lower bound on the
number of fixed points in Vn. Writing U t

n for the set of uncollected cards in Vn after t one-sided
transposition shuffles, it follows that

P t
n(Bn) ≥ P(∣U t

n∣ ≥ 1) . (17)

We wish to show that at time t = n logn − n log logn the probability on the right hand side of
(17) is large. The difficulty with the analysis here is that in the one-sided transposition shuffle
the value of Li is clearly not independent of Ri. This means that a standard coupon-collecting
argument for the time taken to collect all of the cards/positions in Vn cannot be applied in our
setting, and a little more work is therefore required.

Note that at each step there are four possibilities: both hands collect new cards, only one
hand does (left or right) or neither does. This permits us to bound the change in the number of
collected cards as follows:

∣Vn ∖U t+1
n ∣ = ∣Vn ∖U t

n∣ + ∣{Lt+1,Rt+1} ∩U t
n∣

≤ ∣Vn ∖U t
n∣ + 2 ⋅ 1[Lt+1 ∈ U t

n] + 1[Lt+1 ∉ U t
n,R

t+1 ∈ U t
n] , (18)

where 1[⋅] is an indicator function. Now, since the left hand is more likely to choose positions
towards the bottom of the pack,

P(Lt+1 ∈ U t
n) ≤ P(Lt+1 ∈ Û t

n) ,
where Û t

n = {n − n/m + 1, . . . , n − n/m + ∣U t
n∣}, i.e. the ∣U t

n∣ lowest numbered positions in Vn.
Furthermore,

P(Lt+1 ∈ Û t
n) = 1

n
∑

k∈Ût
n

P (Lt+1 ∈ Û t
n ∣Rt+1 = k) + 1

n
∑

k∈Vn∖Ût
n

P (Lt+1 ∈ Û t
n ∣Rt+1 = k)

= 1

n
∑

k∈Ût
n

k − (n − n/m)
k

+ 1

n
∑

k∈Vn∖Ût
n

∣U t
n∣
k

≤ ∑
∣Ut

n∣
k=1 k + (n/m − ∣U t

n∣)∣U t
n∣

n(n − n/m) ≤ ∣U t
n∣(m − 1)n . (19)

The probability of the final event in (18) is simple to bound:

P(Lt+1 ∉ U t
n,R

t+1 ∈ U t
n) ≤ P(Rt+1 ∈ U t

n) ≤ ∣U
t
n∣
n

. (20)
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Using (18), (19) and (20) together, we now define a counting process M t
n which stochastically

dominates the number of collected cards ∣Vn ∖U t
n∣ at all times:

M0
n = 0 ;

P(M t+1
n =M t

n + k) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
(m−1)n ( n

m
−M t

n) if k = 2
1
n
( n
m
−M t

n) if k = 1
1 − m

(m−1)n ( n
m
−M t

n) if k = 0 .
(21)

Combining this with (17) we obtain the following bound on P t
n(Bn):

P t
n(Bn) ≥ P (M t

n < n/m) . (22)

We are interested in the time at which the process M t
n first reaches level n/m, where we now

take m =m(n) = logn.
Lemma 14. Let T =min{t ∶ M t

n ≥ n/ logn}. Then for any c > 2,
lim
n→∞

P(T < n logn − n log logn − cn) ≤ π2

6(c − 2)2 .

Before proving Lemma 14 we first show how this result quickly leads to a proof of the lower
bound in Theorem 3. Writing t = n logn − n log logn we obtain

∥P t−cn
n − πn∥TV ≥ P t−cn

n (Bn) − πn(Bn) ≥ P (M t−cn
n < n/m(n)) − 1/m(n)

= P(T > t − cn) − 1

logn
≥ 1 − π2

6(c − 2)2 −
1

logn
,

as required.

Proof of Lemma 14. Let Ti be the time spent by the process M t
n in each state i ≥ 0. We want to

find T = T0 + T1 + ⋅ ⋅ ⋅ + T(n/m)−1.
From (21) we see that

pi ∶= P(M t+1
n >M t

n ∣M t
n = i) = m

(m − 1)n (
n

m
− i) . (23)

In the standard coupon collecting problem each of the random variables Ti has a geometric distri-
bution with success probability pi. Here, however, we have to take into account the chance that
our counting process Mn increments by two, leading it to spend zero time at some state. Note
first that

P(M t+1
n =M t

n + 2 ∣M t+1
n >M t

n) = 1

m
,

independently of the value of M t
n. Prior to spending any time in state i, the process M t

n must
visit (at least) one of the states i − 1 or i − 2. A simple argument shows that

P(Ti > 0 ∣ Ti−1 > 0) = 1 − 1

m
, and P(Ti > 0 ∣ Ti−2 > 0) = 1 − 1

m
(1 − 1

m
) ≥ 1 − 1

m
.

Therefore P(Ti > 0) ≥ 1− 1
m

for all states i, and so Ti stochastically dominates the random variableT ′i with mass function

P(T ′i = k) =
⎧⎪⎪⎨⎪⎪⎩
1/m k = 0
(1 − 1/m)pi(1 − pi)k−1 k ≥ 1 . (24)

It follows that P(T < t) ≤ P(T ′ < t) for any t, where T ′ = T ′0 + T ′1 + ⋅ ⋅ ⋅ + T ′(n/m)−1. Setting

m =m(n) = logn we may bound the expectation and variance of T ′:
E[T ′] = n/m−1∑

i=0

m − 1
mpi

= (m − 1
m
)2 n log(n/m) ≥ n logn − n log logn − 2n ;

Var[T ′] ≤ n/m−1∑
i=0

1

p2i
≤ n/m∑

i=1

n2

i2
≤ π2

6
n2 .
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Finally, applying Chebyshev’s inequality yields the following for any c > 2:
P (T ′ < n log(n) − n log logn − cn) ≤ P (∣T ′ −E[T ′] ∣ > (c − 2)n) ≤ π2

6(c − 2)2 .

4 Biased One-sided Transpositions

In this section we generalise the result of Theorem 3 by allowing the right hand to choose from a
more general distribution on [n].
Definition 15. Given a weight function w ∶ N → (0,∞), let Nw(n) = ∑n

i=1w(i) denote the
cumulative weight up to n. Then the biased one-sided transposition shuffle Pn,w is the random
walk on Sn generated by the following distribution on transpositions:

Pn,w(τ) =
⎧⎪⎪⎨⎪⎪⎩

w(j)
Nw(n) ⋅ 1j if τ = (i j) for some 1 ≤ i ≤ j ≤ n
0 otherwise.

(25)

This shuffle allows a general distribution for the position chosen by the right hand, Ri, with

P(Ri = j) = w(j)
Nw(n) , for 1 ≤ j ≤ n , (26)

but maintains the property that the left hand Li chooses a position uniformly on the set {1, . . . ,Ri}.
Importantly the weight of each position j may only depend on j and not the size of the deck n.
This setup implies that the biased shuffle preserves the recursive algebraic structure identified in
the Appendix, and that the results of Theorems 32 and 41 still hold (up to minor changes in
constants). It follows that the eigenvalues of the biased one-sided transposition shuffles are still
represented by standard Young tableaux, and that the eigenvalue associated to a tableau T may
be computed in a similar way.

Lemma 16. The eigenvalues for the biased one-sided transposition shuffle Pn,w on n cards are
indexed by standard Young tableau of size n. For a standard Young tableau T of size n and
m ∈ [n] define a function T (m) by setting T (m) = j − i + 1 if and only if T (i, j) = m. The
eigenvalue corresponding to a tableau T is given by

eig(T ) = 1

Nw(n) ∑boxes
(i,j)

j − i + 1
T (i, j) ⋅w(T (i, j)) =

1

Nw(n)
n∑

m=1

T (m)w(m)
m

.

We now focus on a natural choice of weight function of the form w(j) = jα; we shall denote the
resulting shuffle as Pn,α, and write Nα(n) in place of Nw(n). For α = 0 we recover the unbiased
one-sided transposition shuffle Pn, while if α > 0 (α < 0) the right hand is biased towards the top
(respectively, bottom) of the deck.

Theorem 17. Define the time tn,α as,

tn,α =
⎧⎪⎪⎨⎪⎪⎩
Nα(n)/nα if α ≤ 1
Nα(n)/Nα−1(n) if α ≥ 1 .

The biased one-sided transposition shuffle Pn,α exhibits a total variation cutoff at time tn,α logn
for all α ∈ R. Specifically for any c1 > 5/2, c2 >max{2,3 − α} we have:

lim sup
n→∞

∥P tn,α(logn+c1)
n,α − πn∥ ≤ Ae−2c1 for a universal constant A, for all α

and lim inf
n→∞

∥P tn,α(logn−log logn−c2)
n,α − πn∥ ≥

⎧⎪⎪⎨⎪⎪⎩
1 − π2

6(c2−3+α)2 for α ≤ 1
1 − π2

6(c2−2)2 for α ≥ 1 .
12



The asymptotics of the cutoff times for the biased one-sided transposition shuffle are sum-
marised in Table 2.

α ∈ (−∞,−1) α = −1 α ∈ (−1,1] α ∈ (1,∞)
tn,α logn ζ(−α)n−α logn n(logn)2 1

1+αn logn
α

1+αn logn

Table 2: Asymptotics of the cutoff time tn,α logn as n→∞, for different values of α.

Note that the fastest mixing time is obtained when α = 1; using this weight function the shuffle
is constant on the conjugacy class of transpositions, with transition probabilities similar to those
of the classical random transpositions: Pn,1((i j)) = 2/(n(n+ 1)). In this case we obtain a mixing
time of tn,1 ∼ (n/2) logn which agrees with that of the random transposition shuffle. The mixing
time is bounded above by n logn for all α > 1, but as α → −∞ the mixing time is unbounded; in
particular, when α < −1 the mixing time is of order O(n−α logn).

Theorem 17 is proved by generalising the results of Sections 2 and 3. Many of the arguments
are almost identical to those already presented, so in what follows we shall simply sketch the main
differences. We note that bounding the mixing time when using more general monotonic weight
functions (but still satisfying Definition 15) is relatively straightforward: Lemma 16 indicates that
the upper bound on the mixing time is determined by whether w(n)/n is increasing or decreasing
in n. (See [?] for further details.) Here we restrict attention to the case when w(j) = jα since for
this family of shuffles we are able to show the existence of a cutoff.

4.1 Upper Bound for Biased One-sided Transpositions

We first of all note that the shuffles Pn,α are still aperiodic, transitive, and reversible, meaning we
may once again use Lemma 4 to upper bound the mixing time. Furthermore, for α ≤ 1 the main
results of Section 2.1 still hold, meaning that it again makes sense to bound the eigenvalues of
large and small partitions separately. For α ≥ 1 we will introduce a new tableau which will help us
bound the eigenvalues for Pn,α. After establishing bounds on our eigenvalues for all α we present
a combined argument for the upper bound in Theorem 17.

Lemma 18. Let λ ⊢ n with λ1 = n − k. Then the eigenvalue eig(T→λ ) for the shuffle Pn,α with
α ≤ 1 may be bounded as follows:

eig(T→λ ) ≤
⎧⎪⎪⎨⎪⎪⎩
1 − (n−k+1)knα

nNα(n) if k ≤ n/4
1 − knα

2Nα(n) if n/4 < k.
Proof. For k ≤ n/2, the maximum partition in the dominance order for the class of partitions

with λ1 = n − k is (n − k, k), and so eig(T→λ ) ≤ eig(T→(n−k,k)). The eigenvalue of T→(n−k,k) may

be calculated by summing over the two rows of the partition (n − k, k) and using Lemma 16, as
follows:

Nα(n) eig (T→(n−k,k)) =
n−k∑
m=1

mα + n∑
m=n−k+1

(m − n + k − 1)mα−1

= n∑
m=1

mα − (n − k + 1) n∑
m=n−k+1

mα−1

≤ Nα(n) − (n − k + 1)knα

n
.

This immediately proves the desired inequality for k ≤ n/4, and also yields the stated bound for
n/4 < k ≤ n/2.

For k > n/2 we once again need to bound eig(T→(n−k,⋆)). Letting ν = (n − k,⋆) for ease of

13



notation we calculate as follows:

Nα(n) eig(T→ν ) =
n−k∑
j=1

jα + l(ν)∑
i=2

νi∑
j=1

(j − i + 1)((i − 1)(n − k) + j)α−1

= Nα(n) −
l(ν)∑
i=2

νi∑
j=1

(i − 1)(n − k + 1)((i − 1)(n − k) + j)α(i − 1)(n − k) + j
≤ Nα(n) − (n − k)nα

n

l(ν)∑
i=2

(i − 1)νi .
By definition of the partition ν, each row but the last has size n − k, and the final row has size
νl(ν) = n−(l(ν)− 1)(n−k). In addition, since l(ν) = ⌈n/(n − k)⌉ we may write l(ν) = n/(n−k)+x
for some 0 ≤ x < 1. Substituting these values we obtain:

Nα(n) eig(T→ν ) ≤ Nα(n) − (n − k)nα

n

(l(ν) − 1)(2n − (n − k)l(ν))
2

= Nα(n) − nα

2n
(n − (1 − x)(n − k))(n − x(n − k))

= Nα(n) − nα

2n
(nk + x(1 − x)(n − k)2)

≤ Nα(n) − knα

2
.

With α ≥ 1 the main results (all but Lemma 12) of Section 2.1 hold with the roles of T ↓λ and T→λ
interchanged, and so the bound on total variation in equation (8) now involves eig(T ↓λ). Therefore,
we look to bound the eigenvalue of T ↓λ when λ1 = n − k, and to do so we need to introduce a new

tableau, T↘λ .

Definition 19. Let T↘λ define the Young tableau formed by filling in the diagonals of λ from left
to right, with each diagonal filled from top to bottom. For example,

T↘(3,2,1) =
3 5 6

2 4

1

, T↘(4,2) = 2 4 5 6

1 3
.

Lemma 20. For α ≥ 1, and λ ⊢ n with λ1 = n − k we have,

eig(T ↓λ) ≤ eig(T↘(n−k,⋆)) .
Proof. Recall that, for any tableau Tλ, Tλ(m) = j − i + 1 if and only if m appears in box (i, j) of
Tλ. Note that this function is constant on integers appearing in the same diagonal of Tλ, and that
T↘λ (m) is non-decreasing in m.

Now consider all the values of T ↓λ(m) for m ∈ [n], including repeats, and order them from

smallest to largest as c1 ≤ c2 ≤ ⋅ ⋅ ⋅ ≤ cn. Using Lemma 16, we may upper bound eig(T ↓λ) as follows:
Nα(n) ⋅ eig(T ↓λ) =

n∑
m=1

T ↓λ(m) ⋅mα−1 ≤ n∑
m=1

cm ⋅mα−1

= n∑
m=1

T↘λ (m) ⋅mα−1 ≤ n∑
m=1

T↘(n−k,⋆)(m) ⋅mα−1 = Nα(n) ⋅ eig(T↘(n−k,⋆)) .
The first inequality follows from the fact that mα−1 is increasing in m for α ≥ 1, and so pairing
up the constants cm and mα−1 cannot decrease the value of the sum. For the second inequality,
notice that (n − k,⋆) is obtained from λ by moving boxes up and to the right. Thus the diagonal
containing m in T↘(n−k,⋆) is (weakly) to the right of the corresponding diagonal in T↘λ , and so

T↘λ (m) ≤ T↘(n−k,⋆)(m) for all m.
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Lemma 21. For all k ≤ n − 2 and all m ∈ [n],
T↘(n−k,⋆)(m) ≤ n − k

n
⋅m. (27)

Proof. Let us write l(n − k,⋆) = l+ = ⌈ n
n−k ⌉ and l− = ⌊ n

n−k ⌋. If m1,m2 belong to the same diagonal

then T↘(n−k,⋆)(m1) = T↘(n−k,⋆)(m2), and hence if (27) holds for the smallest m on a diagonal it

holds for every entry of that diagonal. Furthermore, the bound trivially holds for any m whose
box (i, j) satisfies j − i + 1 ≤ 0 (for which the left hand side of (27) is non-positive). Combining
these two observations, we see that it suffices to prove the bound for those values of m which
appear in the first row of T↘(n−k,⋆).

Note that no diagonal can contain more than l+ boxes: call diagonals with l− or fewer boxes
short diagonals, and all others long diagonals. Note that long diagonals can only exist when
l+ = l− + 1. Any long diagonals clearly occur strictly before the short ones, when working left to
right along the first row. If the box (1, j) lies on a long diagonal, then the numbering pattern for

T↘ implies that this box will contain the integer m = (l+
2
) + 1 + (j − 1)l+. For this value of m, the

right hand side of (27) becomes

n − k
n
( l+(l+ − 1)

2
+ 1 + (j − 1)l+) = (n − k)l+

n
( l+ − 1

2
+ 1

l+
− 1 + j)

≥ j = T↘(n−k,⋆)(m) ,
thanks to the definition of l+ and the fact that (x − 1)/2 + 1/x ≥ 1 if x ≥ 2.

It remains to deal with the short diagonals which contain a box in the first row. For these
diagonals we now work from right to left, and consider boxes (1, n− k + 1− j) for j = 1,2, . . . . Let
m(j) denote the integer appearing in box (1, n−k+1− j). We know that m(1) = n, and it is clear
that (27) holds for box (1, n − k). It is then straightforward to see that

m(j) =m(j − 1) −min{j, l−}
for any j ≥ 2 for which box (1, n − k + 1 − j) is part of a short diagonal. The result for all short
diagonals now follows quickly by induction (using l−(n − k)/n ≤ 1).
Lemma 22. Let λ ⊢ n with λ1 = n − k. Then the eigenvalue eig(T ↓λ) for the shuffle Pn,α with
α ≥ 1 may be bounded as follows:

eig(T ↓λ) ≤
⎧⎪⎪⎨⎪⎪⎩
1 − k(n−k)Nα−1(n)

nNα(n) if k ≤ n/4
1 − k

n
for all k.

Proof. We begin by quickly proving the second bound for all k using Lemmas 20 and 21:

eig(T ↓λ) ≤ eig(T↘(n−k,⋆)) = 1

Nα(n)
n∑

m=1

T↘(n−k,⋆)(m) ⋅mα−1 ≤ 1

Nα(n)
n∑

m=1

(n − k)
n

⋅mα = 1 − k

n
.

Now we prove the bound for k ≤ n/4, by finding a tighter bound on T↘(n−k,⋆) and once again using

Lemma 20. For k ≤ n/4, we know (n−k,⋆) = (n−k, k), and thanks to the order in which the boxes
are filled, we see that T↘(n−k,⋆)(m) ≤m/2 for 1 ≤m ≤ 2k, and T↘(n−k,⋆)(m) =m−k for 2k+1 ≤m ≤ n.
This gives us the following simple bound:

Nα(n) ⋅ eig(T↘(n−k,⋆)) ≤
2k∑
m=1

m

2
mα−1 +

n∑
m=2k+1

(m − k)mα−1

= Nα(n) − kNα−1(n) + (kNα−1(2k) − 1

2
Nα(2k)) . (28)
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Now,

kNα−1(2k) − 1

2
Nα(2k) = k

2k∑
m=1

mα−1 (1 − m

2k
) ≤ k∫ 2k

0
xα−1 (1 − x

2k
)dx

= k(2k)α
α(1 + α)

≤ 2k2(n/2)α−1
α(1 + α) (since k ≤ n/4)

≤ k2(n/2)α−1 ,
since α ≥ 1. Finally, an application of Jensen’s inequality shows that (n/2)α−1 ≤ Nα−1(n)/n, and
combining this with (28) yields the desired result.

Returning to Theorem 17, recall that tn,α = Nα(n)/nα if α ≤ 1 and tn,α = Nα(n)/Nα−1(n) if
α ≥ 1. Following the argument of Section 2.2 and using Lemmas 18 and 22 for the appropriate
values of α, we may show that for any α ∈ R:
4∥P t

n,α − πn∥2TV ≤ (eig(1n))2t + 2 n/4
∑
k=1

(n
k
)2k!(1 − (n − k)k

n
t−1n,α)

2t

+ 2 n−2
∑

k=n/4
(n
k
)2k!(1 − k

2
t−1n,α)

2t

.

Substituting t = tn,α(logn + c) and once again using the inequality 1 − x ≤ e−x, we are left with
two sums to control; both have previously been shown to be bounded above by Ae−4c, for some
universal constant A, when c > 5/2 and n is sufficiently large [5, page 42].

4.2 Lower Bound for Biased One-sided Transpositions

4.2.1 Case: α ≤ 1
We use a coupon-collecting argument as in Section 3, once again letting Vn = {n−n/m+1, . . . , n−
1, n} with m = logn, and considering the set Bn = {ρ ∈ Sn ∣ρ has at least 1 fixed point in Vn}.
Equation (18) still holds for the biased version of the shuffle, but we now modify the bounds in
(19) and (20) as follows, using the inequality kα ≤ ( m

m−1)1−αnα for all k ∈ Vn (which holds for all
α ≤ 1):

P(Lt+1 ∈ Û t
n) = ∑

k∈Ût
n

w(k)
Nα(n)

k − (n − n/m)
k

+ ∑
k∈Vn∖Ût

n

w(k)
Nα(n)

∣U t
n∣
k

≤ ( m
m−1)1−αnα

Nα(n)
∑∣Ut

n∣
k=1 k + (n/m − ∣U t

n∣)∣U t
n∣(n − n/m) ≤ ( m

m−1)1−αnα∣U t
n∣

Nα(n)(m − 1) ;

P(Rt+1 ∈ U t
n) ≤ (

m
m−1)1−αnα∣U t

n∣
Nα(n) .

Using these as before we construct a counting process M t
n which dominates the number of collected

cards; the expression for pi in (23) becomes

pi = ( m

m − 1)
2−α nα

Nα(n) (
n

m
− i) ,

and this is easily checked to be strictly less than one for n sufficiently large, whatever the value
of α ≤ 1. The remainder of the analysis mirrors the unbiased case: using the new expression for
pi the distribution of the random variable T ′i is exactly as given in (24), and we arrive at

E[T ′] = n/m−1
∑
i=0

m − 1
mpi

≥ Nα(n)
nα

(logn − log logn − (3 − α)) ;

Var[T ′] ≤ n/m−1
∑
i=0

1

p2i
≤ π2

6

Nα(n)2
n2α

.

The proof of the lower bound is completed by using these new bounds in Chebychev’s inequality.
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4.2.2 Case: α ≥ 1
With α ≥ 1, the right hand is now more likely to choose cards near the top of the deck, and so it
makes sense to swap the roles of the right and left hands in our coupon-collecting argument. To
that end, let Vn = {1, . . . , n/m} and let

Bn = {ρ ∈ Sn ∣ρ has at least 1 fixed point in Vn} .
As in Section 3 we let U t

n denote the set of uncollected cards in Vn after t steps of the biased
one-sided transposition shuffle. The change in the number of collected cards in (18) then holds
with Lt+1 and Rt+1 interchanged, and we may replace the inequalities in (19) and (20) with the
following bounds (which hold for sufficiently large n):

P(Rt+1 ∈ U t
n) = 1

Nα(n) ∑i∈Ut
n

iα ≤ ∣U t
n∣

Nα(n)(n/m)
α ≤ ∣U t

n∣
Nα(n)

nα

α(m − 1) ≤
∣U t

n∣
Nα(n)

Nα−1(n)(m − 1) ;

P(Rt+1 ∉ U t
n, L

t+1 ∈ U t
n) ≤ ∣U t

n∣
Nα(n)

n∑
i=∣Ut

n∣+1

iα

i
≤ ∣U t

n∣Nα−1(n)
Nα(n) .

Analysis of the resulting counting process M t
n shows that for α ≥ 1 the biased one-sided transpo-

sition shuffle satisfies the lowed bound in Theorem 17.

Appendix: Lifting Eigenvectors Analysis

We work with the group algebra Sn = C[Sn] and its representations. We begin with some of the
background and basic constructions.

For each n ∈ N let [n] = {1, . . . , n} denote the set consisting of the first n natural numbers.
Given n ∈ N we denote by Wn the set of words of length n in the elements of [n], where by a
word of length n we simply mean a string w = w1 ⋅ w2 ⋅ . . . ⋅ wn of n elements from [n], allowing
repeats. Note that in forming words we simply regard the elements of [n] as distinct symbols;
we separate symbols by a dot ⋅. (It is notationally convenient later on that these symbols are
positive integers.) There is a natural action of the symmetric group Sn on Wn: given a word
w = w1 ⋅w2 ⋅ . . . ⋅wn ∈Wn and an element σ ∈ Sn, we let σ(w) ∶= wσ−1(1) ⋅wσ−1(2) ⋅ . . . ⋅wσ−1(n) ∈Wn.
We emphasise that this is the action of Sn on words by place permutations, it is NOT the action
of Sn induced by its action on [n], e.g. (123)(2 ⋅ 3 ⋅ 2) = 2 ⋅ 2 ⋅ 3 ≠ 3 ⋅ 1 ⋅ 3. We denote by Mn the
complex space with basis Wn, so Mn is an nn-dimensional vector space over C. The Sn-action
by place permutations on Wn extends to give Mn the structure of an Sn-module.

To each word w ∈Wn we can associate an n-tuple of non-negative integers, which we call its
evaluation, as follows. For 1 ≤ i ≤ n, let evali(w) count the number of occurrences of the symbol
i in the word w, and then let eval(w) ∶= (eval1(w), . . . , evaln(w)). Note that ∑n

i=1 evali(w) = n

for any word w in Mn. If in addition eval(w) is a non-increasing sequence of integers, then we
identify eval(w) with the corresponding partition of n (this is a matter of “forgetting” any zeroes
at the end of the tuple).

For a partition λ ⊢ n, a Young tableau T of shape λ naturally corresponds to a word in Wn.
Write the word w(T ) = w1 ⋅w2 ⋅ . . . ⋅wn by setting wT (i,j) = i for each box (i, j) in T . Equivalently,

the numerical entries in the ith row of T tell us in which positions to put the symbol i in the word
w(T ). Note that two tableaux give the same word if and only if they have the same shape and
the same set of entries in each row (i.e., they correspond to the same tabloid).

Definition 23. To every partition λ ⊢ n we may associate a simple module Sλ of Sn called the
Specht module for λ. The Specht module Sλ has dimension dλ.

Definition 24. For an n-tuple λ = (λ1, . . . , λn) of non-negative integers summing to n, define
Mλ to be the span of the words w ∈ Wn with eval(w) = λ. Since Sn acts by place permutations,
this is clearly an Sn-submodule of Mn.

If λ ⊢ n is a partition of n, then we allow ourselves an abuse of notation and also consider λ

as an n-tuple by adding some zeroes on the end (if necessary). We can then attach the module
Mλ to a partition λ. There is a unique copy of the Specht module Sλ as a submodule of Mλ
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Let us explicitly identify the unique copy of Sλ ⊂ Mλ as mentioned in the above definition.
Let T be a standard Young tableau of shape λ. Define CT ⊆ Sn to be the column stabilizer for T
– that is CT is the subgroup of Sn consisting of permutations which permute the elements in each
column of T . Corresponding to T we have the word w(T ) ∈ Mλ as above. Form a new element
s(T ) of Mλ, where

s(T ) ∶= ∑
σ∈ColStab(T )

sign(σ)w(σ(T )).
The Specht module Sλ is the subspace of Mλ with basis the elements s(T ), where T runs over all
standard Young tableaux of shape λ.

For example, if λ = (3,1) then we have 3 standard Young tableaux,

1 2 3
4

1 2 4
3

1 3 4
2

and we only have the first column to permute in each case. It is easy to check that

S(3,1) = ⟨1 ⋅ 1 ⋅ 1 ⋅ 2 − 2 ⋅ 1 ⋅ 1 ⋅ 1, 1 ⋅ 1 ⋅ 2 ⋅ 1 − 2 ⋅ 1 ⋅ 1 ⋅ 1, 1 ⋅ 2 ⋅ 1 ⋅ 1 − 2 ⋅ 1 ⋅ 1 ⋅ 1⟩.
It is a standard result in the theory that Sλ has multiplicity 1 as a summand of the permutation
module Mλ.

Lemma 25 (Theorem 2.11.2 of [15]). For λ ⊢ n we have,

Mλ ≅ ⊕
µ⊵λ

Kλ,µS
µ.

where Kλ,µS
µ denotes a direct sum of Kλ,µ copies of Sµ. The coefficients Kλ,µ are called Kostka

numbers, and for all λ ⊢ n we know Kλ,λ = 1.
The submodule M (1n) is of particular importance because it is spanned by the n! permutations

of the word 1 ⋅ 2 ⋅ . . . ⋅ n ∈ Wn, and therefore we can model our shuffle on n cards by considering
a linear operator on this space. In representation-theoretic terms, M (1n) can be identified as the
regular module for Sn; we may state a classical result about this regular module in the notation
we have now set up.

Corollary 26 (Example 2.11.6 of [15]).

M (1n) ≅ ⊕
λ⊢n

dλS
λ as Sn-modules.

For modelling our shuffle Pn acting on the space Sn we need to turn it into a linear operator.
In fact we may turn it into an element Qn of our group algebra Sn.

Definition 27. Let n ∈ N. The one-sided transposition shuffle on n cards may be viewed as the
following element of the group algebra Sn.

∑
1≤i≤j≤n

Pn((i j))(i j) = ∑
1≤i≤j≤n

1

nj
(i j).

To simplify our calculations it is convenient to scale this operator by n, so we introduce a new
operator

Qn ∶= ∑
1≤i≤j≤n

1

j
(i j).

By realising the shuffling operator as an element of the group algebra we can concentrate on
finding the eigenvalues of Qn on M (1n). Furthermore, applying Corollary 26, we can reduce the
problem of finding eigenvalues for the shuffle on M (1n) to the problem of finding eigenvalues on
the Specht modules Sλ. Moreover, since the operator is acting as an element of the group algebra,
we are then free to study its action on the natural copy of Sλ inside Mλ to solve this problem,
rather than having to stick to the copies of Sλ inside M (1n). This turns out to be very useful,
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because there is a natural way of relating eigenvectors and eigenvalues corresponding to different
partitions according to the branching rules in Figure 1. Note that we allow the special case n = 0
with partition (0) and corresponding Young diagram ∅.

∅
Figure 1: Young’s lattice for partitions of size n ∈ {0,1,2,3,4}.

The one-sided transposition shuffle admits a recursive structure which is seen when we focus on
the difference of Qn+1 and Qn,

Qn+1 −Qn = 1

(n + 1) ∑
1≤i≤(n+1)

(i n + 1). (29)

This signifies that the only difference between the one-sided transposition shuffle on n + 1 and n

cards is the movement of the new card in position n + 1. We now define some important linear
operators which will allow us to study the Qn inductively using equation (29).

Definition 28. We define two linear operators on the spaces spanned by words. To do so, it is
enough to define the effect on any given word.

1. Let a ∈ [n + 1]. Define the adding operator Φa ∶ Mn
→ Mn+1 as follows: given a word

w ∈Wn, define
Φa(w) ∶= w ⋅ a,

(i.e., append the symbol a to the end of the word w).

2. Let a, b ∈ [n]. Define the switching operator Θb,a ∶ Mn
→ Mn as follows: given a word

w = w1 ⋅w2 ⋅ . . . ⋅wn ∈Wn, define

Θb,a(w) ∶= ∑
1≤i≤n
wi=b

w1 ⋅ . . . ⋅wi−1 ⋅ a ⋅wi+1 ⋅ . . . ⋅wn,

(i.e., for each occurrence of b in the word w, replace that occurrence with a and sum the
resulting words).

Remark 29. There is some ambiguity in the definitions just given – since 1 ∈ [n] for all n, for
example, strictly speaking we should define Φ1 separately for each n. However, this would burden
us with even more notation, and it should always be clear from the context which domain and
codomain we are considering.

The adding operator on words defined above is an analogue of the process of adding boxes to
Young diagrams. The process of adding boxes to Young diagrams may be seen in Figure 1. We
now set up some notation to describe this more precisely.
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Definition 30. Given an n-tuple λ = (λ1, . . . , λr) of non-negative integers summing to n and an
element a ∈ [n + 1], we form an (n + 1)-tuple denoted λ + ea by first adding a zero to the end of λ
and then adding 1 to this (n+1)-tuple in position a. Then λ+ea is an (n+1)-tuple of non-negative
integers summing to n + 1. E.g. (2,1,0) + e3 = (2,1,0,0) + (0,0,1,0) = (2,1,1,0).

With this notation in hand, we have the following easy lemma:

Lemma 31. Given a ∈ [n + 1] and an n-tuple λ of non-negative integers summing to n, we have

Φa ∶Mλ
→Mλ+ea ,

i.e., the restriction of Φa to Mλ has image in Mλ+ea .
Given a, b ∈ [n] and n-tuples λ,µ of non-negative integers summing to n with λ + ea = µ + eb,

we have
Θb,a ∶Mλ

→Mµ,

i.e., the restriction of Θb,a to Mλ has image in Mµ.

Our next result establishes the crucial equation upon which all the subsequent results in this
section rely. It relates the shuffle on n cards to that on n + 1 cards, and allows us to lift the
eigenvalues.

Theorem 32. Given n ∈ N, we have

Qn+1 ○Φa −Φa ○Qn = 1

n + 1Φa + 1

n + 1 ∑1≤b≤nΦb ○Θb,a . (30)

Proof. It suffices to prove the result on words. Let w = w1 ⋅ . . . ⋅wn be a word of length n and let
a ∈ [n + 1]. Consider the two terms on the left hand side applied to w:

(Qn+1 ○Φa)(w) = ∑
1≤i≤j≤n+1

1

j
(i j)(w ⋅ a) = 1

n + 1 ∑
j=n+1

1≤i≤n+1

(i j)(w ⋅ a) + ∑
1≤i≤j≤n

1

j
(i j)(w ⋅ a) (31)

(Φa ○Qn)(w) = ⎛⎝ ∑1≤i≤j≤n

1

j
(i j)(w)⎞⎠ ⋅ a. (32)

The second summation in (31) cancels with (32) because the adjoined a is in the (n + 1)-th
place, therefore it never moves and may be brought outside. This leaves us with the following:

(Qn+1 ○Φa −Φa ○Qn)(w) = 1

n + 1 ∑
1≤i≤n+1

(i n + 1)(w ⋅ a). (33)

If i = n+1 we move nothing, giving the term w⋅a = Φa(w). Otherwise we apply the transposition(i n + 1) to w ⋅ a. This has the same effect as replacing the ith symbol wi in w with a and then
appending wi on the end of the new word. Since we do this for all symbols in w, the net effect is
the same as ∑1≤b≤nΦb ○Θb,a applied to w. (The operator Θb,a systematically finds all occurrences
of the letter b in w and replaces with an a, and then Φb puts the b back on the end. Since w ∈Wn,
all possibilities are exhausted by letting b range over 1 ≤ b ≤ n.) This completes the proof.

In terms of shuffling cards, we can interpret (30) as taking into account the difference between
shuffling a deck and then adding a card versus adding a card and then shuffling. If we can
understand how the operators Φa and Θb,a behave, this then inductively tells us how the shuffle
on n + 1 cards behaves using information about the shuffle on n cards. Equation (30) is our
analogue of the similar equation found in [7, Theorem 38]. We now record a key property of the
switching operators Θa,b.

Lemma 33 (See Section 2.9 of [15]). The maps Θb,a are Sn-module morphisms.
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Proof. This is clear from the definitions: since Sn is acting by place permutations, it amounts to
the same thing to replace an occurrence of the symbol b with a symbol a and then permute the
word as to first permute the word and then replace the same symbol b in its new position with an
a.

The above result is used to prove our next important lemma. Recall that given a partition λ

we may add boxes to it in certain places to form a new partition. By our blurring of the distinction
between partitions of n and n-tuples, if we add a box on row i the new partition formed is λ+ ei.
Our next lemma shows how our switching operators behave when restricted to Specht modules.

Lemma 34 (Lemma 44 of [7]). Let λ,α ⊢ n be such that λ + ea = α + eb for some a, b ∈ [n]. Then
Θb,a is non-zero on Sλ if and only if λ dominates α. In particular, if a < b then Θb,a(Sλ) = 0.
Proof. Since Sλ is simple and Θb,a is a module homomorphism, the image Θb,a(Sλ) is 0 or isomor-
phic to Sλ, by Schur’s lemma. But Θb,a(Sλ) lies in Mα because of the relationship λ+ea = α+eb,
and Mα has a submodule isomorphic to Sλ if and only if λ dominates α (Lemma 25). This gives
the first assertion of the lemma.

To finish, note that in terms of diagrams the fact that λ + ea = α + eb corresponds to the fact
that we can get from the diagram for λ to that for α by moving a box from row b to row a. Hence,
under the given hypothesis, we have that λ dominates α if and only if a ≥ b.

The preceding result shows that when we restrict equation (30) to a Specht module Sλ we can
change the index of the summation in the final term on the right hand side, as follows.

Corollary 35 (Similar to Corollary 45 of [7]).

(Qn+1 ○Φa −Φa ○Qn)∣Sλ = 1

n + 1Φa∣Sλ + 1

n + 1 ∑1≤b≤aΦb ○Θb,a∣Sλ (34)

Having restricted equation (30) to the Specht module Sλ, we now analyse the image in the
module Mλ+ea (note that it is clear from the left hand side of (30) that we do land in Mλ+ea).

Lemma 36 (Lemma 41 of [7]). Suppose λ ⊢ n and λ + ea ⊢ n + 1. Then the subspace Φa(Sλ)
is contained in an Sn+1-submodule of Mλ+ea that is isomorphic to ⊕µS

µ, where the sum ranges
over the partitions µ obtained from λ by adding a box in row i for i ≤ a.
Proof. Let w be a word of length n, so that Φa(w) = w ⋅ a. If the symbol b does not occur in w

then
Φa(w) = Θb,a(Φb(w)).

Let b = l(λ) + 1, so b does not appear in any w ∈ Mλ, and consider the Sn+1-submodule N of
Mλ+eb generated by the elements x ⋅ b with x ∈ Sλ,

N = ⟨x ⋅ b ∶ x ∈ Sλ⟩.

The submodule N is isomorphic to IndSn+1

Sn×S1
(Sλ
⊗S1) (this is essentially the definition of how

to induce), and using the branching rules on Sn this decomposes as a multiplicity free direct sum
of Specht modules Sµ, where µ ⊢ n + 1 and λ ⊂ µ [15, Theorem 2.8.3]. Using the observation at
the start of the proof, we obtain

Φa(Sλ) = Θb,a(Φb(Sλ)) ⊆ Θb,a(⟨Φb(Sλ)⟩) = Θb,a(N) ≅ ⊕
µ⊇λ

Θb,a(Sµ).

Now note that Θb,a sends any word with evaluation λ + eb to a word with evaluation λ + ea, and
hence Θb,a(Mλ+eb) ⊆ Mλ+ea . It follows that all nonzero summands Sµ appearing on the right
hand side occur for µ ⊢ n + 1 dominating λ + ea, and then by Lemma 34 we can conclude that µ
is obtained from λ by adding a cell in row i with i ≤ a, as required.

Recall that for any Sn-module V and a partition λ ⊢ n, we have the isotypic projection
πλ
∶ V → V which projects onto the Sλ-isotypic component of V . Using these projections, we can

now define our lifting operators, which will be proven to map eigenvectors of Qn to those of Qn+1.
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Definition 37. Suppose λ ⊢ n and λ+ea = µ ⊢ n+1 are two partitions. Define the lifting operator

κλ,µ
a ∶= πµ ○Φa ∶ Sλ

→ Sµ ⊆Mµ.

Note that since Φa(Sλ) ⊆Mµ and Mµ contains a unique copy of Sµ, the image of Sλ under κλ,µ
a

is actually contained in Sµ.

The next results give some properties of the lifting operators; these properties depend in an
essential way on the choice of Φa above. Our choice for Φa gives the eigenspaces a different
structure to those in [7], in particular we are able to find all the eigenvectors for a module Sµ by
looking at lifted eigenvectors from partitions λ ⊂ µ.
Corollary 38. For any λ ⊢ n and λ + ea ⊢ n + 1, there exists some v ∈ Sλ with

κλ,λ+ea
a (v) ≠ 0.

Proof. If κλ,λ+ea
a (Sλ) = 0, then the image Φa(Sλ) lies in the kernel of the projection πλ+ea ∶

Mλ+ea
→ Sλ+ea , which is an Sn+1-submodule with no component equal to Sλ+ea . Hence the

submodule generated by Φa(Sλ) has no component equal to Sλ+ea . But we previously observed
that (with notation as in the proof of Lemma 36)

⟨Φa(Sλ)⟩ = ⟨Θb,a(Φb(Sλ))⟩ = Θb,a(⟨Φb(Sλ)⟩) ≅ Θb,a(N) ≅ ⊕
1≤i≤a

Sλ+ei .

Since the right hand side contains Sλ+ea as a summand, we have a contradiction.

We already know the map πµ is an Sn+1-module morphism. Let us realise Sn inside Sn+1
as the stabilizer of the (n + 1)th position. Then any Sn+1-module gives rise to an Sn-module by
restriction.

Lemma 39. The linear operator κλ,λ+ea
a is a Sn-module morphism with trivial kernel.

Proof. The key observation is that Φa(σ(v)) = σ(Φa(v)) for all v ∈ Sλ and σ ∈Sn ⊂Sn+1. This is
obvious, since Φa adds an element in the final position which is not affected by σ. Hence κλ,λ+ea

a

is the composition of two Sn-module morphisms. The final observation follows from Corollary 38
– since κλ,λ+ea

a is a nonzero module morphism with a simple module as its domain, it must be
injective by Schur’s lemma.

That the maps κλ,λ+ea
a are injective is a key point which simplifies the analysis in this paper

compared to that in [7], where the lifting operators can kill eigenvectors. The next results show
that κλ,λ+ea

a does indeed lift eigenvectors of Qn into those of Qn+1. To establish this we apply
our projection πλ+ea to equation (34). We can now state our versions of [7, Lemma 48, Theorem
49]; the proofs follow mutatis mutandis from the ones given there (the changes needed are to the
constants in equation (30)).

Lemma 40 (Lemma 48 of [7]). For λ = (λ1, . . . , λr) ⊢ n, a ∈ {1,2, . . . r+1} and µ = λ+ei for some
1 ≤ i ≤ a,

Qn+1 ○ κλ,µ
a − κλ,µ

a ○Qn = 2 + λa − a
n + 1 κλ,µ

a + 1

n + 1 ∑i≤b≤aΘb,a ○ κλ,µ
b .

Proof. This follows from the work in [7]: because we have not changed the switching operators
Θb,a the proof still holds. The values on the right hand side change to reflect the difference in our
equation (30).

Theorem 41 (Theorem 49 of [7]). For λ = (λ1, . . . , λr) ⊢ n, a ∈ {1,2, . . . r + 1} and µ = λ+ ei with
1 ≤ i ≤ a,

Qn+1 ○ κλ,µ
a − κλ,µ

a ○Qn = (2 + λi − i)
n + 1 κλ,µ

a .

In particular if v ∈ Sλ is an eigenvector of Qn with eigenvalue ε, then either κλ,µ
a (v) = 0 or

κλ,µ
a (v) is an eigenvector of Qn+1 with eigenvalue

ε + 2 + λi − i
n + 1 .
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Proof. This proof also follows from the work in [7].

The above theorem tells us exactly how to turn eigenvectors of Qn into those of Qn+1 and,
crucially, it also shows how the eigenvalues change in value. The final part of the analysis rests
on showing that all of the eigenvectors in a Specht module Sµ can be retrieved by lifting from
Specht modules Sλ with µ = λ+ ea. In fact, we show that these lifted eigenvectors form a basis of
Sµ.

Theorem 42. For any µ ⊢ n + 1 we may find a basis of eigenvectors of Qn+1 for the module Sµ,
by lifting the eigenvectors of Qn belonging in the modules Sλ with λ ⊢ n and λ ⊂ µ.
Proof. We proceed by induction, for n = 1 we know that the simple modules S(2), S(1,1) of Sn+1
are both one dimensional. Therefore, the eigenvector a ∈ S(1) when lifted indeed forms a basis for
each simple module.

Consider the simple module of Sµ with µ ⊢ n + 1. We know classically from the branching
rules of Sn [15, Theorem 2.8.3] that the restriction of this module to Sn is given by the

ResSn+1

Sn
(Sµ) ≅ ⊕

λ⊢n
λ⊂µ

Sλ.

Now suppose we have a basis of eigenvectors for every Sλ. By Lemma 39 the map κλ,µ(Sλ) gives
a basis for Sλ inside of the vector space of ResSn+1

Sn
(Sµ) which is the same vector space as Sµ.

Hence, considering all of the lifted eigenvectors from every Sλ together we find a basis for Sµ. By
Theorem 41 the lifted eigenvectors form a basis of eigenvectors for Sµ.

Inductively, for any λ ⊢ n, Theorem 42 gives us the way to find all the eigenvectors for Qn

belonging to the Specht module Sλ: starting at ∅ and recursively applying lifting operators until
we reach Sλ will give us an eigenvector, and all eigenvectors arise in this way. Note that S∅

has no eigenvectors attached to it, but we allow ∅ to be an eigenvector with eigenvalue 0, and
Φa(∅) = a. This agrees with the formula in Theorem 41 because a is the only eigenvector of P1

with eigenvalue 1 = 0+(2+0−1)/(1). The inductive process of lifting naturally forms one path up
Young’s lattice which starts at ∅ and ends at λ. Furthermore, by Theorem 42 each unique path
we take ∅→ λ will result in a distinct eigenvector for Sλ, and all these eigenvectors together form
a basis. We now are in a position to prove Theorem 5.

Proof of Theorem 5. Every eigenvector in our constructed basis gives a distinct eigenvalue of Sλ,
hence there are dλ distinct eigenvalues. These are eigenvalues for the shuffle Qn, and each one
appears dλ times due to the isomorphism in Corollary 26. Therefore overall we have found

∑λ⊢n d
2
λ = n! eigenvalues and thus have a complete set.

Proof of Lemma 6. Given a standard tableau T of size n, we build it up following its labelling
and keeping track of the changes in eigenvalue given by Theorem 41. When box (i, j) is added to

T we get a change in eigenvalue of 2+λi−i
n+1 = 2+(j−1)−i

T (i,j) = j−i+1
T (i,j) . After summing these changes for all

boxes (i, j) in T we divide by the size of T to normalise the eigenvalue.
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